1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108
109 #include <asm/pgalloc.h>
110 #include <linux/uaccess.h>
111 #include <asm/mmu_context.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114
115 #include <trace/events/sched.h>
116
117 #define CREATE_TRACE_POINTS
118 #include <trace/events/task.h>
119
120 #include <kunit/visibility.h>
121
122 /*
123 * Minimum number of threads to boot the kernel
124 */
125 #define MIN_THREADS 20
126
127 /*
128 * Maximum number of threads
129 */
130 #define MAX_THREADS FUTEX_TID_MASK
131
132 /*
133 * Protected counters by write_lock_irq(&tasklist_lock)
134 */
135 unsigned long total_forks; /* Handle normal Linux uptimes. */
136 int nr_threads; /* The idle threads do not count.. */
137
138 static int max_threads; /* tunable limit on nr_threads */
139
140 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
141
142 static const char * const resident_page_types[] = {
143 NAMED_ARRAY_INDEX(MM_FILEPAGES),
144 NAMED_ARRAY_INDEX(MM_ANONPAGES),
145 NAMED_ARRAY_INDEX(MM_SWAPENTS),
146 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
147 };
148
149 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
150
151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
152
153 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)154 int lockdep_tasklist_lock_is_held(void)
155 {
156 return lockdep_is_held(&tasklist_lock);
157 }
158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
159 #endif /* #ifdef CONFIG_PROVE_RCU */
160
nr_processes(void)161 int nr_processes(void)
162 {
163 int cpu;
164 int total = 0;
165
166 for_each_possible_cpu(cpu)
167 total += per_cpu(process_counts, cpu);
168
169 return total;
170 }
171
arch_release_task_struct(struct task_struct * tsk)172 void __weak arch_release_task_struct(struct task_struct *tsk)
173 {
174 }
175
176 static struct kmem_cache *task_struct_cachep;
177
alloc_task_struct_node(int node)178 static inline struct task_struct *alloc_task_struct_node(int node)
179 {
180 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
181 }
182
free_task_struct(struct task_struct * tsk)183 static inline void free_task_struct(struct task_struct *tsk)
184 {
185 kmem_cache_free(task_struct_cachep, tsk);
186 }
187
188 /*
189 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
190 * kmemcache based allocator.
191 */
192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
193
194 # ifdef CONFIG_VMAP_STACK
195 /*
196 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
197 * flush. Try to minimize the number of calls by caching stacks.
198 */
199 #define NR_CACHED_STACKS 2
200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
201
202 struct vm_stack {
203 struct rcu_head rcu;
204 struct vm_struct *stack_vm_area;
205 };
206
try_release_thread_stack_to_cache(struct vm_struct * vm)207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
208 {
209 unsigned int i;
210
211 for (i = 0; i < NR_CACHED_STACKS; i++) {
212 struct vm_struct *tmp = NULL;
213
214 if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
215 return true;
216 }
217 return false;
218 }
219
thread_stack_free_rcu(struct rcu_head * rh)220 static void thread_stack_free_rcu(struct rcu_head *rh)
221 {
222 struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
223
224 if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
225 return;
226
227 vfree(vm_stack);
228 }
229
thread_stack_delayed_free(struct task_struct * tsk)230 static void thread_stack_delayed_free(struct task_struct *tsk)
231 {
232 struct vm_stack *vm_stack = tsk->stack;
233
234 vm_stack->stack_vm_area = tsk->stack_vm_area;
235 call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
236 }
237
free_vm_stack_cache(unsigned int cpu)238 static int free_vm_stack_cache(unsigned int cpu)
239 {
240 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
241 int i;
242
243 for (i = 0; i < NR_CACHED_STACKS; i++) {
244 struct vm_struct *vm_stack = cached_vm_stacks[i];
245
246 if (!vm_stack)
247 continue;
248
249 vfree(vm_stack->addr);
250 cached_vm_stacks[i] = NULL;
251 }
252
253 return 0;
254 }
255
memcg_charge_kernel_stack(struct vm_struct * vm)256 static int memcg_charge_kernel_stack(struct vm_struct *vm)
257 {
258 int i;
259 int ret;
260 int nr_charged = 0;
261
262 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
263
264 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266 if (ret)
267 goto err;
268 nr_charged++;
269 }
270 return 0;
271 err:
272 for (i = 0; i < nr_charged; i++)
273 memcg_kmem_uncharge_page(vm->pages[i], 0);
274 return ret;
275 }
276
alloc_thread_stack_node(struct task_struct * tsk,int node)277 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
278 {
279 struct vm_struct *vm;
280 void *stack;
281 int i;
282
283 for (i = 0; i < NR_CACHED_STACKS; i++) {
284 struct vm_struct *s;
285
286 s = this_cpu_xchg(cached_stacks[i], NULL);
287
288 if (!s)
289 continue;
290
291 /* Reset stack metadata. */
292 kasan_unpoison_range(s->addr, THREAD_SIZE);
293
294 stack = kasan_reset_tag(s->addr);
295
296 /* Clear stale pointers from reused stack. */
297 memset(stack, 0, THREAD_SIZE);
298
299 if (memcg_charge_kernel_stack(s)) {
300 vfree(s->addr);
301 return -ENOMEM;
302 }
303
304 tsk->stack_vm_area = s;
305 tsk->stack = stack;
306 return 0;
307 }
308
309 /*
310 * Allocated stacks are cached and later reused by new threads,
311 * so memcg accounting is performed manually on assigning/releasing
312 * stacks to tasks. Drop __GFP_ACCOUNT.
313 */
314 stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN,
315 THREADINFO_GFP & ~__GFP_ACCOUNT,
316 node, __builtin_return_address(0));
317 if (!stack)
318 return -ENOMEM;
319
320 vm = find_vm_area(stack);
321 if (memcg_charge_kernel_stack(vm)) {
322 vfree(stack);
323 return -ENOMEM;
324 }
325 /*
326 * We can't call find_vm_area() in interrupt context, and
327 * free_thread_stack() can be called in interrupt context,
328 * so cache the vm_struct.
329 */
330 tsk->stack_vm_area = vm;
331 stack = kasan_reset_tag(stack);
332 tsk->stack = stack;
333 return 0;
334 }
335
free_thread_stack(struct task_struct * tsk)336 static void free_thread_stack(struct task_struct *tsk)
337 {
338 if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
339 thread_stack_delayed_free(tsk);
340
341 tsk->stack = NULL;
342 tsk->stack_vm_area = NULL;
343 }
344
345 # else /* !CONFIG_VMAP_STACK */
346
thread_stack_free_rcu(struct rcu_head * rh)347 static void thread_stack_free_rcu(struct rcu_head *rh)
348 {
349 __free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
350 }
351
thread_stack_delayed_free(struct task_struct * tsk)352 static void thread_stack_delayed_free(struct task_struct *tsk)
353 {
354 struct rcu_head *rh = tsk->stack;
355
356 call_rcu(rh, thread_stack_free_rcu);
357 }
358
alloc_thread_stack_node(struct task_struct * tsk,int node)359 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
360 {
361 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
362 THREAD_SIZE_ORDER);
363
364 if (likely(page)) {
365 tsk->stack = kasan_reset_tag(page_address(page));
366 return 0;
367 }
368 return -ENOMEM;
369 }
370
free_thread_stack(struct task_struct * tsk)371 static void free_thread_stack(struct task_struct *tsk)
372 {
373 thread_stack_delayed_free(tsk);
374 tsk->stack = NULL;
375 }
376
377 # endif /* CONFIG_VMAP_STACK */
378 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
379
380 static struct kmem_cache *thread_stack_cache;
381
thread_stack_free_rcu(struct rcu_head * rh)382 static void thread_stack_free_rcu(struct rcu_head *rh)
383 {
384 kmem_cache_free(thread_stack_cache, rh);
385 }
386
thread_stack_delayed_free(struct task_struct * tsk)387 static void thread_stack_delayed_free(struct task_struct *tsk)
388 {
389 struct rcu_head *rh = tsk->stack;
390
391 call_rcu(rh, thread_stack_free_rcu);
392 }
393
alloc_thread_stack_node(struct task_struct * tsk,int node)394 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
395 {
396 unsigned long *stack;
397 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
398 stack = kasan_reset_tag(stack);
399 tsk->stack = stack;
400 return stack ? 0 : -ENOMEM;
401 }
402
free_thread_stack(struct task_struct * tsk)403 static void free_thread_stack(struct task_struct *tsk)
404 {
405 thread_stack_delayed_free(tsk);
406 tsk->stack = NULL;
407 }
408
thread_stack_cache_init(void)409 void thread_stack_cache_init(void)
410 {
411 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
412 THREAD_SIZE, THREAD_SIZE, 0, 0,
413 THREAD_SIZE, NULL);
414 BUG_ON(thread_stack_cache == NULL);
415 }
416
417 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
418
419 /* SLAB cache for signal_struct structures (tsk->signal) */
420 static struct kmem_cache *signal_cachep;
421
422 /* SLAB cache for sighand_struct structures (tsk->sighand) */
423 struct kmem_cache *sighand_cachep;
424
425 /* SLAB cache for files_struct structures (tsk->files) */
426 struct kmem_cache *files_cachep;
427
428 /* SLAB cache for fs_struct structures (tsk->fs) */
429 struct kmem_cache *fs_cachep;
430
431 /* SLAB cache for vm_area_struct structures */
432 static struct kmem_cache *vm_area_cachep;
433
434 /* SLAB cache for mm_struct structures (tsk->mm) */
435 static struct kmem_cache *mm_cachep;
436
vm_area_alloc(struct mm_struct * mm)437 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
438 {
439 struct vm_area_struct *vma;
440
441 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
442 if (!vma)
443 return NULL;
444
445 vma_init(vma, mm);
446
447 return vma;
448 }
449
vm_area_init_from(const struct vm_area_struct * src,struct vm_area_struct * dest)450 static void vm_area_init_from(const struct vm_area_struct *src,
451 struct vm_area_struct *dest)
452 {
453 dest->vm_mm = src->vm_mm;
454 dest->vm_ops = src->vm_ops;
455 dest->vm_start = src->vm_start;
456 dest->vm_end = src->vm_end;
457 dest->anon_vma = src->anon_vma;
458 dest->vm_pgoff = src->vm_pgoff;
459 dest->vm_file = src->vm_file;
460 dest->vm_private_data = src->vm_private_data;
461 vm_flags_init(dest, src->vm_flags);
462 memcpy(&dest->vm_page_prot, &src->vm_page_prot,
463 sizeof(dest->vm_page_prot));
464 /*
465 * src->shared.rb may be modified concurrently when called from
466 * dup_mmap(), but the clone will reinitialize it.
467 */
468 data_race(memcpy(&dest->shared, &src->shared, sizeof(dest->shared)));
469 memcpy(&dest->vm_userfaultfd_ctx, &src->vm_userfaultfd_ctx,
470 sizeof(dest->vm_userfaultfd_ctx));
471 #ifdef CONFIG_ANON_VMA_NAME
472 dest->anon_name = src->anon_name;
473 #endif
474 #ifdef CONFIG_SWAP
475 memcpy(&dest->swap_readahead_info, &src->swap_readahead_info,
476 sizeof(dest->swap_readahead_info));
477 #endif
478 #ifndef CONFIG_MMU
479 dest->vm_region = src->vm_region;
480 #endif
481 #ifdef CONFIG_NUMA
482 dest->vm_policy = src->vm_policy;
483 #endif
484 }
485
vm_area_dup(struct vm_area_struct * orig)486 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
487 {
488 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
489
490 if (!new)
491 return NULL;
492
493 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
494 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
495 vm_area_init_from(orig, new);
496 vma_lock_init(new, true);
497 INIT_LIST_HEAD(&new->anon_vma_chain);
498 vma_numab_state_init(new);
499 dup_anon_vma_name(orig, new);
500
501 return new;
502 }
503
vm_area_free(struct vm_area_struct * vma)504 void vm_area_free(struct vm_area_struct *vma)
505 {
506 /* The vma should be detached while being destroyed. */
507 vma_assert_detached(vma);
508 vma_numab_state_free(vma);
509 free_anon_vma_name(vma);
510 kmem_cache_free(vm_area_cachep, vma);
511 }
512
account_kernel_stack(struct task_struct * tsk,int account)513 static void account_kernel_stack(struct task_struct *tsk, int account)
514 {
515 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
516 struct vm_struct *vm = task_stack_vm_area(tsk);
517 int i;
518
519 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
520 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
521 account * (PAGE_SIZE / 1024));
522 } else {
523 void *stack = task_stack_page(tsk);
524
525 /* All stack pages are in the same node. */
526 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
527 account * (THREAD_SIZE / 1024));
528 }
529 }
530
exit_task_stack_account(struct task_struct * tsk)531 void exit_task_stack_account(struct task_struct *tsk)
532 {
533 account_kernel_stack(tsk, -1);
534
535 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
536 struct vm_struct *vm;
537 int i;
538
539 vm = task_stack_vm_area(tsk);
540 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
541 memcg_kmem_uncharge_page(vm->pages[i], 0);
542 }
543 }
544
release_task_stack(struct task_struct * tsk)545 static void release_task_stack(struct task_struct *tsk)
546 {
547 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
548 return; /* Better to leak the stack than to free prematurely */
549
550 free_thread_stack(tsk);
551 }
552
553 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)554 void put_task_stack(struct task_struct *tsk)
555 {
556 if (refcount_dec_and_test(&tsk->stack_refcount))
557 release_task_stack(tsk);
558 }
559 #endif
560
free_task(struct task_struct * tsk)561 void free_task(struct task_struct *tsk)
562 {
563 #ifdef CONFIG_SECCOMP
564 WARN_ON_ONCE(tsk->seccomp.filter);
565 #endif
566 release_user_cpus_ptr(tsk);
567 scs_release(tsk);
568
569 #ifndef CONFIG_THREAD_INFO_IN_TASK
570 /*
571 * The task is finally done with both the stack and thread_info,
572 * so free both.
