1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/reboot.c
4 *
5 * Copyright (C) 2013 Linus Torvalds
6 */
7
8 #define pr_fmt(fmt) "reboot: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/ctype.h>
12 #include <linux/export.h>
13 #include <linux/kexec.h>
14 #include <linux/kmod.h>
15 #include <linux/kmsg_dump.h>
16 #include <linux/reboot.h>
17 #include <linux/suspend.h>
18 #include <linux/syscalls.h>
19 #include <linux/syscore_ops.h>
20 #include <linux/uaccess.h>
21
22 /*
23 * this indicates whether you can reboot with ctrl-alt-del: the default is yes
24 */
25
26 static int C_A_D = 1;
27 struct pid *cad_pid;
28 EXPORT_SYMBOL(cad_pid);
29
30 #if defined(CONFIG_ARM)
31 #define DEFAULT_REBOOT_MODE = REBOOT_HARD
32 #else
33 #define DEFAULT_REBOOT_MODE
34 #endif
35 enum reboot_mode reboot_mode DEFAULT_REBOOT_MODE;
36 EXPORT_SYMBOL_GPL(reboot_mode);
37 enum reboot_mode panic_reboot_mode = REBOOT_UNDEFINED;
38
39 static enum hw_protection_action hw_protection_action = HWPROT_ACT_SHUTDOWN;
40
41 /*
42 * This variable is used privately to keep track of whether or not
43 * reboot_type is still set to its default value (i.e., reboot= hasn't
44 * been set on the command line). This is needed so that we can
45 * suppress DMI scanning for reboot quirks. Without it, it's
46 * impossible to override a faulty reboot quirk without recompiling.
47 */
48 int reboot_default = 1;
49 int reboot_cpu;
50 enum reboot_type reboot_type = BOOT_ACPI;
51 int reboot_force;
52
53 struct sys_off_handler {
54 struct notifier_block nb;
55 int (*sys_off_cb)(struct sys_off_data *data);
56 void *cb_data;
57 enum sys_off_mode mode;
58 bool blocking;
59 void *list;
60 struct device *dev;
61 };
62
63 /*
64 * This variable is used to indicate if a halt was initiated instead of a
65 * reboot when the reboot call was invoked with LINUX_REBOOT_CMD_POWER_OFF, but
66 * the system cannot be powered off. This allowes kernel_halt() to notify users
67 * of that.
68 */
69 static bool poweroff_fallback_to_halt;
70
71 /*
72 * Temporary stub that prevents linkage failure while we're in process
73 * of removing all uses of legacy pm_power_off() around the kernel.
74 */
75 void __weak (*pm_power_off)(void);
76
77 /*
78 * Notifier list for kernel code which wants to be called
79 * at shutdown. This is used to stop any idling DMA operations
80 * and the like.
81 */
82 static BLOCKING_NOTIFIER_HEAD(reboot_notifier_list);
83
84 /**
85 * emergency_restart - reboot the system
86 *
87 * Without shutting down any hardware or taking any locks
88 * reboot the system. This is called when we know we are in
89 * trouble so this is our best effort to reboot. This is
90 * safe to call in interrupt context.
91 */
emergency_restart(void)92 void emergency_restart(void)
93 {
94 kmsg_dump(KMSG_DUMP_EMERG);
95 system_state = SYSTEM_RESTART;
96 machine_emergency_restart();
97 }
98 EXPORT_SYMBOL_GPL(emergency_restart);
99
kernel_restart_prepare(char * cmd)100 void kernel_restart_prepare(char *cmd)
101 {
102 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
103 system_state = SYSTEM_RESTART;
104 usermodehelper_disable();
105 device_shutdown();
106 }
107
108 /**
109 * register_reboot_notifier - Register function to be called at reboot time
110 * @nb: Info about notifier function to be called
111 *
112 * Registers a function with the list of functions
113 * to be called at reboot time.
114 *
115 * Currently always returns zero, as blocking_notifier_chain_register()
116 * always returns zero.
117 */
register_reboot_notifier(struct notifier_block * nb)118 int register_reboot_notifier(struct notifier_block *nb)
119 {
120 return blocking_notifier_chain_register(&reboot_notifier_list, nb);
121 }
122 EXPORT_SYMBOL(register_reboot_notifier);
123
124 /**
125 * unregister_reboot_notifier - Unregister previously registered reboot notifier
126 * @nb: Hook to be unregistered
127 *
128 * Unregisters a previously registered reboot
129 * notifier function.
130 *
131 * Returns zero on success, or %-ENOENT on failure.
132 */
unregister_reboot_notifier(struct notifier_block * nb)133 int unregister_reboot_notifier(struct notifier_block *nb)
134 {
135 return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
136 }
137 EXPORT_SYMBOL(unregister_reboot_notifier);
138
devm_unregister_reboot_notifier(struct device * dev,void * res)139 static void devm_unregister_reboot_notifier(struct device *dev, void *res)
140 {
141 WARN_ON(unregister_reboot_notifier(*(struct notifier_block **)res));
142 }
143
devm_register_reboot_notifier(struct device * dev,struct notifier_block * nb)144 int devm_register_reboot_notifier(struct device *dev, struct notifier_block *nb)
145 {
146 struct notifier_block **rcnb;
147 int ret;
148
149 rcnb = devres_alloc(devm_unregister_reboot_notifier,
150 sizeof(*rcnb), GFP_KERNEL);
151 if (!rcnb)
152 return -ENOMEM;
153
154 ret = register_reboot_notifier(nb);
155 if (!ret) {
156 *rcnb = nb;
157 devres_add(dev, rcnb);
158 } else {
159 devres_free(rcnb);
160 }
161
162 return ret;
163 }
164 EXPORT_SYMBOL(devm_register_reboot_notifier);
165
166 /*
167 * Notifier list for kernel code which wants to be called
168 * to restart the system.
169 */
170 static ATOMIC_NOTIFIER_HEAD(restart_handler_list);
171
172 /**
173 * register_restart_handler - Register function to be called to reset
174 * the system
175 * @nb: Info about handler function to be called
176 * @nb->priority: Handler priority. Handlers should follow the
177 * following guidelines for setting priorities.
