1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/fork.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  *  'fork.c' contains the help-routines for the 'fork' system call
10  * (see also entry.S and others).
11  * Fork is rather simple, once you get the hang of it, but the memory
12  * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13  */
14 
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/user.h>
20 #include <linux/sched/numa_balancing.h>
21 #include <linux/sched/stat.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/sched/cputime.h>
25 #include <linux/sched/ext.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/kmsan.h>
41 #include <linux/binfmts.h>
42 #include <linux/mman.h>
43 #include <linux/mmu_notifier.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/mm_inline.h>
47 #include <linux/memblock.h>
48 #include <linux/nsproxy.h>
49 #include <linux/capability.h>
50 #include <linux/cpu.h>
51 #include <linux/cgroup.h>
52 #include <linux/security.h>
53 #include <linux/hugetlb.h>
54 #include <linux/seccomp.h>
55 #include <linux/swap.h>
56 #include <linux/syscalls.h>
57 #include <linux/syscall_user_dispatch.h>
58 #include <linux/jiffies.h>
59 #include <linux/futex.h>
60 #include <linux/compat.h>
61 #include <linux/kthread.h>
62 #include <linux/task_io_accounting_ops.h>
63 #include <linux/rcupdate.h>
64 #include <linux/ptrace.h>
65 #include <linux/mount.h>
66 #include <linux/audit.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/proc_fs.h>
70 #include <linux/profile.h>
71 #include <linux/rmap.h>
72 #include <linux/ksm.h>
73 #include <linux/acct.h>
74 #include <linux/userfaultfd_k.h>
75 #include <linux/tsacct_kern.h>
76 #include <linux/cn_proc.h>
77 #include <linux/freezer.h>
78 #include <linux/delayacct.h>
79 #include <linux/taskstats_kern.h>
80 #include <linux/tty.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #include <linux/bpf.h>
101 #include <linux/stackprotector.h>
102 #include <linux/user_events.h>
103 #include <linux/iommu.h>
104 #include <linux/rseq.h>
105 #include <uapi/linux/pidfd.h>
106 #include <linux/pidfs.h>
107 #include <linux/tick.h>
108 
109 #include <asm/pgalloc.h>
110 #include <linux/uaccess.h>
111 #include <asm/mmu_context.h>
112 #include <asm/cacheflush.h>
113 #include <asm/tlbflush.h>
114 
115 #include <trace/events/sched.h>
116 
117 #define CREATE_TRACE_POINTS
118 #include <trace/events/task.h>
119 
120 #include <kunit/visibility.h>
121 
122 /*
123  * Minimum number of threads to boot the kernel
124  */
125 #define MIN_THREADS 20
126 
127 /*
128  * Maximum number of threads
129  */
130 #define MAX_THREADS FUTEX_TID_MASK
131 
132 /*
133  * Protected counters by write_lock_irq(&tasklist_lock)
134  */
135 unsigned long total_forks;	/* Handle normal Linux uptimes. */
136 int nr_threads;			/* The idle threads do not count.. */
137 
138 static int max_threads;		/* tunable limit on nr_threads */
139 
140 #define NAMED_ARRAY_INDEX(x)	[x] = __stringify(x)
141 
142 static const char * const resident_page_types[] = {
143 	NAMED_ARRAY_INDEX(MM_FILEPAGES),
144 	NAMED_ARRAY_INDEX(MM_ANONPAGES),
145 	NAMED_ARRAY_INDEX(MM_SWAPENTS),
146 	NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
147 };
148 
149 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
150 
151 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
152 
153 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)154 int lockdep_tasklist_lock_is_held(void)
155 {
156 	return lockdep_is_held(&tasklist_lock);
157 }
158 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
159 #endif /* #ifdef CONFIG_PROVE_RCU */
160 
nr_processes(void)161 int nr_processes(void)
162 {
163 	int cpu;
164 	int total = 0;
165 
166 	for_each_possible_cpu(cpu)
167 		total += per_cpu(process_counts, cpu);
168 
169 	return total;
170 }
171 
arch_release_task_struct(struct task_struct * tsk)172 void __weak arch_release_task_struct(struct task_struct *tsk)
173 {
174 }
175 
176 static struct kmem_cache *task_struct_cachep;
177 
alloc_task_struct_node(int node)178 static inline struct task_struct *alloc_task_struct_node(int node)
179 {
180 	return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
181 }
182 
free_task_struct(struct task_struct * tsk)183 static inline void free_task_struct(struct task_struct *tsk)
184 {
185 	kmem_cache_free(task_struct_cachep, tsk);
186 }
187 
188 /*
189  * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
190  * kmemcache based allocator.
191  */
192 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
193 
194 #  ifdef CONFIG_VMAP_STACK
195 /*
196  * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
197  * flush.  Try to minimize the number of calls by caching stacks.
198  */
199 #define NR_CACHED_STACKS 2
200 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
201 
202 struct vm_stack {
203 	struct rcu_head rcu;
204 	struct vm_struct *stack_vm_area;
205 };
206 
try_release_thread_stack_to_cache(struct vm_struct * vm)207 static bool try_release_thread_stack_to_cache(struct vm_struct *vm)
208 {
209 	unsigned int i;
210 
211 	for (i = 0; i < NR_CACHED_STACKS; i++) {
212 		struct vm_struct *tmp = NULL;
213 
214 		if (this_cpu_try_cmpxchg(cached_stacks[i], &tmp, vm))
215 			return true;
216 	}
217 	return false;
218 }
219 
thread_stack_free_rcu(struct rcu_head * rh)220 static void thread_stack_free_rcu(struct rcu_head *rh)
221 {
222 	struct vm_stack *vm_stack = container_of(rh, struct vm_stack, rcu);
223 
224 	if (try_release_thread_stack_to_cache(vm_stack->stack_vm_area))
225 		return;
226 
227 	vfree(vm_stack);
228 }
229 
thread_stack_delayed_free(struct task_struct * tsk)230 static void thread_stack_delayed_free(struct task_struct *tsk)
231 {
232 	struct vm_stack *vm_stack = tsk->stack;
233 
234 	vm_stack->stack_vm_area = tsk->stack_vm_area;
235 	call_rcu(&vm_stack->rcu, thread_stack_free_rcu);
236 }
237 
free_vm_stack_cache(unsigned int cpu)238 static int free_vm_stack_cache(unsigned int cpu)
239 {
240 	struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
241 	int i;
242 
243 	for (i = 0; i < NR_CACHED_STACKS; i++) {
244 		struct vm_struct *vm_stack = cached_vm_stacks[i];
245 
246 		if (!vm_stack)
247 			continue;
248 
249 		vfree(vm_stack->addr);
250 		cached_vm_stacks[i] = NULL;
251 	}
252 
253 	return 0;
254 }
255 
memcg_charge_kernel_stack(struct vm_struct * vm)256 static int memcg_charge_kernel_stack(struct vm_struct *vm)
257 {
258 	int i;
259 	int ret;
260 	int nr_charged = 0;
261 
262 	BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
263 
264 	for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
265 		ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL, 0);
266 		if (ret)
267 			goto err;
268 		nr_charged++;
269 	}
270 	return 0;
271 err:
272 	for (i = 0; i < nr_charged; i++)
273 		memcg_kmem_uncharge_page(vm->pages[i], 0);
274 	return ret;
275 }
276 
alloc_thread_stack_node(struct task_struct * tsk,int node)277 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
278 {
279 	struct vm_struct *vm;
280 	void *stack;
281 	int i;
282 
283 	for (i = 0; i < NR_CACHED_STACKS; i++) {
284 		struct vm_struct *s;
285 
286 		s = this_cpu_xchg(cached_stacks[i], NULL);
287 
288 		if (!s)
289 			continue;
290 
291 		/* Reset stack metadata. */
292 		kasan_unpoison_range(s->addr, THREAD_SIZE);
293 
294 		stack = kasan_reset_tag(s->addr);
295 
296 		/* Clear stale pointers from reused stack. */
297 		memset(stack, 0, THREAD_SIZE);
298 
299 		if (memcg_charge_kernel_stack(s)) {
300 			vfree(s->addr);
301 			return -ENOMEM;
302 		}
303 
304 		tsk->stack_vm_area = s;
305 		tsk->stack = stack;
306 		return 0;
307 	}
308 
309 	/*
310 	 * Allocated stacks are cached and later reused by new threads,
311 	 * so memcg accounting is performed manually on assigning/releasing
312 	 * stacks to tasks. Drop __GFP_ACCOUNT.
313 	 */
314 	stack = __vmalloc_node(THREAD_SIZE, THREAD_ALIGN,
315 				     THREADINFO_GFP & ~__GFP_ACCOUNT,
316 				     node, __builtin_return_address(0));
317 	if (!stack)
318 		return -ENOMEM;
319 
320 	vm = find_vm_area(stack);
321 	if (memcg_charge_kernel_stack(vm)) {
322 		vfree(stack);
323 		return -ENOMEM;
324 	}
325 	/*
326 	 * We can't call find_vm_area() in interrupt context, and
327 	 * free_thread_stack() can be called in interrupt context,
328 	 * so cache the vm_struct.
329 	 */
330 	tsk->stack_vm_area = vm;
331 	stack = kasan_reset_tag(stack);
332 	tsk->stack = stack;
333 	return 0;
334 }
335 
free_thread_stack(struct task_struct * tsk)336 static void free_thread_stack(struct task_struct *tsk)
337 {
338 	if (!try_release_thread_stack_to_cache(tsk->stack_vm_area))
339 		thread_stack_delayed_free(tsk);
340 
341 	tsk->stack = NULL;
342 	tsk->stack_vm_area = NULL;
343 }
344 
345 #  else /* !CONFIG_VMAP_STACK */
346 
thread_stack_free_rcu(struct rcu_head * rh)347 static void thread_stack_free_rcu(struct rcu_head *rh)
348 {
349 	__free_pages(virt_to_page(rh), THREAD_SIZE_ORDER);
350 }
351 
thread_stack_delayed_free(struct task_struct * tsk)352 static void thread_stack_delayed_free(struct task_struct *tsk)
353 {
354 	struct rcu_head *rh = tsk->stack;
355 
356 	call_rcu(rh, thread_stack_free_rcu);
357 }
358 
alloc_thread_stack_node(struct task_struct * tsk,int node)359 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
360 {
361 	struct page *page = alloc_pages_node(node, THREADINFO_GFP,
362 					     THREAD_SIZE_ORDER);
363 
364 	if (likely(page)) {
365 		tsk->stack = kasan_reset_tag(page_address(page));
366 		return 0;
367 	}
368 	return -ENOMEM;
369 }
370 
free_thread_stack(struct task_struct * tsk)371 static void free_thread_stack(struct task_struct *tsk)
372 {
373 	thread_stack_delayed_free(tsk);
374 	tsk->stack = NULL;
375 }
376 
377 #  endif /* CONFIG_VMAP_STACK */
378 # else /* !(THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)) */
379 
380 static struct kmem_cache *thread_stack_cache;
381 
thread_stack_free_rcu(struct rcu_head * rh)382 static void thread_stack_free_rcu(struct rcu_head *rh)
383 {
384 	kmem_cache_free(thread_stack_cache, rh);
385 }
386 
thread_stack_delayed_free(struct task_struct * tsk)387 static void thread_stack_delayed_free(struct task_struct *tsk)
388 {
389 	struct rcu_head *rh = tsk->stack;
390 
391 	call_rcu(rh, thread_stack_free_rcu);
392 }
393 
alloc_thread_stack_node(struct task_struct * tsk,int node)394 static int alloc_thread_stack_node(struct task_struct *tsk, int node)
395 {
396 	unsigned long *stack;
397 	stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
398 	stack = kasan_reset_tag(stack);
399 	tsk->stack = stack;
400 	return stack ? 0 : -ENOMEM;
401 }
402 
free_thread_stack(struct task_struct * tsk)403 static void free_thread_stack(struct task_struct *tsk)
404 {
405 	thread_stack_delayed_free(tsk);
406 	tsk->stack = NULL;
407 }
408 
thread_stack_cache_init(void)409 void thread_stack_cache_init(void)
410 {
411 	thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
412 					THREAD_SIZE, THREAD_SIZE, 0, 0,
413 					THREAD_SIZE, NULL);
414 	BUG_ON(thread_stack_cache == NULL);
415 }
416 
417 # endif /* THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK) */
418 
419 /* SLAB cache for signal_struct structures (tsk->signal) */
420 static struct kmem_cache *signal_cachep;
421 
422 /* SLAB cache for sighand_struct structures (tsk->sighand) */
423 struct kmem_cache *sighand_cachep;
424 
425 /* SLAB cache for files_struct structures (tsk->files) */
426 struct kmem_cache *files_cachep;
427 
428 /* SLAB cache for fs_struct structures (tsk->fs) */
429 struct kmem_cache *fs_cachep;
430 
431 /* SLAB cache for vm_area_struct structures */
432 static struct kmem_cache *vm_area_cachep;
433 
434 /* SLAB cache for mm_struct structures (tsk->mm) */
435 static struct kmem_cache *mm_cachep;
436 
vm_area_alloc(struct mm_struct * mm)437 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
438 {
439 	struct vm_area_struct *vma;
440 
441 	vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
442 	if (!vma)
443 		return NULL;
444 
445 	vma_init(vma, mm);
446 
447 	return vma;
448 }
449 
vm_area_init_from(const struct vm_area_struct * src,struct vm_area_struct * dest)450 static void vm_area_init_from(const struct vm_area_struct *src,
451 			      struct vm_area_struct *dest)
452 {
453 	dest->vm_mm = src->vm_mm;
454 	dest->vm_ops = src->vm_ops;
455 	dest->vm_start = src->vm_start;
456 	dest->vm_end = src->vm_end;
457 	dest->anon_vma = src->anon_vma;
458 	dest->vm_pgoff = src->vm_pgoff;
459 	dest->vm_file = src->vm_file;
460 	dest->vm_private_data = src->vm_private_data;
461 	vm_flags_init(dest, src->vm_flags);
462 	memcpy(&dest->vm_page_prot, &src->vm_page_prot,
463 	       sizeof(dest->vm_page_prot));
464 	/*
465 	 * src->shared.rb may be modified concurrently when called from
466 	 * dup_mmap(), but the clone will reinitialize it.
