1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  * Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
6  */
7 
8 #define INCLUDE_VERMAGIC
9 
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67 
68 /*
69  * Mutex protects:
70  * 1) List of modules (also safely readable within RCU read section),
71  * 2) module_use links,
72  * 3) mod_tree.addr_min/mod_tree.addr_max.
73  * (delete and add uses RCU list operations).
74  */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77 
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82 
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 	.addr_min = -1UL,
85 };
86 
87 struct symsearch {
88 	const struct kernel_symbol *start, *stop;
89 	const u32 *crcs;
90 	enum mod_license license;
91 };
92 
93 /*
94  * Bounds of module memory, for speeding up __module_address.
95  * Protected by module_mutex.
96  */
__mod_update_bounds(enum mod_mem_type type __maybe_unused,void * base,unsigned int size,struct mod_tree_root * tree)97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 				unsigned int size, struct mod_tree_root *tree)
99 {
100 	unsigned long min = (unsigned long)base;
101 	unsigned long max = min + size;
102 
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 	if (mod_mem_type_is_core_data(type)) {
105 		if (min < tree->data_addr_min)
106 			tree->data_addr_min = min;
107 		if (max > tree->data_addr_max)
108 			tree->data_addr_max = max;
109 		return;
110 	}
111 #endif
112 	if (min < tree->addr_min)
113 		tree->addr_min = min;
114 	if (max > tree->addr_max)
115 		tree->addr_max = max;
116 }
117 
mod_update_bounds(struct module * mod)118 static void mod_update_bounds(struct module *mod)
119 {
120 	for_each_mod_mem_type(type) {
121 		struct module_memory *mod_mem = &mod->mem[type];
122 
123 		if (mod_mem->size)
124 			__mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 	}
126 }
127 
128 /* Block module loading/unloading? */
129 int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131 
132 /* Waiting for a module to finish initializing? */
133 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
134 
135 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
136 
register_module_notifier(struct notifier_block * nb)137 int register_module_notifier(struct notifier_block *nb)
138 {
139 	return blocking_notifier_chain_register(&module_notify_list, nb);
140 }
141 EXPORT_SYMBOL(register_module_notifier);
142 
unregister_module_notifier(struct notifier_block * nb)143 int unregister_module_notifier(struct notifier_block *nb)
144 {
145 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
146 }
147 EXPORT_SYMBOL(unregister_module_notifier);
148 
149 /*
150  * We require a truly strong try_module_get(): 0 means success.
151  * Otherwise an error is returned due to ongoing or failed
152  * initialization etc.
153  */
strong_try_module_get(struct module * mod)154 static inline int strong_try_module_get(struct module *mod)
155 {
156 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
157 	if (mod && mod->state == MODULE_STATE_COMING)
158 		return -EBUSY;
159 	if (try_module_get(mod))
160 		return 0;
161 	else
162 		return -ENOENT;
163 }
164 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)165 static inline void add_taint_module(struct module *mod, unsigned flag,
166 				    enum lockdep_ok lockdep_ok)
167 {
168 	add_taint(flag, lockdep_ok);
169 	set_bit(flag, &mod->taints);
170 }
171 
172 /*
173  * A thread that wants to hold a reference to a module only while it
174  * is running can call this to safely exit.
175  */
__module_put_and_kthread_exit(struct module * mod,long code)176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
177 {
178 	module_put(mod);
179 	kthread_exit(code);
180 }
181 EXPORT_SYMBOL(__module_put_and_kthread_exit);
182 
183 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)184 static unsigned int find_sec(const struct load_info *info, const char *name)
185 {
186 	unsigned int i;
187 
188 	for (i = 1; i < info->hdr->e_shnum; i++) {
189 		Elf_Shdr *shdr = &info->sechdrs[i];
190 		/* Alloc bit cleared means "ignore it." */
191 		if ((shdr->sh_flags & SHF_ALLOC)
192 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
193 			return i;
194 	}
195 	return 0;
196 }
197 
198 /**
199  * find_any_unique_sec() - Find a unique section index by name
200  * @info: Load info for the module to scan
201  * @name: Name of the section we're looking for
202  *
203  * Locates a unique section by name. Ignores SHF_ALLOC.
204  *
205  * Return: Section index if found uniquely, zero if absent, negative count
206  *         of total instances if multiple were found.
207  */
find_any_unique_sec(const struct load_info * info,const char * name)208 static int find_any_unique_sec(const struct load_info *info, const char *name)
209 {
210 	unsigned int idx;
211 	unsigned int count = 0;
212 	int i;
213 
214 	for (i = 1; i < info->hdr->e_shnum; i++) {
215 		if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
216 			   name) == 0) {
217 			count++;
218 			idx = i;
219 		}
220 	}
221 	if (count == 1) {
222 		return idx;
223 	} else if (count == 0) {
224 		return 0;
225 	} else {
226 		return -count;
227 	}
228 }
229 
230 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)231 static void *section_addr(const struct load_info *info, const char *name)
232 {
233 	/* Section 0 has sh_addr 0. */
234 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
235 }
236 
237 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)238 static void *section_objs(const struct load_info *info,
239 			  const char *name,
240 			  size_t object_size,
241 			  unsigned int *num)
242 {
243 	unsigned int sec = find_sec(info, name);
244 
245 	/* Section 0 has sh_addr 0 and sh_size 0. */
246 	*num = info->sechdrs[sec].sh_size / object_size;
247 	return (void *)info->sechdrs[sec].sh_addr;
248 }
249 
250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)251 static unsigned int find_any_sec(const struct load_info *info, const char *name)
252 {
253 	unsigned int i;
254 
255 	for (i = 1; i < info->hdr->e_shnum; i++) {
256 		Elf_Shdr *shdr = &info->sechdrs[i];
257 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
258 			return i;
259 	}
260 	return 0;
261 }
262 
263 /*
264  * Find a module section, or NULL. Fill in number of "objects" in section.
265  * Ignores SHF_ALLOC flag.
266  */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)267 static __maybe_unused void *any_section_objs(const struct load_info *info,
268 					     const char *name,
269 					     size_t object_size,
270 					     unsigned int *num)
271 {
272 	unsigned int sec = find_any_sec(info, name);
273 
274 	/* Section 0 has sh_addr 0 and sh_size 0. */
275 	*num = info->sechdrs[sec].sh_size / object_size;
276 	return (void *)info->sechdrs[sec].sh_addr;
277 }
278 
279 #ifndef CONFIG_MODVERSIONS
280 #define symversion(base, idx) NULL
281 #else
282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
283 #endif
284 
kernel_symbol_name(const struct kernel_symbol * sym)285 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
286 {
287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
288 	return offset_to_ptr(&sym->name_offset);
289 #else
290 	return sym->name;
291 #endif
292 }
293 
kernel_symbol_namespace(const struct kernel_symbol * sym)294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
295 {
296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
297 	if (!sym->namespace_offset)
298 		return NULL;
299 	return offset_to_ptr(&sym->namespace_offset);
300 #else
301 	return sym->namespace;
302 #endif
303 }
304 
cmp_name(const void * name,const void * sym)305 int cmp_name(const void *name, const void *sym)
306 {
307 	return strcmp(name, kernel_symbol_name(sym));
308 }
309 
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)310 static bool find_exported_symbol_in_section(const struct symsearch *syms,
311 					    struct module *owner,
312 					    struct find_symbol_arg *fsa)
313 {
314 	struct kernel_symbol *sym;
315 
316 	if (!fsa->gplok && syms->license == GPL_ONLY)
317 		return false;
318 
319 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
320 			sizeof(struct kernel_symbol), cmp_name);
321 	if (!sym)
322 		return false;
323 
324 	fsa->owner = owner;
325 	fsa->crc = symversion(syms->crcs, sym - syms->start);
326 	fsa->sym = sym;
327 	fsa->license = syms->license;
328 
329 	return true;
330 }
331 
332 /*
333  * Find an exported symbol and return it, along with, (optional) crc and
334  * (optional) module which owns it. Needs RCU or module_mutex.
335  */
find_symbol(struct find_symbol_arg * fsa)336 bool find_symbol(struct find_symbol_arg *fsa)
337 {
338 	static const struct symsearch arr[] = {
339 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
340 		  NOT_GPL_ONLY },
341 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
342 		  __start___kcrctab_gpl,
343 		  GPL_ONLY },
344 	};
345 	struct module *mod;
346 	unsigned int i;
347 
348 	for (i = 0; i < ARRAY_SIZE(arr); i++)
349 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
350 			return true;
351 
352 	list_for_each_entry_rcu(mod, &modules, list,
353 				lockdep_is_held(&module_mutex)) {
354 		struct symsearch arr[] = {
355 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
356 			  NOT_GPL_ONLY },
357 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
358 			  mod->gpl_crcs,
359 			  GPL_ONLY },
360 		};
361 
362 		if (mod->state == MODULE_STATE_UNFORMED)
363 			continue;
364 
365 		for (i = 0; i < ARRAY_SIZE(arr); i++)
366 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
367 				return true;
368 	}
369 
370 	pr_debug("Failed to find symbol %s\n", fsa->name);
371 	return false;
372 }
373 
374 /*
375  * Search for module by name: must hold module_mutex (or RCU for read-only
376  * access).
377  */
find_module_all(const char * name,size_t len,bool even_unformed)378 struct module *find_module_all(const char *name, size_t len,
379 			       bool even_unformed)
380 {
381 	struct module *mod;
382 
383 	list_for_each_entry_rcu(mod, &modules, list,
384 				lockdep_is_held(&module_mutex)) {
385 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
386 			continue;
387 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
388 			return mod;
389 	}
390 	return NULL;
391 }
392 
find_module(const char * name)393 struct module *find_module(const char *name)
394 {
395 	return find_module_all(name, strlen(name), false);
396 }
397 
398 #ifdef CONFIG_SMP
399 
mod_percpu(struct module * mod)400 static inline void __percpu *mod_percpu(struct module *mod)
401 {
402 	return mod->percpu;
403 }
404 
percpu_modalloc(struct module * mod,struct load_info * info)405 static int percpu_modalloc(struct module *mod, struct load_info *info)
406 {
407 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
408 	unsigned long align = pcpusec->sh_addralign;
409 
410 	if (!pcpusec->sh_size)
411 		return 0;
412 
413 	if (align > PAGE_SIZE) {
414 		pr_warn("%s: per-cpu alignment %li > %li\n",
415 			mod->name, align, PAGE_SIZE);
416 		align = PAGE_SIZE;
417 	}
418 
419 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
420 	if (!mod->percpu) {
421 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
422 			mod->name, (unsigned long)pcpusec->sh_size);
423 		return -ENOMEM;
424 	}
425 	mod->percpu_size = pcpusec->sh_size;
426 	return 0;
427 }
428 
percpu_modfree(struct module * mod)429 static void percpu_modfree(struct module *mod)
430 {
431 	free_percpu(mod->percpu);
432 }
433 
find_pcpusec(struct load_info * info)434 static unsigned int find_pcpusec(struct load_info *info)
435 {
436 	return find_sec(info, ".data..percpu");
437 }
438 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)439 static void percpu_modcopy(struct module *mod,
440 			   const void *from, unsigned long size)
441 {
442 	int cpu;
443 
444 	for_each_possible_cpu(cpu)
445 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
446 }
447 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)448 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
449 {
450 	struct module *mod;
451 	unsigned int cpu;
452 
453 	guard(rcu)();
454 	list_for_each_entry_rcu(mod, &modules, list) {
455 		if (mod->state == MODULE_STATE_UNFORMED)
456 			continue;
457 		if (!mod->percpu_size)
458 			continue;
459 		for_each_possible_cpu(cpu) {
460 			void *start = per_cpu_ptr(mod->percpu, cpu);
461 			void *va = (void *)addr;
462 
463 			if (va >= start && va < start + mod->percpu_size) {
464 				if (can_addr) {
465 					*can_addr = (unsigned long) (va - start);
466 					*can_addr += (unsigned long)
467 						per_cpu_ptr(mod->percpu,
468 							    get_boot_cpu_id());
469 				}
470 				return true;
471 			}
472 		}
473 	}
474 	return false;
475 }
476 
477 /**
478  * is_module_percpu_address() - test whether address is from module static percpu
479  * @addr: address to test
480  *
481  * Test whether @addr belongs to module static percpu area.
482  *
483  * Return: %true if @addr is from module static percpu area
484  */
is_module_percpu_address(unsigned long addr)485 bool is_module_percpu_address(unsigned long addr)
486 {
487 	return __is_module_percpu_address(addr, NULL);
488 }
489 
490 #else /* ... !CONFIG_SMP */
491 
mod_percpu(struct module * mod)492 static inline void __percpu *mod_percpu(struct module *mod)
493 {
494 	return NULL;
495 }
percpu_modalloc(struct module * mod,struct load_info * info)496 static int percpu_modalloc(struct module *mod, struct load_info *info)
497 {
498 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
499 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
500 		return -ENOMEM;
501 	return 0;
502 }
percpu_modfree(struct module * mod)503 static inline void percpu_modfree(struct module *mod)
504 {
505 }
find_pcpusec(struct load_info * info)506 static unsigned int find_pcpusec(struct load_info *info)
507 {
508 	return 0;
509 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)510 static inline void percpu_modcopy(struct module *mod,
511 				  const void *from, unsigned long size)
512 {
513 	/* pcpusec should be 0, and size of that section should be 0. */
514 	BUG_ON(size != 0);
515 }
is_module_percpu_address(unsigned long addr)516 bool is_module_percpu_address(unsigned long addr)
517 {
518 	return false;
519 }
520 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)521 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
522 {
523 	return false;
524 }
525 
526 #endif /* CONFIG_SMP */
527 
528 #define MODINFO_ATTR(field)	\
529 static void setup_modinfo_##field(struct module *mod, const char *s)  \
530 {                                                                     \
531 	mod->field = kstrdup(s, GFP_KERNEL);                          \
532 }                                                                     \
533 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
534 			struct module_kobject *mk, char *buffer)      \
535 {                                                                     \
536 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
537 }                                                                     \
538 static int modinfo_##field##_exists(struct module *mod)               \
539 {                                                                     \
540 	return mod->field != NULL;                                    \
541 }                                                                     \
542 static void free_modinfo_##field(struct module *mod)                  \
543 {                                                                     \
544 	kfree(mod->field);                                            \
545 	mod->field = NULL;                                            \
546 }                                                                     \
547 static const struct module_attribute modinfo_##field = {              \
548 	.attr = { .name = __stringify(field), .mode = 0444 },         \
549 	.show = show_modinfo_##field,                                 \
550 	.setup = setup_modinfo_##field,                               \
551 	.test = modinfo_##field##_exists,                             \
552 	.free = free_modinfo_##field,                                 \
553 };
554 
555 MODINFO_ATTR(version);
556 MODINFO_ATTR(srcversion);
557 
558 static struct {
559 	char name[MODULE_NAME_LEN + 1];
560 	char taints[MODULE_FLAGS_BUF_SIZE];
561 } last_unloaded_module;
562 
563 #ifdef CONFIG_MODULE_UNLOAD
564 
565 EXPORT_TRACEPOINT_SYMBOL(module_get);
566 
567 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
568 #define MODULE_REF_BASE	1
569 
570 /* Init the unload section of the module. */
module_unload_init(struct module * mod)571 static int module_unload_init(struct module *mod)
572 {
573 	/*
574 	 * Initialize reference counter to MODULE_REF_BASE.
