1 // SPDX-License-Identifier: GPL-2.0-only
2 
3 #include <linux/export.h>
4 #include <linux/nsproxy.h>
5 #include <linux/slab.h>
6 #include <linux/sched/signal.h>
7 #include <linux/user_namespace.h>
8 #include <linux/proc_ns.h>
9 #include <linux/highuid.h>
10 #include <linux/cred.h>
11 #include <linux/securebits.h>
12 #include <linux/security.h>
13 #include <linux/keyctl.h>
14 #include <linux/key-type.h>
15 #include <keys/user-type.h>
16 #include <linux/seq_file.h>
17 #include <linux/fs.h>
18 #include <linux/uaccess.h>
19 #include <linux/ctype.h>
20 #include <linux/projid.h>
21 #include <linux/fs_struct.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 
25 static struct kmem_cache *user_ns_cachep __ro_after_init;
26 static DEFINE_MUTEX(userns_state_mutex);
27 
28 static bool new_idmap_permitted(const struct file *file,
29 				struct user_namespace *ns, int cap_setid,
30 				struct uid_gid_map *map);
31 static void free_user_ns(struct work_struct *work);
32 
inc_user_namespaces(struct user_namespace * ns,kuid_t uid)33 static struct ucounts *inc_user_namespaces(struct user_namespace *ns, kuid_t uid)
34 {
35 	return inc_ucount(ns, uid, UCOUNT_USER_NAMESPACES);
36 }
37 
dec_user_namespaces(struct ucounts * ucounts)38 static void dec_user_namespaces(struct ucounts *ucounts)
39 {
40 	return dec_ucount(ucounts, UCOUNT_USER_NAMESPACES);
41 }
42 
set_cred_user_ns(struct cred * cred,struct user_namespace * user_ns)43 static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns)
44 {
45 	/* Start with the same capabilities as init but useless for doing
46 	 * anything as the capabilities are bound to the new user namespace.
47 	 */
48 	cred->securebits = SECUREBITS_DEFAULT;
49 	cred->cap_inheritable = CAP_EMPTY_SET;
50 	cred->cap_permitted = CAP_FULL_SET;
51 	cred->cap_effective = CAP_FULL_SET;
52 	cred->cap_ambient = CAP_EMPTY_SET;
53 	cred->cap_bset = CAP_FULL_SET;
54 #ifdef CONFIG_KEYS
55 	key_put(cred->request_key_auth);
56 	cred->request_key_auth = NULL;
57 #endif
58 	/* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */
59 	cred->user_ns = user_ns;
60 }
61 
enforced_nproc_rlimit(void)62 static unsigned long enforced_nproc_rlimit(void)
63 {
64 	unsigned long limit = RLIM_INFINITY;
65 
66 	/* Is RLIMIT_NPROC currently enforced? */
67 	if (!uid_eq(current_uid(), GLOBAL_ROOT_UID) ||
68 	    (current_user_ns() != &init_user_ns))
69 		limit = rlimit(RLIMIT_NPROC);
70 
71 	return limit;
72 }
73 
74 /*
75  * Create a new user namespace, deriving the creator from the user in the
76  * passed credentials, and replacing that user with the new root user for the
77  * new namespace.
78  *
79  * This is called by copy_creds(), which will finish setting the target task's
80  * credentials.
81  */
create_user_ns(struct cred * new)82 int create_user_ns(struct cred *new)
83 {
84 	struct user_namespace *ns, *parent_ns = new->user_ns;
85 	kuid_t owner = new->euid;
86 	kgid_t group = new->egid;
87 	struct ucounts *ucounts;
88 	int ret, i;
89 
90 	ret = -ENOSPC;
91 	if (parent_ns->level > 32)
92 		goto fail;
93 
94 	ucounts = inc_user_namespaces(parent_ns, owner);
95 	if (!ucounts)
96 		goto fail;
97 
98 	/*
99 	 * Verify that we can not violate the policy of which files
100 	 * may be accessed that is specified by the root directory,
101 	 * by verifying that the root directory is at the root of the
102 	 * mount namespace which allows all files to be accessed.
103 	 */
104 	ret = -EPERM;
105 	if (current_chrooted())
106 		goto fail_dec;
107 
108 	/* The creator needs a mapping in the parent user namespace
109 	 * or else we won't be able to reasonably tell userspace who
110 	 * created a user_namespace.
111 	 */
112 	ret = -EPERM;
113 	if (!kuid_has_mapping(parent_ns, owner) ||
114 	    !kgid_has_mapping(parent_ns, group))
115 		goto fail_dec;
116 
117 	ret = security_create_user_ns(new);
118 	if (ret < 0)
119 		goto fail_dec;
120 
121 	ret = -ENOMEM;
122 	ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL);
123 	if (!ns)
124 		goto fail_dec;
125 
126 	ns->parent_could_setfcap = cap_raised(new->cap_effective, CAP_SETFCAP);
127 	ret = ns_alloc_inum(&ns->ns);
128 	if (ret)
129 		goto fail_free;
130 	ns->ns.ops = &userns_operations;
131 
132 	refcount_set(&ns->ns.count, 1);
133 	/* Leave the new->user_ns reference with the new user namespace. */
134 	ns->parent = parent_ns;
135 	ns->level = parent_ns->level + 1;
136 	ns->owner = owner;
137 	ns->group = group;
138 	INIT_WORK(&ns->work, free_user_ns);
139 	for (i = 0; i < UCOUNT_COUNTS; i++) {
140 		ns->ucount_max[i] = INT_MAX;
141 	}
142 	set_userns_rlimit_max(ns, UCOUNT_RLIMIT_NPROC, enforced_nproc_rlimit());
143 	set_userns_rlimit_max(ns, UCOUNT_RLIMIT_MSGQUEUE, rlimit(RLIMIT_MSGQUEUE));
144 	set_userns_rlimit_max(ns, UCOUNT_RLIMIT_SIGPENDING, rlimit(RLIMIT_SIGPENDING));
145 	set_userns_rlimit_max(ns, UCOUNT_RLIMIT_MEMLOCK, rlimit(RLIMIT_MEMLOCK));
146 	ns->ucounts = ucounts;
147 
148 	/* Inherit USERNS_SETGROUPS_ALLOWED from our parent */
149 	mutex_lock(&userns_state_mutex);
150 	ns->flags = parent_ns->flags;
151 	mutex_unlock(&userns_state_mutex);
152 
153 #ifdef CONFIG_KEYS
154 	INIT_LIST_HEAD(&ns->keyring_name_list);
155 	init_rwsem(&ns->keyring_sem);
156 #endif
157 	ret = -ENOMEM;
158 	if (!setup_userns_sysctls(ns))
159 		goto fail_keyring;
160 
161 	set_cred_user_ns(new, ns);
162 	return 0;
163 fail_keyring:
164 #ifdef CONFIG_PERSISTENT_KEYRINGS
165 	key_put(ns->persistent_keyring_register);
166 #endif
167 	ns_free_inum(&ns->ns);
168 fail_free:
169 	kmem_cache_free(user_ns_cachep, ns);
170 fail_dec:
171 	dec_user_namespaces(ucounts);
172 fail:
173 	return ret;
174 }
175 
unshare_userns(unsigned long unshare_flags,struct cred ** new_cred)176 int unshare_userns(unsigned long unshare_flags, struct cred **new_cred)