178 * 0: Restart handler of last resort,
179 * with limited restart capabilities
180 * 128: Default restart handler; use if no other
181 * restart handler is expected to be available,
182 * and/or if restart functionality is
183 * sufficient to restart the entire system
184 * 255: Highest priority restart handler, will
185 * preempt all other restart handlers
186 *
187 * Registers a function with code to be called to restart the
188 * system.
189 *
190 * Registered functions will be called from machine_restart as last
191 * step of the restart sequence (if the architecture specific
192 * machine_restart function calls do_kernel_restart - see below
193 * for details).
194 * Registered functions are expected to restart the system immediately.
195 * If more than one function is registered, the restart handler priority
196 * selects which function will be called first.
197 *
198 * Restart handlers are expected to be registered from non-architecture
199 * code, typically from drivers. A typical use case would be a system
200 * where restart functionality is provided through a watchdog. Multiple
201 * restart handlers may exist; for example, one restart handler might
202 * restart the entire system, while another only restarts the CPU.
203 * In such cases, the restart handler which only restarts part of the
204 * hardware is expected to register with low priority to ensure that
205 * it only runs if no other means to restart the system is available.
206 *
207 * Currently always returns zero, as atomic_notifier_chain_register()
208 * always returns zero.
209 */
register_restart_handler(struct notifier_block * nb)210 int register_restart_handler(struct notifier_block *nb)
211 {
212 return atomic_notifier_chain_register(&restart_handler_list, nb);
213 }
214 EXPORT_SYMBOL(register_restart_handler);
215
216 /**
217 * unregister_restart_handler - Unregister previously registered
218 * restart handler
219 * @nb: Hook to be unregistered
220 *
221 * Unregisters a previously registered restart handler function.
222 *
223 * Returns zero on success, or %-ENOENT on failure.
224 */
unregister_restart_handler(struct notifier_block * nb)225 int unregister_restart_handler(struct notifier_block *nb)
226 {
227 return atomic_notifier_chain_unregister(&restart_handler_list, nb);
228 }
229 EXPORT_SYMBOL(unregister_restart_handler);
230
231 /**
232 * do_kernel_restart - Execute kernel restart handler call chain
233 *
234 * @cmd: pointer to buffer containing command to execute for restart
235 * or %NULL
236 *
237 * Calls functions registered with register_restart_handler.
238 *
239 * Expected to be called from machine_restart as last step of the restart
240 * sequence.
241 *
242 * Restarts the system immediately if a restart handler function has been
243 * registered. Otherwise does nothing.
244 */
do_kernel_restart(char * cmd)245 void do_kernel_restart(char *cmd)
246 {
247 atomic_notifier_call_chain(&restart_handler_list, reboot_mode, cmd);
248 }
249
migrate_to_reboot_cpu(void)250 void migrate_to_reboot_cpu(void)
251 {
252 /* The boot cpu is always logical cpu 0 */
253 int cpu = reboot_cpu;
254
255 cpu_hotplug_disable();
256
257 /* Make certain the cpu I'm about to reboot on is online */
258 if (!cpu_online(cpu))
259 cpu = cpumask_first(cpu_online_mask);
260
261 /* Prevent races with other tasks migrating this task */
262 current->flags |= PF_NO_SETAFFINITY;
263
264 /* Make certain I only run on the appropriate processor */
265 set_cpus_allowed_ptr(current, cpumask_of(cpu));
266 }
267
268 /*
269 * Notifier list for kernel code which wants to be called
270 * to prepare system for restart.
271 */
272 static BLOCKING_NOTIFIER_HEAD(restart_prep_handler_list);
273
do_kernel_restart_prepare(void)274 static void do_kernel_restart_prepare(void)
275 {
276 blocking_notifier_call_chain(&restart_prep_handler_list, 0, NULL);
277 }
278
279 /**
280 * kernel_restart - reboot the system
281 * @cmd: pointer to buffer containing command to execute for restart
282 * or %NULL
283 *
284 * Shutdown everything and perform a clean reboot.
285 * This is not safe to call in interrupt context.
286 */
kernel_restart(char * cmd)287 void kernel_restart(char *cmd)
288 {
289 kernel_restart_prepare(cmd);
290 do_kernel_restart_prepare();
291 migrate_to_reboot_cpu();
292 syscore_shutdown();
293 if (!cmd)
294 pr_emerg("Restarting system\n");
295 else
296 pr_emerg("Restarting system with command '%s'\n", cmd);
297 kmsg_dump(KMSG_DUMP_SHUTDOWN);
298 machine_restart(cmd);
299 }
300 EXPORT_SYMBOL_GPL(kernel_restart);
301
kernel_shutdown_prepare(enum system_states state)302 static void kernel_shutdown_prepare(enum system_states state)
303 {
304 blocking_notifier_call_chain(&reboot_notifier_list,
305 (state == SYSTEM_HALT) ? SYS_HALT : SYS_POWER_OFF, NULL);
306 system_state = state;
307 usermodehelper_disable();
308 device_shutdown();
309 }
310 /**
311 * kernel_halt - halt the system
312 *
313 * Shutdown everything and perform a clean system halt.
314 */
kernel_halt(void)315 void kernel_halt(void)
316 {
317 kernel_shutdown_prepare(SYSTEM_HALT);
318 migrate_to_reboot_cpu();
319 syscore_shutdown();
320 if (poweroff_fallback_to_halt)
321 pr_emerg("Power off not available: System halted instead\n");
322 else
323 pr_emerg("System halted\n");
324 kmsg_dump(KMSG_DUMP_SHUTDOWN);
325 machine_halt();
326 }
327 EXPORT_SYMBOL_GPL(kernel_halt);
328
329 /*
330 * Notifier list for kernel code which wants to be called
331 * to prepare system for power off.
332 */
333 static BLOCKING_NOTIFIER_HEAD(power_off_prep_handler_list);
334
335 /*
336 * Notifier list for kernel code which wants to be called
337 * to power off system.
