1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kexec: kexec_file_load system call
4 *
5 * Copyright (C) 2014 Red Hat Inc.
6 * Authors:
7 * Vivek Goyal <vgoyal@redhat.com>
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/capability.h>
13 #include <linux/mm.h>
14 #include <linux/file.h>
15 #include <linux/slab.h>
16 #include <linux/kexec.h>
17 #include <linux/memblock.h>
18 #include <linux/mutex.h>
19 #include <linux/list.h>
20 #include <linux/fs.h>
21 #include <linux/ima.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha2.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/vmalloc.h>
30 #include "kexec_internal.h"
31
32 #ifdef CONFIG_KEXEC_SIG
33 static bool sig_enforce = IS_ENABLED(CONFIG_KEXEC_SIG_FORCE);
34
set_kexec_sig_enforced(void)35 void set_kexec_sig_enforced(void)
36 {
37 sig_enforce = true;
38 }
39 #endif
40
41 static int kexec_calculate_store_digests(struct kimage *image);
42
43 /* Maximum size in bytes for kernel/initrd files. */
44 #define KEXEC_FILE_SIZE_MAX min_t(s64, 4LL << 30, SSIZE_MAX)
45
46 /*
47 * Currently this is the only default function that is exported as some
48 * architectures need it to do additional handlings.
49 * In the future, other default functions may be exported too if required.
50 */
kexec_image_probe_default(struct kimage * image,void * buf,unsigned long buf_len)51 int kexec_image_probe_default(struct kimage *image, void *buf,
52 unsigned long buf_len)
53 {
54 const struct kexec_file_ops * const *fops;
55 int ret = -ENOEXEC;
56
57 for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
58 ret = (*fops)->probe(buf, buf_len);
59 if (!ret) {
60 image->fops = *fops;
61 return ret;
62 }
63 }
64
65 return ret;
66 }
67
kexec_image_load_default(struct kimage * image)68 static void *kexec_image_load_default(struct kimage *image)
69 {
70 if (!image->fops || !image->fops->load)
71 return ERR_PTR(-ENOEXEC);
72
73 return image->fops->load(image, image->kernel_buf,
74 image->kernel_buf_len, image->initrd_buf,
75 image->initrd_buf_len, image->cmdline_buf,
76 image->cmdline_buf_len);
77 }
78
kexec_image_post_load_cleanup_default(struct kimage * image)79 int kexec_image_post_load_cleanup_default(struct kimage *image)
80 {
81 if (!image->fops || !image->fops->cleanup)
82 return 0;
83
84 return image->fops->cleanup(image->image_loader_data);
85 }
86
87 /*
88 * Free up memory used by kernel, initrd, and command line. This is temporary
89 * memory allocation which is not needed any more after these buffers have
90 * been loaded into separate segments and have been copied elsewhere.
91 */
kimage_file_post_load_cleanup(struct kimage * image)92 void kimage_file_post_load_cleanup(struct kimage *image)
93 {
94 struct purgatory_info *pi = &image->purgatory_info;
95
96 vfree(image->kernel_buf);
97 image->kernel_buf = NULL;
98
99 vfree(image->initrd_buf);
100 image->initrd_buf = NULL;
101
102 kfree(image->cmdline_buf);
103 image->cmdline_buf = NULL;
104
105 vfree(pi->purgatory_buf);
106 pi->purgatory_buf = NULL;
107
108 vfree(pi->sechdrs);
109 pi->sechdrs = NULL;
110
111 #ifdef CONFIG_IMA_KEXEC
112 vfree(image->ima_buffer);
113 image->ima_buffer = NULL;
114 #endif /* CONFIG_IMA_KEXEC */
115
116 /* See if architecture has anything to cleanup post load */
117 arch_kimage_file_post_load_cleanup(image);
118
119 /*
120 * Above call should have called into bootloader to free up
121 * any data stored in kimage->image_loader_data. It should
122 * be ok now to free it up.
