1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
4 * policies)
5 */
6
7 int sched_rr_timeslice = RR_TIMESLICE;
8 /* More than 4 hours if BW_SHIFT equals 20. */
9 static const u64 max_rt_runtime = MAX_BW;
10
11 /*
12 * period over which we measure -rt task CPU usage in us.
13 * default: 1s
14 */
15 int sysctl_sched_rt_period = 1000000;
16
17 /*
18 * part of the period that we allow rt tasks to run in us.
19 * default: 0.95s
20 */
21 int sysctl_sched_rt_runtime = 950000;
22
23 #ifdef CONFIG_SYSCTL
24 static int sysctl_sched_rr_timeslice = (MSEC_PER_SEC * RR_TIMESLICE) / HZ;
25 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
26 size_t *lenp, loff_t *ppos);
27 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
28 size_t *lenp, loff_t *ppos);
29 static const struct ctl_table sched_rt_sysctls[] = {
30 {
31 .procname = "sched_rt_period_us",
32 .data = &sysctl_sched_rt_period,
33 .maxlen = sizeof(int),
34 .mode = 0644,
35 .proc_handler = sched_rt_handler,
36 .extra1 = SYSCTL_ONE,
37 .extra2 = SYSCTL_INT_MAX,
38 },
39 {
40 .procname = "sched_rt_runtime_us",
41 .data = &sysctl_sched_rt_runtime,
42 .maxlen = sizeof(int),
43 .mode = 0644,
44 .proc_handler = sched_rt_handler,
45 .extra1 = SYSCTL_NEG_ONE,
46 .extra2 = (void *)&sysctl_sched_rt_period,
47 },
48 {
49 .procname = "sched_rr_timeslice_ms",
50 .data = &sysctl_sched_rr_timeslice,
51 .maxlen = sizeof(int),
52 .mode = 0644,
53 .proc_handler = sched_rr_handler,
54 },
55 };
56
sched_rt_sysctl_init(void)57 static int __init sched_rt_sysctl_init(void)
58 {
59 register_sysctl_init("kernel", sched_rt_sysctls);
60 return 0;
61 }
62 late_initcall(sched_rt_sysctl_init);
63 #endif
64
init_rt_rq(struct rt_rq * rt_rq)65 void init_rt_rq(struct rt_rq *rt_rq)
66 {
67 struct rt_prio_array *array;
68 int i;
69
70 array = &rt_rq->active;
71 for (i = 0; i < MAX_RT_PRIO; i++) {
72 INIT_LIST_HEAD(array->queue + i);
73 __clear_bit(i, array->bitmap);
74 }
75 /* delimiter for bitsearch: */
76 __set_bit(MAX_RT_PRIO, array->bitmap);
77
78 #if defined CONFIG_SMP
79 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
80 rt_rq->highest_prio.next = MAX_RT_PRIO-1;
81 rt_rq->overloaded = 0;
82 plist_head_init(&rt_rq->pushable_tasks);
83 #endif /* CONFIG_SMP */
84 /* We start is dequeued state, because no RT tasks are queued */
85 rt_rq->rt_queued = 0;
86
87 #ifdef CONFIG_RT_GROUP_SCHED
88 rt_rq->rt_time = 0;
89 rt_rq->rt_throttled = 0;
90 rt_rq->rt_runtime = 0;
91 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
92 #endif
93 }
94
95 #ifdef CONFIG_RT_GROUP_SCHED
96
97 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
98
sched_rt_period_timer(struct hrtimer * timer)99 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
100 {
101 struct rt_bandwidth *rt_b =
102 container_of(timer, struct rt_bandwidth, rt_period_timer);
103 int idle = 0;
104 int overrun;
105
106 raw_spin_lock(&rt_b->rt_runtime_lock);
107 for (;;) {
108 overrun = hrtimer_forward_now(timer, rt_b->rt_period);
109 if (!overrun)
110 break;
111
112 raw_spin_unlock(&rt_b->rt_runtime_lock);
113 idle = do_sched_rt_period_timer(rt_b, overrun);
114 raw_spin_lock(&rt_b->rt_runtime_lock);
115 }
116 if (idle)
117 rt_b->rt_period_active = 0;
118 raw_spin_unlock(&rt_b->rt_runtime_lock);
119
120 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
121 }
122
init_rt_bandwidth(struct rt_bandwidth * rt_b,u64 period,u64 runtime)123 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
124 {
125 rt_b->rt_period = ns_to_ktime(period);
126 rt_b->rt_runtime = runtime;
127
128 raw_spin_lock_init(&rt_b->rt_runtime_lock);
129
130 hrtimer_setup(&rt_b->rt_period_timer, sched_rt_period_timer, CLOCK_MONOTONIC,
131 HRTIMER_MODE_REL_HARD);
132 }
133
do_start_rt_bandwidth(struct rt_bandwidth * rt_b)134 static inline void do_start_rt_bandwidth(struct rt_bandwidth *rt_b)
135 {
136 raw_spin_lock(&rt_b->rt_runtime_lock);
137 if (!rt_b->rt_period_active) {
138 rt_b->rt_period_active = 1;
139 /*
140 * SCHED_DEADLINE updates the bandwidth, as a run away
141 * RT task with a DL task could hog a CPU. But DL does
142 * not reset the period. If a deadline task was running
143 * without an RT task running, it can cause RT tasks to
144 * throttle when they start up. Kick the timer right away
145 * to update the period.
146 */
147 hrtimer_forward_now(&rt_b->rt_period_timer, ns_to_ktime(0));
148 hrtimer_start_expires(&rt_b->rt_period_timer,
149 HRTIMER_MODE_ABS_PINNED_HARD);
150 }
151 raw_spin_unlock(&rt_b->rt_runtime_lock);
152 }
153
start_rt_bandwidth(struct rt_bandwidth * rt_b)154 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
155 {
156 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
157 return;
158
159 do_start_rt_bandwidth(rt_b);
160 }
161
destroy_rt_bandwidth(struct rt_bandwidth * rt_b)162 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
163 {
164 hrtimer_cancel(&rt_b->rt_period_timer);
165 }
166
167 #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
168
rt_task_of(struct sched_rt_entity * rt_se)169 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
170 {
171 WARN_ON_ONCE(!rt_entity_is_task(rt_se));
172
173 return container_of(rt_se, struct task_struct, rt);
174 }
175
rq_of_rt_rq(struct rt_rq * rt_rq)176 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
177 {
178 return rt_rq->rq;
179 }
180
rt_rq_of_se(struct sched_rt_entity * rt_se)181 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
182 {
183 return rt_se->rt_rq;
184 }
185
rq_of_rt_se(struct sched_rt_entity * rt_se)186 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
187 {
188 struct rt_rq *rt_rq = rt_se->rt_rq;
189
190 return rt_rq->rq;
191 }
192
unregister_rt_sched_group(struct task_group * tg)193 void unregister_rt_sched_group(struct task_group *tg)
194 {
195 if (tg->rt_se)
196 destroy_rt_bandwidth(&tg->rt_bandwidth);
197 }
198
free_rt_sched_group(struct task_group * tg)199 void free_rt_sched_group(struct task_group *tg)
200 {
201 int i;
202
203 for_each_possible_cpu(i) {
204 if (tg->rt_rq)
205 kfree(tg->rt_rq[i]);
206 if (tg->rt_se)
207 kfree(tg->rt_se[i]);
208 }
209
210 kfree(tg->rt_rq);
211 kfree(tg->rt_se);
212 }
213
init_tg_rt_entry(struct task_group * tg,struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int cpu,struct sched_rt_entity * parent)214 void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
215 struct sched_rt_entity *rt_se, int cpu,
216 struct sched_rt_entity *parent)
217 {
218 struct rq *rq = cpu_rq(cpu);
219
220 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
221 rt_rq->rt_nr_boosted = 0;
222 rt_rq->rq = rq;
223 rt_rq->tg = tg;
224
225 tg->rt_rq[cpu] = rt_rq;
226 tg->rt_se[cpu] = rt_se;
227
228 if (!rt_se)
229 return;
230
231 if (!parent)
232 rt_se->rt_rq = &rq->rt;
233 else
234 rt_se->rt_rq = parent->my_q;
235
236 rt_se->my_q = rt_rq;
237 rt_se->parent = parent;
238 INIT_LIST_HEAD(&rt_se->run_list);
239 }
240
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)241 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
242 {
243 struct rt_rq *rt_rq;
244 struct sched_rt_entity *rt_se;
245 int i;
246
247 tg->rt_rq = kcalloc(nr_cpu_ids, sizeof(rt_rq), GFP_KERNEL);
248 if (!tg->rt_rq)
249 goto err;
250 tg->rt_se = kcalloc(nr_cpu_ids, sizeof(rt_se), GFP_KERNEL);
251 if (!tg->rt_se)
252 goto err;
253
254 init_rt_bandwidth(&tg->rt_bandwidth, ktime_to_ns(global_rt_period()), 0);
255
256 for_each_possible_cpu(i) {
257 rt_rq = kzalloc_node(sizeof(struct rt_rq),
258 GFP_KERNEL, cpu_to_node(i));
259 if (!rt_rq)
260 goto err;
261
262 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
263 GFP_KERNEL, cpu_to_node(i));
264 if (!rt_se)
265 goto err_free_rq;
266
267 init_rt_rq(rt_rq);
268 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
269 init_tg_rt_entry(tg, rt_rq, rt_se, i, parent->rt_se[i]);
270 }
271
272 return 1;
273
274 err_free_rq:
275 kfree(rt_rq);
276 err:
277 return 0;
278 }
279
280 #else /* CONFIG_RT_GROUP_SCHED */
281
282 #define rt_entity_is_task(rt_se) (1)
283
rt_task_of(struct sched_rt_entity * rt_se)284 static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
285 {
286 return container_of(rt_se, struct task_struct, rt);
287 }
288
rq_of_rt_rq(struct rt_rq * rt_rq)289 static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
290 {
291 return container_of(rt_rq, struct rq, rt);
292 }
293
rq_of_rt_se(struct sched_rt_entity * rt_se)294 static inline struct rq *rq_of_rt_se(struct sched_rt_entity *rt_se)
295 {
296 struct task_struct *p = rt_task_of(rt_se);
297
298 return task_rq(p);
299 }
300
rt_rq_of_se(struct sched_rt_entity * rt_se)301 static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
302 {
303 struct rq *rq = rq_of_rt_se(rt_se);
304
305 return &rq->rt;
306 }
307
unregister_rt_sched_group(struct task_group * tg)308 void unregister_rt_sched_group(struct task_group *tg) { }
309
free_rt_sched_group(struct task_group * tg)310 void free_rt_sched_group(struct task_group *tg) { }
311
alloc_rt_sched_group(struct task_group * tg,struct task_group * parent)312 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
313 {
314 return 1;
315 }
316 #endif /* CONFIG_RT_GROUP_SCHED */
317
318 #ifdef CONFIG_SMP
319
need_pull_rt_task(struct rq * rq,struct task_struct * prev)320 static inline bool need_pull_rt_task(struct rq *rq, struct task_struct *prev)
321 {
322 /* Try to pull RT tasks here if we lower this rq's prio */
323 return rq->online && rq->rt.highest_prio.curr > prev->prio;
324 }
325
rt_overloaded(struct rq * rq)326 static inline int rt_overloaded(struct rq *rq)
327 {
328 return atomic_read(&rq->rd->rto_count);
329 }
330
rt_set_overload(struct rq * rq)331 static inline void rt_set_overload(struct rq *rq)
332 {
333 if (!rq->online)
334 return;
335
336 cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
337 /*
338 * Make sure the mask is visible before we set
339 * the overload count. That is checked to determine
340 * if we should look at the mask. It would be a shame
341 * if we looked at the mask, but the mask was not
342 * updated yet.
343 *
344 * Matched by the barrier in pull_rt_task().
