1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/resource.c
4 *
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz>
7 *
8 * Arbitrary resource management.
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <linux/string.h>
31 #include <linux/vmalloc.h>
32 #include <asm/io.h>
33
34
35 struct resource ioport_resource = {
36 .name = "PCI IO",
37 .start = 0,
38 .end = IO_SPACE_LIMIT,
39 .flags = IORESOURCE_IO,
40 };
41 EXPORT_SYMBOL(ioport_resource);
42
43 struct resource iomem_resource = {
44 .name = "PCI mem",
45 .start = 0,
46 .end = -1,
47 .flags = IORESOURCE_MEM,
48 };
49 EXPORT_SYMBOL(iomem_resource);
50
51 static DEFINE_RWLOCK(resource_lock);
52
53 /*
54 * Return the next node of @p in pre-order tree traversal. If
55 * @skip_children is true, skip the descendant nodes of @p in
56 * traversal. If @p is a descendant of @subtree_root, only traverse
57 * the subtree under @subtree_root.
58 */
next_resource(struct resource * p,bool skip_children,struct resource * subtree_root)59 static struct resource *next_resource(struct resource *p, bool skip_children,
60 struct resource *subtree_root)
61 {
62 if (!skip_children && p->child)
63 return p->child;
64 while (!p->sibling && p->parent) {
65 p = p->parent;
66 if (p == subtree_root)
67 return NULL;
68 }
69 return p->sibling;
70 }
71
72 /*
73 * Traverse the resource subtree under @_root in pre-order, excluding
74 * @_root itself.
75 *
76 * NOTE: '__p' is introduced to avoid shadowing '_p' outside of loop.
77 * And it is referenced to avoid unused variable warning.
78 */
79 #define for_each_resource(_root, _p, _skip_children) \
80 for (typeof(_root) __root = (_root), __p = _p = __root->child; \
81 __p && _p; _p = next_resource(_p, _skip_children, __root))
82
83 #ifdef CONFIG_PROC_FS
84
85 enum { MAX_IORES_LEVEL = 5 };
86
r_start(struct seq_file * m,loff_t * pos)87 static void *r_start(struct seq_file *m, loff_t *pos)
88 __acquires(resource_lock)
89 {
90 struct resource *root = pde_data(file_inode(m->file));
91 struct resource *p;
92 loff_t l = *pos;
93
94 read_lock(&resource_lock);
95 for_each_resource(root, p, false) {
96 if (l-- == 0)
97 break;
98 }
99
100 return p;
101 }
102
r_next(struct seq_file * m,void * v,loff_t * pos)103 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
104 {
105 struct resource *p = v;
106
107 (*pos)++;
108
109 return (void *)next_resource(p, false, NULL);
110 }
111
r_stop(struct seq_file * m,void * v)112 static void r_stop(struct seq_file *m, void *v)
113 __releases(resource_lock)
114 {
115 read_unlock(&resource_lock);
116 }
117
r_show(struct seq_file * m,void * v)118 static int r_show(struct seq_file *m, void *v)
119 {
120 struct resource *root = pde_data(file_inode(m->file));
121 struct resource *r = v, *p;
122 unsigned long long start, end;
123 int width = root->end < 0x10000 ? 4 : 8;
124 int depth;
125
126 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
127 if (p->parent == root)
128 break;
129
130 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
131 start = r->start;
132 end = r->end;
133 } else {
134 start = end = 0;
135 }
136
137 seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
138 depth * 2, "",
139 width, start,
140 width, end,
141 r->name ? r->name : "<BAD>");
142 return 0;
143 }
144
145 static const struct seq_operations resource_op = {
146 .start = r_start,
147 .next = r_next,
148 .stop = r_stop,
149 .show = r_show,
150 };
151
ioresources_init(void)152 static int __init ioresources_init(void)
153 {
154 proc_create_seq_data("ioports", 0, NULL, &resource_op,
155 &ioport_resource);
156 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
157 return 0;
158 }
159 __initcall(ioresources_init);
160
161 #endif /* CONFIG_PROC_FS */
162
free_resource(struct resource * res)163 static void free_resource(struct resource *res)
164 {
165 /**
166 * If the resource was allocated using memblock early during boot
167 * we'll leak it here: we can only return full pages back to the
168 * buddy and trying to be smart and reusing them eventually in
169 * alloc_resource() overcomplicates resource handling.
170 */
171 if (res && PageSlab(virt_to_head_page(res)))
172 kfree(res);
173 }
174
alloc_resource(gfp_t flags)175 static struct resource *alloc_resource(gfp_t flags)
176 {
177 return kzalloc(sizeof(struct resource), flags);
178 }
179
180 /* Return the conflict entry if you can't request it */
__request_resource(struct resource * root,struct resource * new)181 static struct resource * __request_resource(struct resource *root, struct resource *new)
182 {
183 resource_size_t start = new->start;
184 resource_size_t end = new->end;
185 struct resource *tmp, **p;
186
187 if (end < start)
188 return root;
189 if (start < root->start)
190 return root;
191 if (end > root->end)
192 return root;
193 p = &root->child;
194 for (;;) {
195 tmp = *p;
196 if (!tmp || tmp->start > end) {
197 new->sibling = tmp;
198 *p = new;
199 new->parent = root;
200 return NULL;
201 }
202 p = &tmp->sibling;
203 if (tmp->end < start)
204 continue;
205 return tmp;
206 }
207 }
208
__release_resource(struct resource * old,bool release_child)209 static int __release_resource(struct resource *old, bool release_child)
210 {
211 struct resource *tmp, **p, *chd;
212
213 p = &old->parent->child;
214 for (;;) {
215 tmp = *p;
216 if (!tmp)
217 break;
218 if (tmp == old) {
219 if (release_child || !(tmp->child)) {
220 *p = tmp->sibling;
221 } else {
222 for (chd = tmp->child;; chd = chd->sibling) {
223 chd->parent = tmp->parent;
224 if (!(chd->sibling))
225 break;
226 }
227 *p = tmp->child;
228 chd->sibling = tmp->sibling;
229 }
230 old->parent = NULL;
231 return 0;
232 }
233 p = &tmp->sibling;
234 }
235 return -EINVAL;
236 }
237
__release_child_resources(struct resource * r)238 static void __release_child_resources(struct resource *r)
239 {
240 struct resource *tmp, *p;
241 resource_size_t size;
242
243 p = r->child;
244 r->child = NULL;
245 while (p) {
246 tmp = p;
247 p = p->sibling;
248
249 tmp->parent = NULL;
250 tmp->sibling = NULL;
251 __release_child_resources(tmp);
252
253 printk(KERN_DEBUG "release child resource %pR\n", tmp);
254 /* need to restore size, and keep flags */
255 size = resource_size(tmp);
256 tmp->start = 0;
257 tmp->end = size - 1;
258 }
259 }
260
release_child_resources(struct resource * r)261 void release_child_resources(struct resource *r)
262 {
263 write_lock(&resource_lock);
264 __release_child_resources(r);
265 write_unlock(&resource_lock);
266 }
267
268 /**
269 * request_resource_conflict - request and reserve an I/O or memory resource
270 * @root: root resource descriptor
271 * @new: resource descriptor desired by caller
272 *
273 * Returns 0 for success, conflict resource on error.
274 */
request_resource_conflict(struct resource * root,struct resource * new)275 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
276 {
277 struct resource *conflict;
278
279 write_lock(&resource_lock);
280 conflict = __request_resource(root, new);
281 write_unlock(&resource_lock);
282 return conflict;
283 }
284
285 /**
286 * request_resource - request and reserve an I/O or memory resource
287 * @root: root resource descriptor
288 * @new: resource descriptor desired by caller
289 *
290 * Returns 0 for success, negative error code on error.