338 */
339 static ATOMIC_NOTIFIER_HEAD(power_off_handler_list);
340
sys_off_notify(struct notifier_block * nb,unsigned long mode,void * cmd)341 static int sys_off_notify(struct notifier_block *nb,
342 unsigned long mode, void *cmd)
343 {
344 struct sys_off_handler *handler;
345 struct sys_off_data data = {};
346
347 handler = container_of(nb, struct sys_off_handler, nb);
348 data.cb_data = handler->cb_data;
349 data.mode = mode;
350 data.cmd = cmd;
351 data.dev = handler->dev;
352
353 return handler->sys_off_cb(&data);
354 }
355
356 static struct sys_off_handler platform_sys_off_handler;
357
alloc_sys_off_handler(int priority)358 static struct sys_off_handler *alloc_sys_off_handler(int priority)
359 {
360 struct sys_off_handler *handler;
361 gfp_t flags;
362
363 /*
364 * Platforms like m68k can't allocate sys_off handler dynamically
365 * at the early boot time because memory allocator isn't available yet.
366 */
367 if (priority == SYS_OFF_PRIO_PLATFORM) {
368 handler = &platform_sys_off_handler;
369 if (handler->cb_data)
370 return ERR_PTR(-EBUSY);
371 } else {
372 if (system_state > SYSTEM_RUNNING)
373 flags = GFP_ATOMIC;
374 else
375 flags = GFP_KERNEL;
376
377 handler = kzalloc(sizeof(*handler), flags);
378 if (!handler)
379 return ERR_PTR(-ENOMEM);
380 }
381
382 return handler;
383 }
384
free_sys_off_handler(struct sys_off_handler * handler)385 static void free_sys_off_handler(struct sys_off_handler *handler)
386 {
387 if (handler == &platform_sys_off_handler)
388 memset(handler, 0, sizeof(*handler));
389 else
390 kfree(handler);
391 }
392
393 /**
394 * register_sys_off_handler - Register sys-off handler
395 * @mode: Sys-off mode
396 * @priority: Handler priority
397 * @callback: Callback function
398 * @cb_data: Callback argument
399 *
400 * Registers system power-off or restart handler that will be invoked
401 * at the step corresponding to the given sys-off mode. Handler's callback
402 * should return NOTIFY_DONE to permit execution of the next handler in
403 * the call chain or NOTIFY_STOP to break the chain (in error case for
404 * example).
405 *
406 * Multiple handlers can be registered at the default priority level.
407 *
408 * Only one handler can be registered at the non-default priority level,
409 * otherwise ERR_PTR(-EBUSY) is returned.
410 *
411 * Returns a new instance of struct sys_off_handler on success, or
412 * an ERR_PTR()-encoded error code otherwise.
413 */
414 struct sys_off_handler *
register_sys_off_handler(enum sys_off_mode mode,int priority,int (* callback)(struct sys_off_data * data),void * cb_data)415 register_sys_off_handler(enum sys_off_mode mode,
416 int priority,
417 int (*callback)(struct sys_off_data *data),
418 void *cb_data)
419 {
420 struct sys_off_handler *handler;
421 int err;
422
423 handler = alloc_sys_off_handler(priority);
424 if (IS_ERR(handler))
425 return handler;
426
427 switch (mode) {
428 case SYS_OFF_MODE_POWER_OFF_PREPARE:
429 handler->list = &power_off_prep_handler_list;
430 handler->blocking = true;
431 break;
432
433 case SYS_OFF_MODE_POWER_OFF:
434 handler->list = &power_off_handler_list;
435 break;
436
437 case SYS_OFF_MODE_RESTART_PREPARE:
438 handler->list = &restart_prep_handler_list;
439 handler->blocking = true;
440 break;
441
442 case SYS_OFF_MODE_RESTART:
443 handler->list = &restart_handler_list;
444 break;
445
446 default:
447 free_sys_off_handler(handler);
448 return ERR_PTR(-EINVAL);
449 }
450
451 handler->nb.notifier_call = sys_off_notify;
452 handler->nb.priority = priority;
453 handler->sys_off_cb = callback;
454 handler->cb_data = cb_data;
455 handler->mode = mode;
456
457 if (handler->blocking) {
458 if (priority == SYS_OFF_PRIO_DEFAULT)
459 err = blocking_notifier_chain_register(handler->list,
460 &handler->nb);
461 else
462 err = blocking_notifier_chain_register_unique_prio(handler->list,
463 &handler->nb);
464 } else {
465 if (priority == SYS_OFF_PRIO_DEFAULT)
466 err = atomic_notifier_chain_register(handler->list,
467 &handler->nb);
468 else
469 err = atomic_notifier_chain_register_unique_prio(handler->list,
470 &handler->nb);
471 }
472
473 if (err) {
474 free_sys_off_handler(handler);
475 return ERR_PTR(err);
476 }
477
478 return handler;
479 }
480 EXPORT_SYMBOL_GPL(register_sys_off_handler);
481
482 /**
483 * unregister_sys_off_handler - Unregister sys-off handler
484 * @handler: Sys-off handler
485 *
486 * Unregisters given sys-off handler.
487 */
unregister_sys_off_handler(struct sys_off_handler * handler)488 void unregister_sys_off_handler(struct sys_off_handler *handler)
489 {
490 int err;
491
492 if (IS_ERR_OR_NULL(handler))
493 return;
494
495 if (handler->blocking)
496 err = blocking_notifier_chain_unregister(handler->list,
497 &handler->nb);
498 else
499 err = atomic_notifier_chain_unregister(handler->list,
500 &handler->nb);
501
502 /* sanity check, shall never happen */
503 WARN_ON(err);
504
505 free_sys_off_handler(handler);
506 }
507 EXPORT_SYMBOL_GPL(unregister_sys_off_handler);
508
devm_unregister_sys_off_handler(void * data)509 static void devm_unregister_sys_off_handler(void *data)
510 {
511 struct sys_off_handler *handler = data;
512
513 unregister_sys_off_handler(handler);
514 }
515
516 /**
517 * devm_register_sys_off_handler - Register sys-off handler
518 * @dev: Device that registers handler
519 * @mode: Sys-off mode
520 * @priority: Handler priority
521 * @callback: Callback function
522 * @cb_data: Callback argument
523 *
524 * Registers resource-managed sys-off handler.
525 *
526 * Returns zero on success, or error code on failure.
