1 // SPDX-License-Identifier: GPL-2.0-only
2
3 #include <linux/export.h>
4 #include <linux/nsproxy.h>
5 #include <linux/slab.h>
6 #include <linux/sched/signal.h>
7 #include <linux/user_namespace.h>
8 #include <linux/proc_ns.h>
9 #include <linux/highuid.h>
10 #include <linux/cred.h>
11 #include <linux/securebits.h>
12 #include <linux/security.h>
13 #include <linux/keyctl.h>
14 #include <linux/key-type.h>
15 #include <keys/user-type.h>
16 #include <linux/seq_file.h>
17 #include <linux/fs.h>
18 #include <linux/uaccess.h>
19 #include <linux/ctype.h>
20 #include <linux/projid.h>
21 #include <linux/fs_struct.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24
25 static struct kmem_cache *user_ns_cachep __ro_after_init;
26 static DEFINE_MUTEX(userns_state_mutex);
27
28 static bool new_idmap_permitted(const struct file *file,
29 struct user_namespace *ns, int cap_setid,
30 struct uid_gid_map *map);
31 static void free_user_ns(struct work_struct *work);
32
inc_user_namespaces(struct user_namespace * ns,kuid_t uid)33 static struct ucounts *inc_user_namespaces(struct user_namespace *ns, kuid_t uid)
34 {
35 return inc_ucount(ns, uid, UCOUNT_USER_NAMESPACES);
36 }
37
dec_user_namespaces(struct ucounts * ucounts)38 static void dec_user_namespaces(struct ucounts *ucounts)
39 {
40 return dec_ucount(ucounts, UCOUNT_USER_NAMESPACES);
41 }
42
set_cred_user_ns(struct cred * cred,struct user_namespace * user_ns)43 static void set_cred_user_ns(struct cred *cred, struct user_namespace *user_ns)
44 {
45 /* Start with the same capabilities as init but useless for doing
46 * anything as the capabilities are bound to the new user namespace.
47 */
48 cred->securebits = SECUREBITS_DEFAULT;
49 cred->cap_inheritable = CAP_EMPTY_SET;
50 cred->cap_permitted = CAP_FULL_SET;
51 cred->cap_effective = CAP_FULL_SET;
52 cred->cap_ambient = CAP_EMPTY_SET;
53 cred->cap_bset = CAP_FULL_SET;
54 #ifdef CONFIG_KEYS
55 key_put(cred->request_key_auth);
56 cred->request_key_auth = NULL;
57 #endif
58 /* tgcred will be cleared in our caller bc CLONE_THREAD won't be set */
59 cred->user_ns = user_ns;
60 }
61
enforced_nproc_rlimit(void)62 static unsigned long enforced_nproc_rlimit(void)
63 {
64 unsigned long limit = RLIM_INFINITY;
65
66 /* Is RLIMIT_NPROC currently enforced? */
67 if (!uid_eq(current_uid(), GLOBAL_ROOT_UID) ||
68 (current_user_ns() != &init_user_ns))
69 limit = rlimit(RLIMIT_NPROC);
70
71 return limit;
72 }
73
74 /*
75 * Create a new user namespace, deriving the creator from the user in the
76 * passed credentials, and replacing that user with the new root user for the
77 * new namespace.
78 *
79 * This is called by copy_creds(), which will finish setting the target task's
80 * credentials.
81 */
create_user_ns(struct cred * new)82 int create_user_ns(struct cred *new)
83 {
84 struct user_namespace *ns, *parent_ns = new->user_ns;
85 kuid_t owner = new->euid;
86 kgid_t group = new->egid;
87 struct ucounts *ucounts;
88 int ret, i;
89
90 ret = -ENOSPC;
91 if (parent_ns->level > 32)
92 goto fail;
93
94 ucounts = inc_user_namespaces(parent_ns, owner);
95 if (!ucounts)
96 goto fail;
97
98 /*
99 * Verify that we can not violate the policy of which files
100 * may be accessed that is specified by the root directory,
101 * by verifying that the root directory is at the root of the
102 * mount namespace which allows all files to be accessed.
103 */
104 ret = -EPERM;
105 if (current_chrooted())
106 goto fail_dec;
107
108 /* The creator needs a mapping in the parent user namespace
109 * or else we won't be able to reasonably tell userspace who
110 * created a user_namespace.
111 */
112 ret = -EPERM;
113 if (!kuid_has_mapping(parent_ns, owner) ||
114 !kgid_has_mapping(parent_ns, group))
115 goto fail_dec;
116
117 ret = security_create_user_ns(new);
118 if (ret < 0)
119 goto fail_dec;
120
121 ret = -ENOMEM;
122 ns = kmem_cache_zalloc(user_ns_cachep, GFP_KERNEL);
123 if (!ns)
124 goto fail_dec;
125
126 ns->parent_could_setfcap = cap_raised(new->cap_effective, CAP_SETFCAP);
127 ret = ns_alloc_inum(&ns->ns);
128 if (ret)
129 goto fail_free;
130 ns->ns.ops = &userns_operations;
131
132 refcount_set(&ns->ns.count, 1);
133 /* Leave the new->user_ns reference with the new user namespace. */
134 ns->parent = parent_ns;
135 ns->level = parent_ns->level + 1;
136 ns->owner = owner;
137 ns->group = group;
138 INIT_WORK(&ns->work, free_user_ns);
139 for (i = 0; i < UCOUNT_COUNTS; i++) {
140 ns->ucount_max[i] = INT_MAX;
141 }
142 set_userns_rlimit_max(ns, UCOUNT_RLIMIT_NPROC, enforced_nproc_rlimit());
143 set_userns_rlimit_max(ns, UCOUNT_RLIMIT_MSGQUEUE, rlimit(RLIMIT_MSGQUEUE));
144 set_userns_rlimit_max(ns, UCOUNT_RLIMIT_SIGPENDING, rlimit(RLIMIT_SIGPENDING));
145 set_userns_rlimit_max(ns, UCOUNT_RLIMIT_MEMLOCK, rlimit(RLIMIT_MEMLOCK));
146 ns->ucounts = ucounts;
147
148 /* Inherit USERNS_SETGROUPS_ALLOWED from our parent */
149 mutex_lock(&userns_state_mutex);
150 ns->flags = parent_ns->flags;
151 mutex_unlock(&userns_state_mutex);
152
153 #ifdef CONFIG_KEYS
154 INIT_LIST_HEAD(&ns->keyring_name_list);
155 init_rwsem(&ns->keyring_sem);
156 #endif
157 ret = -ENOMEM;
158 if (!setup_userns_sysctls(ns))
159 goto fail_keyring;
160
161 set_cred_user_ns(new, ns);
162 return 0;
163 fail_keyring:
164 #ifdef CONFIG_PERSISTENT_KEYRINGS
165 key_put(ns->persistent_keyring_register);
166 #endif
167 ns_free_inum(&ns->ns);
168 fail_free:
169 kmem_cache_free(user_ns_cachep, ns);
170 fail_dec:
171 dec_user_namespaces(ucounts);
172 fail:
173 return ret;
174 }
175