291 */
request_resource(struct resource * root,struct resource * new)292 int request_resource(struct resource *root, struct resource *new)
293 {
294 struct resource *conflict;
295
296 conflict = request_resource_conflict(root, new);
297 return conflict ? -EBUSY : 0;
298 }
299
300 EXPORT_SYMBOL(request_resource);
301
302 /**
303 * release_resource - release a previously reserved resource
304 * @old: resource pointer
305 */
release_resource(struct resource * old)306 int release_resource(struct resource *old)
307 {
308 int retval;
309
310 write_lock(&resource_lock);
311 retval = __release_resource(old, true);
312 write_unlock(&resource_lock);
313 return retval;
314 }
315
316 EXPORT_SYMBOL(release_resource);
317
is_type_match(struct resource * p,unsigned long flags,unsigned long desc)318 static bool is_type_match(struct resource *p, unsigned long flags, unsigned long desc)
319 {
320 return (p->flags & flags) == flags && (desc == IORES_DESC_NONE || desc == p->desc);
321 }
322
323 /**
324 * find_next_iomem_res - Finds the lowest iomem resource that covers part of
325 * [@start..@end].
326 *
327 * If a resource is found, returns 0 and @*res is overwritten with the part
328 * of the resource that's within [@start..@end]; if none is found, returns
329 * -ENODEV. Returns -EINVAL for invalid parameters.
330 *
331 * @start: start address of the resource searched for
332 * @end: end address of same resource
333 * @flags: flags which the resource must have
334 * @desc: descriptor the resource must have
335 * @res: return ptr, if resource found
336 *
337 * The caller must specify @start, @end, @flags, and @desc
338 * (which may be IORES_DESC_NONE).
339 */
find_next_iomem_res(resource_size_t start,resource_size_t end,unsigned long flags,unsigned long desc,struct resource * res)340 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
341 unsigned long flags, unsigned long desc,
342 struct resource *res)
343 {
344 struct resource *p;
345
346 if (!res)
347 return -EINVAL;
348
349 if (start >= end)
350 return -EINVAL;
351
352 read_lock(&resource_lock);
353
354 for_each_resource(&iomem_resource, p, false) {
355 /* If we passed the resource we are looking for, stop */
356 if (p->start > end) {
357 p = NULL;
358 break;
359 }
360
361 /* Skip until we find a range that matches what we look for */
362 if (p->end < start)
363 continue;
364
365 /* Found a match, break */
366 if (is_type_match(p, flags, desc))
367 break;
368 }
369
370 if (p) {
371 /* copy data */
372 *res = (struct resource) {
373 .start = max(start, p->start),
374 .end = min(end, p->end),
375 .flags = p->flags,
376 .desc = p->desc,
377 .parent = p->parent,
378 };
379 }
380
381 read_unlock(&resource_lock);
382 return p ? 0 : -ENODEV;
383 }
384
__walk_iomem_res_desc(resource_size_t start,resource_size_t end,unsigned long flags,unsigned long desc,void * arg,int (* func)(struct resource *,void *))385 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
386 unsigned long flags, unsigned long desc,
387 void *arg,
388 int (*func)(struct resource *, void *))
389 {
390 struct resource res;
391 int ret = -EINVAL;
392
393 while (start < end &&
394 !find_next_iomem_res(start, end, flags, desc, &res)) {
395 ret = (*func)(&res, arg);
396 if (ret)
397 break;
398
399 start = res.end + 1;
400 }
401
402 return ret;
403 }
404
405 /**
406 * walk_iomem_res_desc - Walks through iomem resources and calls func()
407 * with matching resource ranges.
408 * *
409 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
410 * @flags: I/O resource flags
411 * @start: start addr
412 * @end: end addr
413 * @arg: function argument for the callback @func
414 * @func: callback function that is called for each qualifying resource area
415 *
416 * All the memory ranges which overlap start,end and also match flags and
417 * desc are valid candidates.
418 *
419 * NOTE: For a new descriptor search, define a new IORES_DESC in
420 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
421 */
walk_iomem_res_desc(unsigned long desc,unsigned long flags,u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))422 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
423 u64 end, void *arg, int (*func)(struct resource *, void *))
424 {
425 return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
426 }
427 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
428
429 /*
430 * This function calls the @func callback against all memory ranges of type
431 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
432 * Now, this function is only for System RAM, it deals with full ranges and
433 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
434 * ranges.
435 */
walk_system_ram_res(u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))436 int walk_system_ram_res(u64 start, u64 end, void *arg,
437 int (*func)(struct resource *, void *))
438 {
439 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
440
441 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
442 func);
443 }
444
445 /*
446 * This function, being a variant of walk_system_ram_res(), calls the @func
447 * callback against all memory ranges of type System RAM which are marked as
448 * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from
449 * higher to lower.
450 */
walk_system_ram_res_rev(u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))451 int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
452 int (*func)(struct resource *, void *))
453 {
454 struct resource res, *rams;
455 int rams_size = 16, i;
456 unsigned long flags;
457 int ret = -1;
458
459 /* create a list */
460 rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL);
461 if (!rams)
462 return ret;
463
464 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
465 i = 0;
466 while ((start < end) &&
467 (!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) {
468 if (i >= rams_size) {
469 /* re-alloc */
470 struct resource *rams_new;
471
472 rams_new = kvrealloc(rams, (rams_size + 16) * sizeof(struct resource),
473 GFP_KERNEL);
474 if (!rams_new)
475 goto out;
476
477 rams = rams_new;
478 rams_size += 16;
479 }
480
481 rams[i++] = res;
482 start = res.end + 1;
483 }
484
485 /* go reverse */
486 for (i--; i >= 0; i--) {
487 ret = (*func)(&rams[i], arg);
488 if (ret)
489 break;
490 }
491
492 out:
493 kvfree(rams);
494 return ret;
495 }
496
497 /*
498 * This function calls the @func callback against all memory ranges, which
499 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
500 */
walk_mem_res(u64 start,u64 end,void * arg,int (* func)(struct resource *,void *))501 int walk_mem_res(u64 start, u64 end, void *arg,
502 int (*func)(struct resource *, void *))
503 {
504 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
505
506 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
507 func);
508 }
509
510 /*
511 * This function calls the @func callback against all memory ranges of type
512 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
513 * It is to be used only for System RAM.
514 */
walk_system_ram_range(unsigned long start_pfn,unsigned long nr_pages,void * arg,int (* func)(unsigned long,unsigned long,void *))515 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
516 void *arg, int (*func)(unsigned long, unsigned long, void *))
517 {
518 resource_size_t start, end;
519 unsigned long flags;
520 struct resource res;
521 unsigned long pfn, end_pfn;
522 int ret = -EINVAL;
523
524 start = (u64) start_pfn << PAGE_SHIFT;
525 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
526 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
527 while (start < end &&
528 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
529 pfn = PFN_UP(res.start);
530 end_pfn = PFN_DOWN(res.end + 1);
531 if (end_pfn > pfn)
532 ret = (*func)(pfn, end_pfn - pfn, arg);
533 if (ret)
534 break;
535 start = res.end + 1;
536 }
537 return ret;
538 }
539
__is_ram(unsigned long pfn,unsigned long nr_pages,void * arg)540 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
541 {
542 return 1;
543 }
544
545 /*
546 * This generic page_is_ram() returns true if specified address is
547 * registered as System RAM in iomem_resource list.
548 */
page_is_ram(unsigned long pfn)549 int __weak page_is_ram(unsigned long pfn)
550 {
551 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
552 }
553 EXPORT_SYMBOL_GPL(page_is_ram);
554
__region_intersects(struct resource * parent,resource_size_t start,size_t size,unsigned long flags,unsigned long desc)555 static int __region_intersects(struct resource *parent, resource_size_t start,
556 size_t size, unsigned long flags,
557 unsigned long desc)
558 {
559 int type = 0; int other = 0;
560 struct resource *p, *dp;
561 struct resource res, o;
562 bool covered;
563
564 res = DEFINE_RES(start, size, 0);
565
566 for (p = parent->child; p ; p = p->sibling) {
567 if (!resource_intersection(p, &res, &o))
568 continue;
569 if (is_type_match(p, flags, desc)) {
570 type++;
571 continue;
572 }
573 /*
574 * Continue to search in descendant resources as if the
575 * matched descendant resources cover some ranges of 'p'.
576 *
577 * |------------- "CXL Window 0" ------------|
578 * |-- "System RAM" --|
579 *
580 * will behave similar as the following fake resource
581 * tree when searching "System RAM".
582 *
583 * |-- "System RAM" --||-- "CXL Window 0a" --|
584 */
585 covered = false;
586 for_each_resource(p, dp, false) {
587 if (!resource_overlaps(dp, &res))
588 continue;
589 if (is_type_match(dp, flags, desc)) {
590 type++;
591 /*
592 * Range from 'o.start' to 'dp->start'
593 * isn't covered by matched resource.