527 */
devm_register_sys_off_handler(struct device * dev,enum sys_off_mode mode,int priority,int (* callback)(struct sys_off_data * data),void * cb_data)528 int devm_register_sys_off_handler(struct device *dev,
529 enum sys_off_mode mode,
530 int priority,
531 int (*callback)(struct sys_off_data *data),
532 void *cb_data)
533 {
534 struct sys_off_handler *handler;
535
536 handler = register_sys_off_handler(mode, priority, callback, cb_data);
537 if (IS_ERR(handler))
538 return PTR_ERR(handler);
539 handler->dev = dev;
540
541 return devm_add_action_or_reset(dev, devm_unregister_sys_off_handler,
542 handler);
543 }
544 EXPORT_SYMBOL_GPL(devm_register_sys_off_handler);
545
546 /**
547 * devm_register_power_off_handler - Register power-off handler
548 * @dev: Device that registers callback
549 * @callback: Callback function
550 * @cb_data: Callback's argument
551 *
552 * Registers resource-managed sys-off handler with a default priority
553 * and using power-off mode.
554 *
555 * Returns zero on success, or error code on failure.
556 */
devm_register_power_off_handler(struct device * dev,int (* callback)(struct sys_off_data * data),void * cb_data)557 int devm_register_power_off_handler(struct device *dev,
558 int (*callback)(struct sys_off_data *data),
559 void *cb_data)
560 {
561 return devm_register_sys_off_handler(dev,
562 SYS_OFF_MODE_POWER_OFF,
563 SYS_OFF_PRIO_DEFAULT,
564 callback, cb_data);
565 }
566 EXPORT_SYMBOL_GPL(devm_register_power_off_handler);
567
568 /**
569 * devm_register_restart_handler - Register restart handler
570 * @dev: Device that registers callback
571 * @callback: Callback function
572 * @cb_data: Callback's argument
573 *
574 * Registers resource-managed sys-off handler with a default priority
575 * and using restart mode.
576 *
577 * Returns zero on success, or error code on failure.
578 */
devm_register_restart_handler(struct device * dev,int (* callback)(struct sys_off_data * data),void * cb_data)579 int devm_register_restart_handler(struct device *dev,
580 int (*callback)(struct sys_off_data *data),
581 void *cb_data)
582 {
583 return devm_register_sys_off_handler(dev,
584 SYS_OFF_MODE_RESTART,
585 SYS_OFF_PRIO_DEFAULT,
586 callback, cb_data);
587 }
588 EXPORT_SYMBOL_GPL(devm_register_restart_handler);
589
590 static struct sys_off_handler *platform_power_off_handler;
591
platform_power_off_notify(struct sys_off_data * data)592 static int platform_power_off_notify(struct sys_off_data *data)
593 {
594 void (*platform_power_power_off_cb)(void) = data->cb_data;
595
596 platform_power_power_off_cb();
597
598 return NOTIFY_DONE;
599 }
600
601 /**
602 * register_platform_power_off - Register platform-level power-off callback
603 * @power_off: Power-off callback
604 *
605 * Registers power-off callback that will be called as last step
606 * of the power-off sequence. This callback is expected to be invoked
607 * for the last resort. Only one platform power-off callback is allowed
608 * to be registered at a time.
609 *
610 * Returns zero on success, or error code on failure.
611 */
register_platform_power_off(void (* power_off)(void))612 int register_platform_power_off(void (*power_off)(void))
613 {
614 struct sys_off_handler *handler;
615
616 handler = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
617 SYS_OFF_PRIO_PLATFORM,
618 platform_power_off_notify,
619 power_off);
620 if (IS_ERR(handler))
621 return PTR_ERR(handler);
622
623 platform_power_off_handler = handler;
624
625 return 0;
626 }
627 EXPORT_SYMBOL_GPL(register_platform_power_off);
628
629 /**
630 * unregister_platform_power_off - Unregister platform-level power-off callback
631 * @power_off: Power-off callback
632 *
633 * Unregisters previously registered platform power-off callback.
634 */
unregister_platform_power_off(void (* power_off)(void))635 void unregister_platform_power_off(void (*power_off)(void))
636 {
637 if (platform_power_off_handler &&
638 platform_power_off_handler->cb_data == power_off) {
639 unregister_sys_off_handler(platform_power_off_handler);
640 platform_power_off_handler = NULL;
641 }
642 }
643 EXPORT_SYMBOL_GPL(unregister_platform_power_off);
644
legacy_pm_power_off(struct sys_off_data * data)645 static int legacy_pm_power_off(struct sys_off_data *data)
646 {
647 if (pm_power_off)
648 pm_power_off();
649
650 return NOTIFY_DONE;
651 }
652
do_kernel_power_off_prepare(void)653 static void do_kernel_power_off_prepare(void)
654 {
655 blocking_notifier_call_chain(&power_off_prep_handler_list, 0, NULL);
656 }
657
658 /**
659 * do_kernel_power_off - Execute kernel power-off handler call chain
660 *
661 * Expected to be called as last step of the power-off sequence.
662 *
663 * Powers off the system immediately if a power-off handler function has
664 * been registered. Otherwise does nothing.
665 */
do_kernel_power_off(void)666 void do_kernel_power_off(void)
667 {
668 struct sys_off_handler *sys_off = NULL;
669
670 /*
671 * Register sys-off handlers for legacy PM callback. This allows
672 * legacy PM callbacks temporary co-exist with the new sys-off API.
673 *
674 * TODO: Remove legacy handlers once all legacy PM users will be
675 * switched to the sys-off based APIs.
676 */
677 if (pm_power_off)
678 sys_off = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
679 SYS_OFF_PRIO_DEFAULT,
680 legacy_pm_power_off, NULL);
681
682 atomic_notifier_call_chain(&power_off_handler_list, 0, NULL);
683
684 unregister_sys_off_handler(sys_off);
685 }
686
687 /**
688 * kernel_can_power_off - check whether system can be powered off
689 *
690 * Returns true if power-off handler is registered and system can be
691 * powered off, false otherwise.
692 */
kernel_can_power_off(void)693 bool kernel_can_power_off(void)
694 {
695 return !atomic_notifier_call_chain_is_empty(&power_off_handler_list) ||
696 pm_power_off;
697 }
698 EXPORT_SYMBOL_GPL(kernel_can_power_off);
699
700 /**
701 * kernel_power_off - power_off the system
702 *
703 * Shutdown everything and perform a clean system power_off.