177 {
178 	struct cred *cred;
179 	int err = -ENOMEM;
180 
181 	if (!(unshare_flags & CLONE_NEWUSER))
182 		return 0;
183 
184 	cred = prepare_creds();
185 	if (cred) {
186 		err = create_user_ns(cred);
187 		if (err)
188 			put_cred(cred);
189 		else
190 			*new_cred = cred;
191 	}
192 
193 	return err;
194 }
195 
free_user_ns(struct work_struct * work)196 static void free_user_ns(struct work_struct *work)
197 {
198 	struct user_namespace *parent, *ns =
199 		container_of(work, struct user_namespace, work);
200 
201 	do {
202 		struct ucounts *ucounts = ns->ucounts;
203 		parent = ns->parent;
204 		if (ns->gid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
205 			kfree(ns->gid_map.forward);
206 			kfree(ns->gid_map.reverse);
207 		}
208 		if (ns->uid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
209 			kfree(ns->uid_map.forward);
210 			kfree(ns->uid_map.reverse);
211 		}
212 		if (ns->projid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
213 			kfree(ns->projid_map.forward);
214 			kfree(ns->projid_map.reverse);
215 		}
216 #if IS_ENABLED(CONFIG_BINFMT_MISC)
217 		kfree(ns->binfmt_misc);
218 #endif
219 		retire_userns_sysctls(ns);
220 		key_free_user_ns(ns);
221 		ns_free_inum(&ns->ns);
222 		kmem_cache_free(user_ns_cachep, ns);
223 		dec_user_namespaces(ucounts);
224 		ns = parent;
225 	} while (refcount_dec_and_test(&parent->ns.count));
226 }
227 
__put_user_ns(struct user_namespace * ns)228 void __put_user_ns(struct user_namespace *ns)
229 {
230 	schedule_work(&ns->work);
231 }
232 EXPORT_SYMBOL(__put_user_ns);
233 
234 /*
235  * struct idmap_key - holds the information necessary to find an idmapping in a
236  * sorted idmap array. It is passed to cmp_map_id() as first argument.
237  */
238 struct idmap_key {
239 	bool map_up; /* true  -> id from kid; false -> kid from id */
240 	u32 id; /* id to find */
241 	u32 count;
242 };
243 
244 /*
245  * cmp_map_id - Function to be passed to bsearch() to find the requested
246  * idmapping. Expects struct idmap_key to be passed via @k.
247  */
cmp_map_id(const void * k,const void * e)248 static int cmp_map_id(const void *k, const void *e)
249 {
250 	u32 first, last, id2;
251 	const struct idmap_key *key = k;
252 	const struct uid_gid_extent *el = e;
253 
254 	id2 = key->id + key->count - 1;
255 
256 	/* handle map_id_{down,up}() */
257 	if (key->map_up)
258 		first = el->lower_first;
259 	else
260 		first = el->first;
261 
262 	last = first + el->count - 1;
263 
264 	if (key->id >= first && key->id <= last &&
265 	    (id2 >= first && id2 <= last))
266 		return 0;
267 
268 	if (key->id < first || id2 < first)
269 		return -1;
270 
271 	return 1;
272 }
273 
274 /*
275  * map_id_range_down_max - Find idmap via binary search in ordered idmap array.
276  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
277  */
278 static struct uid_gid_extent *
map_id_range_down_max(unsigned extents,struct uid_gid_map * map,u32 id,u32 count)279 map_id_range_down_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
280 {
281 	struct idmap_key key;
282 
283 	key.map_up = false;
284 	key.count = count;
285 	key.id = id;
286 
287 	return bsearch(&key, map->forward, extents,
288 		       sizeof(struct uid_gid_extent), cmp_map_id);
289 }
290 
291 /*
292  * map_id_range_down_base - Find idmap via binary search in static extent array.
293  * Can only be called if number of mappings is equal or less than
294  * UID_GID_MAP_MAX_BASE_EXTENTS.
295  */
296 static struct uid_gid_extent *
map_id_range_down_base(unsigned extents,struct uid_gid_map * map,u32 id,u32 count)297 map_id_range_down_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
298 {
299 	unsigned idx;
300 	u32 first, last, id2;
301 
302 	id2 = id + count - 1;
303 
304 	/* Find the matching extent */
305 	for (idx = 0; idx < extents; idx++) {
306 		first = map->extent[idx].first;
307 		last = first + map->extent[idx].count - 1;
308 		if (id >= first && id <= last &&
309 		    (id2 >= first && id2 <= last))
310 			return &map->extent[idx];
311 	}
312 	return NULL;
313 }
314 
map_id_range_down(struct uid_gid_map * map,u32 id,u32 count)315 static u32 map_id_range_down(struct uid_gid_map *map, u32 id, u32 count)
316 {
317 	struct uid_gid_extent *extent;
318 	unsigned extents = map->nr_extents;
319 	smp_rmb();
320 
321 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
322 		extent = map_id_range_down_base(extents, map, id, count);
323 	else
324 		extent = map_id_range_down_max(extents, map, id, count);
325 
326 	/* Map the id or note failure */
327 	if (extent)
328 		id = (id - extent->first) + extent->lower_first;
329 	else
330 		id = (u32) -1;
331 
332 	return id;
333 }
334 
map_id_down(struct uid_gid_map * map,u32 id)335 u32 map_id_down(struct uid_gid_map *map, u32 id)
336 {
337 	return map_id_range_down(map, id, 1);
338 }
339 
340 /*
341  * map_id_up_base - Find idmap via binary search in static extent array.
342  * Can only be called if number of mappings is equal or less than
343  * UID_GID_MAP_MAX_BASE_EXTENTS.
344  */
345 static struct uid_gid_extent *
map_id_range_up_base(unsigned extents,struct uid_gid_map * map,u32 id,u32 count)346 map_id_range_up_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
347 {
348 	unsigned idx;
349 	u32 first, last, id2;
350 
351 	id2 = id + count - 1;
352 
353 	/* Find the matching extent */
354 	for (idx = 0; idx < extents; idx++) {
355 		first = map->extent[idx].lower_first;
356 		last = first + map->extent[idx].count - 1;
357 		if (id >= first && id <= last &&
358 		    (id2 >= first && id2 <= last))
359 			return &map->extent[idx];
360 	}
361 	return NULL;
362 }
363 
364 /*
365  * map_id_up_max - Find idmap via binary search in ordered idmap array.