573 */
574 release_task_stack(tsk);
575 #else
576 /*
577 * If the task had a separate stack allocation, it should be gone
578 * by now.
579 */
580 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
581 #endif
582 rt_mutex_debug_task_free(tsk);
583 ftrace_graph_exit_task(tsk);
584 arch_release_task_struct(tsk);
585 if (tsk->flags & PF_KTHREAD)
586 free_kthread_struct(tsk);
587 bpf_task_storage_free(tsk);
588 free_task_struct(tsk);
589 }
590 EXPORT_SYMBOL(free_task);
591
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)592 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
593 {
594 struct file *exe_file;
595
596 exe_file = get_mm_exe_file(oldmm);
597 RCU_INIT_POINTER(mm->exe_file, exe_file);
598 /*
599 * We depend on the oldmm having properly denied write access to the
600 * exe_file already.
601 */
602 if (exe_file && exe_file_deny_write_access(exe_file))
603 pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__);
604 }
605
606 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)607 static __latent_entropy int dup_mmap(struct mm_struct *mm,
608 struct mm_struct *oldmm)
609 {
610 struct vm_area_struct *mpnt, *tmp;
611 int retval;
612 unsigned long charge = 0;
613 LIST_HEAD(uf);
614 VMA_ITERATOR(vmi, mm, 0);
615
616 if (mmap_write_lock_killable(oldmm))
617 return -EINTR;
618 flush_cache_dup_mm(oldmm);
619 uprobe_dup_mmap(oldmm, mm);
620 /*
621 * Not linked in yet - no deadlock potential:
622 */
623 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
624
625 /* No ordering required: file already has been exposed. */
626 dup_mm_exe_file(mm, oldmm);
627
628 mm->total_vm = oldmm->total_vm;
629 mm->data_vm = oldmm->data_vm;
630 mm->exec_vm = oldmm->exec_vm;
631 mm->stack_vm = oldmm->stack_vm;
632
633 /* Use __mt_dup() to efficiently build an identical maple tree. */
634 retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
635 if (unlikely(retval))
636 goto out;
637
638 mt_clear_in_rcu(vmi.mas.tree);
639 for_each_vma(vmi, mpnt) {
640 struct file *file;
641
642 vma_start_write(mpnt);
643 if (mpnt->vm_flags & VM_DONTCOPY) {
644 retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
645 mpnt->vm_end, GFP_KERNEL);
646 if (retval)
647 goto loop_out;
648
649 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
650 continue;
651 }
652 charge = 0;
653 /*
654 * Don't duplicate many vmas if we've been oom-killed (for
655 * example)
656 */
657 if (fatal_signal_pending(current)) {
658 retval = -EINTR;
659 goto loop_out;
660 }
661 if (mpnt->vm_flags & VM_ACCOUNT) {
662 unsigned long len = vma_pages(mpnt);
663
664 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
665 goto fail_nomem;
666 charge = len;
667 }
668 tmp = vm_area_dup(mpnt);
669 if (!tmp)
670 goto fail_nomem;
671
672 /* track_pfn_copy() will later take care of copying internal state. */
673 if (unlikely(tmp->vm_flags & VM_PFNMAP))
674 untrack_pfn_clear(tmp);
675
676 retval = vma_dup_policy(mpnt, tmp);
677 if (retval)
678 goto fail_nomem_policy;
679 tmp->vm_mm = mm;
680 retval = dup_userfaultfd(tmp, &uf);
681 if (retval)
682 goto fail_nomem_anon_vma_fork;
683 if (tmp->vm_flags & VM_WIPEONFORK) {
684 /*
685 * VM_WIPEONFORK gets a clean slate in the child.
686 * Don't prepare anon_vma until fault since we don't
687 * copy page for current vma.
688 */
689 tmp->anon_vma = NULL;
690 } else if (anon_vma_fork(tmp, mpnt))
691 goto fail_nomem_anon_vma_fork;
692 vm_flags_clear(tmp, VM_LOCKED_MASK);
693 /*
694 * Copy/update hugetlb private vma information.
695 */
696 if (is_vm_hugetlb_page(tmp))
697 hugetlb_dup_vma_private(tmp);
698
699 /*
700 * Link the vma into the MT. After using __mt_dup(), memory
701 * allocation is not necessary here, so it cannot fail.
702 */
703 vma_iter_bulk_store(&vmi, tmp);
704
705 mm->map_count++;
706
707 if (tmp->vm_ops && tmp->vm_ops->open)
708 tmp->vm_ops->open(tmp);
709
710 file = tmp->vm_file;
711 if (file) {
712 struct address_space *mapping = file->f_mapping;
713
714 get_file(file);
715 i_mmap_lock_write(mapping);
716 if (vma_is_shared_maywrite(tmp))
717 mapping_allow_writable(mapping);
718 flush_dcache_mmap_lock(mapping);
719 /* insert tmp into the share list, just after mpnt */
720 vma_interval_tree_insert_after(tmp, mpnt,
721 &mapping->i_mmap);
722 flush_dcache_mmap_unlock(mapping);
723 i_mmap_unlock_write(mapping);
724 }
725
726 if (!(tmp->vm_flags & VM_WIPEONFORK))
727 retval = copy_page_range(tmp, mpnt);
728
729 if (retval) {
730 mpnt = vma_next(&vmi);
731 goto loop_out;
732 }
733 }
734 /* a new mm has just been created */
735 retval = arch_dup_mmap(oldmm, mm);
736 loop_out:
737 vma_iter_free(&vmi);
738 if (!retval) {
739 mt_set_in_rcu(vmi.mas.tree);
740 ksm_fork(mm, oldmm);
741 khugepaged_fork(mm, oldmm);
742 } else {
743
744 /*
745 * The entire maple tree has already been duplicated. If the
746 * mmap duplication fails, mark the failure point with
747 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
748 * stop releasing VMAs that have not been duplicated after this
749 * point.
750 */
751 if (mpnt) {
752 mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
753 mas_store(&vmi.mas, XA_ZERO_ENTRY);
754 /* Avoid OOM iterating a broken tree */
755 set_bit(MMF_OOM_SKIP, &mm->flags);
756 }
757 /*
758 * The mm_struct is going to exit, but the locks will be dropped
759 * first. Set the mm_struct as unstable is advisable as it is
760 * not fully initialised.
761 */
762 set_bit(MMF_UNSTABLE, &mm->flags);
763 }
764 out:
765 mmap_write_unlock(mm);
766 flush_tlb_mm(oldmm);
767 mmap_write_unlock(oldmm);
768 if (!retval)
769 dup_userfaultfd_complete(&uf);
770 else
771 dup_userfaultfd_fail(&uf);
772 return retval;
773
774 fail_nomem_anon_vma_fork:
775 mpol_put(vma_policy(tmp));
776 fail_nomem_policy:
777 vm_area_free(tmp);
778 fail_nomem:
779 retval = -ENOMEM;
780 vm_unacct_memory(charge);
781 goto loop_out;
782 }
783
mm_alloc_pgd(struct mm_struct * mm)784 static inline int mm_alloc_pgd(struct mm_struct *mm)
785 {
786 mm->pgd = pgd_alloc(mm);
787 if (unlikely(!mm->pgd))
788 return -ENOMEM;
789 return 0;
790 }
791
mm_free_pgd(struct mm_struct * mm)792 static inline void mm_free_pgd(struct mm_struct *mm)
793 {
794 pgd_free(mm, mm->pgd);
795 }
796 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)797 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
798 {
799 mmap_write_lock(oldmm);
800 dup_mm_exe_file(mm, oldmm);
801 mmap_write_unlock(oldmm);
802 return 0;
803 }
804 #define mm_alloc_pgd(mm) (0)
805 #define mm_free_pgd(mm)
806 #endif /* CONFIG_MMU */
807
808 #ifdef CONFIG_MM_ID
809 static DEFINE_IDA(mm_ida);
810
mm_alloc_id(struct mm_struct * mm)811 static inline int mm_alloc_id(struct mm_struct *mm)
812 {
813 int ret;
814
815 ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL);
816 if (ret < 0)
817 return ret;
818 mm->mm_id = ret;
819 return 0;
820 }
821
mm_free_id(struct mm_struct * mm)822 static inline void mm_free_id(struct mm_struct *mm)
823 {
824 const mm_id_t id = mm->mm_id;
825
826 mm->mm_id = MM_ID_DUMMY;
827 if (id == MM_ID_DUMMY)
828 return;
829 if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX))
830 return;
831 ida_free(&mm_ida, id);
832 }
833 #else /* !CONFIG_MM_ID */
mm_alloc_id(struct mm_struct * mm)834 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; }
mm_free_id(struct mm_struct * mm)835 static inline void mm_free_id(struct mm_struct *mm) {}
836 #endif /* CONFIG_MM_ID */
837
check_mm(struct mm_struct * mm)838 static void check_mm(struct mm_struct *mm)
839 {
840 int i;
841
842 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
843 "Please make sure 'struct resident_page_types[]' is updated as well");
844
845 for (i = 0; i < NR_MM_COUNTERS; i++) {
846 long x = percpu_counter_sum(&mm->rss_stat[i]);
847
848 if (unlikely(x))
849 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
850 mm, resident_page_types[i], x);
851 }
852
853 if (mm_pgtables_bytes(mm))
854 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
855 mm_pgtables_bytes(mm));
856
857 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
858 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
859 #endif
860 }
861
862 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
863 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
864
do_check_lazy_tlb(void * arg)865 static void do_check_lazy_tlb(void *arg)
866 {
867 struct mm_struct *mm = arg;
868
869 WARN_ON_ONCE(current->active_mm == mm);
870 }
871
do_shoot_lazy_tlb(void * arg)872 static void do_shoot_lazy_tlb(void *arg)
873 {
874 struct mm_struct *mm = arg;
875
876 if (current->active_mm == mm) {
877 WARN_ON_ONCE(current->mm);
878 current->active_mm = &init_mm;
879 switch_mm(mm, &init_mm, current);
880 }
881 }
882
cleanup_lazy_tlbs(struct mm_struct * mm)883 static void cleanup_lazy_tlbs(struct mm_struct *mm)
884 {
885 if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
886 /*
887 * In this case, lazy tlb mms are refounted and would not reach
888 * __mmdrop until all CPUs have switched away and mmdrop()ed.
889 */
890 return;
891 }
892
893 /*
894 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
895 * requires lazy mm users to switch to another mm when the refcount
896 * drops to zero, before the mm is freed. This requires IPIs here to
897 * switch kernel threads to init_mm.
898 *
899 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
900 * switch with the final userspace teardown TLB flush which leaves the
901 * mm lazy on this CPU but no others, reducing the need for additional
902 * IPIs here. There are cases where a final IPI is still required here,
903 * such as the final mmdrop being performed on a different CPU than the
904 * one exiting, or kernel threads using the mm when userspace exits.
905 *
906 * IPI overheads have not found to be expensive, but they could be
907 * reduced in a number of possible ways, for example (roughly
908 * increasing order of complexity):
909 * - The last lazy reference created by exit_mm() could instead switch
910 * to init_mm, however it's probable this will run on the same CPU
911 * immediately afterwards, so this may not reduce IPIs much.
912 * - A batch of mms requiring IPIs could be gathered and freed at once.
913 * - CPUs store active_mm where it can be remotely checked without a
914 * lock, to filter out false-positives in the cpumask.
915 * - After mm_users or mm_count reaches zero, switching away from the
916 * mm could clear mm_cpumask to reduce some IPIs, perhaps together
917 * with some batching or delaying of the final IPIs.
918 * - A delayed freeing and RCU-like quiescing sequence based on mm
919 * switching to avoid IPIs completely.
920 */
921 on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
922 if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
923 on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
924 }
925
926 /*
927 * Called when the last reference to the mm
928 * is dropped: either by a lazy thread or by
929 * mmput. Free the page directory and the mm.