123 */
124 kfree(image->image_loader_data);
125 image->image_loader_data = NULL;
126
127 kexec_file_dbg_print = false;
128 }
129
130 #ifdef CONFIG_KEXEC_SIG
131 #ifdef CONFIG_SIGNED_PE_FILE_VERIFICATION
kexec_kernel_verify_pe_sig(const char * kernel,unsigned long kernel_len)132 int kexec_kernel_verify_pe_sig(const char *kernel, unsigned long kernel_len)
133 {
134 int ret;
135
136 ret = verify_pefile_signature(kernel, kernel_len,
137 VERIFY_USE_SECONDARY_KEYRING,
138 VERIFYING_KEXEC_PE_SIGNATURE);
139 if (ret == -ENOKEY && IS_ENABLED(CONFIG_INTEGRITY_PLATFORM_KEYRING)) {
140 ret = verify_pefile_signature(kernel, kernel_len,
141 VERIFY_USE_PLATFORM_KEYRING,
142 VERIFYING_KEXEC_PE_SIGNATURE);
143 }
144 return ret;
145 }
146 #endif
147
kexec_image_verify_sig(struct kimage * image,void * buf,unsigned long buf_len)148 static int kexec_image_verify_sig(struct kimage *image, void *buf,
149 unsigned long buf_len)
150 {
151 if (!image->fops || !image->fops->verify_sig) {
152 pr_debug("kernel loader does not support signature verification.\n");
153 return -EKEYREJECTED;
154 }
155
156 return image->fops->verify_sig(buf, buf_len);
157 }
158
159 static int
kimage_validate_signature(struct kimage * image)160 kimage_validate_signature(struct kimage *image)
161 {
162 int ret;
163
164 ret = kexec_image_verify_sig(image, image->kernel_buf,
165 image->kernel_buf_len);
166 if (ret) {
167
168 if (sig_enforce) {
169 pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
170 return ret;
171 }
172
173 /*
174 * If IMA is guaranteed to appraise a signature on the kexec
175 * image, permit it even if the kernel is otherwise locked
176 * down.
177 */
178 if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
179 security_locked_down(LOCKDOWN_KEXEC))
180 return -EPERM;
181
182 pr_debug("kernel signature verification failed (%d).\n", ret);
183 }
184
185 return 0;
186 }
187 #endif
188
189 /*
190 * In file mode list of segments is prepared by kernel. Copy relevant
191 * data from user space, do error checking, prepare segment list
192 */
193 static int
kimage_file_prepare_segments(struct kimage * image,int kernel_fd,int initrd_fd,const char __user * cmdline_ptr,unsigned long cmdline_len,unsigned flags)194 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
195 const char __user *cmdline_ptr,
196 unsigned long cmdline_len, unsigned flags)
197 {
198 ssize_t ret;
199 void *ldata;
200
201 ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
202 KEXEC_FILE_SIZE_MAX, NULL,
203 READING_KEXEC_IMAGE);
204 if (ret < 0)
205 return ret;
206 image->kernel_buf_len = ret;
207 kexec_dprintk("kernel: %p kernel_size: %#lx\n",
208 image->kernel_buf, image->kernel_buf_len);
209
210 /* Call arch image probe handlers */
211 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
212 image->kernel_buf_len);
213 if (ret)
214 goto out;
215
216 #ifdef CONFIG_KEXEC_SIG
217 ret = kimage_validate_signature(image);
218
219 if (ret)
220 goto out;
221 #endif
222 /* It is possible that there no initramfs is being loaded */
223 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
224 ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
225 KEXEC_FILE_SIZE_MAX, NULL,
226 READING_KEXEC_INITRAMFS);
227 if (ret < 0)
228 goto out;
229 image->initrd_buf_len = ret;
230 ret = 0;
231 }
232
233 if (cmdline_len) {
234 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
235 if (IS_ERR(image->cmdline_buf)) {
236 ret = PTR_ERR(image->cmdline_buf);
237 image->cmdline_buf = NULL;
238 goto out;
239 }
240
241 image->cmdline_buf_len = cmdline_len;
242
243 /* command line should be a string with last byte null */
244 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
245 ret = -EINVAL;
246 goto out;
247 }
248
249 ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
250 image->cmdline_buf_len - 1);
251 }
252
253 /* IMA needs to pass the measurement list to the next kernel. */
254 ima_add_kexec_buffer(image);
255
256 /* Call image load handler */
257 ldata = kexec_image_load_default(image);
258
259 if (IS_ERR(ldata)) {
260 ret = PTR_ERR(ldata);
261 goto out;
262 }
263
264 image->image_loader_data = ldata;
265 out:
266 /* In case of error, free up all allocated memory in this function */
267 if (ret)
268 kimage_file_post_load_cleanup(image);
269 return ret;
270 }
271
272 static int
kimage_file_alloc_init(struct kimage ** rimage,int kernel_fd,int initrd_fd,const char __user * cmdline_ptr,unsigned long cmdline_len,unsigned long flags)273 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
274 int initrd_fd, const char __user *cmdline_ptr,
275 unsigned long cmdline_len, unsigned long flags)
276 {
277 int ret;
278 struct kimage *image;
279 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
280
281 image = do_kimage_alloc_init();
282 if (!image)
283 return -ENOMEM;
284
285 kexec_file_dbg_print = !!(flags & KEXEC_FILE_DEBUG);
286 image->file_mode = 1;
287
288 #ifdef CONFIG_CRASH_DUMP
289 if (kexec_on_panic) {
290 /* Enable special crash kernel control page alloc policy. */
291 image->control_page = crashk_res.start;
292 image->type = KEXEC_TYPE_CRASH;
293 }
294 #endif
295
296 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
297 cmdline_ptr, cmdline_len, flags);
298 if (ret)
299 goto out_free_image;
300
301 ret = sanity_check_segment_list(image);
302 if (ret)
303 goto out_free_post_load_bufs;
304
305 ret = -ENOMEM;
306 image->control_code_page = kimage_alloc_control_pages(image,
307 get_order(KEXEC_CONTROL_PAGE_SIZE));
308 if (!image->control_code_page) {
309 pr_err("Could not allocate control_code_buffer\n");
310 goto out_free_post_load_bufs;
311 }
312
313 if (!kexec_on_panic) {
314 image->swap_page = kimage_alloc_control_pages(image, 0);
315 if (!image->swap_page) {
316 pr_err("Could not allocate swap buffer\n");
317 goto out_free_control_pages;
318 }
319 }
320
321 *rimage = image;
322 return 0;
323 out_free_control_pages:
324 kimage_free_page_list(&image->control_pages);
325 out_free_post_load_bufs:
326 kimage_file_post_load_cleanup(image);
327 out_free_image:
328 kfree(image);
329 return ret;
330 }
331
SYSCALL_DEFINE5(kexec_file_load,int,kernel_fd,int,initrd_fd,unsigned long,cmdline_len,const char __user *,cmdline_ptr,unsigned long,flags)332 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
333 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
334 unsigned long, flags)
335 {
336 int image_type = (flags & KEXEC_FILE_ON_CRASH) ?
