1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/freezer.h>
29 #include <linux/binfmts.h>
30 #include <linux/nsproxy.h>
31 #include <linux/pid_namespace.h>
32 #include <linux/ptrace.h>
33 #include <linux/profile.h>
34 #include <linux/mount.h>
35 #include <linux/proc_fs.h>
36 #include <linux/kthread.h>
37 #include <linux/mempolicy.h>
38 #include <linux/taskstats_kern.h>
39 #include <linux/delayacct.h>
40 #include <linux/cgroup.h>
41 #include <linux/syscalls.h>
42 #include <linux/signal.h>
43 #include <linux/posix-timers.h>
44 #include <linux/cn_proc.h>
45 #include <linux/mutex.h>
46 #include <linux/futex.h>
47 #include <linux/pipe_fs_i.h>
48 #include <linux/audit.h> /* for audit_free() */
49 #include <linux/resource.h>
50 #include <linux/task_io_accounting_ops.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_work.h>
53 #include <linux/fs_struct.h>
54 #include <linux/init_task.h>
55 #include <linux/perf_event.h>
56 #include <trace/events/sched.h>
57 #include <linux/hw_breakpoint.h>
58 #include <linux/oom.h>
59 #include <linux/writeback.h>
60 #include <linux/shm.h>
61 #include <linux/kcov.h>
62 #include <linux/kmsan.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 #include <linux/kprobes.h>
68 #include <linux/rethook.h>
69 #include <linux/sysfs.h>
70 #include <linux/user_events.h>
71 #include <linux/uaccess.h>
72 #include <linux/pidfs.h>
73 
74 #include <uapi/linux/wait.h>
75 
76 #include <asm/unistd.h>
77 #include <asm/mmu_context.h>
78 
79 #include "exit.h"
80 
81 /*
82  * The default value should be high enough to not crash a system that randomly
83  * crashes its kernel from time to time, but low enough to at least not permit
84  * overflowing 32-bit refcounts or the ldsem writer count.
85  */
86 static unsigned int oops_limit = 10000;
87 
88 #ifdef CONFIG_SYSCTL
89 static const struct ctl_table kern_exit_table[] = {
90 	{
91 		.procname       = "oops_limit",
92 		.data           = &oops_limit,
93 		.maxlen         = sizeof(oops_limit),
94 		.mode           = 0644,
95 		.proc_handler   = proc_douintvec,
96 	},
97 };
98 
kernel_exit_sysctls_init(void)99 static __init int kernel_exit_sysctls_init(void)
100 {
101 	register_sysctl_init("kernel", kern_exit_table);
102 	return 0;
103 }
104 late_initcall(kernel_exit_sysctls_init);
105 #endif
106 
107 static atomic_t oops_count = ATOMIC_INIT(0);
108 
109 #ifdef CONFIG_SYSFS
oops_count_show(struct kobject * kobj,struct kobj_attribute * attr,char * page)110 static ssize_t oops_count_show(struct kobject *kobj, struct kobj_attribute *attr,
111 			       char *page)
112 {
113 	return sysfs_emit(page, "%d\n", atomic_read(&oops_count));
114 }
115 
116 static struct kobj_attribute oops_count_attr = __ATTR_RO(oops_count);
117 
kernel_exit_sysfs_init(void)118 static __init int kernel_exit_sysfs_init(void)
119 {
120 	sysfs_add_file_to_group(kernel_kobj, &oops_count_attr.attr, NULL);
121 	return 0;
122 }
123 late_initcall(kernel_exit_sysfs_init);
124 #endif
125 
126 /*
127  * For things release_task() would like to do *after* tasklist_lock is released.
