1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kexec.c - kexec system call core code.
4 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
5 */
6
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8
9 #include <linux/btf.h>
10 #include <linux/capability.h>
11 #include <linux/mm.h>
12 #include <linux/file.h>
13 #include <linux/slab.h>
14 #include <linux/fs.h>
15 #include <linux/kexec.h>
16 #include <linux/mutex.h>
17 #include <linux/list.h>
18 #include <linux/highmem.h>
19 #include <linux/syscalls.h>
20 #include <linux/reboot.h>
21 #include <linux/ioport.h>
22 #include <linux/hardirq.h>
23 #include <linux/elf.h>
24 #include <linux/elfcore.h>
25 #include <linux/utsname.h>
26 #include <linux/numa.h>
27 #include <linux/suspend.h>
28 #include <linux/device.h>
29 #include <linux/freezer.h>
30 #include <linux/panic_notifier.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41 #include <linux/objtool.h>
42 #include <linux/kmsg_dump.h>
43
44 #include <asm/page.h>
45 #include <asm/sections.h>
46
47 #include <crypto/hash.h>
48 #include "kexec_internal.h"
49
50 atomic_t __kexec_lock = ATOMIC_INIT(0);
51
52 /* Flag to indicate we are going to kexec a new kernel */
53 bool kexec_in_progress = false;
54
55 bool kexec_file_dbg_print;
56
57 /*
58 * When kexec transitions to the new kernel there is a one-to-one
59 * mapping between physical and virtual addresses. On processors
60 * where you can disable the MMU this is trivial, and easy. For
61 * others it is still a simple predictable page table to setup.
62 *
63 * In that environment kexec copies the new kernel to its final
64 * resting place. This means I can only support memory whose
65 * physical address can fit in an unsigned long. In particular
66 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
67 * If the assembly stub has more restrictive requirements
68 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
69 * defined more restrictively in <asm/kexec.h>.
70 *
71 * The code for the transition from the current kernel to the
72 * new kernel is placed in the control_code_buffer, whose size
73 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
74 * page of memory is necessary, but some architectures require more.
75 * Because this memory must be identity mapped in the transition from
76 * virtual to physical addresses it must live in the range
77 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
78 * modifiable.
79 *
80 * The assembly stub in the control code buffer is passed a linked list
81 * of descriptor pages detailing the source pages of the new kernel,
82 * and the destination addresses of those source pages. As this data
83 * structure is not used in the context of the current OS, it must
84 * be self-contained.
85 *
86 * The code has been made to work with highmem pages and will use a
87 * destination page in its final resting place (if it happens
88 * to allocate it). The end product of this is that most of the
89 * physical address space, and most of RAM can be used.
90 *
91 * Future directions include:
92 * - allocating a page table with the control code buffer identity
93 * mapped, to simplify machine_kexec and make kexec_on_panic more
94 * reliable.
95 */
96
97 /*
98 * KIMAGE_NO_DEST is an impossible destination address..., for
99 * allocating pages whose destination address we do not care about.
100 */
101 #define KIMAGE_NO_DEST (-1UL)
102 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
103
104 static struct page *kimage_alloc_page(struct kimage *image,
105 gfp_t gfp_mask,
106 unsigned long dest);
107
sanity_check_segment_list(struct kimage * image)108 int sanity_check_segment_list(struct kimage *image)
109 {
110 int i;
111 unsigned long nr_segments = image->nr_segments;
112 unsigned long total_pages = 0;
113 unsigned long nr_pages = totalram_pages();
114
115 /*
116 * Verify we have good destination addresses. The caller is
117 * responsible for making certain we don't attempt to load
118 * the new image into invalid or reserved areas of RAM. This
119 * just verifies it is an address we can use.
120 *
121 * Since the kernel does everything in page size chunks ensure
122 * the destination addresses are page aligned. Too many
123 * special cases crop of when we don't do this. The most
124 * insidious is getting overlapping destination addresses
125 * simply because addresses are changed to page size
126 * granularity.
127 */
128 for (i = 0; i < nr_segments; i++) {
129 unsigned long mstart, mend;
130
131 mstart = image->segment[i].mem;
132 mend = mstart + image->segment[i].memsz;
133 if (mstart > mend)
134 return -EADDRNOTAVAIL;
135 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
136 return -EADDRNOTAVAIL;
137 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
138 return -EADDRNOTAVAIL;
139 }
140
141 /* Verify our destination addresses do not overlap.