594 */
595 if (dp->start > o.start)
596 break;
597 if (dp->end >= o.end) {
598 covered = true;
599 break;
600 }
601 /* Remove covered range */
602 o.start = max(o.start, dp->end + 1);
603 }
604 }
605 if (!covered)
606 other++;
607 }
608
609 if (type == 0)
610 return REGION_DISJOINT;
611
612 if (other == 0)
613 return REGION_INTERSECTS;
614
615 return REGION_MIXED;
616 }
617
618 /**
619 * region_intersects() - determine intersection of region with known resources
620 * @start: region start address
621 * @size: size of region
622 * @flags: flags of resource (in iomem_resource)
623 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
624 *
625 * Check if the specified region partially overlaps or fully eclipses a
626 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
627 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
628 * return REGION_MIXED if the region overlaps @flags/@desc and another
629 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
630 * and no other defined resource. Note that REGION_INTERSECTS is also
631 * returned in the case when the specified region overlaps RAM and undefined
632 * memory holes.
633 *
634 * region_intersect() is used by memory remapping functions to ensure
635 * the user is not remapping RAM and is a vast speed up over walking
636 * through the resource table page by page.
637 */
region_intersects(resource_size_t start,size_t size,unsigned long flags,unsigned long desc)638 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
639 unsigned long desc)
640 {
641 int ret;
642
643 read_lock(&resource_lock);
644 ret = __region_intersects(&iomem_resource, start, size, flags, desc);
645 read_unlock(&resource_lock);
646
647 return ret;
648 }
649 EXPORT_SYMBOL_GPL(region_intersects);
650
arch_remove_reservations(struct resource * avail)651 void __weak arch_remove_reservations(struct resource *avail)
652 {
653 }
654
resource_clip(struct resource * res,resource_size_t min,resource_size_t max)655 static void resource_clip(struct resource *res, resource_size_t min,
656 resource_size_t max)
657 {
658 if (res->start < min)
659 res->start = min;
660 if (res->end > max)
661 res->end = max;
662 }
663
664 /*
665 * Find empty space in the resource tree with the given range and
666 * alignment constraints
667 */
__find_resource_space(struct resource * root,struct resource * old,struct resource * new,resource_size_t size,struct resource_constraint * constraint)668 static int __find_resource_space(struct resource *root, struct resource *old,
669 struct resource *new, resource_size_t size,
670 struct resource_constraint *constraint)
671 {
672 struct resource *this = root->child;
673 struct resource tmp = *new, avail, alloc;
674 resource_alignf alignf = constraint->alignf;
675
676 tmp.start = root->start;
677 /*
678 * Skip past an allocated resource that starts at 0, since the assignment
679 * of this->start - 1 to tmp->end below would cause an underflow.
680 */
681 if (this && this->start == root->start) {
682 tmp.start = (this == old) ? old->start : this->end + 1;
683 this = this->sibling;
684 }
685 for(;;) {
686 if (this)
687 tmp.end = (this == old) ? this->end : this->start - 1;
688 else
689 tmp.end = root->end;
690
691 if (tmp.end < tmp.start)
692 goto next;
693
694 resource_clip(&tmp, constraint->min, constraint->max);
695 arch_remove_reservations(&tmp);
696
697 /* Check for overflow after ALIGN() */
698 avail.start = ALIGN(tmp.start, constraint->align);
699 avail.end = tmp.end;
700 avail.flags = new->flags & ~IORESOURCE_UNSET;
701 if (avail.start >= tmp.start) {
702 alloc.flags = avail.flags;
703 if (alignf) {
704 alloc.start = alignf(constraint->alignf_data,
705 &avail, size, constraint->align);
706 } else {
707 alloc.start = avail.start;
708 }
709 alloc.end = alloc.start + size - 1;
710 if (alloc.start <= alloc.end &&
711 resource_contains(&avail, &alloc)) {
712 new->start = alloc.start;
713 new->end = alloc.end;
714 return 0;
715 }
716 }
717
718 next: if (!this || this->end == root->end)
719 break;
720
721 if (this != old)
722 tmp.start = this->end + 1;
723 this = this->sibling;
724 }
725 return -EBUSY;
726 }
727
728 /**
729 * find_resource_space - Find empty space in the resource tree
730 * @root: Root resource descriptor
731 * @new: Resource descriptor awaiting an empty resource space
732 * @size: The minimum size of the empty space
733 * @constraint: The range and alignment constraints to be met
734 *
735 * Finds an empty space under @root in the resource tree satisfying range and
736 * alignment @constraints.
737 *
738 * Return:
739 * * %0 - if successful, @new members start, end, and flags are altered.
740 * * %-EBUSY - if no empty space was found.
741 */
find_resource_space(struct resource * root,struct resource * new,resource_size_t size,struct resource_constraint * constraint)742 int find_resource_space(struct resource *root, struct resource *new,
743 resource_size_t size,
744 struct resource_constraint *constraint)
745 {
746 return __find_resource_space(root, NULL, new, size, constraint);
747 }
748 EXPORT_SYMBOL_GPL(find_resource_space);
749
750 /**
751 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
752 * The resource will be relocated if the new size cannot be reallocated in the
753 * current location.
754 *
755 * @root: root resource descriptor
756 * @old: resource descriptor desired by caller
757 * @newsize: new size of the resource descriptor
758 * @constraint: the memory range and alignment constraints to be met.
759 */
reallocate_resource(struct resource * root,struct resource * old,resource_size_t newsize,struct resource_constraint * constraint)760 static int reallocate_resource(struct resource *root, struct resource *old,
761 resource_size_t newsize,
762 struct resource_constraint *constraint)
763 {
764 int err=0;
765 struct resource new = *old;
766 struct resource *conflict;
767
768 write_lock(&resource_lock);
769
770 if ((err = __find_resource_space(root, old, &new, newsize, constraint)))
771 goto out;
772
773 if (resource_contains(&new, old)) {
774 old->start = new.start;
775 old->end = new.end;
776 goto out;
777 }
778
779 if (old->child) {
780 err = -EBUSY;
781 goto out;
782 }
783
784 if (resource_contains(old, &new)) {
785 old->start = new.start;
786 old->end = new.end;
787 } else {
788 __release_resource(old, true);
789 *old = new;
790 conflict = __request_resource(root, old);
791 BUG_ON(conflict);
792 }
793 out:
794 write_unlock(&resource_lock);
795 return err;
796 }
797
798
799 /**
800 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
801 * The resource will be reallocated with a new size if it was already allocated
802 * @root: root resource descriptor
803 * @new: resource descriptor desired by caller
804 * @size: requested resource region size
805 * @min: minimum boundary to allocate
806 * @max: maximum boundary to allocate
807 * @align: alignment requested, in bytes
808 * @alignf: alignment function, optional, called if not NULL
809 * @alignf_data: arbitrary data to pass to the @alignf function
810 */
allocate_resource(struct resource * root,struct resource * new,resource_size_t size,resource_size_t min,resource_size_t max,resource_size_t align,resource_alignf alignf,void * alignf_data)811 int allocate_resource(struct resource *root, struct resource *new,
812 resource_size_t size, resource_size_t min,
813 resource_size_t max, resource_size_t align,
814 resource_alignf alignf,
815 void *alignf_data)
816 {
817 int err;
818 struct resource_constraint constraint;
819
820 constraint.min = min;
821 constraint.max = max;
822 constraint.align = align;
823 constraint.alignf = alignf;
824 constraint.alignf_data = alignf_data;
825
826 if ( new->parent ) {
827 /* resource is already allocated, try reallocating with
828 the new constraints */
829 return reallocate_resource(root, new, size, &constraint);
830 }
831
832 write_lock(&resource_lock);
833 err = find_resource_space(root, new, size, &constraint);
834 if (err >= 0 && __request_resource(root, new))
835 err = -EBUSY;
836 write_unlock(&resource_lock);
837 return err;
838 }
839
840 EXPORT_SYMBOL(allocate_resource);
841
842 /**
843 * lookup_resource - find an existing resource by a resource start address
844 * @root: root resource descriptor
845 * @start: resource start address
846 *
847 * Returns a pointer to the resource if found, NULL otherwise
848 */
lookup_resource(struct resource * root,resource_size_t start)849 struct resource *lookup_resource(struct resource *root, resource_size_t start)
850 {
851 struct resource *res;
852
853 read_lock(&resource_lock);
854 for (res = root->child; res; res = res->sibling) {
855 if (res->start == start)
856 break;
857 }
858 read_unlock(&resource_lock);
859
860 return res;
861 }
862
863 /*
864 * Insert a resource into the resource tree. If successful, return NULL,
865 * otherwise return the conflicting resource (compare to __request_resource())
866 */
__insert_resource(struct resource * parent,struct resource * new)867 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
868 {
869 struct resource *first, *next;
870
871 for (;; parent = first) {
872 first = __request_resource(parent, new);
873 if (!first)
874 return first;
875
876 if (first == parent)
877 return first;
878 if (WARN_ON(first == new)) /* duplicated insertion */
879 return first;
880
881 if ((first->start > new->start) || (first->end < new->end))
882 break;
883 if ((first->start == new->start) && (first->end == new->end))
884 break;
885 }
886
887 for (next = first; ; next = next->sibling) {
888 /* Partial overlap? Bad, and unfixable */
889 if (next->start < new->start || next->end > new->end)
890 return next;
891 if (!next->sibling)
892 break;
893 if (next->sibling->start > new->end)
894 break;
895 }
896
897 new->parent = parent;
898 new->sibling = next->sibling;
899 new->child = first;
900
901 next->sibling = NULL;
902 for (next = first; next; next = next->sibling)
903 next->parent = new;
904
905 if (parent->child == first) {
906 parent->child = new;
907 } else {
908 next = parent->child;
909 while (next->sibling != first)
910 next = next->sibling;
911 next->sibling = new;
912 }
913 return NULL;
914 }
915
916 /**
917 * insert_resource_conflict - Inserts resource in the resource tree
918 * @parent: parent of the new resource
919 * @new: new resource to insert
920 *
921 * Returns 0 on success, conflict resource if the resource can't be inserted.