unshare_userns(unsigned long unshare_flags,struct cred ** new_cred)176 int unshare_userns(unsigned long unshare_flags, struct cred **new_cred)
177 {
178 struct cred *cred;
179 int err = -ENOMEM;
180
181 if (!(unshare_flags & CLONE_NEWUSER))
182 return 0;
183
184 cred = prepare_creds();
185 if (cred) {
186 err = create_user_ns(cred);
187 if (err)
188 put_cred(cred);
189 else
190 *new_cred = cred;
191 }
192
193 return err;
194 }
195
free_user_ns(struct work_struct * work)196 static void free_user_ns(struct work_struct *work)
197 {
198 struct user_namespace *parent, *ns =
199 container_of(work, struct user_namespace, work);
200
201 do {
202 struct ucounts *ucounts = ns->ucounts;
203 parent = ns->parent;
204 if (ns->gid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
205 kfree(ns->gid_map.forward);
206 kfree(ns->gid_map.reverse);
207 }
208 if (ns->uid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
209 kfree(ns->uid_map.forward);
210 kfree(ns->uid_map.reverse);
211 }
212 if (ns->projid_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
213 kfree(ns->projid_map.forward);
214 kfree(ns->projid_map.reverse);
215 }
216 #if IS_ENABLED(CONFIG_BINFMT_MISC)
217 kfree(ns->binfmt_misc);
218 #endif
219 retire_userns_sysctls(ns);
220 key_free_user_ns(ns);
221 ns_free_inum(&ns->ns);
222 kmem_cache_free(user_ns_cachep, ns);
223 dec_user_namespaces(ucounts);
224 ns = parent;
225 } while (refcount_dec_and_test(&parent->ns.count));
226 }
227
__put_user_ns(struct user_namespace * ns)228 void __put_user_ns(struct user_namespace *ns)
229 {
230 schedule_work(&ns->work);
231 }
232 EXPORT_SYMBOL(__put_user_ns);
233
234 /*
235 * struct idmap_key - holds the information necessary to find an idmapping in a
236 * sorted idmap array. It is passed to cmp_map_id() as first argument.
237 */
238 struct idmap_key {
239 bool map_up; /* true -> id from kid; false -> kid from id */
240 u32 id; /* id to find */
241 u32 count;
242 };
243
244 /*
245 * cmp_map_id - Function to be passed to bsearch() to find the requested
246 * idmapping. Expects struct idmap_key to be passed via @k.
247 */
cmp_map_id(const void * k,const void * e)248 static int cmp_map_id(const void *k, const void *e)
249 {
250 u32 first, last, id2;
251 const struct idmap_key *key = k;
252 const struct uid_gid_extent *el = e;
253
254 id2 = key->id + key->count - 1;
255
256 /* handle map_id_{down,up}() */
257 if (key->map_up)
258 first = el->lower_first;
259 else
260 first = el->first;
261
262 last = first + el->count - 1;
263
264 if (key->id >= first && key->id <= last &&
265 (id2 >= first && id2 <= last))
266 return 0;
267
268 if (key->id < first || id2 < first)
269 return -1;
270
271 return 1;
272 }
273
274 /*
275 * map_id_range_down_max - Find idmap via binary search in ordered idmap array.
276 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
277 */
278 static struct uid_gid_extent *
map_id_range_down_max(unsigned extents,struct uid_gid_map * map,u32 id,u32 count)279 map_id_range_down_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
280 {
281 struct idmap_key key;
282
283 key.map_up = false;
284 key.count = count;
285 key.id = id;
286
287 return bsearch(&key, map->forward, extents,
288 sizeof(struct uid_gid_extent), cmp_map_id);
289 }
290
291 /*
292 * map_id_range_down_base - Find idmap via binary search in static extent array.
293 * Can only be called if number of mappings is equal or less than
294 * UID_GID_MAP_MAX_BASE_EXTENTS.
295 */
296 static struct uid_gid_extent *
map_id_range_down_base(unsigned extents,struct uid_gid_map * map,u32 id,u32 count)297 map_id_range_down_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
298 {
299 unsigned idx;
300 u32 first, last, id2;
301
302 id2 = id + count - 1;
303
304 /* Find the matching extent */
305 for (idx = 0; idx < extents; idx++) {
306 first = map->extent[idx].first;
307 last = first + map->extent[idx].count - 1;
308 if (id >= first && id <= last &&
309 (id2 >= first && id2 <= last))
310 return &map->extent[idx];
311 }
312 return NULL;
313 }
314
map_id_range_down(struct uid_gid_map * map,u32 id,u32 count)315 static u32 map_id_range_down(struct uid_gid_map *map, u32 id, u32 count)
316 {
317 struct uid_gid_extent *extent;
318 unsigned extents = map->nr_extents;
319 smp_rmb();
320
321 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
322 extent = map_id_range_down_base(extents, map, id, count);
323 else
324 extent = map_id_range_down_max(extents, map, id, count);
325
326 /* Map the id or note failure */
327 if (extent)
328 id = (id - extent->first) + extent->lower_first;
329 else
330 id = (u32) -1;
331
332 return id;
333 }
334
map_id_down(struct uid_gid_map * map,u32 id)335 u32 map_id_down(struct uid_gid_map *map, u32 id)
336 {
337 return map_id_range_down(map, id, 1);
338 }
339
340 /*
341 * map_id_up_base - Find idmap via binary search in static extent array.
342 * Can only be called if number of mappings is equal or less than
343 * UID_GID_MAP_MAX_BASE_EXTENTS.
344 */
345 static struct uid_gid_extent *
map_id_range_up_base(unsigned extents,struct uid_gid_map * map,u32 id,u32 count)346 map_id_range_up_base(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
347 {
348 unsigned idx;
349 u32 first, last, id2;
350
351 id2 = id + count - 1;
352
353 /* Find the matching extent */
354 for (idx = 0; idx < extents; idx++) {
355 first = map->extent[idx].lower_first;
356 last = first + map->extent[idx].count - 1;
357 if (id >= first && id <= last &&
358 (id2 >= first && id2 <= last))
359 return &map->extent[idx];
360 }
361 return NULL;
362 }
363
364 /*
365 * map_id_up_max - Find idmap via binary search in ordered idmap array.