142 * If we alloed overlapping destination addresses
143 * through very weird things can happen with no
144 * easy explanation as one segment stops on another.
145 */
146 for (i = 0; i < nr_segments; i++) {
147 unsigned long mstart, mend;
148 unsigned long j;
149
150 mstart = image->segment[i].mem;
151 mend = mstart + image->segment[i].memsz;
152 for (j = 0; j < i; j++) {
153 unsigned long pstart, pend;
154
155 pstart = image->segment[j].mem;
156 pend = pstart + image->segment[j].memsz;
157 /* Do the segments overlap ? */
158 if ((mend > pstart) && (mstart < pend))
159 return -EINVAL;
160 }
161 }
162
163 /* Ensure our buffer sizes are strictly less than
164 * our memory sizes. This should always be the case,
165 * and it is easier to check up front than to be surprised
166 * later on.
167 */
168 for (i = 0; i < nr_segments; i++) {
169 if (image->segment[i].bufsz > image->segment[i].memsz)
170 return -EINVAL;
171 }
172
173 /*
174 * Verify that no more than half of memory will be consumed. If the
175 * request from userspace is too large, a large amount of time will be
176 * wasted allocating pages, which can cause a soft lockup.
177 */
178 for (i = 0; i < nr_segments; i++) {
179 if (PAGE_COUNT(image->segment[i].memsz) > nr_pages / 2)
180 return -EINVAL;
181
182 total_pages += PAGE_COUNT(image->segment[i].memsz);
183 }
184
185 if (total_pages > nr_pages / 2)
186 return -EINVAL;
187
188 #ifdef CONFIG_CRASH_DUMP
189 /*
190 * Verify we have good destination addresses. Normally
191 * the caller is responsible for making certain we don't
192 * attempt to load the new image into invalid or reserved
193 * areas of RAM. But crash kernels are preloaded into a
194 * reserved area of ram. We must ensure the addresses
195 * are in the reserved area otherwise preloading the
196 * kernel could corrupt things.
197 */
198
199 if (image->type == KEXEC_TYPE_CRASH) {
200 for (i = 0; i < nr_segments; i++) {
201 unsigned long mstart, mend;
202
203 mstart = image->segment[i].mem;
204 mend = mstart + image->segment[i].memsz - 1;
205 /* Ensure we are within the crash kernel limits */
206 if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
207 (mend > phys_to_boot_phys(crashk_res.end)))
208 return -EADDRNOTAVAIL;
209 }
210 }
211 #endif
212
213 /*
214 * The destination addresses are searched from system RAM rather than
215 * being allocated from the buddy allocator, so they are not guaranteed
216 * to be accepted by the current kernel. Accept the destination
217 * addresses before kexec swaps their content with the segments' source
218 * pages to avoid accessing memory before it is accepted.
219 */
220 for (i = 0; i < nr_segments; i++)
221 accept_memory(image->segment[i].mem, image->segment[i].memsz);
222
223 return 0;
224 }
225
do_kimage_alloc_init(void)226 struct kimage *do_kimage_alloc_init(void)
227 {
228 struct kimage *image;
229
230 /* Allocate a controlling structure */
231 image = kzalloc(sizeof(*image), GFP_KERNEL);
232 if (!image)
233 return NULL;
234
235 image->head = 0;
236 image->entry = &image->head;
237 image->last_entry = &image->head;
238 image->control_page = ~0; /* By default this does not apply */
239 image->type = KEXEC_TYPE_DEFAULT;
240
241 /* Initialize the list of control pages */
242 INIT_LIST_HEAD(&image->control_pages);
243
244 /* Initialize the list of destination pages */
245 INIT_LIST_HEAD(&image->dest_pages);
246
247 /* Initialize the list of unusable pages */
248 INIT_LIST_HEAD(&image->unusable_pages);
249
250 #ifdef CONFIG_CRASH_HOTPLUG
251 image->hp_action = KEXEC_CRASH_HP_NONE;
252 image->elfcorehdr_index = -1;
253 image->elfcorehdr_updated = false;
254 #endif
255
256 return image;
257 }
258
kimage_is_destination_range(struct kimage * image,unsigned long start,unsigned long end)259 int kimage_is_destination_range(struct kimage *image,
260 unsigned long start,
261 unsigned long end)
262 {
263 unsigned long i;
264
265 for (i = 0; i < image->nr_segments; i++) {
266 unsigned long mstart, mend;
267
268 mstart = image->segment[i].mem;
269 mend = mstart + image->segment[i].memsz - 1;