467 	 */
468 	data_race(memcpy(&dest->shared, &src->shared, sizeof(dest->shared)));
469 	memcpy(&dest->vm_userfaultfd_ctx, &src->vm_userfaultfd_ctx,
470 	       sizeof(dest->vm_userfaultfd_ctx));
471 #ifdef CONFIG_ANON_VMA_NAME
472 	dest->anon_name = src->anon_name;
473 #endif
474 #ifdef CONFIG_SWAP
475 	memcpy(&dest->swap_readahead_info, &src->swap_readahead_info,
476 	       sizeof(dest->swap_readahead_info));
477 #endif
478 #ifndef CONFIG_MMU
479 	dest->vm_region = src->vm_region;
480 #endif
481 #ifdef CONFIG_NUMA
482 	dest->vm_policy = src->vm_policy;
483 #endif
484 }
485 
vm_area_dup(struct vm_area_struct * orig)486 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
487 {
488 	struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
489 
490 	if (!new)
491 		return NULL;
492 
493 	ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
494 	ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
495 	vm_area_init_from(orig, new);
496 	vma_lock_init(new, true);
497 	INIT_LIST_HEAD(&new->anon_vma_chain);
498 	vma_numab_state_init(new);
499 	dup_anon_vma_name(orig, new);
500 
501 	return new;
502 }
503 
vm_area_free(struct vm_area_struct * vma)504 void vm_area_free(struct vm_area_struct *vma)
505 {
506 	/* The vma should be detached while being destroyed. */
507 	vma_assert_detached(vma);
508 	vma_numab_state_free(vma);
509 	free_anon_vma_name(vma);
510 	kmem_cache_free(vm_area_cachep, vma);
511 }
512 
account_kernel_stack(struct task_struct * tsk,int account)513 static void account_kernel_stack(struct task_struct *tsk, int account)
514 {
515 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
516 		struct vm_struct *vm = task_stack_vm_area(tsk);
517 		int i;
518 
519 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
520 			mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
521 					      account * (PAGE_SIZE / 1024));
522 	} else {
523 		void *stack = task_stack_page(tsk);
524 
525 		/* All stack pages are in the same node. */
526 		mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
527 				      account * (THREAD_SIZE / 1024));
528 	}
529 }
530 
exit_task_stack_account(struct task_struct * tsk)531 void exit_task_stack_account(struct task_struct *tsk)
532 {
533 	account_kernel_stack(tsk, -1);
534 
535 	if (IS_ENABLED(CONFIG_VMAP_STACK)) {
536 		struct vm_struct *vm;
537 		int i;
538 
539 		vm = task_stack_vm_area(tsk);
540 		for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
541 			memcg_kmem_uncharge_page(vm->pages[i], 0);
542 	}
543 }
544 
release_task_stack(struct task_struct * tsk)545 static void release_task_stack(struct task_struct *tsk)
546 {
547 	if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
548 		return;  /* Better to leak the stack than to free prematurely */
549 
550 	free_thread_stack(tsk);
551 }
552 
553 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)554 void put_task_stack(struct task_struct *tsk)
555 {
556 	if (refcount_dec_and_test(&tsk->stack_refcount))
557 		release_task_stack(tsk);
558 }
559 #endif
560 
free_task(struct task_struct * tsk)561 void free_task(struct task_struct *tsk)
562 {
563 #ifdef CONFIG_SECCOMP
564 	WARN_ON_ONCE(tsk->seccomp.filter);
565 #endif
566 	release_user_cpus_ptr(tsk);
567 	scs_release(tsk);
568 
569 #ifndef CONFIG_THREAD_INFO_IN_TASK
570 	/*
571 	 * The task is finally done with both the stack and thread_info,
572 	 * so free both.
573 	 */
574 	release_task_stack(tsk);
575 #else
576 	/*
577 	 * If the task had a separate stack allocation, it should be gone
578 	 * by now.
579 	 */
580 	WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
581 #endif
582 	rt_mutex_debug_task_free(tsk);
583 	ftrace_graph_exit_task(tsk);
584 	arch_release_task_struct(tsk);
585 	if (tsk->flags & PF_KTHREAD)
586 		free_kthread_struct(tsk);
587 	bpf_task_storage_free(tsk);
588 	free_task_struct(tsk);
589 }
590 EXPORT_SYMBOL(free_task);
591 
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)592 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
593 {
594 	struct file *exe_file;
595 
596 	exe_file = get_mm_exe_file(oldmm);
597 	RCU_INIT_POINTER(mm->exe_file, exe_file);
598 	/*
599 	 * We depend on the oldmm having properly denied write access to the
600 	 * exe_file already.
601 	 */
602 	if (exe_file && exe_file_deny_write_access(exe_file))
603 		pr_warn_once("exe_file_deny_write_access() failed in %s\n", __func__);
604 }
605 
606 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)607 static __latent_entropy int dup_mmap(struct mm_struct *mm,
608 					struct mm_struct *oldmm)
609 {
610 	struct vm_area_struct *mpnt, *tmp;
611 	int retval;
612 	unsigned long charge = 0;
613 	LIST_HEAD(uf);
614 	VMA_ITERATOR(vmi, mm, 0);
615 
616 	if (mmap_write_lock_killable(oldmm))
617 		return -EINTR;
618 	flush_cache_dup_mm(oldmm);
619 	uprobe_dup_mmap(oldmm, mm);
620 	/*
621 	 * Not linked in yet - no deadlock potential:
622 	 */
623 	mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
624 
625 	/* No ordering required: file already has been exposed. */
626 	dup_mm_exe_file(mm, oldmm);
627 
628 	mm->total_vm = oldmm->total_vm;
629 	mm->data_vm = oldmm->data_vm;
630 	mm->exec_vm = oldmm->exec_vm;
631 	mm->stack_vm = oldmm->stack_vm;
632 
633 	/* Use __mt_dup() to efficiently build an identical maple tree. */
634 	retval = __mt_dup(&oldmm->mm_mt, &mm->mm_mt, GFP_KERNEL);
635 	if (unlikely(retval))
636 		goto out;
637 
638 	mt_clear_in_rcu(vmi.mas.tree);
639 	for_each_vma(vmi, mpnt) {
640 		struct file *file;
641 
642 		vma_start_write(mpnt);
643 		if (mpnt->vm_flags & VM_DONTCOPY) {
644 			retval = vma_iter_clear_gfp(&vmi, mpnt->vm_start,
645 						    mpnt->vm_end, GFP_KERNEL);
646 			if (retval)
647 				goto loop_out;
648 
649 			vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
650 			continue;
651 		}
652 		charge = 0;
653 		/*
654 		 * Don't duplicate many vmas if we've been oom-killed (for
655 		 * example)
656 		 */
657 		if (fatal_signal_pending(current)) {
658 			retval = -EINTR;
659 			goto loop_out;
660 		}
661 		if (mpnt->vm_flags & VM_ACCOUNT) {
662 			unsigned long len = vma_pages(mpnt);
663 
664 			if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
665 				goto fail_nomem;
666 			charge = len;
667 		}
668 		tmp = vm_area_dup(mpnt);
669 		if (!tmp)
670 			goto fail_nomem;
671 
672 		/* track_pfn_copy() will later take care of copying internal state. */
673 		if (unlikely(tmp->vm_flags & VM_PFNMAP))
674 			untrack_pfn_clear(tmp);
675 
676 		retval = vma_dup_policy(mpnt, tmp);
677 		if (retval)
678 			goto fail_nomem_policy;
679 		tmp->vm_mm = mm;
680 		retval = dup_userfaultfd(tmp, &uf);
681 		if (retval)
682 			goto fail_nomem_anon_vma_fork;
683 		if (tmp->vm_flags & VM_WIPEONFORK) {
684 			/*
685 			 * VM_WIPEONFORK gets a clean slate in the child.
686 			 * Don't prepare anon_vma until fault since we don't
687 			 * copy page for current vma.
688 			 */
689 			tmp->anon_vma = NULL;
690 		} else if (anon_vma_fork(tmp, mpnt))
691 			goto fail_nomem_anon_vma_fork;
692 		vm_flags_clear(tmp, VM_LOCKED_MASK);
693 		/*
694 		 * Copy/update hugetlb private vma information.
695 		 */
696 		if (is_vm_hugetlb_page(tmp))
697 			hugetlb_dup_vma_private(tmp);
698 
699 		/*
700 		 * Link the vma into the MT. After using __mt_dup(), memory
701 		 * allocation is not necessary here, so it cannot fail.
702 		 */
703 		vma_iter_bulk_store(&vmi, tmp);
704 
705 		mm->map_count++;
706 
707 		if (tmp->vm_ops && tmp->vm_ops->open)
708 			tmp->vm_ops->open(tmp);
709 
710 		file = tmp->vm_file;
711 		if (file) {
712 			struct address_space *mapping = file->f_mapping;
713 
714 			get_file(file);
715 			i_mmap_lock_write(mapping);
716 			if (vma_is_shared_maywrite(tmp))
717 				mapping_allow_writable(mapping);
718 			flush_dcache_mmap_lock(mapping);
719 			/* insert tmp into the share list, just after mpnt */
720 			vma_interval_tree_insert_after(tmp, mpnt,
721 					&mapping->i_mmap);
722 			flush_dcache_mmap_unlock(mapping);
723 			i_mmap_unlock_write(mapping);
724 		}
725 
726 		if (!(tmp->vm_flags & VM_WIPEONFORK))
727 			retval = copy_page_range(tmp, mpnt);
728 
729 		if (retval) {
730 			mpnt = vma_next(&vmi);
731 			goto loop_out;
732 		}
733 	}
734 	/* a new mm has just been created */
735 	retval = arch_dup_mmap(oldmm, mm);
736 loop_out:
737 	vma_iter_free(&vmi);
738 	if (!retval) {
739 		mt_set_in_rcu(vmi.mas.tree);
740 		ksm_fork(mm, oldmm);
741 		khugepaged_fork(mm, oldmm);
742 	} else {
743 
744 		/*
745 		 * The entire maple tree has already been duplicated. If the
746 		 * mmap duplication fails, mark the failure point with
747 		 * XA_ZERO_ENTRY. In exit_mmap(), if this marker is encountered,
748 		 * stop releasing VMAs that have not been duplicated after this
749 		 * point.
750 		 */
751 		if (mpnt) {
752 			mas_set_range(&vmi.mas, mpnt->vm_start, mpnt->vm_end - 1);
753 			mas_store(&vmi.mas, XA_ZERO_ENTRY);
754 			/* Avoid OOM iterating a broken tree */
755 			set_bit(MMF_OOM_SKIP, &mm->flags);
756 		}
757 		/*
758 		 * The mm_struct is going to exit, but the locks will be dropped
759 		 * first.  Set the mm_struct as unstable is advisable as it is
760 		 * not fully initialised.
761 		 */
762 		set_bit(MMF_UNSTABLE, &mm->flags);
763 	}
764 out:
765 	mmap_write_unlock(mm);
766 	flush_tlb_mm(oldmm);
767 	mmap_write_unlock(oldmm);
768 	if (!retval)
769 		dup_userfaultfd_complete(&uf);
770 	else
771 		dup_userfaultfd_fail(&uf);
772 	return retval;
773 
774 fail_nomem_anon_vma_fork:
775 	mpol_put(vma_policy(tmp));
776 fail_nomem_policy:
777 	vm_area_free(tmp);
778 fail_nomem:
779 	retval = -ENOMEM;
780 	vm_unacct_memory(charge);
781 	goto loop_out;
782 }
783 
mm_alloc_pgd(struct mm_struct * mm)784 static inline int mm_alloc_pgd(struct mm_struct *mm)
785 {
786 	mm->pgd = pgd_alloc(mm);
787 	if (unlikely(!mm->pgd))
788 		return -ENOMEM;
789 	return 0;
790 }
791 
mm_free_pgd(struct mm_struct * mm)792 static inline void mm_free_pgd(struct mm_struct *mm)
793 {
794 	pgd_free(mm, mm->pgd);
795 }
796 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)797 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
798 {
799 	mmap_write_lock(oldmm);
800 	dup_mm_exe_file(mm, oldmm);
801 	mmap_write_unlock(oldmm);
802 	return 0;
803 }
804 #define mm_alloc_pgd(mm)	(0)
805 #define mm_free_pgd(mm)
806 #endif /* CONFIG_MMU */
807 
808 #ifdef CONFIG_MM_ID
809 static DEFINE_IDA(mm_ida);
810 
mm_alloc_id(struct mm_struct * mm)811 static inline int mm_alloc_id(struct mm_struct *mm)
812 {
813 	int ret;
814 
815 	ret = ida_alloc_range(&mm_ida, MM_ID_MIN, MM_ID_MAX, GFP_KERNEL);
816 	if (ret < 0)
817 		return ret;
818 	mm->mm_id = ret;
819 	return 0;
820 }
821 
mm_free_id(struct mm_struct * mm)822 static inline void mm_free_id(struct mm_struct *mm)
823 {
824 	const mm_id_t id = mm->mm_id;
825 
826 	mm->mm_id = MM_ID_DUMMY;
827 	if (id == MM_ID_DUMMY)
828 		return;
829 	if (WARN_ON_ONCE(id < MM_ID_MIN || id > MM_ID_MAX))
830 		return;
831 	ida_free(&mm_ida, id);
832 }
833 #else /* !CONFIG_MM_ID */
mm_alloc_id(struct mm_struct * mm)834 static inline int mm_alloc_id(struct mm_struct *mm) { return 0; }
mm_free_id(struct mm_struct * mm)835 static inline void mm_free_id(struct mm_struct *mm) {}
836 #endif /* CONFIG_MM_ID */
837 
check_mm(struct mm_struct * mm)838 static void check_mm(struct mm_struct *mm)
839 {
840 	int i;
841 
842 	BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
843 			 "Please make sure 'struct resident_page_types[]' is updated as well");
844 
845 	for (i = 0; i < NR_MM_COUNTERS; i++) {
846 		long x = percpu_counter_sum(&mm->rss_stat[i]);
847 
848 		if (unlikely(x))
849 			pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
850 				 mm, resident_page_types[i], x);
851 	}
852 
853 	if (mm_pgtables_bytes(mm))
854 		pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
855 				mm_pgtables_bytes(mm));
856 
857 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
858 	VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
859 #endif
860 }
861 
862 #define allocate_mm()	(kmem_cache_alloc(mm_cachep, GFP_KERNEL))
863 #define free_mm(mm)	(kmem_cache_free(mm_cachep, (mm)))
864 
do_check_lazy_tlb(void * arg)865 static void do_check_lazy_tlb(void *arg)
866 {
867 	struct mm_struct *mm = arg;
868 
869 	WARN_ON_ONCE(current->active_mm == mm);
870 }
871 
do_shoot_lazy_tlb(void * arg)872 static void do_shoot_lazy_tlb(void *arg)
873 {
874 	struct mm_struct *mm = arg;
875 
876 	if (current->active_mm == mm) {
877 		WARN_ON_ONCE(current->mm);
878 		current->active_mm = &init_mm;
879 		switch_mm(mm, &init_mm, current);
880 	}
881 }
882 
cleanup_lazy_tlbs(struct mm_struct * mm)883 static void cleanup_lazy_tlbs(struct mm_struct *mm)
884 {
885 	if (!IS_ENABLED(CONFIG_MMU_LAZY_TLB_SHOOTDOWN)) {
886 		/*
887 		 * In this case, lazy tlb mms are refounted and would not reach
888 		 * __mmdrop until all CPUs have switched away and mmdrop()ed.
889 		 */
890 		return;
891 	}
892 
893 	/*
894 	 * Lazy mm shootdown does not refcount "lazy tlb mm" usage, rather it
895 	 * requires lazy mm users to switch to another mm when the refcount
896 	 * drops to zero, before the mm is freed. This requires IPIs here to
897 	 * switch kernel threads to init_mm.
898 	 *
899 	 * archs that use IPIs to flush TLBs can piggy-back that lazy tlb mm
900 	 * switch with the final userspace teardown TLB flush which leaves the
901 	 * mm lazy on this CPU but no others, reducing the need for additional
902 	 * IPIs here. There are cases where a final IPI is still required here,
903 	 * such as the final mmdrop being performed on a different CPU than the
904 	 * one exiting, or kernel threads using the mm when userspace exits.