337 KEXEC_TYPE_CRASH : KEXEC_TYPE_DEFAULT;
338 struct kimage **dest_image, *image;
339 int ret = 0, i;
340
341 /* We only trust the superuser with rebooting the system. */
342 if (!kexec_load_permitted(image_type))
343 return -EPERM;
344
345 /* Make sure we have a legal set of flags */
346 if (flags != (flags & KEXEC_FILE_FLAGS))
347 return -EINVAL;
348
349 image = NULL;
350
351 if (!kexec_trylock())
352 return -EBUSY;
353
354 #ifdef CONFIG_CRASH_DUMP
355 if (image_type == KEXEC_TYPE_CRASH) {
356 dest_image = &kexec_crash_image;
357 if (kexec_crash_image)
358 arch_kexec_unprotect_crashkres();
359 } else
360 #endif
361 dest_image = &kexec_image;
362
363 if (flags & KEXEC_FILE_UNLOAD)
364 goto exchange;
365
366 /*
367 * In case of crash, new kernel gets loaded in reserved region. It is
368 * same memory where old crash kernel might be loaded. Free any
369 * current crash dump kernel before we corrupt it.
370 */
371 if (flags & KEXEC_FILE_ON_CRASH)
372 kimage_free(xchg(&kexec_crash_image, NULL));
373
374 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
375 cmdline_len, flags);
376 if (ret)
377 goto out;
378
379 #ifdef CONFIG_CRASH_HOTPLUG
380 if ((flags & KEXEC_FILE_ON_CRASH) && arch_crash_hotplug_support(image, flags))
381 image->hotplug_support = 1;
382 #endif
383
384 ret = machine_kexec_prepare(image);
385 if (ret)
386 goto out;
387
388 /*
389 * Some architecture(like S390) may touch the crash memory before
390 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
391 */
392 ret = kimage_crash_copy_vmcoreinfo(image);
393 if (ret)
394 goto out;
395
396 ret = kexec_calculate_store_digests(image);
397 if (ret)
398 goto out;
399
400 kexec_dprintk("nr_segments = %lu\n", image->nr_segments);
401 for (i = 0; i < image->nr_segments; i++) {
402 struct kexec_segment *ksegment;
403
404 ksegment = &image->segment[i];
405 kexec_dprintk("segment[%d]: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
406 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
407 ksegment->memsz);
408
409 ret = kimage_load_segment(image, &image->segment[i]);
410 if (ret)
411 goto out;
412 }
413
414 kimage_terminate(image);
415
416 ret = machine_kexec_post_load(image);
417 if (ret)
418 goto out;
419
420 kexec_dprintk("kexec_file_load: type:%u, start:0x%lx head:0x%lx flags:0x%lx\n",
421 image->type, image->start, image->head, flags);
422 /*
423 * Free up any temporary buffers allocated which are not needed
424 * after image has been loaded
425 */
426 kimage_file_post_load_cleanup(image);
427 exchange:
428 image = xchg(dest_image, image);
429 out:
430 #ifdef CONFIG_CRASH_DUMP
431 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
432 arch_kexec_protect_crashkres();
433 #endif
434
435 kexec_unlock();
436 kimage_free(image);
437 return ret;
438 }
439
locate_mem_hole_top_down(unsigned long start,unsigned long end,struct kexec_buf * kbuf)440 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
441 struct kexec_buf *kbuf)
442 {
443 struct kimage *image = kbuf->image;
444 unsigned long temp_start, temp_end;
445
446 temp_end = min(end, kbuf->buf_max);
447 temp_start = temp_end - kbuf->memsz + 1;
448
449 do {
450 /* align down start */
451 temp_start = ALIGN_DOWN(temp_start, kbuf->buf_align);
452
453 if (temp_start < start || temp_start < kbuf->buf_min)
454 return 0;
455
456 temp_end = temp_start + kbuf->memsz - 1;
457
458 /*
459 * Make sure this does not conflict with any of existing
460 * segments
461 */
462 if (kimage_is_destination_range(image, temp_start, temp_end)) {
463 temp_start = temp_start - PAGE_SIZE;
464 continue;
465 }
466
467 /* Make sure this does not conflict with exclude range */