575 	 * refcnt == 0 means module is going.
576 	 */
577 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
578 
579 	INIT_LIST_HEAD(&mod->source_list);
580 	INIT_LIST_HEAD(&mod->target_list);
581 
582 	/* Hold reference count during initialization. */
583 	atomic_inc(&mod->refcnt);
584 
585 	return 0;
586 }
587 
588 /* Does a already use b? */
already_uses(struct module * a,struct module * b)589 static int already_uses(struct module *a, struct module *b)
590 {
591 	struct module_use *use;
592 
593 	list_for_each_entry(use, &b->source_list, source_list) {
594 		if (use->source == a)
595 			return 1;
596 	}
597 	pr_debug("%s does not use %s!\n", a->name, b->name);
598 	return 0;
599 }
600 
601 /*
602  * Module a uses b
603  *  - we add 'a' as a "source", 'b' as a "target" of module use
604  *  - the module_use is added to the list of 'b' sources (so
605  *    'b' can walk the list to see who sourced them), and of 'a'
606  *    targets (so 'a' can see what modules it targets).
607  */
add_module_usage(struct module * a,struct module * b)608 static int add_module_usage(struct module *a, struct module *b)
609 {
610 	struct module_use *use;
611 
612 	pr_debug("Allocating new usage for %s.\n", a->name);
613 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
614 	if (!use)
615 		return -ENOMEM;
616 
617 	use->source = a;
618 	use->target = b;
619 	list_add(&use->source_list, &b->source_list);
620 	list_add(&use->target_list, &a->target_list);
621 	return 0;
622 }
623 
624 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)625 static int ref_module(struct module *a, struct module *b)
626 {
627 	int err;
628 
629 	if (b == NULL || already_uses(a, b))
630 		return 0;
631 
632 	/* If module isn't available, we fail. */
633 	err = strong_try_module_get(b);
634 	if (err)
635 		return err;
636 
637 	err = add_module_usage(a, b);
638 	if (err) {
639 		module_put(b);
640 		return err;
641 	}
642 	return 0;
643 }
644 
645 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)646 static void module_unload_free(struct module *mod)
647 {
648 	struct module_use *use, *tmp;
649 
650 	mutex_lock(&module_mutex);
651 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
652 		struct module *i = use->target;
653 		pr_debug("%s unusing %s\n", mod->name, i->name);
654 		module_put(i);
655 		list_del(&use->source_list);
656 		list_del(&use->target_list);
657 		kfree(use);
658 	}
659 	mutex_unlock(&module_mutex);
660 }
661 
662 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)663 static inline int try_force_unload(unsigned int flags)
664 {
665 	int ret = (flags & O_TRUNC);
666 	if (ret)
667 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
668 	return ret;
669 }
670 #else
try_force_unload(unsigned int flags)671 static inline int try_force_unload(unsigned int flags)
672 {
673 	return 0;
674 }
675 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
676 
677 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)678 static int try_release_module_ref(struct module *mod)
679 {
680 	int ret;
681 
682 	/* Try to decrement refcnt which we set at loading */
683 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
684 	BUG_ON(ret < 0);
685 	if (ret)
686 		/* Someone can put this right now, recover with checking */
687 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
688 
689 	return ret;
690 }
691 
try_stop_module(struct module * mod,int flags,int * forced)692 static int try_stop_module(struct module *mod, int flags, int *forced)
693 {
694 	/* If it's not unused, quit unless we're forcing. */
695 	if (try_release_module_ref(mod) != 0) {
696 		*forced = try_force_unload(flags);
697 		if (!(*forced))
698 			return -EWOULDBLOCK;
699 	}
700 
701 	/* Mark it as dying. */
702 	mod->state = MODULE_STATE_GOING;
703 
704 	return 0;
705 }
706 
707 /**
708  * module_refcount() - return the refcount or -1 if unloading
709  * @mod:	the module we're checking
710  *
711  * Return:
712  *	-1 if the module is in the process of unloading
713  *	otherwise the number of references in the kernel to the module
714  */
module_refcount(struct module * mod)715 int module_refcount(struct module *mod)
716 {
717 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
718 }
719 EXPORT_SYMBOL(module_refcount);
720 
721 /* This exists whether we can unload or not */
722 static void free_module(struct module *mod);
723 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)724 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
725 		unsigned int, flags)
726 {
727 	struct module *mod;
728 	char name[MODULE_NAME_LEN];
729 	char buf[MODULE_FLAGS_BUF_SIZE];
730 	int ret, forced = 0;
731 
732 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
733 		return -EPERM;
734 
735 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
736 		return -EFAULT;
737 	name[MODULE_NAME_LEN-1] = '\0';
738 
739 	audit_log_kern_module(name);
740 
741 	if (mutex_lock_interruptible(&module_mutex) != 0)
742 		return -EINTR;
743 
744 	mod = find_module(name);
745 	if (!mod) {
746 		ret = -ENOENT;
747 		goto out;
748 	}
749 
750 	if (!list_empty(&mod->source_list)) {
751 		/* Other modules depend on us: get rid of them first. */
752 		ret = -EWOULDBLOCK;
753 		goto out;
754 	}
755 
756 	/* Doing init or already dying? */
757 	if (mod->state != MODULE_STATE_LIVE) {
758 		/* FIXME: if (force), slam module count damn the torpedoes */
759 		pr_debug("%s already dying\n", mod->name);
760 		ret = -EBUSY;
761 		goto out;
762 	}
763 
764 	/* If it has an init func, it must have an exit func to unload */
765 	if (mod->init && !mod->exit) {
766 		forced = try_force_unload(flags);
767 		if (!forced) {
768 			/* This module can't be removed */
769 			ret = -EBUSY;
770 			goto out;
771 		}
772 	}
773 
774 	ret = try_stop_module(mod, flags, &forced);
775 	if (ret != 0)
776 		goto out;
777 
778 	mutex_unlock(&module_mutex);
779 	/* Final destruction now no one is using it. */
780 	if (mod->exit != NULL)
781 		mod->exit();
782 	blocking_notifier_call_chain(&module_notify_list,
783 				     MODULE_STATE_GOING, mod);
784 	klp_module_going(mod);
785 	ftrace_release_mod(mod);
786 
787 	async_synchronize_full();
788 
789 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
790 	strscpy(last_unloaded_module.name, mod->name);
791 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false));
792 
793 	free_module(mod);
794 	/* someone could wait for the module in add_unformed_module() */
795 	wake_up_all(&module_wq);
796 	return 0;
797 out:
798 	mutex_unlock(&module_mutex);
799 	return ret;
800 }
801 
__symbol_put(const char * symbol)802 void __symbol_put(const char *symbol)
803 {
804 	struct find_symbol_arg fsa = {
805 		.name	= symbol,
806 		.gplok	= true,
807 	};
808 
809 	guard(rcu)();
810 	BUG_ON(!find_symbol(&fsa));
811 	module_put(fsa.owner);
812 }
813 EXPORT_SYMBOL(__symbol_put);
814 
815 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)816 void symbol_put_addr(void *addr)
817 {
818 	struct module *modaddr;
819 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
820 
821 	if (core_kernel_text(a))
822 		return;
823 
824 	/*
825 	 * Even though we hold a reference on the module; we still need to
826 	 * RCU read section in order to safely traverse the data structure.
827 	 */
828 	guard(rcu)();
829 	modaddr = __module_text_address(a);
830 	BUG_ON(!modaddr);
831 	module_put(modaddr);
832 }
833 EXPORT_SYMBOL_GPL(symbol_put_addr);
834 
show_refcnt(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)835 static ssize_t show_refcnt(const struct module_attribute *mattr,
836 			   struct module_kobject *mk, char *buffer)
837 {
838 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
839 }
840 
841 static const struct module_attribute modinfo_refcnt =
842 	__ATTR(refcnt, 0444, show_refcnt, NULL);
843 
__module_get(struct module * module)844 void __module_get(struct module *module)
845 {
846 	if (module) {
847 		atomic_inc(&module->refcnt);
848 		trace_module_get(module, _RET_IP_);
849 	}
850 }
851 EXPORT_SYMBOL(__module_get);
852 
try_module_get(struct module * module)853 bool try_module_get(struct module *module)
854 {
855 	bool ret = true;
856 
857 	if (module) {
858 		/* Note: here, we can fail to get a reference */
859 		if (likely(module_is_live(module) &&
860 			   atomic_inc_not_zero(&module->refcnt) != 0))
861 			trace_module_get(module, _RET_IP_);
862 		else
863 			ret = false;
864 	}
865 	return ret;
866 }
867 EXPORT_SYMBOL(try_module_get);
868 
module_put(struct module * module)869 void module_put(struct module *module)
870 {
871 	int ret;
872 
873 	if (module) {
874 		ret = atomic_dec_if_positive(&module->refcnt);
875 		WARN_ON(ret < 0);	/* Failed to put refcount */
876 		trace_module_put(module, _RET_IP_);
877 	}
878 }
879 EXPORT_SYMBOL(module_put);
880 
881 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)882 static inline void module_unload_free(struct module *mod)
883 {
884 }
885 
ref_module(struct module * a,struct module * b)886 static int ref_module(struct module *a, struct module *b)
887 {
888 	return strong_try_module_get(b);
889 }
890 
module_unload_init(struct module * mod)891 static inline int module_unload_init(struct module *mod)
892 {
893 	return 0;
894 }
895 #endif /* CONFIG_MODULE_UNLOAD */
896 
module_flags_taint(unsigned long taints,char * buf)897 size_t module_flags_taint(unsigned long taints, char *buf)
898 {
899 	size_t l = 0;
900 	int i;
901 
902 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
903 		if (taint_flags[i].module && test_bit(i, &taints))
904 			buf[l++] = taint_flags[i].c_true;
905 	}
906 
907 	return l;
908 }
909 
show_initstate(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)910 static ssize_t show_initstate(const struct module_attribute *mattr,
911 			      struct module_kobject *mk, char *buffer)
912 {
913 	const char *state = "unknown";
914 
915 	switch (mk->mod->state) {
916 	case MODULE_STATE_LIVE:
917 		state = "live";
918 		break;
919 	case MODULE_STATE_COMING:
920 		state = "coming";
921 		break;
922 	case MODULE_STATE_GOING:
923 		state = "going";
924 		break;
925 	default:
926 		BUG();
927 	}
928 	return sprintf(buffer, "%s\n", state);
929 }
930 
931 static const struct module_attribute modinfo_initstate =
932 	__ATTR(initstate, 0444, show_initstate, NULL);
933 
store_uevent(const struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)934 static ssize_t store_uevent(const struct module_attribute *mattr,
935 			    struct module_kobject *mk,
936 			    const char *buffer, size_t count)
937 {
938 	int rc;
939 
940 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
941 	return rc ? rc : count;
942 }
943 
944 const struct module_attribute module_uevent =
945 	__ATTR(uevent, 0200, NULL, store_uevent);
946 
show_coresize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)947 static ssize_t show_coresize(const struct module_attribute *mattr,
948 			     struct module_kobject *mk, char *buffer)
949 {
950 	unsigned int size = mk->mod->mem[MOD_TEXT].size;
951 
952 	if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
953 		for_class_mod_mem_type(type, core_data)
954 			size += mk->mod->mem[type].size;
955 	}
956 	return sprintf(buffer, "%u\n", size);
957 }
958 
959 static const struct module_attribute modinfo_coresize =
960 	__ATTR(coresize, 0444, show_coresize, NULL);
961 
962 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)963 static ssize_t show_datasize(const struct module_attribute *mattr,
964 			     struct module_kobject *mk, char *buffer)
965 {
966 	unsigned int size = 0;
967 
968 	for_class_mod_mem_type(type, core_data)
969 		size += mk->mod->mem[type].size;
970 	return sprintf(buffer, "%u\n", size);
971 }
972 
973 static const struct module_attribute modinfo_datasize =
974 	__ATTR(datasize, 0444, show_datasize, NULL);
975 #endif
976 
show_initsize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)977 static ssize_t show_initsize(const struct module_attribute *mattr,
978 			     struct module_kobject *mk, char *buffer)
979 {
980 	unsigned int size = 0;
981 
982 	for_class_mod_mem_type(type, init)
983 		size += mk->mod->mem[type].size;
984 	return sprintf(buffer, "%u\n", size);
985 }
986 
987 static const struct module_attribute modinfo_initsize =
988 	__ATTR(initsize, 0444, show_initsize, NULL);
989 
show_taint(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)990 static ssize_t show_taint(const struct module_attribute *mattr,
991 			  struct module_kobject *mk, char *buffer)
992 {
993 	size_t l;
994 
995 	l = module_flags_taint(mk->mod->taints, buffer);
996 	buffer[l++] = '\n';
997 	return l;
998 }
999 
1000 static const struct module_attribute modinfo_taint =
1001 	__ATTR(taint, 0444, show_taint, NULL);
1002 
1003 const struct module_attribute *const modinfo_attrs[] = {
1004 	&module_uevent,
1005 	&modinfo_version,
1006 	&modinfo_srcversion,
1007 	&modinfo_initstate,
1008 	&modinfo_coresize,
1009 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1010 	&modinfo_datasize,
1011 #endif
1012 	&modinfo_initsize,
1013 	&modinfo_taint,
1014 #ifdef CONFIG_MODULE_UNLOAD
1015 	&modinfo_refcnt,
1016 #endif
1017 	NULL,
1018 };
1019 
1020 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1021 
1022 static const char vermagic[] = VERMAGIC_STRING;
1023 
try_to_force_load(struct module * mod,const char * reason)1024 int try_to_force_load(struct module *mod, const char *reason)
1025 {
1026 #ifdef CONFIG_MODULE_FORCE_LOAD
1027 	if (!test_taint(TAINT_FORCED_MODULE))
1028 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1029 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1030 	return 0;
1031 #else
1032 	return -ENOEXEC;
1033 #endif
1034 }
1035 
1036 /* Parse tag=value strings from .modinfo section */
module_next_tag_pair(char * string,unsigned long * secsize)1037 char *module_next_tag_pair(char *string, unsigned long *secsize)
1038 {
1039 	/* Skip non-zero chars */
1040 	while (string[0]) {
1041 		string++;
1042 		if ((*secsize)-- <= 1)
1043 			return NULL;
1044 	}
1045 
1046 	/* Skip any zero padding. */
1047 	while (!string[0]) {
1048 		string++;
1049 		if ((*secsize)-- <= 1)
1050 			return NULL;
1051 	}
1052 	return string;
1053 }
1054 
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1055 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1056 			      char *prev)
1057 {
1058 	char *p;
1059 	unsigned int taglen = strlen(tag);
1060 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1061 	unsigned long size = infosec->sh_size;
1062 
1063 	/*
1064 	 * get_modinfo() calls made before rewrite_section_headers()
1065 	 * must use sh_offset, as sh_addr isn't set!