905 	 *
906 	 * IPI overheads have not found to be expensive, but they could be
907 	 * reduced in a number of possible ways, for example (roughly
908 	 * increasing order of complexity):
909 	 * - The last lazy reference created by exit_mm() could instead switch
910 	 *   to init_mm, however it's probable this will run on the same CPU
911 	 *   immediately afterwards, so this may not reduce IPIs much.
912 	 * - A batch of mms requiring IPIs could be gathered and freed at once.
913 	 * - CPUs store active_mm where it can be remotely checked without a
914 	 *   lock, to filter out false-positives in the cpumask.
915 	 * - After mm_users or mm_count reaches zero, switching away from the
916 	 *   mm could clear mm_cpumask to reduce some IPIs, perhaps together
917 	 *   with some batching or delaying of the final IPIs.
918 	 * - A delayed freeing and RCU-like quiescing sequence based on mm
919 	 *   switching to avoid IPIs completely.
920 	 */
921 	on_each_cpu_mask(mm_cpumask(mm), do_shoot_lazy_tlb, (void *)mm, 1);
922 	if (IS_ENABLED(CONFIG_DEBUG_VM_SHOOT_LAZIES))
923 		on_each_cpu(do_check_lazy_tlb, (void *)mm, 1);
924 }
925 
926 /*
927  * Called when the last reference to the mm
928  * is dropped: either by a lazy thread or by
929  * mmput. Free the page directory and the mm.
930  */
__mmdrop(struct mm_struct * mm)931 void __mmdrop(struct mm_struct *mm)
932 {
933 	BUG_ON(mm == &init_mm);
934 	WARN_ON_ONCE(mm == current->mm);
935 
936 	/* Ensure no CPUs are using this as their lazy tlb mm */
937 	cleanup_lazy_tlbs(mm);
938 
939 	WARN_ON_ONCE(mm == current->active_mm);
940 	mm_free_pgd(mm);
941 	mm_free_id(mm);
942 	destroy_context(mm);
943 	mmu_notifier_subscriptions_destroy(mm);
944 	check_mm(mm);
945 	put_user_ns(mm->user_ns);
946 	mm_pasid_drop(mm);
947 	mm_destroy_cid(mm);
948 	percpu_counter_destroy_many(mm->rss_stat, NR_MM_COUNTERS);
949 
950 	free_mm(mm);
951 }
952 EXPORT_SYMBOL_GPL(__mmdrop);
953 
mmdrop_async_fn(struct work_struct * work)954 static void mmdrop_async_fn(struct work_struct *work)
955 {
956 	struct mm_struct *mm;
957 
958 	mm = container_of(work, struct mm_struct, async_put_work);
959 	__mmdrop(mm);
960 }
961 
mmdrop_async(struct mm_struct * mm)962 static void mmdrop_async(struct mm_struct *mm)
963 {
964 	if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
965 		INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
966 		schedule_work(&mm->async_put_work);
967 	}
968 }
969 
free_signal_struct(struct signal_struct * sig)970 static inline void free_signal_struct(struct signal_struct *sig)
971 {
972 	taskstats_tgid_free(sig);
973 	sched_autogroup_exit(sig);
974 	/*
975 	 * __mmdrop is not safe to call from softirq context on x86 due to
976 	 * pgd_dtor so postpone it to the async context
977 	 */
978 	if (sig->oom_mm)
979 		mmdrop_async(sig->oom_mm);
980 	kmem_cache_free(signal_cachep, sig);
981 }
982 
put_signal_struct(struct signal_struct * sig)983 static inline void put_signal_struct(struct signal_struct *sig)
984 {
985 	if (refcount_dec_and_test(&sig->sigcnt))
986 		free_signal_struct(sig);
987 }
988 
__put_task_struct(struct task_struct * tsk)989 void __put_task_struct(struct task_struct *tsk)
990 {
991 	WARN_ON(!tsk->exit_state);
992 	WARN_ON(refcount_read(&tsk->usage));
993 	WARN_ON(tsk == current);
994 
995 	sched_ext_free(tsk);
996 	io_uring_free(tsk);
997 	cgroup_free(tsk);
998 	task_numa_free(tsk, true);
999 	security_task_free(tsk);
1000 	exit_creds(tsk);
1001 	delayacct_tsk_free(tsk);
1002 	put_signal_struct(tsk->signal);
1003 	sched_core_free(tsk);
1004 	free_task(tsk);
1005 }
1006 EXPORT_SYMBOL_GPL(__put_task_struct);
1007 
__put_task_struct_rcu_cb(struct rcu_head * rhp)1008 void __put_task_struct_rcu_cb(struct rcu_head *rhp)
1009 {
1010 	struct task_struct *task = container_of(rhp, struct task_struct, rcu);
1011 
1012 	__put_task_struct(task);
1013 }
1014 EXPORT_SYMBOL_GPL(__put_task_struct_rcu_cb);
1015 
arch_task_cache_init(void)1016 void __init __weak arch_task_cache_init(void) { }
1017 
1018 /*
1019  * set_max_threads
1020  */
set_max_threads(unsigned int max_threads_suggested)1021 static void __init set_max_threads(unsigned int max_threads_suggested)
1022 {
1023 	u64 threads;
1024 	unsigned long nr_pages = memblock_estimated_nr_free_pages();
1025 
1026 	/*
1027 	 * The number of threads shall be limited such that the thread
1028 	 * structures may only consume a small part of the available memory.
1029 	 */
1030 	if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
1031 		threads = MAX_THREADS;
1032 	else
1033 		threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
1034 				    (u64) THREAD_SIZE * 8UL);
1035 
1036 	if (threads > max_threads_suggested)
1037 		threads = max_threads_suggested;
1038 
1039 	max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
1040 }
1041 
1042 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
1043 /* Initialized by the architecture: */
1044 int arch_task_struct_size __read_mostly;
1045 #endif
1046 
task_struct_whitelist(unsigned long * offset,unsigned long * size)1047 static void __init task_struct_whitelist(unsigned long *offset, unsigned long *size)
1048 {
1049 	/* Fetch thread_struct whitelist for the architecture. */
1050 	arch_thread_struct_whitelist(offset, size);
1051 
1052 	/*
1053 	 * Handle zero-sized whitelist or empty thread_struct, otherwise
1054 	 * adjust offset to position of thread_struct in task_struct.
1055 	 */
1056 	if (unlikely(*size == 0))
1057 		*offset = 0;
1058 	else
1059 		*offset += offsetof(struct task_struct, thread);
1060 }
1061 
fork_init(void)1062 void __init fork_init(void)
1063 {
1064 	int i;
1065 #ifndef ARCH_MIN_TASKALIGN
1066 #define ARCH_MIN_TASKALIGN	0
1067 #endif
1068 	int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
1069 	unsigned long useroffset, usersize;
1070 
1071 	/* create a slab on which task_structs can be allocated */
1072 	task_struct_whitelist(&useroffset, &usersize);
1073 	task_struct_cachep = kmem_cache_create_usercopy("task_struct",
1074 			arch_task_struct_size, align,
1075 			SLAB_PANIC|SLAB_ACCOUNT,
1076 			useroffset, usersize, NULL);
1077 
1078 	/* do the arch specific task caches init */
1079 	arch_task_cache_init();
1080 
1081 	set_max_threads(MAX_THREADS);
1082 
1083 	init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
1084 	init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
1085 	init_task.signal->rlim[RLIMIT_SIGPENDING] =
1086 		init_task.signal->rlim[RLIMIT_NPROC];
1087 
1088 	for (i = 0; i < UCOUNT_COUNTS; i++)
1089 		init_user_ns.ucount_max[i] = max_threads/2;
1090 
1091 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_NPROC,      RLIM_INFINITY);
1092 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE,   RLIM_INFINITY);
1093 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
1094 	set_userns_rlimit_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK,    RLIM_INFINITY);
1095 
1096 #ifdef CONFIG_VMAP_STACK
1097 	cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
1098 			  NULL, free_vm_stack_cache);
1099 #endif
1100 
1101 	scs_init();
1102 
1103 	lockdep_init_task(&init_task);
1104 	uprobes_init();
1105 }
1106 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)1107 int __weak arch_dup_task_struct(struct task_struct *dst,
1108 					       struct task_struct *src)
1109 {
1110 	*dst = *src;
1111 	return 0;
1112 }
1113 
set_task_stack_end_magic(struct task_struct * tsk)1114 void set_task_stack_end_magic(struct task_struct *tsk)
1115 {
1116 	unsigned long *stackend;
1117 
1118 	stackend = end_of_stack(tsk);
1119 	*stackend = STACK_END_MAGIC;	/* for overflow detection */
1120 }
1121 
dup_task_struct(struct task_struct * orig,int node)1122 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
1123 {
1124 	struct task_struct *tsk;
1125 	int err;
1126 
1127 	if (node == NUMA_NO_NODE)
1128 		node = tsk_fork_get_node(orig);
1129 	tsk = alloc_task_struct_node(node);
1130 	if (!tsk)
1131 		return NULL;
1132 
1133 	err = arch_dup_task_struct(tsk, orig);
1134 	if (err)
1135 		goto free_tsk;
1136 
1137 	err = alloc_thread_stack_node(tsk, node);
1138 	if (err)
1139 		goto free_tsk;
1140 
1141 #ifdef CONFIG_THREAD_INFO_IN_TASK
1142 	refcount_set(&tsk->stack_refcount, 1);
1143 #endif
1144 	account_kernel_stack(tsk, 1);
1145 
1146 	err = scs_prepare(tsk, node);
1147 	if (err)
1148 		goto free_stack;
1149 
1150 #ifdef CONFIG_SECCOMP
1151 	/*
1152 	 * We must handle setting up seccomp filters once we're under
1153 	 * the sighand lock in case orig has changed between now and
1154 	 * then. Until then, filter must be NULL to avoid messing up
1155 	 * the usage counts on the error path calling free_task.
1156 	 */
1157 	tsk->seccomp.filter = NULL;
1158 #endif
1159 
1160 	setup_thread_stack(tsk, orig);
1161 	clear_user_return_notifier(tsk);
1162 	clear_tsk_need_resched(tsk);
1163 	set_task_stack_end_magic(tsk);
1164 	clear_syscall_work_syscall_user_dispatch(tsk);
1165 
1166 #ifdef CONFIG_STACKPROTECTOR
1167 	tsk->stack_canary = get_random_canary();
1168 #endif
1169 	if (orig->cpus_ptr == &orig->cpus_mask)
1170 		tsk->cpus_ptr = &tsk->cpus_mask;
1171 	dup_user_cpus_ptr(tsk, orig, node);
1172 
1173 	/*
1174 	 * One for the user space visible state that goes away when reaped.
1175 	 * One for the scheduler.
1176 	 */
1177 	refcount_set(&tsk->rcu_users, 2);
1178 	/* One for the rcu users */
1179 	refcount_set(&tsk->usage, 1);
1180 #ifdef CONFIG_BLK_DEV_IO_TRACE
1181 	tsk->btrace_seq = 0;
1182 #endif
1183 	tsk->splice_pipe = NULL;
1184 	tsk->task_frag.page = NULL;
1185 	tsk->wake_q.next = NULL;
1186 	tsk->worker_private = NULL;
1187 
1188 	kcov_task_init(tsk);
1189 	kmsan_task_create(tsk);
1190 	kmap_local_fork(tsk);
1191 
1192 #ifdef CONFIG_FAULT_INJECTION
1193 	tsk->fail_nth = 0;
1194 #endif
1195 
1196 #ifdef CONFIG_BLK_CGROUP
1197 	tsk->throttle_disk = NULL;
1198 	tsk->use_memdelay = 0;
1199 #endif
1200 
1201 #ifdef CONFIG_ARCH_HAS_CPU_PASID
1202 	tsk->pasid_activated = 0;
1203 #endif
1204 
1205 #ifdef CONFIG_MEMCG
1206 	tsk->active_memcg = NULL;
1207 #endif
1208 
1209 #ifdef CONFIG_X86_BUS_LOCK_DETECT
1210 	tsk->reported_split_lock = 0;
1211 #endif
1212 
1213 #ifdef CONFIG_SCHED_MM_CID
1214 	tsk->mm_cid = -1;
1215 	tsk->last_mm_cid = -1;
1216 	tsk->mm_cid_active = 0;
1217 	tsk->migrate_from_cpu = -1;
1218 #endif
1219 	return tsk;
1220 
1221 free_stack:
1222 	exit_task_stack_account(tsk);
1223 	free_thread_stack(tsk);
1224 free_tsk:
1225 	free_task_struct(tsk);
1226 	return NULL;
1227 }
1228 
1229 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
1230 
1231 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
1232 
coredump_filter_setup(char * s)1233 static int __init coredump_filter_setup(char *s)
1234 {
1235 	default_dump_filter =
1236 		(simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
1237 		MMF_DUMP_FILTER_MASK;
1238 	return 1;
1239 }
1240 
1241 __setup("coredump_filter=", coredump_filter_setup);
1242 
1243 #include <linux/init_task.h>
1244 
mm_init_aio(struct mm_struct * mm)1245 static void mm_init_aio(struct mm_struct *mm)
1246 {
1247 #ifdef CONFIG_AIO
1248 	spin_lock_init(&mm->ioctx_lock);
1249 	mm->ioctx_table = NULL;
1250 #endif
1251 }
1252 
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1253 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1254 					   struct task_struct *p)
1255 {
1256 #ifdef CONFIG_MEMCG
1257 	if (mm->owner == p)
1258 		WRITE_ONCE(mm->owner, NULL);
1259 #endif
1260 }
1261 
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1262 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1263 {
1264 #ifdef CONFIG_MEMCG
1265 	mm->owner = p;
1266 #endif
1267 }
1268 
mm_init_uprobes_state(struct mm_struct * mm)1269 static void mm_init_uprobes_state(struct mm_struct *mm)
1270 {
1271 #ifdef CONFIG_UPROBES
1272 	mm->uprobes_state.xol_area = NULL;
1273 #endif
1274 }
1275 
mmap_init_lock(struct mm_struct * mm)1276 static void mmap_init_lock(struct mm_struct *mm)
1277 {
1278 	init_rwsem(&mm->mmap_lock);
1279 	mm_lock_seqcount_init(mm);
1280 #ifdef CONFIG_PER_VMA_LOCK
1281 	rcuwait_init(&mm->vma_writer_wait);
1282 #endif
1283 }
1284 
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1285 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1286 	struct user_namespace *user_ns)
1287 {
1288 	mt_init_flags(&mm->mm_mt, MM_MT_FLAGS);
1289 	mt_set_external_lock(&mm->mm_mt, &mm->mmap_lock);
1290 	atomic_set(&mm->mm_users, 1);
1291 	atomic_set(&mm->mm_count, 1);
1292 	seqcount_init(&mm->write_protect_seq);
1293 	mmap_init_lock(mm);
1294 	INIT_LIST_HEAD(&mm->mmlist);
1295 	mm_pgtables_bytes_init(mm);
1296 	mm->map_count = 0;
1297 	mm->locked_vm = 0;
1298 	atomic64_set(&mm->pinned_vm, 0);
1299 	memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1300 	spin_lock_init(&mm->page_table_lock);
1301 	spin_lock_init(&mm->arg_lock);
1302 	mm_init_cpumask(mm);
1303 	mm_init_aio(mm);
1304 	mm_init_owner(mm, p);
1305 	mm_pasid_init(mm);
1306 	RCU_INIT_POINTER(mm->exe_file, NULL);
1307 	mmu_notifier_subscriptions_init(mm);
1308 	init_tlb_flush_pending(mm);
1309 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !defined(CONFIG_SPLIT_PMD_PTLOCKS)
1310 	mm->pmd_huge_pte = NULL;
1311 #endif
1312 	mm_init_uprobes_state(mm);
1313 	hugetlb_count_init(mm);
1314 
1315 	if (current->mm) {
1316 		mm->flags = mmf_init_flags(current->mm->flags);
1317 		mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1318 	} else {
1319 		mm->flags = default_dump_filter;
1320 		mm->def_flags = 0;
1321 	}
1322 
1323 	if (mm_alloc_pgd(mm))
1324 		goto fail_nopgd;
1325 
1326 	if (mm_alloc_id(mm))
1327 		goto fail_noid;
1328 
1329 	if (init_new_context(p, mm))
1330 		goto fail_nocontext;
1331 
1332 	if (mm_alloc_cid(mm, p))
1333 		goto fail_cid;
1334 
1335 	if (percpu_counter_init_many(mm->rss_stat, 0, GFP_KERNEL_ACCOUNT,
1336 				     NR_MM_COUNTERS))
1337 		goto fail_pcpu;
1338 
1339 	mm->user_ns = get_user_ns(user_ns);
1340 	lru_gen_init_mm(mm);
1341 	return mm;
1342 
1343 fail_pcpu:
1344 	mm_destroy_cid(mm);
1345 fail_cid:
1346 	destroy_context(mm);
1347 fail_nocontext:
1348 	mm_free_id(mm);
1349 fail_noid:
1350 	mm_free_pgd(mm);
1351 fail_nopgd:
1352 	free_mm(mm);
1353 	return NULL;
1354 }
1355 
1356 /*
1357  * Allocate and initialize an mm_struct.