366  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
367  */
368 static struct uid_gid_extent *
map_id_range_up_max(unsigned extents,struct uid_gid_map * map,u32 id,u32 count)369 map_id_range_up_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
370 {
371 	struct idmap_key key;
372 
373 	key.map_up = true;
374 	key.count = count;
375 	key.id = id;
376 
377 	return bsearch(&key, map->reverse, extents,
378 		       sizeof(struct uid_gid_extent), cmp_map_id);
379 }
380 
map_id_range_up(struct uid_gid_map * map,u32 id,u32 count)381 u32 map_id_range_up(struct uid_gid_map *map, u32 id, u32 count)
382 {
383 	struct uid_gid_extent *extent;
384 	unsigned extents = map->nr_extents;
385 	smp_rmb();
386 
387 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
388 		extent = map_id_range_up_base(extents, map, id, count);
389 	else
390 		extent = map_id_range_up_max(extents, map, id, count);
391 
392 	/* Map the id or note failure */
393 	if (extent)
394 		id = (id - extent->lower_first) + extent->first;
395 	else
396 		id = (u32) -1;
397 
398 	return id;
399 }
400 
map_id_up(struct uid_gid_map * map,u32 id)401 u32 map_id_up(struct uid_gid_map *map, u32 id)
402 {
403 	return map_id_range_up(map, id, 1);
404 }
405 
406 /**
407  *	make_kuid - Map a user-namespace uid pair into a kuid.
408  *	@ns:  User namespace that the uid is in
409  *	@uid: User identifier
410  *
411  *	Maps a user-namespace uid pair into a kernel internal kuid,
412  *	and returns that kuid.
413  *
414  *	When there is no mapping defined for the user-namespace uid
415  *	pair INVALID_UID is returned.  Callers are expected to test
416  *	for and handle INVALID_UID being returned.  INVALID_UID
417  *	may be tested for using uid_valid().
418  */
make_kuid(struct user_namespace * ns,uid_t uid)419 kuid_t make_kuid(struct user_namespace *ns, uid_t uid)
420 {
421 	/* Map the uid to a global kernel uid */
422 	return KUIDT_INIT(map_id_down(&ns->uid_map, uid));
423 }
424 EXPORT_SYMBOL(make_kuid);
425 
426 /**
427  *	from_kuid - Create a uid from a kuid user-namespace pair.
428  *	@targ: The user namespace we want a uid in.
429  *	@kuid: The kernel internal uid to start with.
430  *
431  *	Map @kuid into the user-namespace specified by @targ and
432  *	return the resulting uid.
433  *
434  *	There is always a mapping into the initial user_namespace.
435  *
436  *	If @kuid has no mapping in @targ (uid_t)-1 is returned.
437  */
from_kuid(struct user_namespace * targ,kuid_t kuid)438 uid_t from_kuid(struct user_namespace *targ, kuid_t kuid)
439 {
440 	/* Map the uid from a global kernel uid */
441 	return map_id_up(&targ->uid_map, __kuid_val(kuid));
442 }
443 EXPORT_SYMBOL(from_kuid);
444 
445 /**
446  *	from_kuid_munged - Create a uid from a kuid user-namespace pair.
447  *	@targ: The user namespace we want a uid in.
448  *	@kuid: The kernel internal uid to start with.
449  *
450  *	Map @kuid into the user-namespace specified by @targ and
451  *	return the resulting uid.
452  *
453  *	There is always a mapping into the initial user_namespace.
454  *
455  *	Unlike from_kuid from_kuid_munged never fails and always
456  *	returns a valid uid.  This makes from_kuid_munged appropriate
457  *	for use in syscalls like stat and getuid where failing the
458  *	system call and failing to provide a valid uid are not an
459  *	options.
460  *
461  *	If @kuid has no mapping in @targ overflowuid is returned.
462  */
from_kuid_munged(struct user_namespace * targ,kuid_t kuid)463 uid_t from_kuid_munged(struct user_namespace *targ, kuid_t kuid)
464 {
465 	uid_t uid;
466 	uid = from_kuid(targ, kuid);
467 
468 	if (uid == (uid_t) -1)
469 		uid = overflowuid;
470 	return uid;
471 }
472 EXPORT_SYMBOL(from_kuid_munged);
473 
474 /**
475  *	make_kgid - Map a user-namespace gid pair into a kgid.
476  *	@ns:  User namespace that the gid is in
477  *	@gid: group identifier
478  *
479  *	Maps a user-namespace gid pair into a kernel internal kgid,
480  *	and returns that kgid.
481  *
482  *	When there is no mapping defined for the user-namespace gid
483  *	pair INVALID_GID is returned.  Callers are expected to test
484  *	for and handle INVALID_GID being returned.  INVALID_GID may be
485  *	tested for using gid_valid().
486  */
make_kgid(struct user_namespace * ns,gid_t gid)487 kgid_t make_kgid(struct user_namespace *ns, gid_t gid)
488 {
489 	/* Map the gid to a global kernel gid */
490 	return KGIDT_INIT(map_id_down(&ns->gid_map, gid));
491 }
492 EXPORT_SYMBOL(make_kgid);
493 
494 /**
495  *	from_kgid - Create a gid from a kgid user-namespace pair.
496  *	@targ: The user namespace we want a gid in.
497  *	@kgid: The kernel internal gid to start with.
498  *
499  *	Map @kgid into the user-namespace specified by @targ and
500  *	return the resulting gid.
501  *
502  *	There is always a mapping into the initial user_namespace.
503  *
504  *	If @kgid has no mapping in @targ (gid_t)-1 is returned.
505  */
from_kgid(struct user_namespace * targ,kgid_t kgid)506 gid_t from_kgid(struct user_namespace *targ, kgid_t kgid)
507 {
508 	/* Map the gid from a global kernel gid */
509 	return map_id_up(&targ->gid_map, __kgid_val(kgid));
510 }
511 EXPORT_SYMBOL(from_kgid);
512 
513 /**
514  *	from_kgid_munged - Create a gid from a kgid user-namespace pair.
515  *	@targ: The user namespace we want a gid in.
516  *	@kgid: The kernel internal gid to start with.
517  *
518  *	Map @kgid into the user-namespace specified by @targ and
519  *	return the resulting gid.
520  *
521  *	There is always a mapping into the initial user_namespace.
522  *
523  *	Unlike from_kgid from_kgid_munged never fails and always
524  *	returns a valid gid.  This makes from_kgid_munged appropriate
525  *	for use in syscalls like stat and getgid where failing the
526  *	system call and failing to provide a valid gid are not options.
527  *
528  *	If @kgid has no mapping in @targ overflowgid is returned.