468 if (arch_check_excluded_range(image, temp_start, temp_end)) {
469 temp_start = temp_start - PAGE_SIZE;
470 continue;
471 }
472
473 /* We found a suitable memory range */
474 break;
475 } while (1);
476
477 /* If we are here, we found a suitable memory range */
478 kbuf->mem = temp_start;
479
480 /* Success, stop navigating through remaining System RAM ranges */
481 return 1;
482 }
483
locate_mem_hole_bottom_up(unsigned long start,unsigned long end,struct kexec_buf * kbuf)484 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
485 struct kexec_buf *kbuf)
486 {
487 struct kimage *image = kbuf->image;
488 unsigned long temp_start, temp_end;
489
490 temp_start = max(start, kbuf->buf_min);
491
492 do {
493 temp_start = ALIGN(temp_start, kbuf->buf_align);
494 temp_end = temp_start + kbuf->memsz - 1;
495
496 if (temp_end > end || temp_end > kbuf->buf_max)
497 return 0;
498 /*
499 * Make sure this does not conflict with any of existing
500 * segments
501 */
502 if (kimage_is_destination_range(image, temp_start, temp_end)) {
503 temp_start = temp_start + PAGE_SIZE;
504 continue;
505 }
506
507 /* Make sure this does not conflict with exclude range */
508 if (arch_check_excluded_range(image, temp_start, temp_end)) {
509 temp_start = temp_start + PAGE_SIZE;
510 continue;
511 }
512
513 /* We found a suitable memory range */
514 break;
515 } while (1);
516
517 /* If we are here, we found a suitable memory range */
518 kbuf->mem = temp_start;
519
520 /* Success, stop navigating through remaining System RAM ranges */
521 return 1;
522 }
523
locate_mem_hole_callback(struct resource * res,void * arg)524 static int locate_mem_hole_callback(struct resource *res, void *arg)
525 {
526 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
527 u64 start = res->start, end = res->end;
528 unsigned long sz = end - start + 1;
529
530 /* Returning 0 will take to next memory range */
531
532 /* Don't use memory that will be detected and handled by a driver. */
533 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
534 return 0;
535
536 if (sz < kbuf->memsz)
537 return 0;
538
539 if (end < kbuf->buf_min || start > kbuf->buf_max)
540 return 0;
541
542 /*
543 * Allocate memory top down with-in ram range. Otherwise bottom up
544 * allocation.
545 */
546 if (kbuf->top_down)
547 return locate_mem_hole_top_down(start, end, kbuf);
548 return locate_mem_hole_bottom_up(start, end, kbuf);
549 }
550
551 #ifdef CONFIG_ARCH_KEEP_MEMBLOCK
kexec_walk_memblock(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))552 static int kexec_walk_memblock(struct kexec_buf *kbuf,
553 int (*func)(struct resource *, void *))
554 {
555 int ret = 0;
556 u64 i;
557 phys_addr_t mstart, mend;
558 struct resource res = { };
559
560 #ifdef CONFIG_CRASH_DUMP
561 if (kbuf->image->type == KEXEC_TYPE_CRASH)
562 return func(&crashk_res, kbuf);
563 #endif
564
565 /*
566 * Using MEMBLOCK_NONE will properly skip MEMBLOCK_DRIVER_MANAGED. See
567 * IORESOURCE_SYSRAM_DRIVER_MANAGED handling in
568 * locate_mem_hole_callback().
569 */
570 if (kbuf->top_down) {
571 for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
572 &mstart, &mend, NULL) {
573 /*
574 * In memblock, end points to the first byte after the
575 * range while in kexec, end points to the last byte
576 * in the range.
577 */
578 res.start = mstart;
579 res.end = mend - 1;
580 ret = func(&res, kbuf);
581 if (ret)
582 break;
583 }
584 } else {
585 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
586 &mstart, &mend, NULL) {
587 /*
588 * In memblock, end points to the first byte after the
589 * range while in kexec, end points to the last byte
590 * in the range.
