1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic pidhash and scalable, time-bounded PID allocator
4  *
5  * (C) 2002-2003 Nadia Yvette Chambers, IBM
6  * (C) 2004 Nadia Yvette Chambers, Oracle
7  * (C) 2002-2004 Ingo Molnar, Red Hat
8  *
9  * pid-structures are backing objects for tasks sharing a given ID to chain
10  * against. There is very little to them aside from hashing them and
11  * parking tasks using given ID's on a list.
12  *
13  * The hash is always changed with the tasklist_lock write-acquired,
14  * and the hash is only accessed with the tasklist_lock at least
15  * read-acquired, so there's no additional SMP locking needed here.
16  *
17  * We have a list of bitmap pages, which bitmaps represent the PID space.
18  * Allocating and freeing PIDs is completely lockless. The worst-case
19  * allocation scenario when all but one out of 1 million PIDs possible are
20  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22  *
23  * Pid namespaces:
24  *    (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
25  *    (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
26  *     Many thanks to Oleg Nesterov for comments and help
27  *
28  */
29 
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45 #include <linux/pidfs.h>
46 #include <linux/seqlock.h>
47 #include <net/sock.h>
48 #include <uapi/linux/pidfd.h>
49 
50 struct pid init_struct_pid = {
51 	.count		= REFCOUNT_INIT(1),
52 	.tasks		= {
53 		{ .first = NULL },
54 		{ .first = NULL },
55 		{ .first = NULL },
56 	},
57 	.level		= 0,
58 	.numbers	= { {
59 		.nr		= 0,
60 		.ns		= &init_pid_ns,
61 	}, }
62 };
63 
64 static int pid_max_min = RESERVED_PIDS + 1;
65 static int pid_max_max = PID_MAX_LIMIT;
66 
67 /*
68  * PID-map pages start out as NULL, they get allocated upon
69  * first use and are never deallocated. This way a low pid_max
70  * value does not cause lots of bitmaps to be allocated, but
71  * the scheme scales to up to 4 million PIDs, runtime.
72  */
73 struct pid_namespace init_pid_ns = {
74 	.ns.count = REFCOUNT_INIT(2),
75 	.idr = IDR_INIT(init_pid_ns.idr),
76 	.pid_allocated = PIDNS_ADDING,
77 	.level = 0,
78 	.child_reaper = &init_task,
79 	.user_ns = &init_user_ns,
80 	.ns.inum = PROC_PID_INIT_INO,
81 #ifdef CONFIG_PID_NS
82 	.ns.ops = &pidns_operations,
83 #endif
84 	.pid_max = PID_MAX_DEFAULT,
85 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
86 	.memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
87 #endif
88 };
89 EXPORT_SYMBOL_GPL(init_pid_ns);
90 
91 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
92 seqcount_spinlock_t pidmap_lock_seq = SEQCNT_SPINLOCK_ZERO(pidmap_lock_seq, &pidmap_lock);
93 
put_pid(struct pid * pid)94 void put_pid(struct pid *pid)
95 {
96 	struct pid_namespace *ns;
97 
98 	if (!pid)
99 		return;
100 
101 	ns = pid->numbers[pid->level].ns;
102 	if (refcount_dec_and_test(&pid->count)) {
103 		kmem_cache_free(ns->pid_cachep, pid);
104 		put_pid_ns(ns);
105 	}
106 }
107 EXPORT_SYMBOL_GPL(put_pid);
108 
delayed_put_pid(struct rcu_head * rhp)109 static void delayed_put_pid(struct rcu_head *rhp)
110 {
111 	struct pid *pid = container_of(rhp, struct pid, rcu);
112 	put_pid(pid);
113 }
114 
free_pid(struct pid * pid)115 void free_pid(struct pid *pid)
116 {
117 	int i;
118 
119 	lockdep_assert_not_held(&tasklist_lock);
120 
121 	spin_lock(&pidmap_lock);
122 	for (i = 0; i <= pid->level; i++) {
123 		struct upid *upid = pid->numbers + i;
124 		struct pid_namespace *ns = upid->ns;
125 		switch (--ns->pid_allocated) {
126 		case 2:
127 		case 1:
128 			/* When all that is left in the pid namespace
129 			 * is the reaper wake up the reaper.  The reaper
130 			 * may be sleeping in zap_pid_ns_processes().
