1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6 */
7
8 #define INCLUDE_VERMAGIC
9
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67
68 /*
69 * Mutex protects:
70 * 1) List of modules (also safely readable within RCU read section),
71 * 2) module_use links,
72 * 3) mod_tree.addr_min/mod_tree.addr_max.
73 * (delete and add uses RCU list operations).
74 */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 .addr_min = -1UL,
85 };
86
87 struct symsearch {
88 const struct kernel_symbol *start, *stop;
89 const u32 *crcs;
90 enum mod_license license;
91 };
92
93 /*
94 * Bounds of module memory, for speeding up __module_address.
95 * Protected by module_mutex.
96 */
__mod_update_bounds(enum mod_mem_type type __maybe_unused,void * base,unsigned int size,struct mod_tree_root * tree)97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 unsigned int size, struct mod_tree_root *tree)
99 {
100 unsigned long min = (unsigned long)base;
101 unsigned long max = min + size;
102
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 if (mod_mem_type_is_core_data(type)) {
105 if (min < tree->data_addr_min)
106 tree->data_addr_min = min;
107 if (max > tree->data_addr_max)
108 tree->data_addr_max = max;
109 return;
110 }
111 #endif
112 if (min < tree->addr_min)
113 tree->addr_min = min;
114 if (max > tree->addr_max)
115 tree->addr_max = max;
116 }
117
mod_update_bounds(struct module * mod)118 static void mod_update_bounds(struct module *mod)
119 {
120 for_each_mod_mem_type(type) {
121 struct module_memory *mod_mem = &mod->mem[type];
122
123 if (mod_mem->size)
124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 }
126 }
127
128 /* Block module loading/unloading? */
129 int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131
132 /* Waiting for a module to finish initializing? */
133 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
134
135 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
136
register_module_notifier(struct notifier_block * nb)137 int register_module_notifier(struct notifier_block *nb)
138 {
139 return blocking_notifier_chain_register(&module_notify_list, nb);
140 }
141 EXPORT_SYMBOL(register_module_notifier);
142
unregister_module_notifier(struct notifier_block * nb)143 int unregister_module_notifier(struct notifier_block *nb)
144 {
145 return blocking_notifier_chain_unregister(&module_notify_list, nb);
146 }
147 EXPORT_SYMBOL(unregister_module_notifier);
148
149 /*
150 * We require a truly strong try_module_get(): 0 means success.
151 * Otherwise an error is returned due to ongoing or failed
152 * initialization etc.
153 */
strong_try_module_get(struct module * mod)154 static inline int strong_try_module_get(struct module *mod)
155 {
156 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
157 if (mod && mod->state == MODULE_STATE_COMING)
158 return -EBUSY;
159 if (try_module_get(mod))
160 return 0;
161 else
162 return -ENOENT;
163 }
164
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)165 static inline void add_taint_module(struct module *mod, unsigned flag,
166 enum lockdep_ok lockdep_ok)
167 {
168 add_taint(flag, lockdep_ok);
169 set_bit(flag, &mod->taints);
170 }
171
172 /*
173 * A thread that wants to hold a reference to a module only while it
174 * is running can call this to safely exit.
175 */
__module_put_and_kthread_exit(struct module * mod,long code)176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
177 {
178 module_put(mod);
179 kthread_exit(code);
180 }
181 EXPORT_SYMBOL(__module_put_and_kthread_exit);
182
183 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)184 static unsigned int find_sec(const struct load_info *info, const char *name)
185 {
186 unsigned int i;
187
188 for (i = 1; i < info->hdr->e_shnum; i++) {
189 Elf_Shdr *shdr = &info->sechdrs[i];
190 /* Alloc bit cleared means "ignore it." */
191 if ((shdr->sh_flags & SHF_ALLOC)
192 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
193 return i;
194 }
195 return 0;
196 }
197
198 /**
199 * find_any_unique_sec() - Find a unique section index by name
200 * @info: Load info for the module to scan
201 * @name: Name of the section we're looking for
202 *
203 * Locates a unique section by name. Ignores SHF_ALLOC.
204 *
205 * Return: Section index if found uniquely, zero if absent, negative count
206 * of total instances if multiple were found.
207 */
find_any_unique_sec(const struct load_info * info,const char * name)208 static int find_any_unique_sec(const struct load_info *info, const char *name)
209 {
210 unsigned int idx;
211 unsigned int count = 0;
212 int i;
213
214 for (i = 1; i < info->hdr->e_shnum; i++) {
215 if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
216 name) == 0) {
217 count++;
218 idx = i;
219 }
220 }
221 if (count == 1) {
222 return idx;
223 } else if (count == 0) {
224 return 0;
225 } else {
226 return -count;
227 }
228 }
229
230 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)231 static void *section_addr(const struct load_info *info, const char *name)
232 {
233 /* Section 0 has sh_addr 0. */
234 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
235 }
236
237 /* Find a module section, or NULL. Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)238 static void *section_objs(const struct load_info *info,
239 const char *name,
240 size_t object_size,
241 unsigned int *num)
242 {
243 unsigned int sec = find_sec(info, name);
244
245 /* Section 0 has sh_addr 0 and sh_size 0. */
246 *num = info->sechdrs[sec].sh_size / object_size;
247 return (void *)info->sechdrs[sec].sh_addr;
248 }
249
250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)251 static unsigned int find_any_sec(const struct load_info *info, const char *name)
252 {
253 unsigned int i;
254
255 for (i = 1; i < info->hdr->e_shnum; i++) {
256 Elf_Shdr *shdr = &info->sechdrs[i];
257 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
258 return i;
259 }
260 return 0;
261 }
262
263 /*
264 * Find a module section, or NULL. Fill in number of "objects" in section.
265 * Ignores SHF_ALLOC flag.
266 */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)267 static __maybe_unused void *any_section_objs(const struct load_info *info,
268 const char *name,
269 size_t object_size,
270 unsigned int *num)
271 {
272 unsigned int sec = find_any_sec(info, name);
273
274 /* Section 0 has sh_addr 0 and sh_size 0. */
275 *num = info->sechdrs[sec].sh_size / object_size;
276 return (void *)info->sechdrs[sec].sh_addr;
277 }
278
279 #ifndef CONFIG_MODVERSIONS
280 #define symversion(base, idx) NULL
281 #else
282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
283 #endif
284
kernel_symbol_name(const struct kernel_symbol * sym)285 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
286 {
287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
288 return offset_to_ptr(&sym->name_offset);
289 #else
290 return sym->name;
291 #endif
292 }
293
kernel_symbol_namespace(const struct kernel_symbol * sym)294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
295 {
296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
297 if (!sym->namespace_offset)
298 return NULL;
299 return offset_to_ptr(&sym->namespace_offset);
300 #else
301 return sym->namespace;
302 #endif
303 }
304
cmp_name(const void * name,const void * sym)305 int cmp_name(const void *name, const void *sym)
306 {
307 return strcmp(name, kernel_symbol_name(sym));
308 }
309
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)310 static bool find_exported_symbol_in_section(const struct symsearch *syms,
311 struct module *owner,
312 struct find_symbol_arg *fsa)
313 {
314 struct kernel_symbol *sym;
315
316 if (!fsa->gplok && syms->license == GPL_ONLY)
317 return false;
318
319 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
320 sizeof(struct kernel_symbol), cmp_name);
321 if (!sym)
322 return false;
323
324 fsa->owner = owner;
325 fsa->crc = symversion(syms->crcs, sym - syms->start);
326 fsa->sym = sym;
327 fsa->license = syms->license;
328
329 return true;
330 }
331
332 /*
333 * Find an exported symbol and return it, along with, (optional) crc and
334 * (optional) module which owns it. Needs RCU or module_mutex.
335 */
find_symbol(struct find_symbol_arg * fsa)336 bool find_symbol(struct find_symbol_arg *fsa)
337 {
338 static const struct symsearch arr[] = {
339 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
340 NOT_GPL_ONLY },
341 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
342 __start___kcrctab_gpl,
343 GPL_ONLY },
344 };
345 struct module *mod;
346 unsigned int i;
347
348 for (i = 0; i < ARRAY_SIZE(arr); i++)
349 if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
350 return true;
351
352 list_for_each_entry_rcu(mod, &modules, list,
353 lockdep_is_held(&module_mutex)) {
354 struct symsearch arr[] = {
355 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
356 NOT_GPL_ONLY },
357 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
358 mod->gpl_crcs,
359 GPL_ONLY },
360 };
361
362 if (mod->state == MODULE_STATE_UNFORMED)
363 continue;
364
365 for (i = 0; i < ARRAY_SIZE(arr); i++)
366 if (find_exported_symbol_in_section(&arr[i], mod, fsa))
367 return true;
368 }
369
370 pr_debug("Failed to find symbol %s\n", fsa->name);
371 return false;
372 }
373
374 /*
375 * Search for module by name: must hold module_mutex (or RCU for read-only
376 * access).
377 */
find_module_all(const char * name,size_t len,bool even_unformed)378 struct module *find_module_all(const char *name, size_t len,
379 bool even_unformed)
380 {
381 struct module *mod;
382
383 list_for_each_entry_rcu(mod, &modules, list,
384 lockdep_is_held(&module_mutex)) {
385 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
386 continue;
387 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
388 return mod;
389 }
390 return NULL;
391 }
392
find_module(const char * name)393 struct module *find_module(const char *name)
394 {
395 return find_module_all(name, strlen(name), false);
396 }
397
398 #ifdef CONFIG_SMP
399
mod_percpu(struct module * mod)400 static inline void __percpu *mod_percpu(struct module *mod)
401 {
402 return mod->percpu;
403 }
404
percpu_modalloc(struct module * mod,struct load_info * info)405 static int percpu_modalloc(struct module *mod, struct load_info *info)
406 {
407 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
408 unsigned long align = pcpusec->sh_addralign;
409
410 if (!pcpusec->sh_size)
411 return 0;
412
413 if (align > PAGE_SIZE) {
414 pr_warn("%s: per-cpu alignment %li > %li\n",
415 mod->name, align, PAGE_SIZE);
416 align = PAGE_SIZE;
417 }
418
419 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
420 if (!mod->percpu) {
421 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
422 mod->name, (unsigned long)pcpusec->sh_size);
423 return -ENOMEM;
424 }
425 mod->percpu_size = pcpusec->sh_size;
426 return 0;
427 }
428
percpu_modfree(struct module * mod)429 static void percpu_modfree(struct module *mod)
430 {
431 free_percpu(mod->percpu);
432 }
433
find_pcpusec(struct load_info * info)434 static unsigned int find_pcpusec(struct load_info *info)
435 {
436 return find_sec(info, ".data..percpu");
437 }
438
percpu_modcopy(struct module * mod,const void * from,unsigned long size)439 static void percpu_modcopy(struct module *mod,
440 const void *from, unsigned long size)
441 {
442 int cpu;
443
444 for_each_possible_cpu(cpu)
445 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
446 }
447
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)448 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
449 {
450 struct module *mod;
451 unsigned int cpu;
452
453 guard(rcu)();
454 list_for_each_entry_rcu(mod, &modules, list) {
455 if (mod->state == MODULE_STATE_UNFORMED)
456 continue;
457 if (!mod->percpu_size)
458 continue;
459 for_each_possible_cpu(cpu) {
460 void *start = per_cpu_ptr(mod->percpu, cpu);
461 void *va = (void *)addr;
462
463 if (va >= start && va < start + mod->percpu_size) {
464 if (can_addr) {
465 *can_addr = (unsigned long) (va - start);
466 *can_addr += (unsigned long)
467 per_cpu_ptr(mod->percpu,
468 get_boot_cpu_id());
469 }
470 return true;
471 }
472 }
473 }
474 return false;
475 }
476
477 /**
478 * is_module_percpu_address() - test whether address is from module static percpu
479 * @addr: address to test
480 *
481 * Test whether @addr belongs to module static percpu area.
482 *
483 * Return: %true if @addr is from module static percpu area
484 */
is_module_percpu_address(unsigned long addr)485 bool is_module_percpu_address(unsigned long addr)
486 {
487 return __is_module_percpu_address(addr, NULL);
488 }
489
490 #else /* ... !CONFIG_SMP */
491
mod_percpu(struct module * mod)492 static inline void __percpu *mod_percpu(struct module *mod)
493 {
494 return NULL;
495 }
percpu_modalloc(struct module * mod,struct load_info * info)496 static int percpu_modalloc(struct module *mod, struct load_info *info)
497 {
498 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
499 if (info->sechdrs[info->index.pcpu].sh_size != 0)
500 return -ENOMEM;
501 return 0;
502 }
percpu_modfree(struct module * mod)503 static inline void percpu_modfree(struct module *mod)
504 {
505 }
find_pcpusec(struct load_info * info)506 static unsigned int find_pcpusec(struct load_info *info)
507 {
508 return 0;
509 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)510 static inline void percpu_modcopy(struct module *mod,
511 const void *from, unsigned long size)
512 {
513 /* pcpusec should be 0, and size of that section should be 0. */
514 BUG_ON(size != 0);
515 }
is_module_percpu_address(unsigned long addr)516 bool is_module_percpu_address(unsigned long addr)
517 {
518 return false;
519 }
520
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)521 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
522 {
523 return false;
524 }
525
526 #endif /* CONFIG_SMP */
527
528 #define MODINFO_ATTR(field) \
529 static void setup_modinfo_##field(struct module *mod, const char *s) \
530 { \
531 mod->field = kstrdup(s, GFP_KERNEL); \
532 } \
533 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
534 struct module_kobject *mk, char *buffer) \
535 { \
536 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
537 } \
538 static int modinfo_##field##_exists(struct module *mod) \
539 { \
540 return mod->field != NULL; \
541 } \
542 static void free_modinfo_##field(struct module *mod) \
543 { \
544 kfree(mod->field); \
545 mod->field = NULL; \
546 } \
547 static const struct module_attribute modinfo_##field = { \
548 .attr = { .name = __stringify(field), .mode = 0444 }, \
549 .show = show_modinfo_##field, \
550 .setup = setup_modinfo_##field, \
551 .test = modinfo_##field##_exists, \
552 .free = free_modinfo_##field, \
553 };
554
555 MODINFO_ATTR(version);
556 MODINFO_ATTR(srcversion);
557
558 static struct {
559 char name[MODULE_NAME_LEN + 1];
560 char taints[MODULE_FLAGS_BUF_SIZE];
561 } last_unloaded_module;
562
563 #ifdef CONFIG_MODULE_UNLOAD
564
565 EXPORT_TRACEPOINT_SYMBOL(module_get);
566
567 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
568 #define MODULE_REF_BASE 1
569
570 /* Init the unload section of the module. */
module_unload_init(struct module * mod)571 static int module_unload_init(struct module *mod)
572 {
573 /*
574 * Initialize reference counter to MODULE_REF_BASE.