529  */
from_kgid_munged(struct user_namespace * targ,kgid_t kgid)530 gid_t from_kgid_munged(struct user_namespace *targ, kgid_t kgid)
531 {
532 	gid_t gid;
533 	gid = from_kgid(targ, kgid);
534 
535 	if (gid == (gid_t) -1)
536 		gid = overflowgid;
537 	return gid;
538 }
539 EXPORT_SYMBOL(from_kgid_munged);
540 
541 /**
542  *	make_kprojid - Map a user-namespace projid pair into a kprojid.
543  *	@ns:  User namespace that the projid is in
544  *	@projid: Project identifier
545  *
546  *	Maps a user-namespace uid pair into a kernel internal kuid,
547  *	and returns that kuid.
548  *
549  *	When there is no mapping defined for the user-namespace projid
550  *	pair INVALID_PROJID is returned.  Callers are expected to test
551  *	for and handle INVALID_PROJID being returned.  INVALID_PROJID
552  *	may be tested for using projid_valid().
553  */
make_kprojid(struct user_namespace * ns,projid_t projid)554 kprojid_t make_kprojid(struct user_namespace *ns, projid_t projid)
555 {
556 	/* Map the uid to a global kernel uid */
557 	return KPROJIDT_INIT(map_id_down(&ns->projid_map, projid));
558 }
559 EXPORT_SYMBOL(make_kprojid);
560 
561 /**
562  *	from_kprojid - Create a projid from a kprojid user-namespace pair.
563  *	@targ: The user namespace we want a projid in.
564  *	@kprojid: The kernel internal project identifier to start with.
565  *
566  *	Map @kprojid into the user-namespace specified by @targ and
567  *	return the resulting projid.
568  *
569  *	There is always a mapping into the initial user_namespace.
570  *
571  *	If @kprojid has no mapping in @targ (projid_t)-1 is returned.
572  */
from_kprojid(struct user_namespace * targ,kprojid_t kprojid)573 projid_t from_kprojid(struct user_namespace *targ, kprojid_t kprojid)
574 {
575 	/* Map the uid from a global kernel uid */
576 	return map_id_up(&targ->projid_map, __kprojid_val(kprojid));
577 }
578 EXPORT_SYMBOL(from_kprojid);
579 
580 /**
581  *	from_kprojid_munged - Create a projiid from a kprojid user-namespace pair.
582  *	@targ: The user namespace we want a projid in.
583  *	@kprojid: The kernel internal projid to start with.
584  *
585  *	Map @kprojid into the user-namespace specified by @targ and
586  *	return the resulting projid.
587  *
588  *	There is always a mapping into the initial user_namespace.
589  *
590  *	Unlike from_kprojid from_kprojid_munged never fails and always
591  *	returns a valid projid.  This makes from_kprojid_munged
592  *	appropriate for use in syscalls like stat and where
593  *	failing the system call and failing to provide a valid projid are
594  *	not an options.
595  *
596  *	If @kprojid has no mapping in @targ OVERFLOW_PROJID is returned.
597  */
from_kprojid_munged(struct user_namespace * targ,kprojid_t kprojid)598 projid_t from_kprojid_munged(struct user_namespace *targ, kprojid_t kprojid)
599 {
600 	projid_t projid;
601 	projid = from_kprojid(targ, kprojid);
602 
603 	if (projid == (projid_t) -1)
604 		projid = OVERFLOW_PROJID;
605 	return projid;
606 }
607 EXPORT_SYMBOL(from_kprojid_munged);
608 
609 
uid_m_show(struct seq_file * seq,void * v)610 static int uid_m_show(struct seq_file *seq, void *v)
611 {
612 	struct user_namespace *ns = seq->private;
613 	struct uid_gid_extent *extent = v;
614 	struct user_namespace *lower_ns;
615 	uid_t lower;
616 
617 	lower_ns = seq_user_ns(seq);
618 	if ((lower_ns == ns) && lower_ns->parent)
619 		lower_ns = lower_ns->parent;
620 
621 	lower = from_kuid(lower_ns, KUIDT_INIT(extent->lower_first));
622 
623 	seq_printf(seq, "%10u %10u %10u\n",
624 		extent->first,
625 		lower,
626 		extent->count);
627 
628 	return 0;
629 }
630 
gid_m_show(struct seq_file * seq,void * v)631 static int gid_m_show(struct seq_file *seq, void *v)
632 {
633 	struct user_namespace *ns = seq->private;
634 	struct uid_gid_extent *extent = v;
635 	struct user_namespace *lower_ns;
636 	gid_t lower;
637 
638 	lower_ns = seq_user_ns(seq);
639 	if ((lower_ns == ns) && lower_ns->parent)
640 		lower_ns = lower_ns->parent;
641 
642 	lower = from_kgid(lower_ns, KGIDT_INIT(extent->lower_first));
643 
644 	seq_printf(seq, "%10u %10u %10u\n",
645 		extent->first,
646 		lower,
647 		extent->count);
648 
649 	return 0;
650 }
651 
projid_m_show(struct seq_file * seq,void * v)652 static int projid_m_show(struct seq_file *seq, void *v)
653 {
654 	struct user_namespace *ns = seq->private;
655 	struct uid_gid_extent *extent = v;
656 	struct user_namespace *lower_ns;
657 	projid_t lower;
658 
659 	lower_ns = seq_user_ns(seq);
660 	if ((lower_ns == ns) && lower_ns->parent)
661 		lower_ns = lower_ns->parent;
662 
663 	lower = from_kprojid(lower_ns, KPROJIDT_INIT(extent->lower_first));
664 
665 	seq_printf(seq, "%10u %10u %10u\n",
666 		extent->first,
667 		lower,
668 		extent->count);
669 
670 	return 0;
671 }
672 
m_start(struct seq_file * seq,loff_t * ppos,struct uid_gid_map * map)673 static void *m_start(struct seq_file *seq, loff_t *ppos,
674 		     struct uid_gid_map *map)
675 {
676 	loff_t pos = *ppos;
677 	unsigned extents = map->nr_extents;
678 	smp_rmb();
679 
680 	if (pos >= extents)
681 		return NULL;
682 
683 	if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
684 		return &map->extent[pos];
685 
686 	return &map->forward[pos];
687 }
688 
uid_m_start(struct seq_file * seq,loff_t * ppos)689 static void *uid_m_start(struct seq_file *seq, loff_t *ppos)
690 {
691 	struct user_namespace *ns = seq->private;
692 
693 	return m_start(seq, ppos, &ns->uid_map);
694 }
695 
gid_m_start(struct seq_file * seq,loff_t * ppos)696 static void *gid_m_start(struct seq_file *seq, loff_t *ppos)
697 {
698 	struct user_namespace *ns = seq->private;
699 
700 	return m_start(seq, ppos, &ns->gid_map);
701 }
702 
projid_m_start(struct seq_file * seq,loff_t * ppos)703 static void *projid_m_start(struct seq_file *seq, loff_t *ppos)