1358  */
mm_alloc(void)1359 struct mm_struct *mm_alloc(void)
1360 {
1361 	struct mm_struct *mm;
1362 
1363 	mm = allocate_mm();
1364 	if (!mm)
1365 		return NULL;
1366 
1367 	memset(mm, 0, sizeof(*mm));
1368 	return mm_init(mm, current, current_user_ns());
1369 }
1370 EXPORT_SYMBOL_IF_KUNIT(mm_alloc);
1371 
__mmput(struct mm_struct * mm)1372 static inline void __mmput(struct mm_struct *mm)
1373 {
1374 	VM_BUG_ON(atomic_read(&mm->mm_users));
1375 
1376 	uprobe_clear_state(mm);
1377 	exit_aio(mm);
1378 	ksm_exit(mm);
1379 	khugepaged_exit(mm); /* must run before exit_mmap */
1380 	exit_mmap(mm);
1381 	mm_put_huge_zero_folio(mm);
1382 	set_mm_exe_file(mm, NULL);
1383 	if (!list_empty(&mm->mmlist)) {
1384 		spin_lock(&mmlist_lock);
1385 		list_del(&mm->mmlist);
1386 		spin_unlock(&mmlist_lock);
1387 	}
1388 	if (mm->binfmt)
1389 		module_put(mm->binfmt->module);
1390 	lru_gen_del_mm(mm);
1391 	mmdrop(mm);
1392 }
1393 
1394 /*
1395  * Decrement the use count and release all resources for an mm.
1396  */
mmput(struct mm_struct * mm)1397 void mmput(struct mm_struct *mm)
1398 {
1399 	might_sleep();
1400 
1401 	if (atomic_dec_and_test(&mm->mm_users))
1402 		__mmput(mm);
1403 }
1404 EXPORT_SYMBOL_GPL(mmput);
1405 
1406 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1407 static void mmput_async_fn(struct work_struct *work)
1408 {
1409 	struct mm_struct *mm = container_of(work, struct mm_struct,
1410 					    async_put_work);
1411 
1412 	__mmput(mm);
1413 }
1414 
mmput_async(struct mm_struct * mm)1415 void mmput_async(struct mm_struct *mm)
1416 {
1417 	if (atomic_dec_and_test(&mm->mm_users)) {
1418 		INIT_WORK(&mm->async_put_work, mmput_async_fn);
1419 		schedule_work(&mm->async_put_work);
1420 	}
1421 }
1422 EXPORT_SYMBOL_GPL(mmput_async);
1423 #endif
1424 
1425 /**
1426  * set_mm_exe_file - change a reference to the mm's executable file
1427  * @mm: The mm to change.
1428  * @new_exe_file: The new file to use.
1429  *
1430  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1431  *
1432  * Main users are mmput() and sys_execve(). Callers prevent concurrent
1433  * invocations: in mmput() nobody alive left, in execve it happens before
1434  * the new mm is made visible to anyone.
1435  *
1436  * Can only fail if new_exe_file != NULL.
1437  */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1438 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1439 {
1440 	struct file *old_exe_file;
1441 
1442 	/*
1443 	 * It is safe to dereference the exe_file without RCU as
1444 	 * this function is only called if nobody else can access
1445 	 * this mm -- see comment above for justification.
1446 	 */
1447 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1448 
1449 	if (new_exe_file) {
1450 		/*
1451 		 * We expect the caller (i.e., sys_execve) to already denied
1452 		 * write access, so this is unlikely to fail.
1453 		 */
1454 		if (unlikely(exe_file_deny_write_access(new_exe_file)))
1455 			return -EACCES;
1456 		get_file(new_exe_file);
1457 	}
1458 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1459 	if (old_exe_file) {
1460 		exe_file_allow_write_access(old_exe_file);
1461 		fput(old_exe_file);
1462 	}
1463 	return 0;
1464 }
1465 
1466 /**
1467  * replace_mm_exe_file - replace a reference to the mm's executable file
1468  * @mm: The mm to change.
1469  * @new_exe_file: The new file to use.
1470  *
1471  * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1472  *
1473  * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1474  */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1475 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1476 {
1477 	struct vm_area_struct *vma;
1478 	struct file *old_exe_file;
1479 	int ret = 0;
1480 
1481 	/* Forbid mm->exe_file change if old file still mapped. */
1482 	old_exe_file = get_mm_exe_file(mm);
1483 	if (old_exe_file) {
1484 		VMA_ITERATOR(vmi, mm, 0);
1485 		mmap_read_lock(mm);
1486 		for_each_vma(vmi, vma) {
1487 			if (!vma->vm_file)
1488 				continue;
1489 			if (path_equal(&vma->vm_file->f_path,
1490 				       &old_exe_file->f_path)) {
1491 				ret = -EBUSY;
1492 				break;
1493 			}
1494 		}
1495 		mmap_read_unlock(mm);
1496 		fput(old_exe_file);
1497 		if (ret)
1498 			return ret;
1499 	}
1500 
1501 	ret = exe_file_deny_write_access(new_exe_file);
1502 	if (ret)
1503 		return -EACCES;
1504 	get_file(new_exe_file);
1505 
1506 	/* set the new file */
1507 	mmap_write_lock(mm);
1508 	old_exe_file = rcu_dereference_raw(mm->exe_file);
1509 	rcu_assign_pointer(mm->exe_file, new_exe_file);
1510 	mmap_write_unlock(mm);
1511 
1512 	if (old_exe_file) {
1513 		exe_file_allow_write_access(old_exe_file);
1514 		fput(old_exe_file);
1515 	}
1516 	return 0;
1517 }
1518 
1519 /**
1520  * get_mm_exe_file - acquire a reference to the mm's executable file
1521  * @mm: The mm of interest.
1522  *
1523  * Returns %NULL if mm has no associated executable file.
1524  * User must release file via fput().
1525  */
get_mm_exe_file(struct mm_struct * mm)1526 struct file *get_mm_exe_file(struct mm_struct *mm)
1527 {
1528 	struct file *exe_file;
1529 
1530 	rcu_read_lock();
1531 	exe_file = get_file_rcu(&mm->exe_file);
1532 	rcu_read_unlock();
1533 	return exe_file;
1534 }
1535 
1536 /**
1537  * get_task_exe_file - acquire a reference to the task's executable file
1538  * @task: The task.
1539  *
1540  * Returns %NULL if task's mm (if any) has no associated executable file or
1541  * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1542  * User must release file via fput().
1543  */
get_task_exe_file(struct task_struct * task)1544 struct file *get_task_exe_file(struct task_struct *task)
1545 {
1546 	struct file *exe_file = NULL;
1547 	struct mm_struct *mm;
1548 
1549 	if (task->flags & PF_KTHREAD)
1550 		return NULL;
1551 
1552 	task_lock(task);
1553 	mm = task->mm;
1554 	if (mm)
1555 		exe_file = get_mm_exe_file(mm);
1556 	task_unlock(task);
1557 	return exe_file;
1558 }
1559 
1560 /**
1561  * get_task_mm - acquire a reference to the task's mm
1562  * @task: The task.
1563  *
1564  * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1565  * this kernel workthread has transiently adopted a user mm with use_mm,
1566  * to do its AIO) is not set and if so returns a reference to it, after
1567  * bumping up the use count.  User must release the mm via mmput()
1568  * after use.  Typically used by /proc and ptrace.
1569  */
get_task_mm(struct task_struct * task)1570 struct mm_struct *get_task_mm(struct task_struct *task)
1571 {
1572 	struct mm_struct *mm;
1573 
1574 	if (task->flags & PF_KTHREAD)
1575 		return NULL;
1576 
1577 	task_lock(task);
1578 	mm = task->mm;
1579 	if (mm)
1580 		mmget(mm);
1581 	task_unlock(task);
1582 	return mm;
1583 }
1584 EXPORT_SYMBOL_GPL(get_task_mm);
1585 
may_access_mm(struct mm_struct * mm,struct task_struct * task,unsigned int mode)1586 static bool may_access_mm(struct mm_struct *mm, struct task_struct *task, unsigned int mode)
1587 {
1588 	if (mm == current->mm)
1589 		return true;
1590 	if (ptrace_may_access(task, mode))
1591 		return true;
1592 	if ((mode & PTRACE_MODE_READ) && perfmon_capable())
1593 		return true;
1594 	return false;
1595 }
1596 
mm_access(struct task_struct * task,unsigned int mode)1597 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1598 {
1599 	struct mm_struct *mm;
1600 	int err;
1601 
1602 	err =  down_read_killable(&task->signal->exec_update_lock);
1603 	if (err)
1604 		return ERR_PTR(err);
1605 
1606 	mm = get_task_mm(task);
1607 	if (!mm) {
1608 		mm = ERR_PTR(-ESRCH);
1609 	} else if (!may_access_mm(mm, task, mode)) {
1610 		mmput(mm);
1611 		mm = ERR_PTR(-EACCES);
1612 	}
1613 	up_read(&task->signal->exec_update_lock);
1614 
1615 	return mm;
1616 }
1617 
complete_vfork_done(struct task_struct * tsk)1618 static void complete_vfork_done(struct task_struct *tsk)
1619 {
1620 	struct completion *vfork;
1621 
1622 	task_lock(tsk);
1623 	vfork = tsk->vfork_done;
1624 	if (likely(vfork)) {
1625 		tsk->vfork_done = NULL;
1626 		complete(vfork);
1627 	}
1628 	task_unlock(tsk);
1629 }
1630 
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1631 static int wait_for_vfork_done(struct task_struct *child,
1632 				struct completion *vfork)
1633 {
1634 	unsigned int state = TASK_KILLABLE|TASK_FREEZABLE;
1635 	int killed;
1636 
1637 	cgroup_enter_frozen();
1638 	killed = wait_for_completion_state(vfork, state);
1639 	cgroup_leave_frozen(false);
1640 
1641 	if (killed) {
1642 		task_lock(child);
1643 		child->vfork_done = NULL;
1644 		task_unlock(child);
1645 	}
1646 
1647 	put_task_struct(child);
1648 	return killed;
1649 }
1650 
1651 /* Please note the differences between mmput and mm_release.
1652  * mmput is called whenever we stop holding onto a mm_struct,
1653  * error success whatever.
1654  *
1655  * mm_release is called after a mm_struct has been removed
1656  * from the current process.
1657  *
1658  * This difference is important for error handling, when we
1659  * only half set up a mm_struct for a new process and need to restore
1660  * the old one.  Because we mmput the new mm_struct before
1661  * restoring the old one. . .
1662  * Eric Biederman 10 January 1998
1663  */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1664 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1665 {
1666 	uprobe_free_utask(tsk);
1667 
1668 	/* Get rid of any cached register state */
1669 	deactivate_mm(tsk, mm);
1670 
1671 	/*
1672 	 * Signal userspace if we're not exiting with a core dump
1673 	 * because we want to leave the value intact for debugging
1674 	 * purposes.
1675 	 */
1676 	if (tsk->clear_child_tid) {
1677 		if (atomic_read(&mm->mm_users) > 1) {
1678 			/*
1679 			 * We don't check the error code - if userspace has
1680 			 * not set up a proper pointer then tough luck.
1681 			 */
1682 			put_user(0, tsk->clear_child_tid);
1683 			do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1684 					1, NULL, NULL, 0, 0);
1685 		}
1686 		tsk->clear_child_tid = NULL;
1687 	}
1688 
1689 	/*
1690 	 * All done, finally we can wake up parent and return this mm to him.
1691 	 * Also kthread_stop() uses this completion for synchronization.
1692 	 */
1693 	if (tsk->vfork_done)
1694 		complete_vfork_done(tsk);
1695 }
1696 
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1697 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1698 {
1699 	futex_exit_release(tsk);
1700 	mm_release(tsk, mm);
1701 }
1702 
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1703 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1704 {
1705 	futex_exec_release(tsk);
1706 	mm_release(tsk, mm);
1707 }
1708 
1709 /**
1710  * dup_mm() - duplicates an existing mm structure
1711  * @tsk: the task_struct with which the new mm will be associated.
1712  * @oldmm: the mm to duplicate.
1713  *
1714  * Allocates a new mm structure and duplicates the provided @oldmm structure
1715  * content into it.
1716  *
1717  * Return: the duplicated mm or NULL on failure.
1718  */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1719 static struct mm_struct *dup_mm(struct task_struct *tsk,
1720 				struct mm_struct *oldmm)
1721 {
1722 	struct mm_struct *mm;
1723 	int err;
1724 
1725 	mm = allocate_mm();
1726 	if (!mm)
1727 		goto fail_nomem;
1728 
1729 	memcpy(mm, oldmm, sizeof(*mm));
1730 
1731 	if (!mm_init(mm, tsk, mm->user_ns))
1732 		goto fail_nomem;
1733 
1734 	uprobe_start_dup_mmap();
1735 	err = dup_mmap(mm, oldmm);
1736 	if (err)
1737 		goto free_pt;
1738 	uprobe_end_dup_mmap();
1739 
1740 	mm->hiwater_rss = get_mm_rss(mm);
1741 	mm->hiwater_vm = mm->total_vm;
1742 
1743 	if (mm->binfmt && !try_module_get(mm->binfmt->module))
1744 		goto free_pt;
1745 
1746 	return mm;
1747 
1748 free_pt:
1749 	/* don't put binfmt in mmput, we haven't got module yet */
1750 	mm->binfmt = NULL;
1751 	mm_init_owner(mm, NULL);
1752 	mmput(mm);
1753 	if (err)
1754 		uprobe_end_dup_mmap();
1755 
1756 fail_nomem:
1757 	return NULL;
1758 }
1759 
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1760 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1761 {
1762 	struct mm_struct *mm, *oldmm;
1763 
1764 	tsk->min_flt = tsk->maj_flt = 0;
1765 	tsk->nvcsw = tsk->nivcsw = 0;
1766 #ifdef CONFIG_DETECT_HUNG_TASK
1767 	tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1768 	tsk->last_switch_time = 0;
1769 #endif
1770 
1771 	tsk->mm = NULL;
1772 	tsk->active_mm = NULL;
1773 
1774 	/*
1775 	 * Are we cloning a kernel thread?