922 *
923 * This function is equivalent to request_resource_conflict when no conflict
924 * happens. If a conflict happens, and the conflicting resources
925 * entirely fit within the range of the new resource, then the new
926 * resource is inserted and the conflicting resources become children of
927 * the new resource.
928 *
929 * This function is intended for producers of resources, such as FW modules
930 * and bus drivers.
931 */
insert_resource_conflict(struct resource * parent,struct resource * new)932 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
933 {
934 struct resource *conflict;
935
936 write_lock(&resource_lock);
937 conflict = __insert_resource(parent, new);
938 write_unlock(&resource_lock);
939 return conflict;
940 }
941
942 /**
943 * insert_resource - Inserts a resource in the resource tree
944 * @parent: parent of the new resource
945 * @new: new resource to insert
946 *
947 * Returns 0 on success, -EBUSY if the resource can't be inserted.
948 *
949 * This function is intended for producers of resources, such as FW modules
950 * and bus drivers.
951 */
insert_resource(struct resource * parent,struct resource * new)952 int insert_resource(struct resource *parent, struct resource *new)
953 {
954 struct resource *conflict;
955
956 conflict = insert_resource_conflict(parent, new);
957 return conflict ? -EBUSY : 0;
958 }
959 EXPORT_SYMBOL_GPL(insert_resource);
960
961 /**
962 * insert_resource_expand_to_fit - Insert a resource into the resource tree
963 * @root: root resource descriptor
964 * @new: new resource to insert
965 *
966 * Insert a resource into the resource tree, possibly expanding it in order
967 * to make it encompass any conflicting resources.
968 */
insert_resource_expand_to_fit(struct resource * root,struct resource * new)969 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
970 {
971 if (new->parent)
972 return;
973
974 write_lock(&resource_lock);
975 for (;;) {
976 struct resource *conflict;
977
978 conflict = __insert_resource(root, new);
979 if (!conflict)
980 break;
981 if (conflict == root)
982 break;
983
984 /* Ok, expand resource to cover the conflict, then try again .. */
985 if (conflict->start < new->start)
986 new->start = conflict->start;
987 if (conflict->end > new->end)
988 new->end = conflict->end;
989
990 pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
991 }
992 write_unlock(&resource_lock);
993 }
994 /*
995 * Not for general consumption, only early boot memory map parsing, PCI
996 * resource discovery, and late discovery of CXL resources are expected
997 * to use this interface. The former are built-in and only the latter,
998 * CXL, is a module.
999 */
1000 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, "CXL");
1001
1002 /**
1003 * remove_resource - Remove a resource in the resource tree
1004 * @old: resource to remove
1005 *
1006 * Returns 0 on success, -EINVAL if the resource is not valid.
1007 *
1008 * This function removes a resource previously inserted by insert_resource()
1009 * or insert_resource_conflict(), and moves the children (if any) up to
1010 * where they were before. insert_resource() and insert_resource_conflict()
1011 * insert a new resource, and move any conflicting resources down to the
1012 * children of the new resource.
1013 *
1014 * insert_resource(), insert_resource_conflict() and remove_resource() are
1015 * intended for producers of resources, such as FW modules and bus drivers.
1016 */
remove_resource(struct resource * old)1017 int remove_resource(struct resource *old)
1018 {
1019 int retval;
1020
1021 write_lock(&resource_lock);
1022 retval = __release_resource(old, false);
1023 write_unlock(&resource_lock);
1024 return retval;
1025 }
1026 EXPORT_SYMBOL_GPL(remove_resource);
1027
__adjust_resource(struct resource * res,resource_size_t start,resource_size_t size)1028 static int __adjust_resource(struct resource *res, resource_size_t start,
1029 resource_size_t size)
1030 {
1031 struct resource *tmp, *parent = res->parent;
1032 resource_size_t end = start + size - 1;
1033 int result = -EBUSY;
1034
1035 if (!parent)
1036 goto skip;
1037
1038 if ((start < parent->start) || (end > parent->end))
1039 goto out;
1040
1041 if (res->sibling && (res->sibling->start <= end))
1042 goto out;
1043
1044 tmp = parent->child;
1045 if (tmp != res) {
1046 while (tmp->sibling != res)
1047 tmp = tmp->sibling;
1048 if (start <= tmp->end)
1049 goto out;
1050 }
1051
1052 skip:
1053 for (tmp = res->child; tmp; tmp = tmp->sibling)
1054 if ((tmp->start < start) || (tmp->end > end))
1055 goto out;
1056
1057 res->start = start;
1058 res->end = end;
1059 result = 0;
1060
1061 out:
1062 return result;
1063 }
1064
1065 /**
1066 * adjust_resource - modify a resource's start and size
1067 * @res: resource to modify
1068 * @start: new start value
1069 * @size: new size
1070 *
1071 * Given an existing resource, change its start and size to match the
1072 * arguments. Returns 0 on success, -EBUSY if it can't fit.
1073 * Existing children of the resource are assumed to be immutable.