270 if ((end >= mstart) && (start <= mend))
271 return 1;
272 }
273
274 return 0;
275 }
276
kimage_alloc_pages(gfp_t gfp_mask,unsigned int order)277 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
278 {
279 struct page *pages;
280
281 if (fatal_signal_pending(current))
282 return NULL;
283 pages = alloc_pages(gfp_mask & ~__GFP_ZERO, order);
284 if (pages) {
285 unsigned int count, i;
286
287 pages->mapping = NULL;
288 set_page_private(pages, order);
289 count = 1 << order;
290 for (i = 0; i < count; i++)
291 SetPageReserved(pages + i);
292
293 arch_kexec_post_alloc_pages(page_address(pages), count,
294 gfp_mask);
295
296 if (gfp_mask & __GFP_ZERO)
297 for (i = 0; i < count; i++)
298 clear_highpage(pages + i);
299 }
300
301 return pages;
302 }
303
kimage_free_pages(struct page * page)304 static void kimage_free_pages(struct page *page)
305 {
306 unsigned int order, count, i;
307
308 order = page_private(page);
309 count = 1 << order;
310
311 arch_kexec_pre_free_pages(page_address(page), count);
312
313 for (i = 0; i < count; i++)
314 ClearPageReserved(page + i);
315 __free_pages(page, order);
316 }
317
kimage_free_page_list(struct list_head * list)318 void kimage_free_page_list(struct list_head *list)
319 {
320 struct page *page, *next;
321
322 list_for_each_entry_safe(page, next, list, lru) {
323 list_del(&page->lru);
324 kimage_free_pages(page);
325 }
326 }
327
kimage_alloc_normal_control_pages(struct kimage * image,unsigned int order)328 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
329 unsigned int order)
330 {
331 /* Control pages are special, they are the intermediaries
332 * that are needed while we copy the rest of the pages
333 * to their final resting place. As such they must
334 * not conflict with either the destination addresses
335 * or memory the kernel is already using.
336 *
337 * The only case where we really need more than one of
338 * these are for architectures where we cannot disable
339 * the MMU and must instead generate an identity mapped
340 * page table for all of the memory.
341 *
342 * At worst this runs in O(N) of the image size.
343 */
344 struct list_head extra_pages;
345 struct page *pages;
346 unsigned int count;
347
348 count = 1 << order;
349 INIT_LIST_HEAD(&extra_pages);
350
351 /* Loop while I can allocate a page and the page allocated
352 * is a destination page.
353 */
354 do {
355 unsigned long pfn, epfn, addr, eaddr;
356
357 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
358 if (!pages)
359 break;
360 pfn = page_to_boot_pfn(pages);
361 epfn = pfn + count;
362 addr = pfn << PAGE_SHIFT;
363 eaddr = (epfn << PAGE_SHIFT) - 1;
364 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
365 kimage_is_destination_range(image, addr, eaddr)) {
366 list_add(&pages->lru, &extra_pages);
367 pages = NULL;
368 }
369 } while (!pages);
370
371 if (pages) {
372 /* Remember the allocated page... */
373 list_add(&pages->lru, &image->control_pages);
374
375 /* Because the page is already in it's destination
376 * location we will never allocate another page at
377 * that address. Therefore kimage_alloc_pages
378 * will not return it (again) and we don't need
379 * to give it an entry in image->segment[].
380 */
381 }
382 /* Deal with the destination pages I have inadvertently allocated.
383 *
384 * Ideally I would convert multi-page allocations into single
385 * page allocations, and add everything to image->dest_pages.
386 *
387 * For now it is simpler to just free the pages.
388 */
389 kimage_free_page_list(&extra_pages);
390
391 return pages;
392 }
393
394 #ifdef CONFIG_CRASH_DUMP
kimage_alloc_crash_control_pages(struct kimage * image,unsigned int order)395 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
396 unsigned int order)
397 {
398 /* Control pages are special, they are the intermediaries
399 * that are needed while we copy the rest of the pages
400 * to their final resting place. As such they must
401 * not conflict with either the destination addresses
402 * or memory the kernel is already using.