366 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
367 */
368 static struct uid_gid_extent *
map_id_range_up_max(unsigned extents,struct uid_gid_map * map,u32 id,u32 count)369 map_id_range_up_max(unsigned extents, struct uid_gid_map *map, u32 id, u32 count)
370 {
371 struct idmap_key key;
372
373 key.map_up = true;
374 key.count = count;
375 key.id = id;
376
377 return bsearch(&key, map->reverse, extents,
378 sizeof(struct uid_gid_extent), cmp_map_id);
379 }
380
map_id_range_up(struct uid_gid_map * map,u32 id,u32 count)381 u32 map_id_range_up(struct uid_gid_map *map, u32 id, u32 count)
382 {
383 struct uid_gid_extent *extent;
384 unsigned extents = map->nr_extents;
385 smp_rmb();
386
387 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
388 extent = map_id_range_up_base(extents, map, id, count);
389 else
390 extent = map_id_range_up_max(extents, map, id, count);
391
392 /* Map the id or note failure */
393 if (extent)
394 id = (id - extent->lower_first) + extent->first;
395 else
396 id = (u32) -1;
397
398 return id;
399 }
400
map_id_up(struct uid_gid_map * map,u32 id)401 u32 map_id_up(struct uid_gid_map *map, u32 id)
402 {
403 return map_id_range_up(map, id, 1);
404 }
405
406 /**
407 * make_kuid - Map a user-namespace uid pair into a kuid.
408 * @ns: User namespace that the uid is in
409 * @uid: User identifier
410 *
411 * Maps a user-namespace uid pair into a kernel internal kuid,
412 * and returns that kuid.
413 *
414 * When there is no mapping defined for the user-namespace uid
415 * pair INVALID_UID is returned. Callers are expected to test
416 * for and handle INVALID_UID being returned. INVALID_UID
417 * may be tested for using uid_valid().
418 */
make_kuid(struct user_namespace * ns,uid_t uid)419 kuid_t make_kuid(struct user_namespace *ns, uid_t uid)
420 {
421 /* Map the uid to a global kernel uid */
422 return KUIDT_INIT(map_id_down(&ns->uid_map, uid));
423 }
424 EXPORT_SYMBOL(make_kuid);
425
426 /**
427 * from_kuid - Create a uid from a kuid user-namespace pair.
428 * @targ: The user namespace we want a uid in.
429 * @kuid: The kernel internal uid to start with.
430 *
431 * Map @kuid into the user-namespace specified by @targ and
432 * return the resulting uid.
433 *
434 * There is always a mapping into the initial user_namespace.
435 *
436 * If @kuid has no mapping in @targ (uid_t)-1 is returned.
437 */
from_kuid(struct user_namespace * targ,kuid_t kuid)438 uid_t from_kuid(struct user_namespace *targ, kuid_t kuid)
439 {
440 /* Map the uid from a global kernel uid */
441 return map_id_up(&targ->uid_map, __kuid_val(kuid));
442 }
443 EXPORT_SYMBOL(from_kuid);
444
445 /**
446 * from_kuid_munged - Create a uid from a kuid user-namespace pair.
447 * @targ: The user namespace we want a uid in.
448 * @kuid: The kernel internal uid to start with.
449 *
450 * Map @kuid into the user-namespace specified by @targ and
451 * return the resulting uid.
452 *
453 * There is always a mapping into the initial user_namespace.
454 *
455 * Unlike from_kuid from_kuid_munged never fails and always
456 * returns a valid uid. This makes from_kuid_munged appropriate
457 * for use in syscalls like stat and getuid where failing the
458 * system call and failing to provide a valid uid are not an
459 * options.
460 *
461 * If @kuid has no mapping in @targ overflowuid is returned.
462 */
from_kuid_munged(struct user_namespace * targ,kuid_t kuid)463 uid_t from_kuid_munged(struct user_namespace *targ, kuid_t kuid)
464 {
465 uid_t uid;
466 uid = from_kuid(targ, kuid);
467
468 if (uid == (uid_t) -1)
469 uid = overflowuid;
470 return uid;
471 }
472 EXPORT_SYMBOL(from_kuid_munged);
473
474 /**
475 * make_kgid - Map a user-namespace gid pair into a kgid.
476 * @ns: User namespace that the gid is in
477 * @gid: group identifier
478 *
479 * Maps a user-namespace gid pair into a kernel internal kgid,
480 * and returns that kgid.
481 *
482 * When there is no mapping defined for the user-namespace gid
483 * pair INVALID_GID is returned. Callers are expected to test
484 * for and handle INVALID_GID being returned. INVALID_GID may be
485 * tested for using gid_valid().
486 */
make_kgid(struct user_namespace * ns,gid_t gid)487 kgid_t make_kgid(struct user_namespace *ns, gid_t gid)
488 {
489 /* Map the gid to a global kernel gid */
490 return KGIDT_INIT(map_id_down(&ns->gid_map, gid));
491 }
492 EXPORT_SYMBOL(make_kgid);
493
494 /**
495 * from_kgid - Create a gid from a kgid user-namespace pair.
496 * @targ: The user namespace we want a gid in.
497 * @kgid: The kernel internal gid to start with.
498 *
499 * Map @kgid into the user-namespace specified by @targ and
500 * return the resulting gid.
501 *
502 * There is always a mapping into the initial user_namespace.
503 *
504 * If @kgid has no mapping in @targ (gid_t)-1 is returned.
505 */
from_kgid(struct user_namespace * targ,kgid_t kgid)506 gid_t from_kgid(struct user_namespace *targ, kgid_t kgid)
507 {
508 /* Map the gid from a global kernel gid */
509 return map_id_up(&targ->gid_map, __kgid_val(kgid));
510 }
511 EXPORT_SYMBOL(from_kgid);
512
513 /**
514 * from_kgid_munged - Create a gid from a kgid user-namespace pair.
515 * @targ: The user namespace we want a gid in.
516 * @kgid: The kernel internal gid to start with.
517 *
518 * Map @kgid into the user-namespace specified by @targ and
519 * return the resulting gid.
520 *
521 * There is always a mapping into the initial user_namespace.
522 *
523 * Unlike from_kgid from_kgid_munged never fails and always
524 * returns a valid gid. This makes from_kgid_munged appropriate
525 * for use in syscalls like stat and getgid where failing the
526 * system call and failing to provide a valid gid are not options.
