1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Scheduler topology setup/handling methods
4 */
5
6 #include <linux/bsearch.h>
7
8 DEFINE_MUTEX(sched_domains_mutex);
sched_domains_mutex_lock(void)9 void sched_domains_mutex_lock(void)
10 {
11 mutex_lock(&sched_domains_mutex);
12 }
sched_domains_mutex_unlock(void)13 void sched_domains_mutex_unlock(void)
14 {
15 mutex_unlock(&sched_domains_mutex);
16 }
17
18 /* Protected by sched_domains_mutex: */
19 static cpumask_var_t sched_domains_tmpmask;
20 static cpumask_var_t sched_domains_tmpmask2;
21
sched_debug_setup(char * str)22 static int __init sched_debug_setup(char *str)
23 {
24 sched_debug_verbose = true;
25
26 return 0;
27 }
28 early_param("sched_verbose", sched_debug_setup);
29
sched_debug(void)30 static inline bool sched_debug(void)
31 {
32 return sched_debug_verbose;
33 }
34
35 #define SD_FLAG(_name, mflags) [__##_name] = { .meta_flags = mflags, .name = #_name },
36 const struct sd_flag_debug sd_flag_debug[] = {
37 #include <linux/sched/sd_flags.h>
38 };
39 #undef SD_FLAG
40
sched_domain_debug_one(struct sched_domain * sd,int cpu,int level,struct cpumask * groupmask)41 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
42 struct cpumask *groupmask)
43 {
44 struct sched_group *group = sd->groups;
45 unsigned long flags = sd->flags;
46 unsigned int idx;
47
48 cpumask_clear(groupmask);
49
50 printk(KERN_DEBUG "%*s domain-%d: ", level, "", level);
51 printk(KERN_CONT "span=%*pbl level=%s\n",
52 cpumask_pr_args(sched_domain_span(sd)), sd->name);
53
54 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
55 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
56 }
57 if (group && !cpumask_test_cpu(cpu, sched_group_span(group))) {
58 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
59 }
60
61 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
62 unsigned int flag = BIT(idx);
63 unsigned int meta_flags = sd_flag_debug[idx].meta_flags;
64
65 if ((meta_flags & SDF_SHARED_CHILD) && sd->child &&
66 !(sd->child->flags & flag))
67 printk(KERN_ERR "ERROR: flag %s set here but not in child\n",
68 sd_flag_debug[idx].name);
69
70 if ((meta_flags & SDF_SHARED_PARENT) && sd->parent &&
71 !(sd->parent->flags & flag))
72 printk(KERN_ERR "ERROR: flag %s set here but not in parent\n",
73 sd_flag_debug[idx].name);
74 }
75
76 printk(KERN_DEBUG "%*s groups:", level + 1, "");
77 do {
78 if (!group) {
79 printk("\n");
80 printk(KERN_ERR "ERROR: group is NULL\n");
81 break;
82 }
83
84 if (cpumask_empty(sched_group_span(group))) {
85 printk(KERN_CONT "\n");
86 printk(KERN_ERR "ERROR: empty group\n");
87 break;
88 }
89
90 if (!(sd->flags & SD_OVERLAP) &&
91 cpumask_intersects(groupmask, sched_group_span(group))) {
92 printk(KERN_CONT "\n");
93 printk(KERN_ERR "ERROR: repeated CPUs\n");
94 break;
95 }
96
97 cpumask_or(groupmask, groupmask, sched_group_span(group));
98
99 printk(KERN_CONT " %d:{ span=%*pbl",
100 group->sgc->id,
101 cpumask_pr_args(sched_group_span(group)));
102
103 if ((sd->flags & SD_OVERLAP) &&
104 !cpumask_equal(group_balance_mask(group), sched_group_span(group))) {
105 printk(KERN_CONT " mask=%*pbl",
106 cpumask_pr_args(group_balance_mask(group)));
107 }
108
109 if (group->sgc->capacity != SCHED_CAPACITY_SCALE)
110 printk(KERN_CONT " cap=%lu", group->sgc->capacity);
111
112 if (group == sd->groups && sd->child &&
113 !cpumask_equal(sched_domain_span(sd->child),
114 sched_group_span(group))) {
115 printk(KERN_ERR "ERROR: domain->groups does not match domain->child\n");
116 }
117
118 printk(KERN_CONT " }");
119
120 group = group->next;
121
122 if (group != sd->groups)
123 printk(KERN_CONT ",");
124
125 } while (group != sd->groups);
126 printk(KERN_CONT "\n");
127
128 if (!cpumask_equal(sched_domain_span(sd), groupmask))
129 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
130
131 if (sd->parent &&
132 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
133 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
134 return 0;
135 }
136
sched_domain_debug(struct sched_domain * sd,int cpu)137 static void sched_domain_debug(struct sched_domain *sd, int cpu)
138 {
139 int level = 0;
140
141 if (!sched_debug_verbose)
142 return;
143
144 if (!sd) {
145 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
146 return;
147 }
148
149 printk(KERN_DEBUG "CPU%d attaching sched-domain(s):\n", cpu);
150
151 for (;;) {
152 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
153 break;
154 level++;
155 sd = sd->parent;
156 if (!sd)
157 break;
158 }
159 }
160
161 /* Generate a mask of SD flags with the SDF_NEEDS_GROUPS metaflag */
162 #define SD_FLAG(name, mflags) (name * !!((mflags) & SDF_NEEDS_GROUPS)) |
163 static const unsigned int SD_DEGENERATE_GROUPS_MASK =
164 #include <linux/sched/sd_flags.h>
165 0;
166 #undef SD_FLAG
167
sd_degenerate(struct sched_domain * sd)168 static int sd_degenerate(struct sched_domain *sd)
169 {
170 if (cpumask_weight(sched_domain_span(sd)) == 1)
171 return 1;
172
173 /* Following flags need at least 2 groups */
174 if ((sd->flags & SD_DEGENERATE_GROUPS_MASK) &&
175 (sd->groups != sd->groups->next))
176 return 0;
177
178 /* Following flags don't use groups */
179 if (sd->flags & (SD_WAKE_AFFINE))
180 return 0;
181
182 return 1;
183 }
184
185 static int
sd_parent_degenerate(struct sched_domain * sd,struct sched_domain * parent)186 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
187 {
188 unsigned long cflags = sd->flags, pflags = parent->flags;
189
190 if (sd_degenerate(parent))
191 return 1;
192
193 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
194 return 0;
195
196 /* Flags needing groups don't count if only 1 group in parent */
197 if (parent->groups == parent->groups->next)
198 pflags &= ~SD_DEGENERATE_GROUPS_MASK;
199
200 if (~cflags & pflags)
201 return 0;
202
203 return 1;
204 }
205
206 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
207 DEFINE_STATIC_KEY_FALSE(sched_energy_present);
208 static unsigned int sysctl_sched_energy_aware = 1;
209 static DEFINE_MUTEX(sched_energy_mutex);
210 static bool sched_energy_update;
211
sched_is_eas_possible(const struct cpumask * cpu_mask)212 static bool sched_is_eas_possible(const struct cpumask *cpu_mask)
213 {
214 bool any_asym_capacity = false;
215 struct cpufreq_policy *policy;
216 struct cpufreq_governor *gov;
217 int i;
218
219 /* EAS is enabled for asymmetric CPU capacity topologies. */
220 for_each_cpu(i, cpu_mask) {
221 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, i))) {
222 any_asym_capacity = true;
223 break;
224 }
225 }
226 if (!any_asym_capacity) {
227 if (sched_debug()) {
228 pr_info("rd %*pbl: Checking EAS, CPUs do not have asymmetric capacities\n",
229 cpumask_pr_args(cpu_mask));
230 }
231 return false;
232 }
233
234 /* EAS definitely does *not* handle SMT */
235 if (sched_smt_active()) {
236 if (sched_debug()) {
237 pr_info("rd %*pbl: Checking EAS, SMT is not supported\n",
238 cpumask_pr_args(cpu_mask));
239 }
240 return false;
241 }
242
243 if (!arch_scale_freq_invariant()) {
244 if (sched_debug()) {
245 pr_info("rd %*pbl: Checking EAS: frequency-invariant load tracking not yet supported",
246 cpumask_pr_args(cpu_mask));
247 }
248 return false;
249 }
250
251 /* Do not attempt EAS if schedutil is not being used. */
252 for_each_cpu(i, cpu_mask) {
253 policy = cpufreq_cpu_get(i);
254 if (!policy) {
255 if (sched_debug()) {
256 pr_info("rd %*pbl: Checking EAS, cpufreq policy not set for CPU: %d",
257 cpumask_pr_args(cpu_mask), i);
258 }
259 return false;
260 }
261 gov = policy->governor;
262 cpufreq_cpu_put(policy);
263 if (gov != &schedutil_gov) {
264 if (sched_debug()) {
265 pr_info("rd %*pbl: Checking EAS, schedutil is mandatory\n",
266 cpumask_pr_args(cpu_mask));
267 }
268 return false;
269 }
270 }
271
272 return true;
273 }
274
rebuild_sched_domains_energy(void)275 void rebuild_sched_domains_energy(void)
276 {
277 mutex_lock(&sched_energy_mutex);
278 sched_energy_update = true;
279 rebuild_sched_domains();
280 sched_energy_update = false;
281 mutex_unlock(&sched_energy_mutex);
282 }
283
284 #ifdef CONFIG_PROC_SYSCTL
sched_energy_aware_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)285 static int sched_energy_aware_handler(const struct ctl_table *table, int write,
286 void *buffer, size_t *lenp, loff_t *ppos)
287 {
288 int ret, state;
289
290 if (write && !capable(CAP_SYS_ADMIN))
291 return -EPERM;
292
293 if (!sched_is_eas_possible(cpu_active_mask)) {
294 if (write) {
295 return -EOPNOTSUPP;
296 } else {
297 *lenp = 0;
298 return 0;
299 }
300 }
301
302 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
303 if (!ret && write) {
304 state = static_branch_unlikely(&sched_energy_present);
305 if (state != sysctl_sched_energy_aware)
306 rebuild_sched_domains_energy();
307 }
308
309 return ret;
310 }
311
312 static const struct ctl_table sched_energy_aware_sysctls[] = {
313 {
314 .procname = "sched_energy_aware",
315 .data = &sysctl_sched_energy_aware,
316 .maxlen = sizeof(unsigned int),
317 .mode = 0644,
318 .proc_handler = sched_energy_aware_handler,
319 .extra1 = SYSCTL_ZERO,
320 .extra2 = SYSCTL_ONE,
321 },
322 };
323
sched_energy_aware_sysctl_init(void)324 static int __init sched_energy_aware_sysctl_init(void)
325 {
326 register_sysctl_init("kernel", sched_energy_aware_sysctls);
327 return 0;
328 }
329
330 late_initcall(sched_energy_aware_sysctl_init);
331 #endif
332
free_pd(struct perf_domain * pd)333 static void free_pd(struct perf_domain *pd)
334 {
335 struct perf_domain *tmp;
336
337 while (pd) {
338 tmp = pd->next;
339 kfree(pd);
340 pd = tmp;
341 }
342 }
343
find_pd(struct perf_domain * pd,int cpu)344 static struct perf_domain *find_pd(struct perf_domain *pd, int cpu)
345 {
346 while (pd) {
347 if (cpumask_test_cpu(cpu, perf_domain_span(pd)))
348 return pd;
349 pd = pd->next;
350 }
351
352 return NULL;
353 }
354
pd_init(int cpu)355 static struct perf_domain *pd_init(int cpu)
356 {
357 struct em_perf_domain *obj = em_cpu_get(cpu);
358 struct perf_domain *pd;
359
360 if (!obj) {
361 if (sched_debug())
362 pr_info("%s: no EM found for CPU%d\n", __func__, cpu);
363 return NULL;
364 }
365
366 pd = kzalloc(sizeof(*pd), GFP_KERNEL);
367 if (!pd)
368 return NULL;
369 pd->em_pd = obj;
370
371 return pd;
372 }
373
perf_domain_debug(const struct cpumask * cpu_map,struct perf_domain * pd)374 static void perf_domain_debug(const struct cpumask *cpu_map,
375 struct perf_domain *pd)
376 {
377 if (!sched_debug() || !pd)
378 return;
379
380 printk(KERN_DEBUG "root_domain %*pbl:", cpumask_pr_args(cpu_map));
381
382 while (pd) {
383 printk(KERN_CONT " pd%d:{ cpus=%*pbl nr_pstate=%d }",
384 cpumask_first(perf_domain_span(pd)),
385 cpumask_pr_args(perf_domain_span(pd)),
386 em_pd_nr_perf_states(pd->em_pd));
387 pd = pd->next;
388 }
389
390 printk(KERN_CONT "\n");
391 }
392
destroy_perf_domain_rcu(struct rcu_head * rp)393 static void destroy_perf_domain_rcu(struct rcu_head *rp)
394 {
395 struct perf_domain *pd;
396
397 pd = container_of(rp, struct perf_domain, rcu);
398 free_pd(pd);
399 }
400
sched_energy_set(bool has_eas)401 static void sched_energy_set(bool has_eas)
402 {
403 if (!has_eas && static_branch_unlikely(&sched_energy_present)) {
404 if (sched_debug())
405 pr_info("%s: stopping EAS\n", __func__);
406 static_branch_disable_cpuslocked(&sched_energy_present);
407 } else if (has_eas && !static_branch_unlikely(&sched_energy_present)) {
408 if (sched_debug())
409 pr_info("%s: starting EAS\n", __func__);
410 static_branch_enable_cpuslocked(&sched_energy_present);
411 }
412 }
413
414 /*
415 * EAS can be used on a root domain if it meets all the following conditions:
416 * 1. an Energy Model (EM) is available;
417 * 2. the SD_ASYM_CPUCAPACITY flag is set in the sched_domain hierarchy.