704 */
kernel_power_off(void)705 void kernel_power_off(void)
706 {
707 kernel_shutdown_prepare(SYSTEM_POWER_OFF);
708 do_kernel_power_off_prepare();
709 migrate_to_reboot_cpu();
710 syscore_shutdown();
711 pr_emerg("Power down\n");
712 pr_flush(1000, true);
713 kmsg_dump(KMSG_DUMP_SHUTDOWN);
714 machine_power_off();
715 }
716 EXPORT_SYMBOL_GPL(kernel_power_off);
717
718 DEFINE_MUTEX(system_transition_mutex);
719
720 /*
721 * Reboot system call: for obvious reasons only root may call it,
722 * and even root needs to set up some magic numbers in the registers
723 * so that some mistake won't make this reboot the whole machine.
724 * You can also set the meaning of the ctrl-alt-del-key here.
725 *
726 * reboot doesn't sync: do that yourself before calling this.
727 */
SYSCALL_DEFINE4(reboot,int,magic1,int,magic2,unsigned int,cmd,void __user *,arg)728 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
729 void __user *, arg)
730 {
731 struct pid_namespace *pid_ns = task_active_pid_ns(current);
732 char buffer[256];
733 int ret = 0;
734
735 /* We only trust the superuser with rebooting the system. */
736 if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
737 return -EPERM;
738
739 /* For safety, we require "magic" arguments. */
740 if (magic1 != LINUX_REBOOT_MAGIC1 ||
741 (magic2 != LINUX_REBOOT_MAGIC2 &&
742 magic2 != LINUX_REBOOT_MAGIC2A &&
743 magic2 != LINUX_REBOOT_MAGIC2B &&
744 magic2 != LINUX_REBOOT_MAGIC2C))
745 return -EINVAL;
746
747 /*
748 * If pid namespaces are enabled and the current task is in a child
749 * pid_namespace, the command is handled by reboot_pid_ns() which will
750 * call do_exit().
751 */
752 ret = reboot_pid_ns(pid_ns, cmd);
753 if (ret)
754 return ret;
755
756 /* Instead of trying to make the power_off code look like
757 * halt when pm_power_off is not set do it the easy way.
758 */
759 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !kernel_can_power_off()) {
760 poweroff_fallback_to_halt = true;
761 cmd = LINUX_REBOOT_CMD_HALT;
762 }
763
764 mutex_lock(&system_transition_mutex);
765 switch (cmd) {
766 case LINUX_REBOOT_CMD_RESTART:
767 kernel_restart(NULL);
768 break;
769
770 case LINUX_REBOOT_CMD_CAD_ON:
771 C_A_D = 1;
772 break;
773
774 case LINUX_REBOOT_CMD_CAD_OFF:
775 C_A_D = 0;
776 break;
777
778 case LINUX_REBOOT_CMD_HALT:
779 kernel_halt();
780 do_exit(0);
781
782 case LINUX_REBOOT_CMD_POWER_OFF:
783 kernel_power_off();
784 do_exit(0);
785 break;
786
787 case LINUX_REBOOT_CMD_RESTART2:
788 ret = strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1);
789 if (ret < 0) {
790 ret = -EFAULT;
791 break;
792 }
793 buffer[sizeof(buffer) - 1] = '\0';
794
795 kernel_restart(buffer);
796 break;
797
798 #ifdef CONFIG_KEXEC_CORE
799 case LINUX_REBOOT_CMD_KEXEC:
800 ret = kernel_kexec();
801 break;
802 #endif
803
804 #ifdef CONFIG_HIBERNATION
805 case LINUX_REBOOT_CMD_SW_SUSPEND:
806 ret = hibernate();
807 break;
808 #endif
809
810 default:
811 ret = -EINVAL;
812 break;
813 }
814 mutex_unlock(&system_transition_mutex);
815 return ret;
816 }
817
deferred_cad(struct work_struct * dummy)818 static void deferred_cad(struct work_struct *dummy)
819 {
820 kernel_restart(NULL);
821 }
822
823 /*
824 * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
825 * As it's called within an interrupt, it may NOT sync: the only choice
826 * is whether to reboot at once, or just ignore the ctrl-alt-del.
827 */
ctrl_alt_del(void)828 void ctrl_alt_del(void)
829 {
830 static DECLARE_WORK(cad_work, deferred_cad);
831
832 if (C_A_D)
833 schedule_work(&cad_work);
834 else
835 kill_cad_pid(SIGINT, 1);
836 }
837
838 #define POWEROFF_CMD_PATH_LEN 256
839 static char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
840 static const char reboot_cmd[] = "/sbin/reboot";
841
run_cmd(const char * cmd)842 static int run_cmd(const char *cmd)
843 {
844 char **argv;
845 static char *envp[] = {
846 "HOME=/",
847 "PATH=/sbin:/bin:/usr/sbin:/usr/bin",
848 NULL
849 };
850 int ret;
851 argv = argv_split(GFP_KERNEL, cmd, NULL);
852 if (argv) {
853 ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
854 argv_free(argv);
855 } else {
856 ret = -ENOMEM;
857 }
858
859 return ret;
860 }
861
__orderly_reboot(void)862 static int __orderly_reboot(void)
863 {
864 int ret;
865
866 ret = run_cmd(reboot_cmd);
867
868 if (ret) {
869 pr_warn("Failed to start orderly reboot: forcing the issue\n");
870 emergency_sync();
871 kernel_restart(NULL);
872 }
873
874 return ret;
875 }
876
__orderly_poweroff(bool force)877 static int __orderly_poweroff(bool force)
878 {
879 int ret;
880
881 ret = run_cmd(poweroff_cmd);
882
883 if (ret && force) {
884 pr_warn("Failed to start orderly shutdown: forcing the issue\n");
885
886 /*
887 * I guess this should try to kick off some daemon to sync and
888 * poweroff asap. Or not even bother syncing if we're doing an
889 * emergency shutdown?