591 */
592 res.start = mstart;
593 res.end = mend - 1;
594 ret = func(&res, kbuf);
595 if (ret)
596 break;
597 }
598 }
599
600 return ret;
601 }
602 #else
kexec_walk_memblock(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))603 static int kexec_walk_memblock(struct kexec_buf *kbuf,
604 int (*func)(struct resource *, void *))
605 {
606 return 0;
607 }
608 #endif
609
610 /**
611 * kexec_walk_resources - call func(data) on free memory regions
612 * @kbuf: Context info for the search. Also passed to @func.
613 * @func: Function to call for each memory region.
614 *
615 * Return: The memory walk will stop when func returns a non-zero value
616 * and that value will be returned. If all free regions are visited without
617 * func returning non-zero, then zero will be returned.
618 */
kexec_walk_resources(struct kexec_buf * kbuf,int (* func)(struct resource *,void *))619 static int kexec_walk_resources(struct kexec_buf *kbuf,
620 int (*func)(struct resource *, void *))
621 {
622 #ifdef CONFIG_CRASH_DUMP
623 if (kbuf->image->type == KEXEC_TYPE_CRASH)
624 return walk_iomem_res_desc(crashk_res.desc,
625 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
626 crashk_res.start, crashk_res.end,
627 kbuf, func);
628 #endif
629 if (kbuf->top_down)
630 return walk_system_ram_res_rev(0, ULONG_MAX, kbuf, func);
631 else
632 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
633 }
634
635 /**
636 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
637 * @kbuf: Parameters for the memory search.
638 *
639 * On success, kbuf->mem will have the start address of the memory region found.
640 *
641 * Return: 0 on success, negative errno on error.
642 */
kexec_locate_mem_hole(struct kexec_buf * kbuf)643 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
644 {
645 int ret;
646
647 /* Arch knows where to place */
648 if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
649 return 0;
650
651 if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
652 ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
653 else
654 ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
655
656 return ret == 1 ? 0 : -EADDRNOTAVAIL;
657 }
658
659 /**
660 * kexec_add_buffer - place a buffer in a kexec segment
661 * @kbuf: Buffer contents and memory parameters.
662 *
663 * This function assumes that kexec_lock is held.
664 * On successful return, @kbuf->mem will have the physical address of
665 * the buffer in memory.
666 *
667 * Return: 0 on success, negative errno on error.
668 */
kexec_add_buffer(struct kexec_buf * kbuf)669 int kexec_add_buffer(struct kexec_buf *kbuf)
670 {
671 struct kexec_segment *ksegment;
672 int ret;
673
674 /* Currently adding segment this way is allowed only in file mode */
675 if (!kbuf->image->file_mode)
676 return -EINVAL;
677
678 if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
679 return -EINVAL;
680
681 /*
682 * Make sure we are not trying to add buffer after allocating
683 * control pages. All segments need to be placed first before
684 * any control pages are allocated. As control page allocation
685 * logic goes through list of segments to make sure there are
686 * no destination overlaps.
687 */
688 if (!list_empty(&kbuf->image->control_pages)) {
689 WARN_ON(1);
690 return -EINVAL;
691 }
692
693 /* Ensure minimum alignment needed for segments. */
694 kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
695 kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
696
697 /* Walk the RAM ranges and allocate a suitable range for the buffer */
698 ret = arch_kexec_locate_mem_hole(kbuf);
699 if (ret)
700 return ret;
701
702 /* Found a suitable memory range */
703 ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
704 ksegment->kbuf = kbuf->buffer;
705 ksegment->bufsz = kbuf->bufsz;
706 ksegment->mem = kbuf->mem;
707 ksegment->memsz = kbuf->memsz;
708 kbuf->image->nr_segments++;
709 return 0;
710 }
711
712 /* Calculate and store the digest of segments */
kexec_calculate_store_digests(struct kimage * image)713 static int kexec_calculate_store_digests(struct kimage *image)
714 {
715 struct crypto_shash *tfm;
716 struct shash_desc *desc;
717 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
718 size_t desc_size, nullsz;
719 char *digest;
720 void *zero_buf;
721 struct kexec_sha_region *sha_regions;
722 struct purgatory_info *pi = &image->purgatory_info;
723
724 if (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY))
725 return 0;
726
727 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
728 zero_buf_sz = PAGE_SIZE;
729
730 tfm = crypto_alloc_shash("sha256", 0, 0);
731 if (IS_ERR(tfm)) {
732 ret = PTR_ERR(tfm);
733 goto out;
734 }
735
736 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
737 desc = kzalloc(desc_size, GFP_KERNEL);
738 if (!desc) {
739 ret = -ENOMEM;
740 goto out_free_tfm;
741 }
742
743 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
744 sha_regions = vzalloc(sha_region_sz);
745 if (!sha_regions) {
746 ret = -ENOMEM;
747 goto out_free_desc;
748 }
749
750 desc->tfm = tfm;
751
752 ret = crypto_shash_init(desc);
753 if (ret < 0)
754 goto out_free_sha_regions;
755
756 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
757 if (!digest) {
758 ret = -ENOMEM;
759 goto out_free_sha_regions;
760 }
761
762 for (j = i = 0; i < image->nr_segments; i++) {
763 struct kexec_segment *ksegment;
764
765 #ifdef CONFIG_CRASH_HOTPLUG
766 /* Exclude elfcorehdr segment to allow future changes via hotplug */
767 if (i == image->elfcorehdr_index)
768 continue;
769 #endif
770
771 ksegment = &image->segment[i];
772 /*
773 * Skip purgatory as it will be modified once we put digest
774 * info in purgatory.
