1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/kernel.h>
4 #include <linux/bitops.h>
5 #include <linux/cpumask.h>
6 #include <linux/export.h>
7 #include <linux/memblock.h>
8 #include <linux/numa.h>
9 
10 /* These are not inline because of header tangles. */
11 #ifdef CONFIG_CPUMASK_OFFSTACK
12 /**
13  * alloc_cpumask_var_node - allocate a struct cpumask on a given node
14  * @mask: pointer to cpumask_var_t where the cpumask is returned
15  * @flags: GFP_ flags
16  * @node: memory node from which to allocate or %NUMA_NO_NODE
17  *
18  * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is
19  * a nop returning a constant 1 (in <linux/cpumask.h>).
20  *
21  * Return: TRUE if memory allocation succeeded, FALSE otherwise.
22  *
23  * In addition, mask will be NULL if this fails.  Note that gcc is
24  * usually smart enough to know that mask can never be NULL if
25  * CONFIG_CPUMASK_OFFSTACK=n, so does code elimination in that case
26  * too.
27  */
alloc_cpumask_var_node(cpumask_var_t * mask,gfp_t flags,int node)28 bool alloc_cpumask_var_node(cpumask_var_t *mask, gfp_t flags, int node)
29 {
30 	*mask = kmalloc_node(cpumask_size(), flags, node);
31 
32 #ifdef CONFIG_DEBUG_PER_CPU_MAPS
33 	if (!*mask) {
34 		printk(KERN_ERR "=> alloc_cpumask_var: failed!\n");
35 		dump_stack();
36 	}
37 #endif
38 
39 	return *mask != NULL;
40 }
41 EXPORT_SYMBOL(alloc_cpumask_var_node);
42 
43 /**
44  * alloc_bootmem_cpumask_var - allocate a struct cpumask from the bootmem arena.
45  * @mask: pointer to cpumask_var_t where the cpumask is returned
46  *
47  * Only defined when CONFIG_CPUMASK_OFFSTACK=y, otherwise is
48  * a nop (in <linux/cpumask.h>).
49  * Either returns an allocated (zero-filled) cpumask, or causes the
50  * system to panic.
51  */
alloc_bootmem_cpumask_var(cpumask_var_t * mask)52 void __init alloc_bootmem_cpumask_var(cpumask_var_t *mask)
53 {
54 	*mask = memblock_alloc_or_panic(cpumask_size(), SMP_CACHE_BYTES);
55 }
56 
57 /**
58  * free_cpumask_var - frees memory allocated for a struct cpumask.
59  * @mask: cpumask to free
60  *
61  * This is safe on a NULL mask.
62  */
free_cpumask_var(cpumask_var_t mask)63 void free_cpumask_var(cpumask_var_t mask)
64 {
65 	kfree(mask);
66 }
67 EXPORT_SYMBOL(free_cpumask_var);
68 
69 /**
70  * free_bootmem_cpumask_var - frees result of alloc_bootmem_cpumask_var
71  * @mask: cpumask to free
72  */
free_bootmem_cpumask_var(cpumask_var_t mask)73 void __init free_bootmem_cpumask_var(cpumask_var_t mask)
74 {
75 	memblock_free(mask, cpumask_size());
76 }
77 #endif
78 
79 /**
80  * cpumask_local_spread - select the i'th cpu based on NUMA distances
81  * @i: index number
82  * @node: local numa_node
83  *
84  * Return: online CPU according to a numa aware policy; local cpus are returned
85  * first, followed by non-local ones, then it wraps around.
86  *
87  * For those who wants to enumerate all CPUs based on their NUMA distances,
88  * i.e. call this function in a loop, like:
89  *
90  * for (i = 0; i < num_online_cpus(); i++) {
91  *	cpu = cpumask_local_spread(i, node);
92  *	do_something(cpu);
93  * }
94  *
95  * There's a better alternative based on for_each()-like iterators:
96  *
97  *	for_each_numa_hop_mask(mask, node) {
98  *		for_each_cpu_andnot(cpu, mask, prev)
99  *			do_something(cpu);
100  *		prev = mask;
101  *	}
102  *
103  * It's simpler and more verbose than above. Complexity of iterator-based
104  * enumeration is O(sched_domains_numa_levels * nr_cpu_ids), while
105  * cpumask_local_spread() when called for each cpu is
106  * O(sched_domains_numa_levels * nr_cpu_ids * log(nr_cpu_ids)).
107  */
cpumask_local_spread(unsigned int i,int node)108 unsigned int cpumask_local_spread(unsigned int i, int node)
109 {
110 	unsigned int cpu;
111 
112 	/* Wrap: we always want a cpu. */
113 	i %= num_online_cpus();
114 
115 	cpu = sched_numa_find_nth_cpu(cpu_online_mask, i, node);
116 
117 	WARN_ON(cpu >= nr_cpu_ids);
118 	return cpu;
119 }
120 EXPORT_SYMBOL(cpumask_local_spread);
121 
122 static DEFINE_PER_CPU(int, distribute_cpu_mask_prev);
123 
124 /**
125  * cpumask_any_and_distribute - Return an arbitrary cpu within src1p & src2p.
126  * @src1p: first &cpumask for intersection
127  * @src2p: second &cpumask for intersection
128  *
129  * Iterated calls using the same srcp1 and srcp2 will be distributed within
130  * their intersection.
131  *
132  * Return: >= nr_cpu_ids if the intersection is empty.
133  */
cpumask_any_and_distribute(const struct cpumask * src1p,const struct cpumask * src2p)134 unsigned int cpumask_any_and_distribute(const struct cpumask *src1p,
135 			       const struct cpumask *src2p)
136 {
137 	unsigned int next, prev;
138 
139 	/* NOTE: our first selection will skip 0. */
140 	prev = __this_cpu_read(distribute_cpu_mask_prev);
141 
142 	next = cpumask_next_and_wrap(prev, src1p, src2p);
143 	if (next < nr_cpu_ids)
144 		__this_cpu_write(distribute_cpu_mask_prev, next);
145 
146 	return next;
147 }
148 EXPORT_SYMBOL(cpumask_any_and_distribute);
149 
150 /**
151  * cpumask_any_distribute - Return an arbitrary cpu from srcp
152  * @srcp: &cpumask for selection
153  *
154  * Return: >= nr_cpu_ids if the intersection is empty.
155  */
cpumask_any_distribute(const struct cpumask * srcp)156 unsigned int cpumask_any_distribute(const struct cpumask *srcp)
157 {
158 	unsigned int next, prev;
159 
160 	/* NOTE: our first selection will skip 0. */
161 	prev = __this_cpu_read(distribute_cpu_mask_prev);
162 	next = cpumask_next_wrap(prev, srcp);
163 	if (next < nr_cpu_ids)
164 		__this_cpu_write(distribute_cpu_mask_prev, next);
165 
166 	return next;
167 }
168 EXPORT_SYMBOL(cpumask_any_distribute);
169