418 * 3. no SMT is detected.
419 * 4. schedutil is driving the frequency of all CPUs of the rd;
420 * 5. frequency invariance support is present;
421 */
build_perf_domains(const struct cpumask * cpu_map)422 static bool build_perf_domains(const struct cpumask *cpu_map)
423 {
424 int i;
425 struct perf_domain *pd = NULL, *tmp;
426 int cpu = cpumask_first(cpu_map);
427 struct root_domain *rd = cpu_rq(cpu)->rd;
428
429 if (!sysctl_sched_energy_aware)
430 goto free;
431
432 if (!sched_is_eas_possible(cpu_map))
433 goto free;
434
435 for_each_cpu(i, cpu_map) {
436 /* Skip already covered CPUs. */
437 if (find_pd(pd, i))
438 continue;
439
440 /* Create the new pd and add it to the local list. */
441 tmp = pd_init(i);
442 if (!tmp)
443 goto free;
444 tmp->next = pd;
445 pd = tmp;
446 }
447
448 perf_domain_debug(cpu_map, pd);
449
450 /* Attach the new list of performance domains to the root domain. */
451 tmp = rd->pd;
452 rcu_assign_pointer(rd->pd, pd);
453 if (tmp)
454 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
455
456 return !!pd;
457
458 free:
459 free_pd(pd);
460 tmp = rd->pd;
461 rcu_assign_pointer(rd->pd, NULL);
462 if (tmp)
463 call_rcu(&tmp->rcu, destroy_perf_domain_rcu);
464
465 return false;
466 }
467 #else
free_pd(struct perf_domain * pd)468 static void free_pd(struct perf_domain *pd) { }
469 #endif /* CONFIG_ENERGY_MODEL && CONFIG_CPU_FREQ_GOV_SCHEDUTIL*/
470
free_rootdomain(struct rcu_head * rcu)471 static void free_rootdomain(struct rcu_head *rcu)
472 {
473 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
474
475 cpupri_cleanup(&rd->cpupri);
476 cpudl_cleanup(&rd->cpudl);
477 free_cpumask_var(rd->dlo_mask);
478 free_cpumask_var(rd->rto_mask);
479 free_cpumask_var(rd->online);
480 free_cpumask_var(rd->span);
481 free_pd(rd->pd);
482 kfree(rd);
483 }
484
rq_attach_root(struct rq * rq,struct root_domain * rd)485 void rq_attach_root(struct rq *rq, struct root_domain *rd)
486 {
487 struct root_domain *old_rd = NULL;
488 struct rq_flags rf;
489
490 rq_lock_irqsave(rq, &rf);
491
492 if (rq->rd) {
493 old_rd = rq->rd;
494
495 if (cpumask_test_cpu(rq->cpu, old_rd->online))
496 set_rq_offline(rq);
497
498 cpumask_clear_cpu(rq->cpu, old_rd->span);
499
500 /*
501 * If we don't want to free the old_rd yet then
502 * set old_rd to NULL to skip the freeing later
503 * in this function:
504 */
505 if (!atomic_dec_and_test(&old_rd->refcount))
506 old_rd = NULL;
507 }
508
509 atomic_inc(&rd->refcount);
510 rq->rd = rd;
511
512 cpumask_set_cpu(rq->cpu, rd->span);
513 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
514 set_rq_online(rq);
515
516 /*
517 * Because the rq is not a task, dl_add_task_root_domain() did not
518 * move the fair server bw to the rd if it already started.
519 * Add it now.
520 */
521 if (rq->fair_server.dl_server)
522 __dl_server_attach_root(&rq->fair_server, rq);
523
524 rq_unlock_irqrestore(rq, &rf);
525
526 if (old_rd)
527 call_rcu(&old_rd->rcu, free_rootdomain);
528 }
529
sched_get_rd(struct root_domain * rd)530 void sched_get_rd(struct root_domain *rd)
531 {
532 atomic_inc(&rd->refcount);
533 }
534
sched_put_rd(struct root_domain * rd)535 void sched_put_rd(struct root_domain *rd)
536 {
537 if (!atomic_dec_and_test(&rd->refcount))
538 return;
539
540 call_rcu(&rd->rcu, free_rootdomain);
541 }
542
init_rootdomain(struct root_domain * rd)543 static int init_rootdomain(struct root_domain *rd)
544 {
545 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
546 goto out;
547 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
548 goto free_span;
549 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
550 goto free_online;
551 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
552 goto free_dlo_mask;
553
554 #ifdef HAVE_RT_PUSH_IPI
555 rd->rto_cpu = -1;
556 raw_spin_lock_init(&rd->rto_lock);
557 rd->rto_push_work = IRQ_WORK_INIT_HARD(rto_push_irq_work_func);
558 #endif
559
560 rd->visit_cookie = 0;
561 init_dl_bw(&rd->dl_bw);
562 if (cpudl_init(&rd->cpudl) != 0)
563 goto free_rto_mask;
564
565 if (cpupri_init(&rd->cpupri) != 0)
566 goto free_cpudl;
567 return 0;
568
569 free_cpudl:
570 cpudl_cleanup(&rd->cpudl);
571 free_rto_mask:
572 free_cpumask_var(rd->rto_mask);
573 free_dlo_mask:
574 free_cpumask_var(rd->dlo_mask);
575 free_online:
576 free_cpumask_var(rd->online);
577 free_span:
578 free_cpumask_var(rd->span);
579 out:
580 return -ENOMEM;
581 }
582
583 /*
584 * By default the system creates a single root-domain with all CPUs as
585 * members (mimicking the global state we have today).
586 */
587 struct root_domain def_root_domain;
588
init_defrootdomain(void)589 void __init init_defrootdomain(void)
590 {
591 init_rootdomain(&def_root_domain);
592
593 atomic_set(&def_root_domain.refcount, 1);
594 }
595
alloc_rootdomain(void)596 static struct root_domain *alloc_rootdomain(void)
597 {
598 struct root_domain *rd;
599
600 rd = kzalloc(sizeof(*rd), GFP_KERNEL);
601 if (!rd)
602 return NULL;
603
604 if (init_rootdomain(rd) != 0) {
605 kfree(rd);
606 return NULL;
607 }
608
609 return rd;
610 }
611
free_sched_groups(struct sched_group * sg,int free_sgc)612 static void free_sched_groups(struct sched_group *sg, int free_sgc)
613 {
614 struct sched_group *tmp, *first;
615
616 if (!sg)
617 return;
618
619 first = sg;
620 do {
621 tmp = sg->next;
622
623 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
624 kfree(sg->sgc);
625
626 if (atomic_dec_and_test(&sg->ref))
627 kfree(sg);
628 sg = tmp;
629 } while (sg != first);
630 }
631
destroy_sched_domain(struct sched_domain * sd)632 static void destroy_sched_domain(struct sched_domain *sd)
633 {
634 /*
635 * A normal sched domain may have multiple group references, an
636 * overlapping domain, having private groups, only one. Iterate,
637 * dropping group/capacity references, freeing where none remain.
638 */
639 free_sched_groups(sd->groups, 1);
640
641 if (sd->shared && atomic_dec_and_test(&sd->shared->ref))
642 kfree(sd->shared);
643 kfree(sd);
644 }
645
destroy_sched_domains_rcu(struct rcu_head * rcu)646 static void destroy_sched_domains_rcu(struct rcu_head *rcu)
647 {
648 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
649
650 while (sd) {
651 struct sched_domain *parent = sd->parent;
652 destroy_sched_domain(sd);
653 sd = parent;
654 }
655 }
656
destroy_sched_domains(struct sched_domain * sd)657 static void destroy_sched_domains(struct sched_domain *sd)
658 {
659 if (sd)
660 call_rcu(&sd->rcu, destroy_sched_domains_rcu);
661 }
662
663 /*
664 * Keep a special pointer to the highest sched_domain that has SD_SHARE_LLC set
665 * (Last Level Cache Domain) for this allows us to avoid some pointer chasing
666 * select_idle_sibling().
667 *
668 * Also keep a unique ID per domain (we use the first CPU number in the cpumask
669 * of the domain), this allows us to quickly tell if two CPUs are in the same
670 * cache domain, see cpus_share_cache().
671 */
672 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_llc);
673 DEFINE_PER_CPU(int, sd_llc_size);
674 DEFINE_PER_CPU(int, sd_llc_id);
675 DEFINE_PER_CPU(int, sd_share_id);
676 DEFINE_PER_CPU(struct sched_domain_shared __rcu *, sd_llc_shared);
677 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_numa);
678 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_packing);
679 DEFINE_PER_CPU(struct sched_domain __rcu *, sd_asym_cpucapacity);
680
681 DEFINE_STATIC_KEY_FALSE(sched_asym_cpucapacity);
682 DEFINE_STATIC_KEY_FALSE(sched_cluster_active);
683
update_top_cache_domain(int cpu)684 static void update_top_cache_domain(int cpu)
685 {
686 struct sched_domain_shared *sds = NULL;
687 struct sched_domain *sd;
688 int id = cpu;
689 int size = 1;
690
691 sd = highest_flag_domain(cpu, SD_SHARE_LLC);
692 if (sd) {
693 id = cpumask_first(sched_domain_span(sd));
694 size = cpumask_weight(sched_domain_span(sd));
695 sds = sd->shared;
696 }
697
698 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
699 per_cpu(sd_llc_size, cpu) = size;
700 per_cpu(sd_llc_id, cpu) = id;
701 rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds);
702
703 sd = lowest_flag_domain(cpu, SD_CLUSTER);
704 if (sd)
705 id = cpumask_first(sched_domain_span(sd));
706
707 /*
708 * This assignment should be placed after the sd_llc_id as
709 * we want this id equals to cluster id on cluster machines
710 * but equals to LLC id on non-Cluster machines.
711 */
712 per_cpu(sd_share_id, cpu) = id;
713
714 sd = lowest_flag_domain(cpu, SD_NUMA);
715 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
716
717 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
718 rcu_assign_pointer(per_cpu(sd_asym_packing, cpu), sd);
719
720 sd = lowest_flag_domain(cpu, SD_ASYM_CPUCAPACITY_FULL);
721 rcu_assign_pointer(per_cpu(sd_asym_cpucapacity, cpu), sd);
722 }
723
724 /*
725 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
726 * hold the hotplug lock.
727 */
728 static void
cpu_attach_domain(struct sched_domain * sd,struct root_domain * rd,int cpu)729 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
730 {
731 struct rq *rq = cpu_rq(cpu);
732 struct sched_domain *tmp;
733
734 /* Remove the sched domains which do not contribute to scheduling. */
735 for (tmp = sd; tmp; ) {
736 struct sched_domain *parent = tmp->parent;
737 if (!parent)
738 break;
739
740 if (sd_parent_degenerate(tmp, parent)) {
741 tmp->parent = parent->parent;
742
743 if (parent->parent) {
744 parent->parent->child = tmp;
745 parent->parent->groups->flags = tmp->flags;
746 }
747
748 /*
749 * Transfer SD_PREFER_SIBLING down in case of a
750 * degenerate parent; the spans match for this
751 * so the property transfers.