930 */
__mmdrop(struct mm_struct * mm)931 void __mmdrop(struct mm_struct *mm)
932 {
933 BUG_ON(mm == &init_mm);
934 WARN_ON_ONCE(mm == current->mm);
935
936 /* Ensure no CPUs are using this as their lazy tlb mm */
937 cleanup_lazy_tlbs(mm);
938
939 WARN_ON_ONCE(mm == current->active_mm);
940 mm_free_pgd(mm);
941 mm_free_id(mm);
942 destroy_context(mm);
943 mmu_notifier_subscriptions_destroy(mm);
944 check_mm(mm);
945 put_user_ns(mm->user_ns);
946 mm_pasid_drop(mm);
947 mm_destroy_cid(mm);
948 percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
949
950 free_mm(mm);
951 }
952 EXPORT_SYMBOL_GPL(__mmdrop);
953
mmdrop_async_fn(struct work_struct * work)954 static void mmdrop_async_fn(struct work_struct *work)
955 {
956 struct mm_struct *mm;
957
958 mm = container_of(work, struct mm_struct, async_put_work);
959 __mmdrop(mm);
960 }
961
mmdrop_async(struct mm_struct * mm)962 static void mmdrop_async(struct mm_struct *mm)
963 {
964 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
965 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
966 schedule_work(&mm->async_put_work);
967 }
968 }
969
free_signal_struct(struct signal_struct * sig)970 static inline void free_signal_struct(struct signal_struct *sig)
971 {
972 taskstats_tgid_free(sig);
973 sched_autogroup_exit(sig);
974 /*
975 * __mmdrop is not safe to call from softirq context on x86 due to
976 * pgd_dtor so postpone it to the async context
977 */
978 if (sig->oom_mm)
979 mmdrop_async(sig->oom_mm);
980 kmem_cache_free(signal_cachep, sig);
981 }
982
put_signal_struct(struct signal_struct * sig)983 static inline void put_signal_struct(struct signal_struct *sig)
984 {
985 if (refcount_dec_and_test(&sig->sigcnt))
986 free_signal_struct(sig);
987 }
988
__put_task_struct(struct task_struct * tsk)989 void __put_task_struct(struct task_struct *tsk)
990 {
991 WARN_ON(!tsk->exit_state);
992 WARN_ON(refcount_read(&tsk->usage));
993 WARN_ON(tsk == current);
994
995 sched_ext_free(tsk);
996 io_uring_free(tsk);
997 cgroup_free(tsk);
998 task_numa_free(tsk, true);
999 security_task_free(tsk);
1000 exit_creds(tsk);
1001 delayacct_tsk_free(tsk);
1002 put_signal_struct(tsk->signal);
1003 sched_core_free(tsk);
1004 free_task(tsk);
1005 }
1006 EXPORT_SYMBOL_GPL(__put_task_struct);
1007
__put_task_struct_rcu_cb(struct rcu_head * rhp)1008 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
1009 {
1010 struct task_struct *task = container_of(rhp, struct task_struct, rcu);
1011
1012 __put_task_struct(task);
1013 }
1014 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
1015
arch_task_cache_init(void)1016 void __init __weak arch_task_cache_init(void) { }
1017
1018 /*
1019 * set_max_threads
1020 */
set_max_threads(unsigned int max_threads_suggested)1021 static void __init set_max_threads(unsigned int max_threads_suggested)
1022 {
1023 u64 threads;
1024 unsigned long nr_pages = memblock_estimated_nr_free_pages();
1025
1026 /*
1027 * The number of threads shall be limited such that the thread
1028 * structures may only consume a small part of the available memory.
1029 */
1030 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1031 threads = MAX_THREADS;
1032 else
1033 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1034 (u64) THREAD_SIZE * 8UL);
1035
1036 if (threads > max_threads_suggested)
1037 threads = max_threads_suggested;
1038
1039 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1040 }
1041
1042 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1043 /* Initialized by the architecture: */
1044 int arch_task_struct_size __read_mostly;
1045 #endif
1046
task_struct_whitelist(unsigned long * offset,unsigned long * size)1047 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1048 {
1049 /* Fetch thread_struct whitelist for the architecture. */
1050 arch_thread_struct_whitelist(offset, size);
1051
1052 /*
1053 * Handle zero-sized whitelist or empty thread_struct, otherwise
1054 * adjust offset to position of thread_struct in task_struct.
1055 */
1056 if (unlikely(*size == 0))
1057 *offset = 0;
1058 else
1059 *offset += offsetof(struct task_struct, thread);
1060 }
1061
fork_init(void)1062 void __init fork_init(void)
1063 {
1064 int i;
1065 #ifndef ARCH_MIN_TASKALIGN
1066 #define ARCH_MIN_TASKALIGN 0
1067 #endif
1068 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1069 unsigned long useroffset, usersize;
1070
1071 /* create a slab on which task_structs can be allocated */
1072 task_struct_whitelist(&useroffset, &usersize);
1073 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1074 arch_task_struct_size, align,
1075 SLAB_PANIC|SLAB_ACCOUNT,
1076 useroffset, usersize, NULL);
1077
1078 /* do the arch specific task caches init */
1079 arch_task_cache_init();
1080
1081 set_max_threads(MAX_THREADS);
1082
1083 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1084 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1085 init_task.signal->rlim[RLIMIT_SIGPENDING] =
1086 init_task.signal->rlim[RLIMIT_NPROC];
1087
1088 for (i = 0; i < UCOUNT_COUNTS; i++)
1089 init_user_ns.ucount_max[i] = max_threads/2;
1090
1091 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
1092 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
1093 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1094 set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
1095
1096 #ifdef CONFIG_VMAP_STACK
1097 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1098 NULL, free_vm_stack_cache);
1099 #endif
1100
1101 scs_init();
1102
1103 lockdep_init_task(&init_task);
1104 uprobes_init();
1105 }
1106
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1107 int __weak arch_dup_task_struct(struct task_struct *dst,
1108 struct task_struct *src)
1109 {
1110 *dst = *src;
1111 return 0;
1112 }
1113
set_task_stack_end_magic(struct task_struct * tsk)1114 void set_task_stack_end_magic(struct task_struct *tsk)
1115 {
1116 unsigned long *stackend;
1117
1118 stackend = end_of_stack(tsk);
1119 *stackend = STACK_END_MAGIC; /* for overflow detection */
1120 }
1121
dup_task_struct(struct task_struct * orig,int node)1122 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1123 {
1124 struct task_struct *tsk;
1125 int err;
1126
1127 if (node == NUMA_NO_NODE)
1128 node = tsk_fork_get_node(orig);
1129 tsk = alloc_task_struct_node(node);
1130 if (!tsk)
1131 return NULL;
1132
1133 err = arch_dup_task_struct(tsk, orig);
1134 if (err)
1135 goto free_tsk;
1136
1137 err = alloc_thread_stack_node(tsk, node);
1138 if (err)
1139 goto free_tsk;
1140
1141 #ifdef CONFIG_THREAD_INFO_IN_TASK
1142 refcount_set(&tsk->stack_refcount, 1);
1143 #endif
1144 account_kernel_stack(tsk, 1);
1145
1146 err = scs_prepare(tsk, node);
1147 if (err)
1148 goto free_stack;
1149
1150 #ifdef CONFIG_SECCOMP
1151 /*
1152 * We must handle setting up seccomp filters once we're under
1153 * the sighand lock in case orig has changed between now and
1154 * then. Until then, filter must be NULL to avoid messing up
1155 * the usage counts on the error path calling free_task.
1156 */
1157 tsk->seccomp.filter = NULL;
1158 #endif
1159
1160 setup_thread_stack(tsk, orig);
1161 clear_user_return_notifier(tsk);
1162 clear_tsk_need_resched(tsk);
1163 set_task_stack_end_magic(tsk);
1164 clear_syscall_work_syscall_user_dispatch(tsk);
1165
1166 #ifdef CONFIG_STACKPROTECTOR
1167 tsk->stack_canary = get_random_canary();
1168 #endif
1169 if (orig->cpus_ptr == &orig->cpus_mask)
1170 tsk->cpus_ptr = &tsk->cpus_mask;
1171 dup_user_cpus_ptr(tsk, orig, node);
1172
1173 /*
1174 * One for the user space visible state that goes away when reaped.
1175 * One for the scheduler.
1176 */
1177 refcount_set(&tsk->rcu_users, 2);
1178 /* One for the rcu users */
1179 refcount_set(&tsk->usage, 1);
1180 #ifdef CONFIG_BLK_DEV_IO_TRACE
1181 tsk->btrace_seq = 0;
1182 #endif
1183 tsk->splice_pipe = NULL;
1184 tsk->task_frag.page = NULL;
1185 tsk->wake_q.next = NULL;
1186 tsk->worker_private = NULL;
1187
1188 kcov_task_init(tsk);
1189 kmsan_task_create(tsk);
1190 kmap_local_fork(tsk);
1191
1192 #ifdef CONFIG_FAULT_INJECTION
1193 tsk->fail_nth = 0;
1194 #endif
1195
1196 #ifdef CONFIG_BLK_CGROUP
1197 tsk->throttle_disk = NULL;
1198 tsk->use_memdelay = 0;
1199 #endif
1200
1201 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1202 tsk->pasid_activated = 0;
1203 #endif
1204
1205 #ifdef CONFIG_MEMCG
1206 tsk->active_memcg = NULL;
1207 #endif
1208
1209 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1210 tsk->reported_split_lock = 0;
1211 #endif
1212
1213 #ifdef CONFIG_SCHED_MM_CID
1214 tsk->mm_cid = -1;
1215 tsk->last_mm_cid = -1;
1216 tsk->mm_cid_active = 0;
1217 tsk->migrate_from_cpu = -1;
1218 #endif
1219 return tsk;
1220
1221 free_stack:
1222 exit_task_stack_account(tsk);
1223 free_thread_stack(tsk);
1224 free_tsk:
1225 free_task_struct(tsk);
1226 return NULL;
1227 }
1228
1229 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1230
1231 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1232
coredump_filter_setup(char * s)1233 static int __init coredump_filter_setup(char *s)
1234 {
1235 default_dump_filter =
1236 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1237 MMF_DUMP_FILTER_MASK;
1238 return 1;
1239 }
1240
1241 __setup("coredump_filter=", coredump_filter_setup);
1242
1243 #include <linux/init_task.h>
1244
mm_init_aio(struct mm_struct * mm)1245 static void mm_init_aio(struct mm_struct *mm)
1246 {
1247 #ifdef CONFIG_AIO
1248 spin_lock_init(&mm->ioctx_lock);
1249 mm->ioctx_table = NULL;
1250 #endif
1251 }
1252
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1253 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1254 struct task_struct *p)
1255 {
1256 #ifdef CONFIG_MEMCG
1257 if (mm->owner == p)
1258 WRITE_ONCE(mm->owner, NULL);
1259 #endif
1260 }
1261
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1262 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1263 {
1264 #ifdef CONFIG_MEMCG
1265 mm->owner = p;
1266 #endif
1267 }
1268
mm_init_uprobes_state(struct mm_struct * mm)1269 static void mm_init_uprobes_state(struct mm_struct *mm)
1270 {
1271 #ifdef CONFIG_UPROBES
1272 mm->uprobes_state.xol_area = NULL;
1273 #endif
1274 }
1275
mmap_init_lock(struct mm_struct * mm)1276 static void mmap_init_lock(struct mm_struct *mm)
1277 {
1278 init_rwsem(&mm->mmap_lock);
1279 mm_lock_seqcount_init(mm);
1280 #ifdef CONFIG_PER_VMA_LOCK
1281 rcuwait_init(&mm->vma_writer_wait);
1282 #endif
1283 }
1284
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1285 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1286 struct user_namespace *user_ns)
1287 {
1288 mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1289 mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1290 atomic_set(&mm->mm_users, 1);
1291 atomic_set(&mm->mm_count, 1);
1292 seqcount_init(&mm->write_protect_seq);
1293 mmap_init_lock(mm);
1294 INIT_LIST_HEAD(&mm->mmlist);
1295 mm_pgtables_bytes_init(mm);
1296 mm->map_count = 0;
1297 mm->locked_vm = 0;
1298 atomic64_set(&mm->pinned_vm, 0);
1299 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1300 spin_lock_init(&mm->page_table_lock);
1301 spin_lock_init(&mm->arg_lock);
1302 mm_init_cpumask(mm);
1303 mm_init_aio(mm);
1304 mm_init_owner(mm, p);
1305 mm_pasid_init(mm);
1306 RCU_INIT_POINTER(mm->exe_file, NULL);
1307 mmu_notifier_subscriptions_init(mm);
1308 init_tlb_flush_pending(mm);
1309 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1310 mm->pmd_huge_pte = NULL;
1311 #endif
1312 mm_init_uprobes_state(mm);
1313 hugetlb_count_init(mm);
1314
1315 if (current->mm) {
1316 mm->flags = mmf_init_flags(current->mm->flags);
1317 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1318 } else {
1319 mm->flags = default_dump_filter;
1320 mm->def_flags = 0;
1321 }
1322
1323 if (mm_alloc_pgd(mm))
1324 goto fail_nopgd;
1325
1326 if (mm_alloc_id(mm))
1327 goto fail_noid;
1328
1329 if (init_new_context(p, mm))
1330 goto fail_nocontext;
1331
1332 if (mm_alloc_cid(mm, p))
1333 goto fail_cid;
1334
1335 if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1336 NR_MM_COUNTERS))
1337 goto fail_pcpu;
1338
1339 mm->user_ns = get_user_ns(user_ns);
1340 lru_gen_init_mm(mm);
1341 return mm;
1342
1343 fail_pcpu:
1344 mm_destroy_cid(mm);
1345 fail_cid:
1346 destroy_context(mm);
1347 fail_nocontext:
1348 mm_free_id(mm);
1349 fail_noid:
1350 mm_free_pgd(mm);
1351 fail_nopgd:
1352 free_mm(mm);
1353 return NULL;
1354 }
1355
1356 /*
1357 * Allocate and initialize an mm_struct.