575 * refcnt == 0 means module is going.
576 */
577 atomic_set(&mod->refcnt, MODULE_REF_BASE);
578
579 INIT_LIST_HEAD(&mod->source_list);
580 INIT_LIST_HEAD(&mod->target_list);
581
582 /* Hold reference count during initialization. */
583 atomic_inc(&mod->refcnt);
584
585 return 0;
586 }
587
588 /* Does a already use b? */
already_uses(struct module * a,struct module * b)589 static int already_uses(struct module *a, struct module *b)
590 {
591 struct module_use *use;
592
593 list_for_each_entry(use, &b->source_list, source_list) {
594 if (use->source == a)
595 return 1;
596 }
597 pr_debug("%s does not use %s!\n", a->name, b->name);
598 return 0;
599 }
600
601 /*
602 * Module a uses b
603 * - we add 'a' as a "source", 'b' as a "target" of module use
604 * - the module_use is added to the list of 'b' sources (so
605 * 'b' can walk the list to see who sourced them), and of 'a'
606 * targets (so 'a' can see what modules it targets).
607 */
add_module_usage(struct module * a,struct module * b)608 static int add_module_usage(struct module *a, struct module *b)
609 {
610 struct module_use *use;
611
612 pr_debug("Allocating new usage for %s.\n", a->name);
613 use = kmalloc(sizeof(*use), GFP_ATOMIC);
614 if (!use)
615 return -ENOMEM;
616
617 use->source = a;
618 use->target = b;
619 list_add(&use->source_list, &b->source_list);
620 list_add(&use->target_list, &a->target_list);
621 return 0;
622 }
623
624 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)625 static int ref_module(struct module *a, struct module *b)
626 {
627 int err;
628
629 if (b == NULL || already_uses(a, b))
630 return 0;
631
632 /* If module isn't available, we fail. */
633 err = strong_try_module_get(b);
634 if (err)
635 return err;
636
637 err = add_module_usage(a, b);
638 if (err) {
639 module_put(b);
640 return err;
641 }
642 return 0;
643 }
644
645 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)646 static void module_unload_free(struct module *mod)
647 {
648 struct module_use *use, *tmp;
649
650 mutex_lock(&module_mutex);
651 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
652 struct module *i = use->target;
653 pr_debug("%s unusing %s\n", mod->name, i->name);
654 module_put(i);
655 list_del(&use->source_list);
656 list_del(&use->target_list);
657 kfree(use);
658 }
659 mutex_unlock(&module_mutex);
660 }
661
662 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)663 static inline int try_force_unload(unsigned int flags)
664 {
665 int ret = (flags & O_TRUNC);
666 if (ret)
667 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
668 return ret;
669 }
670 #else
try_force_unload(unsigned int flags)671 static inline int try_force_unload(unsigned int flags)
672 {
673 return 0;
674 }
675 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
676
677 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)678 static int try_release_module_ref(struct module *mod)
679 {
680 int ret;
681
682 /* Try to decrement refcnt which we set at loading */
683 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
684 BUG_ON(ret < 0);
685 if (ret)
686 /* Someone can put this right now, recover with checking */
687 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
688
689 return ret;
690 }
691
try_stop_module(struct module * mod,int flags,int * forced)692 static int try_stop_module(struct module *mod, int flags, int *forced)
693 {
694 /* If it's not unused, quit unless we're forcing. */
695 if (try_release_module_ref(mod) != 0) {
696 *forced = try_force_unload(flags);
697 if (!(*forced))
698 return -EWOULDBLOCK;
699 }
700
701 /* Mark it as dying. */
702 mod->state = MODULE_STATE_GOING;
703
704 return 0;
705 }
706
707 /**
708 * module_refcount() - return the refcount or -1 if unloading
709 * @mod: the module we're checking
710 *
711 * Return:
712 * -1 if the module is in the process of unloading
713 * otherwise the number of references in the kernel to the module
714 */
module_refcount(struct module * mod)715 int module_refcount(struct module *mod)
716 {
717 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
718 }
719 EXPORT_SYMBOL(module_refcount);
720
721 /* This exists whether we can unload or not */
722 static void free_module(struct module *mod);
723
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)724 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
725 unsigned int, flags)
726 {
727 struct module *mod;
728 char name[MODULE_NAME_LEN];
729 char buf[MODULE_FLAGS_BUF_SIZE];
730 int ret, forced = 0;
731
732 if (!capable(CAP_SYS_MODULE) || modules_disabled)
733 return -EPERM;
734
735 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
736 return -EFAULT;
737 name[MODULE_NAME_LEN-1] = '\0';
738
739 audit_log_kern_module(name);
740
741 if (mutex_lock_interruptible(&module_mutex) != 0)
742 return -EINTR;
743
744 mod = find_module(name);
745 if (!mod) {
746 ret = -ENOENT;
747 goto out;
748 }
749
750 if (!list_empty(&mod->source_list)) {
751 /* Other modules depend on us: get rid of them first. */
752 ret = -EWOULDBLOCK;
753 goto out;
754 }
755
756 /* Doing init or already dying? */
757 if (mod->state != MODULE_STATE_LIVE) {
758 /* FIXME: if (force), slam module count damn the torpedoes */
759 pr_debug("%s already dying\n", mod->name);
760 ret = -EBUSY;
761 goto out;
762 }
763
764 /* If it has an init func, it must have an exit func to unload */
765 if (mod->init && !mod->exit) {
766 forced = try_force_unload(flags);
767 if (!forced) {
768 /* This module can't be removed */
769 ret = -EBUSY;
770 goto out;
771 }
772 }
773
774 ret = try_stop_module(mod, flags, &forced);
775 if (ret != 0)
776 goto out;
777
778 mutex_unlock(&module_mutex);
779 /* Final destruction now no one is using it. */
780 if (mod->exit != NULL)
781 mod->exit();
782 blocking_notifier_call_chain(&module_notify_list,
783 MODULE_STATE_GOING, mod);
784 klp_module_going(mod);
785 ftrace_release_mod(mod);
786
787 async_synchronize_full();
788
789 /* Store the name and taints of the last unloaded module for diagnostic purposes */
790 strscpy(last_unloaded_module.name, mod->name);
791 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false));
792
793 free_module(mod);
794 /* someone could wait for the module in add_unformed_module() */
795 wake_up_all(&module_wq);
796 return 0;
797 out:
798 mutex_unlock(&module_mutex);
799 return ret;
800 }
801
__symbol_put(const char * symbol)802 void __symbol_put(const char *symbol)
803 {
804 struct find_symbol_arg fsa = {
805 .name = symbol,
806 .gplok = true,
807 };
808
809 guard(rcu)();
810 BUG_ON(!find_symbol(&fsa));
811 module_put(fsa.owner);
812 }
813 EXPORT_SYMBOL(__symbol_put);
814
815 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)816 void symbol_put_addr(void *addr)
817 {
818 struct module *modaddr;
819 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
820
821 if (core_kernel_text(a))
822 return;
823
824 /*
825 * Even though we hold a reference on the module; we still need to
826 * RCU read section in order to safely traverse the data structure.
827 */
828 guard(rcu)();
829 modaddr = __module_text_address(a);
830 BUG_ON(!modaddr);
831 module_put(modaddr);
832 }
833 EXPORT_SYMBOL_GPL(symbol_put_addr);
834
show_refcnt(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)835 static ssize_t show_refcnt(const struct module_attribute *mattr,
836 struct module_kobject *mk, char *buffer)
837 {
838 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
839 }
840
841 static const struct module_attribute modinfo_refcnt =
842 __ATTR(refcnt, 0444, show_refcnt, NULL);
843
__module_get(struct module * module)844 void __module_get(struct module *module)
845 {
846 if (module) {
847 atomic_inc(&module->refcnt);
848 trace_module_get(module, _RET_IP_);
849 }
850 }
851 EXPORT_SYMBOL(__module_get);
852
try_module_get(struct module * module)853 bool try_module_get(struct module *module)
854 {
855 bool ret = true;
856
857 if (module) {
858 /* Note: here, we can fail to get a reference */
859 if (likely(module_is_live(module) &&
860 atomic_inc_not_zero(&module->refcnt) != 0))
861 trace_module_get(module, _RET_IP_);
862 else
863 ret = false;
864 }
865 return ret;
866 }
867 EXPORT_SYMBOL(try_module_get);
868
module_put(struct module * module)869 void module_put(struct module *module)
870 {
871 int ret;
872
873 if (module) {
874 ret = atomic_dec_if_positive(&module->refcnt);
875 WARN_ON(ret < 0); /* Failed to put refcount */
876 trace_module_put(module, _RET_IP_);
877 }
878 }
879 EXPORT_SYMBOL(module_put);
880
881 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)882 static inline void module_unload_free(struct module *mod)
883 {
884 }
885
ref_module(struct module * a,struct module * b)886 static int ref_module(struct module *a, struct module *b)
887 {
888 return strong_try_module_get(b);
889 }
890
module_unload_init(struct module * mod)891 static inline int module_unload_init(struct module *mod)
892 {
893 return 0;
894 }
895 #endif /* CONFIG_MODULE_UNLOAD */
896
module_flags_taint(unsigned long taints,char * buf)897 size_t module_flags_taint(unsigned long taints, char *buf)
898 {
899 size_t l = 0;
900 int i;
901
902 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
903 if (taint_flags[i].module && test_bit(i, &taints))
904 buf[l++] = taint_flags[i].c_true;
905 }
906
907 return l;
908 }
909
show_initstate(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)910 static ssize_t show_initstate(const struct module_attribute *mattr,
911 struct module_kobject *mk, char *buffer)
912 {
913 const char *state = "unknown";
914
915 switch (mk->mod->state) {
916 case MODULE_STATE_LIVE:
917 state = "live";
918 break;
919 case MODULE_STATE_COMING:
920 state = "coming";
921 break;
922 case MODULE_STATE_GOING:
923 state = "going";
924 break;
925 default:
926 BUG();
927 }
928 return sprintf(buffer, "%s\n", state);
929 }
930
931 static const struct module_attribute modinfo_initstate =
932 __ATTR(initstate, 0444, show_initstate, NULL);
933
store_uevent(const struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)934 static ssize_t store_uevent(const struct module_attribute *mattr,
935 struct module_kobject *mk,
936 const char *buffer, size_t count)
937 {
938 int rc;
939
940 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
941 return rc ? rc : count;
942 }
943
944 const struct module_attribute module_uevent =
945 __ATTR(uevent, 0200, NULL, store_uevent);
946
show_coresize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)947 static ssize_t show_coresize(const struct module_attribute *mattr,
948 struct module_kobject *mk, char *buffer)
949 {
950 unsigned int size = mk->mod->mem[MOD_TEXT].size;
951
952 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
953 for_class_mod_mem_type(type, core_data)
954 size += mk->mod->mem[type].size;
955 }
956 return sprintf(buffer, "%u\n", size);
957 }
958
959 static const struct module_attribute modinfo_coresize =
960 __ATTR(coresize, 0444, show_coresize, NULL);
961
962 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)963 static ssize_t show_datasize(const struct module_attribute *mattr,
964 struct module_kobject *mk, char *buffer)
965 {
966 unsigned int size = 0;
967
968 for_class_mod_mem_type(type, core_data)
969 size += mk->mod->mem[type].size;
970 return sprintf(buffer, "%u\n", size);
971 }
972
973 static const struct module_attribute modinfo_datasize =
974 __ATTR(datasize, 0444, show_datasize, NULL);
975 #endif
976
show_initsize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)977 static ssize_t show_initsize(const struct module_attribute *mattr,
978 struct module_kobject *mk, char *buffer)
979 {
980 unsigned int size = 0;
981
982 for_class_mod_mem_type(type, init)
983 size += mk->mod->mem[type].size;
984 return sprintf(buffer, "%u\n", size);
985 }
986
987 static const struct module_attribute modinfo_initsize =
988 __ATTR(initsize, 0444, show_initsize, NULL);
989
show_taint(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)990 static ssize_t show_taint(const struct module_attribute *mattr,
991 struct module_kobject *mk, char *buffer)
992 {
993 size_t l;
994
995 l = module_flags_taint(mk->mod->taints, buffer);
996 buffer[l++] = '\n';
997 return l;
998 }
999
1000 static const struct module_attribute modinfo_taint =
1001 __ATTR(taint, 0444, show_taint, NULL);
1002
1003 const struct module_attribute *const modinfo_attrs[] = {
1004 &module_uevent,
1005 &modinfo_version,
1006 &modinfo_srcversion,
1007 &modinfo_initstate,
1008 &modinfo_coresize,
1009 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1010 &modinfo_datasize,
1011 #endif
1012 &modinfo_initsize,
1013 &modinfo_taint,
1014 #ifdef CONFIG_MODULE_UNLOAD
1015 &modinfo_refcnt,
1016 #endif
1017 NULL,
1018 };
1019
1020 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1021
1022 static const char vermagic[] = VERMAGIC_STRING;
1023
try_to_force_load(struct module * mod,const char * reason)1024 int try_to_force_load(struct module *mod, const char *reason)
1025 {
1026 #ifdef CONFIG_MODULE_FORCE_LOAD
1027 if (!test_taint(TAINT_FORCED_MODULE))
1028 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1029 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1030 return 0;
1031 #else
1032 return -ENOEXEC;
1033 #endif
1034 }
1035
1036 /* Parse tag=value strings from .modinfo section */
module_next_tag_pair(char * string,unsigned long * secsize)1037 char *module_next_tag_pair(char *string, unsigned long *secsize)
1038 {
1039 /* Skip non-zero chars */
1040 while (string[0]) {
1041 string++;
1042 if ((*secsize)-- <= 1)
1043 return NULL;
1044 }
1045
1046 /* Skip any zero padding. */
1047 while (!string[0]) {
1048 string++;
1049 if ((*secsize)-- <= 1)
1050 return NULL;
1051 }
1052 return string;
1053 }
1054
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1055 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1056 char *prev)
1057 {
1058 char *p;
1059 unsigned int taglen = strlen(tag);
1060 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1061 unsigned long size = infosec->sh_size;
1062
1063 /*
1064 * get_modinfo() calls made before rewrite_section_headers()
1065 * must use sh_offset, as sh_addr isn't set!