775 */
776 if (ksegment->kbuf == pi->purgatory_buf)
777 continue;
778
779 ret = crypto_shash_update(desc, ksegment->kbuf,
780 ksegment->bufsz);
781 if (ret)
782 break;
783
784 /*
785 * Assume rest of the buffer is filled with zero and
786 * update digest accordingly.
787 */
788 nullsz = ksegment->memsz - ksegment->bufsz;
789 while (nullsz) {
790 unsigned long bytes = nullsz;
791
792 if (bytes > zero_buf_sz)
793 bytes = zero_buf_sz;
794 ret = crypto_shash_update(desc, zero_buf, bytes);
795 if (ret)
796 break;
797 nullsz -= bytes;
798 }
799
800 if (ret)
801 break;
802
803 sha_regions[j].start = ksegment->mem;
804 sha_regions[j].len = ksegment->memsz;
805 j++;
806 }
807
808 if (!ret) {
809 ret = crypto_shash_final(desc, digest);
810 if (ret)
811 goto out_free_digest;
812 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
813 sha_regions, sha_region_sz, 0);
814 if (ret)
815 goto out_free_digest;
816
817 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
818 digest, SHA256_DIGEST_SIZE, 0);
819 if (ret)
820 goto out_free_digest;
821 }
822
823 out_free_digest:
824 kfree(digest);
825 out_free_sha_regions:
826 vfree(sha_regions);
827 out_free_desc:
828 kfree(desc);
829 out_free_tfm:
830 kfree(tfm);
831 out:
832 return ret;
833 }
834
835 #ifdef CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY
836 /*
837 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
838 * @pi: Purgatory to be loaded.
839 * @kbuf: Buffer to setup.
840 *
841 * Allocates the memory needed for the buffer. Caller is responsible to free
842 * the memory after use.
843 *
844 * Return: 0 on success, negative errno on error.
845 */
kexec_purgatory_setup_kbuf(struct purgatory_info * pi,struct kexec_buf * kbuf)846 static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
847 struct kexec_buf *kbuf)
848 {
849 const Elf_Shdr *sechdrs;
850 unsigned long bss_align;
851 unsigned long bss_sz;
852 unsigned long align;
853 int i, ret;
854
855 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
856 kbuf->buf_align = bss_align = 1;
857 kbuf->bufsz = bss_sz = 0;
858
859 for (i = 0; i < pi->ehdr->e_shnum; i++) {
860 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
861 continue;
862
863 align = sechdrs[i].sh_addralign;
864 if (sechdrs[i].sh_type != SHT_NOBITS) {
865 if (kbuf->buf_align < align)
866 kbuf->buf_align = align;
867 kbuf->bufsz = ALIGN(kbuf->bufsz, align);
868 kbuf->bufsz += sechdrs[i].sh_size;
869 } else {
870 if (bss_align < align)
871 bss_align = align;
872 bss_sz = ALIGN(bss_sz, align);
873 bss_sz += sechdrs[i].sh_size;
874 }
875 }
876 kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
877 kbuf->memsz = kbuf->bufsz + bss_sz;
878 if (kbuf->buf_align < bss_align)
879 kbuf->buf_align = bss_align;
880
881 kbuf->buffer = vzalloc(kbuf->bufsz);
882 if (!kbuf->buffer)
883 return -ENOMEM;
884 pi->purgatory_buf = kbuf->buffer;
885
886 ret = kexec_add_buffer(kbuf);
887 if (ret)
888 goto out;
889
890 return 0;
891 out:
892 vfree(pi->purgatory_buf);
893 pi->purgatory_buf = NULL;
894 return ret;
895 }
896
897 /*
898 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
899 * @pi: Purgatory to be loaded.
900 * @kbuf: Buffer prepared to store purgatory.
901 *
902 * Allocates the memory needed for the buffer. Caller is responsible to free
903 * the memory after use.
904 *
905 * Return: 0 on success, negative errno on error.