752 */
753 if (parent->flags & SD_PREFER_SIBLING)
754 tmp->flags |= SD_PREFER_SIBLING;
755 destroy_sched_domain(parent);
756 } else
757 tmp = tmp->parent;
758 }
759
760 if (sd && sd_degenerate(sd)) {
761 tmp = sd;
762 sd = sd->parent;
763 destroy_sched_domain(tmp);
764 if (sd) {
765 struct sched_group *sg = sd->groups;
766
767 /*
768 * sched groups hold the flags of the child sched
769 * domain for convenience. Clear such flags since
770 * the child is being destroyed.
771 */
772 do {
773 sg->flags = 0;
774 } while (sg != sd->groups);
775
776 sd->child = NULL;
777 }
778 }
779
780 sched_domain_debug(sd, cpu);
781
782 rq_attach_root(rq, rd);
783 tmp = rq->sd;
784 rcu_assign_pointer(rq->sd, sd);
785 dirty_sched_domain_sysctl(cpu);
786 destroy_sched_domains(tmp);
787
788 update_top_cache_domain(cpu);
789 }
790
791 struct s_data {
792 struct sched_domain * __percpu *sd;
793 struct root_domain *rd;
794 };
795
796 enum s_alloc {
797 sa_rootdomain,
798 sa_sd,
799 sa_sd_storage,
800 sa_none,
801 };
802
803 /*
804 * Return the canonical balance CPU for this group, this is the first CPU
805 * of this group that's also in the balance mask.
806 *
807 * The balance mask are all those CPUs that could actually end up at this
808 * group. See build_balance_mask().
809 *
810 * Also see should_we_balance().
811 */
group_balance_cpu(struct sched_group * sg)812 int group_balance_cpu(struct sched_group *sg)
813 {
814 return cpumask_first(group_balance_mask(sg));
815 }
816
817
818 /*
819 * NUMA topology (first read the regular topology blurb below)
820 *
821 * Given a node-distance table, for example:
822 *
823 * node 0 1 2 3
824 * 0: 10 20 30 20
825 * 1: 20 10 20 30
826 * 2: 30 20 10 20
827 * 3: 20 30 20 10
828 *
829 * which represents a 4 node ring topology like:
830 *
831 * 0 ----- 1
832 * | |
833 * | |
834 * | |
835 * 3 ----- 2
836 *
837 * We want to construct domains and groups to represent this. The way we go
838 * about doing this is to build the domains on 'hops'. For each NUMA level we
839 * construct the mask of all nodes reachable in @level hops.
840 *
841 * For the above NUMA topology that gives 3 levels:
842 *
843 * NUMA-2 0-3 0-3 0-3 0-3
844 * groups: {0-1,3},{1-3} {0-2},{0,2-3} {1-3},{0-1,3} {0,2-3},{0-2}
845 *
846 * NUMA-1 0-1,3 0-2 1-3 0,2-3
847 * groups: {0},{1},{3} {0},{1},{2} {1},{2},{3} {0},{2},{3}
848 *
849 * NUMA-0 0 1 2 3
850 *
851 *
852 * As can be seen; things don't nicely line up as with the regular topology.
853 * When we iterate a domain in child domain chunks some nodes can be
854 * represented multiple times -- hence the "overlap" naming for this part of
855 * the topology.
856 *
857 * In order to minimize this overlap, we only build enough groups to cover the
858 * domain. For instance Node-0 NUMA-2 would only get groups: 0-1,3 and 1-3.
859 *
860 * Because:
861 *
862 * - the first group of each domain is its child domain; this
863 * gets us the first 0-1,3
864 * - the only uncovered node is 2, who's child domain is 1-3.
865 *
866 * However, because of the overlap, computing a unique CPU for each group is
867 * more complicated. Consider for instance the groups of NODE-1 NUMA-2, both
868 * groups include the CPUs of Node-0, while those CPUs would not in fact ever
869 * end up at those groups (they would end up in group: 0-1,3).
870 *
871 * To correct this we have to introduce the group balance mask. This mask
872 * will contain those CPUs in the group that can reach this group given the
873 * (child) domain tree.
874 *
875 * With this we can once again compute balance_cpu and sched_group_capacity
876 * relations.
877 *
878 * XXX include words on how balance_cpu is unique and therefore can be
879 * used for sched_group_capacity links.
880 *
881 *
882 * Another 'interesting' topology is:
883 *
884 * node 0 1 2 3
885 * 0: 10 20 20 30
886 * 1: 20 10 20 20
887 * 2: 20 20 10 20
888 * 3: 30 20 20 10
889 *
890 * Which looks a little like:
891 *
892 * 0 ----- 1
893 * | / |
894 * | / |
895 * | / |
896 * 2 ----- 3
897 *
898 * This topology is asymmetric, nodes 1,2 are fully connected, but nodes 0,3
899 * are not.
900 *
901 * This leads to a few particularly weird cases where the sched_domain's are
902 * not of the same number for each CPU. Consider:
903 *
904 * NUMA-2 0-3 0-3
905 * groups: {0-2},{1-3} {1-3},{0-2}
906 *
907 * NUMA-1 0-2 0-3 0-3 1-3
908 *
909 * NUMA-0 0 1 2 3
910 *
911 */
912
913
914 /*
915 * Build the balance mask; it contains only those CPUs that can arrive at this
916 * group and should be considered to continue balancing.
917 *
918 * We do this during the group creation pass, therefore the group information
919 * isn't complete yet, however since each group represents a (child) domain we
920 * can fully construct this using the sched_domain bits (which are already
921 * complete).
922 */
923 static void
build_balance_mask(struct sched_domain * sd,struct sched_group * sg,struct cpumask * mask)924 build_balance_mask(struct sched_domain *sd, struct sched_group *sg, struct cpumask *mask)
925 {
926 const struct cpumask *sg_span = sched_group_span(sg);
927 struct sd_data *sdd = sd->private;
928 struct sched_domain *sibling;
929 int i;
930
931 cpumask_clear(mask);
932
933 for_each_cpu(i, sg_span) {
934 sibling = *per_cpu_ptr(sdd->sd, i);
935
936 /*
937 * Can happen in the asymmetric case, where these siblings are
938 * unused. The mask will not be empty because those CPUs that
939 * do have the top domain _should_ span the domain.
940 */
941 if (!sibling->child)
942 continue;
943
944 /* If we would not end up here, we can't continue from here */
945 if (!cpumask_equal(sg_span, sched_domain_span(sibling->child)))
946 continue;
947
948 cpumask_set_cpu(i, mask);
949 }
950
951 /* We must not have empty masks here */
952 WARN_ON_ONCE(cpumask_empty(mask));
953 }
954
955 /*
956 * XXX: This creates per-node group entries; since the load-balancer will
957 * immediately access remote memory to construct this group's load-balance
958 * statistics having the groups node local is of dubious benefit.
959 */
960 static struct sched_group *
build_group_from_child_sched_domain(struct sched_domain * sd,int cpu)961 build_group_from_child_sched_domain(struct sched_domain *sd, int cpu)
962 {
963 struct sched_group *sg;
964 struct cpumask *sg_span;
965
966 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
967 GFP_KERNEL, cpu_to_node(cpu));
968
969 if (!sg)
970 return NULL;
971
972 sg_span = sched_group_span(sg);
973 if (sd->child) {
974 cpumask_copy(sg_span, sched_domain_span(sd->child));
975 sg->flags = sd->child->flags;
976 } else {
977 cpumask_copy(sg_span, sched_domain_span(sd));
978 }
979
980 atomic_inc(&sg->ref);
981 return sg;
982 }
983
init_overlap_sched_group(struct sched_domain * sd,struct sched_group * sg)984 static void init_overlap_sched_group(struct sched_domain *sd,
985 struct sched_group *sg)
986 {
987 struct cpumask *mask = sched_domains_tmpmask2;
988 struct sd_data *sdd = sd->private;
989 struct cpumask *sg_span;
990 int cpu;
991
992 build_balance_mask(sd, sg, mask);
993 cpu = cpumask_first(mask);
994
995 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
996 if (atomic_inc_return(&sg->sgc->ref) == 1)
997 cpumask_copy(group_balance_mask(sg), mask);
998 else
999 WARN_ON_ONCE(!cpumask_equal(group_balance_mask(sg), mask));
1000
1001 /*
1002 * Initialize sgc->capacity such that even if we mess up the
1003 * domains and no possible iteration will get us here, we won't
1004 * die on a /0 trap.
1005 */
1006 sg_span = sched_group_span(sg);
1007 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
1008 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1009 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1010 }
1011
1012 static struct sched_domain *
find_descended_sibling(struct sched_domain * sd,struct sched_domain * sibling)1013 find_descended_sibling(struct sched_domain *sd, struct sched_domain *sibling)
1014 {
1015 /*
1016 * The proper descendant would be the one whose child won't span out
1017 * of sd
1018 */
1019 while (sibling->child &&
1020 !cpumask_subset(sched_domain_span(sibling->child),
1021 sched_domain_span(sd)))
1022 sibling = sibling->child;
1023
1024 /*
1025 * As we are referencing sgc across different topology level, we need
1026 * to go down to skip those sched_domains which don't contribute to
1027 * scheduling because they will be degenerated in cpu_attach_domain
1028 */
1029 while (sibling->child &&
1030 cpumask_equal(sched_domain_span(sibling->child),
1031 sched_domain_span(sibling)))
1032 sibling = sibling->child;
1033
1034 return sibling;
1035 }
1036
1037 static int
build_overlap_sched_groups(struct sched_domain * sd,int cpu)1038 build_overlap_sched_groups(struct sched_domain *sd, int cpu)
1039 {
1040 struct sched_group *first = NULL, *last = NULL, *sg;
1041 const struct cpumask *span = sched_domain_span(sd);
1042 struct cpumask *covered = sched_domains_tmpmask;
1043 struct sd_data *sdd = sd->private;
1044 struct sched_domain *sibling;
1045 int i;
1046
1047 cpumask_clear(covered);
1048
1049 for_each_cpu_wrap(i, span, cpu) {
1050 struct cpumask *sg_span;
1051
1052 if (cpumask_test_cpu(i, covered))
1053 continue;
1054
1055 sibling = *per_cpu_ptr(sdd->sd, i);
1056
1057 /*
1058 * Asymmetric node setups can result in situations where the
1059 * domain tree is of unequal depth, make sure to skip domains
1060 * that already cover the entire range.
1061 *
1062 * In that case build_sched_domains() will have terminated the
1063 * iteration early and our sibling sd spans will be empty.
1064 * Domains should always include the CPU they're built on, so
1065 * check that.
1066 */
1067 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
1068 continue;
1069
1070 /*
1071 * Usually we build sched_group by sibling's child sched_domain
1072 * But for machines whose NUMA diameter are 3 or above, we move
1073 * to build sched_group by sibling's proper descendant's child
1074 * domain because sibling's child sched_domain will span out of
1075 * the sched_domain being built as below.
1076 *
1077 * Smallest diameter=3 topology is:
1078 *
1079 * node 0 1 2 3
1080 * 0: 10 20 30 40
1081 * 1: 20 10 20 30
1082 * 2: 30 20 10 20
1083 * 3: 40 30 20 10
1084 *
1085 * 0 --- 1 --- 2 --- 3
1086 *
1087 * NUMA-3 0-3 N/A N/A 0-3
1088 * groups: {0-2},{1-3} {1-3},{0-2}
1089 *
1090 * NUMA-2 0-2 0-3 0-3 1-3
1091 * groups: {0-1},{1-3} {0-2},{2-3} {1-3},{0-1} {2-3},{0-2}
1092 *
1093 * NUMA-1 0-1 0-2 1-3 2-3
1094 * groups: {0},{1} {1},{2},{0} {2},{3},{1} {3},{2}
1095 *
1096 * NUMA-0 0 1 2 3
1097 *
1098 * The NUMA-2 groups for nodes 0 and 3 are obviously buggered, as the
1099 * group span isn't a subset of the domain span.