890 */
891 emergency_sync();
892 kernel_power_off();
893 }
894
895 return ret;
896 }
897
898 static bool poweroff_force;
899
poweroff_work_func(struct work_struct * work)900 static void poweroff_work_func(struct work_struct *work)
901 {
902 __orderly_poweroff(poweroff_force);
903 }
904
905 static DECLARE_WORK(poweroff_work, poweroff_work_func);
906
907 /**
908 * orderly_poweroff - Trigger an orderly system poweroff
909 * @force: force poweroff if command execution fails
910 *
911 * This may be called from any context to trigger a system shutdown.
912 * If the orderly shutdown fails, it will force an immediate shutdown.
913 */
orderly_poweroff(bool force)914 void orderly_poweroff(bool force)
915 {
916 if (force) /* do not override the pending "true" */
917 poweroff_force = true;
918 schedule_work(&poweroff_work);
919 }
920 EXPORT_SYMBOL_GPL(orderly_poweroff);
921
reboot_work_func(struct work_struct * work)922 static void reboot_work_func(struct work_struct *work)
923 {
924 __orderly_reboot();
925 }
926
927 static DECLARE_WORK(reboot_work, reboot_work_func);
928
929 /**
930 * orderly_reboot - Trigger an orderly system reboot
931 *
932 * This may be called from any context to trigger a system reboot.
933 * If the orderly reboot fails, it will force an immediate reboot.
934 */
orderly_reboot(void)935 void orderly_reboot(void)
936 {
937 schedule_work(&reboot_work);
938 }
939 EXPORT_SYMBOL_GPL(orderly_reboot);
940
hw_protection_action_str(enum hw_protection_action action)941 static const char *hw_protection_action_str(enum hw_protection_action action)
942 {
943 switch (action) {
944 case HWPROT_ACT_SHUTDOWN:
945 return "shutdown";
946 case HWPROT_ACT_REBOOT:
947 return "reboot";
948 default:
949 return "undefined";
950 }
951 }
952
953 static enum hw_protection_action hw_failure_emergency_action;
954
955 /**
956 * hw_failure_emergency_action_func - emergency action work after a known delay
957 * @work: work_struct associated with the emergency action function
958 *
959 * This function is called in very critical situations to force
960 * a kernel poweroff or reboot after a configurable timeout value.
961 */
hw_failure_emergency_action_func(struct work_struct * work)962 static void hw_failure_emergency_action_func(struct work_struct *work)
963 {
964 const char *action_str = hw_protection_action_str(hw_failure_emergency_action);
965
966 pr_emerg("Hardware protection timed-out. Trying forced %s\n",
967 action_str);
968
969 /*
970 * We have reached here after the emergency action waiting period has
971 * expired. This means orderly_poweroff/reboot has not been able to
972 * shut off the system for some reason.
973 *
974 * Try to shut off the system immediately if possible
975 */
976
977 if (hw_failure_emergency_action == HWPROT_ACT_REBOOT)
978 kernel_restart(NULL);
979 else
980 kernel_power_off();
981
982 /*
983 * Worst of the worst case trigger emergency restart
984 */
985 pr_emerg("Hardware protection %s failed. Trying emergency restart\n",
986 action_str);
987 emergency_restart();
988 }
989
990 static DECLARE_DELAYED_WORK(hw_failure_emergency_action_work,
991 hw_failure_emergency_action_func);
992
993 /**
994 * hw_failure_emergency_schedule - Schedule an emergency system shutdown or reboot
995 *
996 * @action: The hardware protection action to be taken
997 * @action_delay_ms: Time in milliseconds to elapse before triggering action
998 *
999 * This may be called from any critical situation to trigger a system shutdown
1000 * or reboot after a given period of time.
1001 * If time is negative this is not scheduled.
1002 */
hw_failure_emergency_schedule(enum hw_protection_action action,int action_delay_ms)1003 static void hw_failure_emergency_schedule(enum hw_protection_action action,
1004 int action_delay_ms)
1005 {
1006 if (action_delay_ms <= 0)
1007 return;
1008 hw_failure_emergency_action = action;
1009 schedule_delayed_work(&hw_failure_emergency_action_work,
1010 msecs_to_jiffies(action_delay_ms));
1011 }
1012
1013 /**
1014 * __hw_protection_trigger - Trigger an emergency system shutdown or reboot
1015 *
1016 * @reason: Reason of emergency shutdown or reboot to be printed.
1017 * @ms_until_forced: Time to wait for orderly shutdown or reboot before
1018 * triggering it. Negative value disables the forced
1019 * shutdown or reboot.
1020 * @action: The hardware protection action to be taken.
1021 *
1022 * Initiate an emergency system shutdown or reboot in order to protect
1023 * hardware from further damage. Usage examples include a thermal protection.
1024 * NOTE: The request is ignored if protection shutdown or reboot is already
1025 * pending even if the previous request has given a large timeout for forced
1026 * shutdown/reboot.
1027 */
__hw_protection_trigger(const char * reason,int ms_until_forced,enum hw_protection_action action)1028 void __hw_protection_trigger(const char *reason, int ms_until_forced,
1029 enum hw_protection_action action)
1030 {
1031 static atomic_t allow_proceed = ATOMIC_INIT(1);
1032
1033 if (action == HWPROT_ACT_DEFAULT)
1034 action = hw_protection_action;
1035
1036 pr_emerg("HARDWARE PROTECTION %s (%s)\n",
1037 hw_protection_action_str(action), reason);
1038
1039 /* Shutdown should be initiated only once. */
1040 if (!atomic_dec_and_test(&allow_proceed))
1041 return;
1042
1043 /*
1044 * Queue a backup emergency shutdown in the event of
1045 * orderly_poweroff failure
1046 */
1047 hw_failure_emergency_schedule(action, ms_until_forced);
1048 if (action == HWPROT_ACT_REBOOT)
1049 orderly_reboot();
1050 else
1051 orderly_poweroff(true);
1052 }
1053 EXPORT_SYMBOL_GPL(__hw_protection_trigger);
1054
hw_protection_action_parse(const char * str,enum hw_protection_action * action)1055 static bool hw_protection_action_parse(const char *str,
1056 enum hw_protection_action *action)
1057 {
1058 if (sysfs_streq(str, "shutdown"))
1059 *action = HWPROT_ACT_SHUTDOWN;
1060 else if (sysfs_streq(str, "reboot"))
1061 *action = HWPROT_ACT_REBOOT;
1062 else
1063 return false;
1064
1065 return true;
1066 }
1067
hw_protection_setup(char * str)1068 static int __init hw_protection_setup(char *str)
1069 {
1070 hw_protection_action_parse(str, &hw_protection_action);
1071 return 1;
1072 }
1073 __setup("hw_protection=", hw_protection_setup);
1074
1075 #ifdef CONFIG_SYSFS
hw_protection_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1076 static ssize_t hw_protection_show(struct kobject *kobj,
1077 struct kobj_attribute *attr, char *buf)
1078 {
1079 return sysfs_emit(buf, "%s\n",
1080 hw_protection_action_str(hw_protection_action));
1081 }
hw_protection_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1082 static ssize_t hw_protection_store(struct kobject *kobj,
1083 struct kobj_attribute *attr, const char *buf,
1084 size_t count)
1085 {
1086 if (!capable(CAP_SYS_ADMIN))
1087 return -EPERM;
1088
1089 if (!hw_protection_action_parse(buf, &hw_protection_action))
1090 return -EINVAL;
1091
1092 return count;
1093 }
1094 static struct kobj_attribute hw_protection_attr = __ATTR_RW(hw_protection);
1095 #endif
1096
reboot_setup(char * str)1097 static int __init reboot_setup(char *str)
1098 {
1099 for (;;) {
1100 enum reboot_mode *mode;
1101
1102 /*
1103 * Having anything passed on the command line via
1104 * reboot= will cause us to disable DMI checking
1105 * below.