1066 	 */
1067 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1068 
1069 	if (prev) {
1070 		size -= prev - modinfo;
1071 		modinfo = module_next_tag_pair(prev, &size);
1072 	}
1073 
1074 	for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1075 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1076 			return p + taglen + 1;
1077 	}
1078 	return NULL;
1079 }
1080 
get_modinfo(const struct load_info * info,const char * tag)1081 static char *get_modinfo(const struct load_info *info, const char *tag)
1082 {
1083 	return get_next_modinfo(info, tag, NULL);
1084 }
1085 
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1086 static int verify_namespace_is_imported(const struct load_info *info,
1087 					const struct kernel_symbol *sym,
1088 					struct module *mod)
1089 {
1090 	const char *namespace;
1091 	char *imported_namespace;
1092 
1093 	namespace = kernel_symbol_namespace(sym);
1094 	if (namespace && namespace[0]) {
1095 		for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1096 			if (strcmp(namespace, imported_namespace) == 0)
1097 				return 0;
1098 		}
1099 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1100 		pr_warn(
1101 #else
1102 		pr_err(
1103 #endif
1104 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1105 			mod->name, kernel_symbol_name(sym), namespace);
1106 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1107 		return -EINVAL;
1108 #endif
1109 	}
1110 	return 0;
1111 }
1112 
inherit_taint(struct module * mod,struct module * owner,const char * name)1113 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1114 {
1115 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1116 		return true;
1117 
1118 	if (mod->using_gplonly_symbols) {
1119 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1120 			mod->name, name, owner->name);
1121 		return false;
1122 	}
1123 
1124 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1125 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1126 			mod->name, name, owner->name);
1127 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1128 	}
1129 	return true;
1130 }
1131 
1132 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1133 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1134 						  const struct load_info *info,
1135 						  const char *name,
1136 						  char ownername[])
1137 {
1138 	struct find_symbol_arg fsa = {
1139 		.name	= name,
1140 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1141 		.warn	= true,
1142 	};
1143 	int err;
1144 
1145 	/*
1146 	 * The module_mutex should not be a heavily contended lock;
1147 	 * if we get the occasional sleep here, we'll go an extra iteration
1148 	 * in the wait_event_interruptible(), which is harmless.
1149 	 */
1150 	sched_annotate_sleep();
1151 	mutex_lock(&module_mutex);
1152 	if (!find_symbol(&fsa))
1153 		goto unlock;
1154 
1155 	if (fsa.license == GPL_ONLY)
1156 		mod->using_gplonly_symbols = true;
1157 
1158 	if (!inherit_taint(mod, fsa.owner, name)) {
1159 		fsa.sym = NULL;
1160 		goto getname;
1161 	}
1162 
1163 	if (!check_version(info, name, mod, fsa.crc)) {
1164 		fsa.sym = ERR_PTR(-EINVAL);
1165 		goto getname;
1166 	}
1167 
1168 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1169 	if (err) {
1170 		fsa.sym = ERR_PTR(err);
1171 		goto getname;
1172 	}
1173 
1174 	err = ref_module(mod, fsa.owner);
1175 	if (err) {
1176 		fsa.sym = ERR_PTR(err);
1177 		goto getname;
1178 	}
1179 
1180 getname:
1181 	/* We must make copy under the lock if we failed to get ref. */
1182 	strscpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1183 unlock:
1184 	mutex_unlock(&module_mutex);
1185 	return fsa.sym;
1186 }
1187 
1188 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1189 resolve_symbol_wait(struct module *mod,
1190 		    const struct load_info *info,
1191 		    const char *name)
1192 {
1193 	const struct kernel_symbol *ksym;
1194 	char owner[MODULE_NAME_LEN];
1195 
1196 	if (wait_event_interruptible_timeout(module_wq,
1197 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1198 			|| PTR_ERR(ksym) != -EBUSY,
1199 					     30 * HZ) <= 0) {
1200 		pr_warn("%s: gave up waiting for init of module %s.\n",
1201 			mod->name, owner);
1202 	}
1203 	return ksym;
1204 }
1205 
module_arch_cleanup(struct module * mod)1206 void __weak module_arch_cleanup(struct module *mod)
1207 {
1208 }
1209 
module_arch_freeing_init(struct module * mod)1210 void __weak module_arch_freeing_init(struct module *mod)
1211 {
1212 }
1213 
module_memory_alloc(struct module * mod,enum mod_mem_type type)1214 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1215 {
1216 	unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1217 	enum execmem_type execmem_type;
1218 	void *ptr;
1219 
1220 	mod->mem[type].size = size;
1221 
1222 	if (mod_mem_type_is_data(type))
1223 		execmem_type = EXECMEM_MODULE_DATA;
1224 	else
1225 		execmem_type = EXECMEM_MODULE_TEXT;
1226 
1227 	ptr = execmem_alloc(execmem_type, size);
1228 	if (!ptr)
1229 		return -ENOMEM;
1230 
1231 	if (execmem_is_rox(execmem_type)) {
1232 		int err = execmem_make_temp_rw(ptr, size);
1233 
1234 		if (err) {
1235 			execmem_free(ptr);
1236 			return -ENOMEM;
1237 		}
1238 
1239 		mod->mem[type].is_rox = true;
1240 	}
1241 
1242 	/*
1243 	 * The pointer to these blocks of memory are stored on the module
1244 	 * structure and we keep that around so long as the module is
1245 	 * around. We only free that memory when we unload the module.
1246 	 * Just mark them as not being a leak then. The .init* ELF
1247 	 * sections *do* get freed after boot so we *could* treat them
1248 	 * slightly differently with kmemleak_ignore() and only grey
1249 	 * them out as they work as typical memory allocations which
1250 	 * *do* eventually get freed, but let's just keep things simple
1251 	 * and avoid *any* false positives.
1252 	 */
1253 	if (!mod->mem[type].is_rox)
1254 		kmemleak_not_leak(ptr);
1255 
1256 	memset(ptr, 0, size);
1257 	mod->mem[type].base = ptr;
1258 
1259 	return 0;
1260 }
1261 
module_memory_restore_rox(struct module * mod)1262 static void module_memory_restore_rox(struct module *mod)
1263 {
1264 	for_class_mod_mem_type(type, text) {
1265 		struct module_memory *mem = &mod->mem[type];
1266 
1267 		if (mem->is_rox)
1268 			execmem_restore_rox(mem->base, mem->size);
1269 	}
1270 }
1271 
module_memory_free(struct module * mod,enum mod_mem_type type)1272 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1273 {
1274 	struct module_memory *mem = &mod->mem[type];
1275 
1276 	execmem_free(mem->base);
1277 }
1278 
free_mod_mem(struct module * mod)1279 static void free_mod_mem(struct module *mod)
1280 {
1281 	for_each_mod_mem_type(type) {
1282 		struct module_memory *mod_mem = &mod->mem[type];
1283 
1284 		if (type == MOD_DATA)
1285 			continue;
1286 
1287 		/* Free lock-classes; relies on the preceding sync_rcu(). */
1288 		lockdep_free_key_range(mod_mem->base, mod_mem->size);
1289 		if (mod_mem->size)
1290 			module_memory_free(mod, type);
1291 	}
1292 
1293 	/* MOD_DATA hosts mod, so free it at last */
1294 	lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1295 	module_memory_free(mod, MOD_DATA);
1296 }
1297 
1298 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1299 static void free_module(struct module *mod)
1300 {
1301 	trace_module_free(mod);
1302 
1303 	codetag_unload_module(mod);
1304 
1305 	mod_sysfs_teardown(mod);
1306 
1307 	/*
1308 	 * We leave it in list to prevent duplicate loads, but make sure
1309 	 * that noone uses it while it's being deconstructed.
1310 	 */
1311 	mutex_lock(&module_mutex);
1312 	mod->state = MODULE_STATE_UNFORMED;
1313 	mutex_unlock(&module_mutex);
1314 
1315 	/* Arch-specific cleanup. */
1316 	module_arch_cleanup(mod);
1317 
1318 	/* Module unload stuff */
1319 	module_unload_free(mod);
1320 
1321 	/* Free any allocated parameters. */
1322 	destroy_params(mod->kp, mod->num_kp);
1323 
1324 	if (is_livepatch_module(mod))
1325 		free_module_elf(mod);
1326 
1327 	/* Now we can delete it from the lists */
1328 	mutex_lock(&module_mutex);
1329 	/* Unlink carefully: kallsyms could be walking list. */
1330 	list_del_rcu(&mod->list);
1331 	mod_tree_remove(mod);
1332 	/* Remove this module from bug list, this uses list_del_rcu */
1333 	module_bug_cleanup(mod);
1334 	/* Wait for RCU synchronizing before releasing mod->list and buglist. */
1335 	synchronize_rcu();
1336 	if (try_add_tainted_module(mod))
1337 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1338 		       mod->name);
1339 	mutex_unlock(&module_mutex);
1340 
1341 	/* This may be empty, but that's OK */
1342 	module_arch_freeing_init(mod);
1343 	kfree(mod->args);
1344 	percpu_modfree(mod);
1345 
1346 	free_mod_mem(mod);
1347 }
1348 
__symbol_get(const char * symbol)1349 void *__symbol_get(const char *symbol)
1350 {
1351 	struct find_symbol_arg fsa = {
1352 		.name	= symbol,
1353 		.gplok	= true,
1354 		.warn	= true,
1355 	};
1356 
1357 	scoped_guard(rcu) {
1358 		if (!find_symbol(&fsa))
1359 			return NULL;
1360 		if (fsa.license != GPL_ONLY) {
1361 			pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1362 				symbol);
1363 			return NULL;
1364 		}
1365 		if (strong_try_module_get(fsa.owner))
1366 			return NULL;
1367 	}
1368 	return (void *)kernel_symbol_value(fsa.sym);
1369 }
1370 EXPORT_SYMBOL_GPL(__symbol_get);
1371 
1372 /*
1373  * Ensure that an exported symbol [global namespace] does not already exist
1374  * in the kernel or in some other module's exported symbol table.
1375  *
1376  * You must hold the module_mutex.
1377  */
verify_exported_symbols(struct module * mod)1378 static int verify_exported_symbols(struct module *mod)
1379 {
1380 	unsigned int i;
1381 	const struct kernel_symbol *s;
1382 	struct {
1383 		const struct kernel_symbol *sym;
1384 		unsigned int num;
1385 	} arr[] = {
1386 		{ mod->syms, mod->num_syms },
1387 		{ mod->gpl_syms, mod->num_gpl_syms },
1388 	};
1389 
1390 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1391 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1392 			struct find_symbol_arg fsa = {
1393 				.name	= kernel_symbol_name(s),
1394 				.gplok	= true,
1395 			};
1396 			if (find_symbol(&fsa)) {
1397 				pr_err("%s: exports duplicate symbol %s"
1398 				       " (owned by %s)\n",
1399 				       mod->name, kernel_symbol_name(s),
1400 				       module_name(fsa.owner));
1401 				return -ENOEXEC;
1402 			}
1403 		}
1404 	}
1405 	return 0;
1406 }
1407 
ignore_undef_symbol(Elf_Half emachine,const char * name)1408 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1409 {
1410 	/*
1411 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1412 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1413 	 * i386 has a similar problem but may not deserve a fix.
1414 	 *
1415 	 * If we ever have to ignore many symbols, consider refactoring the code to
1416 	 * only warn if referenced by a relocation.
1417 	 */
1418 	if (emachine == EM_386 || emachine == EM_X86_64)
1419 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1420 	return false;
1421 }
1422 
1423 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1424 static int simplify_symbols(struct module *mod, const struct load_info *info)
1425 {
1426 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1427 	Elf_Sym *sym = (void *)symsec->sh_addr;
1428 	unsigned long secbase;
1429 	unsigned int i;
1430 	int ret = 0;
1431 	const struct kernel_symbol *ksym;
1432 
1433 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1434 		const char *name = info->strtab + sym[i].st_name;
1435 
1436 		switch (sym[i].st_shndx) {
1437 		case SHN_COMMON:
1438 			/* Ignore common symbols */
1439 			if (!strncmp(name, "__gnu_lto", 9))
1440 				break;
1441 
1442 			/*
1443 			 * We compiled with -fno-common.  These are not
1444 			 * supposed to happen.
1445 			 */
1446 			pr_debug("Common symbol: %s\n", name);
1447 			pr_warn("%s: please compile with -fno-common\n",
1448 			       mod->name);
1449 			ret = -ENOEXEC;
1450 			break;
1451 
1452 		case SHN_ABS:
1453 			/* Don't need to do anything */
1454 			pr_debug("Absolute symbol: 0x%08lx %s\n",
1455 				 (long)sym[i].st_value, name);
1456 			break;
1457 
1458 		case SHN_LIVEPATCH:
1459 			/* Livepatch symbols are resolved by livepatch */
1460 			break;
1461 
1462 		case SHN_UNDEF:
1463 			ksym = resolve_symbol_wait(mod, info, name);
1464 			/* Ok if resolved.  */
1465 			if (ksym && !IS_ERR(ksym)) {
1466 				sym[i].st_value = kernel_symbol_value(ksym);
1467 				break;
1468 			}
1469 
1470 			/* Ok if weak or ignored.  */
1471 			if (!ksym &&
1472 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1473 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1474 				break;
1475 
1476 			ret = PTR_ERR(ksym) ?: -ENOENT;
1477 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1478 				mod->name, name, ret);
1479 			break;
1480 
1481 		default:
1482 			/* Divert to percpu allocation if a percpu var. */
1483 			if (sym[i].st_shndx == info->index.pcpu)
1484 				secbase = (unsigned long)mod_percpu(mod);
1485 			else
1486 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1487 			sym[i].st_value += secbase;
1488 			break;
1489 		}
1490 	}
1491 
1492 	return ret;
1493 }
1494 
apply_relocations(struct module * mod,const struct load_info * info)1495 static int apply_relocations(struct module *mod, const struct load_info *info)
1496 {
1497 	unsigned int i;
1498 	int err = 0;
1499 
1500 	/* Now do relocations. */
1501 	for (i = 1; i < info->hdr->e_shnum; i++) {
1502 		unsigned int infosec = info->sechdrs[i].sh_info;
1503 
1504 		/* Not a valid relocation section? */
1505 		if (infosec >= info->hdr->e_shnum)
1506 			continue;
1507 
1508 		/* Don't bother with non-allocated sections */
1509 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1510 			continue;
1511 
1512 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1513 			err = klp_apply_section_relocs(mod, info->sechdrs,
1514 						       info->secstrings,
1515 						       info->strtab,
1516 						       info->index.sym, i,
1517 						       NULL);
1518 		else if (info->sechdrs[i].sh_type == SHT_REL)
1519 			err = apply_relocate(info->sechdrs, info->strtab,
1520 					     info->index.sym, i, mod);
1521 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1522 			err = apply_relocate_add(info->sechdrs, info->strtab,
1523 						 info->index.sym, i, mod);
1524 		if (err < 0)
1525 			break;
1526 	}
1527 	return err;
1528 }
1529 
1530 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1531 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1532 					     unsigned int section)
1533 {
1534 	/* default implementation just returns zero */
1535 	return 0;
1536 }
1537 
module_get_offset_and_type(struct module * mod,enum mod_mem_type type,Elf_Shdr * sechdr,unsigned int section)1538 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1539 				Elf_Shdr *sechdr, unsigned int section)
1540 {
1541 	long offset;
1542 	long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1543 
1544 	mod->mem[type].size += arch_mod_section_prepend(mod, section);
1545 	offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1546 	mod->mem[type].size = offset + sechdr->sh_size;
1547 
1548 	WARN_ON_ONCE(offset & mask);
1549 	return offset | mask;
1550 }
1551 
module_init_layout_section(const char * sname)1552 bool module_init_layout_section(const char *sname)
1553 {
1554 #ifndef CONFIG_MODULE_UNLOAD
1555 	if (module_exit_section(sname))
1556 		return true;
1557 #endif
1558 	return module_init_section(sname);
1559 }
1560 
__layout_sections(struct module * mod,struct load_info * info,bool is_init)1561 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1562 {
1563 	unsigned int m, i;
1564 
1565 	static const unsigned long masks[][2] = {
1566 		/*
1567 		 * NOTE: all executable code must be the first section
1568 		 * in this array; otherwise modify the text_size
1569 		 * finder in the two loops below
1570 		 */
1571 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1572 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1573 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1574 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1575 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1576 	};
1577 	static const int core_m_to_mem_type[] = {
1578 		MOD_TEXT,
1579 		MOD_RODATA,
1580 		MOD_RO_AFTER_INIT,
1581 		MOD_DATA,
1582 		MOD_DATA,
1583 	};
1584 	static const int init_m_to_mem_type[] = {
1585 		MOD_INIT_TEXT,
1586 		MOD_INIT_RODATA,
1587 		MOD_INVALID,
1588 		MOD_INIT_DATA,
1589 		MOD_INIT_DATA,
1590 	};
1591 
1592 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1593 		enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1594 
1595 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1596 			Elf_Shdr *s = &info->sechdrs[i];
1597 			const char *sname = info->secstrings + s->sh_name;
1598 
1599 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1600 			    || (s->sh_flags & masks[m][1])
1601 			    || s->sh_entsize != ~0UL
1602 			    || is_init != module_init_layout_section(sname))
1603 				continue;
1604 
1605 			if (WARN_ON_ONCE(type == MOD_INVALID))
1606 				continue;
1607 
1608 			/*
1609 			 * Do not allocate codetag memory as we load it into
1610 			 * preallocated contiguous memory.