1776 	 *
1777 	 * We need to steal a active VM for that..
1778 	 */
1779 	oldmm = current->mm;
1780 	if (!oldmm)
1781 		return 0;
1782 
1783 	if (clone_flags & CLONE_VM) {
1784 		mmget(oldmm);
1785 		mm = oldmm;
1786 	} else {
1787 		mm = dup_mm(tsk, current->mm);
1788 		if (!mm)
1789 			return -ENOMEM;
1790 	}
1791 
1792 	tsk->mm = mm;
1793 	tsk->active_mm = mm;
1794 	sched_mm_cid_fork(tsk);
1795 	return 0;
1796 }
1797 
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1798 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1799 {
1800 	struct fs_struct *fs = current->fs;
1801 	if (clone_flags & CLONE_FS) {
1802 		/* tsk->fs is already what we want */
1803 		spin_lock(&fs->lock);
1804 		/* "users" and "in_exec" locked for check_unsafe_exec() */
1805 		if (fs->in_exec) {
1806 			spin_unlock(&fs->lock);
1807 			return -EAGAIN;
1808 		}
1809 		fs->users++;
1810 		spin_unlock(&fs->lock);
1811 		return 0;
1812 	}
1813 	tsk->fs = copy_fs_struct(fs);
1814 	if (!tsk->fs)
1815 		return -ENOMEM;
1816 	return 0;
1817 }
1818 
copy_files(unsigned long clone_flags,struct task_struct * tsk,int no_files)1819 static int copy_files(unsigned long clone_flags, struct task_struct *tsk,
1820 		      int no_files)
1821 {
1822 	struct files_struct *oldf, *newf;
1823 
1824 	/*
1825 	 * A background process may not have any files ...
1826 	 */
1827 	oldf = current->files;
1828 	if (!oldf)
1829 		return 0;
1830 
1831 	if (no_files) {
1832 		tsk->files = NULL;
1833 		return 0;
1834 	}
1835 
1836 	if (clone_flags & CLONE_FILES) {
1837 		atomic_inc(&oldf->count);
1838 		return 0;
1839 	}
1840 
1841 	newf = dup_fd(oldf, NULL);
1842 	if (IS_ERR(newf))
1843 		return PTR_ERR(newf);
1844 
1845 	tsk->files = newf;
1846 	return 0;
1847 }
1848 
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1849 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1850 {
1851 	struct sighand_struct *sig;
1852 
1853 	if (clone_flags & CLONE_SIGHAND) {
1854 		refcount_inc(&current->sighand->count);
1855 		return 0;
1856 	}
1857 	sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1858 	RCU_INIT_POINTER(tsk->sighand, sig);
1859 	if (!sig)
1860 		return -ENOMEM;
1861 
1862 	refcount_set(&sig->count, 1);
1863 	spin_lock_irq(&current->sighand->siglock);
1864 	memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1865 	spin_unlock_irq(&current->sighand->siglock);
1866 
1867 	/* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1868 	if (clone_flags & CLONE_CLEAR_SIGHAND)
1869 		flush_signal_handlers(tsk, 0);
1870 
1871 	return 0;
1872 }
1873 
__cleanup_sighand(struct sighand_struct * sighand)1874 void __cleanup_sighand(struct sighand_struct *sighand)
1875 {
1876 	if (refcount_dec_and_test(&sighand->count)) {
1877 		signalfd_cleanup(sighand);
1878 		/*
1879 		 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1880 		 * without an RCU grace period, see __lock_task_sighand().
1881 		 */
1882 		kmem_cache_free(sighand_cachep, sighand);
1883 	}
1884 }
1885 
1886 /*
1887  * Initialize POSIX timer handling for a thread group.
1888  */
posix_cpu_timers_init_group(struct signal_struct * sig)1889 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1890 {
1891 	struct posix_cputimers *pct = &sig->posix_cputimers;
1892 	unsigned long cpu_limit;
1893 
1894 	cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1895 	posix_cputimers_group_init(pct, cpu_limit);
1896 }
1897 
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1898 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1899 {
1900 	struct signal_struct *sig;
1901 
1902 	if (clone_flags & CLONE_THREAD)
1903 		return 0;
1904 
1905 	sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1906 	tsk->signal = sig;
1907 	if (!sig)
1908 		return -ENOMEM;
1909 
1910 	sig->nr_threads = 1;
1911 	sig->quick_threads = 1;
1912 	atomic_set(&sig->live, 1);
1913 	refcount_set(&sig->sigcnt, 1);
1914 
1915 	/* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1916 	sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1917 	tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1918 
1919 	init_waitqueue_head(&sig->wait_chldexit);
1920 	sig->curr_target = tsk;
1921 	init_sigpending(&sig->shared_pending);
1922 	INIT_HLIST_HEAD(&sig->multiprocess);
1923 	seqlock_init(&sig->stats_lock);
1924 	prev_cputime_init(&sig->prev_cputime);
1925 
1926 #ifdef CONFIG_POSIX_TIMERS
1927 	INIT_HLIST_HEAD(&sig->posix_timers);
1928 	INIT_HLIST_HEAD(&sig->ignored_posix_timers);
1929 	hrtimer_setup(&sig->real_timer, it_real_fn, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1930 #endif
1931 
1932 	task_lock(current->group_leader);
1933 	memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1934 	task_unlock(current->group_leader);
1935 
1936 	posix_cpu_timers_init_group(sig);
1937 
1938 	tty_audit_fork(sig);
1939 	sched_autogroup_fork(sig);
1940 
1941 	sig->oom_score_adj = current->signal->oom_score_adj;
1942 	sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1943 
1944 	mutex_init(&sig->cred_guard_mutex);
1945 	init_rwsem(&sig->exec_update_lock);
1946 
1947 	return 0;
1948 }
1949 
copy_seccomp(struct task_struct * p)1950 static void copy_seccomp(struct task_struct *p)
1951 {
1952 #ifdef CONFIG_SECCOMP
1953 	/*
1954 	 * Must be called with sighand->lock held, which is common to
1955 	 * all threads in the group. Holding cred_guard_mutex is not
1956 	 * needed because this new task is not yet running and cannot
1957 	 * be racing exec.
1958 	 */
1959 	assert_spin_locked(&current->sighand->siglock);
1960 
1961 	/* Ref-count the new filter user, and assign it. */
1962 	get_seccomp_filter(current);
1963 	p->seccomp = current->seccomp;
1964 
1965 	/*
1966 	 * Explicitly enable no_new_privs here in case it got set
1967 	 * between the task_struct being duplicated and holding the
1968 	 * sighand lock. The seccomp state and nnp must be in sync.
1969 	 */
1970 	if (task_no_new_privs(current))
1971 		task_set_no_new_privs(p);
1972 
1973 	/*
1974 	 * If the parent gained a seccomp mode after copying thread
1975 	 * flags and between before we held the sighand lock, we have
1976 	 * to manually enable the seccomp thread flag here.
1977 	 */
1978 	if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1979 		set_task_syscall_work(p, SECCOMP);
1980 #endif
1981 }
1982 
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1983 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1984 {
1985 	current->clear_child_tid = tidptr;
1986 
1987 	return task_pid_vnr(current);
1988 }
1989 
rt_mutex_init_task(struct task_struct * p)1990 static void rt_mutex_init_task(struct task_struct *p)
1991 {
1992 	raw_spin_lock_init(&p->pi_lock);
1993 #ifdef CONFIG_RT_MUTEXES
1994 	p->pi_waiters = RB_ROOT_CACHED;
1995 	p->pi_top_task = NULL;
1996 	p->pi_blocked_on = NULL;
1997 #endif
1998 }
1999 
init_task_pid_links(struct task_struct * task)2000 static inline void init_task_pid_links(struct task_struct *task)
2001 {
2002 	enum pid_type type;
2003 
2004 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
2005 		INIT_HLIST_NODE(&task->pid_links[type]);
2006 }
2007 
2008 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)2009 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
2010 {
2011 	if (type == PIDTYPE_PID)
2012 		task->thread_pid = pid;
2013 	else
2014 		task->signal->pids[type] = pid;
2015 }
2016 
rcu_copy_process(struct task_struct * p)2017 static inline void rcu_copy_process(struct task_struct *p)
2018 {
2019 #ifdef CONFIG_PREEMPT_RCU
2020 	p->rcu_read_lock_nesting = 0;
2021 	p->rcu_read_unlock_special.s = 0;
2022 	p->rcu_blocked_node = NULL;
2023 	INIT_LIST_HEAD(&p->rcu_node_entry);
2024 #endif /* #ifdef CONFIG_PREEMPT_RCU */
2025 #ifdef CONFIG_TASKS_RCU
2026 	p->rcu_tasks_holdout = false;
2027 	INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
2028 	p->rcu_tasks_idle_cpu = -1;
2029 	INIT_LIST_HEAD(&p->rcu_tasks_exit_list);
2030 #endif /* #ifdef CONFIG_TASKS_RCU */
2031 #ifdef CONFIG_TASKS_TRACE_RCU
2032 	p->trc_reader_nesting = 0;
2033 	p->trc_reader_special.s = 0;
2034 	INIT_LIST_HEAD(&p->trc_holdout_list);
2035 	INIT_LIST_HEAD(&p->trc_blkd_node);
2036 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
2037 }
2038 
2039 /**
2040  * __pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2041  * @pid:   the struct pid for which to create a pidfd
2042  * @flags: flags of the new @pidfd
2043  * @ret: Where to return the file for the pidfd.
2044  *
2045  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2046  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2047  *
2048  * The helper doesn't perform checks on @pid which makes it useful for pidfds
2049  * created via CLONE_PIDFD where @pid has no task attached when the pidfd and
2050  * pidfd file are prepared.
2051  *
2052  * If this function returns successfully the caller is responsible to either
2053  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2054  * order to install the pidfd into its file descriptor table or they must use
2055  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2056  * respectively.
2057  *
2058  * This function is useful when a pidfd must already be reserved but there
2059  * might still be points of failure afterwards and the caller wants to ensure
2060  * that no pidfd is leaked into its file descriptor table.
2061  *
2062  * Return: On success, a reserved pidfd is returned from the function and a new
2063  *         pidfd file is returned in the last argument to the function. On
2064  *         error, a negative error code is returned from the function and the
2065  *         last argument remains unchanged.
2066  */
__pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2067 static int __pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2068 {
2069 	struct file *pidfd_file;
2070 
2071 	CLASS(get_unused_fd, pidfd)(O_CLOEXEC);
2072 	if (pidfd < 0)
2073 		return pidfd;
2074 
2075 	pidfd_file = pidfs_alloc_file(pid, flags | O_RDWR);
2076 	if (IS_ERR(pidfd_file))
2077 		return PTR_ERR(pidfd_file);
2078 
2079 	*ret = pidfd_file;
2080 	return take_fd(pidfd);
2081 }
2082 
2083 /**
2084  * pidfd_prepare - allocate a new pidfd_file and reserve a pidfd
2085  * @pid:   the struct pid for which to create a pidfd
2086  * @flags: flags of the new @pidfd
2087  * @ret: Where to return the pidfd.
2088  *
2089  * Allocate a new file that stashes @pid and reserve a new pidfd number in the
2090  * caller's file descriptor table. The pidfd is reserved but not installed yet.
2091  *
2092  * The helper verifies that @pid is still in use, without PIDFD_THREAD the
2093  * task identified by @pid must be a thread-group leader.
2094  *
2095  * If this function returns successfully the caller is responsible to either
2096  * call fd_install() passing the returned pidfd and pidfd file as arguments in
2097  * order to install the pidfd into its file descriptor table or they must use
2098  * put_unused_fd() and fput() on the returned pidfd and pidfd file
2099  * respectively.
2100  *
2101  * This function is useful when a pidfd must already be reserved but there
2102  * might still be points of failure afterwards and the caller wants to ensure
2103  * that no pidfd is leaked into its file descriptor table.
2104  *
2105  * Return: On success, a reserved pidfd is returned from the function and a new
2106  *         pidfd file is returned in the last argument to the function. On
2107  *         error, a negative error code is returned from the function and the
2108  *         last argument remains unchanged.
2109  */
pidfd_prepare(struct pid * pid,unsigned int flags,struct file ** ret)2110 int pidfd_prepare(struct pid *pid, unsigned int flags, struct file **ret)
2111 {
2112 	bool thread = flags & PIDFD_THREAD;
2113 
2114 	if (!pid || !pid_has_task(pid, thread ? PIDTYPE_PID : PIDTYPE_TGID))
2115 		return -EINVAL;
2116 
2117 	return __pidfd_prepare(pid, flags, ret);
2118 }
2119 
__delayed_free_task(struct rcu_head * rhp)2120 static void __delayed_free_task(struct rcu_head *rhp)
2121 {
2122 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
2123 
2124 	free_task(tsk);
2125 }
2126 
delayed_free_task(struct task_struct * tsk)2127 static __always_inline void delayed_free_task(struct task_struct *tsk)
2128 {
2129 	if (IS_ENABLED(CONFIG_MEMCG))
2130 		call_rcu(&tsk->rcu, __delayed_free_task);
2131 	else
2132 		free_task(tsk);
2133 }
2134 
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)2135 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
2136 {
2137 	/* Skip if kernel thread */
2138 	if (!tsk->mm)
2139 		return;
2140 
2141 	/* Skip if spawning a thread or using vfork */
2142 	if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
2143 		return;
2144 
2145 	/* We need to synchronize with __set_oom_adj */
2146 	mutex_lock(&oom_adj_mutex);
2147 	set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
2148 	/* Update the values in case they were changed after copy_signal */
2149 	tsk->signal->oom_score_adj = current->signal->oom_score_adj;
2150 	tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
2151 	mutex_unlock(&oom_adj_mutex);
2152 }
2153 
2154 #ifdef CONFIG_RV
rv_task_fork(struct task_struct * p)2155 static void rv_task_fork(struct task_struct *p)
2156 {
2157 	int i;
2158 
2159 	for (i = 0; i < RV_PER_TASK_MONITORS; i++)
2160 		p->rv[i].da_mon.monitoring = false;
2161 }
2162 #else
2163 #define rv_task_fork(p) do {} while (0)
2164 #endif
2165 
2166 /*
2167  * This creates a new process as a copy of the old one,
2168  * but does not actually start it yet.
2169  *
2170  * It copies the registers, and all the appropriate
2171  * parts of the process environment (as per the clone
2172  * flags). The actual kick-off is left to the caller.
2173  */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)2174 __latent_entropy struct task_struct *copy_process(
2175 					struct pid *pid,
2176 					int trace,
2177 					int node,
2178 					struct kernel_clone_args *args)
2179 {
2180 	int pidfd = -1, retval;
2181 	struct task_struct *p;
2182 	struct multiprocess_signals delayed;
2183 	struct file *pidfile = NULL;
2184 	const u64 clone_flags = args->flags;
2185 	struct nsproxy *nsp = current->nsproxy;
2186 
2187 	/*
2188 	 * Don't allow sharing the root directory with processes in a different
2189 	 * namespace
2190 	 */
2191 	if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
2192 		return ERR_PTR(-EINVAL);
2193 
2194 	if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
2195 		return ERR_PTR(-EINVAL);
2196 
2197 	/*
2198 	 * Thread groups must share signals as well, and detached threads
2199 	 * can only be started up within the thread group.