131 			 */
132 			wake_up_process(ns->child_reaper);
133 			break;
134 		case PIDNS_ADDING:
135 			/* Handle a fork failure of the first process */
136 			WARN_ON(ns->child_reaper);
137 			ns->pid_allocated = 0;
138 			break;
139 		}
140 
141 		idr_remove(&ns->idr, upid->nr);
142 	}
143 	pidfs_remove_pid(pid);
144 	spin_unlock(&pidmap_lock);
145 
146 	call_rcu(&pid->rcu, delayed_put_pid);
147 }
148 
free_pids(struct pid ** pids)149 void free_pids(struct pid **pids)
150 {
151 	int tmp;
152 
153 	/*
154 	 * This can batch pidmap_lock.
155 	 */
156 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
157 		if (pids[tmp])
158 			free_pid(pids[tmp]);
159 }
160 
alloc_pid(struct pid_namespace * ns,pid_t * set_tid,size_t set_tid_size)161 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
162 		      size_t set_tid_size)
163 {
164 	struct pid *pid;
165 	enum pid_type type;
166 	int i, nr;
167 	struct pid_namespace *tmp;
168 	struct upid *upid;
169 	int retval = -ENOMEM;
170 
171 	/*
172 	 * set_tid_size contains the size of the set_tid array. Starting at
173 	 * the most nested currently active PID namespace it tells alloc_pid()
174 	 * which PID to set for a process in that most nested PID namespace
175 	 * up to set_tid_size PID namespaces. It does not have to set the PID
176 	 * for a process in all nested PID namespaces but set_tid_size must
177 	 * never be greater than the current ns->level + 1.
178 	 */
179 	if (set_tid_size > ns->level + 1)
180 		return ERR_PTR(-EINVAL);
181 
182 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
183 	if (!pid)
184 		return ERR_PTR(retval);
185 
186 	tmp = ns;
187 	pid->level = ns->level;
188 
189 	for (i = ns->level; i >= 0; i--) {
190 		int tid = 0;
191 		int pid_max = READ_ONCE(tmp->pid_max);
192 
193 		if (set_tid_size) {
194 			tid = set_tid[ns->level - i];
195 
196 			retval = -EINVAL;
197 			if (tid < 1 || tid >= pid_max)
198 				goto out_free;
199 			/*
200 			 * Also fail if a PID != 1 is requested and
201 			 * no PID 1 exists.
202 			 */
203 			if (tid != 1 && !tmp->child_reaper)
204 				goto out_free;
205 			retval = -EPERM;
206 			if (!checkpoint_restore_ns_capable(tmp->user_ns))
207 				goto out_free;
208 			set_tid_size--;
209 		}
210 
211 		idr_preload(GFP_KERNEL);
212 		spin_lock(&pidmap_lock);
213 
214 		if (tid) {
215 			nr = idr_alloc(&tmp->idr, NULL, tid,
216 				       tid + 1, GFP_ATOMIC);
217 			/*
218 			 * If ENOSPC is returned it means that the PID is
219 			 * alreay in use. Return EEXIST in that case.
220 			 */
221 			if (nr == -ENOSPC)
222 				nr = -EEXIST;
223 		} else {
224 			int pid_min = 1;
225 			/*
226 			 * init really needs pid 1, but after reaching the
227 			 * maximum wrap back to RESERVED_PIDS
228 			 */
229 			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
230 				pid_min = RESERVED_PIDS;
231 
232 			/*
233 			 * Store a null pointer so find_pid_ns does not find
234 			 * a partially initialized PID (see below).