1066 */
1067 char *modinfo = (char *)info->hdr + infosec->sh_offset;
1068
1069 if (prev) {
1070 size -= prev - modinfo;
1071 modinfo = module_next_tag_pair(prev, &size);
1072 }
1073
1074 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1075 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1076 return p + taglen + 1;
1077 }
1078 return NULL;
1079 }
1080
get_modinfo(const struct load_info * info,const char * tag)1081 static char *get_modinfo(const struct load_info *info, const char *tag)
1082 {
1083 return get_next_modinfo(info, tag, NULL);
1084 }
1085
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1086 static int verify_namespace_is_imported(const struct load_info *info,
1087 const struct kernel_symbol *sym,
1088 struct module *mod)
1089 {
1090 const char *namespace;
1091 char *imported_namespace;
1092
1093 namespace = kernel_symbol_namespace(sym);
1094 if (namespace && namespace[0]) {
1095 for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1096 if (strcmp(namespace, imported_namespace) == 0)
1097 return 0;
1098 }
1099 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1100 pr_warn(
1101 #else
1102 pr_err(
1103 #endif
1104 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1105 mod->name, kernel_symbol_name(sym), namespace);
1106 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1107 return -EINVAL;
1108 #endif
1109 }
1110 return 0;
1111 }
1112
inherit_taint(struct module * mod,struct module * owner,const char * name)1113 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1114 {
1115 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1116 return true;
1117
1118 if (mod->using_gplonly_symbols) {
1119 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1120 mod->name, name, owner->name);
1121 return false;
1122 }
1123
1124 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1125 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1126 mod->name, name, owner->name);
1127 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1128 }
1129 return true;
1130 }
1131
1132 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1133 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1134 const struct load_info *info,
1135 const char *name,
1136 char ownername[])
1137 {
1138 struct find_symbol_arg fsa = {
1139 .name = name,
1140 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1141 .warn = true,
1142 };
1143 int err;
1144
1145 /*
1146 * The module_mutex should not be a heavily contended lock;
1147 * if we get the occasional sleep here, we'll go an extra iteration
1148 * in the wait_event_interruptible(), which is harmless.
1149 */
1150 sched_annotate_sleep();
1151 mutex_lock(&module_mutex);
1152 if (!find_symbol(&fsa))
1153 goto unlock;
1154
1155 if (fsa.license == GPL_ONLY)
1156 mod->using_gplonly_symbols = true;
1157
1158 if (!inherit_taint(mod, fsa.owner, name)) {
1159 fsa.sym = NULL;
1160 goto getname;
1161 }
1162
1163 if (!check_version(info, name, mod, fsa.crc)) {
1164 fsa.sym = ERR_PTR(-EINVAL);
1165 goto getname;
1166 }
1167
1168 err = verify_namespace_is_imported(info, fsa.sym, mod);
1169 if (err) {
1170 fsa.sym = ERR_PTR(err);
1171 goto getname;
1172 }
1173
1174 err = ref_module(mod, fsa.owner);
1175 if (err) {
1176 fsa.sym = ERR_PTR(err);
1177 goto getname;
1178 }
1179
1180 getname:
1181 /* We must make copy under the lock if we failed to get ref. */
1182 strscpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1183 unlock:
1184 mutex_unlock(&module_mutex);
1185 return fsa.sym;
1186 }
1187
1188 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1189 resolve_symbol_wait(struct module *mod,
1190 const struct load_info *info,
1191 const char *name)
1192 {
1193 const struct kernel_symbol *ksym;
1194 char owner[MODULE_NAME_LEN];
1195
1196 if (wait_event_interruptible_timeout(module_wq,
1197 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1198 || PTR_ERR(ksym) != -EBUSY,
1199 30 * HZ) <= 0) {
1200 pr_warn("%s: gave up waiting for init of module %s.\n",
1201 mod->name, owner);
1202 }
1203 return ksym;
1204 }
1205
module_arch_cleanup(struct module * mod)1206 void __weak module_arch_cleanup(struct module *mod)
1207 {
1208 }
1209
module_arch_freeing_init(struct module * mod)1210 void __weak module_arch_freeing_init(struct module *mod)
1211 {
1212 }
1213
module_memory_alloc(struct module * mod,enum mod_mem_type type)1214 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1215 {
1216 unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1217 enum execmem_type execmem_type;
1218 void *ptr;
1219
1220 mod->mem[type].size = size;
1221
1222 if (mod_mem_type_is_data(type))
1223 execmem_type = EXECMEM_MODULE_DATA;
1224 else
1225 execmem_type = EXECMEM_MODULE_TEXT;
1226
1227 ptr = execmem_alloc(execmem_type, size);
1228 if (!ptr)
1229 return -ENOMEM;
1230
1231 if (execmem_is_rox(execmem_type)) {
1232 int err = execmem_make_temp_rw(ptr, size);
1233
1234 if (err) {
1235 execmem_free(ptr);
1236 return -ENOMEM;
1237 }
1238
1239 mod->mem[type].is_rox = true;
1240 }
1241
1242 /*
1243 * The pointer to these blocks of memory are stored on the module
1244 * structure and we keep that around so long as the module is
1245 * around. We only free that memory when we unload the module.
1246 * Just mark them as not being a leak then. The .init* ELF
1247 * sections *do* get freed after boot so we *could* treat them
1248 * slightly differently with kmemleak_ignore() and only grey
1249 * them out as they work as typical memory allocations which
1250 * *do* eventually get freed, but let's just keep things simple
1251 * and avoid *any* false positives.
1252 */
1253 if (!mod->mem[type].is_rox)
1254 kmemleak_not_leak(ptr);
1255
1256 memset(ptr, 0, size);
1257 mod->mem[type].base = ptr;
1258
1259 return 0;
1260 }
1261
module_memory_restore_rox(struct module * mod)1262 static void module_memory_restore_rox(struct module *mod)
1263 {
1264 for_class_mod_mem_type(type, text) {
1265 struct module_memory *mem = &mod->mem[type];
1266
1267 if (mem->is_rox)
1268 execmem_restore_rox(mem->base, mem->size);
1269 }
1270 }
1271
module_memory_free(struct module * mod,enum mod_mem_type type)1272 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1273 {
1274 struct module_memory *mem = &mod->mem[type];
1275
1276 execmem_free(mem->base);
1277 }
1278
free_mod_mem(struct module * mod)1279 static void free_mod_mem(struct module *mod)
1280 {
1281 for_each_mod_mem_type(type) {
1282 struct module_memory *mod_mem = &mod->mem[type];
1283
1284 if (type == MOD_DATA)
1285 continue;
1286
1287 /* Free lock-classes; relies on the preceding sync_rcu(). */
1288 lockdep_free_key_range(mod_mem->base, mod_mem->size);
1289 if (mod_mem->size)
1290 module_memory_free(mod, type);
1291 }
1292
1293 /* MOD_DATA hosts mod, so free it at last */
1294 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1295 module_memory_free(mod, MOD_DATA);
1296 }
1297
1298 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1299 static void free_module(struct module *mod)
1300 {
1301 trace_module_free(mod);
1302
1303 codetag_unload_module(mod);
1304
1305 mod_sysfs_teardown(mod);
1306
1307 /*
1308 * We leave it in list to prevent duplicate loads, but make sure
1309 * that noone uses it while it's being deconstructed.
1310 */
1311 mutex_lock(&module_mutex);
1312 mod->state = MODULE_STATE_UNFORMED;
1313 mutex_unlock(&module_mutex);
1314
1315 /* Arch-specific cleanup. */
1316 module_arch_cleanup(mod);
1317
1318 /* Module unload stuff */
1319 module_unload_free(mod);
1320
1321 /* Free any allocated parameters. */
1322 destroy_params(mod->kp, mod->num_kp);
1323
1324 if (is_livepatch_module(mod))
1325 free_module_elf(mod);
1326
1327 /* Now we can delete it from the lists */
1328 mutex_lock(&module_mutex);
1329 /* Unlink carefully: kallsyms could be walking list. */
1330 list_del_rcu(&mod->list);
1331 mod_tree_remove(mod);
1332 /* Remove this module from bug list, this uses list_del_rcu */
1333 module_bug_cleanup(mod);
1334 /* Wait for RCU synchronizing before releasing mod->list and buglist. */
1335 synchronize_rcu();
1336 if (try_add_tainted_module(mod))
1337 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1338 mod->name);
1339 mutex_unlock(&module_mutex);
1340
1341 /* This may be empty, but that's OK */
1342 module_arch_freeing_init(mod);
1343 kfree(mod->args);
1344 percpu_modfree(mod);
1345
1346 free_mod_mem(mod);
1347 }
1348
__symbol_get(const char * symbol)1349 void *__symbol_get(const char *symbol)
1350 {
1351 struct find_symbol_arg fsa = {
1352 .name = symbol,
1353 .gplok = true,
1354 .warn = true,
1355 };
1356
1357 scoped_guard(rcu) {
1358 if (!find_symbol(&fsa))
1359 return NULL;
1360 if (fsa.license != GPL_ONLY) {
1361 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1362 symbol);
1363 return NULL;
1364 }
1365 if (strong_try_module_get(fsa.owner))
1366 return NULL;
1367 }
1368 return (void *)kernel_symbol_value(fsa.sym);
1369 }
1370 EXPORT_SYMBOL_GPL(__symbol_get);
1371
1372 /*
1373 * Ensure that an exported symbol [global namespace] does not already exist
1374 * in the kernel or in some other module's exported symbol table.
1375 *
1376 * You must hold the module_mutex.
1377 */
verify_exported_symbols(struct module * mod)1378 static int verify_exported_symbols(struct module *mod)
1379 {
1380 unsigned int i;
1381 const struct kernel_symbol *s;
1382 struct {
1383 const struct kernel_symbol *sym;
1384 unsigned int num;
1385 } arr[] = {
1386 { mod->syms, mod->num_syms },
1387 { mod->gpl_syms, mod->num_gpl_syms },
1388 };
1389
1390 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1391 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1392 struct find_symbol_arg fsa = {
1393 .name = kernel_symbol_name(s),
1394 .gplok = true,
1395 };
1396 if (find_symbol(&fsa)) {
1397 pr_err("%s: exports duplicate symbol %s"
1398 " (owned by %s)\n",
1399 mod->name, kernel_symbol_name(s),
1400 module_name(fsa.owner));
1401 return -ENOEXEC;
1402 }
1403 }
1404 }
1405 return 0;
1406 }
1407
ignore_undef_symbol(Elf_Half emachine,const char * name)1408 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1409 {
1410 /*
1411 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1412 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1413 * i386 has a similar problem but may not deserve a fix.
1414 *
1415 * If we ever have to ignore many symbols, consider refactoring the code to
1416 * only warn if referenced by a relocation.
1417 */
1418 if (emachine == EM_386 || emachine == EM_X86_64)
1419 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1420 return false;
1421 }
1422
1423 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1424 static int simplify_symbols(struct module *mod, const struct load_info *info)
1425 {
1426 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1427 Elf_Sym *sym = (void *)symsec->sh_addr;
1428 unsigned long secbase;
1429 unsigned int i;
1430 int ret = 0;
1431 const struct kernel_symbol *ksym;
1432
1433 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1434 const char *name = info->strtab + sym[i].st_name;
1435
1436 switch (sym[i].st_shndx) {
1437 case SHN_COMMON:
1438 /* Ignore common symbols */
1439 if (!strncmp(name, "__gnu_lto", 9))
1440 break;
1441
1442 /*
1443 * We compiled with -fno-common. These are not
1444 * supposed to happen.
1445 */
1446 pr_debug("Common symbol: %s\n", name);
1447 pr_warn("%s: please compile with -fno-common\n",
1448 mod->name);
1449 ret = -ENOEXEC;
1450 break;
1451
1452 case SHN_ABS:
1453 /* Don't need to do anything */
1454 pr_debug("Absolute symbol: 0x%08lx %s\n",
1455 (long)sym[i].st_value, name);
1456 break;
1457
1458 case SHN_LIVEPATCH:
1459 /* Livepatch symbols are resolved by livepatch */
1460 break;
1461
1462 case SHN_UNDEF:
1463 ksym = resolve_symbol_wait(mod, info, name);
1464 /* Ok if resolved. */
1465 if (ksym && !IS_ERR(ksym)) {
1466 sym[i].st_value = kernel_symbol_value(ksym);
1467 break;
1468 }
1469
1470 /* Ok if weak or ignored. */
1471 if (!ksym &&
1472 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1473 ignore_undef_symbol(info->hdr->e_machine, name)))
1474 break;
1475
1476 ret = PTR_ERR(ksym) ?: -ENOENT;
1477 pr_warn("%s: Unknown symbol %s (err %d)\n",
1478 mod->name, name, ret);
1479 break;
1480
1481 default:
1482 /* Divert to percpu allocation if a percpu var. */
1483 if (sym[i].st_shndx == info->index.pcpu)
1484 secbase = (unsigned long)mod_percpu(mod);
1485 else
1486 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1487 sym[i].st_value += secbase;
1488 break;
1489 }
1490 }
1491
1492 return ret;
1493 }
1494
apply_relocations(struct module * mod,const struct load_info * info)1495 static int apply_relocations(struct module *mod, const struct load_info *info)
1496 {
1497 unsigned int i;
1498 int err = 0;
1499
1500 /* Now do relocations. */
1501 for (i = 1; i < info->hdr->e_shnum; i++) {
1502 unsigned int infosec = info->sechdrs[i].sh_info;
1503
1504 /* Not a valid relocation section? */
1505 if (infosec >= info->hdr->e_shnum)
1506 continue;
1507
1508 /* Don't bother with non-allocated sections */
1509 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1510 continue;
1511
1512 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1513 err = klp_apply_section_relocs(mod, info->sechdrs,
1514 info->secstrings,
1515 info->strtab,
1516 info->index.sym, i,
1517 NULL);
1518 else if (info->sechdrs[i].sh_type == SHT_REL)
1519 err = apply_relocate(info->sechdrs, info->strtab,
1520 info->index.sym, i, mod);
1521 else if (info->sechdrs[i].sh_type == SHT_RELA)
1522 err = apply_relocate_add(info->sechdrs, info->strtab,
1523 info->index.sym, i, mod);
1524 if (err < 0)
1525 break;
1526 }
1527 return err;
1528 }
1529
1530 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1531 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1532 unsigned int section)
1533 {
1534 /* default implementation just returns zero */
1535 return 0;
1536 }
1537
module_get_offset_and_type(struct module * mod,enum mod_mem_type type,Elf_Shdr * sechdr,unsigned int section)1538 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1539 Elf_Shdr *sechdr, unsigned int section)
1540 {
1541 long offset;
1542 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1543
1544 mod->mem[type].size += arch_mod_section_prepend(mod, section);
1545 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1546 mod->mem[type].size = offset + sechdr->sh_size;
1547
1548 WARN_ON_ONCE(offset & mask);
1549 return offset | mask;
1550 }
1551
module_init_layout_section(const char * sname)1552 bool module_init_layout_section(const char *sname)
1553 {
1554 #ifndef CONFIG_MODULE_UNLOAD
1555 if (module_exit_section(sname))
1556 return true;
1557 #endif
1558 return module_init_section(sname);
1559 }
1560
__layout_sections(struct module * mod,struct load_info * info,bool is_init)1561 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1562 {
1563 unsigned int m, i;
1564
1565 static const unsigned long masks[][2] = {
1566 /*
1567 * NOTE: all executable code must be the first section
1568 * in this array; otherwise modify the text_size
1569 * finder in the two loops below
1570 */
1571 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1572 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1573 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1574 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1575 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1576 };
1577 static const int core_m_to_mem_type[] = {
1578 MOD_TEXT,
1579 MOD_RODATA,
1580 MOD_RO_AFTER_INIT,
1581 MOD_DATA,
1582 MOD_DATA,
1583 };
1584 static const int init_m_to_mem_type[] = {
1585 MOD_INIT_TEXT,
1586 MOD_INIT_RODATA,
1587 MOD_INVALID,
1588 MOD_INIT_DATA,
1589 MOD_INIT_DATA,
1590 };
1591
1592 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1593 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1594
1595 for (i = 0; i < info->hdr->e_shnum; ++i) {
1596 Elf_Shdr *s = &info->sechdrs[i];
1597 const char *sname = info->secstrings + s->sh_name;
1598
1599 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1600 || (s->sh_flags & masks[m][1])
1601 || s->sh_entsize != ~0UL
1602 || is_init != module_init_layout_section(sname))
1603 continue;
1604
1605 if (WARN_ON_ONCE(type == MOD_INVALID))
1606 continue;
1607
1608 /*
1609 * Do not allocate codetag memory as we load it into
1610 * preallocated contiguous memory.