345 */
346 smp_wmb();
347 atomic_inc(&rq->rd->rto_count);
348 }
349
rt_clear_overload(struct rq * rq)350 static inline void rt_clear_overload(struct rq *rq)
351 {
352 if (!rq->online)
353 return;
354
355 /* the order here really doesn't matter */
356 atomic_dec(&rq->rd->rto_count);
357 cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
358 }
359
has_pushable_tasks(struct rq * rq)360 static inline int has_pushable_tasks(struct rq *rq)
361 {
362 return !plist_head_empty(&rq->rt.pushable_tasks);
363 }
364
365 static DEFINE_PER_CPU(struct balance_callback, rt_push_head);
366 static DEFINE_PER_CPU(struct balance_callback, rt_pull_head);
367
368 static void push_rt_tasks(struct rq *);
369 static void pull_rt_task(struct rq *);
370
rt_queue_push_tasks(struct rq * rq)371 static inline void rt_queue_push_tasks(struct rq *rq)
372 {
373 if (!has_pushable_tasks(rq))
374 return;
375
376 queue_balance_callback(rq, &per_cpu(rt_push_head, rq->cpu), push_rt_tasks);
377 }
378
rt_queue_pull_task(struct rq * rq)379 static inline void rt_queue_pull_task(struct rq *rq)
380 {
381 queue_balance_callback(rq, &per_cpu(rt_pull_head, rq->cpu), pull_rt_task);
382 }
383
enqueue_pushable_task(struct rq * rq,struct task_struct * p)384 static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
385 {
386 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
387 plist_node_init(&p->pushable_tasks, p->prio);
388 plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
389
390 /* Update the highest prio pushable task */
391 if (p->prio < rq->rt.highest_prio.next)
392 rq->rt.highest_prio.next = p->prio;
393
394 if (!rq->rt.overloaded) {
395 rt_set_overload(rq);
396 rq->rt.overloaded = 1;
397 }
398 }
399
dequeue_pushable_task(struct rq * rq,struct task_struct * p)400 static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
401 {
402 plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
403
404 /* Update the new highest prio pushable task */
405 if (has_pushable_tasks(rq)) {
406 p = plist_first_entry(&rq->rt.pushable_tasks,
407 struct task_struct, pushable_tasks);
408 rq->rt.highest_prio.next = p->prio;
409 } else {
410 rq->rt.highest_prio.next = MAX_RT_PRIO-1;
411
412 if (rq->rt.overloaded) {
413 rt_clear_overload(rq);
414 rq->rt.overloaded = 0;
415 }
416 }
417 }
418
419 #else
420
enqueue_pushable_task(struct rq * rq,struct task_struct * p)421 static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
422 {
423 }
424
dequeue_pushable_task(struct rq * rq,struct task_struct * p)425 static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
426 {
427 }
428
rt_queue_push_tasks(struct rq * rq)429 static inline void rt_queue_push_tasks(struct rq *rq)
430 {
431 }
432 #endif /* CONFIG_SMP */
433
434 static void enqueue_top_rt_rq(struct rt_rq *rt_rq);
435 static void dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count);
436
on_rt_rq(struct sched_rt_entity * rt_se)437 static inline int on_rt_rq(struct sched_rt_entity *rt_se)
438 {
439 return rt_se->on_rq;
440 }
441
442 #ifdef CONFIG_UCLAMP_TASK
443 /*
444 * Verify the fitness of task @p to run on @cpu taking into account the uclamp
445 * settings.
446 *
447 * This check is only important for heterogeneous systems where uclamp_min value
448 * is higher than the capacity of a @cpu. For non-heterogeneous system this
449 * function will always return true.
450 *
451 * The function will return true if the capacity of the @cpu is >= the
452 * uclamp_min and false otherwise.
453 *
454 * Note that uclamp_min will be clamped to uclamp_max if uclamp_min
455 * > uclamp_max.
456 */
rt_task_fits_capacity(struct task_struct * p,int cpu)457 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
458 {
459 unsigned int min_cap;
460 unsigned int max_cap;
461 unsigned int cpu_cap;
462
463 /* Only heterogeneous systems can benefit from this check */
464 if (!sched_asym_cpucap_active())
465 return true;
466
467 min_cap = uclamp_eff_value(p, UCLAMP_MIN);
468 max_cap = uclamp_eff_value(p, UCLAMP_MAX);
469
470 cpu_cap = arch_scale_cpu_capacity(cpu);
471
472 return cpu_cap >= min(min_cap, max_cap);
473 }
474 #else
rt_task_fits_capacity(struct task_struct * p,int cpu)475 static inline bool rt_task_fits_capacity(struct task_struct *p, int cpu)
476 {
477 return true;
478 }
479 #endif
480
481 #ifdef CONFIG_RT_GROUP_SCHED
482
sched_rt_runtime(struct rt_rq * rt_rq)483 static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
484 {
485 if (!rt_rq->tg)
486 return RUNTIME_INF;
487
488 return rt_rq->rt_runtime;
489 }
490
sched_rt_period(struct rt_rq * rt_rq)491 static inline u64 sched_rt_period(struct rt_rq *rt_rq)
492 {
493 return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
494 }
495
496 typedef struct task_group *rt_rq_iter_t;
497
next_task_group(struct task_group * tg)498 static inline struct task_group *next_task_group(struct task_group *tg)
499 {
500 do {
501 tg = list_entry_rcu(tg->list.next,
502 typeof(struct task_group), list);
503 } while (&tg->list != &task_groups && task_group_is_autogroup(tg));
504
505 if (&tg->list == &task_groups)
506 tg = NULL;
507
508 return tg;
509 }
510
511 #define for_each_rt_rq(rt_rq, iter, rq) \
512 for (iter = container_of(&task_groups, typeof(*iter), list); \
513 (iter = next_task_group(iter)) && \
514 (rt_rq = iter->rt_rq[cpu_of(rq)]);)
515
516 #define for_each_sched_rt_entity(rt_se) \
517 for (; rt_se; rt_se = rt_se->parent)
518
group_rt_rq(struct sched_rt_entity * rt_se)519 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
520 {
521 return rt_se->my_q;
522 }
523
524 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
525 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags);
526
sched_rt_rq_enqueue(struct rt_rq * rt_rq)527 static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
528 {
529 struct task_struct *donor = rq_of_rt_rq(rt_rq)->donor;
530 struct rq *rq = rq_of_rt_rq(rt_rq);
531 struct sched_rt_entity *rt_se;
532
533 int cpu = cpu_of(rq);
534
535 rt_se = rt_rq->tg->rt_se[cpu];
536
537 if (rt_rq->rt_nr_running) {
538 if (!rt_se)
539 enqueue_top_rt_rq(rt_rq);
540 else if (!on_rt_rq(rt_se))
541 enqueue_rt_entity(rt_se, 0);
542
543 if (rt_rq->highest_prio.curr < donor->prio)
544 resched_curr(rq);
545 }
546 }
547
sched_rt_rq_dequeue(struct rt_rq * rt_rq)548 static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
549 {
550 struct sched_rt_entity *rt_se;
551 int cpu = cpu_of(rq_of_rt_rq(rt_rq));
552
553 rt_se = rt_rq->tg->rt_se[cpu];
554
555 if (!rt_se) {
556 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
557 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
558 cpufreq_update_util(rq_of_rt_rq(rt_rq), 0);
559 }
560 else if (on_rt_rq(rt_se))
561 dequeue_rt_entity(rt_se, 0);
562 }
563
rt_rq_throttled(struct rt_rq * rt_rq)564 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
565 {
566 return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
567 }
568
rt_se_boosted(struct sched_rt_entity * rt_se)569 static int rt_se_boosted(struct sched_rt_entity *rt_se)
570 {
571 struct rt_rq *rt_rq = group_rt_rq(rt_se);
572 struct task_struct *p;
573
574 if (rt_rq)
575 return !!rt_rq->rt_nr_boosted;
576
577 p = rt_task_of(rt_se);
578 return p->prio != p->normal_prio;
579 }
580
581 #ifdef CONFIG_SMP
sched_rt_period_mask(void)582 static inline const struct cpumask *sched_rt_period_mask(void)
583 {
584 return this_rq()->rd->span;
585 }
586 #else
sched_rt_period_mask(void)587 static inline const struct cpumask *sched_rt_period_mask(void)
588 {
589 return cpu_online_mask;
590 }
591 #endif
592
593 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)594 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
595 {
596 return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
597 }
598
sched_rt_bandwidth(struct rt_rq * rt_rq)599 static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
600 {
601 return &rt_rq->tg->rt_bandwidth;
602 }
603
sched_rt_bandwidth_account(struct rt_rq * rt_rq)604 bool sched_rt_bandwidth_account(struct rt_rq *rt_rq)
605 {
606 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
607
608 return (hrtimer_active(&rt_b->rt_period_timer) ||
609 rt_rq->rt_time < rt_b->rt_runtime);
610 }
611
612 #ifdef CONFIG_SMP
613 /*
614 * We ran out of runtime, see if we can borrow some from our neighbours.
615 */
do_balance_runtime(struct rt_rq * rt_rq)616 static void do_balance_runtime(struct rt_rq *rt_rq)
617 {
618 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
619 struct root_domain *rd = rq_of_rt_rq(rt_rq)->rd;
620 int i, weight;
621 u64 rt_period;
622
623 weight = cpumask_weight(rd->span);
624
625 raw_spin_lock(&rt_b->rt_runtime_lock);
626 rt_period = ktime_to_ns(rt_b->rt_period);
627 for_each_cpu(i, rd->span) {
628 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
629 s64 diff;
630
631 if (iter == rt_rq)
632 continue;
633
634 raw_spin_lock(&iter->rt_runtime_lock);
635 /*
636 * Either all rqs have inf runtime and there's nothing to steal
637 * or __disable_runtime() below sets a specific rq to inf to
638 * indicate its been disabled and disallow stealing.
639 */
640 if (iter->rt_runtime == RUNTIME_INF)
641 goto next;
642
643 /*
644 * From runqueues with spare time, take 1/n part of their
645 * spare time, but no more than our period.
646 */
647 diff = iter->rt_runtime - iter->rt_time;
648 if (diff > 0) {
649 diff = div_u64((u64)diff, weight);
650 if (rt_rq->rt_runtime + diff > rt_period)
651 diff = rt_period - rt_rq->rt_runtime;
652 iter->rt_runtime -= diff;
653 rt_rq->rt_runtime += diff;
654 if (rt_rq->rt_runtime == rt_period) {
655 raw_spin_unlock(&iter->rt_runtime_lock);
656 break;
657 }
658 }
659 next:
660 raw_spin_unlock(&iter->rt_runtime_lock);
661 }
662 raw_spin_unlock(&rt_b->rt_runtime_lock);
663 }
664
665 /*
666 * Ensure this RQ takes back all the runtime it lend to its neighbours.
667 */
__disable_runtime(struct rq * rq)668 static void __disable_runtime(struct rq *rq)
669 {
670 struct root_domain *rd = rq->rd;
671 rt_rq_iter_t iter;
672 struct rt_rq *rt_rq;
673
674 if (unlikely(!scheduler_running))
675 return;
676
677 for_each_rt_rq(rt_rq, iter, rq) {
678 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
679 s64 want;
680 int i;
681
682 raw_spin_lock(&rt_b->rt_runtime_lock);
683 raw_spin_lock(&rt_rq->rt_runtime_lock);
684 /*
685 * Either we're all inf and nobody needs to borrow, or we're
686 * already disabled and thus have nothing to do, or we have
687 * exactly the right amount of runtime to take out.
688 */
689 if (rt_rq->rt_runtime == RUNTIME_INF ||
690 rt_rq->rt_runtime == rt_b->rt_runtime)
691 goto balanced;
692 raw_spin_unlock(&rt_rq->rt_runtime_lock);
693
694 /*
695 * Calculate the difference between what we started out with
696 * and what we current have, that's the amount of runtime
697 * we lend and now have to reclaim.
698 */
699 want = rt_b->rt_runtime - rt_rq->rt_runtime;
700
701 /*
702 * Greedy reclaim, take back as much as we can.
703 */
704 for_each_cpu(i, rd->span) {
705 struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
706 s64 diff;
707
708 /*
709 * Can't reclaim from ourselves or disabled runqueues.
710 */
711 if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
712 continue;
713
714 raw_spin_lock(&iter->rt_runtime_lock);
715 if (want > 0) {
716 diff = min_t(s64, iter->rt_runtime, want);
717 iter->rt_runtime -= diff;
718 want -= diff;
719 } else {
720 iter->rt_runtime -= want;
721 want -= want;
722 }
723 raw_spin_unlock(&iter->rt_runtime_lock);
724
725 if (!want)
726 break;
727 }
728
729 raw_spin_lock(&rt_rq->rt_runtime_lock);
730 /*
731 * We cannot be left wanting - that would mean some runtime
732 * leaked out of the system.
733 */
734 WARN_ON_ONCE(want);
735 balanced:
736 /*
737 * Disable all the borrow logic by pretending we have inf
738 * runtime - in which case borrowing doesn't make sense.