235 			 */
236 			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
237 					      pid_max, GFP_ATOMIC);
238 		}
239 		spin_unlock(&pidmap_lock);
240 		idr_preload_end();
241 
242 		if (nr < 0) {
243 			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
244 			goto out_free;
245 		}
246 
247 		pid->numbers[i].nr = nr;
248 		pid->numbers[i].ns = tmp;
249 		tmp = tmp->parent;
250 	}
251 
252 	/*
253 	 * ENOMEM is not the most obvious choice especially for the case
254 	 * where the child subreaper has already exited and the pid
255 	 * namespace denies the creation of any new processes. But ENOMEM
256 	 * is what we have exposed to userspace for a long time and it is
257 	 * documented behavior for pid namespaces. So we can't easily
258 	 * change it even if there were an error code better suited.
259 	 */
260 	retval = -ENOMEM;
261 
262 	get_pid_ns(ns);
263 	refcount_set(&pid->count, 1);
264 	spin_lock_init(&pid->lock);
265 	for (type = 0; type < PIDTYPE_MAX; ++type)
266 		INIT_HLIST_HEAD(&pid->tasks[type]);
267 
268 	init_waitqueue_head(&pid->wait_pidfd);
269 	INIT_HLIST_HEAD(&pid->inodes);
270 
271 	upid = pid->numbers + ns->level;
272 	idr_preload(GFP_KERNEL);
273 	spin_lock(&pidmap_lock);
274 	if (!(ns->pid_allocated & PIDNS_ADDING))
275 		goto out_unlock;
276 	pidfs_add_pid(pid);
277 	for ( ; upid >= pid->numbers; --upid) {
278 		/* Make the PID visible to find_pid_ns. */
279 		idr_replace(&upid->ns->idr, pid, upid->nr);
280 		upid->ns->pid_allocated++;
281 	}
282 	spin_unlock(&pidmap_lock);
283 	idr_preload_end();
284 
285 	return pid;
286 
287 out_unlock:
288 	spin_unlock(&pidmap_lock);
289 	idr_preload_end();
290 	put_pid_ns(ns);
291 
292 out_free:
293 	spin_lock(&pidmap_lock);
294 	while (++i <= ns->level) {
295 		upid = pid->numbers + i;
296 		idr_remove(&upid->ns->idr, upid->nr);
297 	}
298 
299 	/* On failure to allocate the first pid, reset the state */
300 	if (ns->pid_allocated == PIDNS_ADDING)
301 		idr_set_cursor(&ns->idr, 0);
302 
303 	spin_unlock(&pidmap_lock);
304 
305 	kmem_cache_free(ns->pid_cachep, pid);
306 	return ERR_PTR(retval);
307 }
308 
disable_pid_allocation(struct pid_namespace * ns)309 void disable_pid_allocation(struct pid_namespace *ns)
310 {
311 	spin_lock(&pidmap_lock);
312 	ns->pid_allocated &= ~PIDNS_ADDING;
313 	spin_unlock(&pidmap_lock);
314 }
315 
find_pid_ns(int nr,struct pid_namespace * ns)316 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
317 {
318 	return idr_find(&ns->idr, nr);
319 }
320 EXPORT_SYMBOL_GPL(find_pid_ns);
321 
find_vpid(int nr)322 struct pid *find_vpid(int nr)
323 {
324 	return find_pid_ns(nr, task_active_pid_ns(current));
325 }
326 EXPORT_SYMBOL_GPL(find_vpid);
327 
task_pid_ptr(struct task_struct * task,enum pid_type type)328 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
329 {
330 	return (type == PIDTYPE_PID) ?
331 		&task->thread_pid :
332 		&task->signal->pids[type];
333 }
334 
335 /*
336  * attach_pid() must be called with the tasklist_lock write-held.