906 */
kexec_purgatory_setup_sechdrs(struct purgatory_info * pi,struct kexec_buf * kbuf)907 static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
908 struct kexec_buf *kbuf)
909 {
910 unsigned long bss_addr;
911 unsigned long offset;
912 size_t sechdrs_size;
913 Elf_Shdr *sechdrs;
914 int i;
915
916 /*
917 * The section headers in kexec_purgatory are read-only. In order to
918 * have them modifiable make a temporary copy.
919 */
920 sechdrs_size = array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum);
921 sechdrs = vzalloc(sechdrs_size);
922 if (!sechdrs)
923 return -ENOMEM;
924 memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff, sechdrs_size);
925 pi->sechdrs = sechdrs;
926
927 offset = 0;
928 bss_addr = kbuf->mem + kbuf->bufsz;
929 kbuf->image->start = pi->ehdr->e_entry;
930
931 for (i = 0; i < pi->ehdr->e_shnum; i++) {
932 unsigned long align;
933 void *src, *dst;
934
935 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
936 continue;
937
938 align = sechdrs[i].sh_addralign;
939 if (sechdrs[i].sh_type == SHT_NOBITS) {
940 bss_addr = ALIGN(bss_addr, align);
941 sechdrs[i].sh_addr = bss_addr;
942 bss_addr += sechdrs[i].sh_size;
943 continue;
944 }
945
946 offset = ALIGN(offset, align);
947
948 /*
949 * Check if the segment contains the entry point, if so,
950 * calculate the value of image->start based on it.
951 * If the compiler has produced more than one .text section
952 * (Eg: .text.hot), they are generally after the main .text
953 * section, and they shall not be used to calculate
954 * image->start. So do not re-calculate image->start if it
955 * is not set to the initial value, and warn the user so they
956 * have a chance to fix their purgatory's linker script.
957 */
958 if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
959 pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
960 pi->ehdr->e_entry < (sechdrs[i].sh_addr
961 + sechdrs[i].sh_size) &&
962 !WARN_ON(kbuf->image->start != pi->ehdr->e_entry)) {
963 kbuf->image->start -= sechdrs[i].sh_addr;
964 kbuf->image->start += kbuf->mem + offset;
965 }
966
967 src = (void *)pi->ehdr + sechdrs[i].sh_offset;
968 dst = pi->purgatory_buf + offset;
969 memcpy(dst, src, sechdrs[i].sh_size);
970
971 sechdrs[i].sh_addr = kbuf->mem + offset;
972 sechdrs[i].sh_offset = offset;
973 offset += sechdrs[i].sh_size;
974 }
975
976 return 0;
977 }
978
kexec_apply_relocations(struct kimage * image)979 static int kexec_apply_relocations(struct kimage *image)
980 {
981 int i, ret;
982 struct purgatory_info *pi = &image->purgatory_info;
983 const Elf_Shdr *sechdrs;
984
985 sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
986
987 for (i = 0; i < pi->ehdr->e_shnum; i++) {
988 const Elf_Shdr *relsec;
989 const Elf_Shdr *symtab;
990 Elf_Shdr *section;
991
992 relsec = sechdrs + i;
993
994 if (relsec->sh_type != SHT_RELA &&
995 relsec->sh_type != SHT_REL)
996 continue;
997
998 /*
999 * For section of type SHT_RELA/SHT_REL,
1000 * ->sh_link contains section header index of associated
1001 * symbol table. And ->sh_info contains section header
1002 * index of section to which relocations apply.
1003 */
1004 if (relsec->sh_info >= pi->ehdr->e_shnum ||
1005 relsec->sh_link >= pi->ehdr->e_shnum)
1006 return -ENOEXEC;
1007
1008 section = pi->sechdrs + relsec->sh_info;
1009 symtab = sechdrs + relsec->sh_link;
1010
1011 if (!(section->sh_flags & SHF_ALLOC))
1012 continue;
1013
1014 /*
1015 * symtab->sh_link contain section header index of associated
1016 * string table.
1017 */
1018 if (symtab->sh_link >= pi->ehdr->e_shnum)
1019 /* Invalid section number? */
1020 continue;
1021
1022 /*
1023 * Respective architecture needs to provide support for applying
1024 * relocations of type SHT_RELA/SHT_REL.
1025 */
1026 if (relsec->sh_type == SHT_RELA)
1027 ret = arch_kexec_apply_relocations_add(pi, section,
1028 relsec, symtab);
1029 else if (relsec->sh_type == SHT_REL)
1030 ret = arch_kexec_apply_relocations(pi, section,
1031 relsec, symtab);
1032 if (ret)
1033 return ret;
1034 }
1035
1036 return 0;
1037 }
1038
1039 /*
1040 * kexec_load_purgatory - Load and relocate the purgatory object.
1041 * @image: Image to add the purgatory to.
1042 * @kbuf: Memory parameters to use.