1100 */
1101 if (sibling->child &&
1102 !cpumask_subset(sched_domain_span(sibling->child), span))
1103 sibling = find_descended_sibling(sd, sibling);
1104
1105 sg = build_group_from_child_sched_domain(sibling, cpu);
1106 if (!sg)
1107 goto fail;
1108
1109 sg_span = sched_group_span(sg);
1110 cpumask_or(covered, covered, sg_span);
1111
1112 init_overlap_sched_group(sibling, sg);
1113
1114 if (!first)
1115 first = sg;
1116 if (last)
1117 last->next = sg;
1118 last = sg;
1119 last->next = first;
1120 }
1121 sd->groups = first;
1122
1123 return 0;
1124
1125 fail:
1126 free_sched_groups(first, 0);
1127
1128 return -ENOMEM;
1129 }
1130
1131
1132 /*
1133 * Package topology (also see the load-balance blurb in fair.c)
1134 *
1135 * The scheduler builds a tree structure to represent a number of important
1136 * topology features. By default (default_topology[]) these include:
1137 *
1138 * - Simultaneous multithreading (SMT)
1139 * - Multi-Core Cache (MC)
1140 * - Package (PKG)
1141 *
1142 * Where the last one more or less denotes everything up to a NUMA node.
1143 *
1144 * The tree consists of 3 primary data structures:
1145 *
1146 * sched_domain -> sched_group -> sched_group_capacity
1147 * ^ ^ ^ ^
1148 * `-' `-'
1149 *
1150 * The sched_domains are per-CPU and have a two way link (parent & child) and
1151 * denote the ever growing mask of CPUs belonging to that level of topology.
1152 *
1153 * Each sched_domain has a circular (double) linked list of sched_group's, each
1154 * denoting the domains of the level below (or individual CPUs in case of the
1155 * first domain level). The sched_group linked by a sched_domain includes the
1156 * CPU of that sched_domain [*].
1157 *
1158 * Take for instance a 2 threaded, 2 core, 2 cache cluster part:
1159 *
1160 * CPU 0 1 2 3 4 5 6 7
1161 *
1162 * PKG [ ]
1163 * MC [ ] [ ]
1164 * SMT [ ] [ ] [ ] [ ]
1165 *
1166 * - or -
1167 *
1168 * PKG 0-7 0-7 0-7 0-7 0-7 0-7 0-7 0-7
1169 * MC 0-3 0-3 0-3 0-3 4-7 4-7 4-7 4-7
1170 * SMT 0-1 0-1 2-3 2-3 4-5 4-5 6-7 6-7
1171 *
1172 * CPU 0 1 2 3 4 5 6 7
1173 *
1174 * One way to think about it is: sched_domain moves you up and down among these
1175 * topology levels, while sched_group moves you sideways through it, at child
1176 * domain granularity.
1177 *
1178 * sched_group_capacity ensures each unique sched_group has shared storage.
1179 *
1180 * There are two related construction problems, both require a CPU that
1181 * uniquely identify each group (for a given domain):
1182 *
1183 * - The first is the balance_cpu (see should_we_balance() and the
1184 * load-balance blurb in fair.c); for each group we only want 1 CPU to
1185 * continue balancing at a higher domain.
1186 *
1187 * - The second is the sched_group_capacity; we want all identical groups
1188 * to share a single sched_group_capacity.
1189 *
1190 * Since these topologies are exclusive by construction. That is, its
1191 * impossible for an SMT thread to belong to multiple cores, and cores to
1192 * be part of multiple caches. There is a very clear and unique location
1193 * for each CPU in the hierarchy.
1194 *
1195 * Therefore computing a unique CPU for each group is trivial (the iteration
1196 * mask is redundant and set all 1s; all CPUs in a group will end up at _that_
1197 * group), we can simply pick the first CPU in each group.
1198 *
1199 *
1200 * [*] in other words, the first group of each domain is its child domain.
1201 */
1202
get_group(int cpu,struct sd_data * sdd)1203 static struct sched_group *get_group(int cpu, struct sd_data *sdd)
1204 {
1205 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1206 struct sched_domain *child = sd->child;
1207 struct sched_group *sg;
1208 bool already_visited;
1209
1210 if (child)
1211 cpu = cpumask_first(sched_domain_span(child));
1212
1213 sg = *per_cpu_ptr(sdd->sg, cpu);
1214 sg->sgc = *per_cpu_ptr(sdd->sgc, cpu);
1215
1216 /* Increase refcounts for claim_allocations: */
1217 already_visited = atomic_inc_return(&sg->ref) > 1;
1218 /* sgc visits should follow a similar trend as sg */
1219 WARN_ON(already_visited != (atomic_inc_return(&sg->sgc->ref) > 1));
1220
1221 /* If we have already visited that group, it's already initialized. */
1222 if (already_visited)
1223 return sg;
1224
1225 if (child) {
1226 cpumask_copy(sched_group_span(sg), sched_domain_span(child));
1227 cpumask_copy(group_balance_mask(sg), sched_group_span(sg));
1228 sg->flags = child->flags;
1229 } else {
1230 cpumask_set_cpu(cpu, sched_group_span(sg));
1231 cpumask_set_cpu(cpu, group_balance_mask(sg));
1232 }
1233
1234 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sched_group_span(sg));
1235 sg->sgc->min_capacity = SCHED_CAPACITY_SCALE;
1236 sg->sgc->max_capacity = SCHED_CAPACITY_SCALE;
1237
1238 return sg;
1239 }
1240
1241 /*
1242 * build_sched_groups will build a circular linked list of the groups
1243 * covered by the given span, will set each group's ->cpumask correctly,
1244 * and will initialize their ->sgc.
1245 *
1246 * Assumes the sched_domain tree is fully constructed
1247 */
1248 static int
build_sched_groups(struct sched_domain * sd,int cpu)1249 build_sched_groups(struct sched_domain *sd, int cpu)
1250 {
1251 struct sched_group *first = NULL, *last = NULL;
1252 struct sd_data *sdd = sd->private;
1253 const struct cpumask *span = sched_domain_span(sd);
1254 struct cpumask *covered;
1255 int i;
1256
1257 lockdep_assert_held(&sched_domains_mutex);
1258 covered = sched_domains_tmpmask;
1259
1260 cpumask_clear(covered);
1261
1262 for_each_cpu_wrap(i, span, cpu) {
1263 struct sched_group *sg;
1264
1265 if (cpumask_test_cpu(i, covered))
1266 continue;
1267
1268 sg = get_group(i, sdd);
1269
1270 cpumask_or(covered, covered, sched_group_span(sg));
1271
1272 if (!first)
1273 first = sg;
1274 if (last)
1275 last->next = sg;
1276 last = sg;
1277 }
1278 last->next = first;
1279 sd->groups = first;
1280
1281 return 0;
1282 }
1283
1284 /*
1285 * Initialize sched groups cpu_capacity.
1286 *
1287 * cpu_capacity indicates the capacity of sched group, which is used while
1288 * distributing the load between different sched groups in a sched domain.
1289 * Typically cpu_capacity for all the groups in a sched domain will be same
1290 * unless there are asymmetries in the topology. If there are asymmetries,
1291 * group having more cpu_capacity will pickup more load compared to the
1292 * group having less cpu_capacity.
1293 */
init_sched_groups_capacity(int cpu,struct sched_domain * sd)1294 static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
1295 {
1296 struct sched_group *sg = sd->groups;
1297 struct cpumask *mask = sched_domains_tmpmask2;
1298
1299 WARN_ON(!sg);
1300
1301 do {
1302 int cpu, cores = 0, max_cpu = -1;
1303
1304 sg->group_weight = cpumask_weight(sched_group_span(sg));
1305
1306 cpumask_copy(mask, sched_group_span(sg));
1307 for_each_cpu(cpu, mask) {
1308 cores++;
1309 #ifdef CONFIG_SCHED_SMT
1310 cpumask_andnot(mask, mask, cpu_smt_mask(cpu));
1311 #endif
1312 }
1313 sg->cores = cores;
1314
1315 if (!(sd->flags & SD_ASYM_PACKING))
1316 goto next;
1317
1318 for_each_cpu(cpu, sched_group_span(sg)) {
1319 if (max_cpu < 0)
1320 max_cpu = cpu;
1321 else if (sched_asym_prefer(cpu, max_cpu))
1322 max_cpu = cpu;
1323 }
1324 sg->asym_prefer_cpu = max_cpu;
1325
1326 next:
1327 sg = sg->next;
1328 } while (sg != sd->groups);
1329
1330 if (cpu != group_balance_cpu(sg))
1331 return;
1332
1333 update_group_capacity(sd, cpu);
1334 }
1335
1336 /*
1337 * Set of available CPUs grouped by their corresponding capacities
1338 * Each list entry contains a CPU mask reflecting CPUs that share the same
1339 * capacity.
1340 * The lifespan of data is unlimited.
1341 */
1342 LIST_HEAD(asym_cap_list);
1343
1344 /*
1345 * Verify whether there is any CPU capacity asymmetry in a given sched domain.
1346 * Provides sd_flags reflecting the asymmetry scope.
1347 */
1348 static inline int
asym_cpu_capacity_classify(const struct cpumask * sd_span,const struct cpumask * cpu_map)1349 asym_cpu_capacity_classify(const struct cpumask *sd_span,
1350 const struct cpumask *cpu_map)
1351 {
1352 struct asym_cap_data *entry;
1353 int count = 0, miss = 0;
1354
1355 /*
1356 * Count how many unique CPU capacities this domain spans across
1357 * (compare sched_domain CPUs mask with ones representing available
1358 * CPUs capacities). Take into account CPUs that might be offline:
1359 * skip those.
1360 */
1361 list_for_each_entry(entry, &asym_cap_list, link) {
1362 if (cpumask_intersects(sd_span, cpu_capacity_span(entry)))
1363 ++count;
1364 else if (cpumask_intersects(cpu_map, cpu_capacity_span(entry)))
1365 ++miss;
1366 }
1367
1368 WARN_ON_ONCE(!count && !list_empty(&asym_cap_list));
1369
1370 /* No asymmetry detected */
1371 if (count < 2)
1372 return 0;
1373 /* Some of the available CPU capacity values have not been detected */
1374 if (miss)
1375 return SD_ASYM_CPUCAPACITY;
1376
1377 /* Full asymmetry */
1378 return SD_ASYM_CPUCAPACITY | SD_ASYM_CPUCAPACITY_FULL;
1379
1380 }
1381
free_asym_cap_entry(struct rcu_head * head)1382 static void free_asym_cap_entry(struct rcu_head *head)
1383 {
1384 struct asym_cap_data *entry = container_of(head, struct asym_cap_data, rcu);
1385 kfree(entry);
1386 }
1387
asym_cpu_capacity_update_data(int cpu)1388 static inline void asym_cpu_capacity_update_data(int cpu)
1389 {
1390 unsigned long capacity = arch_scale_cpu_capacity(cpu);
1391 struct asym_cap_data *insert_entry = NULL;
1392 struct asym_cap_data *entry;
1393
1394 /*
1395 * Search if capacity already exits. If not, track which the entry
1396 * where we should insert to keep the list ordered descending.
1397 */
1398 list_for_each_entry(entry, &asym_cap_list, link) {
1399 if (capacity == entry->capacity)
1400 goto done;
1401 else if (!insert_entry && capacity > entry->capacity)
1402 insert_entry = list_prev_entry(entry, link);
1403 }
1404
1405 entry = kzalloc(sizeof(*entry) + cpumask_size(), GFP_KERNEL);
1406 if (WARN_ONCE(!entry, "Failed to allocate memory for asymmetry data\n"))
1407 return;
1408 entry->capacity = capacity;
1409
1410 /* If NULL then the new capacity is the smallest, add last. */
1411 if (!insert_entry)
1412 list_add_tail_rcu(&entry->link, &asym_cap_list);
1413 else
1414 list_add_rcu(&entry->link, &insert_entry->link);
1415 done:
1416 __cpumask_set_cpu(cpu, cpu_capacity_span(entry));
1417 }
1418
1419 /*
1420 * Build-up/update list of CPUs grouped by their capacities
1421 * An update requires explicit request to rebuild sched domains
1422 * with state indicating CPU topology changes.