337  */
attach_pid(struct task_struct * task,enum pid_type type)338 void attach_pid(struct task_struct *task, enum pid_type type)
339 {
340 	struct pid *pid;
341 
342 	lockdep_assert_held_write(&tasklist_lock);
343 
344 	pid = *task_pid_ptr(task, type);
345 	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
346 }
347 
__change_pid(struct pid ** pids,struct task_struct * task,enum pid_type type,struct pid * new)348 static void __change_pid(struct pid **pids, struct task_struct *task,
349 			 enum pid_type type, struct pid *new)
350 {
351 	struct pid **pid_ptr, *pid;
352 	int tmp;
353 
354 	lockdep_assert_held_write(&tasklist_lock);
355 
356 	pid_ptr = task_pid_ptr(task, type);
357 	pid = *pid_ptr;
358 
359 	hlist_del_rcu(&task->pid_links[type]);
360 	*pid_ptr = new;
361 
362 	if (type == PIDTYPE_PID) {
363 		WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID));
364 		wake_up_all(&pid->wait_pidfd);
365 	}
366 
367 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
368 		if (pid_has_task(pid, tmp))
369 			return;
370 
371 	WARN_ON(pids[type]);
372 	pids[type] = pid;
373 }
374 
detach_pid(struct pid ** pids,struct task_struct * task,enum pid_type type)375 void detach_pid(struct pid **pids, struct task_struct *task, enum pid_type type)
376 {
377 	__change_pid(pids, task, type, NULL);
378 }
379 
change_pid(struct pid ** pids,struct task_struct * task,enum pid_type type,struct pid * pid)380 void change_pid(struct pid **pids, struct task_struct *task, enum pid_type type,
381 		struct pid *pid)
382 {
383 	__change_pid(pids, task, type, pid);
384 	attach_pid(task, type);
385 }
386 
exchange_tids(struct task_struct * left,struct task_struct * right)387 void exchange_tids(struct task_struct *left, struct task_struct *right)
388 {
389 	struct pid *pid1 = left->thread_pid;
390 	struct pid *pid2 = right->thread_pid;
391 	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
392 	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
393 
394 	lockdep_assert_held_write(&tasklist_lock);
395 
396 	/* Swap the single entry tid lists */
397 	hlists_swap_heads_rcu(head1, head2);
398 
399 	/* Swap the per task_struct pid */
400 	rcu_assign_pointer(left->thread_pid, pid2);
401 	rcu_assign_pointer(right->thread_pid, pid1);
402 
403 	/* Swap the cached value */
404 	WRITE_ONCE(left->pid, pid_nr(pid2));
405 	WRITE_ONCE(right->pid, pid_nr(pid1));
406 }
407 
408 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
transfer_pid(struct task_struct * old,struct task_struct * new,enum pid_type type)409 void transfer_pid(struct task_struct *old, struct task_struct *new,
410 			   enum pid_type type)
411 {
412 	WARN_ON_ONCE(type == PIDTYPE_PID);
413 	lockdep_assert_held_write(&tasklist_lock);
414 	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
415 }
416 
pid_task(struct pid * pid,enum pid_type type)417 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
418 {
419 	struct task_struct *result = NULL;
420 	if (pid) {
421 		struct hlist_node *first;
422 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
423 					      lockdep_tasklist_lock_is_held());
424 		if (first)
425 			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
426 	}
427 	return result;
428 }
429 EXPORT_SYMBOL(pid_task);
430 
431 /*
432  * Must be called under rcu_read_lock().