527 *
528 * If @kgid has no mapping in @targ overflowgid is returned.
529 */
from_kgid_munged(struct user_namespace * targ,kgid_t kgid)530 gid_t from_kgid_munged(struct user_namespace *targ, kgid_t kgid)
531 {
532 gid_t gid;
533 gid = from_kgid(targ, kgid);
534
535 if (gid == (gid_t) -1)
536 gid = overflowgid;
537 return gid;
538 }
539 EXPORT_SYMBOL(from_kgid_munged);
540
541 /**
542 * make_kprojid - Map a user-namespace projid pair into a kprojid.
543 * @ns: User namespace that the projid is in
544 * @projid: Project identifier
545 *
546 * Maps a user-namespace uid pair into a kernel internal kuid,
547 * and returns that kuid.
548 *
549 * When there is no mapping defined for the user-namespace projid
550 * pair INVALID_PROJID is returned. Callers are expected to test
551 * for and handle INVALID_PROJID being returned. INVALID_PROJID
552 * may be tested for using projid_valid().
553 */
make_kprojid(struct user_namespace * ns,projid_t projid)554 kprojid_t make_kprojid(struct user_namespace *ns, projid_t projid)
555 {
556 /* Map the uid to a global kernel uid */
557 return KPROJIDT_INIT(map_id_down(&ns->projid_map, projid));
558 }
559 EXPORT_SYMBOL(make_kprojid);
560
561 /**
562 * from_kprojid - Create a projid from a kprojid user-namespace pair.
563 * @targ: The user namespace we want a projid in.
564 * @kprojid: The kernel internal project identifier to start with.
565 *
566 * Map @kprojid into the user-namespace specified by @targ and
567 * return the resulting projid.
568 *
569 * There is always a mapping into the initial user_namespace.
570 *
571 * If @kprojid has no mapping in @targ (projid_t)-1 is returned.
572 */
from_kprojid(struct user_namespace * targ,kprojid_t kprojid)573 projid_t from_kprojid(struct user_namespace *targ, kprojid_t kprojid)
574 {
575 /* Map the uid from a global kernel uid */
576 return map_id_up(&targ->projid_map, __kprojid_val(kprojid));
577 }
578 EXPORT_SYMBOL(from_kprojid);
579
580 /**
581 * from_kprojid_munged - Create a projiid from a kprojid user-namespace pair.
582 * @targ: The user namespace we want a projid in.
583 * @kprojid: The kernel internal projid to start with.
584 *
585 * Map @kprojid into the user-namespace specified by @targ and
586 * return the resulting projid.
587 *
588 * There is always a mapping into the initial user_namespace.
589 *
590 * Unlike from_kprojid from_kprojid_munged never fails and always
591 * returns a valid projid. This makes from_kprojid_munged
592 * appropriate for use in syscalls like stat and where
593 * failing the system call and failing to provide a valid projid are
594 * not an options.
595 *
596 * If @kprojid has no mapping in @targ OVERFLOW_PROJID is returned.
597 */
from_kprojid_munged(struct user_namespace * targ,kprojid_t kprojid)598 projid_t from_kprojid_munged(struct user_namespace *targ, kprojid_t kprojid)
599 {
600 projid_t projid;
601 projid = from_kprojid(targ, kprojid);
602
603 if (projid == (projid_t) -1)
604 projid = OVERFLOW_PROJID;
605 return projid;
606 }
607 EXPORT_SYMBOL(from_kprojid_munged);
608
609
uid_m_show(struct seq_file * seq,void * v)610 static int uid_m_show(struct seq_file *seq, void *v)
611 {
612 struct user_namespace *ns = seq->private;
613 struct uid_gid_extent *extent = v;
614 struct user_namespace *lower_ns;
615 uid_t lower;
616
617 lower_ns = seq_user_ns(seq);
618 if ((lower_ns == ns) && lower_ns->parent)
619 lower_ns = lower_ns->parent;
620
621 lower = from_kuid(lower_ns, KUIDT_INIT(extent->lower_first));
622
623 seq_printf(seq, "%10u %10u %10u\n",
624 extent->first,
625 lower,
626 extent->count);
627
628 return 0;
629 }
630
gid_m_show(struct seq_file * seq,void * v)631 static int gid_m_show(struct seq_file *seq, void *v)
632 {
633 struct user_namespace *ns = seq->private;
634 struct uid_gid_extent *extent = v;
635 struct user_namespace *lower_ns;
636 gid_t lower;
637
638 lower_ns = seq_user_ns(seq);
639 if ((lower_ns == ns) && lower_ns->parent)
640 lower_ns = lower_ns->parent;
641
642 lower = from_kgid(lower_ns, KGIDT_INIT(extent->lower_first));
643
644 seq_printf(seq, "%10u %10u %10u\n",
645 extent->first,
646 lower,
647 extent->count);
648
649 return 0;
650 }
651
projid_m_show(struct seq_file * seq,void * v)652 static int projid_m_show(struct seq_file *seq, void *v)
653 {
654 struct user_namespace *ns = seq->private;
655 struct uid_gid_extent *extent = v;
656 struct user_namespace *lower_ns;
657 projid_t lower;
658
659 lower_ns = seq_user_ns(seq);
660 if ((lower_ns == ns) && lower_ns->parent)
661 lower_ns = lower_ns->parent;
662
663 lower = from_kprojid(lower_ns, KPROJIDT_INIT(extent->lower_first));
664
665 seq_printf(seq, "%10u %10u %10u\n",
666 extent->first,
667 lower,
668 extent->count);
669
670 return 0;
671 }
672
m_start(struct seq_file * seq,loff_t * ppos,struct uid_gid_map * map)673 static void *m_start(struct seq_file *seq, loff_t *ppos,
674 struct uid_gid_map *map)
675 {
676 loff_t pos = *ppos;
677 unsigned extents = map->nr_extents;
678 smp_rmb();
679
680 if (pos >= extents)
681 return NULL;
682
683 if (extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
684 return &map->extent[pos];
685
686 return &map->forward[pos];
687 }
688
uid_m_start(struct seq_file * seq,loff_t * ppos)689 static void *uid_m_start(struct seq_file *seq, loff_t *ppos)
690 {
691 struct user_namespace *ns = seq->private;
692
693 return m_start(seq, ppos, &ns->uid_map);
694 }
695
gid_m_start(struct seq_file * seq,loff_t * ppos)696 static void *gid_m_start(struct seq_file *seq, loff_t *ppos)
697 {
698 struct user_namespace *ns = seq->private;
699
700 return m_start(seq, ppos, &ns->gid_map);
701 }