1611 			 */
1612 			if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1613 				/*
1614 				 * s->sh_entsize won't be used but populate the
1615 				 * type field to avoid confusion.
1616 				 */
1617 				s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1618 						<< SH_ENTSIZE_TYPE_SHIFT;
1619 				continue;
1620 			}
1621 
1622 			s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1623 			pr_debug("\t%s\n", sname);
1624 		}
1625 	}
1626 }
1627 
1628 /*
1629  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1630  * might -- code, read-only data, read-write data, small data.  Tally
1631  * sizes, and place the offsets into sh_entsize fields: high bit means it
1632  * belongs in init.
1633  */
layout_sections(struct module * mod,struct load_info * info)1634 static void layout_sections(struct module *mod, struct load_info *info)
1635 {
1636 	unsigned int i;
1637 
1638 	for (i = 0; i < info->hdr->e_shnum; i++)
1639 		info->sechdrs[i].sh_entsize = ~0UL;
1640 
1641 	pr_debug("Core section allocation order for %s:\n", mod->name);
1642 	__layout_sections(mod, info, false);
1643 
1644 	pr_debug("Init section allocation order for %s:\n", mod->name);
1645 	__layout_sections(mod, info, true);
1646 }
1647 
module_license_taint_check(struct module * mod,const char * license)1648 static void module_license_taint_check(struct module *mod, const char *license)
1649 {
1650 	if (!license)
1651 		license = "unspecified";
1652 
1653 	if (!license_is_gpl_compatible(license)) {
1654 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1655 			pr_warn("%s: module license '%s' taints kernel.\n",
1656 				mod->name, license);
1657 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1658 				 LOCKDEP_NOW_UNRELIABLE);
1659 	}
1660 }
1661 
setup_modinfo(struct module * mod,struct load_info * info)1662 static void setup_modinfo(struct module *mod, struct load_info *info)
1663 {
1664 	const struct module_attribute *attr;
1665 	int i;
1666 
1667 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1668 		if (attr->setup)
1669 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1670 	}
1671 }
1672 
free_modinfo(struct module * mod)1673 static void free_modinfo(struct module *mod)
1674 {
1675 	const struct module_attribute *attr;
1676 	int i;
1677 
1678 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1679 		if (attr->free)
1680 			attr->free(mod);
1681 	}
1682 }
1683 
module_init_section(const char * name)1684 bool __weak module_init_section(const char *name)
1685 {
1686 	return strstarts(name, ".init");
1687 }
1688 
module_exit_section(const char * name)1689 bool __weak module_exit_section(const char *name)
1690 {
1691 	return strstarts(name, ".exit");
1692 }
1693 
validate_section_offset(const struct load_info * info,Elf_Shdr * shdr)1694 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1695 {
1696 #if defined(CONFIG_64BIT)
1697 	unsigned long long secend;
1698 #else
1699 	unsigned long secend;
1700 #endif
1701 
1702 	/*
1703 	 * Check for both overflow and offset/size being
1704 	 * too large.
1705 	 */
1706 	secend = shdr->sh_offset + shdr->sh_size;
1707 	if (secend < shdr->sh_offset || secend > info->len)
1708 		return -ENOEXEC;
1709 
1710 	return 0;
1711 }
1712 
1713 /**
1714  * elf_validity_ehdr() - Checks an ELF header for module validity
1715  * @info: Load info containing the ELF header to check
1716  *
1717  * Checks whether an ELF header could belong to a valid module. Checks:
1718  *
1719  * * ELF header is within the data the user provided
1720  * * ELF magic is present
1721  * * It is relocatable (not final linked, not core file, etc.)
1722  * * The header's machine type matches what the architecture expects.
1723  * * Optional arch-specific hook for other properties
1724  *   - module_elf_check_arch() is currently only used by PPC to check
1725  *   ELF ABI version, but may be used by others in the future.
1726  *
1727  * Return: %0 if valid, %-ENOEXEC on failure.
1728  */
elf_validity_ehdr(const struct load_info * info)1729 static int elf_validity_ehdr(const struct load_info *info)
1730 {
1731 	if (info->len < sizeof(*(info->hdr))) {
1732 		pr_err("Invalid ELF header len %lu\n", info->len);
1733 		return -ENOEXEC;
1734 	}
1735 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1736 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1737 		return -ENOEXEC;
1738 	}
1739 	if (info->hdr->e_type != ET_REL) {
1740 		pr_err("Invalid ELF header type: %u != %u\n",
1741 		       info->hdr->e_type, ET_REL);
1742 		return -ENOEXEC;
1743 	}
1744 	if (!elf_check_arch(info->hdr)) {
1745 		pr_err("Invalid architecture in ELF header: %u\n",
1746 		       info->hdr->e_machine);
1747 		return -ENOEXEC;
1748 	}
1749 	if (!module_elf_check_arch(info->hdr)) {
1750 		pr_err("Invalid module architecture in ELF header: %u\n",
1751 		       info->hdr->e_machine);
1752 		return -ENOEXEC;
1753 	}
1754 	return 0;
1755 }
1756 
1757 /**
1758  * elf_validity_cache_sechdrs() - Cache section headers if valid
1759  * @info: Load info to compute section headers from
1760  *
1761  * Checks:
1762  *
1763  * * ELF header is valid (see elf_validity_ehdr())
1764  * * Section headers are the size we expect
1765  * * Section array fits in the user provided data
1766  * * Section index 0 is NULL
1767  * * Section contents are inbounds
1768  *
1769  * Then updates @info with a &load_info->sechdrs pointer if valid.
1770  *
1771  * Return: %0 if valid, negative error code if validation failed.
1772  */
elf_validity_cache_sechdrs(struct load_info * info)1773 static int elf_validity_cache_sechdrs(struct load_info *info)
1774 {
1775 	Elf_Shdr *sechdrs;
1776 	Elf_Shdr *shdr;
1777 	int i;
1778 	int err;
1779 
1780 	err = elf_validity_ehdr(info);
1781 	if (err < 0)
1782 		return err;
1783 
1784 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1785 		pr_err("Invalid ELF section header size\n");
1786 		return -ENOEXEC;
1787 	}
1788 
1789 	/*
1790 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1791 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1792 	 * will not overflow unsigned long on any platform.
1793 	 */
1794 	if (info->hdr->e_shoff >= info->len
1795 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1796 		info->len - info->hdr->e_shoff)) {
1797 		pr_err("Invalid ELF section header overflow\n");
1798 		return -ENOEXEC;
1799 	}
1800 
1801 	sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1802 
1803 	/*
1804 	 * The code assumes that section 0 has a length of zero and
1805 	 * an addr of zero, so check for it.
1806 	 */
1807 	if (sechdrs[0].sh_type != SHT_NULL
1808 	    || sechdrs[0].sh_size != 0
1809 	    || sechdrs[0].sh_addr != 0) {
1810 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1811 		       sechdrs[0].sh_type);
1812 		return -ENOEXEC;
1813 	}
1814 
1815 	/* Validate contents are inbounds */
1816 	for (i = 1; i < info->hdr->e_shnum; i++) {
1817 		shdr = &sechdrs[i];
1818 		switch (shdr->sh_type) {
1819 		case SHT_NULL:
1820 		case SHT_NOBITS:
1821 			/* No contents, offset/size don't mean anything */
1822 			continue;
1823 		default:
1824 			err = validate_section_offset(info, shdr);
1825 			if (err < 0) {
1826 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1827 				       i, shdr->sh_type);
1828 				return err;
1829 			}
1830 		}
1831 	}
1832 
1833 	info->sechdrs = sechdrs;
1834 
1835 	return 0;
1836 }
1837 
1838 /**
1839  * elf_validity_cache_secstrings() - Caches section names if valid
1840  * @info: Load info to cache section names from. Must have valid sechdrs.
1841  *
1842  * Specifically checks:
1843  *
1844  * * Section name table index is inbounds of section headers
1845  * * Section name table is not empty
1846  * * Section name table is NUL terminated
1847  * * All section name offsets are inbounds of the section
1848  *
1849  * Then updates @info with a &load_info->secstrings pointer if valid.
1850  *
1851  * Return: %0 if valid, negative error code if validation failed.
1852  */
elf_validity_cache_secstrings(struct load_info * info)1853 static int elf_validity_cache_secstrings(struct load_info *info)
1854 {
1855 	Elf_Shdr *strhdr, *shdr;
1856 	char *secstrings;
1857 	int i;
1858 
1859 	/*
1860 	 * Verify if the section name table index is valid.
1861 	 */
1862 	if (info->hdr->e_shstrndx == SHN_UNDEF
1863 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1864 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1865 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1866 		       info->hdr->e_shnum);
1867 		return -ENOEXEC;
1868 	}
1869 
1870 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1871 
1872 	/*
1873 	 * The section name table must be NUL-terminated, as required
1874 	 * by the spec. This makes strcmp and pr_* calls that access
1875 	 * strings in the section safe.
1876 	 */
1877 	secstrings = (void *)info->hdr + strhdr->sh_offset;
1878 	if (strhdr->sh_size == 0) {
1879 		pr_err("empty section name table\n");
1880 		return -ENOEXEC;
1881 	}
1882 	if (secstrings[strhdr->sh_size - 1] != '\0') {
1883 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1884 		return -ENOEXEC;
1885 	}
1886 
1887 	for (i = 0; i < info->hdr->e_shnum; i++) {
1888 		shdr = &info->sechdrs[i];
1889 		/* SHT_NULL means sh_name has an undefined value */
1890 		if (shdr->sh_type == SHT_NULL)
1891 			continue;
1892 		if (shdr->sh_name >= strhdr->sh_size) {
1893 			pr_err("Invalid ELF section name in module (section %u type %u)\n",
1894 			       i, shdr->sh_type);
1895 			return -ENOEXEC;
1896 		}
1897 	}
1898 
1899 	info->secstrings = secstrings;
1900 	return 0;
1901 }
1902 
1903 /**
1904  * elf_validity_cache_index_info() - Validate and cache modinfo section
1905  * @info: Load info to populate the modinfo index on.
1906  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1907  *
1908  * Checks that if there is a .modinfo section, it is unique.
1909  * Then, it caches its index in &load_info->index.info.
1910  * Finally, it tries to populate the name to improve error messages.
1911  *
1912  * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
1913  */
elf_validity_cache_index_info(struct load_info * info)1914 static int elf_validity_cache_index_info(struct load_info *info)
1915 {
1916 	int info_idx;
1917 
1918 	info_idx = find_any_unique_sec(info, ".modinfo");
1919 
1920 	if (info_idx == 0)
1921 		/* Early return, no .modinfo */
1922 		return 0;
1923 
1924 	if (info_idx < 0) {
1925 		pr_err("Only one .modinfo section must exist.\n");
1926 		return -ENOEXEC;
1927 	}
1928 
1929 	info->index.info = info_idx;
1930 	/* Try to find a name early so we can log errors with a module name */
1931 	info->name = get_modinfo(info, "name");
1932 
1933 	return 0;
1934 }
1935 
1936 /**
1937  * elf_validity_cache_index_mod() - Validates and caches this_module section
1938  * @info: Load info to cache this_module on.
1939  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1940  *
1941  * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
1942  * uses to refer to __this_module and let's use rely on THIS_MODULE to point
1943  * to &__this_module properly. The kernel's modpost declares it on each
1944  * modules's *.mod.c file. If the struct module of the kernel changes a full
1945  * kernel rebuild is required.
1946  *
1947  * We have a few expectations for this special section, this function
1948  * validates all this for us:
1949  *
1950  * * The section has contents
1951  * * The section is unique
1952  * * We expect the kernel to always have to allocate it: SHF_ALLOC
1953  * * The section size must match the kernel's run time's struct module
1954  *   size
1955  *
1956  * If all checks pass, the index will be cached in &load_info->index.mod
1957  *
1958  * Return: %0 on validation success, %-ENOEXEC on failure
1959  */
elf_validity_cache_index_mod(struct load_info * info)1960 static int elf_validity_cache_index_mod(struct load_info *info)
1961 {
1962 	Elf_Shdr *shdr;
1963 	int mod_idx;
1964 
1965 	mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
1966 	if (mod_idx <= 0) {
1967 		pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
1968 		       info->name ?: "(missing .modinfo section or name field)");
1969 		return -ENOEXEC;
1970 	}
1971 
1972 	shdr = &info->sechdrs[mod_idx];
1973 
1974 	if (shdr->sh_type == SHT_NOBITS) {
1975 		pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
1976 		       info->name ?: "(missing .modinfo section or name field)");
1977 		return -ENOEXEC;
1978 	}
1979 
1980 	if (!(shdr->sh_flags & SHF_ALLOC)) {
1981 		pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
1982 		       info->name ?: "(missing .modinfo section or name field)");
1983 		return -ENOEXEC;
1984 	}
1985 
1986 	if (shdr->sh_size != sizeof(struct module)) {
1987 		pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
1988 		       info->name ?: "(missing .modinfo section or name field)");
1989 		return -ENOEXEC;
1990 	}
1991 
1992 	info->index.mod = mod_idx;
1993 
1994 	return 0;
1995 }
1996 
1997 /**
1998  * elf_validity_cache_index_sym() - Validate and cache symtab index
1999  * @info: Load info to cache symtab index in.