403 *
404 * Control pages are also the only pags we must allocate
405 * when loading a crash kernel. All of the other pages
406 * are specified by the segments and we just memcpy
407 * into them directly.
408 *
409 * The only case where we really need more than one of
410 * these are for architectures where we cannot disable
411 * the MMU and must instead generate an identity mapped
412 * page table for all of the memory.
413 *
414 * Given the low demand this implements a very simple
415 * allocator that finds the first hole of the appropriate
416 * size in the reserved memory region, and allocates all
417 * of the memory up to and including the hole.
418 */
419 unsigned long hole_start, hole_end, size;
420 struct page *pages;
421
422 pages = NULL;
423 size = (1 << order) << PAGE_SHIFT;
424 hole_start = ALIGN(image->control_page, size);
425 hole_end = hole_start + size - 1;
426 while (hole_end <= crashk_res.end) {
427 unsigned long i;
428
429 cond_resched();
430
431 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
432 break;
433 /* See if I overlap any of the segments */
434 for (i = 0; i < image->nr_segments; i++) {
435 unsigned long mstart, mend;
436
437 mstart = image->segment[i].mem;
438 mend = mstart + image->segment[i].memsz - 1;
439 if ((hole_end >= mstart) && (hole_start <= mend)) {
440 /* Advance the hole to the end of the segment */
441 hole_start = ALIGN(mend, size);
442 hole_end = hole_start + size - 1;
443 break;
444 }
445 }
446 /* If I don't overlap any segments I have found my hole! */
447 if (i == image->nr_segments) {
448 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
449 image->control_page = hole_end + 1;
450 break;
451 }
452 }
453
454 /* Ensure that these pages are decrypted if SME is enabled. */
455 if (pages)
456 arch_kexec_post_alloc_pages(page_address(pages), 1 << order, 0);
457
458 return pages;
459 }
460 #endif
461
462
kimage_alloc_control_pages(struct kimage * image,unsigned int order)463 struct page *kimage_alloc_control_pages(struct kimage *image,
464 unsigned int order)
465 {
466 struct page *pages = NULL;
467
468 switch (image->type) {
469 case KEXEC_TYPE_DEFAULT:
470 pages = kimage_alloc_normal_control_pages(image, order);
471 break;
472 #ifdef CONFIG_CRASH_DUMP
473 case KEXEC_TYPE_CRASH:
474 pages = kimage_alloc_crash_control_pages(image, order);
475 break;
476 #endif
477 }
478
479 return pages;
480 }
481
kimage_add_entry(struct kimage * image,kimage_entry_t entry)482 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
483 {
484 if (*image->entry != 0)
485 image->entry++;
486
487 if (image->entry == image->last_entry) {
488 kimage_entry_t *ind_page;
489 struct page *page;
490
491 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
492 if (!page)
493 return -ENOMEM;
494
495 ind_page = page_address(page);
496 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
497 image->entry = ind_page;
498 image->last_entry = ind_page +
499 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
500 }
501 *image->entry = entry;
502 image->entry++;
503 *image->entry = 0;
504
505 return 0;
506 }
507
kimage_set_destination(struct kimage * image,unsigned long destination)508 static int kimage_set_destination(struct kimage *image,
509 unsigned long destination)
510 {
511 destination &= PAGE_MASK;
512
513 return kimage_add_entry(image, destination | IND_DESTINATION);
514 }
515
516
kimage_add_page(struct kimage * image,unsigned long page)517 static int kimage_add_page(struct kimage *image, unsigned long page)
518 {
519 page &= PAGE_MASK;
520
521 return kimage_add_entry(image, page | IND_SOURCE);
522 }
523
524
kimage_free_extra_pages(struct kimage * image)525 static void kimage_free_extra_pages(struct kimage *image)
526 {
527 /* Walk through and free any extra destination pages I may have */
528 kimage_free_page_list(&image->dest_pages);
529
530 /* Walk through and free any unusable pages I have cached */
531 kimage_free_page_list(&image->unusable_pages);
532
533 }
534
kimage_terminate(struct kimage * image)535 void kimage_terminate(struct kimage *image)
536 {
537 if (*image->entry != 0)
538 image->entry++;
539
540 *image->entry = IND_DONE;
541 }
542
543 #define for_each_kimage_entry(image, ptr, entry) \
544 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
545 ptr = (entry & IND_INDIRECTION) ? \
546 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
547
kimage_free_entry(kimage_entry_t entry)548 static void kimage_free_entry(kimage_entry_t entry)
549 {
550 struct page *page;
551
552 page = boot_pfn_to_page(entry >> PAGE_SHIFT);
553 kimage_free_pages(page);
554 }
555
kimage_free(struct kimage * image)556 void kimage_free(struct kimage *image)
557 {
558 kimage_entry_t *ptr, entry;
559 kimage_entry_t ind = 0;
560
561 if (!image)
562 return;
563
564 #ifdef CONFIG_CRASH_DUMP
565 if (image->vmcoreinfo_data_copy) {
566 crash_update_vmcoreinfo_safecopy(NULL);
567 vunmap(image->vmcoreinfo_data_copy);
568 }
569 #endif
570
571 kimage_free_extra_pages(image);
572 for_each_kimage_entry(image, ptr, entry) {
573 if (entry & IND_INDIRECTION) {
574 /* Free the previous indirection page */
575 if (ind & IND_INDIRECTION)
576 kimage_free_entry(ind);
577 /* Save this indirection page until we are
578 * done with it.