433  */
find_task_by_pid_ns(pid_t nr,struct pid_namespace * ns)434 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
435 {
436 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
437 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
438 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
439 }
440 
find_task_by_vpid(pid_t vnr)441 struct task_struct *find_task_by_vpid(pid_t vnr)
442 {
443 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
444 }
445 
find_get_task_by_vpid(pid_t nr)446 struct task_struct *find_get_task_by_vpid(pid_t nr)
447 {
448 	struct task_struct *task;
449 
450 	rcu_read_lock();
451 	task = find_task_by_vpid(nr);
452 	if (task)
453 		get_task_struct(task);
454 	rcu_read_unlock();
455 
456 	return task;
457 }
458 
get_task_pid(struct task_struct * task,enum pid_type type)459 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
460 {
461 	struct pid *pid;
462 	rcu_read_lock();
463 	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
464 	rcu_read_unlock();
465 	return pid;
466 }
467 EXPORT_SYMBOL_GPL(get_task_pid);
468 
get_pid_task(struct pid * pid,enum pid_type type)469 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
470 {
471 	struct task_struct *result;
472 	rcu_read_lock();
473 	result = pid_task(pid, type);
474 	if (result)
475 		get_task_struct(result);
476 	rcu_read_unlock();
477 	return result;
478 }
479 EXPORT_SYMBOL_GPL(get_pid_task);
480 
find_get_pid(pid_t nr)481 struct pid *find_get_pid(pid_t nr)
482 {
483 	struct pid *pid;
484 
485 	rcu_read_lock();
486 	pid = get_pid(find_vpid(nr));
487 	rcu_read_unlock();
488 
489 	return pid;
490 }
491 EXPORT_SYMBOL_GPL(find_get_pid);
492 
pid_nr_ns(struct pid * pid,struct pid_namespace * ns)493 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
494 {
495 	struct upid *upid;
496 	pid_t nr = 0;
497 
498 	if (pid && ns->level <= pid->level) {
499 		upid = &pid->numbers[ns->level];
500 		if (upid->ns == ns)
501 			nr = upid->nr;
502 	}
503 	return nr;
504 }
505 EXPORT_SYMBOL_GPL(pid_nr_ns);
506 
pid_vnr(struct pid * pid)507 pid_t pid_vnr(struct pid *pid)
508 {
509 	return pid_nr_ns(pid, task_active_pid_ns(current));
510 }
511 EXPORT_SYMBOL_GPL(pid_vnr);
512 
__task_pid_nr_ns(struct task_struct * task,enum pid_type type,struct pid_namespace * ns)513 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
514 			struct pid_namespace *ns)
515 {
516 	pid_t nr = 0;
517 
518 	rcu_read_lock();
519 	if (!ns)
520 		ns = task_active_pid_ns(current);
521 	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
522 	rcu_read_unlock();
523 
524 	return nr;
525 }
526 EXPORT_SYMBOL(__task_pid_nr_ns);
527 
task_active_pid_ns(struct task_struct * tsk)528 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
529 {
530 	return ns_of_pid(task_pid(tsk));
531 }
532 EXPORT_SYMBOL_GPL(task_active_pid_ns);
533 
534 /*
535  * Used by proc to find the first pid that is greater than or equal to nr.
536  *
537  * If there is a pid at nr this function is exactly the same as find_pid_ns.
538  */
find_ge_pid(int nr,struct pid_namespace * ns)539 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
540 {
541 	return idr_get_next(&ns->idr, &nr);
542 }
543 EXPORT_SYMBOL_GPL(find_ge_pid);
544 
pidfd_get_pid(unsigned int fd,unsigned int * flags)545 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
546 {
547 	CLASS(fd, f)(fd);
548 	struct pid *pid;
549 
550 	if (fd_empty(f))
551 		return ERR_PTR(-EBADF);
552 
553 	pid = pidfd_pid(fd_file(f));
554 	if (!IS_ERR(pid)) {
555 		get_pid(pid);
556 		*flags = fd_file(f)->f_flags;
557 	}
558 	return pid;
559 }
560 
561 /**
562  * pidfd_get_task() - Get the task associated with a pidfd
563  *
564  * @pidfd: pidfd for which to get the task
565  * @flags: flags associated with this pidfd
566  *
567  * Return the task associated with @pidfd. The function takes a reference on
568  * the returned task. The caller is responsible for releasing that reference.
569  *
570  * Return: On success, the task_struct associated with the pidfd.
571  *	   On error, a negative errno number will be returned.