1423 */
asym_cpu_capacity_scan(void)1424 static void asym_cpu_capacity_scan(void)
1425 {
1426 struct asym_cap_data *entry, *next;
1427 int cpu;
1428
1429 list_for_each_entry(entry, &asym_cap_list, link)
1430 cpumask_clear(cpu_capacity_span(entry));
1431
1432 for_each_cpu_and(cpu, cpu_possible_mask, housekeeping_cpumask(HK_TYPE_DOMAIN))
1433 asym_cpu_capacity_update_data(cpu);
1434
1435 list_for_each_entry_safe(entry, next, &asym_cap_list, link) {
1436 if (cpumask_empty(cpu_capacity_span(entry))) {
1437 list_del_rcu(&entry->link);
1438 call_rcu(&entry->rcu, free_asym_cap_entry);
1439 }
1440 }
1441
1442 /*
1443 * Only one capacity value has been detected i.e. this system is symmetric.
1444 * No need to keep this data around.
1445 */
1446 if (list_is_singular(&asym_cap_list)) {
1447 entry = list_first_entry(&asym_cap_list, typeof(*entry), link);
1448 list_del_rcu(&entry->link);
1449 call_rcu(&entry->rcu, free_asym_cap_entry);
1450 }
1451 }
1452
1453 /*
1454 * Initializers for schedule domains
1455 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
1456 */
1457
1458 static int default_relax_domain_level = -1;
1459 int sched_domain_level_max;
1460
setup_relax_domain_level(char * str)1461 static int __init setup_relax_domain_level(char *str)
1462 {
1463 if (kstrtoint(str, 0, &default_relax_domain_level))
1464 pr_warn("Unable to set relax_domain_level\n");
1465
1466 return 1;
1467 }
1468 __setup("relax_domain_level=", setup_relax_domain_level);
1469
set_domain_attribute(struct sched_domain * sd,struct sched_domain_attr * attr)1470 static void set_domain_attribute(struct sched_domain *sd,
1471 struct sched_domain_attr *attr)
1472 {
1473 int request;
1474
1475 if (!attr || attr->relax_domain_level < 0) {
1476 if (default_relax_domain_level < 0)
1477 return;
1478 request = default_relax_domain_level;
1479 } else
1480 request = attr->relax_domain_level;
1481
1482 if (sd->level >= request) {
1483 /* Turn off idle balance on this domain: */
1484 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1485 }
1486 }
1487
1488 static void __sdt_free(const struct cpumask *cpu_map);
1489 static int __sdt_alloc(const struct cpumask *cpu_map);
1490
__free_domain_allocs(struct s_data * d,enum s_alloc what,const struct cpumask * cpu_map)1491 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
1492 const struct cpumask *cpu_map)
1493 {
1494 switch (what) {
1495 case sa_rootdomain:
1496 if (!atomic_read(&d->rd->refcount))
1497 free_rootdomain(&d->rd->rcu);
1498 fallthrough;
1499 case sa_sd:
1500 free_percpu(d->sd);
1501 fallthrough;
1502 case sa_sd_storage:
1503 __sdt_free(cpu_map);
1504 fallthrough;
1505 case sa_none:
1506 break;
1507 }
1508 }
1509
1510 static enum s_alloc
__visit_domain_allocation_hell(struct s_data * d,const struct cpumask * cpu_map)1511 __visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map)
1512 {
1513 memset(d, 0, sizeof(*d));
1514
1515 if (__sdt_alloc(cpu_map))
1516 return sa_sd_storage;
1517 d->sd = alloc_percpu(struct sched_domain *);
1518 if (!d->sd)
1519 return sa_sd_storage;
1520 d->rd = alloc_rootdomain();
1521 if (!d->rd)
1522 return sa_sd;
1523
1524 return sa_rootdomain;
1525 }
1526
1527 /*
1528 * NULL the sd_data elements we've used to build the sched_domain and
1529 * sched_group structure so that the subsequent __free_domain_allocs()
1530 * will not free the data we're using.
1531 */
claim_allocations(int cpu,struct sched_domain * sd)1532 static void claim_allocations(int cpu, struct sched_domain *sd)
1533 {
1534 struct sd_data *sdd = sd->private;
1535
1536 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
1537 *per_cpu_ptr(sdd->sd, cpu) = NULL;
1538
1539 if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref))
1540 *per_cpu_ptr(sdd->sds, cpu) = NULL;
1541
1542 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
1543 *per_cpu_ptr(sdd->sg, cpu) = NULL;
1544
1545 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
1546 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
1547 }
1548
1549 #ifdef CONFIG_NUMA
1550 enum numa_topology_type sched_numa_topology_type;
1551
1552 static int sched_domains_numa_levels;
1553 static int sched_domains_curr_level;
1554
1555 int sched_max_numa_distance;
1556 static int *sched_domains_numa_distance;
1557 static struct cpumask ***sched_domains_numa_masks;
1558 #endif
1559
1560 /*
1561 * SD_flags allowed in topology descriptions.
1562 *
1563 * These flags are purely descriptive of the topology and do not prescribe
1564 * behaviour. Behaviour is artificial and mapped in the below sd_init()
1565 * function. For details, see include/linux/sched/sd_flags.h.
1566 *
1567 * SD_SHARE_CPUCAPACITY
1568 * SD_SHARE_LLC
1569 * SD_CLUSTER
1570 * SD_NUMA
1571 *
1572 * Odd one out, which beside describing the topology has a quirk also
1573 * prescribes the desired behaviour that goes along with it:
1574 *
1575 * SD_ASYM_PACKING - describes SMT quirks
1576 */
1577 #define TOPOLOGY_SD_FLAGS \
1578 (SD_SHARE_CPUCAPACITY | \
1579 SD_CLUSTER | \
1580 SD_SHARE_LLC | \
1581 SD_NUMA | \
1582 SD_ASYM_PACKING)
1583
1584 static struct sched_domain *
sd_init(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain * child,int cpu)1585 sd_init(struct sched_domain_topology_level *tl,
1586 const struct cpumask *cpu_map,
1587 struct sched_domain *child, int cpu)
1588 {
1589 struct sd_data *sdd = &tl->data;
1590 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
1591 int sd_id, sd_weight, sd_flags = 0;
1592 struct cpumask *sd_span;
1593
1594 #ifdef CONFIG_NUMA
1595 /*
1596 * Ugly hack to pass state to sd_numa_mask()...
1597 */
1598 sched_domains_curr_level = tl->numa_level;
1599 #endif
1600
1601 sd_weight = cpumask_weight(tl->mask(cpu));
1602
1603 if (tl->sd_flags)
1604 sd_flags = (*tl->sd_flags)();
1605 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
1606 "wrong sd_flags in topology description\n"))
1607 sd_flags &= TOPOLOGY_SD_FLAGS;
1608
1609 *sd = (struct sched_domain){
1610 .min_interval = sd_weight,
1611 .max_interval = 2*sd_weight,
1612 .busy_factor = 16,
1613 .imbalance_pct = 117,
1614
1615 .cache_nice_tries = 0,
1616
1617 .flags = 1*SD_BALANCE_NEWIDLE
1618 | 1*SD_BALANCE_EXEC
1619 | 1*SD_BALANCE_FORK
1620 | 0*SD_BALANCE_WAKE
1621 | 1*SD_WAKE_AFFINE
1622 | 0*SD_SHARE_CPUCAPACITY
1623 | 0*SD_SHARE_LLC
1624 | 0*SD_SERIALIZE
1625 | 1*SD_PREFER_SIBLING
1626 | 0*SD_NUMA
1627 | sd_flags
1628 ,
1629
1630 .last_balance = jiffies,
1631 .balance_interval = sd_weight,
1632 .max_newidle_lb_cost = 0,
1633 .last_decay_max_lb_cost = jiffies,
1634 .child = child,
1635 .name = tl->name,
1636 };
1637
1638 sd_span = sched_domain_span(sd);
1639 cpumask_and(sd_span, cpu_map, tl->mask(cpu));
1640 sd_id = cpumask_first(sd_span);
1641
1642 sd->flags |= asym_cpu_capacity_classify(sd_span, cpu_map);
1643
1644 WARN_ONCE((sd->flags & (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY)) ==
1645 (SD_SHARE_CPUCAPACITY | SD_ASYM_CPUCAPACITY),
1646 "CPU capacity asymmetry not supported on SMT\n");
1647
1648 /*
1649 * Convert topological properties into behaviour.
1650 */
1651 /* Don't attempt to spread across CPUs of different capacities. */
1652 if ((sd->flags & SD_ASYM_CPUCAPACITY) && sd->child)
1653 sd->child->flags &= ~SD_PREFER_SIBLING;
1654
1655 if (sd->flags & SD_SHARE_CPUCAPACITY) {
1656 sd->imbalance_pct = 110;
1657
1658 } else if (sd->flags & SD_SHARE_LLC) {
1659 sd->imbalance_pct = 117;
1660 sd->cache_nice_tries = 1;
1661
1662 #ifdef CONFIG_NUMA
1663 } else if (sd->flags & SD_NUMA) {
1664 sd->cache_nice_tries = 2;
1665
1666 sd->flags &= ~SD_PREFER_SIBLING;
1667 sd->flags |= SD_SERIALIZE;
1668 if (sched_domains_numa_distance[tl->numa_level] > node_reclaim_distance) {
1669 sd->flags &= ~(SD_BALANCE_EXEC |
1670 SD_BALANCE_FORK |
1671 SD_WAKE_AFFINE);
1672 }
1673
1674 #endif
1675 } else {
1676 sd->cache_nice_tries = 1;
1677 }
1678
1679 /*
1680 * For all levels sharing cache; connect a sched_domain_shared
1681 * instance.
1682 */
1683 if (sd->flags & SD_SHARE_LLC) {
1684 sd->shared = *per_cpu_ptr(sdd->sds, sd_id);
1685 atomic_inc(&sd->shared->ref);
1686 atomic_set(&sd->shared->nr_busy_cpus, sd_weight);
1687 }
1688
1689 sd->private = sdd;
1690
1691 return sd;
1692 }
1693
1694 /*
1695 * Topology list, bottom-up.
1696 */
1697 static struct sched_domain_topology_level default_topology[] = {
1698 #ifdef CONFIG_SCHED_SMT
1699 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
1700 #endif
1701
1702 #ifdef CONFIG_SCHED_CLUSTER
1703 { cpu_clustergroup_mask, cpu_cluster_flags, SD_INIT_NAME(CLS) },
1704 #endif
1705
1706 #ifdef CONFIG_SCHED_MC
1707 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
1708 #endif
1709 { cpu_cpu_mask, SD_INIT_NAME(PKG) },
1710 { NULL, },
1711 };
1712
1713 static struct sched_domain_topology_level *sched_domain_topology =
1714 default_topology;
1715 static struct sched_domain_topology_level *sched_domain_topology_saved;
1716
1717 #define for_each_sd_topology(tl) \
1718 for (tl = sched_domain_topology; tl->mask; tl++)
1719
set_sched_topology(struct sched_domain_topology_level * tl)1720 void __init set_sched_topology(struct sched_domain_topology_level *tl)
1721 {
1722 if (WARN_ON_ONCE(sched_smp_initialized))
1723 return;
1724
1725 sched_domain_topology = tl;
1726 sched_domain_topology_saved = NULL;
1727 }
1728
1729 #ifdef CONFIG_NUMA
1730
sd_numa_mask(int cpu)1731 static const struct cpumask *sd_numa_mask(int cpu)
1732 {
1733 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
1734 }
1735
sched_numa_warn(const char * str)1736 static void sched_numa_warn(const char *str)
1737 {
1738 static int done = false;
1739 int i,j;
1740
1741 if (done)
1742 return;
1743
1744 done = true;
1745
1746 printk(KERN_WARNING "ERROR: %s\n\n", str);
1747
1748 for (i = 0; i < nr_node_ids; i++) {
1749 printk(KERN_WARNING " ");
1750 for (j = 0; j < nr_node_ids; j++) {
1751 if (!node_state(i, N_CPU) || !node_state(j, N_CPU))
1752 printk(KERN_CONT "(%02d) ", node_distance(i,j));
1753 else
1754 printk(KERN_CONT " %02d ", node_distance(i,j));
1755 }
1756 printk(KERN_CONT "\n");
1757 }
1758 printk(KERN_WARNING "\n");
1759 }
1760
find_numa_distance(int distance)1761 bool find_numa_distance(int distance)
1762 {
1763 bool found = false;
1764 int i, *distances;
1765
1766 if (distance == node_distance(0, 0))
1767 return true;
1768
1769 rcu_read_lock();
1770 distances = rcu_dereference(sched_domains_numa_distance);
1771 if (!distances)
1772 goto unlock;
1773 for (i = 0; i < sched_domains_numa_levels; i++) {
1774 if (distances[i] == distance) {
1775 found = true;
1776 break;
1777 }
1778 }
1779 unlock:
1780 rcu_read_unlock();
1781
1782 return found;
1783 }
1784
1785 #define for_each_cpu_node_but(n, nbut) \
1786 for_each_node_state(n, N_CPU) \
1787 if (n == nbut) \
1788 continue; \
1789 else
1790
1791 /*
1792 * A system can have three types of NUMA topology:
1793 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
1794 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
1795 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
1796 *
1797 * The difference between a glueless mesh topology and a backplane
1798 * topology lies in whether communication between not directly
1799 * connected nodes goes through intermediary nodes (where programs
1800 * could run), or through backplane controllers. This affects
1801 * placement of programs.