128  */
129 struct release_task_post {
130 	struct pid *pids[PIDTYPE_MAX];
131 };
132 
__unhash_process(struct release_task_post * post,struct task_struct * p,bool group_dead)133 static void __unhash_process(struct release_task_post *post, struct task_struct *p,
134 			     bool group_dead)
135 {
136 	nr_threads--;
137 	detach_pid(post->pids, p, PIDTYPE_PID);
138 	if (group_dead) {
139 		detach_pid(post->pids, p, PIDTYPE_TGID);
140 		detach_pid(post->pids, p, PIDTYPE_PGID);
141 		detach_pid(post->pids, p, PIDTYPE_SID);
142 
143 		list_del_rcu(&p->tasks);
144 		list_del_init(&p->sibling);
145 		__this_cpu_dec(process_counts);
146 	}
147 	list_del_rcu(&p->thread_node);
148 }
149 
150 /*
151  * This function expects the tasklist_lock write-locked.
152  */
__exit_signal(struct release_task_post * post,struct task_struct * tsk)153 static void __exit_signal(struct release_task_post *post, struct task_struct *tsk)
154 {
155 	struct signal_struct *sig = tsk->signal;
156 	bool group_dead = thread_group_leader(tsk);
157 	struct sighand_struct *sighand;
158 	struct tty_struct *tty;
159 	u64 utime, stime;
160 
161 	sighand = rcu_dereference_check(tsk->sighand,
162 					lockdep_tasklist_lock_is_held());
163 	spin_lock(&sighand->siglock);
164 
165 #ifdef CONFIG_POSIX_TIMERS
166 	posix_cpu_timers_exit(tsk);
167 	if (group_dead)
168 		posix_cpu_timers_exit_group(tsk);
169 #endif
170 
171 	if (group_dead) {
172 		tty = sig->tty;
173 		sig->tty = NULL;
174 	} else {
175 		/*
176 		 * If there is any task waiting for the group exit
177 		 * then notify it:
178 		 */
179 		if (sig->notify_count > 0 && !--sig->notify_count)
180 			wake_up_process(sig->group_exec_task);
181 
182 		if (tsk == sig->curr_target)
183 			sig->curr_target = next_thread(tsk);
184 	}
185 
186 	/*
187 	 * Accumulate here the counters for all threads as they die. We could
188 	 * skip the group leader because it is the last user of signal_struct,
189 	 * but we want to avoid the race with thread_group_cputime() which can
190 	 * see the empty ->thread_head list.
191 	 */
192 	task_cputime(tsk, &utime, &stime);
193 	write_seqlock(&sig->stats_lock);
194 	sig->utime += utime;
195 	sig->stime += stime;
196 	sig->gtime += task_gtime(tsk);
197 	sig->min_flt += tsk->min_flt;
198 	sig->maj_flt += tsk->maj_flt;
199 	sig->nvcsw += tsk->nvcsw;
200 	sig->nivcsw += tsk->nivcsw;
201 	sig->inblock += task_io_get_inblock(tsk);
202 	sig->oublock += task_io_get_oublock(tsk);
203 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
204 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
205 	sig->nr_threads--;
206 	__unhash_process(post, tsk, group_dead);
207 	write_sequnlock(&sig->stats_lock);
208 
209 	tsk->sighand = NULL;
210 	spin_unlock(&sighand->siglock);
211 
212 	__cleanup_sighand(sighand);
213 	if (group_dead)
214 		tty_kref_put(tty);
215 }
216 
delayed_put_task_struct(struct rcu_head * rhp)217 static void delayed_put_task_struct(struct rcu_head *rhp)
218 {
219 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
220 
221 	kprobe_flush_task(tsk);
222 	rethook_flush_task(tsk);
223 	perf_event_delayed_put(tsk);
224 	trace_sched_process_free(tsk);
225 	put_task_struct(tsk);
226 }
227 
put_task_struct_rcu_user(struct task_struct * task)228 void put_task_struct_rcu_user(struct task_struct *task)
229 {
230 	if (refcount_dec_and_test(&task->rcu_users))
231 		call_rcu(&task->rcu, delayed_put_task_struct);
232 }
233 
release_thread(struct task_struct * dead_task)234 void __weak release_thread(struct task_struct *dead_task)
235 {
236 }
237 
release_task(struct task_struct * p)238 void release_task(struct task_struct *p)
239 {
240 	struct release_task_post post;
241 	struct task_struct *leader;
242 	struct pid *thread_pid;
243 	int zap_leader;
244 repeat:
245 	memset(&post, 0, sizeof(post));
246 
247 	/* don't need to get the RCU readlock here - the process is dead and
248 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
249 	rcu_read_lock();
250 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
251 	rcu_read_unlock();
252 
253 	pidfs_exit(p);
254 	cgroup_release(p);
255 
256 	thread_pid = get_pid(p->thread_pid);
257 
258 	write_lock_irq(&tasklist_lock);
259 	ptrace_release_task(p);
260 	__exit_signal(&post, p);
261 
262 	/*
263 	 * If we are the last non-leader member of the thread
264 	 * group, and the leader is zombie, then notify the
265 	 * group leader's parent process. (if it wants notification.)