704 {
705 	struct user_namespace *ns = seq->private;
706 
707 	return m_start(seq, ppos, &ns->projid_map);
708 }
709 
m_next(struct seq_file * seq,void * v,loff_t * pos)710 static void *m_next(struct seq_file *seq, void *v, loff_t *pos)
711 {
712 	(*pos)++;
713 	return seq->op->start(seq, pos);
714 }
715 
m_stop(struct seq_file * seq,void * v)716 static void m_stop(struct seq_file *seq, void *v)
717 {
718 	return;
719 }
720 
721 const struct seq_operations proc_uid_seq_operations = {
722 	.start = uid_m_start,
723 	.stop = m_stop,
724 	.next = m_next,
725 	.show = uid_m_show,
726 };
727 
728 const struct seq_operations proc_gid_seq_operations = {
729 	.start = gid_m_start,
730 	.stop = m_stop,
731 	.next = m_next,
732 	.show = gid_m_show,
733 };
734 
735 const struct seq_operations proc_projid_seq_operations = {
736 	.start = projid_m_start,
737 	.stop = m_stop,
738 	.next = m_next,
739 	.show = projid_m_show,
740 };
741 
mappings_overlap(struct uid_gid_map * new_map,struct uid_gid_extent * extent)742 static bool mappings_overlap(struct uid_gid_map *new_map,
743 			     struct uid_gid_extent *extent)
744 {
745 	u32 upper_first, lower_first, upper_last, lower_last;
746 	unsigned idx;
747 
748 	upper_first = extent->first;
749 	lower_first = extent->lower_first;
750 	upper_last = upper_first + extent->count - 1;
751 	lower_last = lower_first + extent->count - 1;
752 
753 	for (idx = 0; idx < new_map->nr_extents; idx++) {
754 		u32 prev_upper_first, prev_lower_first;
755 		u32 prev_upper_last, prev_lower_last;
756 		struct uid_gid_extent *prev;
757 
758 		if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
759 			prev = &new_map->extent[idx];
760 		else
761 			prev = &new_map->forward[idx];
762 
763 		prev_upper_first = prev->first;
764 		prev_lower_first = prev->lower_first;
765 		prev_upper_last = prev_upper_first + prev->count - 1;
766 		prev_lower_last = prev_lower_first + prev->count - 1;
767 
768 		/* Does the upper range intersect a previous extent? */
769 		if ((prev_upper_first <= upper_last) &&
770 		    (prev_upper_last >= upper_first))
771 			return true;
772 
773 		/* Does the lower range intersect a previous extent? */
774 		if ((prev_lower_first <= lower_last) &&
775 		    (prev_lower_last >= lower_first))
776 			return true;
777 	}
778 	return false;
779 }
780 
781 /*
782  * insert_extent - Safely insert a new idmap extent into struct uid_gid_map.
783  * Takes care to allocate a 4K block of memory if the number of mappings exceeds
784  * UID_GID_MAP_MAX_BASE_EXTENTS.
785  */
insert_extent(struct uid_gid_map * map,struct uid_gid_extent * extent)786 static int insert_extent(struct uid_gid_map *map, struct uid_gid_extent *extent)
787 {
788 	struct uid_gid_extent *dest;
789 
790 	if (map->nr_extents == UID_GID_MAP_MAX_BASE_EXTENTS) {
791 		struct uid_gid_extent *forward;
792 
793 		/* Allocate memory for 340 mappings. */
794 		forward = kmalloc_array(UID_GID_MAP_MAX_EXTENTS,
795 					sizeof(struct uid_gid_extent),
796 					GFP_KERNEL);
797 		if (!forward)
798 			return -ENOMEM;
799 
800 		/* Copy over memory. Only set up memory for the forward pointer.
801 		 * Defer the memory setup for the reverse pointer.
802 		 */
803 		memcpy(forward, map->extent,
804 		       map->nr_extents * sizeof(map->extent[0]));
805 
806 		map->forward = forward;
807 		map->reverse = NULL;
808 	}
809 
810 	if (map->nr_extents < UID_GID_MAP_MAX_BASE_EXTENTS)
811 		dest = &map->extent[map->nr_extents];
812 	else
813 		dest = &map->forward[map->nr_extents];
814 
815 	*dest = *extent;
816 	map->nr_extents++;
817 	return 0;
818 }
819 
820 /* cmp function to sort() forward mappings */
cmp_extents_forward(const void * a,const void * b)821 static int cmp_extents_forward(const void *a, const void *b)
822 {
823 	const struct uid_gid_extent *e1 = a;
824 	const struct uid_gid_extent *e2 = b;
825 
826 	if (e1->first < e2->first)
827 		return -1;
828 
829 	if (e1->first > e2->first)
830 		return 1;
831 
832 	return 0;
833 }
834 
835 /* cmp function to sort() reverse mappings */
cmp_extents_reverse(const void * a,const void * b)836 static int cmp_extents_reverse(const void *a, const void *b)
837 {
838 	const struct uid_gid_extent *e1 = a;
839 	const struct uid_gid_extent *e2 = b;
840 
841 	if (e1->lower_first < e2->lower_first)
842 		return -1;
843 
844 	if (e1->lower_first > e2->lower_first)
845 		return 1;
846 
847 	return 0;
848 }
849 
850 /*
851  * sort_idmaps - Sorts an array of idmap entries.
852  * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
853  */
sort_idmaps(struct uid_gid_map * map)854 static int sort_idmaps(struct uid_gid_map *map)
855 {
856 	if (map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
857 		return 0;
858 
859 	/* Sort forward array. */
860 	sort(map->forward, map->nr_extents, sizeof(struct uid_gid_extent),
861 	     cmp_extents_forward, NULL);
862 
863 	/* Only copy the memory from forward we actually need. */
864 	map->reverse = kmemdup_array(map->forward, map->nr_extents,
865 				     sizeof(struct uid_gid_extent), GFP_KERNEL);
866 	if (!map->reverse)
867 		return -ENOMEM;
868 
869 	/* Sort reverse array. */
870 	sort(map->reverse, map->nr_extents, sizeof(struct uid_gid_extent),
871 	     cmp_extents_reverse, NULL);
872 
873 	return 0;
874 }
875 
876 /**
877  * verify_root_map() - check the uid 0 mapping
878  * @file: idmapping file
879  * @map_ns: user namespace of the target process
880  * @new_map: requested idmap
881  *
882  * If a process requests mapping parent uid 0 into the new ns, verify that the
883  * process writing the map had the CAP_SETFCAP capability as the target process
884  * will be able to write fscaps that are valid in ancestor user namespaces.
885  *
886  * Return: true if the mapping is allowed, false if not.