702
projid_m_start(struct seq_file * seq,loff_t * ppos)703 static void *projid_m_start(struct seq_file *seq, loff_t *ppos)
704 {
705 struct user_namespace *ns = seq->private;
706
707 return m_start(seq, ppos, &ns->projid_map);
708 }
709
m_next(struct seq_file * seq,void * v,loff_t * pos)710 static void *m_next(struct seq_file *seq, void *v, loff_t *pos)
711 {
712 (*pos)++;
713 return seq->op->start(seq, pos);
714 }
715
m_stop(struct seq_file * seq,void * v)716 static void m_stop(struct seq_file *seq, void *v)
717 {
718 return;
719 }
720
721 const struct seq_operations proc_uid_seq_operations = {
722 .start = uid_m_start,
723 .stop = m_stop,
724 .next = m_next,
725 .show = uid_m_show,
726 };
727
728 const struct seq_operations proc_gid_seq_operations = {
729 .start = gid_m_start,
730 .stop = m_stop,
731 .next = m_next,
732 .show = gid_m_show,
733 };
734
735 const struct seq_operations proc_projid_seq_operations = {
736 .start = projid_m_start,
737 .stop = m_stop,
738 .next = m_next,
739 .show = projid_m_show,
740 };
741
mappings_overlap(struct uid_gid_map * new_map,struct uid_gid_extent * extent)742 static bool mappings_overlap(struct uid_gid_map *new_map,
743 struct uid_gid_extent *extent)
744 {
745 u32 upper_first, lower_first, upper_last, lower_last;
746 unsigned idx;
747
748 upper_first = extent->first;
749 lower_first = extent->lower_first;
750 upper_last = upper_first + extent->count - 1;
751 lower_last = lower_first + extent->count - 1;
752
753 for (idx = 0; idx < new_map->nr_extents; idx++) {
754 u32 prev_upper_first, prev_lower_first;
755 u32 prev_upper_last, prev_lower_last;
756 struct uid_gid_extent *prev;
757
758 if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
759 prev = &new_map->extent[idx];
760 else
761 prev = &new_map->forward[idx];
762
763 prev_upper_first = prev->first;
764 prev_lower_first = prev->lower_first;
765 prev_upper_last = prev_upper_first + prev->count - 1;
766 prev_lower_last = prev_lower_first + prev->count - 1;
767
768 /* Does the upper range intersect a previous extent? */
769 if ((prev_upper_first <= upper_last) &&
770 (prev_upper_last >= upper_first))
771 return true;
772
773 /* Does the lower range intersect a previous extent? */
774 if ((prev_lower_first <= lower_last) &&
775 (prev_lower_last >= lower_first))
776 return true;
777 }
778 return false;
779 }
780
781 /*
782 * insert_extent - Safely insert a new idmap extent into struct uid_gid_map.
783 * Takes care to allocate a 4K block of memory if the number of mappings exceeds
784 * UID_GID_MAP_MAX_BASE_EXTENTS.
785 */
insert_extent(struct uid_gid_map * map,struct uid_gid_extent * extent)786 static int insert_extent(struct uid_gid_map *map, struct uid_gid_extent *extent)
787 {
788 struct uid_gid_extent *dest;
789
790 if (map->nr_extents == UID_GID_MAP_MAX_BASE_EXTENTS) {
791 struct uid_gid_extent *forward;
792
793 /* Allocate memory for 340 mappings. */
794 forward = kmalloc_array(UID_GID_MAP_MAX_EXTENTS,
795 sizeof(struct uid_gid_extent),
796 GFP_KERNEL);
797 if (!forward)
798 return -ENOMEM;
799
800 /* Copy over memory. Only set up memory for the forward pointer.
801 * Defer the memory setup for the reverse pointer.
802 */
803 memcpy(forward, map->extent,
804 map->nr_extents * sizeof(map->extent[0]));
805
806 map->forward = forward;
807 map->reverse = NULL;
808 }
809
810 if (map->nr_extents < UID_GID_MAP_MAX_BASE_EXTENTS)
811 dest = &map->extent[map->nr_extents];
812 else
813 dest = &map->forward[map->nr_extents];
814
815 *dest = *extent;
816 map->nr_extents++;
817 return 0;
818 }
819
820 /* cmp function to sort() forward mappings */
cmp_extents_forward(const void * a,const void * b)821 static int cmp_extents_forward(const void *a, const void *b)
822 {
823 const struct uid_gid_extent *e1 = a;
824 const struct uid_gid_extent *e2 = b;
825
826 if (e1->first < e2->first)
827 return -1;
828
829 if (e1->first > e2->first)
830 return 1;
831
832 return 0;
833 }
834
835 /* cmp function to sort() reverse mappings */
cmp_extents_reverse(const void * a,const void * b)836 static int cmp_extents_reverse(const void *a, const void *b)
837 {
838 const struct uid_gid_extent *e1 = a;
839 const struct uid_gid_extent *e2 = b;
840
841 if (e1->lower_first < e2->lower_first)
842 return -1;
843
844 if (e1->lower_first > e2->lower_first)
845 return 1;
846
847 return 0;
848 }
849
850 /*
851 * sort_idmaps - Sorts an array of idmap entries.
852 * Can only be called if number of mappings exceeds UID_GID_MAP_MAX_BASE_EXTENTS.
853 */
sort_idmaps(struct uid_gid_map * map)854 static int sort_idmaps(struct uid_gid_map *map)
855 {
856 if (map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
857 return 0;
858
859 /* Sort forward array. */
860 sort(map->forward, map->nr_extents, sizeof(struct uid_gid_extent),
861 cmp_extents_forward, NULL);
862
863 /* Only copy the memory from forward we actually need. */
864 map->reverse = kmemdup_array(map->forward, map->nr_extents,
865 sizeof(struct uid_gid_extent), GFP_KERNEL);
866 if (!map->reverse)
867 return -ENOMEM;
868
869 /* Sort reverse array. */
870 sort(map->reverse, map->nr_extents, sizeof(struct uid_gid_extent),
871 cmp_extents_reverse, NULL);
872
873 return 0;
874 }
875
876 /**
877 * verify_root_map() - check the uid 0 mapping
878 * @file: idmapping file
879 * @map_ns: user namespace of the target process
880 * @new_map: requested idmap
881 *
882 * If a process requests mapping parent uid 0 into the new ns, verify that the
883 * process writing the map had the CAP_SETFCAP capability as the target process
884 * will be able to write fscaps that are valid in ancestor user namespaces.