579 */
580 ind = entry;
581 } else if (entry & IND_SOURCE)
582 kimage_free_entry(entry);
583 }
584 /* Free the final indirection page */
585 if (ind & IND_INDIRECTION)
586 kimage_free_entry(ind);
587
588 /* Handle any machine specific cleanup */
589 machine_kexec_cleanup(image);
590
591 /* Free the kexec control pages... */
592 kimage_free_page_list(&image->control_pages);
593
594 /*
595 * Free up any temporary buffers allocated. This might hit if
596 * error occurred much later after buffer allocation.
597 */
598 if (image->file_mode)
599 kimage_file_post_load_cleanup(image);
600
601 kfree(image);
602 }
603
kimage_dst_used(struct kimage * image,unsigned long page)604 static kimage_entry_t *kimage_dst_used(struct kimage *image,
605 unsigned long page)
606 {
607 kimage_entry_t *ptr, entry;
608 unsigned long destination = 0;
609
610 for_each_kimage_entry(image, ptr, entry) {
611 if (entry & IND_DESTINATION)
612 destination = entry & PAGE_MASK;
613 else if (entry & IND_SOURCE) {
614 if (page == destination)
615 return ptr;
616 destination += PAGE_SIZE;
617 }
618 }
619
620 return NULL;
621 }
622
kimage_alloc_page(struct kimage * image,gfp_t gfp_mask,unsigned long destination)623 static struct page *kimage_alloc_page(struct kimage *image,
624 gfp_t gfp_mask,
625 unsigned long destination)
626 {
627 /*
628 * Here we implement safeguards to ensure that a source page
629 * is not copied to its destination page before the data on
630 * the destination page is no longer useful.
631 *
632 * To do this we maintain the invariant that a source page is
633 * either its own destination page, or it is not a
634 * destination page at all.
635 *
636 * That is slightly stronger than required, but the proof
637 * that no problems will not occur is trivial, and the
638 * implementation is simply to verify.
639 *
640 * When allocating all pages normally this algorithm will run
641 * in O(N) time, but in the worst case it will run in O(N^2)
642 * time. If the runtime is a problem the data structures can
643 * be fixed.
644 */
645 struct page *page;
646 unsigned long addr;
647
648 /*
649 * Walk through the list of destination pages, and see if I
650 * have a match.
651 */
652 list_for_each_entry(page, &image->dest_pages, lru) {
653 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
654 if (addr == destination) {
655 list_del(&page->lru);
656 return page;
657 }
658 }
659 page = NULL;
660 while (1) {
661 kimage_entry_t *old;
662
663 /* Allocate a page, if we run out of memory give up */
664 page = kimage_alloc_pages(gfp_mask, 0);
665 if (!page)
666 return NULL;
667 /* If the page cannot be used file it away */
668 if (page_to_boot_pfn(page) >
669 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
670 list_add(&page->lru, &image->unusable_pages);
671 continue;
672 }
673 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
674
675 /* If it is the destination page we want use it */
676 if (addr == destination)
677 break;
678
679 /* If the page is not a destination page use it */
680 if (!kimage_is_destination_range(image, addr,
681 addr + PAGE_SIZE - 1))
682 break;
683
684 /*
685 * I know that the page is someones destination page.