887  */
verify_root_map(const struct file * file,struct user_namespace * map_ns,struct uid_gid_map * new_map)888 static bool verify_root_map(const struct file *file,
889 			    struct user_namespace *map_ns,
890 			    struct uid_gid_map *new_map)
891 {
892 	int idx;
893 	const struct user_namespace *file_ns = file->f_cred->user_ns;
894 	struct uid_gid_extent *extent0 = NULL;
895 
896 	for (idx = 0; idx < new_map->nr_extents; idx++) {
897 		if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
898 			extent0 = &new_map->extent[idx];
899 		else
900 			extent0 = &new_map->forward[idx];
901 		if (extent0->lower_first == 0)
902 			break;
903 
904 		extent0 = NULL;
905 	}
906 
907 	if (!extent0)
908 		return true;
909 
910 	if (map_ns == file_ns) {
911 		/* The process unshared its ns and is writing to its own
912 		 * /proc/self/uid_map.  User already has full capabilites in
913 		 * the new namespace.  Verify that the parent had CAP_SETFCAP
914 		 * when it unshared.
915 		 * */
916 		if (!file_ns->parent_could_setfcap)
917 			return false;
918 	} else {
919 		/* Process p1 is writing to uid_map of p2, who is in a child
920 		 * user namespace to p1's.  Verify that the opener of the map
921 		 * file has CAP_SETFCAP against the parent of the new map
922 		 * namespace */
923 		if (!file_ns_capable(file, map_ns->parent, CAP_SETFCAP))
924 			return false;
925 	}
926 
927 	return true;
928 }
929 
map_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos,int cap_setid,struct uid_gid_map * map,struct uid_gid_map * parent_map)930 static ssize_t map_write(struct file *file, const char __user *buf,
931 			 size_t count, loff_t *ppos,
932 			 int cap_setid,
933 			 struct uid_gid_map *map,
934 			 struct uid_gid_map *parent_map)
935 {
936 	struct seq_file *seq = file->private_data;
937 	struct user_namespace *map_ns = seq->private;
938 	struct uid_gid_map new_map;
939 	unsigned idx;
940 	struct uid_gid_extent extent;
941 	char *kbuf, *pos, *next_line;
942 	ssize_t ret;
943 
944 	/* Only allow < page size writes at the beginning of the file */
945 	if ((*ppos != 0) || (count >= PAGE_SIZE))
946 		return -EINVAL;
947 
948 	/* Slurp in the user data */
949 	kbuf = memdup_user_nul(buf, count);
950 	if (IS_ERR(kbuf))
951 		return PTR_ERR(kbuf);
952 
953 	/*
954 	 * The userns_state_mutex serializes all writes to any given map.
955 	 *
956 	 * Any map is only ever written once.
957 	 *
958 	 * An id map fits within 1 cache line on most architectures.
959 	 *
960 	 * On read nothing needs to be done unless you are on an
961 	 * architecture with a crazy cache coherency model like alpha.
962 	 *
963 	 * There is a one time data dependency between reading the
964 	 * count of the extents and the values of the extents.  The
965 	 * desired behavior is to see the values of the extents that
966 	 * were written before the count of the extents.
967 	 *
968 	 * To achieve this smp_wmb() is used on guarantee the write
969 	 * order and smp_rmb() is guaranteed that we don't have crazy
970 	 * architectures returning stale data.
971 	 */
972 	mutex_lock(&userns_state_mutex);
973 
974 	memset(&new_map, 0, sizeof(struct uid_gid_map));
975 
976 	ret = -EPERM;
977 	/* Only allow one successful write to the map */
978 	if (map->nr_extents != 0)
979 		goto out;
980 
981 	/*
982 	 * Adjusting namespace settings requires capabilities on the target.
983 	 */
984 	if (cap_valid(cap_setid) && !file_ns_capable(file, map_ns, CAP_SYS_ADMIN))
985 		goto out;
986 
987 	/* Parse the user data */
988 	ret = -EINVAL;
989 	pos = kbuf;
990 	for (; pos; pos = next_line) {
991 
992 		/* Find the end of line and ensure I don't look past it */
993 		next_line = strchr(pos, '\n');
994 		if (next_line) {
995 			*next_line = '\0';
996 			next_line++;
997 			if (*next_line == '\0')
998 				next_line = NULL;
999 		}
1000 
1001 		pos = skip_spaces(pos);
1002 		extent.first = simple_strtoul(pos, &pos, 10);
1003 		if (!isspace(*pos))
1004 			goto out;
1005 
1006 		pos = skip_spaces(pos);
1007 		extent.lower_first = simple_strtoul(pos, &pos, 10);
1008 		if (!isspace(*pos))
1009 			goto out;
1010 
1011 		pos = skip_spaces(pos);
1012 		extent.count = simple_strtoul(pos, &pos, 10);
1013 		if (*pos && !isspace(*pos))
1014 			goto out;
1015 
1016 		/* Verify there is not trailing junk on the line */
1017 		pos = skip_spaces(pos);
1018 		if (*pos != '\0')
1019 			goto out;
1020 
1021 		/* Verify we have been given valid starting values */
1022 		if ((extent.first == (u32) -1) ||
1023 		    (extent.lower_first == (u32) -1))
1024 			goto out;
1025 
1026 		/* Verify count is not zero and does not cause the
1027 		 * extent to wrap
1028 		 */
1029 		if ((extent.first + extent.count) <= extent.first)
1030 			goto out;
1031 		if ((extent.lower_first + extent.count) <=
1032 		     extent.lower_first)
1033 			goto out;
1034 
1035 		/* Do the ranges in extent overlap any previous extents? */
1036 		if (mappings_overlap(&new_map, &extent))
1037 			goto out;
1038 
1039 		if ((new_map.nr_extents + 1) == UID_GID_MAP_MAX_EXTENTS &&
1040 		    (next_line != NULL))
1041 			goto out;
1042 
1043 		ret = insert_extent(&new_map, &extent);
1044 		if (ret < 0)
1045 			goto out;
1046 		ret = -EINVAL;
1047 	}
1048 	/* Be very certain the new map actually exists */
1049 	if (new_map.nr_extents == 0)
1050 		goto out;
1051 
1052 	ret = -EPERM;
1053 	/* Validate the user is allowed to use user id's mapped to. */
1054 	if (!new_idmap_permitted(file, map_ns, cap_setid, &new_map))
1055 		goto out;
1056 
1057 	ret = -EPERM;
1058 	/* Map the lower ids from the parent user namespace to the
1059 	 * kernel global id space.
1060 	 */
1061 	for (idx = 0; idx < new_map.nr_extents; idx++) {
1062 		struct uid_gid_extent *e;
1063 		u32 lower_first;
1064 
1065 		if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
1066 			e = &new_map.extent[idx];
1067 		else
1068 			e = &new_map.forward[idx];
1069 
1070 		lower_first = map_id_range_down(parent_map,
1071 						e->lower_first,
1072 						e->count);
1073 
1074 		/* Fail if we can not map the specified extent to
1075 		 * the kernel global id space.