739 */
740 rt_rq->rt_runtime = RUNTIME_INF;
741 rt_rq->rt_throttled = 0;
742 raw_spin_unlock(&rt_rq->rt_runtime_lock);
743 raw_spin_unlock(&rt_b->rt_runtime_lock);
744
745 /* Make rt_rq available for pick_next_task() */
746 sched_rt_rq_enqueue(rt_rq);
747 }
748 }
749
__enable_runtime(struct rq * rq)750 static void __enable_runtime(struct rq *rq)
751 {
752 rt_rq_iter_t iter;
753 struct rt_rq *rt_rq;
754
755 if (unlikely(!scheduler_running))
756 return;
757
758 /*
759 * Reset each runqueue's bandwidth settings
760 */
761 for_each_rt_rq(rt_rq, iter, rq) {
762 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
763
764 raw_spin_lock(&rt_b->rt_runtime_lock);
765 raw_spin_lock(&rt_rq->rt_runtime_lock);
766 rt_rq->rt_runtime = rt_b->rt_runtime;
767 rt_rq->rt_time = 0;
768 rt_rq->rt_throttled = 0;
769 raw_spin_unlock(&rt_rq->rt_runtime_lock);
770 raw_spin_unlock(&rt_b->rt_runtime_lock);
771 }
772 }
773
balance_runtime(struct rt_rq * rt_rq)774 static void balance_runtime(struct rt_rq *rt_rq)
775 {
776 if (!sched_feat(RT_RUNTIME_SHARE))
777 return;
778
779 if (rt_rq->rt_time > rt_rq->rt_runtime) {
780 raw_spin_unlock(&rt_rq->rt_runtime_lock);
781 do_balance_runtime(rt_rq);
782 raw_spin_lock(&rt_rq->rt_runtime_lock);
783 }
784 }
785 #else /* !CONFIG_SMP */
balance_runtime(struct rt_rq * rt_rq)786 static inline void balance_runtime(struct rt_rq *rt_rq) {}
787 #endif /* CONFIG_SMP */
788
do_sched_rt_period_timer(struct rt_bandwidth * rt_b,int overrun)789 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
790 {
791 int i, idle = 1, throttled = 0;
792 const struct cpumask *span;
793
794 span = sched_rt_period_mask();
795
796 /*
797 * FIXME: isolated CPUs should really leave the root task group,
798 * whether they are isolcpus or were isolated via cpusets, lest
799 * the timer run on a CPU which does not service all runqueues,
800 * potentially leaving other CPUs indefinitely throttled. If
801 * isolation is really required, the user will turn the throttle
802 * off to kill the perturbations it causes anyway. Meanwhile,
803 * this maintains functionality for boot and/or troubleshooting.
804 */
805 if (rt_b == &root_task_group.rt_bandwidth)
806 span = cpu_online_mask;
807
808 for_each_cpu(i, span) {
809 int enqueue = 0;
810 struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
811 struct rq *rq = rq_of_rt_rq(rt_rq);
812 struct rq_flags rf;
813 int skip;
814
815 /*
816 * When span == cpu_online_mask, taking each rq->lock
817 * can be time-consuming. Try to avoid it when possible.
818 */
819 raw_spin_lock(&rt_rq->rt_runtime_lock);
820 if (!sched_feat(RT_RUNTIME_SHARE) && rt_rq->rt_runtime != RUNTIME_INF)
821 rt_rq->rt_runtime = rt_b->rt_runtime;
822 skip = !rt_rq->rt_time && !rt_rq->rt_nr_running;
823 raw_spin_unlock(&rt_rq->rt_runtime_lock);
824 if (skip)
825 continue;
826
827 rq_lock(rq, &rf);
828 update_rq_clock(rq);
829
830 if (rt_rq->rt_time) {
831 u64 runtime;
832
833 raw_spin_lock(&rt_rq->rt_runtime_lock);
834 if (rt_rq->rt_throttled)
835 balance_runtime(rt_rq);
836 runtime = rt_rq->rt_runtime;
837 rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
838 if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
839 rt_rq->rt_throttled = 0;
840 enqueue = 1;
841
842 /*
843 * When we're idle and a woken (rt) task is
844 * throttled wakeup_preempt() will set
845 * skip_update and the time between the wakeup
846 * and this unthrottle will get accounted as
847 * 'runtime'.
848 */
849 if (rt_rq->rt_nr_running && rq->curr == rq->idle)
850 rq_clock_cancel_skipupdate(rq);
851 }
852 if (rt_rq->rt_time || rt_rq->rt_nr_running)
853 idle = 0;
854 raw_spin_unlock(&rt_rq->rt_runtime_lock);
855 } else if (rt_rq->rt_nr_running) {
856 idle = 0;
857 if (!rt_rq_throttled(rt_rq))
858 enqueue = 1;
859 }
860 if (rt_rq->rt_throttled)
861 throttled = 1;
862
863 if (enqueue)
864 sched_rt_rq_enqueue(rt_rq);
865 rq_unlock(rq, &rf);
866 }
867
868 if (!throttled && (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF))
869 return 1;
870
871 return idle;
872 }
873
sched_rt_runtime_exceeded(struct rt_rq * rt_rq)874 static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
875 {
876 u64 runtime = sched_rt_runtime(rt_rq);
877
878 if (rt_rq->rt_throttled)
879 return rt_rq_throttled(rt_rq);
880
881 if (runtime >= sched_rt_period(rt_rq))
882 return 0;
883
884 balance_runtime(rt_rq);
885 runtime = sched_rt_runtime(rt_rq);
886 if (runtime == RUNTIME_INF)
887 return 0;
888
889 if (rt_rq->rt_time > runtime) {
890 struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
891
892 /*
893 * Don't actually throttle groups that have no runtime assigned
894 * but accrue some time due to boosting.
895 */
896 if (likely(rt_b->rt_runtime)) {
897 rt_rq->rt_throttled = 1;
898 printk_deferred_once("sched: RT throttling activated\n");
899 } else {
900 /*
901 * In case we did anyway, make it go away,
902 * replenishment is a joke, since it will replenish us
903 * with exactly 0 ns.
904 */
905 rt_rq->rt_time = 0;
906 }
907
908 if (rt_rq_throttled(rt_rq)) {
909 sched_rt_rq_dequeue(rt_rq);
910 return 1;
911 }
912 }
913
914 return 0;
915 }
916
917 #else /* !CONFIG_RT_GROUP_SCHED */
918
919 typedef struct rt_rq *rt_rq_iter_t;
920
921 #define for_each_rt_rq(rt_rq, iter, rq) \
922 for ((void) iter, rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
923
924 #define for_each_sched_rt_entity(rt_se) \
925 for (; rt_se; rt_se = NULL)
926
group_rt_rq(struct sched_rt_entity * rt_se)927 static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
928 {
929 return NULL;
930 }
931
sched_rt_rq_enqueue(struct rt_rq * rt_rq)932 static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
933 {
934 struct rq *rq = rq_of_rt_rq(rt_rq);
935
936 if (!rt_rq->rt_nr_running)
937 return;
938
939 enqueue_top_rt_rq(rt_rq);
940 resched_curr(rq);
941 }
942
sched_rt_rq_dequeue(struct rt_rq * rt_rq)943 static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
944 {
945 dequeue_top_rt_rq(rt_rq, rt_rq->rt_nr_running);
946 }
947
rt_rq_throttled(struct rt_rq * rt_rq)948 static inline int rt_rq_throttled(struct rt_rq *rt_rq)
949 {
950 return false;
951 }
952
sched_rt_period_mask(void)953 static inline const struct cpumask *sched_rt_period_mask(void)
954 {
955 return cpu_online_mask;
956 }
957
958 static inline
sched_rt_period_rt_rq(struct rt_bandwidth * rt_b,int cpu)959 struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
960 {
961 return &cpu_rq(cpu)->rt;
962 }
963
964 #ifdef CONFIG_SMP
__enable_runtime(struct rq * rq)965 static void __enable_runtime(struct rq *rq) { }
__disable_runtime(struct rq * rq)966 static void __disable_runtime(struct rq *rq) { }
967 #endif
968
969 #endif /* CONFIG_RT_GROUP_SCHED */
970
rt_se_prio(struct sched_rt_entity * rt_se)971 static inline int rt_se_prio(struct sched_rt_entity *rt_se)
972 {
973 #ifdef CONFIG_RT_GROUP_SCHED
974 struct rt_rq *rt_rq = group_rt_rq(rt_se);
975
976 if (rt_rq)
977 return rt_rq->highest_prio.curr;
978 #endif
979
980 return rt_task_of(rt_se)->prio;
981 }
982
983 /*
984 * Update the current task's runtime statistics. Skip current tasks that
985 * are not in our scheduling class.
986 */
update_curr_rt(struct rq * rq)987 static void update_curr_rt(struct rq *rq)
988 {
989 struct task_struct *donor = rq->donor;
990 s64 delta_exec;
991
992 if (donor->sched_class != &rt_sched_class)
993 return;
994
995 delta_exec = update_curr_common(rq);
996 if (unlikely(delta_exec <= 0))
997 return;
998
999 #ifdef CONFIG_RT_GROUP_SCHED
1000 struct sched_rt_entity *rt_se = &donor->rt;
1001
1002 if (!rt_bandwidth_enabled())
1003 return;
1004
1005 for_each_sched_rt_entity(rt_se) {
1006 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1007 int exceeded;
1008
1009 if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
1010 raw_spin_lock(&rt_rq->rt_runtime_lock);
1011 rt_rq->rt_time += delta_exec;
1012 exceeded = sched_rt_runtime_exceeded(rt_rq);
1013 if (exceeded)
1014 resched_curr(rq);
1015 raw_spin_unlock(&rt_rq->rt_runtime_lock);
1016 if (exceeded)
1017 do_start_rt_bandwidth(sched_rt_bandwidth(rt_rq));
1018 }
1019 }
1020 #endif
1021 }
1022
1023 static void
dequeue_top_rt_rq(struct rt_rq * rt_rq,unsigned int count)1024 dequeue_top_rt_rq(struct rt_rq *rt_rq, unsigned int count)
1025 {
1026 struct rq *rq = rq_of_rt_rq(rt_rq);
1027
1028 BUG_ON(&rq->rt != rt_rq);
1029
1030 if (!rt_rq->rt_queued)
1031 return;
1032
1033 BUG_ON(!rq->nr_running);
1034
1035 sub_nr_running(rq, count);
1036 rt_rq->rt_queued = 0;
1037
1038 }
1039
1040 static void
enqueue_top_rt_rq(struct rt_rq * rt_rq)1041 enqueue_top_rt_rq(struct rt_rq *rt_rq)
1042 {
1043 struct rq *rq = rq_of_rt_rq(rt_rq);
1044
1045 BUG_ON(&rq->rt != rt_rq);
1046
1047 if (rt_rq->rt_queued)
1048 return;
1049
1050 if (rt_rq_throttled(rt_rq))
1051 return;
1052
1053 if (rt_rq->rt_nr_running) {
1054 add_nr_running(rq, rt_rq->rt_nr_running);
1055 rt_rq->rt_queued = 1;
1056 }
1057
1058 /* Kick cpufreq (see the comment in kernel/sched/sched.h). */
1059 cpufreq_update_util(rq, 0);
1060 }
1061
1062 #if defined CONFIG_SMP
1063
1064 static void
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1065 inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1066 {
1067 struct rq *rq = rq_of_rt_rq(rt_rq);
1068
1069 #ifdef CONFIG_RT_GROUP_SCHED
1070 /*
1071 * Change rq's cpupri only if rt_rq is the top queue.
1072 */
1073 if (&rq->rt != rt_rq)
1074 return;
1075 #endif
1076 if (rq->online && prio < prev_prio)
1077 cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
1078 }
1079
1080 static void
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1081 dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
1082 {
1083 struct rq *rq = rq_of_rt_rq(rt_rq);
1084
1085 #ifdef CONFIG_RT_GROUP_SCHED
1086 /*
1087 * Change rq's cpupri only if rt_rq is the top queue.