2200 	 */
2201 	if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
2202 		return ERR_PTR(-EINVAL);
2203 
2204 	/*
2205 	 * Shared signal handlers imply shared VM. By way of the above,
2206 	 * thread groups also imply shared VM. Blocking this case allows
2207 	 * for various simplifications in other code.
2208 	 */
2209 	if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
2210 		return ERR_PTR(-EINVAL);
2211 
2212 	/*
2213 	 * Siblings of global init remain as zombies on exit since they are
2214 	 * not reaped by their parent (swapper). To solve this and to avoid
2215 	 * multi-rooted process trees, prevent global and container-inits
2216 	 * from creating siblings.
2217 	 */
2218 	if ((clone_flags & CLONE_PARENT) &&
2219 				current->signal->flags & SIGNAL_UNKILLABLE)
2220 		return ERR_PTR(-EINVAL);
2221 
2222 	/*
2223 	 * If the new process will be in a different pid or user namespace
2224 	 * do not allow it to share a thread group with the forking task.
2225 	 */
2226 	if (clone_flags & CLONE_THREAD) {
2227 		if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
2228 		    (task_active_pid_ns(current) != nsp->pid_ns_for_children))
2229 			return ERR_PTR(-EINVAL);
2230 	}
2231 
2232 	if (clone_flags & CLONE_PIDFD) {
2233 		/*
2234 		 * - CLONE_DETACHED is blocked so that we can potentially
2235 		 *   reuse it later for CLONE_PIDFD.
2236 		 */
2237 		if (clone_flags & CLONE_DETACHED)
2238 			return ERR_PTR(-EINVAL);
2239 	}
2240 
2241 	/*
2242 	 * Force any signals received before this point to be delivered
2243 	 * before the fork happens.  Collect up signals sent to multiple
2244 	 * processes that happen during the fork and delay them so that
2245 	 * they appear to happen after the fork.
2246 	 */
2247 	sigemptyset(&delayed.signal);
2248 	INIT_HLIST_NODE(&delayed.node);
2249 
2250 	spin_lock_irq(&current->sighand->siglock);
2251 	if (!(clone_flags & CLONE_THREAD))
2252 		hlist_add_head(&delayed.node, &current->signal->multiprocess);
2253 	recalc_sigpending();
2254 	spin_unlock_irq(&current->sighand->siglock);
2255 	retval = -ERESTARTNOINTR;
2256 	if (task_sigpending(current))
2257 		goto fork_out;
2258 
2259 	retval = -ENOMEM;
2260 	p = dup_task_struct(current, node);
2261 	if (!p)
2262 		goto fork_out;
2263 	p->flags &= ~PF_KTHREAD;
2264 	if (args->kthread)
2265 		p->flags |= PF_KTHREAD;
2266 	if (args->user_worker) {
2267 		/*
2268 		 * Mark us a user worker, and block any signal that isn't
2269 		 * fatal or STOP
2270 		 */
2271 		p->flags |= PF_USER_WORKER;
2272 		siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2273 	}
2274 	if (args->io_thread)
2275 		p->flags |= PF_IO_WORKER;
2276 
2277 	if (args->name)
2278 		strscpy_pad(p->comm, args->name, sizeof(p->comm));
2279 
2280 	p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2281 	/*
2282 	 * Clear TID on mm_release()?
2283 	 */
2284 	p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2285 
2286 	ftrace_graph_init_task(p);
2287 
2288 	rt_mutex_init_task(p);
2289 
2290 	lockdep_assert_irqs_enabled();
2291 #ifdef CONFIG_PROVE_LOCKING
2292 	DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2293 #endif
2294 	retval = copy_creds(p, clone_flags);
2295 	if (retval < 0)
2296 		goto bad_fork_free;
2297 
2298 	retval = -EAGAIN;
2299 	if (is_rlimit_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2300 		if (p->real_cred->user != INIT_USER &&
2301 		    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2302 			goto bad_fork_cleanup_count;
2303 	}
2304 	current->flags &= ~PF_NPROC_EXCEEDED;
2305 
2306 	/*
2307 	 * If multiple threads are within copy_process(), then this check
2308 	 * triggers too late. This doesn't hurt, the check is only there
2309 	 * to stop root fork bombs.
2310 	 */
2311 	retval = -EAGAIN;
2312 	if (data_race(nr_threads >= max_threads))
2313 		goto bad_fork_cleanup_count;
2314 
2315 	delayacct_tsk_init(p);	/* Must remain after dup_task_struct() */
2316 	p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2317 	p->flags |= PF_FORKNOEXEC;
2318 	INIT_LIST_HEAD(&p->children);
2319 	INIT_LIST_HEAD(&p->sibling);
2320 	rcu_copy_process(p);
2321 	p->vfork_done = NULL;
2322 	spin_lock_init(&p->alloc_lock);
2323 
2324 	init_sigpending(&p->pending);
2325 
2326 	p->utime = p->stime = p->gtime = 0;
2327 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2328 	p->utimescaled = p->stimescaled = 0;
2329 #endif
2330 	prev_cputime_init(&p->prev_cputime);
2331 
2332 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2333 	seqcount_init(&p->vtime.seqcount);
2334 	p->vtime.starttime = 0;
2335 	p->vtime.state = VTIME_INACTIVE;
2336 #endif
2337 
2338 #ifdef CONFIG_IO_URING
2339 	p->io_uring = NULL;
2340 #endif
2341 
2342 	p->default_timer_slack_ns = current->timer_slack_ns;
2343 
2344 #ifdef CONFIG_PSI
2345 	p->psi_flags = 0;
2346 #endif
2347 
2348 	task_io_accounting_init(&p->ioac);
2349 	acct_clear_integrals(p);
2350 
2351 	posix_cputimers_init(&p->posix_cputimers);
2352 	tick_dep_init_task(p);
2353 
2354 	p->io_context = NULL;
2355 	audit_set_context(p, NULL);
2356 	cgroup_fork(p);
2357 	if (args->kthread) {
2358 		if (!set_kthread_struct(p))
2359 			goto bad_fork_cleanup_delayacct;
2360 	}
2361 #ifdef CONFIG_NUMA
2362 	p->mempolicy = mpol_dup(p->mempolicy);
2363 	if (IS_ERR(p->mempolicy)) {
2364 		retval = PTR_ERR(p->mempolicy);
2365 		p->mempolicy = NULL;
2366 		goto bad_fork_cleanup_delayacct;
2367 	}
2368 #endif
2369 #ifdef CONFIG_CPUSETS
2370 	p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2371 	seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2372 #endif
2373 #ifdef CONFIG_TRACE_IRQFLAGS
2374 	memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2375 	p->irqtrace.hardirq_disable_ip	= _THIS_IP_;
2376 	p->irqtrace.softirq_enable_ip	= _THIS_IP_;
2377 	p->softirqs_enabled		= 1;
2378 	p->softirq_context		= 0;
2379 #endif
2380 
2381 	p->pagefault_disabled = 0;
2382 
2383 #ifdef CONFIG_LOCKDEP
2384 	lockdep_init_task(p);
2385 #endif
2386 
2387 #ifdef CONFIG_DEBUG_MUTEXES
2388 	p->blocked_on = NULL; /* not blocked yet */
2389 #endif
2390 #ifdef CONFIG_BCACHE
2391 	p->sequential_io	= 0;
2392 	p->sequential_io_avg	= 0;
2393 #endif
2394 #ifdef CONFIG_BPF_SYSCALL
2395 	RCU_INIT_POINTER(p->bpf_storage, NULL);
2396 	p->bpf_ctx = NULL;
2397 #endif
2398 
2399 	/* Perform scheduler related setup. Assign this task to a CPU. */
2400 	retval = sched_fork(clone_flags, p);
2401 	if (retval)
2402 		goto bad_fork_cleanup_policy;
2403 
2404 	retval = perf_event_init_task(p, clone_flags);
2405 	if (retval)
2406 		goto bad_fork_sched_cancel_fork;
2407 	retval = audit_alloc(p);
2408 	if (retval)
2409 		goto bad_fork_cleanup_perf;
2410 	/* copy all the process information */
2411 	shm_init_task(p);
2412 	retval = security_task_alloc(p, clone_flags);
2413 	if (retval)
2414 		goto bad_fork_cleanup_audit;
2415 	retval = copy_semundo(clone_flags, p);
2416 	if (retval)
2417 		goto bad_fork_cleanup_security;
2418 	retval = copy_files(clone_flags, p, args->no_files);
2419 	if (retval)
2420 		goto bad_fork_cleanup_semundo;
2421 	retval = copy_fs(clone_flags, p);
2422 	if (retval)
2423 		goto bad_fork_cleanup_files;
2424 	retval = copy_sighand(clone_flags, p);
2425 	if (retval)
2426 		goto bad_fork_cleanup_fs;
2427 	retval = copy_signal(clone_flags, p);
2428 	if (retval)
2429 		goto bad_fork_cleanup_sighand;
2430 	retval = copy_mm(clone_flags, p);
2431 	if (retval)
2432 		goto bad_fork_cleanup_signal;
2433 	retval = copy_namespaces(clone_flags, p);
2434 	if (retval)
2435 		goto bad_fork_cleanup_mm;
2436 	retval = copy_io(clone_flags, p);
2437 	if (retval)
2438 		goto bad_fork_cleanup_namespaces;
2439 	retval = copy_thread(p, args);
2440 	if (retval)
2441 		goto bad_fork_cleanup_io;
2442 
2443 	stackleak_task_init(p);
2444 
2445 	if (pid != &init_struct_pid) {
2446 		pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2447 				args->set_tid_size);
2448 		if (IS_ERR(pid)) {
2449 			retval = PTR_ERR(pid);
2450 			goto bad_fork_cleanup_thread;
2451 		}
2452 	}
2453 
2454 	/*
2455 	 * This has to happen after we've potentially unshared the file
2456 	 * descriptor table (so that the pidfd doesn't leak into the child
2457 	 * if the fd table isn't shared).
2458 	 */
2459 	if (clone_flags & CLONE_PIDFD) {
2460 		int flags = (clone_flags & CLONE_THREAD) ? PIDFD_THREAD : 0;
2461 
2462 		/*
2463 		 * Note that no task has been attached to @pid yet indicate
2464 		 * that via CLONE_PIDFD.
2465 		 */
2466 		retval = __pidfd_prepare(pid, flags | PIDFD_CLONE, &pidfile);
2467 		if (retval < 0)
2468 			goto bad_fork_free_pid;
2469 		pidfd = retval;
2470 
2471 		retval = put_user(pidfd, args->pidfd);
2472 		if (retval)
2473 			goto bad_fork_put_pidfd;
2474 	}
2475 
2476 #ifdef CONFIG_BLOCK
2477 	p->plug = NULL;
2478 #endif
2479 	futex_init_task(p);
2480 
2481 	/*
2482 	 * sigaltstack should be cleared when sharing the same VM
2483 	 */
2484 	if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2485 		sas_ss_reset(p);
2486 
2487 	/*
2488 	 * Syscall tracing and stepping should be turned off in the
2489 	 * child regardless of CLONE_PTRACE.
2490 	 */
2491 	user_disable_single_step(p);
2492 	clear_task_syscall_work(p, SYSCALL_TRACE);
2493 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2494 	clear_task_syscall_work(p, SYSCALL_EMU);
2495 #endif
2496 	clear_tsk_latency_tracing(p);
2497 
2498 	/* ok, now we should be set up.. */
2499 	p->pid = pid_nr(pid);
2500 	if (clone_flags & CLONE_THREAD) {
2501 		p->group_leader = current->group_leader;
2502 		p->tgid = current->tgid;
2503 	} else {
2504 		p->group_leader = p;
2505 		p->tgid = p->pid;
2506 	}
2507 
2508 	p->nr_dirtied = 0;
2509 	p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2510 	p->dirty_paused_when = 0;
2511 
2512 	p->pdeath_signal = 0;
2513 	p->task_works = NULL;
2514 	clear_posix_cputimers_work(p);
2515 
2516 #ifdef CONFIG_KRETPROBES
2517 	p->kretprobe_instances.first = NULL;
2518 #endif
2519 #ifdef CONFIG_RETHOOK
2520 	p->rethooks.first = NULL;
2521 #endif
2522 
2523 	/*
2524 	 * Ensure that the cgroup subsystem policies allow the new process to be
2525 	 * forked. It should be noted that the new process's css_set can be changed
2526 	 * between here and cgroup_post_fork() if an organisation operation is in
2527 	 * progress.
2528 	 */
2529 	retval = cgroup_can_fork(p, args);
2530 	if (retval)
2531 		goto bad_fork_put_pidfd;
2532 
2533 	/*
2534 	 * Now that the cgroups are pinned, re-clone the parent cgroup and put
2535 	 * the new task on the correct runqueue. All this *before* the task
2536 	 * becomes visible.
2537 	 *
2538 	 * This isn't part of ->can_fork() because while the re-cloning is
2539 	 * cgroup specific, it unconditionally needs to place the task on a
2540 	 * runqueue.
2541 	 */
2542 	retval = sched_cgroup_fork(p, args);
2543 	if (retval)
2544 		goto bad_fork_cancel_cgroup;
2545 
2546 	/*
2547 	 * From this point on we must avoid any synchronous user-space
2548 	 * communication until we take the tasklist-lock. In particular, we do
2549 	 * not want user-space to be able to predict the process start-time by
2550 	 * stalling fork(2) after we recorded the start_time but before it is
2551 	 * visible to the system.
2552 	 */
2553 
2554 	p->start_time = ktime_get_ns();
2555 	p->start_boottime = ktime_get_boottime_ns();
2556 
2557 	/*
2558 	 * Make it visible to the rest of the system, but dont wake it up yet.
2559 	 * Need tasklist lock for parent etc handling!
2560 	 */
2561 	write_lock_irq(&tasklist_lock);
2562 
2563 	/* CLONE_PARENT re-uses the old parent */
2564 	if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2565 		p->real_parent = current->real_parent;
2566 		p->parent_exec_id = current->parent_exec_id;
2567 		if (clone_flags & CLONE_THREAD)
2568 			p->exit_signal = -1;
2569 		else
2570 			p->exit_signal = current->group_leader->exit_signal;
2571 	} else {
2572 		p->real_parent = current;
2573 		p->parent_exec_id = current->self_exec_id;
2574 		p->exit_signal = args->exit_signal;
2575 	}
2576 
2577 	klp_copy_process(p);
2578 
2579 	sched_core_fork(p);
2580 
2581 	spin_lock(&current->sighand->siglock);
2582 
2583 	rv_task_fork(p);
2584 
2585 	rseq_fork(p, clone_flags);
2586 
2587 	/* Don't start children in a dying pid namespace */
2588 	if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2589 		retval = -ENOMEM;
2590 		goto bad_fork_core_free;
2591 	}
2592 
2593 	/* Let kill terminate clone/fork in the middle */
2594 	if (fatal_signal_pending(current)) {
2595 		retval = -EINTR;
2596 		goto bad_fork_core_free;
2597 	}
2598 
2599 	/* No more failure paths after this point. */
2600 
2601 	/*
2602 	 * Copy seccomp details explicitly here, in case they were changed
2603 	 * before holding sighand lock.