1358 */
mm_alloc(void)1359 struct mm_struct *mm_alloc(void)
1360 {
1361 struct mm_struct *mm;
1362
1363 mm = allocate_mm();
1364 if (!mm)
1365 return NULL;
1366
1367 memset(mm, 0, sizeof(*mm));
1368 return mm_init(mm, current, current_user_ns());
1369 }
1370 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1371
__mmput(struct mm_struct * mm)1372 static inline void __mmput(struct mm_struct *mm)
1373 {
1374 VM_BUG_ON(atomic_read(&mm->mm_users));
1375
1376 uprobe_clear_state(mm);
1377 exit_aio(mm);
1378 ksm_exit(mm);
1379 khugepaged_exit(mm); /* must run before exit_mmap */
1380 exit_mmap(mm);
1381 mm_put_huge_zero_folio(mm);
1382 set_mm_exe_file(mm, NULL);
1383 if (!list_empty(&mm->mmlist)) {
1384 spin_lock(&mmlist_lock);
1385 list_del(&mm->mmlist);
1386 spin_unlock(&mmlist_lock);
1387 }
1388 if (mm->binfmt)
1389 module_put(mm->binfmt->module);
1390 lru_gen_del_mm(mm);
1391 mmdrop(mm);
1392 }
1393
1394 /*
1395 * Decrement the use count and release all resources for an mm.
1396 */
mmput(struct mm_struct * mm)1397 void mmput(struct mm_struct *mm)
1398 {
1399 might_sleep();
1400
1401 if (atomic_dec_and_test(&mm->mm_users))
1402 __mmput(mm);
1403 }
1404 EXPORT_SYMBOL_GPL(mmput);
1405
1406 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1407 static void mmput_async_fn(struct work_struct *work)
1408 {
1409 struct mm_struct *mm = container_of(work, struct mm_struct,
1410 async_put_work);
1411
1412 __mmput(mm);
1413 }
1414
mmput_async(struct mm_struct * mm)1415 void mmput_async(struct mm_struct *mm)
1416 {
1417 if (atomic_dec_and_test(&mm->mm_users)) {
1418 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1419 schedule_work(&mm->async_put_work);
1420 }
1421 }
1422 EXPORT_SYMBOL_GPL(mmput_async);
1423 #endif
1424
1425 /**
1426 * set_mm_exe_file - change a reference to the mm's executable file
1427 * @mm: The mm to change.
1428 * @new_exe_file: The new file to use.
1429 *
1430 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1431 *
1432 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1433 * invocations: in mmput() nobody alive left, in execve it happens before
1434 * the new mm is made visible to anyone.
1435 *
1436 * Can only fail if new_exe_file != NULL.
1437 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1438 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1439 {
1440 struct file *old_exe_file;
1441
1442 /*
1443 * It is safe to dereference the exe_file without RCU as
1444 * this function is only called if nobody else can access
1445 * this mm -- see comment above for justification.
1446 */
1447 old_exe_file = rcu_dereference_raw(mm->exe_file);
1448
1449 if (new_exe_file) {
1450 /*
1451 * We expect the caller (i.e., sys_execve) to already denied
1452 * write access, so this is unlikely to fail.
1453 */
1454 if (unlikely(exe_file_deny_write_access(new_exe_file)))
1455 return -EACCES;
1456 get_file(new_exe_file);
1457 }
1458 rcu_assign_pointer(mm->exe_file, new_exe_file);
1459 if (old_exe_file) {
1460 exe_file_allow_write_access(old_exe_file);
1461 fput(old_exe_file);
1462 }
1463 return 0;
1464 }
1465
1466 /**
1467 * replace_mm_exe_file - replace a reference to the mm's executable file
1468 * @mm: The mm to change.
1469 * @new_exe_file: The new file to use.
1470 *
1471 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1472 *
1473 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1474 */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1475 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1476 {
1477 struct vm_area_struct *vma;
1478 struct file *old_exe_file;
1479 int ret = 0;
1480
1481 /* Forbid mm->exe_file change if old file still mapped. */
1482 old_exe_file = get_mm_exe_file(mm);
1483 if (old_exe_file) {
1484 VMA_ITERATOR(vmi, mm, 0);
1485 mmap_read_lock(mm);
1486 for_each_vma(vmi, vma) {
1487 if (!vma->vm_file)
1488 continue;
1489 if (path_equal(&vma->vm_file->f_path,
1490 &old_exe_file->f_path)) {
1491 ret = -EBUSY;
1492 break;
1493 }
1494 }
1495 mmap_read_unlock(mm);
1496 fput(old_exe_file);
1497 if (ret)
1498 return ret;
1499 }
1500
1501 ret = exe_file_deny_write_access(new_exe_file);
1502 if (ret)
1503 return -EACCES;
1504 get_file(new_exe_file);
1505
1506 /* set the new file */
1507 mmap_write_lock(mm);
1508 old_exe_file = rcu_dereference_raw(mm->exe_file);
1509 rcu_assign_pointer(mm->exe_file, new_exe_file);
1510 mmap_write_unlock(mm);
1511
1512 if (old_exe_file) {
1513 exe_file_allow_write_access(old_exe_file);
1514 fput(old_exe_file);
1515 }
1516 return 0;
1517 }
1518
1519 /**
1520 * get_mm_exe_file - acquire a reference to the mm's executable file
1521 * @mm: The mm of interest.
1522 *
1523 * Returns %NULL if mm has no associated executable file.
1524 * User must release file via fput().
1525 */
get_mm_exe_file(struct mm_struct * mm)1526 struct file *get_mm_exe_file(struct mm_struct *mm)
1527 {
1528 struct file *exe_file;
1529
1530 rcu_read_lock();
1531 exe_file = get_file_rcu(&mm->exe_file);
1532 rcu_read_unlock();
1533 return exe_file;
1534 }
1535
1536 /**
1537 * get_task_exe_file - acquire a reference to the task's executable file
1538 * @task: The task.
1539 *
1540 * Returns %NULL if task's mm (if any) has no associated executable file or
1541 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1542 * User must release file via fput().
1543 */
get_task_exe_file(struct task_struct * task)1544 struct file *get_task_exe_file(struct task_struct *task)
1545 {
1546 struct file *exe_file = NULL;
1547 struct mm_struct *mm;
1548
1549 if (task->flags & PF_KTHREAD)
1550 return NULL;
1551
1552 task_lock(task);
1553 mm = task->mm;
1554 if (mm)
1555 exe_file = get_mm_exe_file(mm);
1556 task_unlock(task);
1557 return exe_file;
1558 }
1559
1560 /**
1561 * get_task_mm - acquire a reference to the task's mm
1562 * @task: The task.
1563 *
1564 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1565 * this kernel workthread has transiently adopted a user mm with use_mm,
1566 * to do its AIO) is not set and if so returns a reference to it, after
1567 * bumping up the use count. User must release the mm via mmput()
1568 * after use. Typically used by /proc and ptrace.
1569 */
get_task_mm(struct task_struct * task)1570 struct mm_struct *get_task_mm(struct task_struct *task)
1571 {
1572 struct mm_struct *mm;
1573
1574 if (task->flags & PF_KTHREAD)
1575 return NULL;
1576
1577 task_lock(task);
1578 mm = task->mm;
1579 if (mm)
1580 mmget(mm);
1581 task_unlock(task);
1582 return mm;
1583 }
1584 EXPORT_SYMBOL_GPL(get_task_mm);
1585
may_access_mm(struct mm_struct * mm,struct task_struct * task,unsigned int mode)1586 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode)
1587 {
1588 if (mm == current->mm)
1589 return true;
1590 if (ptrace_may_access(task, mode))
1591 return true;
1592 if ((mode & PTRACE_MODE_READ) && perfmon_capable())
1593 return true;
1594 return false;
1595 }
1596
mm_access(struct task_struct * task,unsigned int mode)1597 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1598 {
1599 struct mm_struct *mm;
1600 int err;
1601
1602 err = down_read_killable(&task->signal->exec_update_lock);
1603 if (err)
1604 return ERR_PTR(err);
1605
1606 mm = get_task_mm(task);
1607 if (!mm) {
1608 mm = ERR_PTR(-ESRCH);
1609 } else if (!may_access_mm(mm, task, mode)) {
1610 mmput(mm);
1611 mm = ERR_PTR(-EACCES);
1612 }
1613 up_read(&task->signal->exec_update_lock);
1614
1615 return mm;
1616 }
1617
complete_vfork_done(struct task_struct * tsk)1618 static void complete_vfork_done(struct task_struct *tsk)
1619 {
1620 struct completion *vfork;
1621
1622 task_lock(tsk);
1623 vfork = tsk->vfork_done;
1624 if (likely(vfork)) {
1625 tsk->vfork_done = NULL;
1626 complete(vfork);
1627 }
1628 task_unlock(tsk);
1629 }
1630
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1631 static int wait_for_vfork_done(struct task_struct *child,
1632 struct completion *vfork)
1633 {
1634 unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1635 int killed;
1636
1637 cgroup_enter_frozen();
1638 killed = wait_for_completion_state(vfork, state);
1639 cgroup_leave_frozen(false);
1640
1641 if (killed) {
1642 task_lock(child);
1643 child->vfork_done = NULL;
1644 task_unlock(child);
1645 }
1646
1647 put_task_struct(child);
1648 return killed;
1649 }
1650
1651 /* Please note the differences between mmput and mm_release.
1652 * mmput is called whenever we stop holding onto a mm_struct,
1653 * error success whatever.
1654 *
1655 * mm_release is called after a mm_struct has been removed
1656 * from the current process.
1657 *
1658 * This difference is important for error handling, when we
1659 * only half set up a mm_struct for a new process and need to restore
1660 * the old one. Because we mmput the new mm_struct before
1661 * restoring the old one. . .
1662 * Eric Biederman 10 January 1998
1663 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1664 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1665 {
1666 uprobe_free_utask(tsk);
1667
1668 /* Get rid of any cached register state */
1669 deactivate_mm(tsk, mm);
1670
1671 /*
1672 * Signal userspace if we're not exiting with a core dump
1673 * because we want to leave the value intact for debugging
1674 * purposes.
1675 */
1676 if (tsk->clear_child_tid) {
1677 if (atomic_read(&mm->mm_users) > 1) {
1678 /*
1679 * We don't check the error code - if userspace has
1680 * not set up a proper pointer then tough luck.
1681 */
1682 put_user(0, tsk->clear_child_tid);
1683 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1684 1, NULL, NULL, 0, 0);
1685 }
1686 tsk->clear_child_tid = NULL;
1687 }
1688
1689 /*
1690 * All done, finally we can wake up parent and return this mm to him.
1691 * Also kthread_stop() uses this completion for synchronization.
1692 */
1693 if (tsk->vfork_done)
1694 complete_vfork_done(tsk);
1695 }
1696
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1697 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1698 {
1699 futex_exit_release(tsk);
1700 mm_release(tsk, mm);
1701 }
1702
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1703 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1704 {
1705 futex_exec_release(tsk);
1706 mm_release(tsk, mm);
1707 }
1708
1709 /**
1710 * dup_mm() - duplicates an existing mm structure
1711 * @tsk: the task_struct with which the new mm will be associated.
1712 * @oldmm: the mm to duplicate.
1713 *
1714 * Allocates a new mm structure and duplicates the provided @oldmm structure
1715 * content into it.
1716 *
1717 * Return: the duplicated mm or NULL on failure.
1718 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1719 static struct mm_struct *dup_mm(struct task_struct *tsk,
1720 struct mm_struct *oldmm)
1721 {
1722 struct mm_struct *mm;
1723 int err;
1724
1725 mm = allocate_mm();
1726 if (!mm)
1727 goto fail_nomem;
1728
1729 memcpy(mm, oldmm, sizeof(*mm));
1730
1731 if (!mm_init(mm, tsk, mm->user_ns))
1732 goto fail_nomem;
1733
1734 uprobe_start_dup_mmap();
1735 err = dup_mmap(mm, oldmm);
1736 if (err)
1737 goto free_pt;
1738 uprobe_end_dup_mmap();
1739
1740 mm->hiwater_rss = get_mm_rss(mm);
1741 mm->hiwater_vm = mm->total_vm;
1742
1743 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1744 goto free_pt;
1745
1746 return mm;
1747
1748 free_pt:
1749 /* don't put binfmt in mmput, we haven't got module yet */
1750 mm->binfmt = NULL;
1751 mm_init_owner(mm, NULL);
1752 mmput(mm);
1753 if (err)
1754 uprobe_end_dup_mmap();
1755
1756 fail_nomem:
1757 return NULL;
1758 }
1759
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1760 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1761 {
1762 struct mm_struct *mm, *oldmm;
1763
1764 tsk->min_flt = tsk->maj_flt = 0;
1765 tsk->nvcsw = tsk->nivcsw = 0;
1766 #ifdef CONFIG_DETECT_HUNG_TASK
1767 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1768 tsk->last_switch_time = 0;
1769 #endif
1770
1771 tsk->mm = NULL;
1772 tsk->active_mm = NULL;
1773
1774 /*
1775 * Are we cloning a kernel thread?
1776 *
1777 * We need to steal a active VM for that..