1802 *
1803 * The type of topology can be discerned with the following tests:
1804 * - If the maximum distance between any nodes is 1 hop, the system
1805 * is directly connected.
1806 * - If for two nodes A and B, located N > 1 hops away from each other,
1807 * there is an intermediary node C, which is < N hops away from both
1808 * nodes A and B, the system is a glueless mesh.
1809 */
init_numa_topology_type(int offline_node)1810 static void init_numa_topology_type(int offline_node)
1811 {
1812 int a, b, c, n;
1813
1814 n = sched_max_numa_distance;
1815
1816 if (sched_domains_numa_levels <= 2) {
1817 sched_numa_topology_type = NUMA_DIRECT;
1818 return;
1819 }
1820
1821 for_each_cpu_node_but(a, offline_node) {
1822 for_each_cpu_node_but(b, offline_node) {
1823 /* Find two nodes furthest removed from each other. */
1824 if (node_distance(a, b) < n)
1825 continue;
1826
1827 /* Is there an intermediary node between a and b? */
1828 for_each_cpu_node_but(c, offline_node) {
1829 if (node_distance(a, c) < n &&
1830 node_distance(b, c) < n) {
1831 sched_numa_topology_type =
1832 NUMA_GLUELESS_MESH;
1833 return;
1834 }
1835 }
1836
1837 sched_numa_topology_type = NUMA_BACKPLANE;
1838 return;
1839 }
1840 }
1841
1842 pr_err("Failed to find a NUMA topology type, defaulting to DIRECT\n");
1843 sched_numa_topology_type = NUMA_DIRECT;
1844 }
1845
1846
1847 #define NR_DISTANCE_VALUES (1 << DISTANCE_BITS)
1848
sched_init_numa(int offline_node)1849 void sched_init_numa(int offline_node)
1850 {
1851 struct sched_domain_topology_level *tl;
1852 unsigned long *distance_map;
1853 int nr_levels = 0;
1854 int i, j;
1855 int *distances;
1856 struct cpumask ***masks;
1857
1858 /*
1859 * O(nr_nodes^2) de-duplicating selection sort -- in order to find the
1860 * unique distances in the node_distance() table.
1861 */
1862 distance_map = bitmap_alloc(NR_DISTANCE_VALUES, GFP_KERNEL);
1863 if (!distance_map)
1864 return;
1865
1866 bitmap_zero(distance_map, NR_DISTANCE_VALUES);
1867 for_each_cpu_node_but(i, offline_node) {
1868 for_each_cpu_node_but(j, offline_node) {
1869 int distance = node_distance(i, j);
1870
1871 if (distance < LOCAL_DISTANCE || distance >= NR_DISTANCE_VALUES) {
1872 sched_numa_warn("Invalid distance value range");
1873 bitmap_free(distance_map);
1874 return;
1875 }
1876
1877 bitmap_set(distance_map, distance, 1);
1878 }
1879 }
1880 /*
1881 * We can now figure out how many unique distance values there are and
1882 * allocate memory accordingly.
1883 */
1884 nr_levels = bitmap_weight(distance_map, NR_DISTANCE_VALUES);
1885
1886 distances = kcalloc(nr_levels, sizeof(int), GFP_KERNEL);
1887 if (!distances) {
1888 bitmap_free(distance_map);
1889 return;
1890 }
1891
1892 for (i = 0, j = 0; i < nr_levels; i++, j++) {
1893 j = find_next_bit(distance_map, NR_DISTANCE_VALUES, j);
1894 distances[i] = j;
1895 }
1896 rcu_assign_pointer(sched_domains_numa_distance, distances);
1897
1898 bitmap_free(distance_map);
1899
1900 /*
1901 * 'nr_levels' contains the number of unique distances
1902 *
1903 * The sched_domains_numa_distance[] array includes the actual distance
1904 * numbers.
1905 */
1906
1907 /*
1908 * Here, we should temporarily reset sched_domains_numa_levels to 0.
1909 * If it fails to allocate memory for array sched_domains_numa_masks[][],
1910 * the array will contain less then 'nr_levels' members. This could be
1911 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
1912 * in other functions.
1913 *
1914 * We reset it to 'nr_levels' at the end of this function.
1915 */
1916 sched_domains_numa_levels = 0;
1917
1918 masks = kzalloc(sizeof(void *) * nr_levels, GFP_KERNEL);
1919 if (!masks)
1920 return;
1921
1922 /*
1923 * Now for each level, construct a mask per node which contains all
1924 * CPUs of nodes that are that many hops away from us.
1925 */
1926 for (i = 0; i < nr_levels; i++) {
1927 masks[i] = kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
1928 if (!masks[i])
1929 return;
1930
1931 for_each_cpu_node_but(j, offline_node) {
1932 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
1933 int k;
1934
1935 if (!mask)
1936 return;
1937
1938 masks[i][j] = mask;
1939
1940 for_each_cpu_node_but(k, offline_node) {
1941 if (sched_debug() && (node_distance(j, k) != node_distance(k, j)))
1942 sched_numa_warn("Node-distance not symmetric");
1943
1944 if (node_distance(j, k) > sched_domains_numa_distance[i])
1945 continue;
1946
1947 cpumask_or(mask, mask, cpumask_of_node(k));
1948 }
1949 }
1950 }
1951 rcu_assign_pointer(sched_domains_numa_masks, masks);
1952
1953 /* Compute default topology size */
1954 for (i = 0; sched_domain_topology[i].mask; i++);
1955
1956 tl = kzalloc((i + nr_levels + 1) *
1957 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
1958 if (!tl)
1959 return;
1960
1961 /*
1962 * Copy the default topology bits..
1963 */
1964 for (i = 0; sched_domain_topology[i].mask; i++)
1965 tl[i] = sched_domain_topology[i];
1966
1967 /*
1968 * Add the NUMA identity distance, aka single NODE.
1969 */
1970 tl[i++] = (struct sched_domain_topology_level){
1971 .mask = sd_numa_mask,
1972 .numa_level = 0,
1973 SD_INIT_NAME(NODE)
1974 };
1975
1976 /*
1977 * .. and append 'j' levels of NUMA goodness.
1978 */
1979 for (j = 1; j < nr_levels; i++, j++) {
1980 tl[i] = (struct sched_domain_topology_level){
1981 .mask = sd_numa_mask,
1982 .sd_flags = cpu_numa_flags,
1983 .flags = SDTL_OVERLAP,
1984 .numa_level = j,
1985 SD_INIT_NAME(NUMA)
1986 };
1987 }
1988
1989 sched_domain_topology_saved = sched_domain_topology;
1990 sched_domain_topology = tl;
1991
1992 sched_domains_numa_levels = nr_levels;
1993 WRITE_ONCE(sched_max_numa_distance, sched_domains_numa_distance[nr_levels - 1]);
1994
1995 init_numa_topology_type(offline_node);
1996 }
1997
1998
sched_reset_numa(void)1999 static void sched_reset_numa(void)
2000 {
2001 int nr_levels, *distances;
2002 struct cpumask ***masks;
2003
2004 nr_levels = sched_domains_numa_levels;
2005 sched_domains_numa_levels = 0;
2006 sched_max_numa_distance = 0;
2007 sched_numa_topology_type = NUMA_DIRECT;
2008 distances = sched_domains_numa_distance;
2009 rcu_assign_pointer(sched_domains_numa_distance, NULL);
2010 masks = sched_domains_numa_masks;
2011 rcu_assign_pointer(sched_domains_numa_masks, NULL);
2012 if (distances || masks) {
2013 int i, j;
2014
2015 synchronize_rcu();
2016 kfree(distances);
2017 for (i = 0; i < nr_levels && masks; i++) {
2018 if (!masks[i])
2019 continue;
2020 for_each_node(j)
2021 kfree(masks[i][j]);
2022 kfree(masks[i]);
2023 }
2024 kfree(masks);
2025 }
2026 if (sched_domain_topology_saved) {
2027 kfree(sched_domain_topology);
2028 sched_domain_topology = sched_domain_topology_saved;
2029 sched_domain_topology_saved = NULL;
2030 }
2031 }
2032
2033 /*
2034 * Call with hotplug lock held
2035 */
sched_update_numa(int cpu,bool online)2036 void sched_update_numa(int cpu, bool online)
2037 {
2038 int node;
2039
2040 node = cpu_to_node(cpu);
2041 /*
2042 * Scheduler NUMA topology is updated when the first CPU of a
2043 * node is onlined or the last CPU of a node is offlined.
2044 */
2045 if (cpumask_weight(cpumask_of_node(node)) != 1)
2046 return;
2047
2048 sched_reset_numa();
2049 sched_init_numa(online ? NUMA_NO_NODE : node);
2050 }
2051
sched_domains_numa_masks_set(unsigned int cpu)2052 void sched_domains_numa_masks_set(unsigned int cpu)
2053 {
2054 int node = cpu_to_node(cpu);
2055 int i, j;
2056
2057 for (i = 0; i < sched_domains_numa_levels; i++) {
2058 for (j = 0; j < nr_node_ids; j++) {
2059 if (!node_state(j, N_CPU))
2060 continue;
2061
2062 /* Set ourselves in the remote node's masks */
2063 if (node_distance(j, node) <= sched_domains_numa_distance[i])
2064 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
2065 }
2066 }
2067 }
2068
sched_domains_numa_masks_clear(unsigned int cpu)2069 void sched_domains_numa_masks_clear(unsigned int cpu)
2070 {
2071 int i, j;
2072
2073 for (i = 0; i < sched_domains_numa_levels; i++) {
2074 for (j = 0; j < nr_node_ids; j++) {
2075 if (sched_domains_numa_masks[i][j])
2076 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
2077 }
2078 }
2079 }
2080
2081 /*
2082 * sched_numa_find_closest() - given the NUMA topology, find the cpu
2083 * closest to @cpu from @cpumask.
2084 * cpumask: cpumask to find a cpu from
2085 * cpu: cpu to be close to
2086 *
2087 * returns: cpu, or nr_cpu_ids when nothing found.
2088 */
sched_numa_find_closest(const struct cpumask * cpus,int cpu)2089 int sched_numa_find_closest(const struct cpumask *cpus, int cpu)
2090 {
2091 int i, j = cpu_to_node(cpu), found = nr_cpu_ids;
2092 struct cpumask ***masks;
2093
2094 rcu_read_lock();
2095 masks = rcu_dereference(sched_domains_numa_masks);
2096 if (!masks)
2097 goto unlock;
2098 for (i = 0; i < sched_domains_numa_levels; i++) {
2099 if (!masks[i][j])
2100 break;
2101 cpu = cpumask_any_and(cpus, masks[i][j]);
2102 if (cpu < nr_cpu_ids) {
2103 found = cpu;
2104 break;
2105 }
2106 }
2107 unlock:
2108 rcu_read_unlock();
2109
2110 return found;
2111 }
2112
2113 struct __cmp_key {
2114 const struct cpumask *cpus;
2115 struct cpumask ***masks;
2116 int node;
2117 int cpu;
2118 int w;
2119 };
2120
hop_cmp(const void * a,const void * b)2121 static int hop_cmp(const void *a, const void *b)
2122 {
2123 struct cpumask **prev_hop, **cur_hop = *(struct cpumask ***)b;
2124 struct __cmp_key *k = (struct __cmp_key *)a;
2125
2126 if (cpumask_weight_and(k->cpus, cur_hop[k->node]) <= k->cpu)
2127 return 1;
2128
2129 if (b == k->masks) {
2130 k->w = 0;
2131 return 0;
2132 }
2133
2134 prev_hop = *((struct cpumask ***)b - 1);
2135 k->w = cpumask_weight_and(k->cpus, prev_hop[k->node]);
2136 if (k->w <= k->cpu)
2137 return 0;
2138
2139 return -1;
2140 }
2141
2142 /**
2143 * sched_numa_find_nth_cpu() - given the NUMA topology, find the Nth closest CPU
2144 * from @cpus to @cpu, taking into account distance
2145 * from a given @node.