885 *
886 * Return: true if the mapping is allowed, false if not.
887 */
verify_root_map(const struct file * file,struct user_namespace * map_ns,struct uid_gid_map * new_map)888 static bool verify_root_map(const struct file *file,
889 struct user_namespace *map_ns,
890 struct uid_gid_map *new_map)
891 {
892 int idx;
893 const struct user_namespace *file_ns = file->f_cred->user_ns;
894 struct uid_gid_extent *extent0 = NULL;
895
896 for (idx = 0; idx < new_map->nr_extents; idx++) {
897 if (new_map->nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
898 extent0 = &new_map->extent[idx];
899 else
900 extent0 = &new_map->forward[idx];
901 if (extent0->lower_first == 0)
902 break;
903
904 extent0 = NULL;
905 }
906
907 if (!extent0)
908 return true;
909
910 if (map_ns == file_ns) {
911 /* The process unshared its ns and is writing to its own
912 * /proc/self/uid_map. User already has full capabilites in
913 * the new namespace. Verify that the parent had CAP_SETFCAP
914 * when it unshared.
915 * */
916 if (!file_ns->parent_could_setfcap)
917 return false;
918 } else {
919 /* Process p1 is writing to uid_map of p2, who is in a child
920 * user namespace to p1's. Verify that the opener of the map
921 * file has CAP_SETFCAP against the parent of the new map
922 * namespace */
923 if (!file_ns_capable(file, map_ns->parent, CAP_SETFCAP))
924 return false;
925 }
926
927 return true;
928 }
929
map_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos,int cap_setid,struct uid_gid_map * map,struct uid_gid_map * parent_map)930 static ssize_t map_write(struct file *file, const char __user *buf,
931 size_t count, loff_t *ppos,
932 int cap_setid,
933 struct uid_gid_map *map,
934 struct uid_gid_map *parent_map)
935 {
936 struct seq_file *seq = file->private_data;
937 struct user_namespace *map_ns = seq->private;
938 struct uid_gid_map new_map;
939 unsigned idx;
940 struct uid_gid_extent extent;
941 char *kbuf, *pos, *next_line;
942 ssize_t ret;
943
944 /* Only allow < page size writes at the beginning of the file */
945 if ((*ppos != 0) || (count >= PAGE_SIZE))
946 return -EINVAL;
947
948 /* Slurp in the user data */
949 kbuf = memdup_user_nul(buf, count);
950 if (IS_ERR(kbuf))
951 return PTR_ERR(kbuf);
952
953 /*
954 * The userns_state_mutex serializes all writes to any given map.
955 *
956 * Any map is only ever written once.
957 *
958 * An id map fits within 1 cache line on most architectures.
959 *
960 * On read nothing needs to be done unless you are on an
961 * architecture with a crazy cache coherency model like alpha.
962 *
963 * There is a one time data dependency between reading the
964 * count of the extents and the values of the extents. The
965 * desired behavior is to see the values of the extents that
966 * were written before the count of the extents.
967 *
968 * To achieve this smp_wmb() is used on guarantee the write
969 * order and smp_rmb() is guaranteed that we don't have crazy
970 * architectures returning stale data.
971 */
972 mutex_lock(&userns_state_mutex);
973
974 memset(&new_map, 0, sizeof(struct uid_gid_map));
975
976 ret = -EPERM;
977 /* Only allow one successful write to the map */
978 if (map->nr_extents != 0)
979 goto out;
980
981 /*
982 * Adjusting namespace settings requires capabilities on the target.
983 */
984 if (cap_valid(cap_setid) && !file_ns_capable(file, map_ns, CAP_SYS_ADMIN))
985 goto out;
986
987 /* Parse the user data */
988 ret = -EINVAL;
989 pos = kbuf;
990 for (; pos; pos = next_line) {
991
992 /* Find the end of line and ensure I don't look past it */
993 next_line = strchr(pos, '\n');
994 if (next_line) {
995 *next_line = '\0';
996 next_line++;
997 if (*next_line == '\0')
998 next_line = NULL;
999 }
1000
1001 pos = skip_spaces(pos);
1002 extent.first = simple_strtoul(pos, &pos, 10);
1003 if (!isspace(*pos))
1004 goto out;
1005
1006 pos = skip_spaces(pos);
1007 extent.lower_first = simple_strtoul(pos, &pos, 10);
1008 if (!isspace(*pos))
1009 goto out;
1010
1011 pos = skip_spaces(pos);
1012 extent.count = simple_strtoul(pos, &pos, 10);
1013 if (*pos && !isspace(*pos))
1014 goto out;
1015
1016 /* Verify there is not trailing junk on the line */
1017 pos = skip_spaces(pos);
1018 if (*pos != '\0')
1019 goto out;
1020
1021 /* Verify we have been given valid starting values */
1022 if ((extent.first == (u32) -1) ||
1023 (extent.lower_first == (u32) -1))
1024 goto out;
1025
1026 /* Verify count is not zero and does not cause the
1027 * extent to wrap
1028 */
1029 if ((extent.first + extent.count) <= extent.first)
1030 goto out;
1031 if ((extent.lower_first + extent.count) <=
1032 extent.lower_first)
1033 goto out;
1034
1035 /* Do the ranges in extent overlap any previous extents? */
1036 if (mappings_overlap(&new_map, &extent))
1037 goto out;
1038
1039 if ((new_map.nr_extents + 1) == UID_GID_MAP_MAX_EXTENTS &&
1040 (next_line != NULL))
1041 goto out;
1042
1043 ret = insert_extent(&new_map, &extent);
1044 if (ret < 0)
1045 goto out;
1046 ret = -EINVAL;
1047 }
1048 /* Be very certain the new map actually exists */
1049 if (new_map.nr_extents == 0)
1050 goto out;
1051
1052 ret = -EPERM;
1053 /* Validate the user is allowed to use user id's mapped to. */
1054 if (!new_idmap_permitted(file, map_ns, cap_setid, &new_map))
1055 goto out;
1056
1057 ret = -EPERM;
1058 /* Map the lower ids from the parent user namespace to the
1059 * kernel global id space.
1060 */
1061 for (idx = 0; idx < new_map.nr_extents; idx++) {
1062 struct uid_gid_extent *e;
1063 u32 lower_first;
1064
1065 if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS)
1066 e = &new_map.extent[idx];
1067 else
1068 e = &new_map.forward[idx];
1069
1070 lower_first = map_id_range_down(parent_map,
1071 e->lower_first,
1072 e->count);
1073
1074 /* Fail if we can not map the specified extent to
1075 * the kernel global id space.