686 * See if there is already a source page for this
687 * destination page. And if so swap the source pages.
688 */
689 old = kimage_dst_used(image, addr);
690 if (old) {
691 /* If so move it */
692 unsigned long old_addr;
693 struct page *old_page;
694
695 old_addr = *old & PAGE_MASK;
696 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
697 copy_highpage(page, old_page);
698 *old = addr | (*old & ~PAGE_MASK);
699
700 /* The old page I have found cannot be a
701 * destination page, so return it if it's
702 * gfp_flags honor the ones passed in.
703 */
704 if (!(gfp_mask & __GFP_HIGHMEM) &&
705 PageHighMem(old_page)) {
706 kimage_free_pages(old_page);
707 continue;
708 }
709 page = old_page;
710 break;
711 }
712 /* Place the page on the destination list, to be used later */
713 list_add(&page->lru, &image->dest_pages);
714 }
715
716 return page;
717 }
718
kimage_load_normal_segment(struct kimage * image,struct kexec_segment * segment)719 static int kimage_load_normal_segment(struct kimage *image,
720 struct kexec_segment *segment)
721 {
722 unsigned long maddr;
723 size_t ubytes, mbytes;
724 int result;
725 unsigned char __user *buf = NULL;
726 unsigned char *kbuf = NULL;
727
728 if (image->file_mode)
729 kbuf = segment->kbuf;
730 else
731 buf = segment->buf;
732 ubytes = segment->bufsz;
733 mbytes = segment->memsz;
734 maddr = segment->mem;
735
736 result = kimage_set_destination(image, maddr);
737 if (result < 0)
738 goto out;
739
740 while (mbytes) {
741 struct page *page;
742 char *ptr;
743 size_t uchunk, mchunk;
744
745 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
746 if (!page) {
747 result = -ENOMEM;
748 goto out;
749 }
750 result = kimage_add_page(image, page_to_boot_pfn(page)
751 << PAGE_SHIFT);
752 if (result < 0)
753 goto out;
754
755 ptr = kmap_local_page(page);
756 /* Start with a clear page */
757 clear_page(ptr);
758 ptr += maddr & ~PAGE_MASK;
759 mchunk = min_t(size_t, mbytes,
760 PAGE_SIZE - (maddr & ~PAGE_MASK));
761 uchunk = min(ubytes, mchunk);
762
763 if (uchunk) {
764 /* For file based kexec, source pages are in kernel memory */
765 if (image->file_mode)
766 memcpy(ptr, kbuf, uchunk);
767 else
768 result = copy_from_user(ptr, buf, uchunk);
769 ubytes -= uchunk;
770 if (image->file_mode)
771 kbuf += uchunk;
772 else
773 buf += uchunk;
774 }
775 kunmap_local(ptr);
776 if (result) {
777 result = -EFAULT;
778 goto out;
779 }
780 maddr += mchunk;
781 mbytes -= mchunk;
782
783 cond_resched();
784 }
785 out:
786 return result;
787 }
788
789 #ifdef CONFIG_CRASH_DUMP
kimage_load_crash_segment(struct kimage * image,struct kexec_segment * segment)790 static int kimage_load_crash_segment(struct kimage *image,
791 struct kexec_segment *segment)
792 {
793 /* For crash dumps kernels we simply copy the data from
794 * user space to it's destination.
795 * We do things a page at a time for the sake of kmap.