2146 * @cpus: cpumask to find a cpu from
2147 * @cpu: CPU to start searching
2148 * @node: NUMA node to order CPUs by distance
2149 *
2150 * Return: cpu, or nr_cpu_ids when nothing found.
2151 */
sched_numa_find_nth_cpu(const struct cpumask * cpus,int cpu,int node)2152 int sched_numa_find_nth_cpu(const struct cpumask *cpus, int cpu, int node)
2153 {
2154 struct __cmp_key k = { .cpus = cpus, .cpu = cpu };
2155 struct cpumask ***hop_masks;
2156 int hop, ret = nr_cpu_ids;
2157
2158 if (node == NUMA_NO_NODE)
2159 return cpumask_nth_and(cpu, cpus, cpu_online_mask);
2160
2161 rcu_read_lock();
2162
2163 /* CPU-less node entries are uninitialized in sched_domains_numa_masks */
2164 node = numa_nearest_node(node, N_CPU);
2165 k.node = node;
2166
2167 k.masks = rcu_dereference(sched_domains_numa_masks);
2168 if (!k.masks)
2169 goto unlock;
2170
2171 hop_masks = bsearch(&k, k.masks, sched_domains_numa_levels, sizeof(k.masks[0]), hop_cmp);
2172 hop = hop_masks - k.masks;
2173
2174 ret = hop ?
2175 cpumask_nth_and_andnot(cpu - k.w, cpus, k.masks[hop][node], k.masks[hop-1][node]) :
2176 cpumask_nth_and(cpu, cpus, k.masks[0][node]);
2177 unlock:
2178 rcu_read_unlock();
2179 return ret;
2180 }
2181 EXPORT_SYMBOL_GPL(sched_numa_find_nth_cpu);
2182
2183 /**
2184 * sched_numa_hop_mask() - Get the cpumask of CPUs at most @hops hops away from
2185 * @node
2186 * @node: The node to count hops from.
2187 * @hops: Include CPUs up to that many hops away. 0 means local node.
2188 *
2189 * Return: On success, a pointer to a cpumask of CPUs at most @hops away from
2190 * @node, an error value otherwise.
2191 *
2192 * Requires rcu_lock to be held. Returned cpumask is only valid within that
2193 * read-side section, copy it if required beyond that.
2194 *
2195 * Note that not all hops are equal in distance; see sched_init_numa() for how
2196 * distances and masks are handled.
2197 * Also note that this is a reflection of sched_domains_numa_masks, which may change
2198 * during the lifetime of the system (offline nodes are taken out of the masks).
2199 */
sched_numa_hop_mask(unsigned int node,unsigned int hops)2200 const struct cpumask *sched_numa_hop_mask(unsigned int node, unsigned int hops)
2201 {
2202 struct cpumask ***masks;
2203
2204 if (node >= nr_node_ids || hops >= sched_domains_numa_levels)
2205 return ERR_PTR(-EINVAL);
2206
2207 masks = rcu_dereference(sched_domains_numa_masks);
2208 if (!masks)
2209 return ERR_PTR(-EBUSY);
2210
2211 return masks[hops][node];
2212 }
2213 EXPORT_SYMBOL_GPL(sched_numa_hop_mask);
2214
2215 #endif /* CONFIG_NUMA */
2216
__sdt_alloc(const struct cpumask * cpu_map)2217 static int __sdt_alloc(const struct cpumask *cpu_map)
2218 {
2219 struct sched_domain_topology_level *tl;
2220 int j;
2221
2222 for_each_sd_topology(tl) {
2223 struct sd_data *sdd = &tl->data;
2224
2225 sdd->sd = alloc_percpu(struct sched_domain *);
2226 if (!sdd->sd)
2227 return -ENOMEM;
2228
2229 sdd->sds = alloc_percpu(struct sched_domain_shared *);
2230 if (!sdd->sds)
2231 return -ENOMEM;
2232
2233 sdd->sg = alloc_percpu(struct sched_group *);
2234 if (!sdd->sg)
2235 return -ENOMEM;
2236
2237 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
2238 if (!sdd->sgc)
2239 return -ENOMEM;
2240
2241 for_each_cpu(j, cpu_map) {
2242 struct sched_domain *sd;
2243 struct sched_domain_shared *sds;
2244 struct sched_group *sg;
2245 struct sched_group_capacity *sgc;
2246
2247 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
2248 GFP_KERNEL, cpu_to_node(j));
2249 if (!sd)
2250 return -ENOMEM;
2251
2252 *per_cpu_ptr(sdd->sd, j) = sd;
2253
2254 sds = kzalloc_node(sizeof(struct sched_domain_shared),
2255 GFP_KERNEL, cpu_to_node(j));
2256 if (!sds)
2257 return -ENOMEM;
2258
2259 *per_cpu_ptr(sdd->sds, j) = sds;
2260
2261 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
2262 GFP_KERNEL, cpu_to_node(j));
2263 if (!sg)
2264 return -ENOMEM;
2265
2266 sg->next = sg;
2267
2268 *per_cpu_ptr(sdd->sg, j) = sg;
2269
2270 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
2271 GFP_KERNEL, cpu_to_node(j));
2272 if (!sgc)
2273 return -ENOMEM;
2274
2275 sgc->id = j;
2276
2277 *per_cpu_ptr(sdd->sgc, j) = sgc;
2278 }
2279 }
2280
2281 return 0;
2282 }
2283
__sdt_free(const struct cpumask * cpu_map)2284 static void __sdt_free(const struct cpumask *cpu_map)
2285 {
2286 struct sched_domain_topology_level *tl;
2287 int j;
2288
2289 for_each_sd_topology(tl) {
2290 struct sd_data *sdd = &tl->data;
2291
2292 for_each_cpu(j, cpu_map) {
2293 struct sched_domain *sd;
2294
2295 if (sdd->sd) {
2296 sd = *per_cpu_ptr(sdd->sd, j);
2297 if (sd && (sd->flags & SD_OVERLAP))
2298 free_sched_groups(sd->groups, 0);
2299 kfree(*per_cpu_ptr(sdd->sd, j));
2300 }
2301
2302 if (sdd->sds)
2303 kfree(*per_cpu_ptr(sdd->sds, j));
2304 if (sdd->sg)
2305 kfree(*per_cpu_ptr(sdd->sg, j));
2306 if (sdd->sgc)
2307 kfree(*per_cpu_ptr(sdd->sgc, j));
2308 }
2309 free_percpu(sdd->sd);
2310 sdd->sd = NULL;
2311 free_percpu(sdd->sds);
2312 sdd->sds = NULL;
2313 free_percpu(sdd->sg);
2314 sdd->sg = NULL;
2315 free_percpu(sdd->sgc);
2316 sdd->sgc = NULL;
2317 }
2318 }
2319
build_sched_domain(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,struct sched_domain_attr * attr,struct sched_domain * child,int cpu)2320 static struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
2321 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
2322 struct sched_domain *child, int cpu)
2323 {
2324 struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu);
2325
2326 if (child) {
2327 sd->level = child->level + 1;
2328 sched_domain_level_max = max(sched_domain_level_max, sd->level);
2329 child->parent = sd;
2330
2331 if (!cpumask_subset(sched_domain_span(child),
2332 sched_domain_span(sd))) {
2333 pr_err("BUG: arch topology borken\n");
2334 pr_err(" the %s domain not a subset of the %s domain\n",
2335 child->name, sd->name);
2336 /* Fixup, ensure @sd has at least @child CPUs. */
2337 cpumask_or(sched_domain_span(sd),
2338 sched_domain_span(sd),
2339 sched_domain_span(child));
2340 }
2341
2342 }
2343 set_domain_attribute(sd, attr);
2344
2345 return sd;
2346 }
2347
2348 /*
2349 * Ensure topology masks are sane, i.e. there are no conflicts (overlaps) for
2350 * any two given CPUs at this (non-NUMA) topology level.
2351 */
topology_span_sane(struct sched_domain_topology_level * tl,const struct cpumask * cpu_map,int cpu)2352 static bool topology_span_sane(struct sched_domain_topology_level *tl,
2353 const struct cpumask *cpu_map, int cpu)
2354 {
2355 int i = cpu + 1;
2356
2357 /* NUMA levels are allowed to overlap */
2358 if (tl->flags & SDTL_OVERLAP)
2359 return true;
2360
2361 /*
2362 * Non-NUMA levels cannot partially overlap - they must be either
2363 * completely equal or completely disjoint. Otherwise we can end up
2364 * breaking the sched_group lists - i.e. a later get_group() pass
2365 * breaks the linking done for an earlier span.
2366 */
2367 for_each_cpu_from(i, cpu_map) {
2368 /*
2369 * We should 'and' all those masks with 'cpu_map' to exactly
2370 * match the topology we're about to build, but that can only
2371 * remove CPUs, which only lessens our ability to detect
2372 * overlaps
2373 */
2374 if (!cpumask_equal(tl->mask(cpu), tl->mask(i)) &&
2375 cpumask_intersects(tl->mask(cpu), tl->mask(i)))
2376 return false;
2377 }
2378
2379 return true;
2380 }
2381
2382 /*
2383 * Build sched domains for a given set of CPUs and attach the sched domains
2384 * to the individual CPUs
2385 */
2386 static int
build_sched_domains(const struct cpumask * cpu_map,struct sched_domain_attr * attr)2387 build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr)
2388 {
2389 enum s_alloc alloc_state = sa_none;
2390 struct sched_domain *sd;
2391 struct s_data d;
2392 struct rq *rq = NULL;
2393 int i, ret = -ENOMEM;
2394 bool has_asym = false;
2395 bool has_cluster = false;
2396
2397 if (WARN_ON(cpumask_empty(cpu_map)))
2398 goto error;
2399
2400 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
2401 if (alloc_state != sa_rootdomain)
2402 goto error;
2403
2404 /* Set up domains for CPUs specified by the cpu_map: */
2405 for_each_cpu(i, cpu_map) {
2406 struct sched_domain_topology_level *tl;
2407
2408 sd = NULL;
2409 for_each_sd_topology(tl) {
2410
2411 if (WARN_ON(!topology_span_sane(tl, cpu_map, i)))
2412 goto error;
2413
2414 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
2415
2416 has_asym |= sd->flags & SD_ASYM_CPUCAPACITY;
2417
2418 if (tl == sched_domain_topology)
2419 *per_cpu_ptr(d.sd, i) = sd;
2420 if (tl->flags & SDTL_OVERLAP)
2421 sd->flags |= SD_OVERLAP;
2422 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
2423 break;
2424 }
2425 }
2426
2427 /* Build the groups for the domains */
2428 for_each_cpu(i, cpu_map) {
2429 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2430 sd->span_weight = cpumask_weight(sched_domain_span(sd));
2431 if (sd->flags & SD_OVERLAP) {
2432 if (build_overlap_sched_groups(sd, i))
2433 goto error;
2434 } else {
2435 if (build_sched_groups(sd, i))
2436 goto error;
2437 }
2438 }
2439 }
2440
2441 /*
2442 * Calculate an allowed NUMA imbalance such that LLCs do not get
2443 * imbalanced.