1611 */
1612 if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1613 /*
1614 * s->sh_entsize won't be used but populate the
1615 * type field to avoid confusion.
1616 */
1617 s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1618 << SH_ENTSIZE_TYPE_SHIFT;
1619 continue;
1620 }
1621
1622 s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1623 pr_debug("\t%s\n", sname);
1624 }
1625 }
1626 }
1627
1628 /*
1629 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1630 * might -- code, read-only data, read-write data, small data. Tally
1631 * sizes, and place the offsets into sh_entsize fields: high bit means it
1632 * belongs in init.
1633 */
layout_sections(struct module * mod,struct load_info * info)1634 static void layout_sections(struct module *mod, struct load_info *info)
1635 {
1636 unsigned int i;
1637
1638 for (i = 0; i < info->hdr->e_shnum; i++)
1639 info->sechdrs[i].sh_entsize = ~0UL;
1640
1641 pr_debug("Core section allocation order for %s:\n", mod->name);
1642 __layout_sections(mod, info, false);
1643
1644 pr_debug("Init section allocation order for %s:\n", mod->name);
1645 __layout_sections(mod, info, true);
1646 }
1647
module_license_taint_check(struct module * mod,const char * license)1648 static void module_license_taint_check(struct module *mod, const char *license)
1649 {
1650 if (!license)
1651 license = "unspecified";
1652
1653 if (!license_is_gpl_compatible(license)) {
1654 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1655 pr_warn("%s: module license '%s' taints kernel.\n",
1656 mod->name, license);
1657 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1658 LOCKDEP_NOW_UNRELIABLE);
1659 }
1660 }
1661
setup_modinfo(struct module * mod,struct load_info * info)1662 static void setup_modinfo(struct module *mod, struct load_info *info)
1663 {
1664 const struct module_attribute *attr;
1665 int i;
1666
1667 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1668 if (attr->setup)
1669 attr->setup(mod, get_modinfo(info, attr->attr.name));
1670 }
1671 }
1672
free_modinfo(struct module * mod)1673 static void free_modinfo(struct module *mod)
1674 {
1675 const struct module_attribute *attr;
1676 int i;
1677
1678 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1679 if (attr->free)
1680 attr->free(mod);
1681 }
1682 }
1683
module_init_section(const char * name)1684 bool __weak module_init_section(const char *name)
1685 {
1686 return strstarts(name, ".init");
1687 }
1688
module_exit_section(const char * name)1689 bool __weak module_exit_section(const char *name)
1690 {
1691 return strstarts(name, ".exit");
1692 }
1693
validate_section_offset(const struct load_info * info,Elf_Shdr * shdr)1694 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1695 {
1696 #if defined(CONFIG_64BIT)
1697 unsigned long long secend;
1698 #else
1699 unsigned long secend;
1700 #endif
1701
1702 /*
1703 * Check for both overflow and offset/size being
1704 * too large.
1705 */
1706 secend = shdr->sh_offset + shdr->sh_size;
1707 if (secend < shdr->sh_offset || secend > info->len)
1708 return -ENOEXEC;
1709
1710 return 0;
1711 }
1712
1713 /**
1714 * elf_validity_ehdr() - Checks an ELF header for module validity
1715 * @info: Load info containing the ELF header to check
1716 *
1717 * Checks whether an ELF header could belong to a valid module. Checks:
1718 *
1719 * * ELF header is within the data the user provided
1720 * * ELF magic is present
1721 * * It is relocatable (not final linked, not core file, etc.)
1722 * * The header's machine type matches what the architecture expects.
1723 * * Optional arch-specific hook for other properties
1724 * - module_elf_check_arch() is currently only used by PPC to check
1725 * ELF ABI version, but may be used by others in the future.
1726 *
1727 * Return: %0 if valid, %-ENOEXEC on failure.
1728 */
elf_validity_ehdr(const struct load_info * info)1729 static int elf_validity_ehdr(const struct load_info *info)
1730 {
1731 if (info->len < sizeof(*(info->hdr))) {
1732 pr_err("Invalid ELF header len %lu\n", info->len);
1733 return -ENOEXEC;
1734 }
1735 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1736 pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1737 return -ENOEXEC;
1738 }
1739 if (info->hdr->e_type != ET_REL) {
1740 pr_err("Invalid ELF header type: %u != %u\n",
1741 info->hdr->e_type, ET_REL);
1742 return -ENOEXEC;
1743 }
1744 if (!elf_check_arch(info->hdr)) {
1745 pr_err("Invalid architecture in ELF header: %u\n",
1746 info->hdr->e_machine);
1747 return -ENOEXEC;
1748 }
1749 if (!module_elf_check_arch(info->hdr)) {
1750 pr_err("Invalid module architecture in ELF header: %u\n",
1751 info->hdr->e_machine);
1752 return -ENOEXEC;
1753 }
1754 return 0;
1755 }
1756
1757 /**
1758 * elf_validity_cache_sechdrs() - Cache section headers if valid
1759 * @info: Load info to compute section headers from
1760 *
1761 * Checks:
1762 *
1763 * * ELF header is valid (see elf_validity_ehdr())
1764 * * Section headers are the size we expect
1765 * * Section array fits in the user provided data
1766 * * Section index 0 is NULL
1767 * * Section contents are inbounds
1768 *
1769 * Then updates @info with a &load_info->sechdrs pointer if valid.
1770 *
1771 * Return: %0 if valid, negative error code if validation failed.
1772 */
elf_validity_cache_sechdrs(struct load_info * info)1773 static int elf_validity_cache_sechdrs(struct load_info *info)
1774 {
1775 Elf_Shdr *sechdrs;
1776 Elf_Shdr *shdr;
1777 int i;
1778 int err;
1779
1780 err = elf_validity_ehdr(info);
1781 if (err < 0)
1782 return err;
1783
1784 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1785 pr_err("Invalid ELF section header size\n");
1786 return -ENOEXEC;
1787 }
1788
1789 /*
1790 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1791 * known and small. So e_shnum * sizeof(Elf_Shdr)
1792 * will not overflow unsigned long on any platform.
1793 */
1794 if (info->hdr->e_shoff >= info->len
1795 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1796 info->len - info->hdr->e_shoff)) {
1797 pr_err("Invalid ELF section header overflow\n");
1798 return -ENOEXEC;
1799 }
1800
1801 sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1802
1803 /*
1804 * The code assumes that section 0 has a length of zero and
1805 * an addr of zero, so check for it.
1806 */
1807 if (sechdrs[0].sh_type != SHT_NULL
1808 || sechdrs[0].sh_size != 0
1809 || sechdrs[0].sh_addr != 0) {
1810 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1811 sechdrs[0].sh_type);
1812 return -ENOEXEC;
1813 }
1814
1815 /* Validate contents are inbounds */
1816 for (i = 1; i < info->hdr->e_shnum; i++) {
1817 shdr = &sechdrs[i];
1818 switch (shdr->sh_type) {
1819 case SHT_NULL:
1820 case SHT_NOBITS:
1821 /* No contents, offset/size don't mean anything */
1822 continue;
1823 default:
1824 err = validate_section_offset(info, shdr);
1825 if (err < 0) {
1826 pr_err("Invalid ELF section in module (section %u type %u)\n",
1827 i, shdr->sh_type);
1828 return err;
1829 }
1830 }
1831 }
1832
1833 info->sechdrs = sechdrs;
1834
1835 return 0;
1836 }
1837
1838 /**
1839 * elf_validity_cache_secstrings() - Caches section names if valid
1840 * @info: Load info to cache section names from. Must have valid sechdrs.
1841 *
1842 * Specifically checks:
1843 *
1844 * * Section name table index is inbounds of section headers
1845 * * Section name table is not empty
1846 * * Section name table is NUL terminated
1847 * * All section name offsets are inbounds of the section
1848 *
1849 * Then updates @info with a &load_info->secstrings pointer if valid.
1850 *
1851 * Return: %0 if valid, negative error code if validation failed.
1852 */
elf_validity_cache_secstrings(struct load_info * info)1853 static int elf_validity_cache_secstrings(struct load_info *info)
1854 {
1855 Elf_Shdr *strhdr, *shdr;
1856 char *secstrings;
1857 int i;
1858
1859 /*
1860 * Verify if the section name table index is valid.
1861 */
1862 if (info->hdr->e_shstrndx == SHN_UNDEF
1863 || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1864 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1865 info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1866 info->hdr->e_shnum);
1867 return -ENOEXEC;
1868 }
1869
1870 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1871
1872 /*
1873 * The section name table must be NUL-terminated, as required
1874 * by the spec. This makes strcmp and pr_* calls that access
1875 * strings in the section safe.
1876 */
1877 secstrings = (void *)info->hdr + strhdr->sh_offset;
1878 if (strhdr->sh_size == 0) {
1879 pr_err("empty section name table\n");
1880 return -ENOEXEC;
1881 }
1882 if (secstrings[strhdr->sh_size - 1] != '\0') {
1883 pr_err("ELF Spec violation: section name table isn't null terminated\n");
1884 return -ENOEXEC;
1885 }
1886
1887 for (i = 0; i < info->hdr->e_shnum; i++) {
1888 shdr = &info->sechdrs[i];
1889 /* SHT_NULL means sh_name has an undefined value */
1890 if (shdr->sh_type == SHT_NULL)
1891 continue;
1892 if (shdr->sh_name >= strhdr->sh_size) {
1893 pr_err("Invalid ELF section name in module (section %u type %u)\n",
1894 i, shdr->sh_type);
1895 return -ENOEXEC;
1896 }
1897 }
1898
1899 info->secstrings = secstrings;
1900 return 0;
1901 }
1902
1903 /**
1904 * elf_validity_cache_index_info() - Validate and cache modinfo section
1905 * @info: Load info to populate the modinfo index on.
1906 * Must have &load_info->sechdrs and &load_info->secstrings populated
1907 *
1908 * Checks that if there is a .modinfo section, it is unique.
1909 * Then, it caches its index in &load_info->index.info.
1910 * Finally, it tries to populate the name to improve error messages.
1911 *
1912 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
1913 */
elf_validity_cache_index_info(struct load_info * info)1914 static int elf_validity_cache_index_info(struct load_info *info)
1915 {
1916 int info_idx;
1917
1918 info_idx = find_any_unique_sec(info, ".modinfo");
1919
1920 if (info_idx == 0)
1921 /* Early return, no .modinfo */
1922 return 0;
1923
1924 if (info_idx < 0) {
1925 pr_err("Only one .modinfo section must exist.\n");
1926 return -ENOEXEC;
1927 }
1928
1929 info->index.info = info_idx;
1930 /* Try to find a name early so we can log errors with a module name */
1931 info->name = get_modinfo(info, "name");
1932
1933 return 0;
1934 }
1935
1936 /**
1937 * elf_validity_cache_index_mod() - Validates and caches this_module section
1938 * @info: Load info to cache this_module on.
1939 * Must have &load_info->sechdrs and &load_info->secstrings populated
1940 *
1941 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
1942 * uses to refer to __this_module and let's use rely on THIS_MODULE to point
1943 * to &__this_module properly. The kernel's modpost declares it on each
1944 * modules's *.mod.c file. If the struct module of the kernel changes a full
1945 * kernel rebuild is required.