1088 */
1089 if (&rq->rt != rt_rq)
1090 return;
1091 #endif
1092 if (rq->online && rt_rq->highest_prio.curr != prev_prio)
1093 cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
1094 }
1095
1096 #else /* CONFIG_SMP */
1097
1098 static inline
inc_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1099 void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1100 static inline
dec_rt_prio_smp(struct rt_rq * rt_rq,int prio,int prev_prio)1101 void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
1102
1103 #endif /* CONFIG_SMP */
1104
1105 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
1106 static void
inc_rt_prio(struct rt_rq * rt_rq,int prio)1107 inc_rt_prio(struct rt_rq *rt_rq, int prio)
1108 {
1109 int prev_prio = rt_rq->highest_prio.curr;
1110
1111 if (prio < prev_prio)
1112 rt_rq->highest_prio.curr = prio;
1113
1114 inc_rt_prio_smp(rt_rq, prio, prev_prio);
1115 }
1116
1117 static void
dec_rt_prio(struct rt_rq * rt_rq,int prio)1118 dec_rt_prio(struct rt_rq *rt_rq, int prio)
1119 {
1120 int prev_prio = rt_rq->highest_prio.curr;
1121
1122 if (rt_rq->rt_nr_running) {
1123
1124 WARN_ON(prio < prev_prio);
1125
1126 /*
1127 * This may have been our highest task, and therefore
1128 * we may have some re-computation to do
1129 */
1130 if (prio == prev_prio) {
1131 struct rt_prio_array *array = &rt_rq->active;
1132
1133 rt_rq->highest_prio.curr =
1134 sched_find_first_bit(array->bitmap);
1135 }
1136
1137 } else {
1138 rt_rq->highest_prio.curr = MAX_RT_PRIO-1;
1139 }
1140
1141 dec_rt_prio_smp(rt_rq, prio, prev_prio);
1142 }
1143
1144 #else
1145
inc_rt_prio(struct rt_rq * rt_rq,int prio)1146 static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
dec_rt_prio(struct rt_rq * rt_rq,int prio)1147 static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
1148
1149 #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
1150
1151 #ifdef CONFIG_RT_GROUP_SCHED
1152
1153 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1154 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1155 {
1156 if (rt_se_boosted(rt_se))
1157 rt_rq->rt_nr_boosted++;
1158
1159 if (rt_rq->tg)
1160 start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
1161 }
1162
1163 static void
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1164 dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1165 {
1166 if (rt_se_boosted(rt_se))
1167 rt_rq->rt_nr_boosted--;
1168
1169 WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
1170 }
1171
1172 #else /* CONFIG_RT_GROUP_SCHED */
1173
1174 static void
inc_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1175 inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1176 {
1177 }
1178
1179 static inline
dec_rt_group(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1180 void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
1181
1182 #endif /* CONFIG_RT_GROUP_SCHED */
1183
1184 static inline
rt_se_nr_running(struct sched_rt_entity * rt_se)1185 unsigned int rt_se_nr_running(struct sched_rt_entity *rt_se)
1186 {
1187 struct rt_rq *group_rq = group_rt_rq(rt_se);
1188
1189 if (group_rq)
1190 return group_rq->rt_nr_running;
1191 else
1192 return 1;
1193 }
1194
1195 static inline
rt_se_rr_nr_running(struct sched_rt_entity * rt_se)1196 unsigned int rt_se_rr_nr_running(struct sched_rt_entity *rt_se)
1197 {
1198 struct rt_rq *group_rq = group_rt_rq(rt_se);
1199 struct task_struct *tsk;
1200
1201 if (group_rq)
1202 return group_rq->rr_nr_running;
1203
1204 tsk = rt_task_of(rt_se);
1205
1206 return (tsk->policy == SCHED_RR) ? 1 : 0;
1207 }
1208
1209 static inline
inc_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1210 void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1211 {
1212 int prio = rt_se_prio(rt_se);
1213
1214 WARN_ON(!rt_prio(prio));
1215 rt_rq->rt_nr_running += rt_se_nr_running(rt_se);
1216 rt_rq->rr_nr_running += rt_se_rr_nr_running(rt_se);
1217
1218 inc_rt_prio(rt_rq, prio);
1219 inc_rt_group(rt_se, rt_rq);
1220 }
1221
1222 static inline
dec_rt_tasks(struct sched_rt_entity * rt_se,struct rt_rq * rt_rq)1223 void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
1224 {
1225 WARN_ON(!rt_prio(rt_se_prio(rt_se)));
1226 WARN_ON(!rt_rq->rt_nr_running);
1227 rt_rq->rt_nr_running -= rt_se_nr_running(rt_se);
1228 rt_rq->rr_nr_running -= rt_se_rr_nr_running(rt_se);
1229
1230 dec_rt_prio(rt_rq, rt_se_prio(rt_se));
1231 dec_rt_group(rt_se, rt_rq);
1232 }
1233
1234 /*
1235 * Change rt_se->run_list location unless SAVE && !MOVE
1236 *
1237 * assumes ENQUEUE/DEQUEUE flags match
1238 */
move_entity(unsigned int flags)1239 static inline bool move_entity(unsigned int flags)
1240 {
1241 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) == DEQUEUE_SAVE)
1242 return false;
1243
1244 return true;
1245 }
1246
__delist_rt_entity(struct sched_rt_entity * rt_se,struct rt_prio_array * array)1247 static void __delist_rt_entity(struct sched_rt_entity *rt_se, struct rt_prio_array *array)
1248 {
1249 list_del_init(&rt_se->run_list);
1250
1251 if (list_empty(array->queue + rt_se_prio(rt_se)))
1252 __clear_bit(rt_se_prio(rt_se), array->bitmap);
1253
1254 rt_se->on_list = 0;
1255 }
1256
1257 static inline struct sched_statistics *
__schedstats_from_rt_se(struct sched_rt_entity * rt_se)1258 __schedstats_from_rt_se(struct sched_rt_entity *rt_se)
1259 {
1260 #ifdef CONFIG_RT_GROUP_SCHED
1261 /* schedstats is not supported for rt group. */
1262 if (!rt_entity_is_task(rt_se))
1263 return NULL;
1264 #endif
1265
1266 return &rt_task_of(rt_se)->stats;
1267 }
1268
1269 static inline void
update_stats_wait_start_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1270 update_stats_wait_start_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1271 {
1272 struct sched_statistics *stats;
1273 struct task_struct *p = NULL;
1274
1275 if (!schedstat_enabled())
1276 return;
1277
1278 if (rt_entity_is_task(rt_se))
1279 p = rt_task_of(rt_se);
1280
1281 stats = __schedstats_from_rt_se(rt_se);
1282 if (!stats)
1283 return;
1284
1285 __update_stats_wait_start(rq_of_rt_rq(rt_rq), p, stats);
1286 }
1287
1288 static inline void
update_stats_enqueue_sleeper_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1289 update_stats_enqueue_sleeper_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1290 {
1291 struct sched_statistics *stats;
1292 struct task_struct *p = NULL;
1293
1294 if (!schedstat_enabled())
1295 return;
1296
1297 if (rt_entity_is_task(rt_se))
1298 p = rt_task_of(rt_se);
1299
1300 stats = __schedstats_from_rt_se(rt_se);
1301 if (!stats)
1302 return;
1303
1304 __update_stats_enqueue_sleeper(rq_of_rt_rq(rt_rq), p, stats);
1305 }
1306
1307 static inline void
update_stats_enqueue_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int flags)1308 update_stats_enqueue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1309 int flags)
1310 {
1311 if (!schedstat_enabled())
1312 return;
1313
1314 if (flags & ENQUEUE_WAKEUP)
1315 update_stats_enqueue_sleeper_rt(rt_rq, rt_se);
1316 }
1317
1318 static inline void
update_stats_wait_end_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se)1319 update_stats_wait_end_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se)
1320 {
1321 struct sched_statistics *stats;
1322 struct task_struct *p = NULL;
1323
1324 if (!schedstat_enabled())
1325 return;
1326
1327 if (rt_entity_is_task(rt_se))
1328 p = rt_task_of(rt_se);
1329
1330 stats = __schedstats_from_rt_se(rt_se);
1331 if (!stats)
1332 return;
1333
1334 __update_stats_wait_end(rq_of_rt_rq(rt_rq), p, stats);
1335 }
1336
1337 static inline void
update_stats_dequeue_rt(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int flags)1338 update_stats_dequeue_rt(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se,
1339 int flags)
1340 {
1341 struct task_struct *p = NULL;
1342
1343 if (!schedstat_enabled())
1344 return;
1345
1346 if (rt_entity_is_task(rt_se))
1347 p = rt_task_of(rt_se);
1348
1349 if ((flags & DEQUEUE_SLEEP) && p) {
1350 unsigned int state;
1351
1352 state = READ_ONCE(p->__state);
1353 if (state & TASK_INTERRUPTIBLE)
1354 __schedstat_set(p->stats.sleep_start,
1355 rq_clock(rq_of_rt_rq(rt_rq)));
1356
1357 if (state & TASK_UNINTERRUPTIBLE)
1358 __schedstat_set(p->stats.block_start,
1359 rq_clock(rq_of_rt_rq(rt_rq)));
1360 }
1361 }
1362
__enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1363 static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1364 {
1365 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1366 struct rt_prio_array *array = &rt_rq->active;
1367 struct rt_rq *group_rq = group_rt_rq(rt_se);
1368 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1369
1370 /*
1371 * Don't enqueue the group if its throttled, or when empty.
1372 * The latter is a consequence of the former when a child group
1373 * get throttled and the current group doesn't have any other
1374 * active members.
1375 */
1376 if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running)) {
1377 if (rt_se->on_list)
1378 __delist_rt_entity(rt_se, array);
1379 return;
1380 }
1381
1382 if (move_entity(flags)) {
1383 WARN_ON_ONCE(rt_se->on_list);
1384 if (flags & ENQUEUE_HEAD)
1385 list_add(&rt_se->run_list, queue);
1386 else
1387 list_add_tail(&rt_se->run_list, queue);
1388
1389 __set_bit(rt_se_prio(rt_se), array->bitmap);
1390 rt_se->on_list = 1;
1391 }
1392 rt_se->on_rq = 1;
1393
1394 inc_rt_tasks(rt_se, rt_rq);
1395 }
1396
__dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1397 static void __dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1398 {
1399 struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
1400 struct rt_prio_array *array = &rt_rq->active;
1401
1402 if (move_entity(flags)) {
1403 WARN_ON_ONCE(!rt_se->on_list);
1404 __delist_rt_entity(rt_se, array);
1405 }
1406 rt_se->on_rq = 0;
1407
1408 dec_rt_tasks(rt_se, rt_rq);
1409 }
1410
1411 /*
1412 * Because the prio of an upper entry depends on the lower
1413 * entries, we must remove entries top - down.
1414 */
dequeue_rt_stack(struct sched_rt_entity * rt_se,unsigned int flags)1415 static void dequeue_rt_stack(struct sched_rt_entity *rt_se, unsigned int flags)
1416 {
1417 struct sched_rt_entity *back = NULL;
1418 unsigned int rt_nr_running;
1419
1420 for_each_sched_rt_entity(rt_se) {
1421 rt_se->back = back;
1422 back = rt_se;
1423 }
1424
1425 rt_nr_running = rt_rq_of_se(back)->rt_nr_running;
1426
1427 for (rt_se = back; rt_se; rt_se = rt_se->back) {
1428 if (on_rt_rq(rt_se))
1429 __dequeue_rt_entity(rt_se, flags);
1430 }
1431
1432 dequeue_top_rt_rq(rt_rq_of_se(back), rt_nr_running);
1433 }
1434
enqueue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1435 static void enqueue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1436 {
1437 struct rq *rq = rq_of_rt_se(rt_se);
1438
1439 update_stats_enqueue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1440
1441 dequeue_rt_stack(rt_se, flags);
1442 for_each_sched_rt_entity(rt_se)
1443 __enqueue_rt_entity(rt_se, flags);
1444 enqueue_top_rt_rq(&rq->rt);
1445 }
1446
dequeue_rt_entity(struct sched_rt_entity * rt_se,unsigned int flags)1447 static void dequeue_rt_entity(struct sched_rt_entity *rt_se, unsigned int flags)
1448 {
1449 struct rq *rq = rq_of_rt_se(rt_se);
1450
1451 update_stats_dequeue_rt(rt_rq_of_se(rt_se), rt_se, flags);
1452
1453 dequeue_rt_stack(rt_se, flags);
1454
1455 for_each_sched_rt_entity(rt_se) {
1456 struct rt_rq *rt_rq = group_rt_rq(rt_se);
1457
1458 if (rt_rq && rt_rq->rt_nr_running)
1459 __enqueue_rt_entity(rt_se, flags);
1460 }
1461 enqueue_top_rt_rq(&rq->rt);
1462 }
1463
1464 /*
1465 * Adding/removing a task to/from a priority array:
1466 */
1467 static void
enqueue_task_rt(struct rq * rq,struct task_struct * p,int flags)1468 enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1469 {
1470 struct sched_rt_entity *rt_se = &p->rt;
1471
1472 if (flags & ENQUEUE_WAKEUP)
1473 rt_se->timeout = 0;
1474
1475 check_schedstat_required();
1476 update_stats_wait_start_rt(rt_rq_of_se(rt_se), rt_se);
1477
1478 enqueue_rt_entity(rt_se, flags);
1479
1480 if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1481 enqueue_pushable_task(rq, p);
1482 }
1483
dequeue_task_rt(struct rq * rq,struct task_struct * p,int flags)1484 static bool dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
1485 {
1486 struct sched_rt_entity *rt_se = &p->rt;
1487
1488 update_curr_rt(rq);
1489 dequeue_rt_entity(rt_se, flags);
1490
1491 dequeue_pushable_task(rq, p);
1492
1493 return true;
1494 }
1495
1496 /*
1497 * Put task to the head or the end of the run list without the overhead of
1498 * dequeue followed by enqueue.