266 	 */
267 	zap_leader = 0;
268 	leader = p->group_leader;
269 	if (leader != p && thread_group_empty(leader)
270 			&& leader->exit_state == EXIT_ZOMBIE) {
271 		/* for pidfs_exit() and do_notify_parent() */
272 		if (leader->signal->flags & SIGNAL_GROUP_EXIT)
273 			leader->exit_code = leader->signal->group_exit_code;
274 		/*
275 		 * If we were the last child thread and the leader has
276 		 * exited already, and the leader's parent ignores SIGCHLD,
277 		 * then we are the one who should release the leader.
278 		 */
279 		zap_leader = do_notify_parent(leader, leader->exit_signal);
280 		if (zap_leader)
281 			leader->exit_state = EXIT_DEAD;
282 	}
283 
284 	write_unlock_irq(&tasklist_lock);
285 	proc_flush_pid(thread_pid);
286 	put_pid(thread_pid);
287 	add_device_randomness(&p->se.sum_exec_runtime,
288 			      sizeof(p->se.sum_exec_runtime));
289 	free_pids(post.pids);
290 	release_thread(p);
291 	/*
292 	 * This task was already removed from the process/thread/pid lists
293 	 * and lock_task_sighand(p) can't succeed. Nobody else can touch
294 	 * ->pending or, if group dead, signal->shared_pending. We can call
295 	 * flush_sigqueue() lockless.
296 	 */
297 	flush_sigqueue(&p->pending);
298 	if (thread_group_leader(p))
299 		flush_sigqueue(&p->signal->shared_pending);
300 
301 	put_task_struct_rcu_user(p);
302 
303 	p = leader;
304 	if (unlikely(zap_leader))
305 		goto repeat;
306 }
307 
rcuwait_wake_up(struct rcuwait * w)308 int rcuwait_wake_up(struct rcuwait *w)
309 {
310 	int ret = 0;
311 	struct task_struct *task;
312 
313 	rcu_read_lock();
314 
315 	/*
316 	 * Order condition vs @task, such that everything prior to the load
317 	 * of @task is visible. This is the condition as to why the user called
318 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
319 	 * barrier (A) in rcuwait_wait_event().
320 	 *
321 	 *    WAIT                WAKE
322 	 *    [S] tsk = current	  [S] cond = true
323 	 *        MB (A)	      MB (B)
324 	 *    [L] cond		  [L] tsk
325 	 */
326 	smp_mb(); /* (B) */
327 
328 	task = rcu_dereference(w->task);
329 	if (task)
330 		ret = wake_up_process(task);
331 	rcu_read_unlock();
332 
333 	return ret;
334 }
335 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
336 
337 /*
338  * Determine if a process group is "orphaned", according to the POSIX
339  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
340  * by terminal-generated stop signals.  Newly orphaned process groups are
341  * to receive a SIGHUP and a SIGCONT.
342  *
343  * "I ask you, have you ever known what it is to be an orphan?"