796 */
797 unsigned long maddr;
798 size_t ubytes, mbytes;
799 int result;
800 unsigned char __user *buf = NULL;
801 unsigned char *kbuf = NULL;
802
803 result = 0;
804 if (image->file_mode)
805 kbuf = segment->kbuf;
806 else
807 buf = segment->buf;
808 ubytes = segment->bufsz;
809 mbytes = segment->memsz;
810 maddr = segment->mem;
811 while (mbytes) {
812 struct page *page;
813 char *ptr;
814 size_t uchunk, mchunk;
815
816 page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
817 if (!page) {
818 result = -ENOMEM;
819 goto out;
820 }
821 arch_kexec_post_alloc_pages(page_address(page), 1, 0);
822 ptr = kmap_local_page(page);
823 ptr += maddr & ~PAGE_MASK;
824 mchunk = min_t(size_t, mbytes,
825 PAGE_SIZE - (maddr & ~PAGE_MASK));
826 uchunk = min(ubytes, mchunk);
827 if (mchunk > uchunk) {
828 /* Zero the trailing part of the page */
829 memset(ptr + uchunk, 0, mchunk - uchunk);
830 }
831
832 if (uchunk) {
833 /* For file based kexec, source pages are in kernel memory */
834 if (image->file_mode)
835 memcpy(ptr, kbuf, uchunk);
836 else
837 result = copy_from_user(ptr, buf, uchunk);
838 ubytes -= uchunk;
839 if (image->file_mode)
840 kbuf += uchunk;
841 else
842 buf += uchunk;
843 }
844 kexec_flush_icache_page(page);
845 kunmap_local(ptr);
846 arch_kexec_pre_free_pages(page_address(page), 1);
847 if (result) {
848 result = -EFAULT;
849 goto out;
850 }
851 maddr += mchunk;
852 mbytes -= mchunk;
853
854 cond_resched();
855 }
856 out:
857 return result;
858 }
859 #endif
860
kimage_load_segment(struct kimage * image,struct kexec_segment * segment)861 int kimage_load_segment(struct kimage *image,
862 struct kexec_segment *segment)
863 {
864 int result = -ENOMEM;
865
866 switch (image->type) {
867 case KEXEC_TYPE_DEFAULT:
868 result = kimage_load_normal_segment(image, segment);
869 break;
870 #ifdef CONFIG_CRASH_DUMP
871 case KEXEC_TYPE_CRASH:
872 result = kimage_load_crash_segment(image, segment);
873 break;
874 #endif
875 }
876
877 return result;
878 }
879
880 struct kexec_load_limit {
881 /* Mutex protects the limit count. */
882 struct mutex mutex;
883 int limit;
884 };
885
886 static struct kexec_load_limit load_limit_reboot = {
887 .mutex = __MUTEX_INITIALIZER(load_limit_reboot.mutex),
888 .limit = -1,
889 };
890
891 static struct kexec_load_limit load_limit_panic = {
892 .mutex = __MUTEX_INITIALIZER(load_limit_panic.mutex),
893 .limit = -1,
894 };
895
896 struct kimage *kexec_image;
897 struct kimage *kexec_crash_image;
898 static int kexec_load_disabled;
899
900 #ifdef CONFIG_SYSCTL
kexec_limit_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)901 static int kexec_limit_handler(const struct ctl_table *table, int write,
902 void *buffer, size_t *lenp, loff_t *ppos)
903 {
904 struct kexec_load_limit *limit = table->data;
905 int val;
906 struct ctl_table tmp = {
907 .data = &val,
908 .maxlen = sizeof(val),
909 .mode = table->mode,
910 };
911 int ret;
912
913 if (write) {
914 ret = proc_dointvec(&tmp, write, buffer, lenp, ppos);
915 if (ret)
916 return ret;
917
918 if (val < 0)
919 return -EINVAL;
920
921 mutex_lock(&limit->mutex);
922 if (limit->limit != -1 && val >= limit->limit)
923 ret = -EINVAL;
924 else
925 limit->limit = val;
926 mutex_unlock(&limit->mutex);
927
928 return ret;
929 }
930
931 mutex_lock(&limit->mutex);
932 val = limit->limit;
933 mutex_unlock(&limit->mutex);
934
935 return proc_dointvec(&tmp, write, buffer, lenp, ppos);
936 }
937
938 static const struct ctl_table kexec_core_sysctls[] = {
939 {
940 .procname = "kexec_load_disabled",
941 .data = &kexec_load_disabled,
942 .maxlen = sizeof(int),
943 .mode = 0644,
944 /* only handle a transition from default "0" to "1" */
945 .proc_handler = proc_dointvec_minmax,
946 .extra1 = SYSCTL_ONE,
947 .extra2 = SYSCTL_ONE,
948 },
949 {
950 .procname = "kexec_load_limit_panic",
951 .data = &load_limit_panic,
952 .mode = 0644,
953 .proc_handler = kexec_limit_handler,
954 },
955 {
956 .procname = "kexec_load_limit_reboot",
957 .data = &load_limit_reboot,
958 .mode = 0644,
959 .proc_handler = kexec_limit_handler,
960 },
961 };
962
kexec_core_sysctl_init(void)963 static int __init kexec_core_sysctl_init(void)
964 {
965 register_sysctl_init("kernel", kexec_core_sysctls);
966 return 0;
967 }
968 late_initcall(kexec_core_sysctl_init);
969 #endif
970
kexec_load_permitted(int kexec_image_type)971 bool kexec_load_permitted(int kexec_image_type)
972 {
973 struct kexec_load_limit *limit;
974
975 /*
976 * Only the superuser can use the kexec syscall and if it has not
977 * been disabled.