1499 */
1500 static void
requeue_rt_entity(struct rt_rq * rt_rq,struct sched_rt_entity * rt_se,int head)1501 requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
1502 {
1503 if (on_rt_rq(rt_se)) {
1504 struct rt_prio_array *array = &rt_rq->active;
1505 struct list_head *queue = array->queue + rt_se_prio(rt_se);
1506
1507 if (head)
1508 list_move(&rt_se->run_list, queue);
1509 else
1510 list_move_tail(&rt_se->run_list, queue);
1511 }
1512 }
1513
requeue_task_rt(struct rq * rq,struct task_struct * p,int head)1514 static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
1515 {
1516 struct sched_rt_entity *rt_se = &p->rt;
1517 struct rt_rq *rt_rq;
1518
1519 for_each_sched_rt_entity(rt_se) {
1520 rt_rq = rt_rq_of_se(rt_se);
1521 requeue_rt_entity(rt_rq, rt_se, head);
1522 }
1523 }
1524
yield_task_rt(struct rq * rq)1525 static void yield_task_rt(struct rq *rq)
1526 {
1527 requeue_task_rt(rq, rq->curr, 0);
1528 }
1529
1530 #ifdef CONFIG_SMP
1531 static int find_lowest_rq(struct task_struct *task);
1532
1533 static int
select_task_rq_rt(struct task_struct * p,int cpu,int flags)1534 select_task_rq_rt(struct task_struct *p, int cpu, int flags)
1535 {
1536 struct task_struct *curr, *donor;
1537 struct rq *rq;
1538 bool test;
1539
1540 /* For anything but wake ups, just return the task_cpu */
1541 if (!(flags & (WF_TTWU | WF_FORK)))
1542 goto out;
1543
1544 rq = cpu_rq(cpu);
1545
1546 rcu_read_lock();
1547 curr = READ_ONCE(rq->curr); /* unlocked access */
1548 donor = READ_ONCE(rq->donor);
1549
1550 /*
1551 * If the current task on @p's runqueue is an RT task, then
1552 * try to see if we can wake this RT task up on another
1553 * runqueue. Otherwise simply start this RT task
1554 * on its current runqueue.
1555 *
1556 * We want to avoid overloading runqueues. If the woken
1557 * task is a higher priority, then it will stay on this CPU
1558 * and the lower prio task should be moved to another CPU.
1559 * Even though this will probably make the lower prio task
1560 * lose its cache, we do not want to bounce a higher task
1561 * around just because it gave up its CPU, perhaps for a
1562 * lock?
1563 *
1564 * For equal prio tasks, we just let the scheduler sort it out.
1565 *
1566 * Otherwise, just let it ride on the affine RQ and the
1567 * post-schedule router will push the preempted task away
1568 *
1569 * This test is optimistic, if we get it wrong the load-balancer
1570 * will have to sort it out.
1571 *
1572 * We take into account the capacity of the CPU to ensure it fits the
1573 * requirement of the task - which is only important on heterogeneous
1574 * systems like big.LITTLE.
1575 */
1576 test = curr &&
1577 unlikely(rt_task(donor)) &&
1578 (curr->nr_cpus_allowed < 2 || donor->prio <= p->prio);
1579
1580 if (test || !rt_task_fits_capacity(p, cpu)) {
1581 int target = find_lowest_rq(p);
1582
1583 /*
1584 * Bail out if we were forcing a migration to find a better
1585 * fitting CPU but our search failed.
1586 */
1587 if (!test && target != -1 && !rt_task_fits_capacity(p, target))
1588 goto out_unlock;
1589
1590 /*
1591 * Don't bother moving it if the destination CPU is
1592 * not running a lower priority task.
1593 */
1594 if (target != -1 &&
1595 p->prio < cpu_rq(target)->rt.highest_prio.curr)
1596 cpu = target;
1597 }
1598
1599 out_unlock:
1600 rcu_read_unlock();
1601
1602 out:
1603 return cpu;
1604 }
1605
check_preempt_equal_prio(struct rq * rq,struct task_struct * p)1606 static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
1607 {
1608 if (rq->curr->nr_cpus_allowed == 1 ||
1609 !cpupri_find(&rq->rd->cpupri, rq->donor, NULL))
1610 return;
1611
1612 /*
1613 * p is migratable, so let's not schedule it and
1614 * see if it is pushed or pulled somewhere else.
1615 */
1616 if (p->nr_cpus_allowed != 1 &&
1617 cpupri_find(&rq->rd->cpupri, p, NULL))
1618 return;
1619
1620 /*
1621 * There appear to be other CPUs that can accept
1622 * the current task but none can run 'p', so lets reschedule
1623 * to try and push the current task away:
1624 */
1625 requeue_task_rt(rq, p, 1);
1626 resched_curr(rq);
1627 }
1628
balance_rt(struct rq * rq,struct task_struct * p,struct rq_flags * rf)1629 static int balance_rt(struct rq *rq, struct task_struct *p, struct rq_flags *rf)
1630 {
1631 if (!on_rt_rq(&p->rt) && need_pull_rt_task(rq, p)) {
1632 /*
1633 * This is OK, because current is on_cpu, which avoids it being
1634 * picked for load-balance and preemption/IRQs are still
1635 * disabled avoiding further scheduler activity on it and we've
1636 * not yet started the picking loop.
1637 */
1638 rq_unpin_lock(rq, rf);
1639 pull_rt_task(rq);
1640 rq_repin_lock(rq, rf);
1641 }
1642
1643 return sched_stop_runnable(rq) || sched_dl_runnable(rq) || sched_rt_runnable(rq);
1644 }
1645 #endif /* CONFIG_SMP */
1646
1647 /*
1648 * Preempt the current task with a newly woken task if needed:
1649 */
wakeup_preempt_rt(struct rq * rq,struct task_struct * p,int flags)1650 static void wakeup_preempt_rt(struct rq *rq, struct task_struct *p, int flags)
1651 {
1652 struct task_struct *donor = rq->donor;
1653
1654 if (p->prio < donor->prio) {
1655 resched_curr(rq);
1656 return;
1657 }
1658
1659 #ifdef CONFIG_SMP
1660 /*
1661 * If:
1662 *
1663 * - the newly woken task is of equal priority to the current task
1664 * - the newly woken task is non-migratable while current is migratable
1665 * - current will be preempted on the next reschedule
1666 *
1667 * we should check to see if current can readily move to a different
1668 * cpu. If so, we will reschedule to allow the push logic to try
1669 * to move current somewhere else, making room for our non-migratable
1670 * task.
1671 */
1672 if (p->prio == donor->prio && !test_tsk_need_resched(rq->curr))
1673 check_preempt_equal_prio(rq, p);
1674 #endif
1675 }
1676
set_next_task_rt(struct rq * rq,struct task_struct * p,bool first)1677 static inline void set_next_task_rt(struct rq *rq, struct task_struct *p, bool first)
1678 {
1679 struct sched_rt_entity *rt_se = &p->rt;
1680 struct rt_rq *rt_rq = &rq->rt;
1681
1682 p->se.exec_start = rq_clock_task(rq);
1683 if (on_rt_rq(&p->rt))
1684 update_stats_wait_end_rt(rt_rq, rt_se);
1685
1686 /* The running task is never eligible for pushing */
1687 dequeue_pushable_task(rq, p);
1688
1689 if (!first)
1690 return;
1691
1692 /*
1693 * If prev task was rt, put_prev_task() has already updated the
1694 * utilization. We only care of the case where we start to schedule a
1695 * rt task
1696 */
1697 if (rq->donor->sched_class != &rt_sched_class)
1698 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
1699
1700 rt_queue_push_tasks(rq);
1701 }
1702
pick_next_rt_entity(struct rt_rq * rt_rq)1703 static struct sched_rt_entity *pick_next_rt_entity(struct rt_rq *rt_rq)
1704 {
1705 struct rt_prio_array *array = &rt_rq->active;
1706 struct sched_rt_entity *next = NULL;
1707 struct list_head *queue;
1708 int idx;
1709
1710 idx = sched_find_first_bit(array->bitmap);
1711 BUG_ON(idx >= MAX_RT_PRIO);
1712
1713 queue = array->queue + idx;
1714 if (WARN_ON_ONCE(list_empty(queue)))
1715 return NULL;
1716 next = list_entry(queue->next, struct sched_rt_entity, run_list);
1717
1718 return next;
1719 }
1720
_pick_next_task_rt(struct rq * rq)1721 static struct task_struct *_pick_next_task_rt(struct rq *rq)
1722 {
1723 struct sched_rt_entity *rt_se;
1724 struct rt_rq *rt_rq = &rq->rt;
1725
1726 do {
1727 rt_se = pick_next_rt_entity(rt_rq);
1728 if (unlikely(!rt_se))
1729 return NULL;
1730 rt_rq = group_rt_rq(rt_se);
1731 } while (rt_rq);
1732
1733 return rt_task_of(rt_se);
1734 }
1735
pick_task_rt(struct rq * rq)1736 static struct task_struct *pick_task_rt(struct rq *rq)
1737 {
1738 struct task_struct *p;
1739
1740 if (!sched_rt_runnable(rq))
1741 return NULL;
1742
1743 p = _pick_next_task_rt(rq);
1744
1745 return p;
1746 }
1747
put_prev_task_rt(struct rq * rq,struct task_struct * p,struct task_struct * next)1748 static void put_prev_task_rt(struct rq *rq, struct task_struct *p, struct task_struct *next)
1749 {
1750 struct sched_rt_entity *rt_se = &p->rt;
1751 struct rt_rq *rt_rq = &rq->rt;
1752
1753 if (on_rt_rq(&p->rt))
1754 update_stats_wait_start_rt(rt_rq, rt_se);
1755
1756 update_curr_rt(rq);
1757
1758 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
1759
1760 /*
1761 * The previous task needs to be made eligible for pushing
1762 * if it is still active
1763 */
1764 if (on_rt_rq(&p->rt) && p->nr_cpus_allowed > 1)
1765 enqueue_pushable_task(rq, p);
1766 }
1767
1768 #ifdef CONFIG_SMP
1769
1770 /* Only try algorithms three times */
1771 #define RT_MAX_TRIES 3
1772
1773 /*
1774 * Return the highest pushable rq's task, which is suitable to be executed
1775 * on the CPU, NULL otherwise
1776 */
pick_highest_pushable_task(struct rq * rq,int cpu)1777 static struct task_struct *pick_highest_pushable_task(struct rq *rq, int cpu)
1778 {
1779 struct plist_head *head = &rq->rt.pushable_tasks;
1780 struct task_struct *p;
1781
1782 if (!has_pushable_tasks(rq))
1783 return NULL;
1784
1785 plist_for_each_entry(p, head, pushable_tasks) {
1786 if (task_is_pushable(rq, p, cpu))
1787 return p;
1788 }
1789
1790 return NULL;
1791 }
1792
1793 static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
1794
find_lowest_rq(struct task_struct * task)1795 static int find_lowest_rq(struct task_struct *task)
1796 {
1797 struct sched_domain *sd;
1798 struct cpumask *lowest_mask = this_cpu_cpumask_var_ptr(local_cpu_mask);
1799 int this_cpu = smp_processor_id();
1800 int cpu = task_cpu(task);
1801 int ret;
1802
1803 /* Make sure the mask is initialized first */
1804 if (unlikely(!lowest_mask))
1805 return -1;
1806
1807 if (task->nr_cpus_allowed == 1)
1808 return -1; /* No other targets possible */
1809
1810 /*
1811 * If we're on asym system ensure we consider the different capacities
1812 * of the CPUs when searching for the lowest_mask.
1813 */
1814 if (sched_asym_cpucap_active()) {
1815
1816 ret = cpupri_find_fitness(&task_rq(task)->rd->cpupri,
1817 task, lowest_mask,
1818 rt_task_fits_capacity);
1819 } else {
1820
1821 ret = cpupri_find(&task_rq(task)->rd->cpupri,
1822 task, lowest_mask);
1823 }
1824
1825 if (!ret)
1826 return -1; /* No targets found */
1827
1828 /*
1829 * At this point we have built a mask of CPUs representing the
1830 * lowest priority tasks in the system. Now we want to elect
1831 * the best one based on our affinity and topology.
1832 *
1833 * We prioritize the last CPU that the task executed on since
1834 * it is most likely cache-hot in that location.
1835 */
1836 if (cpumask_test_cpu(cpu, lowest_mask))
1837 return cpu;
1838
1839 /*
1840 * Otherwise, we consult the sched_domains span maps to figure
1841 * out which CPU is logically closest to our hot cache data.
1842 */
1843 if (!cpumask_test_cpu(this_cpu, lowest_mask))
1844 this_cpu = -1; /* Skip this_cpu opt if not among lowest */
1845
1846 rcu_read_lock();
1847 for_each_domain(cpu, sd) {
1848 if (sd->flags & SD_WAKE_AFFINE) {
1849 int best_cpu;
1850
1851 /*
1852 * "this_cpu" is cheaper to preempt than a
1853 * remote processor.