1946 *
1947 * We have a few expectations for this special section, this function
1948 * validates all this for us:
1949 *
1950 * * The section has contents
1951 * * The section is unique
1952 * * We expect the kernel to always have to allocate it: SHF_ALLOC
1953 * * The section size must match the kernel's run time's struct module
1954 * size
1955 *
1956 * If all checks pass, the index will be cached in &load_info->index.mod
1957 *
1958 * Return: %0 on validation success, %-ENOEXEC on failure
1959 */
elf_validity_cache_index_mod(struct load_info * info)1960 static int elf_validity_cache_index_mod(struct load_info *info)
1961 {
1962 Elf_Shdr *shdr;
1963 int mod_idx;
1964
1965 mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
1966 if (mod_idx <= 0) {
1967 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
1968 info->name ?: "(missing .modinfo section or name field)");
1969 return -ENOEXEC;
1970 }
1971
1972 shdr = &info->sechdrs[mod_idx];
1973
1974 if (shdr->sh_type == SHT_NOBITS) {
1975 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
1976 info->name ?: "(missing .modinfo section or name field)");
1977 return -ENOEXEC;
1978 }
1979
1980 if (!(shdr->sh_flags & SHF_ALLOC)) {
1981 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
1982 info->name ?: "(missing .modinfo section or name field)");
1983 return -ENOEXEC;
1984 }
1985
1986 if (shdr->sh_size != sizeof(struct module)) {
1987 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
1988 info->name ?: "(missing .modinfo section or name field)");
1989 return -ENOEXEC;
1990 }
1991
1992 info->index.mod = mod_idx;
1993
1994 return 0;
1995 }
1996
1997 /**
1998 * elf_validity_cache_index_sym() - Validate and cache symtab index
1999 * @info: Load info to cache symtab index in.
2000 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2001 *
2002 * Checks that there is exactly one symbol table, then caches its index in
2003 * &load_info->index.sym.
2004 *
2005 * Return: %0 if valid, %-ENOEXEC on failure.
2006 */
elf_validity_cache_index_sym(struct load_info * info)2007 static int elf_validity_cache_index_sym(struct load_info *info)
2008 {
2009 unsigned int sym_idx;
2010 unsigned int num_sym_secs = 0;
2011 int i;
2012
2013 for (i = 1; i < info->hdr->e_shnum; i++) {
2014 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2015 num_sym_secs++;
2016 sym_idx = i;
2017 }
2018 }
2019
2020 if (num_sym_secs != 1) {
2021 pr_warn("%s: module has no symbols (stripped?)\n",
2022 info->name ?: "(missing .modinfo section or name field)");
2023 return -ENOEXEC;
2024 }
2025
2026 info->index.sym = sym_idx;
2027
2028 return 0;
2029 }
2030
2031 /**
2032 * elf_validity_cache_index_str() - Validate and cache strtab index
2033 * @info: Load info to cache strtab index in.
2034 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2035 * Must have &load_info->index.sym populated.
2036 *
2037 * Looks at the symbol table's associated string table, makes sure it is
2038 * in-bounds, and caches it.
2039 *
2040 * Return: %0 if valid, %-ENOEXEC on failure.
2041 */
elf_validity_cache_index_str(struct load_info * info)2042 static int elf_validity_cache_index_str(struct load_info *info)
2043 {
2044 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2045
2046 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2047 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2048 str_idx, str_idx, info->hdr->e_shnum);
2049 return -ENOEXEC;
2050 }
2051
2052 info->index.str = str_idx;
2053 return 0;
2054 }
2055
2056 /**
2057 * elf_validity_cache_index_versions() - Validate and cache version indices
2058 * @info: Load info to cache version indices in.
2059 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2060 * @flags: Load flags, relevant to suppress version loading, see
2061 * uapi/linux/module.h
2062 *
2063 * If we're ignoring modversions based on @flags, zero all version indices
2064 * and return validity. Othewrise check:
2065 *
2066 * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2067 * * There is a name present for every crc
2068 *
2069 * Then populate:
2070 *
2071 * * &load_info->index.vers
2072 * * &load_info->index.vers_ext_crc
2073 * * &load_info->index.vers_ext_names
2074 *
2075 * if present.
2076 *
2077 * Return: %0 if valid, %-ENOEXEC on failure.
2078 */
elf_validity_cache_index_versions(struct load_info * info,int flags)2079 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2080 {
2081 unsigned int vers_ext_crc;
2082 unsigned int vers_ext_name;
2083 size_t crc_count;
2084 size_t remaining_len;
2085 size_t name_size;
2086 char *name;
2087
2088 /* If modversions were suppressed, pretend we didn't find any */
2089 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2090 info->index.vers = 0;
2091 info->index.vers_ext_crc = 0;
2092 info->index.vers_ext_name = 0;
2093 return 0;
2094 }
2095
2096 vers_ext_crc = find_sec(info, "__version_ext_crcs");
2097 vers_ext_name = find_sec(info, "__version_ext_names");
2098
2099 /* If we have one field, we must have the other */
2100 if (!!vers_ext_crc != !!vers_ext_name) {
2101 pr_err("extended version crc+name presence does not match");
2102 return -ENOEXEC;
2103 }
2104
2105 /*
2106 * If we have extended version information, we should have the same
2107 * number of entries in every section.
2108 */
2109 if (vers_ext_crc) {
2110 crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2111 name = (void *)info->hdr +
2112 info->sechdrs[vers_ext_name].sh_offset;
2113 remaining_len = info->sechdrs[vers_ext_name].sh_size;
2114
2115 while (crc_count--) {
2116 name_size = strnlen(name, remaining_len) + 1;
2117 if (name_size > remaining_len) {
2118 pr_err("more extended version crcs than names");
2119 return -ENOEXEC;
2120 }
2121 remaining_len -= name_size;
2122 name += name_size;
2123 }
2124 }
2125
2126 info->index.vers = find_sec(info, "__versions");
2127 info->index.vers_ext_crc = vers_ext_crc;
2128 info->index.vers_ext_name = vers_ext_name;
2129 return 0;
2130 }
2131
2132 /**
2133 * elf_validity_cache_index() - Resolve, validate, cache section indices
2134 * @info: Load info to read from and update.
2135 * &load_info->sechdrs and &load_info->secstrings must be populated.
2136 * @flags: Load flags, relevant to suppress version loading, see
2137 * uapi/linux/module.h
2138 *
2139 * Populates &load_info->index, validating as it goes.
2140 * See child functions for per-field validation:
2141 *
2142 * * elf_validity_cache_index_info()
2143 * * elf_validity_cache_index_mod()
2144 * * elf_validity_cache_index_sym()
2145 * * elf_validity_cache_index_str()
2146 * * elf_validity_cache_index_versions()
2147 *
2148 * If CONFIG_SMP is enabled, load the percpu section by name with no
2149 * validation.
2150 *
2151 * Return: 0 on success, negative error code if an index failed validation.
2152 */
elf_validity_cache_index(struct load_info * info,int flags)2153 static int elf_validity_cache_index(struct load_info *info, int flags)
2154 {
2155 int err;
2156
2157 err = elf_validity_cache_index_info(info);
2158 if (err < 0)
2159 return err;
2160 err = elf_validity_cache_index_mod(info);
2161 if (err < 0)
2162 return err;
2163 err = elf_validity_cache_index_sym(info);
2164 if (err < 0)
2165 return err;
2166 err = elf_validity_cache_index_str(info);
2167 if (err < 0)
2168 return err;
2169 err = elf_validity_cache_index_versions(info, flags);
2170 if (err < 0)
2171 return err;
2172
2173 info->index.pcpu = find_pcpusec(info);
2174
2175 return 0;
2176 }
2177
2178 /**
2179 * elf_validity_cache_strtab() - Validate and cache symbol string table
2180 * @info: Load info to read from and update.
2181 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2182 * Must have &load_info->index populated.
2183 *
2184 * Checks:
2185 *
2186 * * The string table is not empty.
2187 * * The string table starts and ends with NUL (required by ELF spec).
2188 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2189 * string table.
2190 *
2191 * And caches the pointer as &load_info->strtab in @info.
2192 *
2193 * Return: 0 on success, negative error code if a check failed.
2194 */
elf_validity_cache_strtab(struct load_info * info)2195 static int elf_validity_cache_strtab(struct load_info *info)
2196 {
2197 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2198 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2199 char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2200 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2201 int i;
2202
2203 if (str_shdr->sh_size == 0) {
2204 pr_err("empty symbol string table\n");
2205 return -ENOEXEC;
2206 }
2207 if (strtab[0] != '\0') {
2208 pr_err("symbol string table missing leading NUL\n");
2209 return -ENOEXEC;
2210 }
2211 if (strtab[str_shdr->sh_size - 1] != '\0') {
2212 pr_err("symbol string table isn't NUL terminated\n");
2213 return -ENOEXEC;
2214 }
2215
2216 /*
2217 * Now that we know strtab is correctly structured, check symbol
2218 * starts are inbounds before they're used later.
2219 */
2220 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2221 if (syms[i].st_name >= str_shdr->sh_size) {
2222 pr_err("symbol name out of bounds in string table");
2223 return -ENOEXEC;
2224 }
2225 }
2226
2227 info->strtab = strtab;
2228 return 0;
2229 }
2230
2231 /*
2232 * Check userspace passed ELF module against our expectations, and cache
2233 * useful variables for further processing as we go.
2234 *
2235 * This does basic validity checks against section offsets and sizes, the
2236 * section name string table, and the indices used for it (sh_name).
2237 *
2238 * As a last step, since we're already checking the ELF sections we cache
2239 * useful variables which will be used later for our convenience:
2240 *
2241 * o pointers to section headers
2242 * o cache the modinfo symbol section
2243 * o cache the string symbol section
2244 * o cache the module section
2245 *
2246 * As a last step we set info->mod to the temporary copy of the module in
2247 * info->hdr. The final one will be allocated in move_module(). Any
2248 * modifications we make to our copy of the module will be carried over
2249 * to the final minted module.
2250 */
elf_validity_cache_copy(struct load_info * info,int flags)2251 static int elf_validity_cache_copy(struct load_info *info, int flags)
2252 {
2253 int err;
2254
2255 err = elf_validity_cache_sechdrs(info);
2256 if (err < 0)
2257 return err;
2258 err = elf_validity_cache_secstrings(info);
2259 if (err < 0)
2260 return err;
2261 err = elf_validity_cache_index(info, flags);
2262 if (err < 0)
2263 return err;
2264 err = elf_validity_cache_strtab(info);
2265 if (err < 0)
2266 return err;
2267
2268 /* This is temporary: point mod into copy of data. */
2269 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2270
2271 /*
2272 * If we didn't load the .modinfo 'name' field earlier, fall back to
2273 * on-disk struct mod 'name' field.
2274 */
2275 if (!info->name)
2276 info->name = info->mod->name;
2277
2278 return 0;
2279 }
2280
2281 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2282
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2283 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2284 {
2285 do {
2286 unsigned long n = min(len, COPY_CHUNK_SIZE);
2287
2288 if (copy_from_user(dst, usrc, n) != 0)
2289 return -EFAULT;
2290 cond_resched();
2291 dst += n;
2292 usrc += n;
2293 len -= n;
2294 } while (len);
2295 return 0;
2296 }
2297
check_modinfo_livepatch(struct module * mod,struct load_info * info)2298 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2299 {
2300 if (!get_modinfo(info, "livepatch"))
2301 /* Nothing more to do */
2302 return 0;
2303
2304 if (set_livepatch_module(mod))
2305 return 0;
2306
2307 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2308 mod->name);
2309 return -ENOEXEC;
2310 }
2311
check_modinfo_retpoline(struct module * mod,struct load_info * info)2312 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2313 {
2314 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2315 return;
2316
2317 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2318 mod->name);
2319 }
2320
2321 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2322 static int copy_module_from_user(const void __user *umod, unsigned long len,
2323 struct load_info *info)
2324 {
2325 int err;
2326
2327 info->len = len;
2328 if (info->len < sizeof(*(info->hdr)))
2329 return -ENOEXEC;
2330
2331 err = security_kernel_load_data(LOADING_MODULE, true);
2332 if (err)
2333 return err;
2334
2335 /* Suck in entire file: we'll want most of it. */
2336 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2337 if (!info->hdr)
2338 return -ENOMEM;
2339
2340 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2341 err = -EFAULT;
2342 goto out;
2343 }
2344
2345 err = security_kernel_post_load_data((char *)info->hdr, info->len,
2346 LOADING_MODULE, "init_module");
2347 out:
2348 if (err)
2349 vfree(info->hdr);
2350
2351 return err;
2352 }
2353
free_copy(struct load_info * info,int flags)2354 static void free_copy(struct load_info *info, int flags)
2355 {
2356 if (flags & MODULE_INIT_COMPRESSED_FILE)
2357 module_decompress_cleanup(info);
2358 else
2359 vfree(info->hdr);
2360 }
2361
rewrite_section_headers(struct load_info * info,int flags)2362 static int rewrite_section_headers(struct load_info *info, int flags)
2363 {
2364 unsigned int i;
2365
2366 /* This should always be true, but let's be sure. */
2367 info->sechdrs[0].sh_addr = 0;
2368
2369 for (i = 1; i < info->hdr->e_shnum; i++) {
2370 Elf_Shdr *shdr = &info->sechdrs[i];
2371
2372 /*
2373 * Mark all sections sh_addr with their address in the
2374 * temporary image.
2375 */
2376 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2377
2378 }
2379
2380 /* Track but don't keep modinfo and version sections. */
2381 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2382 info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2383 ~(unsigned long)SHF_ALLOC;
2384 info->sechdrs[info->index.vers_ext_name].sh_flags &=
2385 ~(unsigned long)SHF_ALLOC;
2386 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2387
2388 return 0;
2389 }
2390
2391 static const char *const module_license_offenders[] = {
2392 /* driverloader was caught wrongly pretending to be under GPL */
2393 "driverloader",
2394
2395 /* lve claims to be GPL but upstream won't provide source */
2396 "lve",
2397 };
2398
2399 /*
2400 * These calls taint the kernel depending certain module circumstances */
module_augment_kernel_taints(struct module * mod,struct load_info * info)2401 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2402 {
2403 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2404 size_t i;
2405
2406 if (!get_modinfo(info, "intree")) {
2407 if (!test_taint(TAINT_OOT_MODULE))
2408 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2409 mod->name);
2410 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2411 }
2412
2413 check_modinfo_retpoline(mod, info);
2414
2415 if (get_modinfo(info, "staging")) {
2416 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2417 pr_warn("%s: module is from the staging directory, the quality "
2418 "is unknown, you have been warned.\n", mod->name);
2419 }
2420
2421 if (is_livepatch_module(mod)) {
2422 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2423 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2424 mod->name);
2425 }
2426
2427 module_license_taint_check(mod, get_modinfo(info, "license"));
2428
2429 if (get_modinfo(info, "test")) {
2430 if (!test_taint(TAINT_TEST))
2431 pr_warn("%s: loading test module taints kernel.\n",
2432 mod->name);
2433 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2434 }
2435 #ifdef CONFIG_MODULE_SIG
2436 mod->sig_ok = info->sig_ok;
2437 if (!mod->sig_ok) {
2438 pr_notice_once("%s: module verification failed: signature "
2439 "and/or required key missing - tainting "
2440 "kernel\n", mod->name);
2441 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2442 }
2443 #endif
2444
2445 /*
2446 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2447 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2448 * using GPL-only symbols it needs.