2604 	 */
2605 	copy_seccomp(p);
2606 
2607 	init_task_pid_links(p);
2608 	if (likely(p->pid)) {
2609 		ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2610 
2611 		init_task_pid(p, PIDTYPE_PID, pid);
2612 		if (thread_group_leader(p)) {
2613 			init_task_pid(p, PIDTYPE_TGID, pid);
2614 			init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2615 			init_task_pid(p, PIDTYPE_SID, task_session(current));
2616 
2617 			if (is_child_reaper(pid)) {
2618 				ns_of_pid(pid)->child_reaper = p;
2619 				p->signal->flags |= SIGNAL_UNKILLABLE;
2620 			}
2621 			p->signal->shared_pending.signal = delayed.signal;
2622 			p->signal->tty = tty_kref_get(current->signal->tty);
2623 			/*
2624 			 * Inherit has_child_subreaper flag under the same
2625 			 * tasklist_lock with adding child to the process tree
2626 			 * for propagate_has_child_subreaper optimization.
2627 			 */
2628 			p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2629 							 p->real_parent->signal->is_child_subreaper;
2630 			list_add_tail(&p->sibling, &p->real_parent->children);
2631 			list_add_tail_rcu(&p->tasks, &init_task.tasks);
2632 			attach_pid(p, PIDTYPE_TGID);
2633 			attach_pid(p, PIDTYPE_PGID);
2634 			attach_pid(p, PIDTYPE_SID);
2635 			__this_cpu_inc(process_counts);
2636 		} else {
2637 			current->signal->nr_threads++;
2638 			current->signal->quick_threads++;
2639 			atomic_inc(&current->signal->live);
2640 			refcount_inc(&current->signal->sigcnt);
2641 			task_join_group_stop(p);
2642 			list_add_tail_rcu(&p->thread_node,
2643 					  &p->signal->thread_head);
2644 		}
2645 		attach_pid(p, PIDTYPE_PID);
2646 		nr_threads++;
2647 	}
2648 	total_forks++;
2649 	hlist_del_init(&delayed.node);
2650 	spin_unlock(&current->sighand->siglock);
2651 	syscall_tracepoint_update(p);
2652 	write_unlock_irq(&tasklist_lock);
2653 
2654 	if (pidfile)
2655 		fd_install(pidfd, pidfile);
2656 
2657 	proc_fork_connector(p);
2658 	sched_post_fork(p);
2659 	cgroup_post_fork(p, args);
2660 	perf_event_fork(p);
2661 
2662 	trace_task_newtask(p, clone_flags);
2663 	uprobe_copy_process(p, clone_flags);
2664 	user_events_fork(p, clone_flags);
2665 
2666 	copy_oom_score_adj(clone_flags, p);
2667 
2668 	return p;
2669 
2670 bad_fork_core_free:
2671 	sched_core_free(p);
2672 	spin_unlock(&current->sighand->siglock);
2673 	write_unlock_irq(&tasklist_lock);
2674 bad_fork_cancel_cgroup:
2675 	cgroup_cancel_fork(p, args);
2676 bad_fork_put_pidfd:
2677 	if (clone_flags & CLONE_PIDFD) {
2678 		fput(pidfile);
2679 		put_unused_fd(pidfd);
2680 	}
2681 bad_fork_free_pid:
2682 	if (pid != &init_struct_pid)
2683 		free_pid(pid);
2684 bad_fork_cleanup_thread:
2685 	exit_thread(p);
2686 bad_fork_cleanup_io:
2687 	if (p->io_context)
2688 		exit_io_context(p);
2689 bad_fork_cleanup_namespaces:
2690 	exit_task_namespaces(p);
2691 bad_fork_cleanup_mm:
2692 	if (p->mm) {
2693 		mm_clear_owner(p->mm, p);
2694 		mmput(p->mm);
2695 	}
2696 bad_fork_cleanup_signal:
2697 	if (!(clone_flags & CLONE_THREAD))
2698 		free_signal_struct(p->signal);
2699 bad_fork_cleanup_sighand:
2700 	__cleanup_sighand(p->sighand);
2701 bad_fork_cleanup_fs:
2702 	exit_fs(p); /* blocking */
2703 bad_fork_cleanup_files:
2704 	exit_files(p); /* blocking */
2705 bad_fork_cleanup_semundo:
2706 	exit_sem(p);
2707 bad_fork_cleanup_security:
2708 	security_task_free(p);
2709 bad_fork_cleanup_audit:
2710 	audit_free(p);
2711 bad_fork_cleanup_perf:
2712 	perf_event_free_task(p);
2713 bad_fork_sched_cancel_fork:
2714 	sched_cancel_fork(p);
2715 bad_fork_cleanup_policy:
2716 	lockdep_free_task(p);
2717 #ifdef CONFIG_NUMA
2718 	mpol_put(p->mempolicy);
2719 #endif
2720 bad_fork_cleanup_delayacct:
2721 	delayacct_tsk_free(p);
2722 bad_fork_cleanup_count:
2723 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2724 	exit_creds(p);
2725 bad_fork_free:
2726 	WRITE_ONCE(p->__state, TASK_DEAD);
2727 	exit_task_stack_account(p);
2728 	put_task_stack(p);
2729 	delayed_free_task(p);
2730 fork_out:
2731 	spin_lock_irq(&current->sighand->siglock);
2732 	hlist_del_init(&delayed.node);
2733 	spin_unlock_irq(&current->sighand->siglock);
2734 	return ERR_PTR(retval);
2735 }
2736 
init_idle_pids(struct task_struct * idle)2737 static inline void init_idle_pids(struct task_struct *idle)
2738 {
2739 	enum pid_type type;
2740 
2741 	for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2742 		INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2743 		init_task_pid(idle, type, &init_struct_pid);
2744 	}
2745 }
2746 
idle_dummy(void * dummy)2747 static int idle_dummy(void *dummy)
2748 {
2749 	/* This function is never called */
2750 	return 0;
2751 }
2752 
fork_idle(int cpu)2753 struct task_struct * __init fork_idle(int cpu)
2754 {
2755 	struct task_struct *task;
2756 	struct kernel_clone_args args = {
2757 		.flags		= CLONE_VM,
2758 		.fn		= &idle_dummy,
2759 		.fn_arg		= NULL,
2760 		.kthread	= 1,
2761 		.idle		= 1,
2762 	};
2763 
2764 	task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2765 	if (!IS_ERR(task)) {
2766 		init_idle_pids(task);
2767 		init_idle(task, cpu);
2768 	}
2769 
2770 	return task;
2771 }
2772 
2773 /*
2774  * This is like kernel_clone(), but shaved down and tailored to just
2775  * creating io_uring workers. It returns a created task, or an error pointer.
2776  * The returned task is inactive, and the caller must fire it up through
2777  * wake_up_new_task(p). All signals are blocked in the created task.
2778  */
create_io_thread(int (* fn)(void *),void * arg,int node)2779 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2780 {
2781 	unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2782 				CLONE_IO;
2783 	struct kernel_clone_args args = {
2784 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2785 				    CLONE_UNTRACED) & ~CSIGNAL),
2786 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2787 		.fn		= fn,
2788 		.fn_arg		= arg,
2789 		.io_thread	= 1,
2790 		.user_worker	= 1,
2791 	};
2792 
2793 	return copy_process(NULL, 0, node, &args);
2794 }
2795 
2796 /*
2797  *  Ok, this is the main fork-routine.
2798  *
2799  * It copies the process, and if successful kick-starts
2800  * it and waits for it to finish using the VM if required.
2801  *
2802  * args->exit_signal is expected to be checked for sanity by the caller.
2803  */
kernel_clone(struct kernel_clone_args * args)2804 pid_t kernel_clone(struct kernel_clone_args *args)
2805 {
2806 	u64 clone_flags = args->flags;
2807 	struct completion vfork;
2808 	struct pid *pid;
2809 	struct task_struct *p;
2810 	int trace = 0;
2811 	pid_t nr;
2812 
2813 	/*
2814 	 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2815 	 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2816 	 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2817 	 * field in struct clone_args and it still doesn't make sense to have
2818 	 * them both point at the same memory location. Performing this check
2819 	 * here has the advantage that we don't need to have a separate helper
2820 	 * to check for legacy clone().
2821 	 */
2822 	if ((clone_flags & CLONE_PIDFD) &&
2823 	    (clone_flags & CLONE_PARENT_SETTID) &&
2824 	    (args->pidfd == args->parent_tid))
2825 		return -EINVAL;
2826 
2827 	/*
2828 	 * Determine whether and which event to report to ptracer.  When
2829 	 * called from kernel_thread or CLONE_UNTRACED is explicitly
2830 	 * requested, no event is reported; otherwise, report if the event
2831 	 * for the type of forking is enabled.
2832 	 */
2833 	if (!(clone_flags & CLONE_UNTRACED)) {
2834 		if (clone_flags & CLONE_VFORK)
2835 			trace = PTRACE_EVENT_VFORK;
2836 		else if (args->exit_signal != SIGCHLD)
2837 			trace = PTRACE_EVENT_CLONE;
2838 		else
2839 			trace = PTRACE_EVENT_FORK;
2840 
2841 		if (likely(!ptrace_event_enabled(current, trace)))
2842 			trace = 0;
2843 	}
2844 
2845 	p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2846 	add_latent_entropy();
2847 
2848 	if (IS_ERR(p))
2849 		return PTR_ERR(p);
2850 
2851 	/*
2852 	 * Do this prior waking up the new thread - the thread pointer
2853 	 * might get invalid after that point, if the thread exits quickly.
2854 	 */
2855 	trace_sched_process_fork(current, p);
2856 
2857 	pid = get_task_pid(p, PIDTYPE_PID);
2858 	nr = pid_vnr(pid);
2859 
2860 	if (clone_flags & CLONE_PARENT_SETTID)
2861 		put_user(nr, args->parent_tid);
2862 
2863 	if (clone_flags & CLONE_VFORK) {
2864 		p->vfork_done = &vfork;
2865 		init_completion(&vfork);
2866 		get_task_struct(p);
2867 	}
2868 
2869 	if (IS_ENABLED(CONFIG_LRU_GEN_WALKS_MMU) && !(clone_flags & CLONE_VM)) {
2870 		/* lock the task to synchronize with memcg migration */
2871 		task_lock(p);
2872 		lru_gen_add_mm(p->mm);
2873 		task_unlock(p);
2874 	}
2875 
2876 	wake_up_new_task(p);
2877 
2878 	/* forking complete and child started to run, tell ptracer */
2879 	if (unlikely(trace))
2880 		ptrace_event_pid(trace, pid);
2881 
2882 	if (clone_flags & CLONE_VFORK) {
2883 		if (!wait_for_vfork_done(p, &vfork))
2884 			ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2885 	}
2886 
2887 	put_pid(pid);
2888 	return nr;
2889 }
2890 
2891 /*
2892  * Create a kernel thread.
2893  */
kernel_thread(int (* fn)(void *),void * arg,const char * name,unsigned long flags)2894 pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name,
2895 		    unsigned long flags)
2896 {
2897 	struct kernel_clone_args args = {
2898 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2899 				    CLONE_UNTRACED) & ~CSIGNAL),
2900 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2901 		.fn		= fn,
2902 		.fn_arg		= arg,
2903 		.name		= name,
2904 		.kthread	= 1,
2905 	};
2906 
2907 	return kernel_clone(&args);
2908 }
2909 
2910 /*
2911  * Create a user mode thread.
2912  */
user_mode_thread(int (* fn)(void *),void * arg,unsigned long flags)2913 pid_t user_mode_thread(int (*fn)(void *), void *arg, unsigned long flags)
2914 {
2915 	struct kernel_clone_args args = {
2916 		.flags		= ((lower_32_bits(flags) | CLONE_VM |
2917 				    CLONE_UNTRACED) & ~CSIGNAL),
2918 		.exit_signal	= (lower_32_bits(flags) & CSIGNAL),
2919 		.fn		= fn,
2920 		.fn_arg		= arg,
2921 	};
2922 
2923 	return kernel_clone(&args);
2924 }
2925 
2926 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2927 SYSCALL_DEFINE0(fork)
2928 {
2929 #ifdef CONFIG_MMU
2930 	struct kernel_clone_args args = {
2931 		.exit_signal = SIGCHLD,
2932 	};
2933 
2934 	return kernel_clone(&args);
2935 #else
2936 	/* can not support in nommu mode */
2937 	return -EINVAL;
2938 #endif
2939 }
2940 #endif
2941 
2942 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2943 SYSCALL_DEFINE0(vfork)
2944 {
2945 	struct kernel_clone_args args = {
2946 		.flags		= CLONE_VFORK | CLONE_VM,
2947 		.exit_signal	= SIGCHLD,
2948 	};
2949 
2950 	return kernel_clone(&args);
2951 }
2952 #endif
2953 
2954 #ifdef __ARCH_WANT_SYS_CLONE
2955 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2956 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2957 		 int __user *, parent_tidptr,
2958 		 unsigned long, tls,
2959 		 int __user *, child_tidptr)
2960 #elif defined(CONFIG_CLONE_BACKWARDS2)
2961 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2962 		 int __user *, parent_tidptr,
2963 		 int __user *, child_tidptr,
2964 		 unsigned long, tls)
2965 #elif defined(CONFIG_CLONE_BACKWARDS3)
2966 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2967 		int, stack_size,
2968 		int __user *, parent_tidptr,
2969 		int __user *, child_tidptr,
2970 		unsigned long, tls)
2971 #else
2972 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2973 		 int __user *, parent_tidptr,
2974 		 int __user *, child_tidptr,
2975 		 unsigned long, tls)
2976 #endif
2977 {
2978 	struct kernel_clone_args args = {
2979 		.flags		= (lower_32_bits(clone_flags) & ~CSIGNAL),
2980 		.pidfd		= parent_tidptr,
2981 		.child_tid	= child_tidptr,
2982 		.parent_tid	= parent_tidptr,
2983 		.exit_signal	= (lower_32_bits(clone_flags) & CSIGNAL),
2984 		.stack		= newsp,
2985 		.tls		= tls,
2986 	};
2987 
2988 	return kernel_clone(&args);
2989 }
2990 #endif
2991 
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2992 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2993 					      struct clone_args __user *uargs,
2994 					      size_t usize)
2995 {
2996 	int err;
2997 	struct clone_args args;
2998 	pid_t *kset_tid = kargs->set_tid;
2999 
3000 	BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
3001 		     CLONE_ARGS_SIZE_VER0);
3002 	BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
3003 		     CLONE_ARGS_SIZE_VER1);
3004 	BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
3005 		     CLONE_ARGS_SIZE_VER2);
3006 	BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
3007 
3008 	if (unlikely(usize > PAGE_SIZE))
3009 		return -E2BIG;
3010 	if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
3011 		return -EINVAL;
3012 
3013 	err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
3014 	if (err)
3015 		return err;
3016 
3017 	if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
3018 		return -EINVAL;
3019 
3020 	if (unlikely(!args.set_tid && args.set_tid_size > 0))
3021 		return -EINVAL;
3022 
3023 	if (unlikely(args.set_tid && args.set_tid_size == 0))
3024 		return -EINVAL;
3025 
3026 	/*
3027 	 * Verify that higher 32bits of exit_signal are unset and that
3028 	 * it is a valid signal
3029 	 */
3030 	if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
3031 		     !valid_signal(args.exit_signal)))
3032 		return -EINVAL;
3033 
3034 	if ((args.flags & CLONE_INTO_CGROUP) &&
3035 	    (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
3036 		return -EINVAL;
3037 
3038 	*kargs = (struct kernel_clone_args){
3039 		.flags		= args.flags,
3040 		.pidfd		= u64_to_user_ptr(args.pidfd),
3041 		.child_tid	= u64_to_user_ptr(args.child_tid),
3042 		.parent_tid	= u64_to_user_ptr(args.parent_tid),
3043 		.exit_signal	= args.exit_signal,
3044 		.stack		= args.stack,
3045 		.stack_size	= args.stack_size,
3046 		.tls		= args.tls,
3047 		.set_tid_size	= args.set_tid_size,
3048 		.cgroup		= args.cgroup,
3049 	};
3050 
3051 	if (args.set_tid &&
3052 		copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
3053 			(kargs->set_tid_size * sizeof(pid_t))))
3054 		return -EFAULT;
3055 
3056 	kargs->set_tid = kset_tid;
3057 
3058 	return 0;
3059 }
3060 
3061 /**
3062  * clone3_stack_valid - check and prepare stack
3063  * @kargs: kernel clone args
3064  *
3065  * Verify that the stack arguments userspace gave us are sane.