2444 */
2445 for_each_cpu(i, cpu_map) {
2446 unsigned int imb = 0;
2447 unsigned int imb_span = 1;
2448
2449 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2450 struct sched_domain *child = sd->child;
2451
2452 if (!(sd->flags & SD_SHARE_LLC) && child &&
2453 (child->flags & SD_SHARE_LLC)) {
2454 struct sched_domain __rcu *top_p;
2455 unsigned int nr_llcs;
2456
2457 /*
2458 * For a single LLC per node, allow an
2459 * imbalance up to 12.5% of the node. This is
2460 * arbitrary cutoff based two factors -- SMT and
2461 * memory channels. For SMT-2, the intent is to
2462 * avoid premature sharing of HT resources but
2463 * SMT-4 or SMT-8 *may* benefit from a different
2464 * cutoff. For memory channels, this is a very
2465 * rough estimate of how many channels may be
2466 * active and is based on recent CPUs with
2467 * many cores.
2468 *
2469 * For multiple LLCs, allow an imbalance
2470 * until multiple tasks would share an LLC
2471 * on one node while LLCs on another node
2472 * remain idle. This assumes that there are
2473 * enough logical CPUs per LLC to avoid SMT
2474 * factors and that there is a correlation
2475 * between LLCs and memory channels.
2476 */
2477 nr_llcs = sd->span_weight / child->span_weight;
2478 if (nr_llcs == 1)
2479 imb = sd->span_weight >> 3;
2480 else
2481 imb = nr_llcs;
2482 imb = max(1U, imb);
2483 sd->imb_numa_nr = imb;
2484
2485 /* Set span based on the first NUMA domain. */
2486 top_p = sd->parent;
2487 while (top_p && !(top_p->flags & SD_NUMA)) {
2488 top_p = top_p->parent;
2489 }
2490 imb_span = top_p ? top_p->span_weight : sd->span_weight;
2491 } else {
2492 int factor = max(1U, (sd->span_weight / imb_span));
2493
2494 sd->imb_numa_nr = imb * factor;
2495 }
2496 }
2497 }
2498
2499 /* Calculate CPU capacity for physical packages and nodes */
2500 for (i = nr_cpumask_bits-1; i >= 0; i--) {
2501 if (!cpumask_test_cpu(i, cpu_map))
2502 continue;
2503
2504 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
2505 claim_allocations(i, sd);
2506 init_sched_groups_capacity(i, sd);
2507 }
2508 }
2509
2510 /* Attach the domains */
2511 rcu_read_lock();
2512 for_each_cpu(i, cpu_map) {
2513 rq = cpu_rq(i);
2514 sd = *per_cpu_ptr(d.sd, i);
2515
2516 cpu_attach_domain(sd, d.rd, i);
2517
2518 if (lowest_flag_domain(i, SD_CLUSTER))
2519 has_cluster = true;
2520 }
2521 rcu_read_unlock();
2522
2523 if (has_asym)
2524 static_branch_inc_cpuslocked(&sched_asym_cpucapacity);
2525
2526 if (has_cluster)
2527 static_branch_inc_cpuslocked(&sched_cluster_active);
2528
2529 if (rq && sched_debug_verbose)
2530 pr_info("root domain span: %*pbl\n", cpumask_pr_args(cpu_map));
2531
2532 ret = 0;
2533 error:
2534 __free_domain_allocs(&d, alloc_state, cpu_map);
2535
2536 return ret;
2537 }
2538
2539 /* Current sched domains: */
2540 static cpumask_var_t *doms_cur;
2541
2542 /* Number of sched domains in 'doms_cur': */
2543 static int ndoms_cur;
2544
2545 /* Attributes of custom domains in 'doms_cur' */
2546 static struct sched_domain_attr *dattr_cur;
2547
2548 /*
2549 * Special case: If a kmalloc() of a doms_cur partition (array of
2550 * cpumask) fails, then fallback to a single sched domain,
2551 * as determined by the single cpumask fallback_doms.
2552 */
2553 static cpumask_var_t fallback_doms;
2554
2555 /*
2556 * arch_update_cpu_topology lets virtualized architectures update the
2557 * CPU core maps. It is supposed to return 1 if the topology changed
2558 * or 0 if it stayed the same.
2559 */
arch_update_cpu_topology(void)2560 int __weak arch_update_cpu_topology(void)
2561 {
2562 return 0;
2563 }
2564
alloc_sched_domains(unsigned int ndoms)2565 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
2566 {
2567 int i;
2568 cpumask_var_t *doms;
2569
2570 doms = kmalloc_array(ndoms, sizeof(*doms), GFP_KERNEL);
2571 if (!doms)
2572 return NULL;
2573 for (i = 0; i < ndoms; i++) {
2574 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
2575 free_sched_domains(doms, i);
2576 return NULL;
2577 }
2578 }
2579 return doms;
2580 }
2581
free_sched_domains(cpumask_var_t doms[],unsigned int ndoms)2582 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
2583 {
2584 unsigned int i;
2585 for (i = 0; i < ndoms; i++)
2586 free_cpumask_var(doms[i]);
2587 kfree(doms);
2588 }
2589
2590 /*
2591 * Set up scheduler domains and groups. For now this just excludes isolated
2592 * CPUs, but could be used to exclude other special cases in the future.
2593 */
sched_init_domains(const struct cpumask * cpu_map)2594 int __init sched_init_domains(const struct cpumask *cpu_map)
2595 {
2596 int err;
2597
2598 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_KERNEL);
2599 zalloc_cpumask_var(&sched_domains_tmpmask2, GFP_KERNEL);
2600 zalloc_cpumask_var(&fallback_doms, GFP_KERNEL);
2601
2602 arch_update_cpu_topology();
2603 asym_cpu_capacity_scan();
2604 ndoms_cur = 1;
2605 doms_cur = alloc_sched_domains(ndoms_cur);
2606 if (!doms_cur)
2607 doms_cur = &fallback_doms;
2608 cpumask_and(doms_cur[0], cpu_map, housekeeping_cpumask(HK_TYPE_DOMAIN));
2609 err = build_sched_domains(doms_cur[0], NULL);
2610
2611 return err;
2612 }
2613
2614 /*
2615 * Detach sched domains from a group of CPUs specified in cpu_map
2616 * These CPUs will now be attached to the NULL domain
2617 */
detach_destroy_domains(const struct cpumask * cpu_map)2618 static void detach_destroy_domains(const struct cpumask *cpu_map)
2619 {
2620 unsigned int cpu = cpumask_any(cpu_map);
2621 int i;
2622
2623 if (rcu_access_pointer(per_cpu(sd_asym_cpucapacity, cpu)))
2624 static_branch_dec_cpuslocked(&sched_asym_cpucapacity);
2625
2626 if (static_branch_unlikely(&sched_cluster_active))
2627 static_branch_dec_cpuslocked(&sched_cluster_active);
2628
2629 rcu_read_lock();
2630 for_each_cpu(i, cpu_map)
2631 cpu_attach_domain(NULL, &def_root_domain, i);
2632 rcu_read_unlock();
2633 }
2634
2635 /* handle null as "default" */
dattrs_equal(struct sched_domain_attr * cur,int idx_cur,struct sched_domain_attr * new,int idx_new)2636 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
2637 struct sched_domain_attr *new, int idx_new)
2638 {
2639 struct sched_domain_attr tmp;
2640
2641 /* Fast path: */
2642 if (!new && !cur)
2643 return 1;
2644
2645 tmp = SD_ATTR_INIT;
2646
2647 return !memcmp(cur ? (cur + idx_cur) : &tmp,
2648 new ? (new + idx_new) : &tmp,
2649 sizeof(struct sched_domain_attr));
2650 }
2651
2652 /*
2653 * Partition sched domains as specified by the 'ndoms_new'
2654 * cpumasks in the array doms_new[] of cpumasks. This compares
2655 * doms_new[] to the current sched domain partitioning, doms_cur[].
2656 * It destroys each deleted domain and builds each new domain.
2657 *
2658 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
2659 * The masks don't intersect (don't overlap.) We should setup one
2660 * sched domain for each mask. CPUs not in any of the cpumasks will
2661 * not be load balanced. If the same cpumask appears both in the
2662 * current 'doms_cur' domains and in the new 'doms_new', we can leave
2663 * it as it is.
2664 *
2665 * The passed in 'doms_new' should be allocated using
2666 * alloc_sched_domains. This routine takes ownership of it and will
2667 * free_sched_domains it when done with it. If the caller failed the
2668 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
2669 * and partition_sched_domains() will fallback to the single partition
2670 * 'fallback_doms', it also forces the domains to be rebuilt.
2671 *
2672 * If doms_new == NULL it will be replaced with cpu_online_mask.
2673 * ndoms_new == 0 is a special case for destroying existing domains,
2674 * and it will not create the default domain.
2675 *
2676 * Call with hotplug lock and sched_domains_mutex held
2677 */
partition_sched_domains_locked(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2678 static void partition_sched_domains_locked(int ndoms_new, cpumask_var_t doms_new[],
2679 struct sched_domain_attr *dattr_new)
2680 {
2681 bool __maybe_unused has_eas = false;
2682 int i, j, n;
2683 int new_topology;
2684
2685 lockdep_assert_held(&sched_domains_mutex);
2686
2687 /* Let the architecture update CPU core mappings: */
2688 new_topology = arch_update_cpu_topology();
2689 /* Trigger rebuilding CPU capacity asymmetry data */
2690 if (new_topology)
2691 asym_cpu_capacity_scan();
2692
2693 if (!doms_new) {
2694 WARN_ON_ONCE(dattr_new);
2695 n = 0;
2696 doms_new = alloc_sched_domains(1);
2697 if (doms_new) {
2698 n = 1;
2699 cpumask_and(doms_new[0], cpu_active_mask,
2700 housekeeping_cpumask(HK_TYPE_DOMAIN));
2701 }
2702 } else {
2703 n = ndoms_new;
2704 }
2705
2706 /* Destroy deleted domains: */
2707 for (i = 0; i < ndoms_cur; i++) {
2708 for (j = 0; j < n && !new_topology; j++) {
2709 if (cpumask_equal(doms_cur[i], doms_new[j]) &&
2710 dattrs_equal(dattr_cur, i, dattr_new, j))
2711 goto match1;
2712 }
2713 /* No match - a current sched domain not in new doms_new[] */
2714 detach_destroy_domains(doms_cur[i]);
2715 match1:
2716 ;
2717 }
2718
2719 n = ndoms_cur;
2720 if (!doms_new) {
2721 n = 0;
2722 doms_new = &fallback_doms;
2723 cpumask_and(doms_new[0], cpu_active_mask,
2724 housekeeping_cpumask(HK_TYPE_DOMAIN));
2725 }
2726
2727 /* Build new domains: */
2728 for (i = 0; i < ndoms_new; i++) {
2729 for (j = 0; j < n && !new_topology; j++) {
2730 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2731 dattrs_equal(dattr_new, i, dattr_cur, j))
2732 goto match2;
2733 }
2734 /* No match - add a new doms_new */
2735 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
2736 match2:
2737 ;
2738 }
2739
2740 #if defined(CONFIG_ENERGY_MODEL) && defined(CONFIG_CPU_FREQ_GOV_SCHEDUTIL)
2741 /* Build perf domains: */
2742 for (i = 0; i < ndoms_new; i++) {
2743 for (j = 0; j < n && !sched_energy_update; j++) {
2744 if (cpumask_equal(doms_new[i], doms_cur[j]) &&
2745 cpu_rq(cpumask_first(doms_cur[j]))->rd->pd) {
2746 has_eas = true;
2747 goto match3;
2748 }
2749 }
2750 /* No match - add perf domains for a new rd */
2751 has_eas |= build_perf_domains(doms_new[i]);
2752 match3:
2753 ;
2754 }
2755 sched_energy_set(has_eas);
2756 #endif
2757
2758 /* Remember the new sched domains: */
2759 if (doms_cur != &fallback_doms)
2760 free_sched_domains(doms_cur, ndoms_cur);
2761
2762 kfree(dattr_cur);
2763 doms_cur = doms_new;
2764 dattr_cur = dattr_new;
2765 ndoms_cur = ndoms_new;
2766
2767 update_sched_domain_debugfs();
2768 dl_rebuild_rd_accounting();
2769 }
2770
2771 /*
2772 * Call with hotplug lock held
2773 */
partition_sched_domains(int ndoms_new,cpumask_var_t doms_new[],struct sched_domain_attr * dattr_new)2774 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
2775 struct sched_domain_attr *dattr_new)
2776 {
2777 sched_domains_mutex_lock();
2778 partition_sched_domains_locked(ndoms_new, doms_new, dattr_new);
2779 sched_domains_mutex_unlock();
2780 }
2781