978 */
979 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
980 return false;
981
982 /* Check limit counter and decrease it.*/
983 limit = (kexec_image_type == KEXEC_TYPE_CRASH) ?
984 &load_limit_panic : &load_limit_reboot;
985 mutex_lock(&limit->mutex);
986 if (!limit->limit) {
987 mutex_unlock(&limit->mutex);
988 return false;
989 }
990 if (limit->limit != -1)
991 limit->limit--;
992 mutex_unlock(&limit->mutex);
993
994 return true;
995 }
996
997 /*
998 * Move into place and start executing a preloaded standalone
999 * executable. If nothing was preloaded return an error.
1000 */
kernel_kexec(void)1001 int kernel_kexec(void)
1002 {
1003 int error = 0;
1004
1005 if (!kexec_trylock())
1006 return -EBUSY;
1007 if (!kexec_image) {
1008 error = -EINVAL;
1009 goto Unlock;
1010 }
1011
1012 #ifdef CONFIG_KEXEC_JUMP
1013 if (kexec_image->preserve_context) {
1014 /*
1015 * This flow is analogous to hibernation flows that occur
1016 * before creating an image and before jumping from the
1017 * restore kernel to the image one, so it uses the same
1018 * device callbacks as those two flows.
1019 */
1020 pm_prepare_console();
1021 error = freeze_processes();
1022 if (error) {
1023 error = -EBUSY;
1024 goto Restore_console;
1025 }
1026 console_suspend_all();
1027 error = dpm_suspend_start(PMSG_FREEZE);
1028 if (error)
1029 goto Resume_console;
1030 /*
1031 * dpm_suspend_end() must be called after dpm_suspend_start()
1032 * to complete the transition, like in the hibernation flows
1033 * mentioned above.
1034 */
1035 error = dpm_suspend_end(PMSG_FREEZE);
1036 if (error)
1037 goto Resume_devices;
1038 error = suspend_disable_secondary_cpus();
1039 if (error)
1040 goto Enable_cpus;
1041 local_irq_disable();
1042 error = syscore_suspend();
1043 if (error)
1044 goto Enable_irqs;
1045 } else
1046 #endif
1047 {
1048 kexec_in_progress = true;
1049 kernel_restart_prepare("kexec reboot");
1050 migrate_to_reboot_cpu();
1051 syscore_shutdown();
1052
1053 /*
1054 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1055 * no further code needs to use CPU hotplug (which is true in
1056 * the reboot case). However, the kexec path depends on using
1057 * CPU hotplug again; so re-enable it here.
1058 */
1059 cpu_hotplug_enable();
1060 pr_notice("Starting new kernel\n");
1061 machine_shutdown();
1062 }
1063
1064 kmsg_dump(KMSG_DUMP_SHUTDOWN);
1065 machine_kexec(kexec_image);
1066
1067 #ifdef CONFIG_KEXEC_JUMP
1068 if (kexec_image->preserve_context) {
1069 /*
1070 * This flow is analogous to hibernation flows that occur after
1071 * creating an image and after the image kernel has got control
1072 * back, and in case the devices have been reset or otherwise
1073 * manipulated in the meantime, it uses the device callbacks
1074 * used by the latter.
1075 */
1076 syscore_resume();
1077 Enable_irqs:
1078 local_irq_enable();
1079 Enable_cpus:
1080 suspend_enable_secondary_cpus();
1081 dpm_resume_start(PMSG_RESTORE);
1082 Resume_devices:
1083 dpm_resume_end(PMSG_RESTORE);
1084 Resume_console:
1085 console_resume_all();
1086 thaw_processes();
1087 Restore_console:
1088 pm_restore_console();
1089 }
1090 #endif
1091
1092 Unlock:
1093 kexec_unlock();
1094 return error;
1095 }
1096