1074 */
adjust_resource(struct resource * res,resource_size_t start,resource_size_t size)1075 int adjust_resource(struct resource *res, resource_size_t start,
1076 resource_size_t size)
1077 {
1078 int result;
1079
1080 write_lock(&resource_lock);
1081 result = __adjust_resource(res, start, size);
1082 write_unlock(&resource_lock);
1083 return result;
1084 }
1085 EXPORT_SYMBOL(adjust_resource);
1086
1087 static void __init
__reserve_region_with_split(struct resource * root,resource_size_t start,resource_size_t end,const char * name)1088 __reserve_region_with_split(struct resource *root, resource_size_t start,
1089 resource_size_t end, const char *name)
1090 {
1091 struct resource *parent = root;
1092 struct resource *conflict;
1093 struct resource *res = alloc_resource(GFP_ATOMIC);
1094 struct resource *next_res = NULL;
1095 int type = resource_type(root);
1096
1097 if (!res)
1098 return;
1099
1100 res->name = name;
1101 res->start = start;
1102 res->end = end;
1103 res->flags = type | IORESOURCE_BUSY;
1104 res->desc = IORES_DESC_NONE;
1105
1106 while (1) {
1107
1108 conflict = __request_resource(parent, res);
1109 if (!conflict) {
1110 if (!next_res)
1111 break;
1112 res = next_res;
1113 next_res = NULL;
1114 continue;
1115 }
1116
1117 /* conflict covered whole area */
1118 if (conflict->start <= res->start &&
1119 conflict->end >= res->end) {
1120 free_resource(res);
1121 WARN_ON(next_res);
1122 break;
1123 }
1124
1125 /* failed, split and try again */
1126 if (conflict->start > res->start) {
1127 end = res->end;
1128 res->end = conflict->start - 1;
1129 if (conflict->end < end) {
1130 next_res = alloc_resource(GFP_ATOMIC);
1131 if (!next_res) {
1132 free_resource(res);
1133 break;
1134 }
1135 next_res->name = name;
1136 next_res->start = conflict->end + 1;
1137 next_res->end = end;
1138 next_res->flags = type | IORESOURCE_BUSY;
1139 next_res->desc = IORES_DESC_NONE;
1140 }
1141 } else {
1142 res->start = conflict->end + 1;
1143 }
1144 }
1145
1146 }
1147
1148 void __init
reserve_region_with_split(struct resource * root,resource_size_t start,resource_size_t end,const char * name)1149 reserve_region_with_split(struct resource *root, resource_size_t start,
1150 resource_size_t end, const char *name)
1151 {
1152 int abort = 0;
1153
1154 write_lock(&resource_lock);
1155 if (root->start > start || root->end < end) {
1156 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1157 (unsigned long long)start, (unsigned long long)end,
1158 root);
1159 if (start > root->end || end < root->start)
1160 abort = 1;
1161 else {
1162 if (end > root->end)
1163 end = root->end;
1164 if (start < root->start)
1165 start = root->start;
1166 pr_err("fixing request to [0x%llx-0x%llx]\n",
1167 (unsigned long long)start,
1168 (unsigned long long)end);
1169 }
1170 dump_stack();
1171 }
1172 if (!abort)
1173 __reserve_region_with_split(root, start, end, name);
1174 write_unlock(&resource_lock);
1175 }
1176
1177 /**
1178 * resource_alignment - calculate resource's alignment
1179 * @res: resource pointer
1180 *
1181 * Returns alignment on success, 0 (invalid alignment) on failure.
1182 */
resource_alignment(struct resource * res)1183 resource_size_t resource_alignment(struct resource *res)
1184 {
1185 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1186 case IORESOURCE_SIZEALIGN:
1187 return resource_size(res);
1188 case IORESOURCE_STARTALIGN:
1189 return res->start;
1190 default:
1191 return 0;
1192 }
1193 }
1194
1195 /*
1196 * This is compatibility stuff for IO resources.
1197 *
1198 * Note how this, unlike the above, knows about
1199 * the IO flag meanings (busy etc).
1200 *
1201 * request_region creates a new busy region.
1202 *
1203 * release_region releases a matching busy region.
1204 */
1205
1206 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1207
1208 static struct inode *iomem_inode;
1209
1210 #ifdef CONFIG_IO_STRICT_DEVMEM
revoke_iomem(struct resource * res)1211 static void revoke_iomem(struct resource *res)
1212 {
1213 /* pairs with smp_store_release() in iomem_init_inode() */
1214 struct inode *inode = smp_load_acquire(&iomem_inode);
1215
1216 /*
1217 * Check that the initialization has completed. Losing the race
1218 * is ok because it means drivers are claiming resources before
1219 * the fs_initcall level of init and prevent iomem_get_mapping users
1220 * from establishing mappings.
1221 */
1222 if (!inode)
1223 return;
1224
1225 /*
1226 * The expectation is that the driver has successfully marked
1227 * the resource busy by this point, so devmem_is_allowed()
1228 * should start returning false, however for performance this
1229 * does not iterate the entire resource range.
1230 */
1231 if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1232 devmem_is_allowed(PHYS_PFN(res->end))) {
1233 /*
1234 * *cringe* iomem=relaxed says "go ahead, what's the
1235 * worst that can happen?"
1236 */
1237 return;
1238 }
1239
1240 unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1241 }
1242 #else
revoke_iomem(struct resource * res)1243 static void revoke_iomem(struct resource *res) {}
1244 #endif
1245
iomem_get_mapping(void)1246 struct address_space *iomem_get_mapping(void)
1247 {
1248 /*
1249 * This function is only called from file open paths, hence guaranteed
1250 * that fs_initcalls have completed and no need to check for NULL. But
1251 * since revoke_iomem can be called before the initcall we still need
1252 * the barrier to appease checkers.
1253 */
1254 return smp_load_acquire(&iomem_inode)->i_mapping;
1255 }
1256
__request_region_locked(struct resource * res,struct resource * parent,resource_size_t start,resource_size_t n,const char * name,int flags)1257 static int __request_region_locked(struct resource *res, struct resource *parent,
1258 resource_size_t start, resource_size_t n,
1259 const char *name, int flags)
1260 {
1261 DECLARE_WAITQUEUE(wait, current);
1262
1263 res->name = name;
1264 res->start = start;
1265 res->end = start + n - 1;
1266
1267 for (;;) {
1268 struct resource *conflict;
1269
1270 res->flags = resource_type(parent) | resource_ext_type(parent);
1271 res->flags |= IORESOURCE_BUSY | flags;
1272 res->desc = parent->desc;
1273
1274 conflict = __request_resource(parent, res);
1275 if (!conflict)
1276 break;
1277 /*
1278 * mm/hmm.c reserves physical addresses which then
1279 * become unavailable to other users. Conflicts are
1280 * not expected. Warn to aid debugging if encountered.
1281 */
1282 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1283 pr_warn("Unaddressable device %s %pR conflicts with %pR",
1284 conflict->name, conflict, res);
1285 }
1286 if (conflict != parent) {
1287 if (!(conflict->flags & IORESOURCE_BUSY)) {
1288 parent = conflict;
1289 continue;
1290 }
1291 }
1292 if (conflict->flags & flags & IORESOURCE_MUXED) {
1293 add_wait_queue(&muxed_resource_wait, &wait);
1294 write_unlock(&resource_lock);
1295 set_current_state(TASK_UNINTERRUPTIBLE);
1296 schedule();
1297 remove_wait_queue(&muxed_resource_wait, &wait);
1298 write_lock(&resource_lock);
1299 continue;
1300 }
1301 /* Uhhuh, that didn't work out.. */
1302 return -EBUSY;
1303 }
1304
1305 return 0;
1306 }
1307
1308 /**
1309 * __request_region - create a new busy resource region
1310 * @parent: parent resource descriptor
1311 * @start: resource start address
1312 * @n: resource region size
1313 * @name: reserving caller's ID string
1314 * @flags: IO resource flags
1315 */
__request_region(struct resource * parent,resource_size_t start,resource_size_t n,const char * name,int flags)1316 struct resource *__request_region(struct resource *parent,
1317 resource_size_t start, resource_size_t n,
1318 const char *name, int flags)
1319 {
1320 struct resource *res = alloc_resource(GFP_KERNEL);
1321 int ret;
1322
1323 if (!res)
1324 return NULL;
1325
1326 write_lock(&resource_lock);
1327 ret = __request_region_locked(res, parent, start, n, name, flags);
1328 write_unlock(&resource_lock);
1329
1330 if (ret) {
1331 free_resource(res);
1332 return NULL;
1333 }
1334
1335 if (parent == &iomem_resource)
1336 revoke_iomem(res);
1337
1338 return res;
1339 }
1340 EXPORT_SYMBOL(__request_region);
1341
1342 /**
1343 * __release_region - release a previously reserved resource region
1344 * @parent: parent resource descriptor
1345 * @start: resource start address
1346 * @n: resource region size
1347 *
1348 * The described resource region must match a currently busy region.