1076 		 */
1077 		if (lower_first == (u32) -1)
1078 			goto out;
1079 
1080 		e->lower_first = lower_first;
1081 	}
1082 
1083 	/*
1084 	 * If we want to use binary search for lookup, this clones the extent
1085 	 * array and sorts both copies.
1086 	 */
1087 	ret = sort_idmaps(&new_map);
1088 	if (ret < 0)
1089 		goto out;
1090 
1091 	/* Install the map */
1092 	if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) {
1093 		memcpy(map->extent, new_map.extent,
1094 		       new_map.nr_extents * sizeof(new_map.extent[0]));
1095 	} else {
1096 		map->forward = new_map.forward;
1097 		map->reverse = new_map.reverse;
1098 	}
1099 	smp_wmb();
1100 	map->nr_extents = new_map.nr_extents;
1101 
1102 	*ppos = count;
1103 	ret = count;
1104 out:
1105 	if (ret < 0 && new_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
1106 		kfree(new_map.forward);
1107 		kfree(new_map.reverse);
1108 		map->forward = NULL;
1109 		map->reverse = NULL;
1110 		map->nr_extents = 0;
1111 	}
1112 
1113 	mutex_unlock(&userns_state_mutex);
1114 	kfree(kbuf);
1115 	return ret;
1116 }
1117 
proc_uid_map_write(struct file * file,const char __user * buf,size_t size,loff_t * ppos)1118 ssize_t proc_uid_map_write(struct file *file, const char __user *buf,
1119 			   size_t size, loff_t *ppos)
1120 {
1121 	struct seq_file *seq = file->private_data;
1122 	struct user_namespace *ns = seq->private;
1123 	struct user_namespace *seq_ns = seq_user_ns(seq);
1124 
1125 	if (!ns->parent)
1126 		return -EPERM;
1127 
1128 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1129 		return -EPERM;
1130 
1131 	return map_write(file, buf, size, ppos, CAP_SETUID,
1132 			 &ns->uid_map, &ns->parent->uid_map);
1133 }
1134 
proc_gid_map_write(struct file * file,const char __user * buf,size_t size,loff_t * ppos)1135 ssize_t proc_gid_map_write(struct file *file, const char __user *buf,
1136 			   size_t size, loff_t *ppos)
1137 {
1138 	struct seq_file *seq = file->private_data;
1139 	struct user_namespace *ns = seq->private;
1140 	struct user_namespace *seq_ns = seq_user_ns(seq);
1141 
1142 	if (!ns->parent)
1143 		return -EPERM;
1144 
1145 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1146 		return -EPERM;
1147 
1148 	return map_write(file, buf, size, ppos, CAP_SETGID,
1149 			 &ns->gid_map, &ns->parent->gid_map);
1150 }
1151 
proc_projid_map_write(struct file * file,const char __user * buf,size_t size,loff_t * ppos)1152 ssize_t proc_projid_map_write(struct file *file, const char __user *buf,
1153 			      size_t size, loff_t *ppos)
1154 {
1155 	struct seq_file *seq = file->private_data;
1156 	struct user_namespace *ns = seq->private;
1157 	struct user_namespace *seq_ns = seq_user_ns(seq);
1158 
1159 	if (!ns->parent)
1160 		return -EPERM;
1161 
1162 	if ((seq_ns != ns) && (seq_ns != ns->parent))
1163 		return -EPERM;
1164 
1165 	/* Anyone can set any valid project id no capability needed */
1166 	return map_write(file, buf, size, ppos, -1,
1167 			 &ns->projid_map, &ns->parent->projid_map);
1168 }
1169 
new_idmap_permitted(const struct file * file,struct user_namespace * ns,int cap_setid,struct uid_gid_map * new_map)1170 static bool new_idmap_permitted(const struct file *file,
1171 				struct user_namespace *ns, int cap_setid,
1172 				struct uid_gid_map *new_map)
1173 {
1174 	const struct cred *cred = file->f_cred;
1175 
1176 	if (cap_setid == CAP_SETUID && !verify_root_map(file, ns, new_map))
1177 		return false;
1178 
1179 	/* Don't allow mappings that would allow anything that wouldn't
1180 	 * be allowed without the establishment of unprivileged mappings.
1181 	 */
1182 	if ((new_map->nr_extents == 1) && (new_map->extent[0].count == 1) &&
1183 	    uid_eq(ns->owner, cred->euid)) {
1184 		u32 id = new_map->extent[0].lower_first;
1185 		if (cap_setid == CAP_SETUID) {
1186 			kuid_t uid = make_kuid(ns->parent, id);
1187 			if (uid_eq(uid, cred->euid))
1188 				return true;
1189 		} else if (cap_setid == CAP_SETGID) {
1190 			kgid_t gid = make_kgid(ns->parent, id);
1191 			if (!(ns->flags & USERNS_SETGROUPS_ALLOWED) &&
1192 			    gid_eq(gid, cred->egid))
1193 				return true;
1194 		}
1195 	}
1196 
1197 	/* Allow anyone to set a mapping that doesn't require privilege */
1198 	if (!cap_valid(cap_setid))
1199 		return true;
1200 
1201 	/* Allow the specified ids if we have the appropriate capability
1202 	 * (CAP_SETUID or CAP_SETGID) over the parent user namespace.
1203 	 * And the opener of the id file also has the appropriate capability.
1204 	 */
1205 	if (ns_capable(ns->parent, cap_setid) &&
1206 	    file_ns_capable(file, ns->parent, cap_setid))
1207 		return true;
1208 
1209 	return false;
1210 }
1211 
proc_setgroups_show(struct seq_file * seq,void * v)1212 int proc_setgroups_show(struct seq_file *seq, void *v)
1213 {
1214 	struct user_namespace *ns = seq->private;
1215 	unsigned long userns_flags = READ_ONCE(ns->flags);
1216 
1217 	seq_printf(seq, "%s\n",
1218 		   (userns_flags & USERNS_SETGROUPS_ALLOWED) ?