1778 */
1779 oldmm = current->mm;
1780 if (!oldmm)
1781 return 0;
1782
1783 if (clone_flags & CLONE_VM) {
1784 mmget(oldmm);
1785 mm = oldmm;
1786 } else {
1787 mm = dup_mm(tsk, current->mm);
1788 if (!mm)
1789 return -ENOMEM;
1790 }
1791
1792 tsk->mm = mm;
1793 tsk->active_mm = mm;
1794 sched_mm_cid_fork(tsk);
1795 return 0;
1796 }
1797
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1798 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1799 {
1800 struct fs_struct *fs = current->fs;
1801 if (clone_flags & CLONE_FS) {
1802 /* tsk->fs is already what we want */
1803 spin_lock(&fs->lock);
1804 /* "users" and "in_exec" locked for check_unsafe_exec() */
1805 if (fs->in_exec) {
1806 spin_unlock(&fs->lock);
1807 return -EAGAIN;
1808 }
1809 fs->users++;
1810 spin_unlock(&fs->lock);
1811 return 0;
1812 }
1813 tsk->fs = copy_fs_struct(fs);
1814 if (!tsk->fs)
1815 return -ENOMEM;
1816 return 0;
1817 }
1818
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1819 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1820 int no_files)
1821 {
1822 struct files_struct *oldf, *newf;
1823
1824 /*
1825 * A background process may not have any files ...
1826 */
1827 oldf = current->files;
1828 if (!oldf)
1829 return 0;
1830
1831 if (no_files) {
1832 tsk->files = NULL;
1833 return 0;
1834 }
1835
1836 if (clone_flags & CLONE_FILES) {
1837 atomic_inc(&oldf->count);
1838 return 0;
1839 }
1840
1841 newf = dup_fd(oldf, NULL);
1842 if (IS_ERR(newf))
1843 return PTR_ERR(newf);
1844
1845 tsk->files = newf;
1846 return 0;
1847 }
1848
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1849 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1850 {
1851 struct sighand_struct *sig;
1852
1853 if (clone_flags & CLONE_SIGHAND) {
1854 refcount_inc(¤t->sighand->count);
1855 return 0;
1856 }
1857 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1858 RCU_INIT_POINTER(tsk->sighand, sig);
1859 if (!sig)
1860 return -ENOMEM;
1861
1862 refcount_set(&sig->count, 1);
1863 spin_lock_irq(¤t->sighand->siglock);
1864 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1865 spin_unlock_irq(¤t->sighand->siglock);
1866
1867 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1868 if (clone_flags & CLONE_CLEAR_SIGHAND)
1869 flush_signal_handlers(tsk, 0);
1870
1871 return 0;
1872 }
1873
__cleanup_sighand(struct sighand_struct * sighand)1874 void __cleanup_sighand(struct sighand_struct *sighand)
1875 {
1876 if (refcount_dec_and_test(&sighand->count)) {
1877 signalfd_cleanup(sighand);
1878 /*
1879 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1880 * without an RCU grace period, see __lock_task_sighand().
1881 */
1882 kmem_cache_free(sighand_cachep, sighand);
1883 }
1884 }
1885
1886 /*
1887 * Initialize POSIX timer handling for a thread group.
1888 */
posix_cpu_timers_init_group(struct signal_struct * sig)1889 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1890 {
1891 struct posix_cputimers *pct = &sig->posix_cputimers;
1892 unsigned long cpu_limit;
1893
1894 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1895 posix_cputimers_group_init(pct, cpu_limit);
1896 }
1897
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1898 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1899 {
1900 struct signal_struct *sig;
1901
1902 if (clone_flags & CLONE_THREAD)
1903 return 0;
1904
1905 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1906 tsk->signal = sig;
1907 if (!sig)
1908 return -ENOMEM;
1909
1910 sig->nr_threads = 1;
1911 sig->quick_threads = 1;
1912 atomic_set(&sig->live, 1);
1913 refcount_set(&sig->sigcnt, 1);
1914
1915 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1916 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1917 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1918
1919 init_waitqueue_head(&sig->wait_chldexit);
1920 sig->curr_target = tsk;
1921 init_sigpending(&sig->shared_pending);
1922 INIT_HLIST_HEAD(&sig->multiprocess);
1923 seqlock_init(&sig->stats_lock);
1924 prev_cputime_init(&sig->prev_cputime);
1925
1926 #ifdef CONFIG_POSIX_TIMERS
1927 INIT_HLIST_HEAD(&sig->posix_timers);
1928 INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1929 hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1930 #endif
1931
1932 task_lock(current->group_leader);
1933 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1934 task_unlock(current->group_leader);
1935
1936 posix_cpu_timers_init_group(sig);
1937
1938 tty_audit_fork(sig);
1939 sched_autogroup_fork(sig);
1940
1941 sig->oom_score_adj = current->signal->oom_score_adj;
1942 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1943
1944 mutex_init(&sig->cred_guard_mutex);
1945 init_rwsem(&sig->exec_update_lock);
1946
1947 return 0;
1948 }
1949
copy_seccomp(struct task_struct * p)1950 static void copy_seccomp(struct task_struct *p)
1951 {
1952 #ifdef CONFIG_SECCOMP
1953 /*
1954 * Must be called with sighand->lock held, which is common to
1955 * all threads in the group. Holding cred_guard_mutex is not
1956 * needed because this new task is not yet running and cannot
1957 * be racing exec.
1958 */
1959 assert_spin_locked(¤t->sighand->siglock);
1960
1961 /* Ref-count the new filter user, and assign it. */
1962 get_seccomp_filter(current);
1963 p->seccomp = current->seccomp;
1964
1965 /*
1966 * Explicitly enable no_new_privs here in case it got set
1967 * between the task_struct being duplicated and holding the
1968 * sighand lock. The seccomp state and nnp must be in sync.
1969 */
1970 if (task_no_new_privs(current))
1971 task_set_no_new_privs(p);
1972
1973 /*
1974 * If the parent gained a seccomp mode after copying thread
1975 * flags and between before we held the sighand lock, we have
1976 * to manually enable the seccomp thread flag here.
1977 */
1978 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1979 set_task_syscall_work(p, SECCOMP);
1980 #endif
1981 }
1982
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1983 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1984 {
1985 current->clear_child_tid = tidptr;
1986
1987 return task_pid_vnr(current);
1988 }
1989
rt_mutex_init_task(struct task_struct * p)1990 static void rt_mutex_init_task(struct task_struct *p)
1991 {
1992 raw_spin_lock_init(&p->pi_lock);
1993 #ifdef CONFIG_RT_MUTEXES
1994 p->pi_waiters = RB_ROOT_CACHED;
1995 p->pi_top_task = NULL;
1996 p->pi_blocked_on = NULL;
1997 #endif
1998 }
1999
init_task_pid_links(struct task_struct * task)2000 static inline void init_task_pid_links(struct task_struct *task)
2001 {
2002 enum pid_type type;
2003
2004 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
2005 INIT_HLIST_NODE(&task->pid_links[type]);
2006 }
2007
2008 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)2009 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
2010 {
2011 if (type == PIDTYPE_PID)
2012 task->thread_pid = pid;
2013 else
2014 task->signal->pids[type] = pid;
2015 }
2016
rcu_copy_process(struct task_struct * p)2017 static inline void rcu_copy_process(struct task_struct *p)
2018 {
2019 #ifdef CONFIG_PREEMPT_RCU
2020 p->rcu_read_lock_nesting = 0;
2021 p->rcu_read_unlock_special.s = 0;
2022 p->rcu_blocked_node = NULL;
2023 INIT_LIST_HEAD(&p->rcu_node_entry);
2024 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2025 #ifdef CONFIG_TASKS_RCU
2026 p->rcu_tasks_holdout = false;
2027 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2028 p->rcu_tasks_idle_cpu = -1;
2029 INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
2030 #endif /* #ifdef CONFIG_TASKS_RCU */
2031 #ifdef CONFIG_TASKS_TRACE_RCU
2032 p->trc_reader_nesting = 0;
2033 p->trc_reader_special.s = 0;
2034 INIT_LIST_HEAD(&p->trc_holdout_list);
2035 INIT_LIST_HEAD(&p->trc_blkd_node);
2036 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
2037 }
2038
2039 /**
2040 * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2041 * @pid: the struct pid for which to create a pidfd
2042 * @flags: flags of the new @pidfd
2043 * @ret: Where to return the file for the pidfd.
2044 *
2045 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2046 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2047 *
2048 * The helper doesn't perform checks on @pid which makes it useful for pidfds
2049 * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2050 * pidfd file are prepared.
2051 *
2052 * If this function returns successfully the caller is responsible to either
2053 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2054 * order to install the pidfd into its file descriptor table or they must use
2055 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2056 * respectively.
2057 *
2058 * This function is useful when a pidfd must already be reserved but there
2059 * might still be points of failure afterwards and the caller wants to ensure
2060 * that no pidfd is leaked into its file descriptor table.
2061 *
2062 * Return: On success, a reserved pidfd is returned from the function and a new
2063 * pidfd file is returned in the last argument to the function. On
2064 * error, a negative error code is returned from the function and the
2065 * last argument remains unchanged.
2066 */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2067 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2068 {
2069 struct file *pidfd_file;
2070
2071 CLASS(get_unused_fd, pidfd)(O_CLOEXEC);
2072 if (pidfd < 0)
2073 return pidfd;
2074
2075 pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2076 if (IS_ERR(pidfd_file))
2077 return PTR_ERR(pidfd_file);
2078
2079 *ret = pidfd_file;
2080 return take_fd(pidfd);
2081 }
2082
2083 /**
2084 * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2085 * @pid: the struct pid for which to create a pidfd
2086 * @flags: flags of the new @pidfd
2087 * @ret: Where to return the pidfd.
2088 *
2089 * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2090 * caller's file descriptor table. The pidfd is reserved but not installed yet.
2091 *
2092 * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2093 * task identified by @pid must be a thread-group leader.
2094 *
2095 * If this function returns successfully the caller is responsible to either
2096 * call fd_install() passing the returned pidfd and pidfd file as arguments in
2097 * order to install the pidfd into its file descriptor table or they must use
2098 * put_unused_fd() and fput() on the returned pidfd and pidfd file
2099 * respectively.
2100 *
2101 * This function is useful when a pidfd must already be reserved but there
2102 * might still be points of failure afterwards and the caller wants to ensure
2103 * that no pidfd is leaked into its file descriptor table.
2104 *
2105 * Return: On success, a reserved pidfd is returned from the function and a new
2106 * pidfd file is returned in the last argument to the function. On
2107 * error, a negative error code is returned from the function and the
2108 * last argument remains unchanged.
2109 */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2110 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2111 {
2112 bool thread = flags & PIDFD_THREAD;
2113
2114 if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2115 return -EINVAL;
2116
2117 return __pidfd_prepare(pid, flags, ret);
2118 }
2119
__delayed_free_task(struct rcu_head * rhp)2120 static void __delayed_free_task(struct rcu_head *rhp)
2121 {
2122 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2123
2124 free_task(tsk);
2125 }
2126
delayed_free_task(struct task_struct * tsk)2127 static __always_inline void delayed_free_task(struct task_struct *tsk)
2128 {
2129 if (IS_ENABLED(CONFIG_MEMCG))
2130 call_rcu(&tsk->rcu, __delayed_free_task);
2131 else
2132 free_task(tsk);
2133 }
2134
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2135 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2136 {
2137 /* Skip if kernel thread */
2138 if (!tsk->mm)
2139 return;
2140
2141 /* Skip if spawning a thread or using vfork */
2142 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2143 return;
2144
2145 /* We need to synchronize with __set_oom_adj */
2146 mutex_lock(&oom_adj_mutex);
2147 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2148 /* Update the values in case they were changed after copy_signal */
2149 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2150 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2151 mutex_unlock(&oom_adj_mutex);
2152 }
2153
2154 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2155 static void rv_task_fork(struct task_struct *p)
2156 {
2157 int i;
2158
2159 for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2160 p->rv[i].da_mon.monitoring = false;
2161 }
2162 #else
2163 #define rv_task_fork(p) do {} while (0)
2164 #endif
2165
2166 /*
2167 * This creates a new process as a copy of the old one,
2168 * but does not actually start it yet.
2169 *
2170 * It copies the registers, and all the appropriate
2171 * parts of the process environment (as per the clone
2172 * flags). The actual kick-off is left to the caller.
2173 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2174 __latent_entropy struct task_struct *copy_process(
2175 struct pid *pid,
2176 int trace,
2177 int node,
2178 struct kernel_clone_args *args)
2179 {
2180 int pidfd = -1, retval;
2181 struct task_struct *p;
2182 struct multiprocess_signals delayed;
2183 struct file *pidfile = NULL;
2184 const u64 clone_flags = args->flags;
2185 struct nsproxy *nsp = current->nsproxy;
2186
2187 /*
2188 * Don't allow sharing the root directory with processes in a different
2189 * namespace
2190 */
2191 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2192 return ERR_PTR(-EINVAL);
2193
2194 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2195 return ERR_PTR(-EINVAL);
2196
2197 /*
2198 * Thread groups must share signals as well, and detached threads
2199 * can only be started up within the thread group.
2200 */
2201 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2202 return ERR_PTR(-EINVAL);
2203
2204 /*
2205 * Shared signal handlers imply shared VM. By way of the above,
2206 * thread groups also imply shared VM. Blocking this case allows
2207 * for various simplifications in other code.
2208 */
2209 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2210 return ERR_PTR(-EINVAL);
2211
2212 /*
2213 * Siblings of global init remain as zombies on exit since they are
2214 * not reaped by their parent (swapper). To solve this and to avoid
2215 * multi-rooted process trees, prevent global and container-inits
2216 * from creating siblings.
2217 */
2218 if ((clone_flags & CLONE_PARENT) &&
2219 current->signal->flags & SIGNAL_UNKILLABLE)
2220 return ERR_PTR(-EINVAL);
2221
2222 /*
2223 * If the new process will be in a different pid or user namespace
2224 * do not allow it to share a thread group with the forking task.