1076 */
1077 if (lower_first == (u32) -1)
1078 goto out;
1079
1080 e->lower_first = lower_first;
1081 }
1082
1083 /*
1084 * If we want to use binary search for lookup, this clones the extent
1085 * array and sorts both copies.
1086 */
1087 ret = sort_idmaps(&new_map);
1088 if (ret < 0)
1089 goto out;
1090
1091 /* Install the map */
1092 if (new_map.nr_extents <= UID_GID_MAP_MAX_BASE_EXTENTS) {
1093 memcpy(map->extent, new_map.extent,
1094 new_map.nr_extents * sizeof(new_map.extent[0]));
1095 } else {
1096 map->forward = new_map.forward;
1097 map->reverse = new_map.reverse;
1098 }
1099 smp_wmb();
1100 map->nr_extents = new_map.nr_extents;
1101
1102 *ppos = count;
1103 ret = count;
1104 out:
1105 if (ret < 0 && new_map.nr_extents > UID_GID_MAP_MAX_BASE_EXTENTS) {
1106 kfree(new_map.forward);
1107 kfree(new_map.reverse);
1108 map->forward = NULL;
1109 map->reverse = NULL;
1110 map->nr_extents = 0;
1111 }
1112
1113 mutex_unlock(&userns_state_mutex);
1114 kfree(kbuf);
1115 return ret;
1116 }
1117
proc_uid_map_write(struct file * file,const char __user * buf,size_t size,loff_t * ppos)1118 ssize_t proc_uid_map_write(struct file *file, const char __user *buf,
1119 size_t size, loff_t *ppos)
1120 {
1121 struct seq_file *seq = file->private_data;
1122 struct user_namespace *ns = seq->private;
1123 struct user_namespace *seq_ns = seq_user_ns(seq);
1124
1125 if (!ns->parent)
1126 return -EPERM;
1127
1128 if ((seq_ns != ns) && (seq_ns != ns->parent))
1129 return -EPERM;
1130
1131 return map_write(file, buf, size, ppos, CAP_SETUID,
1132 &ns->uid_map, &ns->parent->uid_map);
1133 }
1134
proc_gid_map_write(struct file * file,const char __user * buf,size_t size,loff_t * ppos)1135 ssize_t proc_gid_map_write(struct file *file, const char __user *buf,
1136 size_t size, loff_t *ppos)
1137 {
1138 struct seq_file *seq = file->private_data;
1139 struct user_namespace *ns = seq->private;
1140 struct user_namespace *seq_ns = seq_user_ns(seq);
1141
1142 if (!ns->parent)
1143 return -EPERM;
1144
1145 if ((seq_ns != ns) && (seq_ns != ns->parent))
1146 return -EPERM;
1147
1148 return map_write(file, buf, size, ppos, CAP_SETGID,
1149 &ns->gid_map, &ns->parent->gid_map);
1150 }
1151
proc_projid_map_write(struct file * file,const char __user * buf,size_t size,loff_t * ppos)1152 ssize_t proc_projid_map_write(struct file *file, const char __user *buf,
1153 size_t size, loff_t *ppos)
1154 {
1155 struct seq_file *seq = file->private_data;
1156 struct user_namespace *ns = seq->private;
1157 struct user_namespace *seq_ns = seq_user_ns(seq);
1158
1159 if (!ns->parent)
1160 return -EPERM;
1161
1162 if ((seq_ns != ns) && (seq_ns != ns->parent))
1163 return -EPERM;
1164
1165 /* Anyone can set any valid project id no capability needed */
1166 return map_write(file, buf, size, ppos, -1,
1167 &ns->projid_map, &ns->parent->projid_map);
1168 }
1169
new_idmap_permitted(const struct file * file,struct user_namespace * ns,int cap_setid,struct uid_gid_map * new_map)1170 static bool new_idmap_permitted(const struct file *file,
1171 struct user_namespace *ns, int cap_setid,
1172 struct uid_gid_map *new_map)
1173 {
1174 const struct cred *cred = file->f_cred;
1175
1176 if (cap_setid == CAP_SETUID && !verify_root_map(file, ns, new_map))
1177 return false;
1178
1179 /* Don't allow mappings that would allow anything that wouldn't
1180 * be allowed without the establishment of unprivileged mappings.
1181 */
1182 if ((new_map->nr_extents == 1) && (new_map->extent[0].count == 1) &&
1183 uid_eq(ns->owner, cred->euid)) {
1184 u32 id = new_map->extent[0].lower_first;
1185 if (cap_setid == CAP_SETUID) {
1186 kuid_t uid = make_kuid(ns->parent, id);
1187 if (uid_eq(uid, cred->euid))
1188 return true;
1189 } else if (cap_setid == CAP_SETGID) {
1190 kgid_t gid = make_kgid(ns->parent, id);
1191 if (!(ns->flags & USERNS_SETGROUPS_ALLOWED) &&
1192 gid_eq(gid, cred->egid))
1193 return true;
1194 }
1195 }
1196
1197 /* Allow anyone to set a mapping that doesn't require privilege */
1198 if (!cap_valid(cap_setid))
1199 return true;
1200
1201 /* Allow the specified ids if we have the appropriate capability
1202 * (CAP_SETUID or CAP_SETGID) over the parent user namespace.
1203 * And the opener of the id file also has the appropriate capability.
1204 */
1205 if (ns_capable(ns->parent, cap_setid) &&
1206 file_ns_capable(file, ns->parent, cap_setid))
1207 return true;
1208
1209 return false;
1210 }
1211
proc_setgroups_show(struct seq_file * seq,void * v)1212 int proc_setgroups_show(struct seq_file *seq, void *v)
1213 {
1214 struct user_namespace *ns = seq->private;
1215 unsigned long userns_flags = READ_ONCE(ns->flags);
1216
1217 seq_printf(seq, "%s\n",
1218 (userns_flags & USERNS_SETGROUPS_ALLOWED) ?