2000  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2001  *
2002  * Checks that there is exactly one symbol table, then caches its index in
2003  * &load_info->index.sym.
2004  *
2005  * Return: %0 if valid, %-ENOEXEC on failure.
2006  */
elf_validity_cache_index_sym(struct load_info * info)2007 static int elf_validity_cache_index_sym(struct load_info *info)
2008 {
2009 	unsigned int sym_idx;
2010 	unsigned int num_sym_secs = 0;
2011 	int i;
2012 
2013 	for (i = 1; i < info->hdr->e_shnum; i++) {
2014 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2015 			num_sym_secs++;
2016 			sym_idx = i;
2017 		}
2018 	}
2019 
2020 	if (num_sym_secs != 1) {
2021 		pr_warn("%s: module has no symbols (stripped?)\n",
2022 			info->name ?: "(missing .modinfo section or name field)");
2023 		return -ENOEXEC;
2024 	}
2025 
2026 	info->index.sym = sym_idx;
2027 
2028 	return 0;
2029 }
2030 
2031 /**
2032  * elf_validity_cache_index_str() - Validate and cache strtab index
2033  * @info: Load info to cache strtab index in.
2034  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2035  *        Must have &load_info->index.sym populated.
2036  *
2037  * Looks at the symbol table's associated string table, makes sure it is
2038  * in-bounds, and caches it.
2039  *
2040  * Return: %0 if valid, %-ENOEXEC on failure.
2041  */
elf_validity_cache_index_str(struct load_info * info)2042 static int elf_validity_cache_index_str(struct load_info *info)
2043 {
2044 	unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2045 
2046 	if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2047 		pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2048 		       str_idx, str_idx, info->hdr->e_shnum);
2049 		return -ENOEXEC;
2050 	}
2051 
2052 	info->index.str = str_idx;
2053 	return 0;
2054 }
2055 
2056 /**
2057  * elf_validity_cache_index_versions() - Validate and cache version indices
2058  * @info:  Load info to cache version indices in.
2059  *         Must have &load_info->sechdrs and &load_info->secstrings populated.
2060  * @flags: Load flags, relevant to suppress version loading, see
2061  *         uapi/linux/module.h
2062  *
2063  * If we're ignoring modversions based on @flags, zero all version indices
2064  * and return validity. Othewrise check:
2065  *
2066  * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2067  * * There is a name present for every crc
2068  *
2069  * Then populate:
2070  *
2071  * * &load_info->index.vers
2072  * * &load_info->index.vers_ext_crc
2073  * * &load_info->index.vers_ext_names
2074  *
2075  * if present.
2076  *
2077  * Return: %0 if valid, %-ENOEXEC on failure.
2078  */
elf_validity_cache_index_versions(struct load_info * info,int flags)2079 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2080 {
2081 	unsigned int vers_ext_crc;
2082 	unsigned int vers_ext_name;
2083 	size_t crc_count;
2084 	size_t remaining_len;
2085 	size_t name_size;
2086 	char *name;
2087 
2088 	/* If modversions were suppressed, pretend we didn't find any */
2089 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2090 		info->index.vers = 0;
2091 		info->index.vers_ext_crc = 0;
2092 		info->index.vers_ext_name = 0;
2093 		return 0;
2094 	}
2095 
2096 	vers_ext_crc = find_sec(info, "__version_ext_crcs");
2097 	vers_ext_name = find_sec(info, "__version_ext_names");
2098 
2099 	/* If we have one field, we must have the other */
2100 	if (!!vers_ext_crc != !!vers_ext_name) {
2101 		pr_err("extended version crc+name presence does not match");
2102 		return -ENOEXEC;
2103 	}
2104 
2105 	/*
2106 	 * If we have extended version information, we should have the same
2107 	 * number of entries in every section.
2108 	 */
2109 	if (vers_ext_crc) {
2110 		crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2111 		name = (void *)info->hdr +
2112 			info->sechdrs[vers_ext_name].sh_offset;
2113 		remaining_len = info->sechdrs[vers_ext_name].sh_size;
2114 
2115 		while (crc_count--) {
2116 			name_size = strnlen(name, remaining_len) + 1;
2117 			if (name_size > remaining_len) {
2118 				pr_err("more extended version crcs than names");
2119 				return -ENOEXEC;
2120 			}
2121 			remaining_len -= name_size;
2122 			name += name_size;
2123 		}
2124 	}
2125 
2126 	info->index.vers = find_sec(info, "__versions");
2127 	info->index.vers_ext_crc = vers_ext_crc;
2128 	info->index.vers_ext_name = vers_ext_name;
2129 	return 0;
2130 }
2131 
2132 /**
2133  * elf_validity_cache_index() - Resolve, validate, cache section indices
2134  * @info:  Load info to read from and update.
2135  *         &load_info->sechdrs and &load_info->secstrings must be populated.
2136  * @flags: Load flags, relevant to suppress version loading, see
2137  *         uapi/linux/module.h
2138  *
2139  * Populates &load_info->index, validating as it goes.
2140  * See child functions for per-field validation:
2141  *
2142  * * elf_validity_cache_index_info()
2143  * * elf_validity_cache_index_mod()
2144  * * elf_validity_cache_index_sym()
2145  * * elf_validity_cache_index_str()
2146  * * elf_validity_cache_index_versions()
2147  *
2148  * If CONFIG_SMP is enabled, load the percpu section by name with no
2149  * validation.
2150  *
2151  * Return: 0 on success, negative error code if an index failed validation.
2152  */
elf_validity_cache_index(struct load_info * info,int flags)2153 static int elf_validity_cache_index(struct load_info *info, int flags)
2154 {
2155 	int err;
2156 
2157 	err = elf_validity_cache_index_info(info);
2158 	if (err < 0)
2159 		return err;
2160 	err = elf_validity_cache_index_mod(info);
2161 	if (err < 0)
2162 		return err;
2163 	err = elf_validity_cache_index_sym(info);
2164 	if (err < 0)
2165 		return err;
2166 	err = elf_validity_cache_index_str(info);
2167 	if (err < 0)
2168 		return err;
2169 	err = elf_validity_cache_index_versions(info, flags);
2170 	if (err < 0)
2171 		return err;
2172 
2173 	info->index.pcpu = find_pcpusec(info);
2174 
2175 	return 0;
2176 }
2177 
2178 /**
2179  * elf_validity_cache_strtab() - Validate and cache symbol string table
2180  * @info: Load info to read from and update.
2181  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2182  *        Must have &load_info->index populated.
2183  *
2184  * Checks:
2185  *
2186  * * The string table is not empty.
2187  * * The string table starts and ends with NUL (required by ELF spec).
2188  * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2189  *   string table.
2190  *
2191  * And caches the pointer as &load_info->strtab in @info.
2192  *
2193  * Return: 0 on success, negative error code if a check failed.
2194  */
elf_validity_cache_strtab(struct load_info * info)2195 static int elf_validity_cache_strtab(struct load_info *info)
2196 {
2197 	Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2198 	Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2199 	char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2200 	Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2201 	int i;
2202 
2203 	if (str_shdr->sh_size == 0) {
2204 		pr_err("empty symbol string table\n");
2205 		return -ENOEXEC;
2206 	}
2207 	if (strtab[0] != '\0') {
2208 		pr_err("symbol string table missing leading NUL\n");
2209 		return -ENOEXEC;
2210 	}
2211 	if (strtab[str_shdr->sh_size - 1] != '\0') {
2212 		pr_err("symbol string table isn't NUL terminated\n");
2213 		return -ENOEXEC;
2214 	}
2215 
2216 	/*
2217 	 * Now that we know strtab is correctly structured, check symbol
2218 	 * starts are inbounds before they're used later.
2219 	 */
2220 	for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2221 		if (syms[i].st_name >= str_shdr->sh_size) {
2222 			pr_err("symbol name out of bounds in string table");
2223 			return -ENOEXEC;
2224 		}
2225 	}
2226 
2227 	info->strtab = strtab;
2228 	return 0;
2229 }
2230 
2231 /*
2232  * Check userspace passed ELF module against our expectations, and cache
2233  * useful variables for further processing as we go.
2234  *
2235  * This does basic validity checks against section offsets and sizes, the
2236  * section name string table, and the indices used for it (sh_name).
2237  *
2238  * As a last step, since we're already checking the ELF sections we cache
2239  * useful variables which will be used later for our convenience:
2240  *
2241  * 	o pointers to section headers
2242  * 	o cache the modinfo symbol section
2243  * 	o cache the string symbol section
2244  * 	o cache the module section
2245  *
2246  * As a last step we set info->mod to the temporary copy of the module in
2247  * info->hdr. The final one will be allocated in move_module(). Any
2248  * modifications we make to our copy of the module will be carried over
2249  * to the final minted module.
2250  */
elf_validity_cache_copy(struct load_info * info,int flags)2251 static int elf_validity_cache_copy(struct load_info *info, int flags)
2252 {
2253 	int err;
2254 
2255 	err = elf_validity_cache_sechdrs(info);
2256 	if (err < 0)
2257 		return err;
2258 	err = elf_validity_cache_secstrings(info);
2259 	if (err < 0)
2260 		return err;
2261 	err = elf_validity_cache_index(info, flags);
2262 	if (err < 0)
2263 		return err;
2264 	err = elf_validity_cache_strtab(info);
2265 	if (err < 0)
2266 		return err;
2267 
2268 	/* This is temporary: point mod into copy of data. */
2269 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2270 
2271 	/*
2272 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
2273 	 * on-disk struct mod 'name' field.
2274 	 */
2275 	if (!info->name)
2276 		info->name = info->mod->name;
2277 
2278 	return 0;
2279 }
2280 
2281 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2282 
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2283 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2284 {
2285 	do {
2286 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2287 
2288 		if (copy_from_user(dst, usrc, n) != 0)
2289 			return -EFAULT;
2290 		cond_resched();
2291 		dst += n;
2292 		usrc += n;
2293 		len -= n;
2294 	} while (len);
2295 	return 0;
2296 }
2297 
check_modinfo_livepatch(struct module * mod,struct load_info * info)2298 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2299 {
2300 	if (!get_modinfo(info, "livepatch"))
2301 		/* Nothing more to do */
2302 		return 0;
2303 
2304 	if (set_livepatch_module(mod))
2305 		return 0;
2306 
2307 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2308 	       mod->name);
2309 	return -ENOEXEC;
2310 }
2311 
check_modinfo_retpoline(struct module * mod,struct load_info * info)2312 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2313 {
2314 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2315 		return;
2316 
2317 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2318 		mod->name);
2319 }
2320 
2321 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2322 static int copy_module_from_user(const void __user *umod, unsigned long len,
2323 				  struct load_info *info)
2324 {
2325 	int err;
2326 
2327 	info->len = len;
2328 	if (info->len < sizeof(*(info->hdr)))
2329 		return -ENOEXEC;
2330 
2331 	err = security_kernel_load_data(LOADING_MODULE, true);
2332 	if (err)
2333 		return err;
2334 
2335 	/* Suck in entire file: we'll want most of it. */
2336 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2337 	if (!info->hdr)
2338 		return -ENOMEM;
2339 
2340 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2341 		err = -EFAULT;
2342 		goto out;
2343 	}
2344 
2345 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
2346 					     LOADING_MODULE, "init_module");
2347 out:
2348 	if (err)
2349 		vfree(info->hdr);
2350 
2351 	return err;
2352 }
2353 
free_copy(struct load_info * info,int flags)2354 static void free_copy(struct load_info *info, int flags)
2355 {
2356 	if (flags & MODULE_INIT_COMPRESSED_FILE)
2357 		module_decompress_cleanup(info);
2358 	else
2359 		vfree(info->hdr);
2360 }
2361 
rewrite_section_headers(struct load_info * info,int flags)2362 static int rewrite_section_headers(struct load_info *info, int flags)
2363 {
2364 	unsigned int i;
2365 
2366 	/* This should always be true, but let's be sure. */
2367 	info->sechdrs[0].sh_addr = 0;
2368 
2369 	for (i = 1; i < info->hdr->e_shnum; i++) {
2370 		Elf_Shdr *shdr = &info->sechdrs[i];
2371 
2372 		/*
2373 		 * Mark all sections sh_addr with their address in the
2374 		 * temporary image.
2375 		 */
2376 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2377 
2378 	}
2379 
2380 	/* Track but don't keep modinfo and version sections. */
2381 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2382 	info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2383 		~(unsigned long)SHF_ALLOC;
2384 	info->sechdrs[info->index.vers_ext_name].sh_flags &=
2385 		~(unsigned long)SHF_ALLOC;
2386 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2387 
2388 	return 0;
2389 }
2390 
2391 static const char *const module_license_offenders[] = {
2392 	/* driverloader was caught wrongly pretending to be under GPL */
2393 	"driverloader",
2394 
2395 	/* lve claims to be GPL but upstream won't provide source */
2396 	"lve",
2397 };
2398 
2399 /*
2400  * These calls taint the kernel depending certain module circumstances */
module_augment_kernel_taints(struct module * mod,struct load_info * info)2401 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2402 {
2403 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2404 	size_t i;
2405 
2406 	if (!get_modinfo(info, "intree")) {
2407 		if (!test_taint(TAINT_OOT_MODULE))
2408 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
2409 				mod->name);
2410 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2411 	}
2412 
2413 	check_modinfo_retpoline(mod, info);
2414 
2415 	if (get_modinfo(info, "staging")) {
2416 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2417 		pr_warn("%s: module is from the staging directory, the quality "
2418 			"is unknown, you have been warned.\n", mod->name);
2419 	}
2420 
2421 	if (is_livepatch_module(mod)) {
2422 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2423 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2424 				mod->name);
2425 	}
2426 
2427 	module_license_taint_check(mod, get_modinfo(info, "license"));
2428 
2429 	if (get_modinfo(info, "test")) {
2430 		if (!test_taint(TAINT_TEST))
2431 			pr_warn("%s: loading test module taints kernel.\n",
2432 				mod->name);
2433 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2434 	}
2435 #ifdef CONFIG_MODULE_SIG
2436 	mod->sig_ok = info->sig_ok;
2437 	if (!mod->sig_ok) {
2438 		pr_notice_once("%s: module verification failed: signature "
2439 			       "and/or required key missing - tainting "
2440 			       "kernel\n", mod->name);
2441 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2442 	}
2443 #endif
2444 
2445 	/*
2446 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2447 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2448 	 * using GPL-only symbols it needs.