572  */
pidfd_get_task(int pidfd,unsigned int * flags)573 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
574 {
575 	unsigned int f_flags = 0;
576 	struct pid *pid;
577 	struct task_struct *task;
578 	enum pid_type type;
579 
580 	switch (pidfd) {
581 	case  PIDFD_SELF_THREAD:
582 		type = PIDTYPE_PID;
583 		pid = get_task_pid(current, type);
584 		break;
585 	case  PIDFD_SELF_THREAD_GROUP:
586 		type = PIDTYPE_TGID;
587 		pid = get_task_pid(current, type);
588 		break;
589 	default:
590 		pid = pidfd_get_pid(pidfd, &f_flags);
591 		if (IS_ERR(pid))
592 			return ERR_CAST(pid);
593 		type = PIDTYPE_TGID;
594 		break;
595 	}
596 
597 	task = get_pid_task(pid, type);
598 	put_pid(pid);
599 	if (!task)
600 		return ERR_PTR(-ESRCH);
601 
602 	*flags = f_flags;
603 	return task;
604 }
605 
606 /**
607  * pidfd_create() - Create a new pid file descriptor.
608  *
609  * @pid:   struct pid that the pidfd will reference
610  * @flags: flags to pass
611  *
612  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
613  *
614  * Note, that this function can only be called after the fd table has
615  * been unshared to avoid leaking the pidfd to the new process.
616  *
617  * This symbol should not be explicitly exported to loadable modules.
618  *
619  * Return: On success, a cloexec pidfd is returned.
620  *         On error, a negative errno number will be returned.
621  */
pidfd_create(struct pid * pid,unsigned int flags)622 static int pidfd_create(struct pid *pid, unsigned int flags)
623 {
624 	int pidfd;
625 	struct file *pidfd_file;
626 
627 	pidfd = pidfd_prepare(pid, flags, &pidfd_file);
628 	if (pidfd < 0)
629 		return pidfd;
630 
631 	fd_install(pidfd, pidfd_file);
632 	return pidfd;
633 }
634 
635 /**
636  * sys_pidfd_open() - Open new pid file descriptor.
637  *
638  * @pid:   pid for which to retrieve a pidfd
639  * @flags: flags to pass
640  *
641  * This creates a new pid file descriptor with the O_CLOEXEC flag set for
642  * the task identified by @pid. Without PIDFD_THREAD flag the target task
643  * must be a thread-group leader.
644  *
645  * Return: On success, a cloexec pidfd is returned.
646  *         On error, a negative errno number will be returned.
647  */
SYSCALL_DEFINE2(pidfd_open,pid_t,pid,unsigned int,flags)648 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
649 {
650 	int fd;
651 	struct pid *p;
652 
653 	if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD))
654 		return -EINVAL;
655 
656 	if (pid <= 0)
657 		return -EINVAL;
658 
659 	p = find_get_pid(pid);
660 	if (!p)
661 		return -ESRCH;
662 
663 	fd = pidfd_create(p, flags);
664 
665 	put_pid(p);
666 	return fd;
667 }
668 
669 #ifdef CONFIG_SYSCTL
pid_table_root_lookup(struct ctl_table_root * root)670 static struct ctl_table_set *pid_table_root_lookup(struct ctl_table_root *root)
671 {
672 	return &task_active_pid_ns(current)->set;
673 }
674 
set_is_seen(struct ctl_table_set * set)675 static int set_is_seen(struct ctl_table_set *set)
676 {
677 	return &task_active_pid_ns(current)->set == set;
678 }
679 
pid_table_root_permissions(struct ctl_table_header * head,const struct ctl_table * table)680 static int pid_table_root_permissions(struct ctl_table_header *head,
681 				      const struct ctl_table *table)
682 {
683 	struct pid_namespace *pidns =
684 		container_of(head->set, struct pid_namespace, set);