2225 */
2226 if (clone_flags & CLONE_THREAD) {
2227 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2228 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2229 return ERR_PTR(-EINVAL);
2230 }
2231
2232 if (clone_flags & CLONE_PIDFD) {
2233 /*
2234 * - CLONE_DETACHED is blocked so that we can potentially
2235 * reuse it later for CLONE_PIDFD.
2236 */
2237 if (clone_flags & CLONE_DETACHED)
2238 return ERR_PTR(-EINVAL);
2239 }
2240
2241 /*
2242 * Force any signals received before this point to be delivered
2243 * before the fork happens. Collect up signals sent to multiple
2244 * processes that happen during the fork and delay them so that
2245 * they appear to happen after the fork.
2246 */
2247 sigemptyset(&delayed.signal);
2248 INIT_HLIST_NODE(&delayed.node);
2249
2250 spin_lock_irq(¤t->sighand->siglock);
2251 if (!(clone_flags & CLONE_THREAD))
2252 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2253 recalc_sigpending();
2254 spin_unlock_irq(¤t->sighand->siglock);
2255 retval = -ERESTARTNOINTR;
2256 if (task_sigpending(current))
2257 goto fork_out;
2258
2259 retval = -ENOMEM;
2260 p = dup_task_struct(current, node);
2261 if (!p)
2262 goto fork_out;
2263 p->flags &= ~PF_KTHREAD;
2264 if (args->kthread)
2265 p->flags |= PF_KTHREAD;
2266 if (args->user_worker) {
2267 /*
2268 * Mark us a user worker, and block any signal that isn't
2269 * fatal or STOP
2270 */
2271 p->flags |= PF_USER_WORKER;
2272 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2273 }
2274 if (args->io_thread)
2275 p->flags |= PF_IO_WORKER;
2276
2277 if (args->name)
2278 strscpy_pad(p->comm, args->name, sizeof(p->comm));
2279
2280 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2281 /*
2282 * Clear TID on mm_release()?
2283 */
2284 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2285
2286 ftrace_graph_init_task(p);
2287
2288 rt_mutex_init_task(p);
2289
2290 lockdep_assert_irqs_enabled();
2291 #ifdef CONFIG_PROVE_LOCKING
2292 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2293 #endif
2294 retval = copy_creds(p, clone_flags);
2295 if (retval < 0)
2296 goto bad_fork_free;
2297
2298 retval = -EAGAIN;
2299 if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2300 if (p->real_cred->user != INIT_USER &&
2301 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2302 goto bad_fork_cleanup_count;
2303 }
2304 current->flags &= ~PF_NPROC_EXCEEDED;
2305
2306 /*
2307 * If multiple threads are within copy_process(), then this check
2308 * triggers too late. This doesn't hurt, the check is only there
2309 * to stop root fork bombs.
2310 */
2311 retval = -EAGAIN;
2312 if (data_race(nr_threads >= max_threads))
2313 goto bad_fork_cleanup_count;
2314
2315 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2316 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2317 p->flags |= PF_FORKNOEXEC;
2318 INIT_LIST_HEAD(&p->children);
2319 INIT_LIST_HEAD(&p->sibling);
2320 rcu_copy_process(p);
2321 p->vfork_done = NULL;
2322 spin_lock_init(&p->alloc_lock);
2323
2324 init_sigpending(&p->pending);
2325
2326 p->utime = p->stime = p->gtime = 0;
2327 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2328 p->utimescaled = p->stimescaled = 0;
2329 #endif
2330 prev_cputime_init(&p->prev_cputime);
2331
2332 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2333 seqcount_init(&p->vtime.seqcount);
2334 p->vtime.starttime = 0;
2335 p->vtime.state = VTIME_INACTIVE;
2336 #endif
2337
2338 #ifdef CONFIG_IO_URING
2339 p->io_uring = NULL;
2340 #endif
2341
2342 p->default_timer_slack_ns = current->timer_slack_ns;
2343
2344 #ifdef CONFIG_PSI
2345 p->psi_flags = 0;
2346 #endif
2347
2348 task_io_accounting_init(&p->ioac);
2349 acct_clear_integrals(p);
2350
2351 posix_cputimers_init(&p->posix_cputimers);
2352 tick_dep_init_task(p);
2353
2354 p->io_context = NULL;
2355 audit_set_context(p, NULL);
2356 cgroup_fork(p);
2357 if (args->kthread) {
2358 if (!set_kthread_struct(p))
2359 goto bad_fork_cleanup_delayacct;
2360 }
2361 #ifdef CONFIG_NUMA
2362 p->mempolicy = mpol_dup(p->mempolicy);
2363 if (IS_ERR(p->mempolicy)) {
2364 retval = PTR_ERR(p->mempolicy);
2365 p->mempolicy = NULL;
2366 goto bad_fork_cleanup_delayacct;
2367 }
2368 #endif
2369 #ifdef CONFIG_CPUSETS
2370 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2371 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2372 #endif
2373 #ifdef CONFIG_TRACE_IRQFLAGS
2374 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2375 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2376 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2377 p->softirqs_enabled = 1;
2378 p->softirq_context = 0;
2379 #endif
2380
2381 p->pagefault_disabled = 0;
2382
2383 #ifdef CONFIG_LOCKDEP
2384 lockdep_init_task(p);
2385 #endif
2386
2387 #ifdef CONFIG_DEBUG_MUTEXES
2388 p->blocked_on = NULL; /* not blocked yet */
2389 #endif
2390 #ifdef CONFIG_BCACHE
2391 p->sequential_io = 0;
2392 p->sequential_io_avg = 0;
2393 #endif
2394 #ifdef CONFIG_BPF_SYSCALL
2395 RCU_INIT_POINTER(p->bpf_storage, NULL);
2396 p->bpf_ctx = NULL;
2397 #endif
2398
2399 /* Perform scheduler related setup. Assign this task to a CPU. */
2400 retval = sched_fork(clone_flags, p);
2401 if (retval)
2402 goto bad_fork_cleanup_policy;
2403
2404 retval = perf_event_init_task(p, clone_flags);
2405 if (retval)
2406 goto bad_fork_sched_cancel_fork;
2407 retval = audit_alloc(p);
2408 if (retval)
2409 goto bad_fork_cleanup_perf;
2410 /* copy all the process information */
2411 shm_init_task(p);
2412 retval = security_task_alloc(p, clone_flags);
2413 if (retval)
2414 goto bad_fork_cleanup_audit;
2415 retval = copy_semundo(clone_flags, p);
2416 if (retval)
2417 goto bad_fork_cleanup_security;
2418 retval = copy_files(clone_flags, p, args->no_files);
2419 if (retval)
2420 goto bad_fork_cleanup_semundo;
2421 retval = copy_fs(clone_flags, p);
2422 if (retval)
2423 goto bad_fork_cleanup_files;
2424 retval = copy_sighand(clone_flags, p);
2425 if (retval)
2426 goto bad_fork_cleanup_fs;
2427 retval = copy_signal(clone_flags, p);
2428 if (retval)
2429 goto bad_fork_cleanup_sighand;
2430 retval = copy_mm(clone_flags, p);
2431 if (retval)
2432 goto bad_fork_cleanup_signal;
2433 retval = copy_namespaces(clone_flags, p);
2434 if (retval)
2435 goto bad_fork_cleanup_mm;
2436 retval = copy_io(clone_flags, p);
2437 if (retval)
2438 goto bad_fork_cleanup_namespaces;
2439 retval = copy_thread(p, args);
2440 if (retval)
2441 goto bad_fork_cleanup_io;
2442
2443 stackleak_task_init(p);
2444
2445 if (pid != &init_struct_pid) {
2446 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2447 args->set_tid_size);
2448 if (IS_ERR(pid)) {
2449 retval = PTR_ERR(pid);
2450 goto bad_fork_cleanup_thread;
2451 }
2452 }
2453
2454 /*
2455 * This has to happen after we've potentially unshared the file
2456 * descriptor table (so that the pidfd doesn't leak into the child
2457 * if the fd table isn't shared).
2458 */
2459 if (clone_flags & CLONE_PIDFD) {
2460 int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2461
2462 /*
2463 * Note that no task has been attached to @pid yet indicate
2464 * that via CLONE_PIDFD.
2465 */
2466 retval = __pidfd_prepare(pid, flags | PIDFD_CLONE, &pidfile);
2467 if (retval < 0)
2468 goto bad_fork_free_pid;
2469 pidfd = retval;
2470
2471 retval = put_user(pidfd, args->pidfd);
2472 if (retval)
2473 goto bad_fork_put_pidfd;
2474 }
2475
2476 #ifdef CONFIG_BLOCK
2477 p->plug = NULL;
2478 #endif
2479 futex_init_task(p);
2480
2481 /*
2482 * sigaltstack should be cleared when sharing the same VM
2483 */
2484 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2485 sas_ss_reset(p);
2486
2487 /*
2488 * Syscall tracing and stepping should be turned off in the
2489 * child regardless of CLONE_PTRACE.
2490 */
2491 user_disable_single_step(p);
2492 clear_task_syscall_work(p, SYSCALL_TRACE);
2493 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2494 clear_task_syscall_work(p, SYSCALL_EMU);
2495 #endif
2496 clear_tsk_latency_tracing(p);
2497
2498 /* ok, now we should be set up.. */
2499 p->pid = pid_nr(pid);
2500 if (clone_flags & CLONE_THREAD) {
2501 p->group_leader = current->group_leader;
2502 p->tgid = current->tgid;
2503 } else {
2504 p->group_leader = p;
2505 p->tgid = p->pid;
2506 }
2507
2508 p->nr_dirtied = 0;
2509 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2510 p->dirty_paused_when = 0;
2511
2512 p->pdeath_signal = 0;
2513 p->task_works = NULL;
2514 clear_posix_cputimers_work(p);
2515
2516 #ifdef CONFIG_KRETPROBES
2517 p->kretprobe_instances.first = NULL;
2518 #endif
2519 #ifdef CONFIG_RETHOOK
2520 p->rethooks.first = NULL;
2521 #endif
2522
2523 /*
2524 * Ensure that the cgroup subsystem policies allow the new process to be
2525 * forked. It should be noted that the new process's css_set can be changed
2526 * between here and cgroup_post_fork() if an organisation operation is in
2527 * progress.
2528 */
2529 retval = cgroup_can_fork(p, args);
2530 if (retval)
2531 goto bad_fork_put_pidfd;
2532
2533 /*
2534 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2535 * the new task on the correct runqueue. All this *before* the task
2536 * becomes visible.
2537 *
2538 * This isn't part of ->can_fork() because while the re-cloning is
2539 * cgroup specific, it unconditionally needs to place the task on a
2540 * runqueue.
2541 */
2542 retval = sched_cgroup_fork(p, args);
2543 if (retval)
2544 goto bad_fork_cancel_cgroup;
2545
2546 /*
2547 * From this point on we must avoid any synchronous user-space
2548 * communication until we take the tasklist-lock. In particular, we do
2549 * not want user-space to be able to predict the process start-time by
2550 * stalling fork(2) after we recorded the start_time but before it is
2551 * visible to the system.
2552 */
2553
2554 p->start_time = ktime_get_ns();
2555 p->start_boottime = ktime_get_boottime_ns();
2556
2557 /*
2558 * Make it visible to the rest of the system, but dont wake it up yet.
2559 * Need tasklist lock for parent etc handling!
2560 */
2561 write_lock_irq(&tasklist_lock);
2562
2563 /* CLONE_PARENT re-uses the old parent */
2564 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2565 p->real_parent = current->real_parent;
2566 p->parent_exec_id = current->parent_exec_id;
2567 if (clone_flags & CLONE_THREAD)
2568 p->exit_signal = -1;
2569 else
2570 p->exit_signal = current->group_leader->exit_signal;
2571 } else {
2572 p->real_parent = current;
2573 p->parent_exec_id = current->self_exec_id;
2574 p->exit_signal = args->exit_signal;
2575 }
2576
2577 klp_copy_process(p);
2578
2579 sched_core_fork(p);
2580
2581 spin_lock(¤t->sighand->siglock);
2582
2583 rv_task_fork(p);
2584
2585 rseq_fork(p, clone_flags);
2586
2587 /* Don't start children in a dying pid namespace */
2588 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2589 retval = -ENOMEM;
2590 goto bad_fork_core_free;
2591 }
2592
2593 /* Let kill terminate clone/fork in the middle */
2594 if (fatal_signal_pending(current)) {
2595 retval = -EINTR;
2596 goto bad_fork_core_free;
2597 }
2598
2599 /* No more failure paths after this point. */
2600
2601 /*
2602 * Copy seccomp details explicitly here, in case they were changed
2603 * before holding sighand lock.
2604 */
2605 copy_seccomp(p);
2606
2607 init_task_pid_links(p);
2608 if (likely(p->pid)) {
2609 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2610
2611 init_task_pid(p, PIDTYPE_PID, pid);
2612 if (thread_group_leader(p)) {
2613 init_task_pid(p, PIDTYPE_TGID, pid);
2614 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2615 init_task_pid(p, PIDTYPE_SID, task_session(current));
2616
2617 if (is_child_reaper(pid)) {
2618 ns_of_pid(pid)->child_reaper = p;
2619 p->signal->flags |= SIGNAL_UNKILLABLE;
2620 }
2621 p->signal->shared_pending.signal = delayed.signal;
2622 p->signal->tty = tty_kref_get(current->signal->tty);
2623 /*
2624 * Inherit has_child_subreaper flag under the same
2625 * tasklist_lock with adding child to the process tree
2626 * for propagate_has_child_subreaper optimization.