1349 */
__release_region(struct resource * parent,resource_size_t start,resource_size_t n)1350 void __release_region(struct resource *parent, resource_size_t start,
1351 resource_size_t n)
1352 {
1353 struct resource **p;
1354 resource_size_t end;
1355
1356 p = &parent->child;
1357 end = start + n - 1;
1358
1359 write_lock(&resource_lock);
1360
1361 for (;;) {
1362 struct resource *res = *p;
1363
1364 if (!res)
1365 break;
1366 if (res->start <= start && res->end >= end) {
1367 if (!(res->flags & IORESOURCE_BUSY)) {
1368 p = &res->child;
1369 continue;
1370 }
1371 if (res->start != start || res->end != end)
1372 break;
1373 *p = res->sibling;
1374 write_unlock(&resource_lock);
1375 if (res->flags & IORESOURCE_MUXED)
1376 wake_up(&muxed_resource_wait);
1377 free_resource(res);
1378 return;
1379 }
1380 p = &res->sibling;
1381 }
1382
1383 write_unlock(&resource_lock);
1384
1385 pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
1386 }
1387 EXPORT_SYMBOL(__release_region);
1388
1389 #ifdef CONFIG_MEMORY_HOTREMOVE
1390 /**
1391 * release_mem_region_adjustable - release a previously reserved memory region
1392 * @start: resource start address
1393 * @size: resource region size
1394 *
1395 * This interface is intended for memory hot-delete. The requested region
1396 * is released from a currently busy memory resource. The requested region
1397 * must either match exactly or fit into a single busy resource entry. In
1398 * the latter case, the remaining resource is adjusted accordingly.
1399 * Existing children of the busy memory resource must be immutable in the
1400 * request.
1401 *
1402 * Note:
1403 * - Additional release conditions, such as overlapping region, can be
1404 * supported after they are confirmed as valid cases.
1405 * - When a busy memory resource gets split into two entries, the code
1406 * assumes that all children remain in the lower address entry for
1407 * simplicity. Enhance this logic when necessary.
1408 */
release_mem_region_adjustable(resource_size_t start,resource_size_t size)1409 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1410 {
1411 struct resource *parent = &iomem_resource;
1412 struct resource *new_res = NULL;
1413 bool alloc_nofail = false;
1414 struct resource **p;
1415 struct resource *res;
1416 resource_size_t end;
1417
1418 end = start + size - 1;
1419 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1420 return;
1421
1422 /*
1423 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1424 * just before releasing the region. This is highly unlikely to
1425 * fail - let's play save and make it never fail as the caller cannot
1426 * perform any error handling (e.g., trying to re-add memory will fail
1427 * similarly).
1428 */
1429 retry:
1430 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1431
1432 p = &parent->child;
1433 write_lock(&resource_lock);
1434
1435 while ((res = *p)) {
1436 if (res->start >= end)
1437 break;
1438
1439 /* look for the next resource if it does not fit into */
1440 if (res->start > start || res->end < end) {
1441 p = &res->sibling;
1442 continue;
1443 }
1444
1445 if (!(res->flags & IORESOURCE_MEM))
1446 break;
1447
1448 if (!(res->flags & IORESOURCE_BUSY)) {
1449 p = &res->child;
1450 continue;
1451 }
1452
1453 /* found the target resource; let's adjust accordingly */
1454 if (res->start == start && res->end == end) {
1455 /* free the whole entry */
1456 *p = res->sibling;
1457 free_resource(res);
1458 } else if (res->start == start && res->end != end) {
1459 /* adjust the start */
1460 WARN_ON_ONCE(__adjust_resource(res, end + 1,
1461 res->end - end));
1462 } else if (res->start != start && res->end == end) {
1463 /* adjust the end */
1464 WARN_ON_ONCE(__adjust_resource(res, res->start,
1465 start - res->start));
1466 } else {
1467 /* split into two entries - we need a new resource */
1468 if (!new_res) {
1469 new_res = alloc_resource(GFP_ATOMIC);
1470 if (!new_res) {
1471 alloc_nofail = true;
1472 write_unlock(&resource_lock);
1473 goto retry;
1474 }
1475 }
1476 new_res->name = res->name;
1477 new_res->start = end + 1;
1478 new_res->end = res->end;
1479 new_res->flags = res->flags;
1480 new_res->desc = res->desc;
1481 new_res->parent = res->parent;
1482 new_res->sibling = res->sibling;
1483 new_res->child = NULL;
1484
1485 if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1486 start - res->start)))
1487 break;
1488 res->sibling = new_res;
1489 new_res = NULL;
1490 }
1491
1492 break;
1493 }
1494
1495 write_unlock(&resource_lock);
1496 free_resource(new_res);
1497 }
1498 #endif /* CONFIG_MEMORY_HOTREMOVE */
1499
1500 #ifdef CONFIG_MEMORY_HOTPLUG
system_ram_resources_mergeable(struct resource * r1,struct resource * r2)1501 static bool system_ram_resources_mergeable(struct resource *r1,
1502 struct resource *r2)
1503 {
1504 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1505 return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1506 r1->name == r2->name && r1->desc == r2->desc &&
1507 !r1->child && !r2->child;
1508 }
1509
1510 /**
1511 * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1512 * merge it with adjacent, mergeable resources
1513 * @res: resource descriptor
1514 *
1515 * This interface is intended for memory hotplug, whereby lots of contiguous
1516 * system ram resources are added (e.g., via add_memory*()) by a driver, and
1517 * the actual resource boundaries are not of interest (e.g., it might be
1518 * relevant for DIMMs). Only resources that are marked mergeable, that have the
1519 * same parent, and that don't have any children are considered. All mergeable
1520 * resources must be immutable during the request.
1521 *
1522 * Note:
1523 * - The caller has to make sure that no pointers to resources that are
1524 * marked mergeable are used anymore after this call - the resource might
1525 * be freed and the pointer might be stale!
1526 * - release_mem_region_adjustable() will split on demand on memory hotunplug
1527 */
merge_system_ram_resource(struct resource * res)1528 void merge_system_ram_resource(struct resource *res)
1529 {
1530 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1531 struct resource *cur;
1532
1533 if (WARN_ON_ONCE((res->flags & flags) != flags))
1534 return;
1535
1536 write_lock(&resource_lock);
1537 res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1538
1539 /* Try to merge with next item in the list. */
1540 cur = res->sibling;
1541 if (cur && system_ram_resources_mergeable(res, cur)) {
1542 res->end = cur->end;
1543 res->sibling = cur->sibling;
1544 free_resource(cur);
1545 }
1546
1547 /* Try to merge with previous item in the list. */
1548 cur = res->parent->child;
1549 while (cur && cur->sibling != res)
1550 cur = cur->sibling;
1551 if (cur && system_ram_resources_mergeable(cur, res)) {
1552 cur->end = res->end;
1553 cur->sibling = res->sibling;
1554 free_resource(res);
1555 }
1556 write_unlock(&resource_lock);
1557 }
1558 #endif /* CONFIG_MEMORY_HOTPLUG */
1559
1560 /*
1561 * Managed region resource
1562 */
devm_resource_release(struct device * dev,void * ptr)1563 static void devm_resource_release(struct device *dev, void *ptr)
1564 {
1565 struct resource **r = ptr;
1566
1567 release_resource(*r);
1568 }
1569
1570 /**
1571 * devm_request_resource() - request and reserve an I/O or memory resource
1572 * @dev: device for which to request the resource
1573 * @root: root of the resource tree from which to request the resource
1574 * @new: descriptor of the resource to request
1575 *
1576 * This is a device-managed version of request_resource(). There is usually
1577 * no need to release resources requested by this function explicitly since
1578 * that will be taken care of when the device is unbound from its driver.
1579 * If for some reason the resource needs to be released explicitly, because
1580 * of ordering issues for example, drivers must call devm_release_resource()
1581 * rather than the regular release_resource().
1582 *
1583 * When a conflict is detected between any existing resources and the newly
1584 * requested resource, an error message will be printed.
1585 *
1586 * Returns 0 on success or a negative error code on failure.
1587 */
devm_request_resource(struct device * dev,struct resource * root,struct resource * new)1588 int devm_request_resource(struct device *dev, struct resource *root,
1589 struct resource *new)
1590 {
1591 struct resource *conflict, **ptr;
1592
1593 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1594 if (!ptr)
1595 return -ENOMEM;
1596
1597 *ptr = new;
1598
1599 conflict = request_resource_conflict(root, new);
1600 if (conflict) {
1601 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1602 new, conflict->name, conflict);
1603 devres_free(ptr);
1604 return -EBUSY;
1605 }
1606
1607 devres_add(dev, ptr);
1608 return 0;
1609 }
1610 EXPORT_SYMBOL(devm_request_resource);
1611
devm_resource_match(struct device * dev,void * res,void * data)1612 static int devm_resource_match(struct device *dev, void *res, void *data)
1613 {
1614 struct resource **ptr = res;
1615
1616 return *ptr == data;
1617 }
1618
1619 /**
1620 * devm_release_resource() - release a previously requested resource
1621 * @dev: device for which to release the resource
1622 * @new: descriptor of the resource to release
1623 *
1624 * Releases a resource previously requested using devm_request_resource().