1106 */
1107 reboot_default = 0;
1108
1109 if (!strncmp(str, "panic_", 6)) {
1110 mode = &panic_reboot_mode;
1111 str += 6;
1112 } else {
1113 mode = &reboot_mode;
1114 }
1115
1116 switch (*str) {
1117 case 'w':
1118 *mode = REBOOT_WARM;
1119 break;
1120
1121 case 'c':
1122 *mode = REBOOT_COLD;
1123 break;
1124
1125 case 'h':
1126 *mode = REBOOT_HARD;
1127 break;
1128
1129 case 's':
1130 /*
1131 * reboot_cpu is s[mp]#### with #### being the processor
1132 * to be used for rebooting. Skip 's' or 'smp' prefix.
1133 */
1134 str += str[1] == 'm' && str[2] == 'p' ? 3 : 1;
1135
1136 if (isdigit(str[0])) {
1137 int cpu = simple_strtoul(str, NULL, 0);
1138
1139 if (cpu >= num_possible_cpus()) {
1140 pr_err("Ignoring the CPU number in reboot= option. "
1141 "CPU %d exceeds possible cpu number %d\n",
1142 cpu, num_possible_cpus());
1143 break;
1144 }
1145 reboot_cpu = cpu;
1146 } else
1147 *mode = REBOOT_SOFT;
1148 break;
1149
1150 case 'g':
1151 *mode = REBOOT_GPIO;
1152 break;
1153
1154 case 'b':
1155 case 'a':
1156 case 'k':
1157 case 't':
1158 case 'e':
1159 case 'p':
1160 reboot_type = *str;
1161 break;
1162
1163 case 'f':
1164 reboot_force = 1;
1165 break;
1166 }
1167
1168 str = strchr(str, ',');
1169 if (str)
1170 str++;
1171 else
1172 break;
1173 }
1174 return 1;
1175 }
1176 __setup("reboot=", reboot_setup);
1177
1178 #ifdef CONFIG_SYSFS
1179
1180 #define REBOOT_COLD_STR "cold"
1181 #define REBOOT_WARM_STR "warm"
1182 #define REBOOT_HARD_STR "hard"
1183 #define REBOOT_SOFT_STR "soft"
1184 #define REBOOT_GPIO_STR "gpio"
1185 #define REBOOT_UNDEFINED_STR "undefined"
1186
1187 #define BOOT_TRIPLE_STR "triple"
1188 #define BOOT_KBD_STR "kbd"
1189 #define BOOT_BIOS_STR "bios"
1190 #define BOOT_ACPI_STR "acpi"
1191 #define BOOT_EFI_STR "efi"
1192 #define BOOT_PCI_STR "pci"
1193
mode_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1194 static ssize_t mode_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1195 {
1196 const char *val;
1197
1198 switch (reboot_mode) {
1199 case REBOOT_COLD:
1200 val = REBOOT_COLD_STR;
1201 break;
1202 case REBOOT_WARM:
1203 val = REBOOT_WARM_STR;
1204 break;
1205 case REBOOT_HARD:
1206 val = REBOOT_HARD_STR;
1207 break;
1208 case REBOOT_SOFT:
1209 val = REBOOT_SOFT_STR;
1210 break;
1211 case REBOOT_GPIO:
1212 val = REBOOT_GPIO_STR;
1213 break;
1214 default:
1215 val = REBOOT_UNDEFINED_STR;
1216 }
1217
1218 return sysfs_emit(buf, "%s\n", val);
1219 }
mode_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1220 static ssize_t mode_store(struct kobject *kobj, struct kobj_attribute *attr,
1221 const char *buf, size_t count)
1222 {
1223 if (!capable(CAP_SYS_BOOT))
1224 return -EPERM;
1225
1226 if (!strncmp(buf, REBOOT_COLD_STR, strlen(REBOOT_COLD_STR)))
1227 reboot_mode = REBOOT_COLD;
1228 else if (!strncmp(buf, REBOOT_WARM_STR, strlen(REBOOT_WARM_STR)))
1229 reboot_mode = REBOOT_WARM;
1230 else if (!strncmp(buf, REBOOT_HARD_STR, strlen(REBOOT_HARD_STR)))
1231 reboot_mode = REBOOT_HARD;
1232 else if (!strncmp(buf, REBOOT_SOFT_STR, strlen(REBOOT_SOFT_STR)))
1233 reboot_mode = REBOOT_SOFT;
1234 else if (!strncmp(buf, REBOOT_GPIO_STR, strlen(REBOOT_GPIO_STR)))
1235 reboot_mode = REBOOT_GPIO;
1236 else
1237 return -EINVAL;
1238
1239 reboot_default = 0;
1240
1241 return count;
1242 }
1243 static struct kobj_attribute reboot_mode_attr = __ATTR_RW(mode);
1244
1245 #ifdef CONFIG_X86
force_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1246 static ssize_t force_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1247 {
1248 return sysfs_emit(buf, "%d\n", reboot_force);
1249 }
force_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1250 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
1251 const char *buf, size_t count)
1252 {
1253 bool res;
1254
1255 if (!capable(CAP_SYS_BOOT))
1256 return -EPERM;
1257
1258 if (kstrtobool(buf, &res))
1259 return -EINVAL;
1260
1261 reboot_default = 0;
1262 reboot_force = res;
1263
1264 return count;
1265 }
1266 static struct kobj_attribute reboot_force_attr = __ATTR_RW(force);
1267