2449 	 */
2450 	if (strcmp(mod->name, "ndiswrapper") == 0)
2451 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2452 
2453 	for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2454 		if (strcmp(mod->name, module_license_offenders[i]) == 0)
2455 			add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2456 					 LOCKDEP_NOW_UNRELIABLE);
2457 	}
2458 
2459 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2460 		pr_warn("%s: module license taints kernel.\n", mod->name);
2461 
2462 }
2463 
check_modinfo(struct module * mod,struct load_info * info,int flags)2464 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2465 {
2466 	const char *modmagic = get_modinfo(info, "vermagic");
2467 	int err;
2468 
2469 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2470 		modmagic = NULL;
2471 
2472 	/* This is allowed: modprobe --force will invalidate it. */
2473 	if (!modmagic) {
2474 		err = try_to_force_load(mod, "bad vermagic");
2475 		if (err)
2476 			return err;
2477 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2478 		pr_err("%s: version magic '%s' should be '%s'\n",
2479 		       info->name, modmagic, vermagic);
2480 		return -ENOEXEC;
2481 	}
2482 
2483 	err = check_modinfo_livepatch(mod, info);
2484 	if (err)
2485 		return err;
2486 
2487 	return 0;
2488 }
2489 
find_module_sections(struct module * mod,struct load_info * info)2490 static int find_module_sections(struct module *mod, struct load_info *info)
2491 {
2492 	mod->kp = section_objs(info, "__param",
2493 			       sizeof(*mod->kp), &mod->num_kp);
2494 	mod->syms = section_objs(info, "__ksymtab",
2495 				 sizeof(*mod->syms), &mod->num_syms);
2496 	mod->crcs = section_addr(info, "__kcrctab");
2497 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2498 				     sizeof(*mod->gpl_syms),
2499 				     &mod->num_gpl_syms);
2500 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2501 
2502 #ifdef CONFIG_CONSTRUCTORS
2503 	mod->ctors = section_objs(info, ".ctors",
2504 				  sizeof(*mod->ctors), &mod->num_ctors);
2505 	if (!mod->ctors)
2506 		mod->ctors = section_objs(info, ".init_array",
2507 				sizeof(*mod->ctors), &mod->num_ctors);
2508 	else if (find_sec(info, ".init_array")) {
2509 		/*
2510 		 * This shouldn't happen with same compiler and binutils
2511 		 * building all parts of the module.
2512 		 */
2513 		pr_warn("%s: has both .ctors and .init_array.\n",
2514 		       mod->name);
2515 		return -EINVAL;
2516 	}
2517 #endif
2518 
2519 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2520 						&mod->noinstr_text_size);
2521 
2522 #ifdef CONFIG_TRACEPOINTS
2523 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2524 					     sizeof(*mod->tracepoints_ptrs),
2525 					     &mod->num_tracepoints);
2526 #endif
2527 #ifdef CONFIG_TREE_SRCU
2528 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2529 					     sizeof(*mod->srcu_struct_ptrs),
2530 					     &mod->num_srcu_structs);
2531 #endif
2532 #ifdef CONFIG_BPF_EVENTS
2533 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2534 					   sizeof(*mod->bpf_raw_events),
2535 					   &mod->num_bpf_raw_events);
2536 #endif
2537 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2538 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2539 	mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2540 					      &mod->btf_base_data_size);
2541 #endif
2542 #ifdef CONFIG_JUMP_LABEL
2543 	mod->jump_entries = section_objs(info, "__jump_table",
2544 					sizeof(*mod->jump_entries),
2545 					&mod->num_jump_entries);
2546 #endif
2547 #ifdef CONFIG_EVENT_TRACING
2548 	mod->trace_events = section_objs(info, "_ftrace_events",
2549 					 sizeof(*mod->trace_events),
2550 					 &mod->num_trace_events);
2551 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2552 					sizeof(*mod->trace_evals),
2553 					&mod->num_trace_evals);
2554 #endif
2555 #ifdef CONFIG_TRACING
2556 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2557 					 sizeof(*mod->trace_bprintk_fmt_start),
2558 					 &mod->num_trace_bprintk_fmt);
2559 #endif
2560 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2561 	/* sechdrs[0].sh_size is always zero */
2562 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2563 					     sizeof(*mod->ftrace_callsites),
2564 					     &mod->num_ftrace_callsites);
2565 #endif
2566 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2567 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2568 					    sizeof(*mod->ei_funcs),
2569 					    &mod->num_ei_funcs);
2570 #endif
2571 #ifdef CONFIG_KPROBES
2572 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2573 						&mod->kprobes_text_size);
2574 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2575 						sizeof(unsigned long),
2576 						&mod->num_kprobe_blacklist);
2577 #endif
2578 #ifdef CONFIG_PRINTK_INDEX
2579 	mod->printk_index_start = section_objs(info, ".printk_index",
2580 					       sizeof(*mod->printk_index_start),
2581 					       &mod->printk_index_size);
2582 #endif
2583 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2584 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2585 					      sizeof(*mod->static_call_sites),
2586 					      &mod->num_static_call_sites);
2587 #endif
2588 #if IS_ENABLED(CONFIG_KUNIT)
2589 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2590 					      sizeof(*mod->kunit_suites),
2591 					      &mod->num_kunit_suites);
2592 	mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2593 					      sizeof(*mod->kunit_init_suites),
2594 					      &mod->num_kunit_init_suites);
2595 #endif
2596 
2597 	mod->extable = section_objs(info, "__ex_table",
2598 				    sizeof(*mod->extable), &mod->num_exentries);
2599 
2600 	if (section_addr(info, "__obsparm"))
2601 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2602 
2603 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2604 	mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2605 					      sizeof(*mod->dyndbg_info.descs),
2606 					      &mod->dyndbg_info.num_descs);
2607 	mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2608 						sizeof(*mod->dyndbg_info.classes),
2609 						&mod->dyndbg_info.num_classes);
2610 #endif
2611 
2612 	return 0;
2613 }
2614 
move_module(struct module * mod,struct load_info * info)2615 static int move_module(struct module *mod, struct load_info *info)
2616 {
2617 	int i;
2618 	enum mod_mem_type t = 0;
2619 	int ret = -ENOMEM;
2620 	bool codetag_section_found = false;
2621 
2622 	for_each_mod_mem_type(type) {
2623 		if (!mod->mem[type].size) {
2624 			mod->mem[type].base = NULL;
2625 			continue;
2626 		}
2627 
2628 		ret = module_memory_alloc(mod, type);
2629 		if (ret) {
2630 			t = type;
2631 			goto out_err;
2632 		}
2633 	}
2634 
2635 	/* Transfer each section which specifies SHF_ALLOC */
2636 	pr_debug("Final section addresses for %s:\n", mod->name);
2637 	for (i = 0; i < info->hdr->e_shnum; i++) {
2638 		void *dest;
2639 		Elf_Shdr *shdr = &info->sechdrs[i];
2640 		const char *sname;
2641 
2642 		if (!(shdr->sh_flags & SHF_ALLOC))
2643 			continue;
2644 
2645 		sname = info->secstrings + shdr->sh_name;
2646 		/*
2647 		 * Load codetag sections separately as they might still be used
2648 		 * after module unload.
2649 		 */
2650 		if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2651 			dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2652 					arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2653 			if (WARN_ON(!dest)) {
2654 				ret = -EINVAL;
2655 				goto out_err;
2656 			}
2657 			if (IS_ERR(dest)) {
2658 				ret = PTR_ERR(dest);
2659 				goto out_err;
2660 			}
2661 			codetag_section_found = true;
2662 		} else {
2663 			enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2664 			unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2665 
2666 			dest = mod->mem[type].base + offset;
2667 		}
2668 
2669 		if (shdr->sh_type != SHT_NOBITS) {
2670 			/*
2671 			 * Our ELF checker already validated this, but let's
2672 			 * be pedantic and make the goal clearer. We actually
2673 			 * end up copying over all modifications made to the
2674 			 * userspace copy of the entire struct module.
2675 			 */
2676 			if (i == info->index.mod &&
2677 			   (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2678 				ret = -ENOEXEC;
2679 				goto out_err;
2680 			}
2681 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2682 		}
2683 		/*
2684 		 * Update the userspace copy's ELF section address to point to
2685 		 * our newly allocated memory as a pure convenience so that
2686 		 * users of info can keep taking advantage and using the newly
2687 		 * minted official memory area.
2688 		 */
2689 		shdr->sh_addr = (unsigned long)dest;
2690 		pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2691 			 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2692 	}
2693 
2694 	return 0;
2695 out_err:
2696 	module_memory_restore_rox(mod);
2697 	for (t--; t >= 0; t--)
2698 		module_memory_free(mod, t);
2699 	if (codetag_section_found)
2700 		codetag_free_module_sections(mod);
2701 
2702 	return ret;
2703 }
2704 
check_export_symbol_versions(struct module * mod)2705 static int check_export_symbol_versions(struct module *mod)
2706 {
2707 #ifdef CONFIG_MODVERSIONS
2708 	if ((mod->num_syms && !mod->crcs) ||
2709 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2710 		return try_to_force_load(mod,
2711 					 "no versions for exported symbols");
2712 	}
2713 #endif
2714 	return 0;
2715 }
2716 
flush_module_icache(const struct module * mod)2717 static void flush_module_icache(const struct module *mod)
2718 {
2719 	/*
2720 	 * Flush the instruction cache, since we've played with text.
2721 	 * Do it before processing of module parameters, so the module
2722 	 * can provide parameter accessor functions of its own.
2723 	 */
2724 	for_each_mod_mem_type(type) {
2725 		const struct module_memory *mod_mem = &mod->mem[type];
2726 
2727 		if (mod_mem->size) {
2728 			flush_icache_range((unsigned long)mod_mem->base,
2729 					   (unsigned long)mod_mem->base + mod_mem->size);
2730 		}
2731 	}
2732 }
2733 
module_elf_check_arch(Elf_Ehdr * hdr)2734 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2735 {
2736 	return true;
2737 }
2738 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2739 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2740 				     Elf_Shdr *sechdrs,
2741 				     char *secstrings,
2742 				     struct module *mod)
2743 {
2744 	return 0;
2745 }
2746 
2747 /* module_blacklist is a comma-separated list of module names */
2748 static char *module_blacklist;
blacklisted(const char * module_name)2749 static bool blacklisted(const char *module_name)
2750 {
2751 	const char *p;
2752 	size_t len;
2753 
2754 	if (!module_blacklist)
2755 		return false;
2756 
2757 	for (p = module_blacklist; *p; p += len) {
2758 		len = strcspn(p, ",");
2759 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2760 			return true;
2761 		if (p[len] == ',')
2762 			len++;
2763 	}
2764 	return false;
2765 }
2766 core_param(module_blacklist, module_blacklist, charp, 0400);
2767 
layout_and_allocate(struct load_info * info,int flags)2768 static struct module *layout_and_allocate(struct load_info *info, int flags)
2769 {
2770 	struct module *mod;
2771 	unsigned int ndx;
2772 	int err;
2773 
2774 	/* Allow arches to frob section contents and sizes.  */
2775 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2776 					info->secstrings, info->mod);
2777 	if (err < 0)
2778 		return ERR_PTR(err);
2779 
2780 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2781 					  info->secstrings, info->mod);
2782 	if (err < 0)
2783 		return ERR_PTR(err);
2784 
2785 	/* We will do a special allocation for per-cpu sections later. */
2786 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2787 
2788 	/*
2789 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2790 	 * layout_sections() can put it in the right place.
2791 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2792 	 */
2793 	ndx = find_sec(info, ".data..ro_after_init");
2794 	if (ndx)
2795 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2796 	/*
2797 	 * Mark the __jump_table section as ro_after_init as well: these data
2798 	 * structures are never modified, with the exception of entries that
2799 	 * refer to code in the __init section, which are annotated as such
2800 	 * at module load time.
2801 	 */
2802 	ndx = find_sec(info, "__jump_table");
2803 	if (ndx)
2804 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2805 
2806 	/*
2807 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2808 	 * this is done generically; there doesn't appear to be any
2809 	 * special cases for the architectures.
2810 	 */
2811 	layout_sections(info->mod, info);
2812 	layout_symtab(info->mod, info);
2813 
2814 	/* Allocate and move to the final place */
2815 	err = move_module(info->mod, info);
2816 	if (err)
2817 		return ERR_PTR(err);
2818 
2819 	/* Module has been copied to its final place now: return it. */
2820 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2821 	kmemleak_load_module(mod, info);
2822 	codetag_module_replaced(info->mod, mod);
2823 
2824 	return mod;
2825 }
2826 
2827 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2828 static void module_deallocate(struct module *mod, struct load_info *info)
2829 {
2830 	percpu_modfree(mod);
2831 	module_arch_freeing_init(mod);
2832 	codetag_free_module_sections(mod);
2833 
2834 	free_mod_mem(mod);
2835 }
2836 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2837 int __weak module_finalize(const Elf_Ehdr *hdr,
2838 			   const Elf_Shdr *sechdrs,
2839 			   struct module *me)
2840 {
2841 	return 0;
2842 }
2843 
post_relocation(struct module * mod,const struct load_info * info)2844 static int post_relocation(struct module *mod, const struct load_info *info)
2845 {
2846 	/* Sort exception table now relocations are done. */
2847 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2848 
2849 	/* Copy relocated percpu area over. */
2850 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2851 		       info->sechdrs[info->index.pcpu].sh_size);
2852 
2853 	/* Setup kallsyms-specific fields. */
2854 	add_kallsyms(mod, info);
2855 
2856 	/* Arch-specific module finalizing. */
2857 	return module_finalize(info->hdr, info->sechdrs, mod);
2858 }
2859 
2860 /* Call module constructors. */
do_mod_ctors(struct module * mod)2861 static void do_mod_ctors(struct module *mod)
2862 {
2863 #ifdef CONFIG_CONSTRUCTORS
2864 	unsigned long i;
2865 
2866 	for (i = 0; i < mod->num_ctors; i++)
2867 		mod->ctors[i]();
2868 #endif
2869 }
2870 
2871 /* For freeing module_init on success, in case kallsyms traversing */
2872 struct mod_initfree {
2873 	struct llist_node node;
2874 	void *init_text;
2875 	void *init_data;
2876 	void *init_rodata;
2877 };
2878 
do_free_init(struct work_struct * w)2879 static void do_free_init(struct work_struct *w)
2880 {
2881 	struct llist_node *pos, *n, *list;
2882 	struct mod_initfree *initfree;
2883 
2884 	list = llist_del_all(&init_free_list);
2885 
2886 	synchronize_rcu();
2887 
2888 	llist_for_each_safe(pos, n, list) {
2889 		initfree = container_of(pos, struct mod_initfree, node);
2890 		execmem_free(initfree->init_text);
2891 		execmem_free(initfree->init_data);
2892 		execmem_free(initfree->init_rodata);
2893 		kfree(initfree);
2894 	}
2895 }
2896 
flush_module_init_free_work(void)2897 void flush_module_init_free_work(void)
2898 {
2899 	flush_work(&init_free_wq);
2900 }
2901 
2902 #undef MODULE_PARAM_PREFIX
2903 #define MODULE_PARAM_PREFIX "module."