2627 */
2628 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2629 p->real_parent->signal->is_child_subreaper;
2630 list_add_tail(&p->sibling, &p->real_parent->children);
2631 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2632 attach_pid(p, PIDTYPE_TGID);
2633 attach_pid(p, PIDTYPE_PGID);
2634 attach_pid(p, PIDTYPE_SID);
2635 __this_cpu_inc(process_counts);
2636 } else {
2637 current->signal->nr_threads++;
2638 current->signal->quick_threads++;
2639 atomic_inc(¤t->signal->live);
2640 refcount_inc(¤t->signal->sigcnt);
2641 task_join_group_stop(p);
2642 list_add_tail_rcu(&p->thread_node,
2643 &p->signal->thread_head);
2644 }
2645 attach_pid(p, PIDTYPE_PID);
2646 nr_threads++;
2647 }
2648 total_forks++;
2649 hlist_del_init(&delayed.node);
2650 spin_unlock(¤t->sighand->siglock);
2651 syscall_tracepoint_update(p);
2652 write_unlock_irq(&tasklist_lock);
2653
2654 if (pidfile)
2655 fd_install(pidfd, pidfile);
2656
2657 proc_fork_connector(p);
2658 sched_post_fork(p);
2659 cgroup_post_fork(p, args);
2660 perf_event_fork(p);
2661
2662 trace_task_newtask(p, clone_flags);
2663 uprobe_copy_process(p, clone_flags);
2664 user_events_fork(p, clone_flags);
2665
2666 copy_oom_score_adj(clone_flags, p);
2667
2668 return p;
2669
2670 bad_fork_core_free:
2671 sched_core_free(p);
2672 spin_unlock(¤t->sighand->siglock);
2673 write_unlock_irq(&tasklist_lock);
2674 bad_fork_cancel_cgroup:
2675 cgroup_cancel_fork(p, args);
2676 bad_fork_put_pidfd:
2677 if (clone_flags & CLONE_PIDFD) {
2678 fput(pidfile);
2679 put_unused_fd(pidfd);
2680 }
2681 bad_fork_free_pid:
2682 if (pid != &init_struct_pid)
2683 free_pid(pid);
2684 bad_fork_cleanup_thread:
2685 exit_thread(p);
2686 bad_fork_cleanup_io:
2687 if (p->io_context)
2688 exit_io_context(p);
2689 bad_fork_cleanup_namespaces:
2690 exit_task_namespaces(p);
2691 bad_fork_cleanup_mm:
2692 if (p->mm) {
2693 mm_clear_owner(p->mm, p);
2694 mmput(p->mm);
2695 }
2696 bad_fork_cleanup_signal:
2697 if (!(clone_flags & CLONE_THREAD))
2698 free_signal_struct(p->signal);
2699 bad_fork_cleanup_sighand:
2700 __cleanup_sighand(p->sighand);
2701 bad_fork_cleanup_fs:
2702 exit_fs(p); /* blocking */
2703 bad_fork_cleanup_files:
2704 exit_files(p); /* blocking */
2705 bad_fork_cleanup_semundo:
2706 exit_sem(p);
2707 bad_fork_cleanup_security:
2708 security_task_free(p);
2709 bad_fork_cleanup_audit:
2710 audit_free(p);
2711 bad_fork_cleanup_perf:
2712 perf_event_free_task(p);
2713 bad_fork_sched_cancel_fork:
2714 sched_cancel_fork(p);
2715 bad_fork_cleanup_policy:
2716 lockdep_free_task(p);
2717 #ifdef CONFIG_NUMA
2718 mpol_put(p->mempolicy);
2719 #endif
2720 bad_fork_cleanup_delayacct:
2721 delayacct_tsk_free(p);
2722 bad_fork_cleanup_count:
2723 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2724 exit_creds(p);
2725 bad_fork_free:
2726 WRITE_ONCE(p->__state, TASK_DEAD);
2727 exit_task_stack_account(p);
2728 put_task_stack(p);
2729 delayed_free_task(p);
2730 fork_out:
2731 spin_lock_irq(¤t->sighand->siglock);
2732 hlist_del_init(&delayed.node);
2733 spin_unlock_irq(¤t->sighand->siglock);
2734 return ERR_PTR(retval);
2735 }
2736
init_idle_pids(struct task_struct * idle)2737 static inline void init_idle_pids(struct task_struct *idle)
2738 {
2739 enum pid_type type;
2740
2741 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2742 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2743 init_task_pid(idle, type, &init_struct_pid);
2744 }
2745 }
2746
idle_dummy(void * dummy)2747 static int idle_dummy(void *dummy)
2748 {
2749 /* This function is never called */
2750 return 0;
2751 }
2752
fork_idle(int cpu)2753 struct task_struct * __init fork_idle(int cpu)
2754 {
2755 struct task_struct *task;
2756 struct kernel_clone_args args = {
2757 .flags = CLONE_VM,
2758 .fn = &idle_dummy,
2759 .fn_arg = NULL,
2760 .kthread = 1,
2761 .idle = 1,
2762 };
2763
2764 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2765 if (!IS_ERR(task)) {
2766 init_idle_pids(task);
2767 init_idle(task, cpu);
2768 }
2769
2770 return task;
2771 }
2772
2773 /*
2774 * This is like kernel_clone(), but shaved down and tailored to just
2775 * creating io_uring workers. It returns a created task, or an error pointer.
2776 * The returned task is inactive, and the caller must fire it up through
2777 * wake_up_new_task(p). All signals are blocked in the created task.
2778 */
create_io_thread(int (* fn)(void *),void * arg,int node)2779 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2780 {
2781 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2782 CLONE_IO;
2783 struct kernel_clone_args args = {
2784 .flags = ((lower_32_bits(flags) | CLONE_VM |
2785 CLONE_UNTRACED) & ~CSIGNAL),
2786 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2787 .fn = fn,
2788 .fn_arg = arg,
2789 .io_thread = 1,
2790 .user_worker = 1,
2791 };
2792
2793 return copy_process(NULL, 0, node, &args);
2794 }
2795
2796 /*
2797 * Ok, this is the main fork-routine.
2798 *
2799 * It copies the process, and if successful kick-starts
2800 * it and waits for it to finish using the VM if required.
2801 *
2802 * args->exit_signal is expected to be checked for sanity by the caller.
2803 */
kernel_clone(struct kernel_clone_args * args)2804 pid_t kernel_clone(struct kernel_clone_args *args)
2805 {
2806 u64 clone_flags = args->flags;
2807 struct completion vfork;
2808 struct pid *pid;
2809 struct task_struct *p;
2810 int trace = 0;
2811 pid_t nr;
2812
2813 /*
2814 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2815 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2816 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2817 * field in struct clone_args and it still doesn't make sense to have
2818 * them both point at the same memory location. Performing this check
2819 * here has the advantage that we don't need to have a separate helper
2820 * to check for legacy clone().
2821 */
2822 if ((clone_flags & CLONE_PIDFD) &&
2823 (clone_flags & CLONE_PARENT_SETTID) &&
2824 (args->pidfd == args->parent_tid))
2825 return -EINVAL;
2826
2827 /*
2828 * Determine whether and which event to report to ptracer. When
2829 * called from kernel_thread or CLONE_UNTRACED is explicitly
2830 * requested, no event is reported; otherwise, report if the event
2831 * for the type of forking is enabled.
2832 */
2833 if (!(clone_flags & CLONE_UNTRACED)) {
2834 if (clone_flags & CLONE_VFORK)
2835 trace = PTRACE_EVENT_VFORK;
2836 else if (args->exit_signal != SIGCHLD)
2837 trace = PTRACE_EVENT_CLONE;
2838 else
2839 trace = PTRACE_EVENT_FORK;
2840
2841 if (likely(!ptrace_event_enabled(current, trace)))
2842 trace = 0;
2843 }
2844
2845 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2846 add_latent_entropy();
2847
2848 if (IS_ERR(p))
2849 return PTR_ERR(p);
2850
2851 /*
2852 * Do this prior waking up the new thread - the thread pointer
2853 * might get invalid after that point, if the thread exits quickly.
2854 */
2855 trace_sched_process_fork(current, p);
2856
2857 pid = get_task_pid(p, PIDTYPE_PID);
2858 nr = pid_vnr(pid);
2859
2860 if (clone_flags & CLONE_PARENT_SETTID)
2861 put_user(nr, args->parent_tid);
2862
2863 if (clone_flags & CLONE_VFORK) {
2864 p->vfork_done = &vfork;
2865 init_completion(&vfork);
2866 get_task_struct(p);
2867 }
2868
2869 if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2870 /* lock the task to synchronize with memcg migration */
2871 task_lock(p);
2872 lru_gen_add_mm(p->mm);
2873 task_unlock(p);
2874 }
2875
2876 wake_up_new_task(p);
2877
2878 /* forking complete and child started to run, tell ptracer */
2879 if (unlikely(trace))
2880 ptrace_event_pid(trace, pid);
2881
2882 if (clone_flags & CLONE_VFORK) {
2883 if (!wait_for_vfork_done(p, &vfork))
2884 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2885 }
2886
2887 put_pid(pid);
2888 return nr;
2889 }
2890
2891 /*
2892 * Create a kernel thread.
2893 */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2894 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2895 unsigned long flags)
2896 {
2897 struct kernel_clone_args args = {
2898 .flags = ((lower_32_bits(flags) | CLONE_VM |
2899 CLONE_UNTRACED) & ~CSIGNAL),
2900 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2901 .fn = fn,
2902 .fn_arg = arg,
2903 .name = name,
2904 .kthread = 1,
2905 };
2906
2907 return kernel_clone(&args);
2908 }
2909
2910 /*
2911 * Create a user mode thread.
2912 */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2913 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2914 {
2915 struct kernel_clone_args args = {
2916 .flags = ((lower_32_bits(flags) | CLONE_VM |
2917 CLONE_UNTRACED) & ~CSIGNAL),
2918 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2919 .fn = fn,
2920 .fn_arg = arg,
2921 };
2922
2923 return kernel_clone(&args);
2924 }
2925
2926 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2927 SYSCALL_DEFINE0(fork)
2928 {
2929 #ifdef CONFIG_MMU
2930 struct kernel_clone_args args = {
2931 .exit_signal = SIGCHLD,
2932 };
2933
2934 return kernel_clone(&args);
2935 #else
2936 /* can not support in nommu mode */
2937 return -EINVAL;
2938 #endif
2939 }
2940 #endif
2941
2942 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2943 SYSCALL_DEFINE0(vfork)
2944 {
2945 struct kernel_clone_args args = {
2946 .flags = CLONE_VFORK | CLONE_VM,
2947 .exit_signal = SIGCHLD,
2948 };
2949
2950 return kernel_clone(&args);
2951 }
2952 #endif
2953
2954 #ifdef __ARCH_WANT_SYS_CLONE
2955 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2956 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2957 int __user *, parent_tidptr,
2958 unsigned long, tls,
2959 int __user *, child_tidptr)
2960 #elif defined(CONFIG_CLONE_BACKWARDS2)
2961 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2962 int __user *, parent_tidptr,
2963 int __user *, child_tidptr,
2964 unsigned long, tls)
2965 #elif defined(CONFIG_CLONE_BACKWARDS3)
2966 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2967 int, stack_size,
2968 int __user *, parent_tidptr,
2969 int __user *, child_tidptr,
2970 unsigned long, tls)
2971 #else
2972 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2973 int __user *, parent_tidptr,
2974 int __user *, child_tidptr,
2975 unsigned long, tls)
2976 #endif
2977 {
2978 struct kernel_clone_args args = {
2979 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2980 .pidfd = parent_tidptr,
2981 .child_tid = child_tidptr,
2982 .parent_tid = parent_tidptr,
2983 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2984 .stack = newsp,
2985 .tls = tls,
2986 };
2987
2988 return kernel_clone(&args);
2989 }
2990 #endif
2991
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2992 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2993 struct clone_args __user *uargs,
2994 size_t usize)
2995 {
2996 int err;
2997 struct clone_args args;
2998 pid_t *kset_tid = kargs->set_tid;
2999
3000 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3001 CLONE_ARGS_SIZE_VER0);
3002 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3003 CLONE_ARGS_SIZE_VER1);
3004 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3005 CLONE_ARGS_SIZE_VER2);
3006 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3007
3008 if (unlikely(usize > PAGE_SIZE))
3009 return -E2BIG;
3010 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3011 return -EINVAL;
3012
3013 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3014 if (err)
3015 return err;
3016
3017 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3018 return -EINVAL;
3019
3020 if (unlikely(!args.set_tid && args.set_tid_size > 0))
3021 return -EINVAL;
3022
3023 if (unlikely(args.set_tid && args.set_tid_size == 0))
3024 return -EINVAL;
3025
3026 /*
3027 * Verify that higher 32bits of exit_signal are unset and that
3028 * it is a valid signal
3029 */
3030 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3031 !valid_signal(args.exit_signal)))
3032 return -EINVAL;
3033
3034 if ((args.flags & CLONE_INTO_CGROUP) &&
3035 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3036 return -EINVAL;
3037
3038 *kargs = (struct kernel_clone_args){
3039 .flags = args.flags,
3040 .pidfd = u64_to_user_ptr(args.pidfd),
3041 .child_tid = u64_to_user_ptr(args.child_tid),
3042 .parent_tid = u64_to_user_ptr(args.parent_tid),
3043 .exit_signal = args.exit_signal,
3044 .stack = args.stack,
3045 .stack_size = args.stack_size,
3046 .tls = args.tls,
3047 .set_tid_size = args.set_tid_size,
3048 .cgroup = args.cgroup,
3049 };
3050
3051 if (args.set_tid &&
3052 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3053 (kargs->set_tid_size * sizeof(pid_t))))
3054 return -EFAULT;
3055
3056 kargs->set_tid = kset_tid;
3057
3058 return 0;
3059 }
3060
3061 /**
3062 * clone3_stack_valid - check and prepare stack
3063 * @kargs: kernel clone args
3064 *
3065 * Verify that the stack arguments userspace gave us are sane.