1043 *
1044 * Allocates the memory needed for image->purgatory_info.sechdrs and
1045 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1046 * to free the memory after use.
1047 *
1048 * Return: 0 on success, negative errno on error.
1049 */
kexec_load_purgatory(struct kimage * image,struct kexec_buf * kbuf)1050 int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1051 {
1052 struct purgatory_info *pi = &image->purgatory_info;
1053 int ret;
1054
1055 if (kexec_purgatory_size <= 0)
1056 return -EINVAL;
1057
1058 pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
1059
1060 ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1061 if (ret)
1062 return ret;
1063
1064 ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1065 if (ret)
1066 goto out_free_kbuf;
1067
1068 ret = kexec_apply_relocations(image);
1069 if (ret)
1070 goto out;
1071
1072 return 0;
1073 out:
1074 vfree(pi->sechdrs);
1075 pi->sechdrs = NULL;
1076 out_free_kbuf:
1077 vfree(pi->purgatory_buf);
1078 pi->purgatory_buf = NULL;
1079 return ret;
1080 }
1081
1082 /*
1083 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1084 * @pi: Purgatory to search in.
1085 * @name: Name of the symbol.
1086 *
1087 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1088 */
kexec_purgatory_find_symbol(struct purgatory_info * pi,const char * name)1089 static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1090 const char *name)
1091 {
1092 const Elf_Shdr *sechdrs;
1093 const Elf_Ehdr *ehdr;
1094 const Elf_Sym *syms;
1095 const char *strtab;
1096 int i, k;
1097
1098 if (!pi->ehdr)
1099 return NULL;
1100
1101 ehdr = pi->ehdr;
1102 sechdrs = (void *)ehdr + ehdr->e_shoff;
1103
1104 for (i = 0; i < ehdr->e_shnum; i++) {
1105 if (sechdrs[i].sh_type != SHT_SYMTAB)
1106 continue;
1107
1108 if (sechdrs[i].sh_link >= ehdr->e_shnum)
1109 /* Invalid strtab section number */
1110 continue;
1111 strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1112 syms = (void *)ehdr + sechdrs[i].sh_offset;
1113
1114 /* Go through symbols for a match */
1115 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1116 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1117 continue;
1118
1119 if (strcmp(strtab + syms[k].st_name, name) != 0)
1120 continue;
1121
1122 if (syms[k].st_shndx == SHN_UNDEF ||
1123 syms[k].st_shndx >= ehdr->e_shnum) {
1124 pr_debug("Symbol: %s has bad section index %d.\n",
1125 name, syms[k].st_shndx);
1126 return NULL;
1127 }
1128
1129 /* Found the symbol we are looking for */
1130 return &syms[k];
1131 }
1132 }
1133
1134 return NULL;
1135 }
1136
kexec_purgatory_get_symbol_addr(struct kimage * image,const char * name)1137 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1138 {
1139 struct purgatory_info *pi = &image->purgatory_info;
1140 const Elf_Sym *sym;
1141 Elf_Shdr *sechdr;
1142
1143 sym = kexec_purgatory_find_symbol(pi, name);
1144 if (!sym)
1145 return ERR_PTR(-EINVAL);
1146
1147 sechdr = &pi->sechdrs[sym->st_shndx];
1148
1149 /*
1150 * Returns the address where symbol will finally be loaded after
1151 * kexec_load_segment()
1152 */
1153 return (void *)(sechdr->sh_addr + sym->st_value);
1154 }
1155
1156 /*
1157 * Get or set value of a symbol. If "get_value" is true, symbol value is
1158 * returned in buf otherwise symbol value is set based on value in buf.
1159 */
kexec_purgatory_get_set_symbol(struct kimage * image,const char * name,void * buf,unsigned int size,bool get_value)1160 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1161 void *buf, unsigned int size, bool get_value)
1162 {
1163 struct purgatory_info *pi = &image->purgatory_info;
1164 const Elf_Sym *sym;
1165 Elf_Shdr *sec;
1166 char *sym_buf;
1167
1168 sym = kexec_purgatory_find_symbol(pi, name);
1169 if (!sym)
1170 return -EINVAL;
1171
1172 if (sym->st_size != size) {
1173 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1174 name, (unsigned long)sym->st_size, size);
1175 return -EINVAL;
1176 }
1177
1178 sec = pi->sechdrs + sym->st_shndx;
1179
1180 if (sec->sh_type == SHT_NOBITS) {
1181 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1182 get_value ? "get" : "set");
1183 return -EINVAL;
1184 }
1185
1186 sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
1187
1188 if (get_value)
1189 memcpy((void *)buf, sym_buf, size);
1190 else
1191 memcpy((void *)sym_buf, buf, size);
1192
1193 return 0;
1194 }
1195 #endif /* CONFIG_ARCH_SUPPORTS_KEXEC_PURGATORY */
1196