2904 /* Default value for module->async_probe_requested */
2905 static bool async_probe;
2906 module_param(async_probe, bool, 0644);
2907 
2908 /*
2909  * This is where the real work happens.
2910  *
2911  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2912  * helper command 'lx-symbols'.
2913  */
do_init_module(struct module * mod)2914 static noinline int do_init_module(struct module *mod)
2915 {
2916 	int ret = 0;
2917 	struct mod_initfree *freeinit;
2918 #if defined(CONFIG_MODULE_STATS)
2919 	unsigned int text_size = 0, total_size = 0;
2920 
2921 	for_each_mod_mem_type(type) {
2922 		const struct module_memory *mod_mem = &mod->mem[type];
2923 		if (mod_mem->size) {
2924 			total_size += mod_mem->size;
2925 			if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2926 				text_size += mod_mem->size;
2927 		}
2928 	}
2929 #endif
2930 
2931 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2932 	if (!freeinit) {
2933 		ret = -ENOMEM;
2934 		goto fail;
2935 	}
2936 	freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
2937 	freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
2938 	freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
2939 
2940 	do_mod_ctors(mod);
2941 	/* Start the module */
2942 	if (mod->init != NULL)
2943 		ret = do_one_initcall(mod->init);
2944 	if (ret < 0) {
2945 		goto fail_free_freeinit;
2946 	}
2947 	if (ret > 0) {
2948 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2949 			"follow 0/-E convention\n"
2950 			"%s: loading module anyway...\n",
2951 			__func__, mod->name, ret, __func__);
2952 		dump_stack();
2953 	}
2954 
2955 	/* Now it's a first class citizen! */
2956 	mod->state = MODULE_STATE_LIVE;
2957 	blocking_notifier_call_chain(&module_notify_list,
2958 				     MODULE_STATE_LIVE, mod);
2959 
2960 	/* Delay uevent until module has finished its init routine */
2961 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2962 
2963 	/*
2964 	 * We need to finish all async code before the module init sequence
2965 	 * is done. This has potential to deadlock if synchronous module
2966 	 * loading is requested from async (which is not allowed!).
2967 	 *
2968 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2969 	 * request_module() from async workers") for more details.
2970 	 */
2971 	if (!mod->async_probe_requested)
2972 		async_synchronize_full();
2973 
2974 	ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
2975 			mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
2976 	mutex_lock(&module_mutex);
2977 	/* Drop initial reference. */
2978 	module_put(mod);
2979 	trim_init_extable(mod);
2980 #ifdef CONFIG_KALLSYMS
2981 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
2982 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2983 #endif
2984 	ret = module_enable_rodata_ro_after_init(mod);
2985 	if (ret)
2986 		pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
2987 			"ro_after_init data might still be writable\n",
2988 			mod->name, ret);
2989 
2990 	mod_tree_remove_init(mod);
2991 	module_arch_freeing_init(mod);
2992 	for_class_mod_mem_type(type, init) {
2993 		mod->mem[type].base = NULL;
2994 		mod->mem[type].size = 0;
2995 	}
2996 
2997 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2998 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
2999 	mod->btf_data = NULL;
3000 	mod->btf_base_data = NULL;
3001 #endif
3002 	/*
3003 	 * We want to free module_init, but be aware that kallsyms may be
3004 	 * walking this within an RCU read section. In all the failure paths, we
3005 	 * call synchronize_rcu(), but we don't want to slow down the success
3006 	 * path. execmem_free() cannot be called in an interrupt, so do the
3007 	 * work and call synchronize_rcu() in a work queue.
3008 	 *
3009 	 * Note that execmem_alloc() on most architectures creates W+X page
3010 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3011 	 * code such as mark_rodata_ro() which depends on those mappings to
3012 	 * be cleaned up needs to sync with the queued work by invoking
3013 	 * flush_module_init_free_work().
3014 	 */
3015 	if (llist_add(&freeinit->node, &init_free_list))
3016 		schedule_work(&init_free_wq);
3017 
3018 	mutex_unlock(&module_mutex);
3019 	wake_up_all(&module_wq);
3020 
3021 	mod_stat_add_long(text_size, &total_text_size);
3022 	mod_stat_add_long(total_size, &total_mod_size);
3023 
3024 	mod_stat_inc(&modcount);
3025 
3026 	return 0;
3027 
3028 fail_free_freeinit:
3029 	kfree(freeinit);
3030 fail:
3031 	/* Try to protect us from buggy refcounters. */
3032 	mod->state = MODULE_STATE_GOING;
3033 	synchronize_rcu();
3034 	module_put(mod);
3035 	blocking_notifier_call_chain(&module_notify_list,
3036 				     MODULE_STATE_GOING, mod);
3037 	klp_module_going(mod);
3038 	ftrace_release_mod(mod);
3039 	free_module(mod);
3040 	wake_up_all(&module_wq);
3041 
3042 	return ret;
3043 }
3044 
may_init_module(void)3045 static int may_init_module(void)
3046 {
3047 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3048 		return -EPERM;
3049 
3050 	return 0;
3051 }
3052 
3053 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)3054 static bool finished_loading(const char *name)
3055 {
3056 	struct module *mod;
3057 	bool ret;
3058 
3059 	/*
3060 	 * The module_mutex should not be a heavily contended lock;
3061 	 * if we get the occasional sleep here, we'll go an extra iteration
3062 	 * in the wait_event_interruptible(), which is harmless.
3063 	 */
3064 	sched_annotate_sleep();
3065 	mutex_lock(&module_mutex);
3066 	mod = find_module_all(name, strlen(name), true);
3067 	ret = !mod || mod->state == MODULE_STATE_LIVE
3068 		|| mod->state == MODULE_STATE_GOING;
3069 	mutex_unlock(&module_mutex);
3070 
3071 	return ret;
3072 }
3073 
3074 /* Must be called with module_mutex held */
module_patient_check_exists(const char * name,enum fail_dup_mod_reason reason)3075 static int module_patient_check_exists(const char *name,
3076 				       enum fail_dup_mod_reason reason)
3077 {
3078 	struct module *old;
3079 	int err = 0;
3080 
3081 	old = find_module_all(name, strlen(name), true);
3082 	if (old == NULL)
3083 		return 0;
3084 
3085 	if (old->state == MODULE_STATE_COMING ||
3086 	    old->state == MODULE_STATE_UNFORMED) {
3087 		/* Wait in case it fails to load. */
3088 		mutex_unlock(&module_mutex);
3089 		err = wait_event_interruptible(module_wq,
3090 				       finished_loading(name));
3091 		mutex_lock(&module_mutex);
3092 		if (err)
3093 			return err;
3094 
3095 		/* The module might have gone in the meantime. */
3096 		old = find_module_all(name, strlen(name), true);
3097 	}
3098 
3099 	if (try_add_failed_module(name, reason))
3100 		pr_warn("Could not add fail-tracking for module: %s\n", name);
3101 
3102 	/*
3103 	 * We are here only when the same module was being loaded. Do
3104 	 * not try to load it again right now. It prevents long delays
3105 	 * caused by serialized module load failures. It might happen
3106 	 * when more devices of the same type trigger load of
3107 	 * a particular module.
3108 	 */
3109 	if (old && old->state == MODULE_STATE_LIVE)
3110 		return -EEXIST;
3111 	return -EBUSY;
3112 }
3113 
3114 /*
3115  * We try to place it in the list now to make sure it's unique before
3116  * we dedicate too many resources.  In particular, temporary percpu
3117  * memory exhaustion.
3118  */
add_unformed_module(struct module * mod)3119 static int add_unformed_module(struct module *mod)
3120 {
3121 	int err;
3122 
3123 	mod->state = MODULE_STATE_UNFORMED;
3124 
3125 	mutex_lock(&module_mutex);
3126 	err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3127 	if (err)
3128 		goto out;
3129 
3130 	mod_update_bounds(mod);
3131 	list_add_rcu(&mod->list, &modules);
3132 	mod_tree_insert(mod);
3133 	err = 0;
3134 
3135 out:
3136 	mutex_unlock(&module_mutex);
3137 	return err;
3138 }
3139 
complete_formation(struct module * mod,struct load_info * info)3140 static int complete_formation(struct module *mod, struct load_info *info)
3141 {
3142 	int err;
3143 
3144 	mutex_lock(&module_mutex);
3145 
3146 	/* Find duplicate symbols (must be called under lock). */
3147 	err = verify_exported_symbols(mod);
3148 	if (err < 0)
3149 		goto out;
3150 
3151 	/* These rely on module_mutex for list integrity. */
3152 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3153 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
3154 
3155 	err = module_enable_rodata_ro(mod);
3156 	if (err)
3157 		goto out_strict_rwx;
3158 	err = module_enable_data_nx(mod);
3159 	if (err)
3160 		goto out_strict_rwx;
3161 	err = module_enable_text_rox(mod);
3162 	if (err)
3163 		goto out_strict_rwx;
3164 
3165 	/*
3166 	 * Mark state as coming so strong_try_module_get() ignores us,
3167 	 * but kallsyms etc. can see us.
3168 	 */
3169 	mod->state = MODULE_STATE_COMING;
3170 	mutex_unlock(&module_mutex);
3171 
3172 	return 0;
3173 
3174 out_strict_rwx:
3175 	module_bug_cleanup(mod);
3176 out:
3177 	mutex_unlock(&module_mutex);
3178 	return err;
3179 }
3180 
prepare_coming_module(struct module * mod)3181 static int prepare_coming_module(struct module *mod)
3182 {
3183 	int err;
3184 
3185 	ftrace_module_enable(mod);
3186 	err = klp_module_coming(mod);
3187 	if (err)
3188 		return err;
3189 
3190 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3191 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3192 	err = notifier_to_errno(err);
3193 	if (err)
3194 		klp_module_going(mod);
3195 
3196 	return err;
3197 }
3198 
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3199 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3200 				   void *arg)
3201 {
3202 	struct module *mod = arg;
3203 	int ret;
3204 
3205 	if (strcmp(param, "async_probe") == 0) {
3206 		if (kstrtobool(val, &mod->async_probe_requested))
3207 			mod->async_probe_requested = true;
3208 		return 0;
3209 	}
3210 
3211 	/* Check for magic 'dyndbg' arg */
3212 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3213 	if (ret != 0)
3214 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3215 	return 0;
3216 }
3217 
3218 /* Module within temporary copy, this doesn't do any allocation  */
early_mod_check(struct load_info * info,int flags)3219 static int early_mod_check(struct load_info *info, int flags)
3220 {
3221 	int err;
3222 
3223 	/*
3224 	 * Now that we know we have the correct module name, check
3225 	 * if it's blacklisted.
3226 	 */
3227 	if (blacklisted(info->name)) {
3228 		pr_err("Module %s is blacklisted\n", info->name);
3229 		return -EPERM;
3230 	}
3231 
3232 	err = rewrite_section_headers(info, flags);
3233 	if (err)
3234 		return err;
3235 
3236 	/* Check module struct version now, before we try to use module. */
3237 	if (!check_modstruct_version(info, info->mod))
3238 		return -ENOEXEC;
3239 
3240 	err = check_modinfo(info->mod, info, flags);
3241 	if (err)
3242 		return err;
3243 
3244 	mutex_lock(&module_mutex);
3245 	err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3246 	mutex_unlock(&module_mutex);
3247 
3248 	return err;
3249 }
3250 
3251 /*
3252  * Allocate and load the module: note that size of section 0 is always
3253  * zero, and we rely on this for optional sections.
3254  */
load_module(struct load_info * info,const char __user * uargs,int flags)3255 static int load_module(struct load_info *info, const char __user *uargs,
3256 		       int flags)
3257 {
3258 	struct module *mod;
3259 	bool module_allocated = false;
3260 	long err = 0;
3261 	char *after_dashes;
3262 
3263 	/*
3264 	 * Do the signature check (if any) first. All that
3265 	 * the signature check needs is info->len, it does
3266 	 * not need any of the section info. That can be
3267 	 * set up later. This will minimize the chances
3268 	 * of a corrupt module causing problems before
3269 	 * we even get to the signature check.
3270 	 *
3271 	 * The check will also adjust info->len by stripping
3272 	 * off the sig length at the end of the module, making
3273 	 * checks against info->len more correct.
3274 	 */
3275 	err = module_sig_check(info, flags);
3276 	if (err)
3277 		goto free_copy;
3278 
3279 	/*
3280 	 * Do basic sanity checks against the ELF header and
3281 	 * sections. Cache useful sections and set the
3282 	 * info->mod to the userspace passed struct module.
3283 	 */
3284 	err = elf_validity_cache_copy(info, flags);
3285 	if (err)
3286 		goto free_copy;
3287 
3288 	err = early_mod_check(info, flags);
3289 	if (err)
3290 		goto free_copy;
3291 
3292 	/* Figure out module layout, and allocate all the memory. */
3293 	mod = layout_and_allocate(info, flags);
3294 	if (IS_ERR(mod)) {
3295 		err = PTR_ERR(mod);
3296 		goto free_copy;
3297 	}
3298 
3299 	module_allocated = true;
3300 
3301 	audit_log_kern_module(mod->name);
3302 
3303 	/* Reserve our place in the list. */
3304 	err = add_unformed_module(mod);
3305 	if (err)
3306 		goto free_module;
3307 
3308 	/*
3309 	 * We are tainting your kernel if your module gets into
3310 	 * the modules linked list somehow.
3311 	 */
3312 	module_augment_kernel_taints(mod, info);
3313 
3314 	/* To avoid stressing percpu allocator, do this once we're unique. */
3315 	err = percpu_modalloc(mod, info);
3316 	if (err)
3317 		goto unlink_mod;
3318 
3319 	/* Now module is in final location, initialize linked lists, etc. */
3320 	err = module_unload_init(mod);
3321 	if (err)
3322 		goto unlink_mod;
3323 
3324 	init_param_lock(mod);
3325 
3326 	/*
3327 	 * Now we've got everything in the final locations, we can
3328 	 * find optional sections.