1854 */
1855 if (this_cpu != -1 &&
1856 cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1857 rcu_read_unlock();
1858 return this_cpu;
1859 }
1860
1861 best_cpu = cpumask_any_and_distribute(lowest_mask,
1862 sched_domain_span(sd));
1863 if (best_cpu < nr_cpu_ids) {
1864 rcu_read_unlock();
1865 return best_cpu;
1866 }
1867 }
1868 }
1869 rcu_read_unlock();
1870
1871 /*
1872 * And finally, if there were no matches within the domains
1873 * just give the caller *something* to work with from the compatible
1874 * locations.
1875 */
1876 if (this_cpu != -1)
1877 return this_cpu;
1878
1879 cpu = cpumask_any_distribute(lowest_mask);
1880 if (cpu < nr_cpu_ids)
1881 return cpu;
1882
1883 return -1;
1884 }
1885
1886 /* Will lock the rq it finds */
find_lock_lowest_rq(struct task_struct * task,struct rq * rq)1887 static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
1888 {
1889 struct rq *lowest_rq = NULL;
1890 int tries;
1891 int cpu;
1892
1893 for (tries = 0; tries < RT_MAX_TRIES; tries++) {
1894 cpu = find_lowest_rq(task);
1895
1896 if ((cpu == -1) || (cpu == rq->cpu))
1897 break;
1898
1899 lowest_rq = cpu_rq(cpu);
1900
1901 if (lowest_rq->rt.highest_prio.curr <= task->prio) {
1902 /*
1903 * Target rq has tasks of equal or higher priority,
1904 * retrying does not release any lock and is unlikely
1905 * to yield a different result.
1906 */
1907 lowest_rq = NULL;
1908 break;
1909 }
1910
1911 /* if the prio of this runqueue changed, try again */
1912 if (double_lock_balance(rq, lowest_rq)) {
1913 /*
1914 * We had to unlock the run queue. In
1915 * the mean time, task could have
1916 * migrated already or had its affinity changed.
1917 * Also make sure that it wasn't scheduled on its rq.
1918 * It is possible the task was scheduled, set
1919 * "migrate_disabled" and then got preempted, so we must
1920 * check the task migration disable flag here too.
1921 */
1922 if (unlikely(task_rq(task) != rq ||
1923 !cpumask_test_cpu(lowest_rq->cpu, &task->cpus_mask) ||
1924 task_on_cpu(rq, task) ||
1925 !rt_task(task) ||
1926 is_migration_disabled(task) ||
1927 !task_on_rq_queued(task))) {
1928
1929 double_unlock_balance(rq, lowest_rq);
1930 lowest_rq = NULL;
1931 break;
1932 }
1933 }
1934
1935 /* If this rq is still suitable use it. */
1936 if (lowest_rq->rt.highest_prio.curr > task->prio)
1937 break;
1938
1939 /* try again */
1940 double_unlock_balance(rq, lowest_rq);
1941 lowest_rq = NULL;
1942 }
1943
1944 return lowest_rq;
1945 }
1946
pick_next_pushable_task(struct rq * rq)1947 static struct task_struct *pick_next_pushable_task(struct rq *rq)
1948 {
1949 struct task_struct *p;
1950
1951 if (!has_pushable_tasks(rq))
1952 return NULL;
1953
1954 p = plist_first_entry(&rq->rt.pushable_tasks,
1955 struct task_struct, pushable_tasks);
1956
1957 BUG_ON(rq->cpu != task_cpu(p));
1958 BUG_ON(task_current(rq, p));
1959 BUG_ON(task_current_donor(rq, p));
1960 BUG_ON(p->nr_cpus_allowed <= 1);
1961
1962 BUG_ON(!task_on_rq_queued(p));
1963 BUG_ON(!rt_task(p));
1964
1965 return p;
1966 }
1967
1968 /*
1969 * If the current CPU has more than one RT task, see if the non
1970 * running task can migrate over to a CPU that is running a task
1971 * of lesser priority.
1972 */
push_rt_task(struct rq * rq,bool pull)1973 static int push_rt_task(struct rq *rq, bool pull)
1974 {
1975 struct task_struct *next_task;
1976 struct rq *lowest_rq;
1977 int ret = 0;
1978
1979 if (!rq->rt.overloaded)
1980 return 0;
1981
1982 next_task = pick_next_pushable_task(rq);
1983 if (!next_task)
1984 return 0;
1985
1986 retry:
1987 /*
1988 * It's possible that the next_task slipped in of
1989 * higher priority than current. If that's the case
1990 * just reschedule current.
1991 */
1992 if (unlikely(next_task->prio < rq->donor->prio)) {
1993 resched_curr(rq);
1994 return 0;
1995 }
1996
1997 if (is_migration_disabled(next_task)) {
1998 struct task_struct *push_task = NULL;
1999 int cpu;
2000
2001 if (!pull || rq->push_busy)
2002 return 0;
2003
2004 /*
2005 * Invoking find_lowest_rq() on anything but an RT task doesn't
2006 * make sense. Per the above priority check, curr has to
2007 * be of higher priority than next_task, so no need to
2008 * reschedule when bailing out.
2009 *
2010 * Note that the stoppers are masqueraded as SCHED_FIFO
2011 * (cf. sched_set_stop_task()), so we can't rely on rt_task().
2012 */
2013 if (rq->donor->sched_class != &rt_sched_class)
2014 return 0;
2015
2016 cpu = find_lowest_rq(rq->curr);
2017 if (cpu == -1 || cpu == rq->cpu)
2018 return 0;
2019
2020 /*
2021 * Given we found a CPU with lower priority than @next_task,
2022 * therefore it should be running. However we cannot migrate it
2023 * to this other CPU, instead attempt to push the current
2024 * running task on this CPU away.
2025 */
2026 push_task = get_push_task(rq);
2027 if (push_task) {
2028 preempt_disable();
2029 raw_spin_rq_unlock(rq);
2030 stop_one_cpu_nowait(rq->cpu, push_cpu_stop,
2031 push_task, &rq->push_work);
2032 preempt_enable();
2033 raw_spin_rq_lock(rq);
2034 }
2035
2036 return 0;
2037 }
2038
2039 if (WARN_ON(next_task == rq->curr))
2040 return 0;
2041
2042 /* We might release rq lock */
2043 get_task_struct(next_task);
2044
2045 /* find_lock_lowest_rq locks the rq if found */
2046 lowest_rq = find_lock_lowest_rq(next_task, rq);
2047 if (!lowest_rq) {
2048 struct task_struct *task;
2049 /*
2050 * find_lock_lowest_rq releases rq->lock
2051 * so it is possible that next_task has migrated.
2052 *
2053 * We need to make sure that the task is still on the same
2054 * run-queue and is also still the next task eligible for
2055 * pushing.
2056 */
2057 task = pick_next_pushable_task(rq);
2058 if (task == next_task) {
2059 /*
2060 * The task hasn't migrated, and is still the next
2061 * eligible task, but we failed to find a run-queue
2062 * to push it to. Do not retry in this case, since
2063 * other CPUs will pull from us when ready.
2064 */
2065 goto out;
2066 }
2067
2068 if (!task)
2069 /* No more tasks, just exit */
2070 goto out;
2071
2072 /*
2073 * Something has shifted, try again.
2074 */
2075 put_task_struct(next_task);
2076 next_task = task;
2077 goto retry;
2078 }
2079
2080 move_queued_task_locked(rq, lowest_rq, next_task);
2081 resched_curr(lowest_rq);
2082 ret = 1;
2083
2084 double_unlock_balance(rq, lowest_rq);
2085 out:
2086 put_task_struct(next_task);
2087
2088 return ret;
2089 }
2090
push_rt_tasks(struct rq * rq)2091 static void push_rt_tasks(struct rq *rq)
2092 {
2093 /* push_rt_task will return true if it moved an RT */
2094 while (push_rt_task(rq, false))
2095 ;
2096 }
2097
2098 #ifdef HAVE_RT_PUSH_IPI
2099
2100 /*
2101 * When a high priority task schedules out from a CPU and a lower priority
2102 * task is scheduled in, a check is made to see if there's any RT tasks
2103 * on other CPUs that are waiting to run because a higher priority RT task
2104 * is currently running on its CPU. In this case, the CPU with multiple RT
2105 * tasks queued on it (overloaded) needs to be notified that a CPU has opened
2106 * up that may be able to run one of its non-running queued RT tasks.
2107 *
2108 * All CPUs with overloaded RT tasks need to be notified as there is currently
2109 * no way to know which of these CPUs have the highest priority task waiting
2110 * to run. Instead of trying to take a spinlock on each of these CPUs,
2111 * which has shown to cause large latency when done on machines with many
2112 * CPUs, sending an IPI to the CPUs to have them push off the overloaded
2113 * RT tasks waiting to run.
2114 *
2115 * Just sending an IPI to each of the CPUs is also an issue, as on large
2116 * count CPU machines, this can cause an IPI storm on a CPU, especially
2117 * if its the only CPU with multiple RT tasks queued, and a large number
2118 * of CPUs scheduling a lower priority task at the same time.
2119 *
2120 * Each root domain has its own IRQ work function that can iterate over
2121 * all CPUs with RT overloaded tasks. Since all CPUs with overloaded RT
2122 * task must be checked if there's one or many CPUs that are lowering
2123 * their priority, there's a single IRQ work iterator that will try to
2124 * push off RT tasks that are waiting to run.
2125 *
2126 * When a CPU schedules a lower priority task, it will kick off the
2127 * IRQ work iterator that will jump to each CPU with overloaded RT tasks.
2128 * As it only takes the first CPU that schedules a lower priority task
2129 * to start the process, the rto_start variable is incremented and if
2130 * the atomic result is one, then that CPU will try to take the rto_lock.
2131 * This prevents high contention on the lock as the process handles all
2132 * CPUs scheduling lower priority tasks.
2133 *
2134 * All CPUs that are scheduling a lower priority task will increment the
2135 * rt_loop_next variable. This will make sure that the IRQ work iterator
2136 * checks all RT overloaded CPUs whenever a CPU schedules a new lower
2137 * priority task, even if the iterator is in the middle of a scan. Incrementing
2138 * the rt_loop_next will cause the iterator to perform another scan.
2139 *
2140 */
rto_next_cpu(struct root_domain * rd)2141 static int rto_next_cpu(struct root_domain *rd)
2142 {
2143 int next;
2144 int cpu;
2145
2146 /*
2147 * When starting the IPI RT pushing, the rto_cpu is set to -1,
2148 * rt_next_cpu() will simply return the first CPU found in
2149 * the rto_mask.
2150 *
2151 * If rto_next_cpu() is called with rto_cpu is a valid CPU, it
2152 * will return the next CPU found in the rto_mask.
2153 *
2154 * If there are no more CPUs left in the rto_mask, then a check is made
2155 * against rto_loop and rto_loop_next. rto_loop is only updated with
2156 * the rto_lock held, but any CPU may increment the rto_loop_next
2157 * without any locking.
2158 */
2159 for (;;) {
2160
2161 /* When rto_cpu is -1 this acts like cpumask_first() */
2162 cpu = cpumask_next(rd->rto_cpu, rd->rto_mask);
2163
2164 rd->rto_cpu = cpu;
2165
2166 if (cpu < nr_cpu_ids)
2167 return cpu;
2168
2169 rd->rto_cpu = -1;
2170
2171 /*
2172 * ACQUIRE ensures we see the @rto_mask changes
2173 * made prior to the @next value observed.
2174 *
2175 * Matches WMB in rt_set_overload().
2176 */
2177 next = atomic_read_acquire(&rd->rto_loop_next);
2178
2179 if (rd->rto_loop == next)
2180 break;
2181
2182 rd->rto_loop = next;
2183 }
2184
2185 return -1;
2186 }
2187
rto_start_trylock(atomic_t * v)2188 static inline bool rto_start_trylock(atomic_t *v)
2189 {
2190 return !atomic_cmpxchg_acquire(v, 0, 1);
2191 }
2192
rto_start_unlock(atomic_t * v)2193 static inline void rto_start_unlock(atomic_t *v)
2194 {
2195 atomic_set_release(v, 0);
2196 }
2197
tell_cpu_to_push(struct rq * rq)2198 static void tell_cpu_to_push(struct rq *rq)
2199 {
2200 int cpu = -1;
2201
2202 /* Keep the loop going if the IPI is currently active */
2203 atomic_inc(&rq->rd->rto_loop_next);
2204
2205 /* Only one CPU can initiate a loop at a time */
2206 if (!rto_start_trylock(&rq->rd->rto_loop_start))
2207 return;
2208
2209 raw_spin_lock(&rq->rd->rto_lock);
2210
2211 /*
2212 * The rto_cpu is updated under the lock, if it has a valid CPU
2213 * then the IPI is still running and will continue due to the
2214 * update to loop_next, and nothing needs to be done here.
2215 * Otherwise it is finishing up and an IPI needs to be sent.