1219 "allow" : "deny");
1220 return 0;
1221 }
1222
proc_setgroups_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1223 ssize_t proc_setgroups_write(struct file *file, const char __user *buf,
1224 size_t count, loff_t *ppos)
1225 {
1226 struct seq_file *seq = file->private_data;
1227 struct user_namespace *ns = seq->private;
1228 char kbuf[8], *pos;
1229 bool setgroups_allowed;
1230 ssize_t ret;
1231
1232 /* Only allow a very narrow range of strings to be written */
1233 ret = -EINVAL;
1234 if ((*ppos != 0) || (count >= sizeof(kbuf)))
1235 goto out;
1236
1237 /* What was written? */
1238 ret = -EFAULT;
1239 if (copy_from_user(kbuf, buf, count))
1240 goto out;
1241 kbuf[count] = '\0';
1242 pos = kbuf;
1243
1244 /* What is being requested? */
1245 ret = -EINVAL;
1246 if (strncmp(pos, "allow", 5) == 0) {
1247 pos += 5;
1248 setgroups_allowed = true;
1249 }
1250 else if (strncmp(pos, "deny", 4) == 0) {
1251 pos += 4;
1252 setgroups_allowed = false;
1253 }
1254 else
1255 goto out;
1256
1257 /* Verify there is not trailing junk on the line */
1258 pos = skip_spaces(pos);
1259 if (*pos != '\0')
1260 goto out;
1261
1262 ret = -EPERM;
1263 mutex_lock(&userns_state_mutex);
1264 if (setgroups_allowed) {
1265 /* Enabling setgroups after setgroups has been disabled
1266 * is not allowed.
1267 */
1268 if (!(ns->flags & USERNS_SETGROUPS_ALLOWED))
1269 goto out_unlock;
1270 } else {
1271 /* Permanently disabling setgroups after setgroups has
1272 * been enabled by writing the gid_map is not allowed.
1273 */
1274 if (ns->gid_map.nr_extents != 0)
1275 goto out_unlock;
1276 ns->flags &= ~USERNS_SETGROUPS_ALLOWED;
1277 }
1278 mutex_unlock(&userns_state_mutex);
1279
1280 /* Report a successful write */
1281 *ppos = count;
1282 ret = count;
1283 out:
1284 return ret;
1285 out_unlock:
1286 mutex_unlock(&userns_state_mutex);
1287 goto out;
1288 }
1289
userns_may_setgroups(const struct user_namespace * ns)1290 bool userns_may_setgroups(const struct user_namespace *ns)
1291 {
1292 bool allowed;
1293
1294 mutex_lock(&userns_state_mutex);
1295 /* It is not safe to use setgroups until a gid mapping in
1296 * the user namespace has been established.
1297 */
1298 allowed = ns->gid_map.nr_extents != 0;
1299 /* Is setgroups allowed? */
1300 allowed = allowed && (ns->flags & USERNS_SETGROUPS_ALLOWED);
1301 mutex_unlock(&userns_state_mutex);
1302
1303 return allowed;
1304 }
1305
1306 /*
1307 * Returns true if @child is the same namespace or a descendant of
1308 * @ancestor.
1309 */
in_userns(const struct user_namespace * ancestor,const struct user_namespace * child)1310 bool in_userns(const struct user_namespace *ancestor,
1311 const struct user_namespace *child)
1312 {
1313 const struct user_namespace *ns;
1314 for (ns = child; ns->level > ancestor->level; ns = ns->parent)
1315 ;
1316 return (ns == ancestor);
1317 }
1318
current_in_userns(const struct user_namespace * target_ns)1319 bool current_in_userns(const struct user_namespace *target_ns)
1320 {
1321 return in_userns(target_ns, current_user_ns());
1322 }
1323 EXPORT_SYMBOL(current_in_userns);
1324
to_user_ns(struct ns_common * ns)1325 static inline struct user_namespace *to_user_ns(struct ns_common *ns)
1326 {
1327 return container_of(ns, struct user_namespace, ns);
1328 }
1329
userns_get(struct task_struct * task)1330 static struct ns_common *userns_get(struct task_struct *task)
1331 {
1332 struct user_namespace *user_ns;
1333
1334 rcu_read_lock();
1335 user_ns = get_user_ns(__task_cred(task)->user_ns);
1336 rcu_read_unlock();
1337
1338 return user_ns ? &user_ns->ns : NULL;
1339 }
1340
userns_put(struct ns_common * ns)1341 static void userns_put(struct ns_common *ns)
1342 {
1343 put_user_ns(to_user_ns(ns));
1344 }
1345
userns_install(struct nsset * nsset,struct ns_common * ns)1346 static int userns_install(struct nsset *nsset, struct ns_common *ns)
1347 {
1348 struct user_namespace *user_ns = to_user_ns(ns);
1349 struct cred *cred;
1350
1351 /* Don't allow gaining capabilities by reentering
1352 * the same user namespace.
1353 */
1354 if (user_ns == current_user_ns())
1355 return -EINVAL;
1356
1357 /* Tasks that share a thread group must share a user namespace */
1358 if (!thread_group_empty(current))
1359 return -EINVAL;
1360
1361 if (current->fs->users != 1)
1362 return -EINVAL;
1363
1364 if (!ns_capable(user_ns, CAP_SYS_ADMIN))
1365 return -EPERM;
1366
1367 cred = nsset_cred(nsset);
1368 if (!cred)
1369 return -EINVAL;
1370
1371 put_user_ns(cred->user_ns);
1372 set_cred_user_ns(cred, get_user_ns(user_ns));
1373
1374 if (set_cred_ucounts(cred) < 0)
1375 return -EINVAL;
1376
1377 return 0;
1378 }
1379
ns_get_owner(struct ns_common * ns)1380 struct ns_common *ns_get_owner(struct ns_common *ns)
1381 {
1382 struct user_namespace *my_user_ns = current_user_ns();
1383 struct user_namespace *owner, *p;
1384
1385 /* See if the owner is in the current user namespace */
1386 owner = p = ns->ops->owner(ns);
1387 for (;;) {
1388 if (!p)
1389 return ERR_PTR(-EPERM);
1390 if (p == my_user_ns)
1391 break;
1392 p = p->parent;
1393 }
1394
1395 return &get_user_ns(owner)->ns;
1396 }
1397
userns_owner(struct ns_common * ns)1398 static struct user_namespace *userns_owner(struct ns_common *ns)
1399 {
1400 return to_user_ns(ns)->parent;
1401 }
1402
1403 const struct proc_ns_operations userns_operations = {
1404 .name = "user",
1405 .type = CLONE_NEWUSER,
1406 .get = userns_get,
1407 .put = userns_put,
1408 .install = userns_install,
1409 .owner = userns_owner,
1410 .get_parent = ns_get_owner,
1411 };
1412
user_namespaces_init(void)1413 static __init int user_namespaces_init(void)
1414 {
1415 user_ns_cachep = KMEM_CACHE(user_namespace, SLAB_PANIC | SLAB_ACCOUNT);
1416 return 0;
1417 }
1418 subsys_initcall(user_namespaces_init);
1419