1219 		   "allow" : "deny");
1220 	return 0;
1221 }
1222 
proc_setgroups_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1223 ssize_t proc_setgroups_write(struct file *file, const char __user *buf,
1224 			     size_t count, loff_t *ppos)
1225 {
1226 	struct seq_file *seq = file->private_data;
1227 	struct user_namespace *ns = seq->private;
1228 	char kbuf[8], *pos;
1229 	bool setgroups_allowed;
1230 	ssize_t ret;
1231 
1232 	/* Only allow a very narrow range of strings to be written */
1233 	ret = -EINVAL;
1234 	if ((*ppos != 0) || (count >= sizeof(kbuf)))
1235 		goto out;
1236 
1237 	/* What was written? */
1238 	ret = -EFAULT;
1239 	if (copy_from_user(kbuf, buf, count))
1240 		goto out;
1241 	kbuf[count] = '\0';
1242 	pos = kbuf;
1243 
1244 	/* What is being requested? */
1245 	ret = -EINVAL;
1246 	if (strncmp(pos, "allow", 5) == 0) {
1247 		pos += 5;
1248 		setgroups_allowed = true;
1249 	}
1250 	else if (strncmp(pos, "deny", 4) == 0) {
1251 		pos += 4;
1252 		setgroups_allowed = false;
1253 	}
1254 	else
1255 		goto out;
1256 
1257 	/* Verify there is not trailing junk on the line */
1258 	pos = skip_spaces(pos);
1259 	if (*pos != '\0')
1260 		goto out;
1261 
1262 	ret = -EPERM;
1263 	mutex_lock(&userns_state_mutex);
1264 	if (setgroups_allowed) {
1265 		/* Enabling setgroups after setgroups has been disabled
1266 		 * is not allowed.
1267 		 */
1268 		if (!(ns->flags & USERNS_SETGROUPS_ALLOWED))
1269 			goto out_unlock;
1270 	} else {
1271 		/* Permanently disabling setgroups after setgroups has
1272 		 * been enabled by writing the gid_map is not allowed.
1273 		 */
1274 		if (ns->gid_map.nr_extents != 0)
1275 			goto out_unlock;
1276 		ns->flags &= ~USERNS_SETGROUPS_ALLOWED;
1277 	}
1278 	mutex_unlock(&userns_state_mutex);
1279 
1280 	/* Report a successful write */
1281 	*ppos = count;
1282 	ret = count;
1283 out:
1284 	return ret;
1285 out_unlock:
1286 	mutex_unlock(&userns_state_mutex);
1287 	goto out;
1288 }
1289 
userns_may_setgroups(const struct user_namespace * ns)1290 bool userns_may_setgroups(const struct user_namespace *ns)
1291 {
1292 	bool allowed;
1293 
1294 	mutex_lock(&userns_state_mutex);
1295 	/* It is not safe to use setgroups until a gid mapping in
1296 	 * the user namespace has been established.
1297 	 */
1298 	allowed = ns->gid_map.nr_extents != 0;
1299 	/* Is setgroups allowed? */
1300 	allowed = allowed && (ns->flags & USERNS_SETGROUPS_ALLOWED);
1301 	mutex_unlock(&userns_state_mutex);
1302 
1303 	return allowed;
1304 }
1305 
1306 /*
1307  * Returns true if @child is the same namespace or a descendant of
1308  * @ancestor.
1309  */
in_userns(const struct user_namespace * ancestor,const struct user_namespace * child)1310 bool in_userns(const struct user_namespace *ancestor,
1311 	       const struct user_namespace *child)
1312 {
1313 	const struct user_namespace *ns;
1314 	for (ns = child; ns->level > ancestor->level; ns = ns->parent)
1315 		;
1316 	return (ns == ancestor);
1317 }
1318 
current_in_userns(const struct user_namespace * target_ns)1319 bool current_in_userns(const struct user_namespace *target_ns)
1320 {
1321 	return in_userns(target_ns, current_user_ns());
1322 }
1323 EXPORT_SYMBOL(current_in_userns);
1324 
to_user_ns(struct ns_common * ns)1325 static inline struct user_namespace *to_user_ns(struct ns_common *ns)
1326 {
1327 	return container_of(ns, struct user_namespace, ns);
1328 }
1329 
userns_get(struct task_struct * task)1330 static struct ns_common *userns_get(struct task_struct *task)
1331 {
1332 	struct user_namespace *user_ns;
1333 
1334 	rcu_read_lock();
1335 	user_ns = get_user_ns(__task_cred(task)->user_ns);
1336 	rcu_read_unlock();
1337 
1338 	return user_ns ? &user_ns->ns : NULL;
1339 }
1340 
userns_put(struct ns_common * ns)1341 static void userns_put(struct ns_common *ns)
1342 {
1343 	put_user_ns(to_user_ns(ns));
1344 }
1345 
userns_install(struct nsset * nsset,struct ns_common * ns)1346 static int userns_install(struct nsset *nsset, struct ns_common *ns)
1347 {
1348 	struct user_namespace *user_ns = to_user_ns(ns);
1349 	struct cred *cred;
1350 
1351 	/* Don't allow gaining capabilities by reentering
1352 	 * the same user namespace.
1353 	 */
1354 	if (user_ns == current_user_ns())
1355 		return -EINVAL;
1356 
1357 	/* Tasks that share a thread group must share a user namespace */
1358 	if (!thread_group_empty(current))
1359 		return -EINVAL;
1360 
1361 	if (current->fs->users != 1)
1362 		return -EINVAL;
1363 
1364 	if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1365 		return -EPERM;
1366 
1367 	cred = nsset_cred(nsset);
1368 	if (!cred)
1369 		return -EINVAL;
1370 
1371 	put_user_ns(cred->user_ns);
1372 	set_cred_user_ns(cred, get_user_ns(user_ns));
1373 
1374 	if (set_cred_ucounts(cred) < 0)
1375 		return -EINVAL;
1376 
1377 	return 0;
1378 }
1379 
ns_get_owner(struct ns_common * ns)1380 struct ns_common *ns_get_owner(struct ns_common *ns)
1381 {
1382 	struct user_namespace *my_user_ns = current_user_ns();
1383 	struct user_namespace *owner, *p;
1384 
1385 	/* See if the owner is in the current user namespace */
1386 	owner = p = ns->ops->owner(ns);
1387 	for (;;) {
1388 		if (!p)
1389 			return ERR_PTR(-EPERM);
1390 		if (p == my_user_ns)
1391 			break;
1392 		p = p->parent;
1393 	}
1394 
1395 	return &get_user_ns(owner)->ns;
1396 }
1397 
userns_owner(struct ns_common * ns)1398 static struct user_namespace *userns_owner(struct ns_common *ns)
1399 {
1400 	return to_user_ns(ns)->parent;
1401 }
1402 
1403 const struct proc_ns_operations userns_operations = {
1404 	.name		= "user",
1405 	.type		= CLONE_NEWUSER,
1406 	.get		= userns_get,
1407 	.put		= userns_put,
1408 	.install	= userns_install,
1409 	.owner		= userns_owner,
1410 	.get_parent	= ns_get_owner,
1411 };
1412 
user_namespaces_init(void)1413 static __init int user_namespaces_init(void)
1414 {
1415 	user_ns_cachep = KMEM_CACHE(user_namespace, SLAB_PANIC | SLAB_ACCOUNT);
1416 	return 0;
1417 }
1418 subsys_initcall(user_namespaces_init);
1419