2449 */
2450 if (strcmp(mod->name, "ndiswrapper") == 0)
2451 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2452
2453 for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2454 if (strcmp(mod->name, module_license_offenders[i]) == 0)
2455 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2456 LOCKDEP_NOW_UNRELIABLE);
2457 }
2458
2459 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2460 pr_warn("%s: module license taints kernel.\n", mod->name);
2461
2462 }
2463
check_modinfo(struct module * mod,struct load_info * info,int flags)2464 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2465 {
2466 const char *modmagic = get_modinfo(info, "vermagic");
2467 int err;
2468
2469 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2470 modmagic = NULL;
2471
2472 /* This is allowed: modprobe --force will invalidate it. */
2473 if (!modmagic) {
2474 err = try_to_force_load(mod, "bad vermagic");
2475 if (err)
2476 return err;
2477 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2478 pr_err("%s: version magic '%s' should be '%s'\n",
2479 info->name, modmagic, vermagic);
2480 return -ENOEXEC;
2481 }
2482
2483 err = check_modinfo_livepatch(mod, info);
2484 if (err)
2485 return err;
2486
2487 return 0;
2488 }
2489
find_module_sections(struct module * mod,struct load_info * info)2490 static int find_module_sections(struct module *mod, struct load_info *info)
2491 {
2492 mod->kp = section_objs(info, "__param",
2493 sizeof(*mod->kp), &mod->num_kp);
2494 mod->syms = section_objs(info, "__ksymtab",
2495 sizeof(*mod->syms), &mod->num_syms);
2496 mod->crcs = section_addr(info, "__kcrctab");
2497 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2498 sizeof(*mod->gpl_syms),
2499 &mod->num_gpl_syms);
2500 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2501
2502 #ifdef CONFIG_CONSTRUCTORS
2503 mod->ctors = section_objs(info, ".ctors",
2504 sizeof(*mod->ctors), &mod->num_ctors);
2505 if (!mod->ctors)
2506 mod->ctors = section_objs(info, ".init_array",
2507 sizeof(*mod->ctors), &mod->num_ctors);
2508 else if (find_sec(info, ".init_array")) {
2509 /*
2510 * This shouldn't happen with same compiler and binutils
2511 * building all parts of the module.
2512 */
2513 pr_warn("%s: has both .ctors and .init_array.\n",
2514 mod->name);
2515 return -EINVAL;
2516 }
2517 #endif
2518
2519 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2520 &mod->noinstr_text_size);
2521
2522 #ifdef CONFIG_TRACEPOINTS
2523 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2524 sizeof(*mod->tracepoints_ptrs),
2525 &mod->num_tracepoints);
2526 #endif
2527 #ifdef CONFIG_TREE_SRCU
2528 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2529 sizeof(*mod->srcu_struct_ptrs),
2530 &mod->num_srcu_structs);
2531 #endif
2532 #ifdef CONFIG_BPF_EVENTS
2533 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2534 sizeof(*mod->bpf_raw_events),
2535 &mod->num_bpf_raw_events);
2536 #endif
2537 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2538 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2539 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2540 &mod->btf_base_data_size);
2541 #endif
2542 #ifdef CONFIG_JUMP_LABEL
2543 mod->jump_entries = section_objs(info, "__jump_table",
2544 sizeof(*mod->jump_entries),
2545 &mod->num_jump_entries);
2546 #endif
2547 #ifdef CONFIG_EVENT_TRACING
2548 mod->trace_events = section_objs(info, "_ftrace_events",
2549 sizeof(*mod->trace_events),
2550 &mod->num_trace_events);
2551 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2552 sizeof(*mod->trace_evals),
2553 &mod->num_trace_evals);
2554 #endif
2555 #ifdef CONFIG_TRACING
2556 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2557 sizeof(*mod->trace_bprintk_fmt_start),
2558 &mod->num_trace_bprintk_fmt);
2559 #endif
2560 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2561 /* sechdrs[0].sh_size is always zero */
2562 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2563 sizeof(*mod->ftrace_callsites),
2564 &mod->num_ftrace_callsites);
2565 #endif
2566 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2567 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2568 sizeof(*mod->ei_funcs),
2569 &mod->num_ei_funcs);
2570 #endif
2571 #ifdef CONFIG_KPROBES
2572 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2573 &mod->kprobes_text_size);
2574 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2575 sizeof(unsigned long),
2576 &mod->num_kprobe_blacklist);
2577 #endif
2578 #ifdef CONFIG_PRINTK_INDEX
2579 mod->printk_index_start = section_objs(info, ".printk_index",
2580 sizeof(*mod->printk_index_start),
2581 &mod->printk_index_size);
2582 #endif
2583 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2584 mod->static_call_sites = section_objs(info, ".static_call_sites",
2585 sizeof(*mod->static_call_sites),
2586 &mod->num_static_call_sites);
2587 #endif
2588 #if IS_ENABLED(CONFIG_KUNIT)
2589 mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2590 sizeof(*mod->kunit_suites),
2591 &mod->num_kunit_suites);
2592 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2593 sizeof(*mod->kunit_init_suites),
2594 &mod->num_kunit_init_suites);
2595 #endif
2596
2597 mod->extable = section_objs(info, "__ex_table",
2598 sizeof(*mod->extable), &mod->num_exentries);
2599
2600 if (section_addr(info, "__obsparm"))
2601 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2602
2603 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2604 mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2605 sizeof(*mod->dyndbg_info.descs),
2606 &mod->dyndbg_info.num_descs);
2607 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2608 sizeof(*mod->dyndbg_info.classes),
2609 &mod->dyndbg_info.num_classes);
2610 #endif
2611
2612 return 0;
2613 }
2614
move_module(struct module * mod,struct load_info * info)2615 static int move_module(struct module *mod, struct load_info *info)
2616 {
2617 int i;
2618 enum mod_mem_type t = 0;
2619 int ret = -ENOMEM;
2620 bool codetag_section_found = false;
2621
2622 for_each_mod_mem_type(type) {
2623 if (!mod->mem[type].size) {
2624 mod->mem[type].base = NULL;
2625 continue;
2626 }
2627
2628 ret = module_memory_alloc(mod, type);
2629 if (ret) {
2630 t = type;
2631 goto out_err;
2632 }
2633 }
2634
2635 /* Transfer each section which specifies SHF_ALLOC */
2636 pr_debug("Final section addresses for %s:\n", mod->name);
2637 for (i = 0; i < info->hdr->e_shnum; i++) {
2638 void *dest;
2639 Elf_Shdr *shdr = &info->sechdrs[i];
2640 const char *sname;
2641
2642 if (!(shdr->sh_flags & SHF_ALLOC))
2643 continue;
2644
2645 sname = info->secstrings + shdr->sh_name;
2646 /*
2647 * Load codetag sections separately as they might still be used
2648 * after module unload.
2649 */
2650 if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2651 dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2652 arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2653 if (WARN_ON(!dest)) {
2654 ret = -EINVAL;
2655 goto out_err;
2656 }
2657 if (IS_ERR(dest)) {
2658 ret = PTR_ERR(dest);
2659 goto out_err;
2660 }
2661 codetag_section_found = true;
2662 } else {
2663 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2664 unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2665
2666 dest = mod->mem[type].base + offset;
2667 }
2668
2669 if (shdr->sh_type != SHT_NOBITS) {
2670 /*
2671 * Our ELF checker already validated this, but let's
2672 * be pedantic and make the goal clearer. We actually
2673 * end up copying over all modifications made to the
2674 * userspace copy of the entire struct module.
2675 */
2676 if (i == info->index.mod &&
2677 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2678 ret = -ENOEXEC;
2679 goto out_err;
2680 }
2681 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2682 }
2683 /*
2684 * Update the userspace copy's ELF section address to point to
2685 * our newly allocated memory as a pure convenience so that
2686 * users of info can keep taking advantage and using the newly
2687 * minted official memory area.
2688 */
2689 shdr->sh_addr = (unsigned long)dest;
2690 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2691 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2692 }
2693
2694 return 0;
2695 out_err:
2696 module_memory_restore_rox(mod);
2697 for (t--; t >= 0; t--)
2698 module_memory_free(mod, t);
2699 if (codetag_section_found)
2700 codetag_free_module_sections(mod);
2701
2702 return ret;
2703 }
2704
check_export_symbol_versions(struct module * mod)2705 static int check_export_symbol_versions(struct module *mod)
2706 {
2707 #ifdef CONFIG_MODVERSIONS
2708 if ((mod->num_syms && !mod->crcs) ||
2709 (mod->num_gpl_syms && !mod->gpl_crcs)) {
2710 return try_to_force_load(mod,
2711 "no versions for exported symbols");
2712 }
2713 #endif
2714 return 0;
2715 }
2716
flush_module_icache(const struct module * mod)2717 static void flush_module_icache(const struct module *mod)
2718 {
2719 /*
2720 * Flush the instruction cache, since we've played with text.
2721 * Do it before processing of module parameters, so the module
2722 * can provide parameter accessor functions of its own.
2723 */
2724 for_each_mod_mem_type(type) {
2725 const struct module_memory *mod_mem = &mod->mem[type];
2726
2727 if (mod_mem->size) {
2728 flush_icache_range((unsigned long)mod_mem->base,
2729 (unsigned long)mod_mem->base + mod_mem->size);
2730 }
2731 }
2732 }
2733
module_elf_check_arch(Elf_Ehdr * hdr)2734 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2735 {
2736 return true;
2737 }
2738
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2739 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2740 Elf_Shdr *sechdrs,
2741 char *secstrings,
2742 struct module *mod)
2743 {
2744 return 0;
2745 }
2746
2747 /* module_blacklist is a comma-separated list of module names */
2748 static char *module_blacklist;
blacklisted(const char * module_name)2749 static bool blacklisted(const char *module_name)
2750 {
2751 const char *p;
2752 size_t len;
2753
2754 if (!module_blacklist)
2755 return false;
2756
2757 for (p = module_blacklist; *p; p += len) {
2758 len = strcspn(p, ",");
2759 if (strlen(module_name) == len && !memcmp(module_name, p, len))
2760 return true;
2761 if (p[len] == ',')
2762 len++;
2763 }
2764 return false;
2765 }
2766 core_param(module_blacklist, module_blacklist, charp, 0400);
2767
layout_and_allocate(struct load_info * info,int flags)2768 static struct module *layout_and_allocate(struct load_info *info, int flags)
2769 {
2770 struct module *mod;
2771 unsigned int ndx;
2772 int err;
2773
2774 /* Allow arches to frob section contents and sizes. */
2775 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2776 info->secstrings, info->mod);
2777 if (err < 0)
2778 return ERR_PTR(err);
2779
2780 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2781 info->secstrings, info->mod);
2782 if (err < 0)
2783 return ERR_PTR(err);
2784
2785 /* We will do a special allocation for per-cpu sections later. */
2786 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2787
2788 /*
2789 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2790 * layout_sections() can put it in the right place.
2791 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2792 */
2793 ndx = find_sec(info, ".data..ro_after_init");
2794 if (ndx)
2795 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2796 /*
2797 * Mark the __jump_table section as ro_after_init as well: these data
2798 * structures are never modified, with the exception of entries that
2799 * refer to code in the __init section, which are annotated as such
2800 * at module load time.
2801 */
2802 ndx = find_sec(info, "__jump_table");
2803 if (ndx)
2804 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2805
2806 /*
2807 * Determine total sizes, and put offsets in sh_entsize. For now
2808 * this is done generically; there doesn't appear to be any
2809 * special cases for the architectures.
2810 */
2811 layout_sections(info->mod, info);
2812 layout_symtab(info->mod, info);
2813
2814 /* Allocate and move to the final place */
2815 err = move_module(info->mod, info);
2816 if (err)
2817 return ERR_PTR(err);
2818
2819 /* Module has been copied to its final place now: return it. */
2820 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2821 kmemleak_load_module(mod, info);
2822 codetag_module_replaced(info->mod, mod);
2823
2824 return mod;
2825 }
2826
2827 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2828 static void module_deallocate(struct module *mod, struct load_info *info)
2829 {
2830 percpu_modfree(mod);
2831 module_arch_freeing_init(mod);
2832 codetag_free_module_sections(mod);
2833
2834 free_mod_mem(mod);
2835 }
2836
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2837 int __weak module_finalize(const Elf_Ehdr *hdr,
2838 const Elf_Shdr *sechdrs,
2839 struct module *me)
2840 {
2841 return 0;
2842 }
2843
post_relocation(struct module * mod,const struct load_info * info)2844 static int post_relocation(struct module *mod, const struct load_info *info)
2845 {
2846 /* Sort exception table now relocations are done. */
2847 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2848
2849 /* Copy relocated percpu area over. */
2850 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2851 info->sechdrs[info->index.pcpu].sh_size);
2852
2853 /* Setup kallsyms-specific fields. */
2854 add_kallsyms(mod, info);
2855
2856 /* Arch-specific module finalizing. */
2857 return module_finalize(info->hdr, info->sechdrs, mod);
2858 }
2859
2860 /* Call module constructors. */
do_mod_ctors(struct module * mod)2861 static void do_mod_ctors(struct module *mod)
2862 {
2863 #ifdef CONFIG_CONSTRUCTORS
2864 unsigned long i;
2865
2866 for (i = 0; i < mod->num_ctors; i++)
2867 mod->ctors[i]();
2868 #endif
2869 }
2870
2871 /* For freeing module_init on success, in case kallsyms traversing */
2872 struct mod_initfree {
2873 struct llist_node node;
2874 void *init_text;
2875 void *init_data;
2876 void *init_rodata;
2877 };
2878
do_free_init(struct work_struct * w)2879 static void do_free_init(struct work_struct *w)
2880 {
2881 struct llist_node *pos, *n, *list;
2882 struct mod_initfree *initfree;
2883
2884 list = llist_del_all(&init_free_list);
2885
2886 synchronize_rcu();
2887
2888 llist_for_each_safe(pos, n, list) {
2889 initfree = container_of(pos, struct mod_initfree, node);
2890 execmem_free(initfree->init_text);
2891 execmem_free(initfree->init_data);
2892 execmem_free(initfree->init_rodata);
2893 kfree(initfree);
2894 }
2895 }
2896
flush_module_init_free_work(void)2897 void flush_module_init_free_work(void)
2898 {
2899 flush_work(&init_free_wq);
2900 }
2901
2902 #undef MODULE_PARAM_PREFIX
2903 #define MODULE_PARAM_PREFIX "module."