1625 */
devm_release_resource(struct device * dev,struct resource * new)1626 void devm_release_resource(struct device *dev, struct resource *new)
1627 {
1628 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1629 new));
1630 }
1631 EXPORT_SYMBOL(devm_release_resource);
1632
1633 struct region_devres {
1634 struct resource *parent;
1635 resource_size_t start;
1636 resource_size_t n;
1637 };
1638
devm_region_release(struct device * dev,void * res)1639 static void devm_region_release(struct device *dev, void *res)
1640 {
1641 struct region_devres *this = res;
1642
1643 __release_region(this->parent, this->start, this->n);
1644 }
1645
devm_region_match(struct device * dev,void * res,void * match_data)1646 static int devm_region_match(struct device *dev, void *res, void *match_data)
1647 {
1648 struct region_devres *this = res, *match = match_data;
1649
1650 return this->parent == match->parent &&
1651 this->start == match->start && this->n == match->n;
1652 }
1653
1654 struct resource *
__devm_request_region(struct device * dev,struct resource * parent,resource_size_t start,resource_size_t n,const char * name)1655 __devm_request_region(struct device *dev, struct resource *parent,
1656 resource_size_t start, resource_size_t n, const char *name)
1657 {
1658 struct region_devres *dr = NULL;
1659 struct resource *res;
1660
1661 dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1662 GFP_KERNEL);
1663 if (!dr)
1664 return NULL;
1665
1666 dr->parent = parent;
1667 dr->start = start;
1668 dr->n = n;
1669
1670 res = __request_region(parent, start, n, name, 0);
1671 if (res)
1672 devres_add(dev, dr);
1673 else
1674 devres_free(dr);
1675
1676 return res;
1677 }
1678 EXPORT_SYMBOL(__devm_request_region);
1679
__devm_release_region(struct device * dev,struct resource * parent,resource_size_t start,resource_size_t n)1680 void __devm_release_region(struct device *dev, struct resource *parent,
1681 resource_size_t start, resource_size_t n)
1682 {
1683 struct region_devres match_data = { parent, start, n };
1684
1685 WARN_ON(devres_release(dev, devm_region_release, devm_region_match,
1686 &match_data));
1687 }
1688 EXPORT_SYMBOL(__devm_release_region);
1689
1690 /*
1691 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1692 */
1693 #define MAXRESERVE 4
reserve_setup(char * str)1694 static int __init reserve_setup(char *str)
1695 {
1696 static int reserved;
1697 static struct resource reserve[MAXRESERVE];
1698
1699 for (;;) {
1700 unsigned int io_start, io_num;
1701 int x = reserved;
1702 struct resource *parent;
1703
1704 if (get_option(&str, &io_start) != 2)
1705 break;
1706 if (get_option(&str, &io_num) == 0)
1707 break;
1708 if (x < MAXRESERVE) {
1709 struct resource *res = reserve + x;
1710
1711 /*
1712 * If the region starts below 0x10000, we assume it's
1713 * I/O port space; otherwise assume it's memory.
1714 */
1715 if (io_start < 0x10000) {
1716 *res = DEFINE_RES_IO_NAMED(io_start, io_num, "reserved");
1717 parent = &ioport_resource;
1718 } else {
1719 *res = DEFINE_RES_MEM_NAMED(io_start, io_num, "reserved");
1720 parent = &iomem_resource;
1721 }
1722 res->flags |= IORESOURCE_BUSY;
1723 if (request_resource(parent, res) == 0)
1724 reserved = x+1;
1725 }
1726 }
1727 return 1;
1728 }
1729 __setup("reserve=", reserve_setup);
1730
1731 /*
1732 * Check if the requested addr and size spans more than any slot in the
1733 * iomem resource tree.
1734 */
iomem_map_sanity_check(resource_size_t addr,unsigned long size)1735 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1736 {
1737 resource_size_t end = addr + size - 1;
1738 struct resource *p;
1739 int err = 0;
1740
1741 read_lock(&resource_lock);
1742 for_each_resource(&iomem_resource, p, false) {
1743 /*
1744 * We can probably skip the resources without
1745 * IORESOURCE_IO attribute?
1746 */
1747 if (p->start > end)
1748 continue;
1749 if (p->end < addr)
1750 continue;
1751 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1752 PFN_DOWN(p->end) >= PFN_DOWN(end))
1753 continue;
1754 /*
1755 * if a resource is "BUSY", it's not a hardware resource
1756 * but a driver mapping of such a resource; we don't want
1757 * to warn for those; some drivers legitimately map only
1758 * partial hardware resources. (example: vesafb)
1759 */
1760 if (p->flags & IORESOURCE_BUSY)
1761 continue;
1762
1763 pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1764 &addr, &end, p->name, p);
1765 err = -1;
1766 break;
1767 }
1768 read_unlock(&resource_lock);
1769
1770 return err;
1771 }
1772
1773 #ifdef CONFIG_STRICT_DEVMEM
1774 static int strict_iomem_checks = 1;
1775 #else
1776 static int strict_iomem_checks;
1777 #endif
1778
1779 /*
1780 * Check if an address is exclusive to the kernel and must not be mapped to
1781 * user space, for example, via /dev/mem.
1782 *
1783 * Returns true if exclusive to the kernel, otherwise returns false.
1784 */
resource_is_exclusive(struct resource * root,u64 addr,resource_size_t size)1785 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1786 {
1787 const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1788 IORESOURCE_EXCLUSIVE;
1789 bool skip_children = false, err = false;
1790 struct resource *p;
1791
1792 read_lock(&resource_lock);
1793 for_each_resource(root, p, skip_children) {
1794 if (p->start >= addr + size)
1795 break;
1796 if (p->end < addr) {
1797 skip_children = true;
1798 continue;
1799 }
1800 skip_children = false;
1801
1802 /*
1803 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1804 * IORESOURCE_EXCLUSIVE is set, even if they
1805 * are not busy and even if "iomem=relaxed" is set. The
1806 * responsible driver dynamically adds/removes system RAM within
1807 * such an area and uncontrolled access is dangerous.
1808 */
1809 if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1810 err = true;
1811 break;
1812 }
1813
1814 /*
1815 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1816 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1817 * resource is busy.
1818 */
1819 if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1820 continue;
1821 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1822 || p->flags & IORESOURCE_EXCLUSIVE) {
1823 err = true;
1824 break;
1825 }
1826 }
1827 read_unlock(&resource_lock);
1828
1829 return err;
1830 }
1831
iomem_is_exclusive(u64 addr)1832 bool iomem_is_exclusive(u64 addr)
1833 {
1834 return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1835 PAGE_SIZE);
1836 }
1837
resource_list_create_entry(struct resource * res,size_t extra_size)1838 struct resource_entry *resource_list_create_entry(struct resource *res,
1839 size_t extra_size)
1840 {
1841 struct resource_entry *entry;
1842
1843 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1844 if (entry) {
1845 INIT_LIST_HEAD(&entry->node);
1846 entry->res = res ? res : &entry->__res;
1847 }
1848
1849 return entry;
1850 }
1851 EXPORT_SYMBOL(resource_list_create_entry);
1852
resource_list_free(struct list_head * head)1853 void resource_list_free(struct list_head *head)
1854 {
1855 struct resource_entry *entry, *tmp;
1856
1857 list_for_each_entry_safe(entry, tmp, head, node)
1858 resource_list_destroy_entry(entry);
1859 }
1860 EXPORT_SYMBOL(resource_list_free);
1861
1862 #ifdef CONFIG_GET_FREE_REGION
1863 #define GFR_DESCENDING (1UL << 0)
1864 #define GFR_REQUEST_REGION (1UL << 1)
1865 #ifdef PA_SECTION_SHIFT
1866 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT)
1867 #else
1868 #define GFR_DEFAULT_ALIGN PAGE_SIZE
1869 #endif
1870
gfr_start(struct resource * base,resource_size_t size,resource_size_t align,unsigned long flags)1871 static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1872 resource_size_t align, unsigned long flags)
1873 {
1874 if (flags & GFR_DESCENDING) {
1875 resource_size_t end;
1876
1877 end = min_t(resource_size_t, base->end, DIRECT_MAP_PHYSMEM_END);
1878 return end - size + 1;
1879 }
1880
1881 return ALIGN(max(base->start, align), align);
1882 }
1883
gfr_continue(struct resource * base,resource_size_t addr,resource_size_t size,unsigned long flags)1884 static bool gfr_continue(struct resource *base, resource_size_t addr,
1885 resource_size_t size, unsigned long flags)
1886 {
1887 if (flags & GFR_DESCENDING)
1888 return addr > size && addr >= base->start;
1889 /*
1890 * In the ascend case be careful that the last increment by
1891 * @size did not wrap 0.