685 	int mode = table->mode;
686 
687 	if (ns_capable(pidns->user_ns, CAP_SYS_ADMIN) ||
688 	    uid_eq(current_euid(), make_kuid(pidns->user_ns, 0)))
689 		mode = (mode & S_IRWXU) >> 6;
690 	else if (in_egroup_p(make_kgid(pidns->user_ns, 0)))
691 		mode = (mode & S_IRWXG) >> 3;
692 	else
693 		mode = mode & S_IROTH;
694 	return (mode << 6) | (mode << 3) | mode;
695 }
696 
pid_table_root_set_ownership(struct ctl_table_header * head,kuid_t * uid,kgid_t * gid)697 static void pid_table_root_set_ownership(struct ctl_table_header *head,
698 					 kuid_t *uid, kgid_t *gid)
699 {
700 	struct pid_namespace *pidns =
701 		container_of(head->set, struct pid_namespace, set);
702 	kuid_t ns_root_uid;
703 	kgid_t ns_root_gid;
704 
705 	ns_root_uid = make_kuid(pidns->user_ns, 0);
706 	if (uid_valid(ns_root_uid))
707 		*uid = ns_root_uid;
708 
709 	ns_root_gid = make_kgid(pidns->user_ns, 0);
710 	if (gid_valid(ns_root_gid))
711 		*gid = ns_root_gid;
712 }
713 
714 static struct ctl_table_root pid_table_root = {
715 	.lookup		= pid_table_root_lookup,
716 	.permissions	= pid_table_root_permissions,
717 	.set_ownership	= pid_table_root_set_ownership,
718 };
719 
720 static const struct ctl_table pid_table[] = {
721 	{
722 		.procname	= "pid_max",
723 		.data		= &init_pid_ns.pid_max,
724 		.maxlen		= sizeof(int),
725 		.mode		= 0644,
726 		.proc_handler	= proc_dointvec_minmax,
727 		.extra1		= &pid_max_min,
728 		.extra2		= &pid_max_max,
729 	},
730 };
731 #endif
732 
register_pidns_sysctls(struct pid_namespace * pidns)733 int register_pidns_sysctls(struct pid_namespace *pidns)
734 {
735 #ifdef CONFIG_SYSCTL
736 	struct ctl_table *tbl;
737 
738 	setup_sysctl_set(&pidns->set, &pid_table_root, set_is_seen);
739 
740 	tbl = kmemdup(pid_table, sizeof(pid_table), GFP_KERNEL);
741 	if (!tbl)
742 		return -ENOMEM;
743 	tbl->data = &pidns->pid_max;
744 	pidns->pid_max = min(pid_max_max, max_t(int, pidns->pid_max,
745 			     PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
746 
747 	pidns->sysctls = __register_sysctl_table(&pidns->set, "kernel", tbl,
748 						 ARRAY_SIZE(pid_table));
749 	if (!pidns->sysctls) {
750 		kfree(tbl);
751 		retire_sysctl_set(&pidns->set);
752 		return -ENOMEM;
753 	}
754 #endif
755 	return 0;
756 }
757 
unregister_pidns_sysctls(struct pid_namespace * pidns)758 void unregister_pidns_sysctls(struct pid_namespace *pidns)
759 {
760 #ifdef CONFIG_SYSCTL
761 	const struct ctl_table *tbl;
762 
763 	tbl = pidns->sysctls->ctl_table_arg;
764 	unregister_sysctl_table(pidns->sysctls);
765 	retire_sysctl_set(&pidns->set);
766 	kfree(tbl);
767 #endif
768 }
769 
pid_idr_init(void)770 void __init pid_idr_init(void)
771 {
772 	/* Verify no one has done anything silly: */
773 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
774 
775 	/* bump default and minimum pid_max based on number of cpus */
776 	init_pid_ns.pid_max = min(pid_max_max, max_t(int, init_pid_ns.pid_max,
777 				  PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
778 	pid_max_min = max_t(int, pid_max_min,
779 				PIDS_PER_CPU_MIN * num_possible_cpus());
780 	pr_info("pid_max: default: %u minimum: %u\n", init_pid_ns.pid_max, pid_max_min);
781 
782 	idr_init(&init_pid_ns.idr);
783 
784 	init_pid_ns.pid_cachep = kmem_cache_create("pid",
785 			struct_size_t(struct pid, numbers, 1),