3329 	 */
3330 	err = find_module_sections(mod, info);
3331 	if (err)
3332 		goto free_unload;
3333 
3334 	err = check_export_symbol_versions(mod);
3335 	if (err)
3336 		goto free_unload;
3337 
3338 	/* Set up MODINFO_ATTR fields */
3339 	setup_modinfo(mod, info);
3340 
3341 	/* Fix up syms, so that st_value is a pointer to location. */
3342 	err = simplify_symbols(mod, info);
3343 	if (err < 0)
3344 		goto free_modinfo;
3345 
3346 	err = apply_relocations(mod, info);
3347 	if (err < 0)
3348 		goto free_modinfo;
3349 
3350 	err = post_relocation(mod, info);
3351 	if (err < 0)
3352 		goto free_modinfo;
3353 
3354 	flush_module_icache(mod);
3355 
3356 	/* Now copy in args */
3357 	mod->args = strndup_user(uargs, ~0UL >> 1);
3358 	if (IS_ERR(mod->args)) {
3359 		err = PTR_ERR(mod->args);
3360 		goto free_arch_cleanup;
3361 	}
3362 
3363 	init_build_id(mod, info);
3364 
3365 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3366 	ftrace_module_init(mod);
3367 
3368 	/* Finally it's fully formed, ready to start executing. */
3369 	err = complete_formation(mod, info);
3370 	if (err)
3371 		goto ddebug_cleanup;
3372 
3373 	err = prepare_coming_module(mod);
3374 	if (err)
3375 		goto bug_cleanup;
3376 
3377 	mod->async_probe_requested = async_probe;
3378 
3379 	/* Module is ready to execute: parsing args may do that. */
3380 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3381 				  -32768, 32767, mod,
3382 				  unknown_module_param_cb);
3383 	if (IS_ERR(after_dashes)) {
3384 		err = PTR_ERR(after_dashes);
3385 		goto coming_cleanup;
3386 	} else if (after_dashes) {
3387 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3388 		       mod->name, after_dashes);
3389 	}
3390 
3391 	/* Link in to sysfs. */
3392 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3393 	if (err < 0)
3394 		goto coming_cleanup;
3395 
3396 	if (is_livepatch_module(mod)) {
3397 		err = copy_module_elf(mod, info);
3398 		if (err < 0)
3399 			goto sysfs_cleanup;
3400 	}
3401 
3402 	/* Get rid of temporary copy. */
3403 	free_copy(info, flags);
3404 
3405 	codetag_load_module(mod);
3406 
3407 	/* Done! */
3408 	trace_module_load(mod);
3409 
3410 	return do_init_module(mod);
3411 
3412  sysfs_cleanup:
3413 	mod_sysfs_teardown(mod);
3414  coming_cleanup:
3415 	mod->state = MODULE_STATE_GOING;
3416 	destroy_params(mod->kp, mod->num_kp);
3417 	blocking_notifier_call_chain(&module_notify_list,
3418 				     MODULE_STATE_GOING, mod);
3419 	klp_module_going(mod);
3420  bug_cleanup:
3421 	mod->state = MODULE_STATE_GOING;
3422 	/* module_bug_cleanup needs module_mutex protection */
3423 	mutex_lock(&module_mutex);
3424 	module_bug_cleanup(mod);
3425 	mutex_unlock(&module_mutex);
3426 
3427  ddebug_cleanup:
3428 	ftrace_release_mod(mod);
3429 	synchronize_rcu();
3430 	kfree(mod->args);
3431  free_arch_cleanup:
3432 	module_arch_cleanup(mod);
3433  free_modinfo:
3434 	free_modinfo(mod);
3435  free_unload:
3436 	module_unload_free(mod);
3437  unlink_mod:
3438 	mutex_lock(&module_mutex);
3439 	/* Unlink carefully: kallsyms could be walking list. */
3440 	list_del_rcu(&mod->list);
3441 	mod_tree_remove(mod);
3442 	wake_up_all(&module_wq);
3443 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3444 	synchronize_rcu();
3445 	mutex_unlock(&module_mutex);
3446  free_module:
3447 	mod_stat_bump_invalid(info, flags);
3448 	/* Free lock-classes; relies on the preceding sync_rcu() */
3449 	for_class_mod_mem_type(type, core_data) {
3450 		lockdep_free_key_range(mod->mem[type].base,
3451 				       mod->mem[type].size);
3452 	}
3453 
3454 	module_memory_restore_rox(mod);
3455 	module_deallocate(mod, info);
3456  free_copy:
3457 	/*
3458 	 * The info->len is always set. We distinguish between
3459 	 * failures once the proper module was allocated and
3460 	 * before that.
3461 	 */
3462 	if (!module_allocated)
3463 		mod_stat_bump_becoming(info, flags);
3464 	free_copy(info, flags);
3465 	return err;
3466 }
3467 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3468 SYSCALL_DEFINE3(init_module, void __user *, umod,
3469 		unsigned long, len, const char __user *, uargs)
3470 {
3471 	int err;
3472 	struct load_info info = { };
3473 
3474 	err = may_init_module();
3475 	if (err)
3476 		return err;
3477 
3478 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3479 	       umod, len, uargs);
3480 
3481 	err = copy_module_from_user(umod, len, &info);
3482 	if (err) {
3483 		mod_stat_inc(&failed_kreads);
3484 		mod_stat_add_long(len, &invalid_kread_bytes);
3485 		return err;
3486 	}
3487 
3488 	return load_module(&info, uargs, 0);
3489 }
3490 
3491 struct idempotent {
3492 	const void *cookie;
3493 	struct hlist_node entry;
3494 	struct completion complete;
3495 	int ret;
3496 };
3497 
3498 #define IDEM_HASH_BITS 8
3499 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3500 static DEFINE_SPINLOCK(idem_lock);
3501 
idempotent(struct idempotent * u,const void * cookie)3502 static bool idempotent(struct idempotent *u, const void *cookie)
3503 {
3504 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3505 	struct hlist_head *head = idem_hash + hash;
3506 	struct idempotent *existing;
3507 	bool first;
3508 
3509 	u->ret = -EINTR;
3510 	u->cookie = cookie;
3511 	init_completion(&u->complete);
3512 
3513 	spin_lock(&idem_lock);
3514 	first = true;
3515 	hlist_for_each_entry(existing, head, entry) {
3516 		if (existing->cookie != cookie)
3517 			continue;
3518 		first = false;
3519 		break;
3520 	}
3521 	hlist_add_head(&u->entry, idem_hash + hash);
3522 	spin_unlock(&idem_lock);
3523 
3524 	return !first;
3525 }
3526 
3527 /*
3528  * We were the first one with 'cookie' on the list, and we ended
3529  * up completing the operation. We now need to walk the list,
3530  * remove everybody - which includes ourselves - fill in the return
3531  * value, and then complete the operation.
3532  */
idempotent_complete(struct idempotent * u,int ret)3533 static int idempotent_complete(struct idempotent *u, int ret)
3534 {
3535 	const void *cookie = u->cookie;
3536 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3537 	struct hlist_head *head = idem_hash + hash;
3538 	struct hlist_node *next;
3539 	struct idempotent *pos;
3540 
3541 	spin_lock(&idem_lock);
3542 	hlist_for_each_entry_safe(pos, next, head, entry) {
3543 		if (pos->cookie != cookie)
3544 			continue;
3545 		hlist_del_init(&pos->entry);
3546 		pos->ret = ret;
3547 		complete(&pos->complete);
3548 	}
3549 	spin_unlock(&idem_lock);
3550 	return ret;
3551 }
3552 
3553 /*
3554  * Wait for the idempotent worker.
3555  *
3556  * If we get interrupted, we need to remove ourselves from the
3557  * the idempotent list, and the completion may still come in.
3558  *
3559  * The 'idem_lock' protects against the race, and 'idem.ret' was
3560  * initialized to -EINTR and is thus always the right return
3561  * value even if the idempotent work then completes between
3562  * the wait_for_completion and the cleanup.
3563  */
idempotent_wait_for_completion(struct idempotent * u)3564 static int idempotent_wait_for_completion(struct idempotent *u)
3565 {
3566 	if (wait_for_completion_interruptible(&u->complete)) {
3567 		spin_lock(&idem_lock);
3568 		if (!hlist_unhashed(&u->entry))
3569 			hlist_del(&u->entry);
3570 		spin_unlock(&idem_lock);
3571 	}
3572 	return u->ret;
3573 }
3574 
init_module_from_file(struct file * f,const char __user * uargs,int flags)3575 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3576 {
3577 	struct load_info info = { };
3578 	void *buf = NULL;
3579 	int len;
3580 
3581 	len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3582 	if (len < 0) {
3583 		mod_stat_inc(&failed_kreads);
3584 		return len;
3585 	}
3586 
3587 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
3588 		int err = module_decompress(&info, buf, len);
3589 		vfree(buf); /* compressed data is no longer needed */
3590 		if (err) {
3591 			mod_stat_inc(&failed_decompress);
3592 			mod_stat_add_long(len, &invalid_decompress_bytes);
3593 			return err;
3594 		}
3595 	} else {
3596 		info.hdr = buf;
3597 		info.len = len;
3598 	}
3599 
3600 	return load_module(&info, uargs, flags);
3601 }
3602 
idempotent_init_module(struct file * f,const char __user * uargs,int flags)3603 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3604 {
3605 	struct idempotent idem;
3606 
3607 	if (!(f->f_mode & FMODE_READ))
3608 		return -EBADF;
3609 
3610 	/* Are we the winners of the race and get to do this? */
3611 	if (!idempotent(&idem, file_inode(f))) {
3612 		int ret = init_module_from_file(f, uargs, flags);
3613 		return idempotent_complete(&idem, ret);
3614 	}
3615 
3616 	/*
3617 	 * Somebody else won the race and is loading the module.
3618 	 */
3619 	return idempotent_wait_for_completion(&idem);
3620 }
3621 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3622 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3623 {
3624 	int err = may_init_module();
3625 	if (err)
3626 		return err;
3627 
3628 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3629 
3630 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3631 		      |MODULE_INIT_IGNORE_VERMAGIC
3632 		      |MODULE_INIT_COMPRESSED_FILE))
3633 		return -EINVAL;
3634 
3635 	CLASS(fd, f)(fd);
3636 	if (fd_empty(f))
3637 		return -EBADF;
3638 	return idempotent_init_module(fd_file(f), uargs, flags);
3639 }
3640 
3641 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3642 char *module_flags(struct module *mod, char *buf, bool show_state)
3643 {
3644 	int bx = 0;
3645 
3646 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3647 	if (!mod->taints && !show_state)
3648 		goto out;
3649 	if (mod->taints ||
3650 	    mod->state == MODULE_STATE_GOING ||
3651 	    mod->state == MODULE_STATE_COMING) {
3652 		buf[bx++] = '(';
3653 		bx += module_flags_taint(mod->taints, buf + bx);
3654 		/* Show a - for module-is-being-unloaded */
3655 		if (mod->state == MODULE_STATE_GOING && show_state)
3656 			buf[bx++] = '-';
3657 		/* Show a + for module-is-being-loaded */
3658 		if (mod->state == MODULE_STATE_COMING && show_state)
3659 			buf[bx++] = '+';
3660 		buf[bx++] = ')';
3661 	}
3662 out:
3663 	buf[bx] = '\0';
3664 
3665 	return buf;
3666 }
3667 
3668 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3669 const struct exception_table_entry *search_module_extables(unsigned long addr)
3670 {
3671 	struct module *mod;
3672 
3673 	guard(rcu)();
3674 	mod = __module_address(addr);
3675 	if (!mod)
3676 		return NULL;
3677 
3678 	if (!mod->num_exentries)
3679 		return NULL;
3680 	/*
3681 	 * The address passed here belongs to a module that is currently
3682 	 * invoked (we are running inside it). Therefore its module::refcnt
3683 	 * needs already be >0 to ensure that it is not removed at this stage.
3684 	 * All other user need to invoke this function within a RCU read
3685 	 * section.
3686 	 */
3687 	return search_extable(mod->extable, mod->num_exentries, addr);
3688 }
3689 
3690 /**
3691  * is_module_address() - is this address inside a module?
3692  * @addr: the address to check.
3693  *
3694  * See is_module_text_address() if you simply want to see if the address
3695  * is code (not data).
3696  */
is_module_address(unsigned long addr)3697 bool is_module_address(unsigned long addr)
3698 {
3699 	guard(rcu)();
3700 	return __module_address(addr) != NULL;
3701 }
3702 
3703 /**
3704  * __module_address() - get the module which contains an address.
3705  * @addr: the address.
3706  *
3707  * Must be called within RCU read section or module mutex held so that
3708  * module doesn't get freed during this.
3709  */
__module_address(unsigned long addr)3710 struct module *__module_address(unsigned long addr)
3711 {
3712 	struct module *mod;
3713 
3714 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3715 		goto lookup;
3716 
3717 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3718 	if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3719 		goto lookup;
3720 #endif
3721 
3722 	return NULL;
3723 
3724 lookup:
3725 	mod = mod_find(addr, &mod_tree);
3726 	if (mod) {
3727 		BUG_ON(!within_module(addr, mod));
3728 		if (mod->state == MODULE_STATE_UNFORMED)
3729 			mod = NULL;
3730 	}
3731 	return mod;
3732 }
3733 
3734 /**
3735  * is_module_text_address() - is this address inside module code?
3736  * @addr: the address to check.
3737  *
3738  * See is_module_address() if you simply want to see if the address is
3739  * anywhere in a module.  See kernel_text_address() for testing if an
3740  * address corresponds to kernel or module code.
3741  */
is_module_text_address(unsigned long addr)3742 bool is_module_text_address(unsigned long addr)
3743 {
3744 	guard(rcu)();
3745 	return __module_text_address(addr) != NULL;
3746 }
3747 
module_for_each_mod(int (* func)(struct module * mod,void * data),void * data)3748 void module_for_each_mod(int(*func)(struct module *mod, void *data), void *data)
3749 {
3750 	struct module *mod;
3751 
3752 	guard(rcu)();
3753 	list_for_each_entry_rcu(mod, &modules, list) {
3754 		if (mod->state == MODULE_STATE_UNFORMED)
3755 			continue;
3756 		if (func(mod, data))
3757 			break;
3758 	}
3759 }
3760 
3761 /**
3762  * __module_text_address() - get the module whose code contains an address.
3763  * @addr: the address.
3764  *
3765  * Must be called within RCU read section or module mutex held so that
3766  * module doesn't get freed during this.
3767  */
__module_text_address(unsigned long addr)3768 struct module *__module_text_address(unsigned long addr)
3769 {
3770 	struct module *mod = __module_address(addr);
3771 	if (mod) {
3772 		/* Make sure it's within the text section. */
3773 		if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3774 		    !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3775 			mod = NULL;
3776 	}
3777 	return mod;
3778 }
3779 
3780 /* Don't grab lock, we're oopsing. */
print_modules(void)3781 void print_modules(void)
3782 {
3783 	struct module *mod;
3784 	char buf[MODULE_FLAGS_BUF_SIZE];
3785 
3786 	printk(KERN_DEFAULT "Modules linked in:");
3787 	/* Most callers should already have preempt disabled, but make sure */
3788 	guard(rcu)();
3789 	list_for_each_entry_rcu(mod, &modules, list) {
3790 		if (mod->state == MODULE_STATE_UNFORMED)
3791 			continue;
3792 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3793 	}
3794 
3795 	print_unloaded_tainted_modules();
3796 	if (last_unloaded_module.name[0])
3797 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3798 			last_unloaded_module.taints);
3799 	pr_cont("\n");
3800 }
3801 
3802 #ifdef CONFIG_MODULE_DEBUGFS
3803 struct dentry *mod_debugfs_root;
3804 
module_debugfs_init(void)3805 static int module_debugfs_init(void)
3806 {
3807 	mod_debugfs_root = debugfs_create_dir("modules", NULL);
3808 	return 0;
3809 }
3810 module_init(module_debugfs_init);
3811 #endif
3812