2216 */
2217 if (rq->rd->rto_cpu < 0)
2218 cpu = rto_next_cpu(rq->rd);
2219
2220 raw_spin_unlock(&rq->rd->rto_lock);
2221
2222 rto_start_unlock(&rq->rd->rto_loop_start);
2223
2224 if (cpu >= 0) {
2225 /* Make sure the rd does not get freed while pushing */
2226 sched_get_rd(rq->rd);
2227 irq_work_queue_on(&rq->rd->rto_push_work, cpu);
2228 }
2229 }
2230
2231 /* Called from hardirq context */
rto_push_irq_work_func(struct irq_work * work)2232 void rto_push_irq_work_func(struct irq_work *work)
2233 {
2234 struct root_domain *rd =
2235 container_of(work, struct root_domain, rto_push_work);
2236 struct rq *rq;
2237 int cpu;
2238
2239 rq = this_rq();
2240
2241 /*
2242 * We do not need to grab the lock to check for has_pushable_tasks.
2243 * When it gets updated, a check is made if a push is possible.
2244 */
2245 if (has_pushable_tasks(rq)) {
2246 raw_spin_rq_lock(rq);
2247 while (push_rt_task(rq, true))
2248 ;
2249 raw_spin_rq_unlock(rq);
2250 }
2251
2252 raw_spin_lock(&rd->rto_lock);
2253
2254 /* Pass the IPI to the next rt overloaded queue */
2255 cpu = rto_next_cpu(rd);
2256
2257 raw_spin_unlock(&rd->rto_lock);
2258
2259 if (cpu < 0) {
2260 sched_put_rd(rd);
2261 return;
2262 }
2263
2264 /* Try the next RT overloaded CPU */
2265 irq_work_queue_on(&rd->rto_push_work, cpu);
2266 }
2267 #endif /* HAVE_RT_PUSH_IPI */
2268
pull_rt_task(struct rq * this_rq)2269 static void pull_rt_task(struct rq *this_rq)
2270 {
2271 int this_cpu = this_rq->cpu, cpu;
2272 bool resched = false;
2273 struct task_struct *p, *push_task;
2274 struct rq *src_rq;
2275 int rt_overload_count = rt_overloaded(this_rq);
2276
2277 if (likely(!rt_overload_count))
2278 return;
2279
2280 /*
2281 * Match the barrier from rt_set_overloaded; this guarantees that if we
2282 * see overloaded we must also see the rto_mask bit.
2283 */
2284 smp_rmb();
2285
2286 /* If we are the only overloaded CPU do nothing */
2287 if (rt_overload_count == 1 &&
2288 cpumask_test_cpu(this_rq->cpu, this_rq->rd->rto_mask))
2289 return;
2290
2291 #ifdef HAVE_RT_PUSH_IPI
2292 if (sched_feat(RT_PUSH_IPI)) {
2293 tell_cpu_to_push(this_rq);
2294 return;
2295 }
2296 #endif
2297
2298 for_each_cpu(cpu, this_rq->rd->rto_mask) {
2299 if (this_cpu == cpu)
2300 continue;
2301
2302 src_rq = cpu_rq(cpu);
2303
2304 /*
2305 * Don't bother taking the src_rq->lock if the next highest
2306 * task is known to be lower-priority than our current task.
2307 * This may look racy, but if this value is about to go
2308 * logically higher, the src_rq will push this task away.
2309 * And if its going logically lower, we do not care
2310 */
2311 if (src_rq->rt.highest_prio.next >=
2312 this_rq->rt.highest_prio.curr)
2313 continue;
2314
2315 /*
2316 * We can potentially drop this_rq's lock in
2317 * double_lock_balance, and another CPU could
2318 * alter this_rq
2319 */
2320 push_task = NULL;
2321 double_lock_balance(this_rq, src_rq);
2322
2323 /*
2324 * We can pull only a task, which is pushable
2325 * on its rq, and no others.
2326 */
2327 p = pick_highest_pushable_task(src_rq, this_cpu);
2328
2329 /*
2330 * Do we have an RT task that preempts
2331 * the to-be-scheduled task?
2332 */
2333 if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
2334 WARN_ON(p == src_rq->curr);
2335 WARN_ON(!task_on_rq_queued(p));
2336
2337 /*
2338 * There's a chance that p is higher in priority
2339 * than what's currently running on its CPU.
2340 * This is just that p is waking up and hasn't
2341 * had a chance to schedule. We only pull
2342 * p if it is lower in priority than the
2343 * current task on the run queue
2344 */
2345 if (p->prio < src_rq->donor->prio)
2346 goto skip;
2347
2348 if (is_migration_disabled(p)) {
2349 push_task = get_push_task(src_rq);
2350 } else {
2351 move_queued_task_locked(src_rq, this_rq, p);
2352 resched = true;
2353 }
2354 /*
2355 * We continue with the search, just in
2356 * case there's an even higher prio task
2357 * in another runqueue. (low likelihood
2358 * but possible)
2359 */
2360 }
2361 skip:
2362 double_unlock_balance(this_rq, src_rq);
2363
2364 if (push_task) {
2365 preempt_disable();
2366 raw_spin_rq_unlock(this_rq);
2367 stop_one_cpu_nowait(src_rq->cpu, push_cpu_stop,
2368 push_task, &src_rq->push_work);
2369 preempt_enable();
2370 raw_spin_rq_lock(this_rq);
2371 }
2372 }
2373
2374 if (resched)
2375 resched_curr(this_rq);
2376 }
2377
2378 /*
2379 * If we are not running and we are not going to reschedule soon, we should
2380 * try to push tasks away now
2381 */
task_woken_rt(struct rq * rq,struct task_struct * p)2382 static void task_woken_rt(struct rq *rq, struct task_struct *p)
2383 {
2384 bool need_to_push = !task_on_cpu(rq, p) &&
2385 !test_tsk_need_resched(rq->curr) &&
2386 p->nr_cpus_allowed > 1 &&
2387 (dl_task(rq->donor) || rt_task(rq->donor)) &&
2388 (rq->curr->nr_cpus_allowed < 2 ||
2389 rq->donor->prio <= p->prio);
2390
2391 if (need_to_push)
2392 push_rt_tasks(rq);
2393 }
2394
2395 /* Assumes rq->lock is held */
rq_online_rt(struct rq * rq)2396 static void rq_online_rt(struct rq *rq)
2397 {
2398 if (rq->rt.overloaded)
2399 rt_set_overload(rq);
2400
2401 __enable_runtime(rq);
2402
2403 cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
2404 }
2405
2406 /* Assumes rq->lock is held */
rq_offline_rt(struct rq * rq)2407 static void rq_offline_rt(struct rq *rq)
2408 {
2409 if (rq->rt.overloaded)
2410 rt_clear_overload(rq);
2411
2412 __disable_runtime(rq);
2413
2414 cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
2415 }
2416
2417 /*
2418 * When switch from the rt queue, we bring ourselves to a position
2419 * that we might want to pull RT tasks from other runqueues.
2420 */
switched_from_rt(struct rq * rq,struct task_struct * p)2421 static void switched_from_rt(struct rq *rq, struct task_struct *p)
2422 {
2423 /*
2424 * If there are other RT tasks then we will reschedule
2425 * and the scheduling of the other RT tasks will handle
2426 * the balancing. But if we are the last RT task
2427 * we may need to handle the pulling of RT tasks
2428 * now.
2429 */
2430 if (!task_on_rq_queued(p) || rq->rt.rt_nr_running)
2431 return;
2432
2433 rt_queue_pull_task(rq);
2434 }
2435
init_sched_rt_class(void)2436 void __init init_sched_rt_class(void)
2437 {
2438 unsigned int i;
2439
2440 for_each_possible_cpu(i) {
2441 zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
2442 GFP_KERNEL, cpu_to_node(i));
2443 }
2444 }
2445 #endif /* CONFIG_SMP */
2446
2447 /*
2448 * When switching a task to RT, we may overload the runqueue
2449 * with RT tasks. In this case we try to push them off to
2450 * other runqueues.
2451 */
switched_to_rt(struct rq * rq,struct task_struct * p)2452 static void switched_to_rt(struct rq *rq, struct task_struct *p)
2453 {
2454 /*
2455 * If we are running, update the avg_rt tracking, as the running time
2456 * will now on be accounted into the latter.
2457 */
2458 if (task_current(rq, p)) {
2459 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 0);
2460 return;
2461 }
2462
2463 /*
2464 * If we are not running we may need to preempt the current
2465 * running task. If that current running task is also an RT task
2466 * then see if we can move to another run queue.
2467 */
2468 if (task_on_rq_queued(p)) {
2469 #ifdef CONFIG_SMP
2470 if (p->nr_cpus_allowed > 1 && rq->rt.overloaded)
2471 rt_queue_push_tasks(rq);
2472 #endif /* CONFIG_SMP */
2473 if (p->prio < rq->donor->prio && cpu_online(cpu_of(rq)))
2474 resched_curr(rq);
2475 }
2476 }
2477
2478 /*
2479 * Priority of the task has changed. This may cause
2480 * us to initiate a push or pull.
2481 */
2482 static void
prio_changed_rt(struct rq * rq,struct task_struct * p,int oldprio)2483 prio_changed_rt(struct rq *rq, struct task_struct *p, int oldprio)
2484 {
2485 if (!task_on_rq_queued(p))
2486 return;
2487
2488 if (task_current_donor(rq, p)) {
2489 #ifdef CONFIG_SMP
2490 /*
2491 * If our priority decreases while running, we
2492 * may need to pull tasks to this runqueue.
2493 */
2494 if (oldprio < p->prio)
2495 rt_queue_pull_task(rq);
2496
2497 /*
2498 * If there's a higher priority task waiting to run
2499 * then reschedule.
2500 */
2501 if (p->prio > rq->rt.highest_prio.curr)
2502 resched_curr(rq);
2503 #else
2504 /* For UP simply resched on drop of prio */
2505 if (oldprio < p->prio)
2506 resched_curr(rq);
2507 #endif /* CONFIG_SMP */
2508 } else {
2509 /*
2510 * This task is not running, but if it is
2511 * greater than the current running task
2512 * then reschedule.
2513 */
2514 if (p->prio < rq->donor->prio)
2515 resched_curr(rq);
2516 }
2517 }
2518
2519 #ifdef CONFIG_POSIX_TIMERS
watchdog(struct rq * rq,struct task_struct * p)2520 static void watchdog(struct rq *rq, struct task_struct *p)
2521 {
2522 unsigned long soft, hard;
2523
2524 /* max may change after cur was read, this will be fixed next tick */
2525 soft = task_rlimit(p, RLIMIT_RTTIME);
2526 hard = task_rlimit_max(p, RLIMIT_RTTIME);
2527
2528 if (soft != RLIM_INFINITY) {
2529 unsigned long next;
2530
2531 if (p->rt.watchdog_stamp != jiffies) {
2532 p->rt.timeout++;
2533 p->rt.watchdog_stamp = jiffies;
2534 }
2535
2536 next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
2537 if (p->rt.timeout > next) {
2538 posix_cputimers_rt_watchdog(&p->posix_cputimers,
2539 p->se.sum_exec_runtime);
2540 }
2541 }
2542 }
2543 #else
watchdog(struct rq * rq,struct task_struct * p)2544 static inline void watchdog(struct rq *rq, struct task_struct *p) { }
2545 #endif
2546
2547 /*
2548 * scheduler tick hitting a task of our scheduling class.
2549 *
2550 * NOTE: This function can be called remotely by the tick offload that
2551 * goes along full dynticks. Therefore no local assumption can be made
2552 * and everything must be accessed through the @rq and @curr passed in
2553 * parameters.
2554 */
task_tick_rt(struct rq * rq,struct task_struct * p,int queued)2555 static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
2556 {
2557 struct sched_rt_entity *rt_se = &p->rt;
2558
2559 update_curr_rt(rq);
2560 update_rt_rq_load_avg(rq_clock_pelt(rq), rq, 1);
2561
2562 watchdog(rq, p);
2563
2564 /*
2565 * RR tasks need a special form of time-slice management.
2566 * FIFO tasks have no timeslices.