786 			__alignof__(struct pid),
787 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
788 			NULL);
789 }
790 
pid_namespace_sysctl_init(void)791 static __init int pid_namespace_sysctl_init(void)
792 {
793 #ifdef CONFIG_SYSCTL
794 	/* "kernel" directory will have already been initialized. */
795 	BUG_ON(register_pidns_sysctls(&init_pid_ns));
796 #endif
797 	return 0;
798 }
799 subsys_initcall(pid_namespace_sysctl_init);
800 
__pidfd_fget(struct task_struct * task,int fd)801 static struct file *__pidfd_fget(struct task_struct *task, int fd)
802 {
803 	struct file *file;
804 	int ret;
805 
806 	ret = down_read_killable(&task->signal->exec_update_lock);
807 	if (ret)
808 		return ERR_PTR(ret);
809 
810 	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
811 		file = fget_task(task, fd);
812 	else
813 		file = ERR_PTR(-EPERM);
814 
815 	up_read(&task->signal->exec_update_lock);
816 
817 	if (!file) {
818 		/*
819 		 * It is possible that the target thread is exiting; it can be
820 		 * either:
821 		 * 1. before exit_signals(), which gives a real fd
822 		 * 2. before exit_files() takes the task_lock() gives a real fd
823 		 * 3. after exit_files() releases task_lock(), ->files is NULL;
824 		 *    this has PF_EXITING, since it was set in exit_signals(),
825 		 *    __pidfd_fget() returns EBADF.
826 		 * In case 3 we get EBADF, but that really means ESRCH, since
827 		 * the task is currently exiting and has freed its files
828 		 * struct, so we fix it up.
829 		 */
830 		if (task->flags & PF_EXITING)
831 			file = ERR_PTR(-ESRCH);
832 		else
833 			file = ERR_PTR(-EBADF);
834 	}
835 
836 	return file;
837 }
838 
pidfd_getfd(struct pid * pid,int fd)839 static int pidfd_getfd(struct pid *pid, int fd)
840 {
841 	struct task_struct *task;
842 	struct file *file;
843 	int ret;
844 
845 	task = get_pid_task(pid, PIDTYPE_PID);
846 	if (!task)
847 		return -ESRCH;
848 
849 	file = __pidfd_fget(task, fd);
850 	put_task_struct(task);
851 	if (IS_ERR(file))
852 		return PTR_ERR(file);
853 
854 	ret = receive_fd(file, NULL, O_CLOEXEC);
855 	fput(file);
856 
857 	return ret;
858 }
859 
860 /**
861  * sys_pidfd_getfd() - Get a file descriptor from another process
862  *
863  * @pidfd:	the pidfd file descriptor of the process
864  * @fd:		the file descriptor number to get
865  * @flags:	flags on how to get the fd (reserved)
866  *
867  * This syscall gets a copy of a file descriptor from another process
868  * based on the pidfd, and file descriptor number. It requires that
869  * the calling process has the ability to ptrace the process represented
870  * by the pidfd. The process which is having its file descriptor copied
871  * is otherwise unaffected.
872  *
873  * Return: On success, a cloexec file descriptor is returned.
874  *         On error, a negative errno number will be returned.
875  */
SYSCALL_DEFINE3(pidfd_getfd,int,pidfd,int,fd,unsigned int,flags)876 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
877 		unsigned int, flags)
878 {
879 	struct pid *pid;
880 
881 	/* flags is currently unused - make sure it's unset */
882 	if (flags)
883 		return -EINVAL;
884 
885 	CLASS(fd, f)(pidfd);
886 	if (fd_empty(f))
887 		return -EBADF;
888 
889 	pid = pidfd_pid(fd_file(f));
890 	if (IS_ERR(pid))
891 		return PTR_ERR(pid);
892 
893 	return pidfd_getfd(pid, fd);
894 }
895