3066 * In addition, set the stack direction for userspace since it's easy for us to
3067 * determine.
3068 */
clone3_stack_valid(struct kernel_clone_args * kargs)3069 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3070 {
3071 if (kargs->stack == 0) {
3072 if (kargs->stack_size > 0)
3073 return false;
3074 } else {
3075 if (kargs->stack_size == 0)
3076 return false;
3077
3078 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3079 return false;
3080
3081 #if !defined(CONFIG_STACK_GROWSUP)
3082 kargs->stack += kargs->stack_size;
3083 #endif
3084 }
3085
3086 return true;
3087 }
3088
clone3_args_valid(struct kernel_clone_args * kargs)3089 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3090 {
3091 /* Verify that no unknown flags are passed along. */
3092 if (kargs->flags &
3093 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3094 return false;
3095
3096 /*
3097 * - make the CLONE_DETACHED bit reusable for clone3
3098 * - make the CSIGNAL bits reusable for clone3
3099 */
3100 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3101 return false;
3102
3103 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3104 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3105 return false;
3106
3107 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3108 kargs->exit_signal)
3109 return false;
3110
3111 if (!clone3_stack_valid(kargs))
3112 return false;
3113
3114 return true;
3115 }
3116
3117 /**
3118 * sys_clone3 - create a new process with specific properties
3119 * @uargs: argument structure
3120 * @size: size of @uargs
3121 *
3122 * clone3() is the extensible successor to clone()/clone2().
3123 * It takes a struct as argument that is versioned by its size.
3124 *
3125 * Return: On success, a positive PID for the child process.
3126 * On error, a negative errno number.
3127 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3128 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3129 {
3130 int err;
3131
3132 struct kernel_clone_args kargs;
3133 pid_t set_tid[MAX_PID_NS_LEVEL];
3134
3135 #ifdef __ARCH_BROKEN_SYS_CLONE3
3136 #warning clone3() entry point is missing, please fix
3137 return -ENOSYS;
3138 #endif
3139
3140 kargs.set_tid = set_tid;
3141
3142 err = copy_clone_args_from_user(&kargs, uargs, size);
3143 if (err)
3144 return err;
3145
3146 if (!clone3_args_valid(&kargs))
3147 return -EINVAL;
3148
3149 return kernel_clone(&kargs);
3150 }
3151
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3152 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3153 {
3154 struct task_struct *leader, *parent, *child;
3155 int res;
3156
3157 read_lock(&tasklist_lock);
3158 leader = top = top->group_leader;
3159 down:
3160 for_each_thread(leader, parent) {
3161 list_for_each_entry(child, &parent->children, sibling) {
3162 res = visitor(child, data);
3163 if (res) {
3164 if (res < 0)
3165 goto out;
3166 leader = child;
3167 goto down;
3168 }
3169 up:
3170 ;
3171 }
3172 }
3173
3174 if (leader != top) {
3175 child = leader;
3176 parent = child->real_parent;
3177 leader = parent->group_leader;
3178 goto up;
3179 }
3180 out:
3181 read_unlock(&tasklist_lock);
3182 }
3183
3184 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3185 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3186 #endif
3187
sighand_ctor(void * data)3188 static void sighand_ctor(void *data)
3189 {
3190 struct sighand_struct *sighand = data;
3191
3192 spin_lock_init(&sighand->siglock);
3193 init_waitqueue_head(&sighand->signalfd_wqh);
3194 }
3195
mm_cache_init(void)3196 void __init mm_cache_init(void)
3197 {
3198 unsigned int mm_size;
3199
3200 /*
3201 * The mm_cpumask is located at the end of mm_struct, and is
3202 * dynamically sized based on the maximum CPU number this system
3203 * can have, taking hotplug into account (nr_cpu_ids).
3204 */
3205 mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3206
3207 mm_cachep = kmem_cache_create_usercopy("mm_struct",
3208 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3209 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3210 offsetof(struct mm_struct, saved_auxv),
3211 sizeof_field(struct mm_struct, saved_auxv),
3212 NULL);
3213 }
3214
proc_caches_init(void)3215 void __init proc_caches_init(void)
3216 {
3217 struct kmem_cache_args args = {
3218 .use_freeptr_offset = true,
3219 .freeptr_offset = offsetof(struct vm_area_struct, vm_freeptr),
3220 };
3221
3222 sighand_cachep = kmem_cache_create("sighand_cache",
3223 sizeof(struct sighand_struct), 0,
3224 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3225 SLAB_ACCOUNT, sighand_ctor);
3226 signal_cachep = kmem_cache_create("signal_cache",
3227 sizeof(struct signal_struct), 0,
3228 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3229 NULL);
3230 files_cachep = kmem_cache_create("files_cache",
3231 sizeof(struct files_struct), 0,
3232 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3233 NULL);
3234 fs_cachep = kmem_cache_create("fs_cache",
3235 sizeof(struct fs_struct), 0,
3236 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3237 NULL);
3238 vm_area_cachep = kmem_cache_create("vm_area_struct",
3239 sizeof(struct vm_area_struct), &args,
3240 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3241 SLAB_ACCOUNT);
3242 mmap_init();
3243 nsproxy_cache_init();
3244 }
3245
3246 /*
3247 * Check constraints on flags passed to the unshare system call.
3248 */
check_unshare_flags(unsigned long unshare_flags)3249 static int check_unshare_flags(unsigned long unshare_flags)
3250 {
3251 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3252 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3253 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3254 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3255 CLONE_NEWTIME))
3256 return -EINVAL;
3257 /*
3258 * Not implemented, but pretend it works if there is nothing
3259 * to unshare. Note that unsharing the address space or the
3260 * signal handlers also need to unshare the signal queues (aka
3261 * CLONE_THREAD).
3262 */
3263 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3264 if (!thread_group_empty(current))
3265 return -EINVAL;
3266 }
3267 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3268 if (refcount_read(¤t->sighand->count) > 1)
3269 return -EINVAL;
3270 }
3271 if (unshare_flags & CLONE_VM) {
3272 if (!current_is_single_threaded())
3273 return -EINVAL;
3274 }
3275
3276 return 0;
3277 }
3278
3279 /*
3280 * Unshare the filesystem structure if it is being shared
3281 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3282 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3283 {
3284 struct fs_struct *fs = current->fs;
3285
3286 if (!(unshare_flags & CLONE_FS) || !fs)
3287 return 0;
3288
3289 /* don't need lock here; in the worst case we'll do useless copy */
3290 if (fs->users == 1)
3291 return 0;
3292
3293 *new_fsp = copy_fs_struct(fs);
3294 if (!*new_fsp)
3295 return -ENOMEM;
3296
3297 return 0;
3298 }
3299
3300 /*
3301 * Unshare file descriptor table if it is being shared
3302 */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3303 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3304 {
3305 struct files_struct *fd = current->files;
3306
3307 if ((unshare_flags & CLONE_FILES) &&
3308 (fd && atomic_read(&fd->count) > 1)) {
3309 fd = dup_fd(fd, NULL);
3310 if (IS_ERR(fd))
3311 return PTR_ERR(fd);
3312 *new_fdp = fd;
3313 }
3314
3315 return 0;
3316 }
3317
3318 /*
3319 * unshare allows a process to 'unshare' part of the process
3320 * context which was originally shared using clone. copy_*
3321 * functions used by kernel_clone() cannot be used here directly
3322 * because they modify an inactive task_struct that is being
3323 * constructed. Here we are modifying the current, active,
3324 * task_struct.
3325 */
ksys_unshare(unsigned long unshare_flags)3326 int ksys_unshare(unsigned long unshare_flags)
3327 {
3328 struct fs_struct *fs, *new_fs = NULL;
3329 struct files_struct *new_fd = NULL;
3330 struct cred *new_cred = NULL;
3331 struct nsproxy *new_nsproxy = NULL;
3332 int do_sysvsem = 0;
3333 int err;
3334
3335 /*
3336 * If unsharing a user namespace must also unshare the thread group
3337 * and unshare the filesystem root and working directories.
3338 */
3339 if (unshare_flags & CLONE_NEWUSER)
3340 unshare_flags |= CLONE_THREAD | CLONE_FS;
3341 /*
3342 * If unsharing vm, must also unshare signal handlers.
3343 */
3344 if (unshare_flags & CLONE_VM)
3345 unshare_flags |= CLONE_SIGHAND;
3346 /*
3347 * If unsharing a signal handlers, must also unshare the signal queues.
3348 */
3349 if (unshare_flags & CLONE_SIGHAND)
3350 unshare_flags |= CLONE_THREAD;
3351 /*
3352 * If unsharing namespace, must also unshare filesystem information.
3353 */
3354 if (unshare_flags & CLONE_NEWNS)
3355 unshare_flags |= CLONE_FS;
3356
3357 err = check_unshare_flags(unshare_flags);
3358 if (err)
3359 goto bad_unshare_out;
3360 /*
3361 * CLONE_NEWIPC must also detach from the undolist: after switching
3362 * to a new ipc namespace, the semaphore arrays from the old
3363 * namespace are unreachable.
3364 */
3365 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3366 do_sysvsem = 1;
3367 err = unshare_fs(unshare_flags, &new_fs);
3368 if (err)
3369 goto bad_unshare_out;
3370 err = unshare_fd(unshare_flags, &new_fd);
3371 if (err)
3372 goto bad_unshare_cleanup_fs;
3373 err = unshare_userns(unshare_flags, &new_cred);
3374 if (err)
3375 goto bad_unshare_cleanup_fd;
3376 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3377 new_cred, new_fs);
3378 if (err)
3379 goto bad_unshare_cleanup_cred;
3380
3381 if (new_cred) {
3382 err = set_cred_ucounts(new_cred);
3383 if (err)
3384 goto bad_unshare_cleanup_cred;
3385 }
3386
3387 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3388 if (do_sysvsem) {
3389 /*
3390 * CLONE_SYSVSEM is equivalent to sys_exit().
3391 */
3392 exit_sem(current);
3393 }
3394 if (unshare_flags & CLONE_NEWIPC) {
3395 /* Orphan segments in old ns (see sem above). */
3396 exit_shm(current);
3397 shm_init_task(current);
3398 }
3399
3400 if (new_nsproxy)
3401 switch_task_namespaces(current, new_nsproxy);
3402
3403 task_lock(current);
3404
3405 if (new_fs) {
3406 fs = current->fs;
3407 spin_lock(&fs->lock);
3408 current->fs = new_fs;
3409 if (--fs->users)
3410 new_fs = NULL;
3411 else
3412 new_fs = fs;
3413 spin_unlock(&fs->lock);
3414 }
3415
3416 if (new_fd)
3417 swap(current->files, new_fd);
3418
3419 task_unlock(current);
3420
3421 if (new_cred) {
3422 /* Install the new user namespace */
3423 commit_creds(new_cred);
3424 new_cred = NULL;
3425 }
3426 }
3427
3428 perf_event_namespaces(current);
3429
3430 bad_unshare_cleanup_cred:
3431 if (new_cred)
3432 put_cred(new_cred);
3433 bad_unshare_cleanup_fd:
3434 if (new_fd)
3435 put_files_struct(new_fd);
3436
3437 bad_unshare_cleanup_fs:
3438 if (new_fs)
3439 free_fs_struct(new_fs);
3440
3441 bad_unshare_out:
3442 return err;
3443 }
3444
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3445 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3446 {
3447 return ksys_unshare(unshare_flags);
3448 }
3449
3450 /*
3451 * Helper to unshare the files of the current task.
3452 * We don't want to expose copy_files internals to
3453 * the exec layer of the kernel.
3454 */
3455
unshare_files(void)3456 int unshare_files(void)
3457 {
3458 struct task_struct *task = current;
3459 struct files_struct *old, *copy = NULL;
3460 int error;
3461
3462 error = unshare_fd(CLONE_FILES, ©);
3463 if (error || !copy)
3464 return error;
3465
3466 old = task->files;
3467 task_lock(task);
3468 task->files = copy;
3469 task_unlock(task);
3470 put_files_struct(old);
3471 return 0;
3472 }
3473
sysctl_max_threads(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3474 int sysctl_max_threads(const struct ctl_table *table, int write,
3475 void *buffer, size_t *lenp, loff_t *ppos)
3476 {
3477 struct ctl_table t;
3478 int ret;
3479 int threads = max_threads;
3480 int min = 1;
3481 int max = MAX_THREADS;
3482
3483 t = *table;
3484 t.data = &threads;
3485 t.extra1 = &min;
3486 t.extra2 = &max;
3487
3488 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3489 if (ret || !write)
3490 return ret;
3491
3492 max_threads = threads;
3493
3494 return 0;
3495 }
3496