2567 */
2568 if (p->policy != SCHED_RR)
2569 return;
2570
2571 if (--p->rt.time_slice)
2572 return;
2573
2574 p->rt.time_slice = sched_rr_timeslice;
2575
2576 /*
2577 * Requeue to the end of queue if we (and all of our ancestors) are not
2578 * the only element on the queue
2579 */
2580 for_each_sched_rt_entity(rt_se) {
2581 if (rt_se->run_list.prev != rt_se->run_list.next) {
2582 requeue_task_rt(rq, p, 0);
2583 resched_curr(rq);
2584 return;
2585 }
2586 }
2587 }
2588
get_rr_interval_rt(struct rq * rq,struct task_struct * task)2589 static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
2590 {
2591 /*
2592 * Time slice is 0 for SCHED_FIFO tasks
2593 */
2594 if (task->policy == SCHED_RR)
2595 return sched_rr_timeslice;
2596 else
2597 return 0;
2598 }
2599
2600 #ifdef CONFIG_SCHED_CORE
task_is_throttled_rt(struct task_struct * p,int cpu)2601 static int task_is_throttled_rt(struct task_struct *p, int cpu)
2602 {
2603 struct rt_rq *rt_rq;
2604
2605 #ifdef CONFIG_RT_GROUP_SCHED
2606 rt_rq = task_group(p)->rt_rq[cpu];
2607 #else
2608 rt_rq = &cpu_rq(cpu)->rt;
2609 #endif
2610
2611 return rt_rq_throttled(rt_rq);
2612 }
2613 #endif
2614
2615 DEFINE_SCHED_CLASS(rt) = {
2616
2617 .enqueue_task = enqueue_task_rt,
2618 .dequeue_task = dequeue_task_rt,
2619 .yield_task = yield_task_rt,
2620
2621 .wakeup_preempt = wakeup_preempt_rt,
2622
2623 .pick_task = pick_task_rt,
2624 .put_prev_task = put_prev_task_rt,
2625 .set_next_task = set_next_task_rt,
2626
2627 #ifdef CONFIG_SMP
2628 .balance = balance_rt,
2629 .select_task_rq = select_task_rq_rt,
2630 .set_cpus_allowed = set_cpus_allowed_common,
2631 .rq_online = rq_online_rt,
2632 .rq_offline = rq_offline_rt,
2633 .task_woken = task_woken_rt,
2634 .switched_from = switched_from_rt,
2635 .find_lock_rq = find_lock_lowest_rq,
2636 #endif
2637
2638 .task_tick = task_tick_rt,
2639
2640 .get_rr_interval = get_rr_interval_rt,
2641
2642 .prio_changed = prio_changed_rt,
2643 .switched_to = switched_to_rt,
2644
2645 .update_curr = update_curr_rt,
2646
2647 #ifdef CONFIG_SCHED_CORE
2648 .task_is_throttled = task_is_throttled_rt,
2649 #endif
2650
2651 #ifdef CONFIG_UCLAMP_TASK
2652 .uclamp_enabled = 1,
2653 #endif
2654 };
2655
2656 #ifdef CONFIG_RT_GROUP_SCHED
2657 /*
2658 * Ensure that the real time constraints are schedulable.
2659 */
2660 static DEFINE_MUTEX(rt_constraints_mutex);
2661
tg_has_rt_tasks(struct task_group * tg)2662 static inline int tg_has_rt_tasks(struct task_group *tg)
2663 {
2664 struct task_struct *task;
2665 struct css_task_iter it;
2666 int ret = 0;
2667
2668 /*
2669 * Autogroups do not have RT tasks; see autogroup_create().
2670 */
2671 if (task_group_is_autogroup(tg))
2672 return 0;
2673
2674 css_task_iter_start(&tg->css, 0, &it);
2675 while (!ret && (task = css_task_iter_next(&it)))
2676 ret |= rt_task(task);
2677 css_task_iter_end(&it);
2678
2679 return ret;
2680 }
2681
2682 struct rt_schedulable_data {
2683 struct task_group *tg;
2684 u64 rt_period;
2685 u64 rt_runtime;
2686 };
2687
tg_rt_schedulable(struct task_group * tg,void * data)2688 static int tg_rt_schedulable(struct task_group *tg, void *data)
2689 {
2690 struct rt_schedulable_data *d = data;
2691 struct task_group *child;
2692 unsigned long total, sum = 0;
2693 u64 period, runtime;
2694
2695 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2696 runtime = tg->rt_bandwidth.rt_runtime;
2697
2698 if (tg == d->tg) {
2699 period = d->rt_period;
2700 runtime = d->rt_runtime;
2701 }
2702
2703 /*
2704 * Cannot have more runtime than the period.
2705 */
2706 if (runtime > period && runtime != RUNTIME_INF)
2707 return -EINVAL;
2708
2709 /*
2710 * Ensure we don't starve existing RT tasks if runtime turns zero.
2711 */
2712 if (rt_bandwidth_enabled() && !runtime &&
2713 tg->rt_bandwidth.rt_runtime && tg_has_rt_tasks(tg))
2714 return -EBUSY;
2715
2716 total = to_ratio(period, runtime);
2717
2718 /*
2719 * Nobody can have more than the global setting allows.
2720 */
2721 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
2722 return -EINVAL;
2723
2724 /*
2725 * The sum of our children's runtime should not exceed our own.
2726 */
2727 list_for_each_entry_rcu(child, &tg->children, siblings) {
2728 period = ktime_to_ns(child->rt_bandwidth.rt_period);
2729 runtime = child->rt_bandwidth.rt_runtime;
2730
2731 if (child == d->tg) {
2732 period = d->rt_period;
2733 runtime = d->rt_runtime;
2734 }
2735
2736 sum += to_ratio(period, runtime);
2737 }
2738
2739 if (sum > total)
2740 return -EINVAL;
2741
2742 return 0;
2743 }
2744
__rt_schedulable(struct task_group * tg,u64 period,u64 runtime)2745 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
2746 {
2747 int ret;
2748
2749 struct rt_schedulable_data data = {
2750 .tg = tg,
2751 .rt_period = period,
2752 .rt_runtime = runtime,
2753 };
2754
2755 rcu_read_lock();
2756 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
2757 rcu_read_unlock();
2758
2759 return ret;
2760 }
2761
tg_set_rt_bandwidth(struct task_group * tg,u64 rt_period,u64 rt_runtime)2762 static int tg_set_rt_bandwidth(struct task_group *tg,
2763 u64 rt_period, u64 rt_runtime)
2764 {
2765 int i, err = 0;
2766
2767 /*
2768 * Disallowing the root group RT runtime is BAD, it would disallow the
2769 * kernel creating (and or operating) RT threads.
2770 */
2771 if (tg == &root_task_group && rt_runtime == 0)
2772 return -EINVAL;
2773
2774 /* No period doesn't make any sense. */
2775 if (rt_period == 0)
2776 return -EINVAL;
2777
2778 /*
2779 * Bound quota to defend quota against overflow during bandwidth shift.
2780 */
2781 if (rt_runtime != RUNTIME_INF && rt_runtime > max_rt_runtime)
2782 return -EINVAL;
2783
2784 mutex_lock(&rt_constraints_mutex);
2785 err = __rt_schedulable(tg, rt_period, rt_runtime);
2786 if (err)
2787 goto unlock;
2788
2789 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2790 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
2791 tg->rt_bandwidth.rt_runtime = rt_runtime;
2792
2793 for_each_possible_cpu(i) {
2794 struct rt_rq *rt_rq = tg->rt_rq[i];
2795
2796 raw_spin_lock(&rt_rq->rt_runtime_lock);
2797 rt_rq->rt_runtime = rt_runtime;
2798 raw_spin_unlock(&rt_rq->rt_runtime_lock);
2799 }
2800 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
2801 unlock:
2802 mutex_unlock(&rt_constraints_mutex);
2803
2804 return err;
2805 }
2806
sched_group_set_rt_runtime(struct task_group * tg,long rt_runtime_us)2807 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
2808 {
2809 u64 rt_runtime, rt_period;
2810
2811 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
2812 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
2813 if (rt_runtime_us < 0)
2814 rt_runtime = RUNTIME_INF;
2815 else if ((u64)rt_runtime_us > U64_MAX / NSEC_PER_USEC)
2816 return -EINVAL;
2817
2818 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2819 }
2820
sched_group_rt_runtime(struct task_group * tg)2821 long sched_group_rt_runtime(struct task_group *tg)
2822 {
2823 u64 rt_runtime_us;
2824
2825 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
2826 return -1;
2827
2828 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
2829 do_div(rt_runtime_us, NSEC_PER_USEC);
2830 return rt_runtime_us;
2831 }
2832
sched_group_set_rt_period(struct task_group * tg,u64 rt_period_us)2833 int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
2834 {
2835 u64 rt_runtime, rt_period;
2836
2837 if (rt_period_us > U64_MAX / NSEC_PER_USEC)
2838 return -EINVAL;
2839
2840 rt_period = rt_period_us * NSEC_PER_USEC;
2841 rt_runtime = tg->rt_bandwidth.rt_runtime;
2842
2843 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
2844 }
2845
sched_group_rt_period(struct task_group * tg)2846 long sched_group_rt_period(struct task_group *tg)
2847 {
2848 u64 rt_period_us;
2849
2850 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
2851 do_div(rt_period_us, NSEC_PER_USEC);
2852 return rt_period_us;
2853 }
2854
2855 #ifdef CONFIG_SYSCTL
sched_rt_global_constraints(void)2856 static int sched_rt_global_constraints(void)
2857 {
2858 int ret = 0;
2859
2860 mutex_lock(&rt_constraints_mutex);
2861 ret = __rt_schedulable(NULL, 0, 0);
2862 mutex_unlock(&rt_constraints_mutex);
2863
2864 return ret;
2865 }
2866 #endif /* CONFIG_SYSCTL */
2867
sched_rt_can_attach(struct task_group * tg,struct task_struct * tsk)2868 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
2869 {
2870 /* Don't accept real-time tasks when there is no way for them to run */
2871 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
2872 return 0;
2873
2874 return 1;
2875 }
2876
2877 #else /* !CONFIG_RT_GROUP_SCHED */
2878
2879 #ifdef CONFIG_SYSCTL
sched_rt_global_constraints(void)2880 static int sched_rt_global_constraints(void)
2881 {
2882 return 0;
2883 }
2884 #endif /* CONFIG_SYSCTL */
2885 #endif /* CONFIG_RT_GROUP_SCHED */
2886
2887 #ifdef CONFIG_SYSCTL
sched_rt_global_validate(void)2888 static int sched_rt_global_validate(void)
2889 {
2890 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
2891 ((sysctl_sched_rt_runtime > sysctl_sched_rt_period) ||
2892 ((u64)sysctl_sched_rt_runtime *
2893 NSEC_PER_USEC > max_rt_runtime)))
2894 return -EINVAL;
2895
2896 return 0;
2897 }
2898
sched_rt_do_global(void)2899 static void sched_rt_do_global(void)
2900 {
2901 }
2902
sched_rt_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2903 static int sched_rt_handler(const struct ctl_table *table, int write, void *buffer,
2904 size_t *lenp, loff_t *ppos)
2905 {
2906 int old_period, old_runtime;
2907 static DEFINE_MUTEX(mutex);
2908 int ret;
2909
2910 mutex_lock(&mutex);
2911 sched_domains_mutex_lock();
2912 old_period = sysctl_sched_rt_period;
2913 old_runtime = sysctl_sched_rt_runtime;
2914
2915 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2916
2917 if (!ret && write) {
2918 ret = sched_rt_global_validate();
2919 if (ret)
2920 goto undo;
2921
2922 ret = sched_dl_global_validate();
2923 if (ret)
2924 goto undo;
2925
2926 ret = sched_rt_global_constraints();
2927 if (ret)
2928 goto undo;
2929
2930 sched_rt_do_global();
2931 sched_dl_do_global();
2932 }
2933 if (0) {
2934 undo:
2935 sysctl_sched_rt_period = old_period;
2936 sysctl_sched_rt_runtime = old_runtime;
2937 }
2938 sched_domains_mutex_unlock();
2939 mutex_unlock(&mutex);
2940
2941 return ret;
2942 }
2943
sched_rr_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2944 static int sched_rr_handler(const struct ctl_table *table, int write, void *buffer,
2945 size_t *lenp, loff_t *ppos)
2946 {
2947 int ret;
2948 static DEFINE_MUTEX(mutex);
2949
2950 mutex_lock(&mutex);
2951 ret = proc_dointvec(table, write, buffer, lenp, ppos);
2952 /*
2953 * Make sure that internally we keep jiffies.
2954 * Also, writing zero resets the time-slice to default:
2955 */
2956 if (!ret && write) {
2957 sched_rr_timeslice =
2958 sysctl_sched_rr_timeslice <= 0 ? RR_TIMESLICE :
2959 msecs_to_jiffies(sysctl_sched_rr_timeslice);
2960
2961 if (sysctl_sched_rr_timeslice <= 0)
2962 sysctl_sched_rr_timeslice = jiffies_to_msecs(RR_TIMESLICE);
2963 }
2964 mutex_unlock(&mutex);
2965
2966 return ret;
2967 }
2968 #endif /* CONFIG_SYSCTL */
2969
print_rt_stats(struct seq_file * m,int cpu)2970 void print_rt_stats(struct seq_file *m, int cpu)
2971 {
2972 rt_rq_iter_t iter;
2973 struct rt_rq *rt_rq;
2974
2975 rcu_read_lock();
2976 for_each_rt_rq(rt_rq, iter, cpu_rq(cpu))
2977 print_rt_rq(m, cpu, rt_rq);
2978 rcu_read_unlock();
2979 }
2980