3066  * In addition, set the stack direction for userspace since it's easy for us to
3067  * determine.
3068  */
clone3_stack_valid(struct kernel_clone_args * kargs)3069 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
3070 {
3071 	if (kargs->stack == 0) {
3072 		if (kargs->stack_size > 0)
3073 			return false;
3074 	} else {
3075 		if (kargs->stack_size == 0)
3076 			return false;
3077 
3078 		if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
3079 			return false;
3080 
3081 #if !defined(CONFIG_STACK_GROWSUP)
3082 		kargs->stack += kargs->stack_size;
3083 #endif
3084 	}
3085 
3086 	return true;
3087 }
3088 
clone3_args_valid(struct kernel_clone_args * kargs)3089 static bool clone3_args_valid(struct kernel_clone_args *kargs)
3090 {
3091 	/* Verify that no unknown flags are passed along. */
3092 	if (kargs->flags &
3093 	    ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
3094 		return false;
3095 
3096 	/*
3097 	 * - make the CLONE_DETACHED bit reusable for clone3
3098 	 * - make the CSIGNAL bits reusable for clone3
3099 	 */
3100 	if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
3101 		return false;
3102 
3103 	if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
3104 	    (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
3105 		return false;
3106 
3107 	if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
3108 	    kargs->exit_signal)
3109 		return false;
3110 
3111 	if (!clone3_stack_valid(kargs))
3112 		return false;
3113 
3114 	return true;
3115 }
3116 
3117 /**
3118  * sys_clone3 - create a new process with specific properties
3119  * @uargs: argument structure
3120  * @size:  size of @uargs
3121  *
3122  * clone3() is the extensible successor to clone()/clone2().
3123  * It takes a struct as argument that is versioned by its size.
3124  *
3125  * Return: On success, a positive PID for the child process.
3126  *         On error, a negative errno number.
3127  */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)3128 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
3129 {
3130 	int err;
3131 
3132 	struct kernel_clone_args kargs;
3133 	pid_t set_tid[MAX_PID_NS_LEVEL];
3134 
3135 #ifdef __ARCH_BROKEN_SYS_CLONE3
3136 #warning clone3() entry point is missing, please fix
3137 	return -ENOSYS;
3138 #endif
3139 
3140 	kargs.set_tid = set_tid;
3141 
3142 	err = copy_clone_args_from_user(&kargs, uargs, size);
3143 	if (err)
3144 		return err;
3145 
3146 	if (!clone3_args_valid(&kargs))
3147 		return -EINVAL;
3148 
3149 	return kernel_clone(&kargs);
3150 }
3151 
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)3152 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
3153 {
3154 	struct task_struct *leader, *parent, *child;
3155 	int res;
3156 
3157 	read_lock(&tasklist_lock);
3158 	leader = top = top->group_leader;
3159 down:
3160 	for_each_thread(leader, parent) {
3161 		list_for_each_entry(child, &parent->children, sibling) {
3162 			res = visitor(child, data);
3163 			if (res) {
3164 				if (res < 0)
3165 					goto out;
3166 				leader = child;
3167 				goto down;
3168 			}
3169 up:
3170 			;
3171 		}
3172 	}
3173 
3174 	if (leader != top) {
3175 		child = leader;
3176 		parent = child->real_parent;
3177 		leader = parent->group_leader;
3178 		goto up;
3179 	}
3180 out:
3181 	read_unlock(&tasklist_lock);
3182 }
3183 
3184 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
3185 #define ARCH_MIN_MMSTRUCT_ALIGN 0
3186 #endif
3187 
sighand_ctor(void * data)3188 static void sighand_ctor(void *data)
3189 {
3190 	struct sighand_struct *sighand = data;
3191 
3192 	spin_lock_init(&sighand->siglock);
3193 	init_waitqueue_head(&sighand->signalfd_wqh);
3194 }
3195 
mm_cache_init(void)3196 void __init mm_cache_init(void)
3197 {
3198 	unsigned int mm_size;
3199 
3200 	/*
3201 	 * The mm_cpumask is located at the end of mm_struct, and is
3202 	 * dynamically sized based on the maximum CPU number this system
3203 	 * can have, taking hotplug into account (nr_cpu_ids).
3204 	 */
3205 	mm_size = sizeof(struct mm_struct) + cpumask_size() + mm_cid_size();
3206 
3207 	mm_cachep = kmem_cache_create_usercopy("mm_struct",
3208 			mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
3209 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3210 			offsetof(struct mm_struct, saved_auxv),
3211 			sizeof_field(struct mm_struct, saved_auxv),
3212 			NULL);
3213 }
3214 
proc_caches_init(void)3215 void __init proc_caches_init(void)
3216 {
3217 	struct kmem_cache_args args = {
3218 		.use_freeptr_offset = true,
3219 		.freeptr_offset = offsetof(struct vm_area_struct, vm_freeptr),
3220 	};
3221 
3222 	sighand_cachep = kmem_cache_create("sighand_cache",
3223 			sizeof(struct sighand_struct), 0,
3224 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3225 			SLAB_ACCOUNT, sighand_ctor);
3226 	signal_cachep = kmem_cache_create("signal_cache",
3227 			sizeof(struct signal_struct), 0,
3228 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3229 			NULL);
3230 	files_cachep = kmem_cache_create("files_cache",
3231 			sizeof(struct files_struct), 0,
3232 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3233 			NULL);
3234 	fs_cachep = kmem_cache_create("fs_cache",
3235 			sizeof(struct fs_struct), 0,
3236 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
3237 			NULL);
3238 	vm_area_cachep = kmem_cache_create("vm_area_struct",
3239 			sizeof(struct vm_area_struct), &args,
3240 			SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
3241 			SLAB_ACCOUNT);
3242 	mmap_init();
3243 	nsproxy_cache_init();
3244 }
3245 
3246 /*
3247  * Check constraints on flags passed to the unshare system call.
3248  */
check_unshare_flags(unsigned long unshare_flags)3249 static int check_unshare_flags(unsigned long unshare_flags)
3250 {
3251 	if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
3252 				CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
3253 				CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
3254 				CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
3255 				CLONE_NEWTIME))
3256 		return -EINVAL;
3257 	/*
3258 	 * Not implemented, but pretend it works if there is nothing
3259 	 * to unshare.  Note that unsharing the address space or the
3260 	 * signal handlers also need to unshare the signal queues (aka
3261 	 * CLONE_THREAD).
3262 	 */
3263 	if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
3264 		if (!thread_group_empty(current))
3265 			return -EINVAL;
3266 	}
3267 	if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
3268 		if (refcount_read(&current->sighand->count) > 1)
3269 			return -EINVAL;
3270 	}
3271 	if (unshare_flags & CLONE_VM) {
3272 		if (!current_is_single_threaded())
3273 			return -EINVAL;
3274 	}
3275 
3276 	return 0;
3277 }
3278 
3279 /*
3280  * Unshare the filesystem structure if it is being shared
3281  */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)3282 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
3283 {
3284 	struct fs_struct *fs = current->fs;
3285 
3286 	if (!(unshare_flags & CLONE_FS) || !fs)
3287 		return 0;
3288 
3289 	/* don't need lock here; in the worst case we'll do useless copy */
3290 	if (fs->users == 1)
3291 		return 0;
3292 
3293 	*new_fsp = copy_fs_struct(fs);
3294 	if (!*new_fsp)
3295 		return -ENOMEM;
3296 
3297 	return 0;
3298 }
3299 
3300 /*
3301  * Unshare file descriptor table if it is being shared
3302  */
unshare_fd(unsigned long unshare_flags,struct files_struct ** new_fdp)3303 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
3304 {
3305 	struct files_struct *fd = current->files;
3306 
3307 	if ((unshare_flags & CLONE_FILES) &&
3308 	    (fd && atomic_read(&fd->count) > 1)) {
3309 		fd = dup_fd(fd, NULL);
3310 		if (IS_ERR(fd))
3311 			return PTR_ERR(fd);
3312 		*new_fdp = fd;
3313 	}
3314 
3315 	return 0;
3316 }
3317 
3318 /*
3319  * unshare allows a process to 'unshare' part of the process
3320  * context which was originally shared using clone.  copy_*
3321  * functions used by kernel_clone() cannot be used here directly
3322  * because they modify an inactive task_struct that is being
3323  * constructed. Here we are modifying the current, active,
3324  * task_struct.
3325  */
ksys_unshare(unsigned long unshare_flags)3326 int ksys_unshare(unsigned long unshare_flags)
3327 {
3328 	struct fs_struct *fs, *new_fs = NULL;
3329 	struct files_struct *new_fd = NULL;
3330 	struct cred *new_cred = NULL;
3331 	struct nsproxy *new_nsproxy = NULL;
3332 	int do_sysvsem = 0;
3333 	int err;
3334 
3335 	/*
3336 	 * If unsharing a user namespace must also unshare the thread group
3337 	 * and unshare the filesystem root and working directories.
3338 	 */
3339 	if (unshare_flags & CLONE_NEWUSER)
3340 		unshare_flags |= CLONE_THREAD | CLONE_FS;
3341 	/*
3342 	 * If unsharing vm, must also unshare signal handlers.
3343 	 */
3344 	if (unshare_flags & CLONE_VM)
3345 		unshare_flags |= CLONE_SIGHAND;
3346 	/*
3347 	 * If unsharing a signal handlers, must also unshare the signal queues.
3348 	 */
3349 	if (unshare_flags & CLONE_SIGHAND)
3350 		unshare_flags |= CLONE_THREAD;
3351 	/*
3352 	 * If unsharing namespace, must also unshare filesystem information.
3353 	 */
3354 	if (unshare_flags & CLONE_NEWNS)
3355 		unshare_flags |= CLONE_FS;
3356 
3357 	err = check_unshare_flags(unshare_flags);
3358 	if (err)
3359 		goto bad_unshare_out;
3360 	/*
3361 	 * CLONE_NEWIPC must also detach from the undolist: after switching
3362 	 * to a new ipc namespace, the semaphore arrays from the old
3363 	 * namespace are unreachable.
3364 	 */
3365 	if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3366 		do_sysvsem = 1;
3367 	err = unshare_fs(unshare_flags, &new_fs);
3368 	if (err)
3369 		goto bad_unshare_out;
3370 	err = unshare_fd(unshare_flags, &new_fd);
3371 	if (err)
3372 		goto bad_unshare_cleanup_fs;
3373 	err = unshare_userns(unshare_flags, &new_cred);
3374 	if (err)
3375 		goto bad_unshare_cleanup_fd;
3376 	err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3377 					 new_cred, new_fs);
3378 	if (err)
3379 		goto bad_unshare_cleanup_cred;
3380 
3381 	if (new_cred) {
3382 		err = set_cred_ucounts(new_cred);
3383 		if (err)
3384 			goto bad_unshare_cleanup_cred;
3385 	}
3386 
3387 	if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3388 		if (do_sysvsem) {
3389 			/*
3390 			 * CLONE_SYSVSEM is equivalent to sys_exit().
3391 			 */
3392 			exit_sem(current);
3393 		}
3394 		if (unshare_flags & CLONE_NEWIPC) {
3395 			/* Orphan segments in old ns (see sem above). */
3396 			exit_shm(current);
3397 			shm_init_task(current);
3398 		}
3399 
3400 		if (new_nsproxy)
3401 			switch_task_namespaces(current, new_nsproxy);
3402 
3403 		task_lock(current);
3404 
3405 		if (new_fs) {
3406 			fs = current->fs;
3407 			spin_lock(&fs->lock);
3408 			current->fs = new_fs;
3409 			if (--fs->users)
3410 				new_fs = NULL;
3411 			else
3412 				new_fs = fs;
3413 			spin_unlock(&fs->lock);
3414 		}
3415 
3416 		if (new_fd)
3417 			swap(current->files, new_fd);
3418 
3419 		task_unlock(current);
3420 
3421 		if (new_cred) {
3422 			/* Install the new user namespace */
3423 			commit_creds(new_cred);
3424 			new_cred = NULL;
3425 		}
3426 	}
3427 
3428 	perf_event_namespaces(current);
3429 
3430 bad_unshare_cleanup_cred:
3431 	if (new_cred)
3432 		put_cred(new_cred);
3433 bad_unshare_cleanup_fd:
3434 	if (new_fd)
3435 		put_files_struct(new_fd);
3436 
3437 bad_unshare_cleanup_fs:
3438 	if (new_fs)
3439 		free_fs_struct(new_fs);
3440 
3441 bad_unshare_out:
3442 	return err;
3443 }
3444 
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3445 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3446 {
3447 	return ksys_unshare(unshare_flags);
3448 }
3449 
3450 /*
3451  *	Helper to unshare the files of the current task.
3452  *	We don't want to expose copy_files internals to
3453  *	the exec layer of the kernel.
3454  */
3455 
unshare_files(void)3456 int unshare_files(void)
3457 {
3458 	struct task_struct *task = current;
3459 	struct files_struct *old, *copy = NULL;
3460 	int error;
3461 
3462 	error = unshare_fd(CLONE_FILES, &copy);
3463 	if (error || !copy)
3464 		return error;
3465 
3466 	old = task->files;
3467 	task_lock(task);
3468 	task->files = copy;
3469 	task_unlock(task);
3470 	put_files_struct(old);
3471 	return 0;
3472 }
3473 
sysctl_max_threads(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3474 int sysctl_max_threads(const struct ctl_table *table, int write,
3475 		       void *buffer, size_t *lenp, loff_t *ppos)
3476 {
3477 	struct ctl_table t;
3478 	int ret;
3479 	int threads = max_threads;
3480 	int min = 1;
3481 	int max = MAX_THREADS;
3482 
3483 	t = *table;
3484 	t.data = &threads;
3485 	t.extra1 = &min;
3486 	t.extra2 = &max;
3487 
3488 	ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3489 	if (ret || !write)
3490 		return ret;
3491 
3492 	max_threads = threads;
3493 
3494 	return 0;
3495 }
3496