2904 /* Default value for module->async_probe_requested */
2905 static bool async_probe;
2906 module_param(async_probe, bool, 0644);
2907
2908 /*
2909 * This is where the real work happens.
2910 *
2911 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2912 * helper command 'lx-symbols'.
2913 */
do_init_module(struct module * mod)2914 static noinline int do_init_module(struct module *mod)
2915 {
2916 int ret = 0;
2917 struct mod_initfree *freeinit;
2918 #if defined(CONFIG_MODULE_STATS)
2919 unsigned int text_size = 0, total_size = 0;
2920
2921 for_each_mod_mem_type(type) {
2922 const struct module_memory *mod_mem = &mod->mem[type];
2923 if (mod_mem->size) {
2924 total_size += mod_mem->size;
2925 if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2926 text_size += mod_mem->size;
2927 }
2928 }
2929 #endif
2930
2931 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2932 if (!freeinit) {
2933 ret = -ENOMEM;
2934 goto fail;
2935 }
2936 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
2937 freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
2938 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
2939
2940 do_mod_ctors(mod);
2941 /* Start the module */
2942 if (mod->init != NULL)
2943 ret = do_one_initcall(mod->init);
2944 if (ret < 0) {
2945 goto fail_free_freeinit;
2946 }
2947 if (ret > 0) {
2948 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2949 "follow 0/-E convention\n"
2950 "%s: loading module anyway...\n",
2951 __func__, mod->name, ret, __func__);
2952 dump_stack();
2953 }
2954
2955 /* Now it's a first class citizen! */
2956 mod->state = MODULE_STATE_LIVE;
2957 blocking_notifier_call_chain(&module_notify_list,
2958 MODULE_STATE_LIVE, mod);
2959
2960 /* Delay uevent until module has finished its init routine */
2961 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2962
2963 /*
2964 * We need to finish all async code before the module init sequence
2965 * is done. This has potential to deadlock if synchronous module
2966 * loading is requested from async (which is not allowed!).
2967 *
2968 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2969 * request_module() from async workers") for more details.
2970 */
2971 if (!mod->async_probe_requested)
2972 async_synchronize_full();
2973
2974 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
2975 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
2976 mutex_lock(&module_mutex);
2977 /* Drop initial reference. */
2978 module_put(mod);
2979 trim_init_extable(mod);
2980 #ifdef CONFIG_KALLSYMS
2981 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
2982 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2983 #endif
2984 ret = module_enable_rodata_ro_after_init(mod);
2985 if (ret)
2986 pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
2987 "ro_after_init data might still be writable\n",
2988 mod->name, ret);
2989
2990 mod_tree_remove_init(mod);
2991 module_arch_freeing_init(mod);
2992 for_class_mod_mem_type(type, init) {
2993 mod->mem[type].base = NULL;
2994 mod->mem[type].size = 0;
2995 }
2996
2997 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2998 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
2999 mod->btf_data = NULL;
3000 mod->btf_base_data = NULL;
3001 #endif
3002 /*
3003 * We want to free module_init, but be aware that kallsyms may be
3004 * walking this within an RCU read section. In all the failure paths, we
3005 * call synchronize_rcu(), but we don't want to slow down the success
3006 * path. execmem_free() cannot be called in an interrupt, so do the
3007 * work and call synchronize_rcu() in a work queue.
3008 *
3009 * Note that execmem_alloc() on most architectures creates W+X page
3010 * mappings which won't be cleaned up until do_free_init() runs. Any
3011 * code such as mark_rodata_ro() which depends on those mappings to
3012 * be cleaned up needs to sync with the queued work by invoking
3013 * flush_module_init_free_work().
3014 */
3015 if (llist_add(&freeinit->node, &init_free_list))
3016 schedule_work(&init_free_wq);
3017
3018 mutex_unlock(&module_mutex);
3019 wake_up_all(&module_wq);
3020
3021 mod_stat_add_long(text_size, &total_text_size);
3022 mod_stat_add_long(total_size, &total_mod_size);
3023
3024 mod_stat_inc(&modcount);
3025
3026 return 0;
3027
3028 fail_free_freeinit:
3029 kfree(freeinit);
3030 fail:
3031 /* Try to protect us from buggy refcounters. */
3032 mod->state = MODULE_STATE_GOING;
3033 synchronize_rcu();
3034 module_put(mod);
3035 blocking_notifier_call_chain(&module_notify_list,
3036 MODULE_STATE_GOING, mod);
3037 klp_module_going(mod);
3038 ftrace_release_mod(mod);
3039 free_module(mod);
3040 wake_up_all(&module_wq);
3041
3042 return ret;
3043 }
3044
may_init_module(void)3045 static int may_init_module(void)
3046 {
3047 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3048 return -EPERM;
3049
3050 return 0;
3051 }
3052
3053 /* Is this module of this name done loading? No locks held. */
finished_loading(const char * name)3054 static bool finished_loading(const char *name)
3055 {
3056 struct module *mod;
3057 bool ret;
3058
3059 /*
3060 * The module_mutex should not be a heavily contended lock;
3061 * if we get the occasional sleep here, we'll go an extra iteration
3062 * in the wait_event_interruptible(), which is harmless.
3063 */
3064 sched_annotate_sleep();
3065 mutex_lock(&module_mutex);
3066 mod = find_module_all(name, strlen(name), true);
3067 ret = !mod || mod->state == MODULE_STATE_LIVE
3068 || mod->state == MODULE_STATE_GOING;
3069 mutex_unlock(&module_mutex);
3070
3071 return ret;
3072 }
3073
3074 /* Must be called with module_mutex held */
module_patient_check_exists(const char * name,enum fail_dup_mod_reason reason)3075 static int module_patient_check_exists(const char *name,
3076 enum fail_dup_mod_reason reason)
3077 {
3078 struct module *old;
3079 int err = 0;
3080
3081 old = find_module_all(name, strlen(name), true);
3082 if (old == NULL)
3083 return 0;
3084
3085 if (old->state == MODULE_STATE_COMING ||
3086 old->state == MODULE_STATE_UNFORMED) {
3087 /* Wait in case it fails to load. */
3088 mutex_unlock(&module_mutex);
3089 err = wait_event_interruptible(module_wq,
3090 finished_loading(name));
3091 mutex_lock(&module_mutex);
3092 if (err)
3093 return err;
3094
3095 /* The module might have gone in the meantime. */
3096 old = find_module_all(name, strlen(name), true);
3097 }
3098
3099 if (try_add_failed_module(name, reason))
3100 pr_warn("Could not add fail-tracking for module: %s\n", name);
3101
3102 /*
3103 * We are here only when the same module was being loaded. Do
3104 * not try to load it again right now. It prevents long delays
3105 * caused by serialized module load failures. It might happen
3106 * when more devices of the same type trigger load of
3107 * a particular module.
3108 */
3109 if (old && old->state == MODULE_STATE_LIVE)
3110 return -EEXIST;
3111 return -EBUSY;
3112 }
3113
3114 /*
3115 * We try to place it in the list now to make sure it's unique before
3116 * we dedicate too many resources. In particular, temporary percpu
3117 * memory exhaustion.
3118 */
add_unformed_module(struct module * mod)3119 static int add_unformed_module(struct module *mod)
3120 {
3121 int err;
3122
3123 mod->state = MODULE_STATE_UNFORMED;
3124
3125 mutex_lock(&module_mutex);
3126 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3127 if (err)
3128 goto out;
3129
3130 mod_update_bounds(mod);
3131 list_add_rcu(&mod->list, &modules);
3132 mod_tree_insert(mod);
3133 err = 0;
3134
3135 out:
3136 mutex_unlock(&module_mutex);
3137 return err;
3138 }
3139
complete_formation(struct module * mod,struct load_info * info)3140 static int complete_formation(struct module *mod, struct load_info *info)
3141 {
3142 int err;
3143
3144 mutex_lock(&module_mutex);
3145
3146 /* Find duplicate symbols (must be called under lock). */
3147 err = verify_exported_symbols(mod);
3148 if (err < 0)
3149 goto out;
3150
3151 /* These rely on module_mutex for list integrity. */
3152 module_bug_finalize(info->hdr, info->sechdrs, mod);
3153 module_cfi_finalize(info->hdr, info->sechdrs, mod);
3154
3155 err = module_enable_rodata_ro(mod);
3156 if (err)
3157 goto out_strict_rwx;
3158 err = module_enable_data_nx(mod);
3159 if (err)
3160 goto out_strict_rwx;
3161 err = module_enable_text_rox(mod);
3162 if (err)
3163 goto out_strict_rwx;
3164
3165 /*
3166 * Mark state as coming so strong_try_module_get() ignores us,
3167 * but kallsyms etc. can see us.
3168 */
3169 mod->state = MODULE_STATE_COMING;
3170 mutex_unlock(&module_mutex);
3171
3172 return 0;
3173
3174 out_strict_rwx:
3175 module_bug_cleanup(mod);
3176 out:
3177 mutex_unlock(&module_mutex);
3178 return err;
3179 }
3180
prepare_coming_module(struct module * mod)3181 static int prepare_coming_module(struct module *mod)
3182 {
3183 int err;
3184
3185 ftrace_module_enable(mod);
3186 err = klp_module_coming(mod);
3187 if (err)
3188 return err;
3189
3190 err = blocking_notifier_call_chain_robust(&module_notify_list,
3191 MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3192 err = notifier_to_errno(err);
3193 if (err)
3194 klp_module_going(mod);
3195
3196 return err;
3197 }
3198
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3199 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3200 void *arg)
3201 {
3202 struct module *mod = arg;
3203 int ret;
3204
3205 if (strcmp(param, "async_probe") == 0) {
3206 if (kstrtobool(val, &mod->async_probe_requested))
3207 mod->async_probe_requested = true;
3208 return 0;
3209 }
3210
3211 /* Check for magic 'dyndbg' arg */
3212 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3213 if (ret != 0)
3214 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3215 return 0;
3216 }
3217
3218 /* Module within temporary copy, this doesn't do any allocation */
early_mod_check(struct load_info * info,int flags)3219 static int early_mod_check(struct load_info *info, int flags)
3220 {
3221 int err;
3222
3223 /*
3224 * Now that we know we have the correct module name, check
3225 * if it's blacklisted.
3226 */
3227 if (blacklisted(info->name)) {
3228 pr_err("Module %s is blacklisted\n", info->name);
3229 return -EPERM;
3230 }
3231
3232 err = rewrite_section_headers(info, flags);
3233 if (err)
3234 return err;
3235
3236 /* Check module struct version now, before we try to use module. */
3237 if (!check_modstruct_version(info, info->mod))
3238 return -ENOEXEC;
3239
3240 err = check_modinfo(info->mod, info, flags);
3241 if (err)
3242 return err;
3243
3244 mutex_lock(&module_mutex);
3245 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3246 mutex_unlock(&module_mutex);
3247
3248 return err;
3249 }
3250
3251 /*
3252 * Allocate and load the module: note that size of section 0 is always
3253 * zero, and we rely on this for optional sections.
3254 */
load_module(struct load_info * info,const char __user * uargs,int flags)3255 static int load_module(struct load_info *info, const char __user *uargs,
3256 int flags)
3257 {
3258 struct module *mod;
3259 bool module_allocated = false;
3260 long err = 0;
3261 char *after_dashes;
3262
3263 /*
3264 * Do the signature check (if any) first. All that
3265 * the signature check needs is info->len, it does
3266 * not need any of the section info. That can be
3267 * set up later. This will minimize the chances
3268 * of a corrupt module causing problems before
3269 * we even get to the signature check.
3270 *
3271 * The check will also adjust info->len by stripping
3272 * off the sig length at the end of the module, making
3273 * checks against info->len more correct.
3274 */
3275 err = module_sig_check(info, flags);
3276 if (err)
3277 goto free_copy;
3278
3279 /*
3280 * Do basic sanity checks against the ELF header and
3281 * sections. Cache useful sections and set the
3282 * info->mod to the userspace passed struct module.
3283 */
3284 err = elf_validity_cache_copy(info, flags);
3285 if (err)
3286 goto free_copy;
3287
3288 err = early_mod_check(info, flags);
3289 if (err)
3290 goto free_copy;
3291
3292 /* Figure out module layout, and allocate all the memory. */
3293 mod = layout_and_allocate(info, flags);
3294 if (IS_ERR(mod)) {
3295 err = PTR_ERR(mod);
3296 goto free_copy;
3297 }
3298
3299 module_allocated = true;
3300
3301 audit_log_kern_module(mod->name);
3302
3303 /* Reserve our place in the list. */
3304 err = add_unformed_module(mod);
3305 if (err)
3306 goto free_module;
3307
3308 /*
3309 * We are tainting your kernel if your module gets into
3310 * the modules linked list somehow.
3311 */
3312 module_augment_kernel_taints(mod, info);
3313
3314 /* To avoid stressing percpu allocator, do this once we're unique. */
3315 err = percpu_modalloc(mod, info);
3316 if (err)
3317 goto unlink_mod;
3318
3319 /* Now module is in final location, initialize linked lists, etc. */
3320 err = module_unload_init(mod);
3321 if (err)
3322 goto unlink_mod;
3323
3324 init_param_lock(mod);
3325
3326 /*
3327 * Now we've got everything in the final locations, we can
3328 * find optional sections.