1892 */
1893 return addr > addr - size &&
1894 addr <= min_t(resource_size_t, base->end, DIRECT_MAP_PHYSMEM_END);
1895 }
1896
gfr_next(resource_size_t addr,resource_size_t size,unsigned long flags)1897 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1898 unsigned long flags)
1899 {
1900 if (flags & GFR_DESCENDING)
1901 return addr - size;
1902 return addr + size;
1903 }
1904
remove_free_mem_region(void * _res)1905 static void remove_free_mem_region(void *_res)
1906 {
1907 struct resource *res = _res;
1908
1909 if (res->parent)
1910 remove_resource(res);
1911 free_resource(res);
1912 }
1913
1914 static struct resource *
get_free_mem_region(struct device * dev,struct resource * base,resource_size_t size,const unsigned long align,const char * name,const unsigned long desc,const unsigned long flags)1915 get_free_mem_region(struct device *dev, struct resource *base,
1916 resource_size_t size, const unsigned long align,
1917 const char *name, const unsigned long desc,
1918 const unsigned long flags)
1919 {
1920 resource_size_t addr;
1921 struct resource *res;
1922 struct region_devres *dr = NULL;
1923
1924 size = ALIGN(size, align);
1925
1926 res = alloc_resource(GFP_KERNEL);
1927 if (!res)
1928 return ERR_PTR(-ENOMEM);
1929
1930 if (dev && (flags & GFR_REQUEST_REGION)) {
1931 dr = devres_alloc(devm_region_release,
1932 sizeof(struct region_devres), GFP_KERNEL);
1933 if (!dr) {
1934 free_resource(res);
1935 return ERR_PTR(-ENOMEM);
1936 }
1937 } else if (dev) {
1938 if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1939 return ERR_PTR(-ENOMEM);
1940 }
1941
1942 write_lock(&resource_lock);
1943 for (addr = gfr_start(base, size, align, flags);
1944 gfr_continue(base, addr, align, flags);
1945 addr = gfr_next(addr, align, flags)) {
1946 if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1947 REGION_DISJOINT)
1948 continue;
1949
1950 if (flags & GFR_REQUEST_REGION) {
1951 if (__request_region_locked(res, &iomem_resource, addr,
1952 size, name, 0))
1953 break;
1954
1955 if (dev) {
1956 dr->parent = &iomem_resource;
1957 dr->start = addr;
1958 dr->n = size;
1959 devres_add(dev, dr);
1960 }
1961
1962 res->desc = desc;
1963 write_unlock(&resource_lock);
1964
1965
1966 /*
1967 * A driver is claiming this region so revoke any
1968 * mappings.
1969 */
1970 revoke_iomem(res);
1971 } else {
1972 *res = DEFINE_RES_NAMED_DESC(addr, size, name, IORESOURCE_MEM, desc);
1973
1974 /*
1975 * Only succeed if the resource hosts an exclusive
1976 * range after the insert
1977 */
1978 if (__insert_resource(base, res) || res->child)
1979 break;
1980
1981 write_unlock(&resource_lock);
1982 }
1983
1984 return res;
1985 }
1986 write_unlock(&resource_lock);
1987
1988 if (flags & GFR_REQUEST_REGION) {
1989 free_resource(res);
1990 devres_free(dr);
1991 } else if (dev)
1992 devm_release_action(dev, remove_free_mem_region, res);
1993
1994 return ERR_PTR(-ERANGE);
1995 }
1996
1997 /**
1998 * devm_request_free_mem_region - find free region for device private memory
1999 *
2000 * @dev: device struct to bind the resource to
2001 * @size: size in bytes of the device memory to add
2002 * @base: resource tree to look in
2003 *
2004 * This function tries to find an empty range of physical address big enough to
2005 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
2006 * memory, which in turn allocates struct pages.
2007 */
devm_request_free_mem_region(struct device * dev,struct resource * base,unsigned long size)2008 struct resource *devm_request_free_mem_region(struct device *dev,
2009 struct resource *base, unsigned long size)
2010 {
2011 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2012
2013 return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
2014 dev_name(dev),
2015 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2016 }
2017 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
2018
request_free_mem_region(struct resource * base,unsigned long size,const char * name)2019 struct resource *request_free_mem_region(struct resource *base,
2020 unsigned long size, const char *name)
2021 {
2022 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2023
2024 return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
2025 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2026 }
2027 EXPORT_SYMBOL_GPL(request_free_mem_region);
2028
2029 /**
2030 * alloc_free_mem_region - find a free region relative to @base
2031 * @base: resource that will parent the new resource
2032 * @size: size in bytes of memory to allocate from @base
2033 * @align: alignment requirements for the allocation
2034 * @name: resource name
2035 *
2036 * Buses like CXL, that can dynamically instantiate new memory regions,
2037 * need a method to allocate physical address space for those regions.
2038 * Allocate and insert a new resource to cover a free, unclaimed by a
2039 * descendant of @base, range in the span of @base.
2040 */
alloc_free_mem_region(struct resource * base,unsigned long size,unsigned long align,const char * name)2041 struct resource *alloc_free_mem_region(struct resource *base,
2042 unsigned long size, unsigned long align,
2043 const char *name)
2044 {
2045 /* Default of ascending direction and insert resource */
2046 unsigned long flags = 0;
2047
2048 return get_free_mem_region(NULL, base, size, align, name,
2049 IORES_DESC_NONE, flags);
2050 }
2051 EXPORT_SYMBOL_GPL(alloc_free_mem_region);
2052 #endif /* CONFIG_GET_FREE_REGION */
2053
strict_iomem(char * str)2054 static int __init strict_iomem(char *str)
2055 {
2056 if (strstr(str, "relaxed"))
2057 strict_iomem_checks = 0;
2058 if (strstr(str, "strict"))
2059 strict_iomem_checks = 1;
2060 return 1;
2061 }
2062
iomem_fs_init_fs_context(struct fs_context * fc)2063 static int iomem_fs_init_fs_context(struct fs_context *fc)
2064 {
2065 return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
2066 }
2067
2068 static struct file_system_type iomem_fs_type = {
2069 .name = "iomem",
2070 .owner = THIS_MODULE,
2071 .init_fs_context = iomem_fs_init_fs_context,
2072 .kill_sb = kill_anon_super,
2073 };
2074
iomem_init_inode(void)2075 static int __init iomem_init_inode(void)
2076 {
2077 static struct vfsmount *iomem_vfs_mount;
2078 static int iomem_fs_cnt;
2079 struct inode *inode;
2080 int rc;
2081
2082 rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2083 if (rc < 0) {
2084 pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2085 return rc;
2086 }
2087
2088 inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2089 if (IS_ERR(inode)) {
2090 rc = PTR_ERR(inode);
2091 pr_err("Cannot allocate inode for iomem: %d\n", rc);
2092 simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2093 return rc;
2094 }
2095
2096 /*
2097 * Publish iomem revocation inode initialized.
2098 * Pairs with smp_load_acquire() in revoke_iomem().
2099 */
2100 smp_store_release(&iomem_inode, inode);
2101
2102 return 0;
2103 }
2104
2105 fs_initcall(iomem_init_inode);
2106
2107 __setup("iomem=", strict_iomem);
2108