type_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1268 static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1269 {
1270 const char *val;
1271
1272 switch (reboot_type) {
1273 case BOOT_TRIPLE:
1274 val = BOOT_TRIPLE_STR;
1275 break;
1276 case BOOT_KBD:
1277 val = BOOT_KBD_STR;
1278 break;
1279 case BOOT_BIOS:
1280 val = BOOT_BIOS_STR;
1281 break;
1282 case BOOT_ACPI:
1283 val = BOOT_ACPI_STR;
1284 break;
1285 case BOOT_EFI:
1286 val = BOOT_EFI_STR;
1287 break;
1288 case BOOT_CF9_FORCE:
1289 val = BOOT_PCI_STR;
1290 break;
1291 default:
1292 val = REBOOT_UNDEFINED_STR;
1293 }
1294
1295 return sysfs_emit(buf, "%s\n", val);
1296 }
type_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1297 static ssize_t type_store(struct kobject *kobj, struct kobj_attribute *attr,
1298 const char *buf, size_t count)
1299 {
1300 if (!capable(CAP_SYS_BOOT))
1301 return -EPERM;
1302
1303 if (!strncmp(buf, BOOT_TRIPLE_STR, strlen(BOOT_TRIPLE_STR)))
1304 reboot_type = BOOT_TRIPLE;
1305 else if (!strncmp(buf, BOOT_KBD_STR, strlen(BOOT_KBD_STR)))
1306 reboot_type = BOOT_KBD;
1307 else if (!strncmp(buf, BOOT_BIOS_STR, strlen(BOOT_BIOS_STR)))
1308 reboot_type = BOOT_BIOS;
1309 else if (!strncmp(buf, BOOT_ACPI_STR, strlen(BOOT_ACPI_STR)))
1310 reboot_type = BOOT_ACPI;
1311 else if (!strncmp(buf, BOOT_EFI_STR, strlen(BOOT_EFI_STR)))
1312 reboot_type = BOOT_EFI;
1313 else if (!strncmp(buf, BOOT_PCI_STR, strlen(BOOT_PCI_STR)))
1314 reboot_type = BOOT_CF9_FORCE;
1315 else
1316 return -EINVAL;
1317
1318 reboot_default = 0;
1319
1320 return count;
1321 }
1322 static struct kobj_attribute reboot_type_attr = __ATTR_RW(type);
1323 #endif
1324
1325 #ifdef CONFIG_SMP
cpu_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1326 static ssize_t cpu_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1327 {
1328 return sysfs_emit(buf, "%d\n", reboot_cpu);
1329 }
cpu_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1330 static ssize_t cpu_store(struct kobject *kobj, struct kobj_attribute *attr,
1331 const char *buf, size_t count)
1332 {
1333 unsigned int cpunum;
1334 int rc;
1335
1336 if (!capable(CAP_SYS_BOOT))
1337 return -EPERM;
1338
1339 rc = kstrtouint(buf, 0, &cpunum);
1340
1341 if (rc)
1342 return rc;
1343
1344 if (cpunum >= num_possible_cpus())
1345 return -ERANGE;
1346
1347 reboot_default = 0;
1348 reboot_cpu = cpunum;
1349
1350 return count;
1351 }
1352 static struct kobj_attribute reboot_cpu_attr = __ATTR_RW(cpu);
1353 #endif
1354
1355 static struct attribute *reboot_attrs[] = {
1356 &hw_protection_attr.attr,
1357 &reboot_mode_attr.attr,
1358 #ifdef CONFIG_X86
1359 &reboot_force_attr.attr,
1360 &reboot_type_attr.attr,
1361 #endif
1362 #ifdef CONFIG_SMP
1363 &reboot_cpu_attr.attr,
1364 #endif
1365 NULL,
1366 };
1367
1368 #ifdef CONFIG_SYSCTL
1369 static const struct ctl_table kern_reboot_table[] = {
1370 {
1371 .procname = "poweroff_cmd",
1372 .data = &poweroff_cmd,
1373 .maxlen = POWEROFF_CMD_PATH_LEN,
1374 .mode = 0644,
1375 .proc_handler = proc_dostring,
1376 },
1377 {
1378 .procname = "ctrl-alt-del",
1379 .data = &C_A_D,
1380 .maxlen = sizeof(int),
1381 .mode = 0644,
1382 .proc_handler = proc_dointvec,
1383 },
1384 };
1385
kernel_reboot_sysctls_init(void)1386 static void __init kernel_reboot_sysctls_init(void)
1387 {
1388 register_sysctl_init("kernel", kern_reboot_table);
1389 }
1390 #else
1391 #define kernel_reboot_sysctls_init() do { } while (0)
1392 #endif /* CONFIG_SYSCTL */
1393
1394 static const struct attribute_group reboot_attr_group = {
1395 .attrs = reboot_attrs,
1396 };
1397
reboot_ksysfs_init(void)1398 static int __init reboot_ksysfs_init(void)
1399 {
1400 struct kobject *reboot_kobj;
1401 int ret;
1402
1403 reboot_kobj = kobject_create_and_add("reboot", kernel_kobj);
1404 if (!reboot_kobj)
1405 return -ENOMEM;
1406
1407 ret = sysfs_create_group(reboot_kobj, &reboot_attr_group);
1408 if (ret) {
1409 kobject_put(reboot_kobj);
1410 return ret;
1411 }
1412
1413 kernel_reboot_sysctls_init();
1414
1415 return 0;
1416 }
1417 late_initcall(reboot_ksysfs_init);
1418
1419 #endif
1420