3329 */
3330 err = find_module_sections(mod, info);
3331 if (err)
3332 goto free_unload;
3333
3334 err = check_export_symbol_versions(mod);
3335 if (err)
3336 goto free_unload;
3337
3338 /* Set up MODINFO_ATTR fields */
3339 setup_modinfo(mod, info);
3340
3341 /* Fix up syms, so that st_value is a pointer to location. */
3342 err = simplify_symbols(mod, info);
3343 if (err < 0)
3344 goto free_modinfo;
3345
3346 err = apply_relocations(mod, info);
3347 if (err < 0)
3348 goto free_modinfo;
3349
3350 err = post_relocation(mod, info);
3351 if (err < 0)
3352 goto free_modinfo;
3353
3354 flush_module_icache(mod);
3355
3356 /* Now copy in args */
3357 mod->args = strndup_user(uargs, ~0UL >> 1);
3358 if (IS_ERR(mod->args)) {
3359 err = PTR_ERR(mod->args);
3360 goto free_arch_cleanup;
3361 }
3362
3363 init_build_id(mod, info);
3364
3365 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3366 ftrace_module_init(mod);
3367
3368 /* Finally it's fully formed, ready to start executing. */
3369 err = complete_formation(mod, info);
3370 if (err)
3371 goto ddebug_cleanup;
3372
3373 err = prepare_coming_module(mod);
3374 if (err)
3375 goto bug_cleanup;
3376
3377 mod->async_probe_requested = async_probe;
3378
3379 /* Module is ready to execute: parsing args may do that. */
3380 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3381 -32768, 32767, mod,
3382 unknown_module_param_cb);
3383 if (IS_ERR(after_dashes)) {
3384 err = PTR_ERR(after_dashes);
3385 goto coming_cleanup;
3386 } else if (after_dashes) {
3387 pr_warn("%s: parameters '%s' after `--' ignored\n",
3388 mod->name, after_dashes);
3389 }
3390
3391 /* Link in to sysfs. */
3392 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3393 if (err < 0)
3394 goto coming_cleanup;
3395
3396 if (is_livepatch_module(mod)) {
3397 err = copy_module_elf(mod, info);
3398 if (err < 0)
3399 goto sysfs_cleanup;
3400 }
3401
3402 /* Get rid of temporary copy. */
3403 free_copy(info, flags);
3404
3405 codetag_load_module(mod);
3406
3407 /* Done! */
3408 trace_module_load(mod);
3409
3410 return do_init_module(mod);
3411
3412 sysfs_cleanup:
3413 mod_sysfs_teardown(mod);
3414 coming_cleanup:
3415 mod->state = MODULE_STATE_GOING;
3416 destroy_params(mod->kp, mod->num_kp);
3417 blocking_notifier_call_chain(&module_notify_list,
3418 MODULE_STATE_GOING, mod);
3419 klp_module_going(mod);
3420 bug_cleanup:
3421 mod->state = MODULE_STATE_GOING;
3422 /* module_bug_cleanup needs module_mutex protection */
3423 mutex_lock(&module_mutex);
3424 module_bug_cleanup(mod);
3425 mutex_unlock(&module_mutex);
3426
3427 ddebug_cleanup:
3428 ftrace_release_mod(mod);
3429 synchronize_rcu();
3430 kfree(mod->args);
3431 free_arch_cleanup:
3432 module_arch_cleanup(mod);
3433 free_modinfo:
3434 free_modinfo(mod);
3435 free_unload:
3436 module_unload_free(mod);
3437 unlink_mod:
3438 mutex_lock(&module_mutex);
3439 /* Unlink carefully: kallsyms could be walking list. */
3440 list_del_rcu(&mod->list);
3441 mod_tree_remove(mod);
3442 wake_up_all(&module_wq);
3443 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3444 synchronize_rcu();
3445 mutex_unlock(&module_mutex);
3446 free_module:
3447 mod_stat_bump_invalid(info, flags);
3448 /* Free lock-classes; relies on the preceding sync_rcu() */
3449 for_class_mod_mem_type(type, core_data) {
3450 lockdep_free_key_range(mod->mem[type].base,
3451 mod->mem[type].size);
3452 }
3453
3454 module_memory_restore_rox(mod);
3455 module_deallocate(mod, info);
3456 free_copy:
3457 /*
3458 * The info->len is always set. We distinguish between
3459 * failures once the proper module was allocated and
3460 * before that.
3461 */
3462 if (!module_allocated)
3463 mod_stat_bump_becoming(info, flags);
3464 free_copy(info, flags);
3465 return err;
3466 }
3467
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3468 SYSCALL_DEFINE3(init_module, void __user *, umod,
3469 unsigned long, len, const char __user *, uargs)
3470 {
3471 int err;
3472 struct load_info info = { };
3473
3474 err = may_init_module();
3475 if (err)
3476 return err;
3477
3478 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3479 umod, len, uargs);
3480
3481 err = copy_module_from_user(umod, len, &info);
3482 if (err) {
3483 mod_stat_inc(&failed_kreads);
3484 mod_stat_add_long(len, &invalid_kread_bytes);
3485 return err;
3486 }
3487
3488 return load_module(&info, uargs, 0);
3489 }
3490
3491 struct idempotent {
3492 const void *cookie;
3493 struct hlist_node entry;
3494 struct completion complete;
3495 int ret;
3496 };
3497
3498 #define IDEM_HASH_BITS 8
3499 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3500 static DEFINE_SPINLOCK(idem_lock);
3501
idempotent(struct idempotent * u,const void * cookie)3502 static bool idempotent(struct idempotent *u, const void *cookie)
3503 {
3504 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3505 struct hlist_head *head = idem_hash + hash;
3506 struct idempotent *existing;
3507 bool first;
3508
3509 u->ret = -EINTR;
3510 u->cookie = cookie;
3511 init_completion(&u->complete);
3512
3513 spin_lock(&idem_lock);
3514 first = true;
3515 hlist_for_each_entry(existing, head, entry) {
3516 if (existing->cookie != cookie)
3517 continue;
3518 first = false;
3519 break;
3520 }
3521 hlist_add_head(&u->entry, idem_hash + hash);
3522 spin_unlock(&idem_lock);
3523
3524 return !first;
3525 }
3526
3527 /*
3528 * We were the first one with 'cookie' on the list, and we ended
3529 * up completing the operation. We now need to walk the list,
3530 * remove everybody - which includes ourselves - fill in the return
3531 * value, and then complete the operation.
3532 */
idempotent_complete(struct idempotent * u,int ret)3533 static int idempotent_complete(struct idempotent *u, int ret)
3534 {
3535 const void *cookie = u->cookie;
3536 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3537 struct hlist_head *head = idem_hash + hash;
3538 struct hlist_node *next;
3539 struct idempotent *pos;
3540
3541 spin_lock(&idem_lock);
3542 hlist_for_each_entry_safe(pos, next, head, entry) {
3543 if (pos->cookie != cookie)
3544 continue;
3545 hlist_del_init(&pos->entry);
3546 pos->ret = ret;
3547 complete(&pos->complete);
3548 }
3549 spin_unlock(&idem_lock);
3550 return ret;
3551 }
3552
3553 /*
3554 * Wait for the idempotent worker.
3555 *
3556 * If we get interrupted, we need to remove ourselves from the
3557 * the idempotent list, and the completion may still come in.
3558 *
3559 * The 'idem_lock' protects against the race, and 'idem.ret' was
3560 * initialized to -EINTR and is thus always the right return
3561 * value even if the idempotent work then completes between
3562 * the wait_for_completion and the cleanup.
3563 */
idempotent_wait_for_completion(struct idempotent * u)3564 static int idempotent_wait_for_completion(struct idempotent *u)
3565 {
3566 if (wait_for_completion_interruptible(&u->complete)) {
3567 spin_lock(&idem_lock);
3568 if (!hlist_unhashed(&u->entry))
3569 hlist_del(&u->entry);
3570 spin_unlock(&idem_lock);
3571 }
3572 return u->ret;
3573 }
3574
init_module_from_file(struct file * f,const char __user * uargs,int flags)3575 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3576 {
3577 struct load_info info = { };
3578 void *buf = NULL;
3579 int len;
3580
3581 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3582 if (len < 0) {
3583 mod_stat_inc(&failed_kreads);
3584 return len;
3585 }
3586
3587 if (flags & MODULE_INIT_COMPRESSED_FILE) {
3588 int err = module_decompress(&info, buf, len);
3589 vfree(buf); /* compressed data is no longer needed */
3590 if (err) {
3591 mod_stat_inc(&failed_decompress);
3592 mod_stat_add_long(len, &invalid_decompress_bytes);
3593 return err;
3594 }
3595 } else {
3596 info.hdr = buf;
3597 info.len = len;
3598 }
3599
3600 return load_module(&info, uargs, flags);
3601 }
3602
idempotent_init_module(struct file * f,const char __user * uargs,int flags)3603 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3604 {
3605 struct idempotent idem;
3606
3607 if (!(f->f_mode & FMODE_READ))
3608 return -EBADF;
3609
3610 /* Are we the winners of the race and get to do this? */
3611 if (!idempotent(&idem, file_inode(f))) {
3612 int ret = init_module_from_file(f, uargs, flags);
3613 return idempotent_complete(&idem, ret);
3614 }
3615
3616 /*
3617 * Somebody else won the race and is loading the module.
3618 */
3619 return idempotent_wait_for_completion(&idem);
3620 }
3621
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3622 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3623 {
3624 int err = may_init_module();
3625 if (err)
3626 return err;
3627
3628 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3629
3630 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3631 |MODULE_INIT_IGNORE_VERMAGIC
3632 |MODULE_INIT_COMPRESSED_FILE))
3633 return -EINVAL;
3634
3635 CLASS(fd, f)(fd);
3636 if (fd_empty(f))
3637 return -EBADF;
3638 return idempotent_init_module(fd_file(f), uargs, flags);
3639 }
3640
3641 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3642 char *module_flags(struct module *mod, char *buf, bool show_state)
3643 {
3644 int bx = 0;
3645
3646 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3647 if (!mod->taints && !show_state)
3648 goto out;
3649 if (mod->taints ||
3650 mod->state == MODULE_STATE_GOING ||
3651 mod->state == MODULE_STATE_COMING) {
3652 buf[bx++] = '(';
3653 bx += module_flags_taint(mod->taints, buf + bx);
3654 /* Show a - for module-is-being-unloaded */
3655 if (mod->state == MODULE_STATE_GOING && show_state)
3656 buf[bx++] = '-';
3657 /* Show a + for module-is-being-loaded */
3658 if (mod->state == MODULE_STATE_COMING && show_state)
3659 buf[bx++] = '+';
3660 buf[bx++] = ')';
3661 }
3662 out:
3663 buf[bx] = '\0';
3664
3665 return buf;
3666 }
3667
3668 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3669 const struct exception_table_entry *search_module_extables(unsigned long addr)
3670 {
3671 struct module *mod;
3672
3673 guard(rcu)();
3674 mod = __module_address(addr);
3675 if (!mod)
3676 return NULL;
3677
3678 if (!mod->num_exentries)
3679 return NULL;
3680 /*
3681 * The address passed here belongs to a module that is currently
3682 * invoked (we are running inside it). Therefore its module::refcnt
3683 * needs already be >0 to ensure that it is not removed at this stage.
3684 * All other user need to invoke this function within a RCU read
3685 * section.
3686 */
3687 return search_extable(mod->extable, mod->num_exentries, addr);
3688 }
3689
3690 /**
3691 * is_module_address() - is this address inside a module?
3692 * @addr: the address to check.
3693 *
3694 * See is_module_text_address() if you simply want to see if the address
3695 * is code (not data).
3696 */
is_module_address(unsigned long addr)3697 bool is_module_address(unsigned long addr)
3698 {
3699 guard(rcu)();
3700 return __module_address(addr) != NULL;
3701 }
3702
3703 /**
3704 * __module_address() - get the module which contains an address.
3705 * @addr: the address.
3706 *
3707 * Must be called within RCU read section or module mutex held so that
3708 * module doesn't get freed during this.
3709 */
__module_address(unsigned long addr)3710 struct module *__module_address(unsigned long addr)
3711 {
3712 struct module *mod;
3713
3714 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3715 goto lookup;
3716
3717 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3718 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3719 goto lookup;
3720 #endif
3721
3722 return NULL;
3723
3724 lookup:
3725 mod = mod_find(addr, &mod_tree);
3726 if (mod) {
3727 BUG_ON(!within_module(addr, mod));
3728 if (mod->state == MODULE_STATE_UNFORMED)
3729 mod = NULL;
3730 }
3731 return mod;
3732 }
3733
3734 /**
3735 * is_module_text_address() - is this address inside module code?
3736 * @addr: the address to check.
3737 *
3738 * See is_module_address() if you simply want to see if the address is
3739 * anywhere in a module. See kernel_text_address() for testing if an
3740 * address corresponds to kernel or module code.
3741 */
is_module_text_address(unsigned long addr)3742 bool is_module_text_address(unsigned long addr)
3743 {
3744 guard(rcu)();
3745 return __module_text_address(addr) != NULL;
3746 }
3747
module_for_each_mod(int (* func)(struct module * mod,void * data),void * data)3748 void module_for_each_mod(int(*func)(struct module *mod, void *data), void *data)
3749 {
3750 struct module *mod;
3751
3752 guard(rcu)();
3753 list_for_each_entry_rcu(mod, &modules, list) {
3754 if (mod->state == MODULE_STATE_UNFORMED)
3755 continue;
3756 if (func(mod, data))
3757 break;
3758 }
3759 }
3760
3761 /**
3762 * __module_text_address() - get the module whose code contains an address.
3763 * @addr: the address.
3764 *
3765 * Must be called within RCU read section or module mutex held so that
3766 * module doesn't get freed during this.
3767 */
__module_text_address(unsigned long addr)3768 struct module *__module_text_address(unsigned long addr)
3769 {
3770 struct module *mod = __module_address(addr);
3771 if (mod) {
3772 /* Make sure it's within the text section. */
3773 if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3774 !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3775 mod = NULL;
3776 }
3777 return mod;
3778 }
3779
3780 /* Don't grab lock, we're oopsing. */
print_modules(void)3781 void print_modules(void)
3782 {
3783 struct module *mod;
3784 char buf[MODULE_FLAGS_BUF_SIZE];
3785
3786 printk(KERN_DEFAULT "Modules linked in:");
3787 /* Most callers should already have preempt disabled, but make sure */
3788 guard(rcu)();
3789 list_for_each_entry_rcu(mod, &modules, list) {
3790 if (mod->state == MODULE_STATE_UNFORMED)
3791 continue;
3792 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3793 }
3794
3795 print_unloaded_tainted_modules();
3796 if (last_unloaded_module.name[0])
3797 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3798 last_unloaded_module.taints);
3799 pr_cont("\n");
3800 }
3801
3802 #ifdef CONFIG_MODULE_DEBUGFS
3803 struct dentry *mod_debugfs_root;
3804
module_debugfs_init(void)3805 static int module_debugfs_init(void)
3806 {
3807 mod_debugfs_root = debugfs_create_dir("modules", NULL);
3808 return 0;
3809 }
3810 module_init(module_debugfs_init);
3811 #endif
3812