344  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)345 static int will_become_orphaned_pgrp(struct pid *pgrp,
346 					struct task_struct *ignored_task)
347 {
348 	struct task_struct *p;
349 
350 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
351 		if ((p == ignored_task) ||
352 		    (p->exit_state && thread_group_empty(p)) ||
353 		    is_global_init(p->real_parent))
354 			continue;
355 
356 		if (task_pgrp(p->real_parent) != pgrp &&
357 		    task_session(p->real_parent) == task_session(p))
358 			return 0;
359 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
360 
361 	return 1;
362 }
363 
is_current_pgrp_orphaned(void)364 int is_current_pgrp_orphaned(void)
365 {
366 	int retval;
367 
368 	read_lock(&tasklist_lock);
369 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
370 	read_unlock(&tasklist_lock);
371 
372 	return retval;
373 }
374 
has_stopped_jobs(struct pid * pgrp)375 static bool has_stopped_jobs(struct pid *pgrp)
376 {
377 	struct task_struct *p;
378 
379 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
380 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
381 			return true;
382 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
383 
384 	return false;
385 }
386 
387 /*
388  * Check to see if any process groups have become orphaned as
389  * a result of our exiting, and if they have any stopped jobs,
390  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
391  */
392 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)393 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
394 {
395 	struct pid *pgrp = task_pgrp(tsk);
396 	struct task_struct *ignored_task = tsk;
397 
398 	if (!parent)
399 		/* exit: our father is in a different pgrp than
400 		 * we are and we were the only connection outside.
401 		 */
402 		parent = tsk->real_parent;
403 	else
404 		/* reparent: our child is in a different pgrp than
405 		 * we are, and it was the only connection outside.
406 		 */
407 		ignored_task = NULL;
408 
409 	if (task_pgrp(parent) != pgrp &&
410 	    task_session(parent) == task_session(tsk) &&
411 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
412 	    has_stopped_jobs(pgrp)) {
413 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
414 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
415 	}
416 }
417 
coredump_task_exit(struct task_struct * tsk)418 static void coredump_task_exit(struct task_struct *tsk)
419 {
420 	struct core_state *core_state;
421 
422 	/*
423 	 * Serialize with any possible pending coredump.
424 	 * We must hold siglock around checking core_state
425 	 * and setting PF_POSTCOREDUMP.  The core-inducing thread
426 	 * will increment ->nr_threads for each thread in the
427 	 * group without PF_POSTCOREDUMP set.
428 	 */
429 	spin_lock_irq(&tsk->sighand->siglock);
430 	tsk->flags |= PF_POSTCOREDUMP;
431 	core_state = tsk->signal->core_state;
432 	spin_unlock_irq(&tsk->sighand->siglock);
433 	if (core_state) {
434 		struct core_thread self;
435 
436 		self.task = current;
437 		if (self.task->flags & PF_SIGNALED)
438 			self.next = xchg(&core_state->dumper.next, &self);
439 		else
440 			self.task = NULL;
441 		/*
442 		 * Implies mb(), the result of xchg() must be visible
443 		 * to core_state->dumper.
444 		 */
445 		if (atomic_dec_and_test(&core_state->nr_threads))
446 			complete(&core_state->startup);
447 
448 		for (;;) {
449 			set_current_state(TASK_IDLE|TASK_FREEZABLE);
450 			if (!self.task) /* see coredump_finish() */
451 				break;
452 			schedule();
453 		}
454 		__set_current_state(TASK_RUNNING);
455 	}
456 }
457 
458 #ifdef CONFIG_MEMCG
459 /* drops tasklist_lock if succeeds */
__try_to_set_owner(struct task_struct * tsk,struct mm_struct * mm)460 static bool __try_to_set_owner(struct task_struct *tsk, struct mm_struct *mm)
461 {
462 	bool ret = false;
463 
464 	task_lock(tsk);
465 	if (likely(tsk->mm == mm)) {
466 		/* tsk can't pass exit_mm/exec_mmap and exit */
467 		read_unlock(&tasklist_lock);
468 		WRITE_ONCE(mm->owner, tsk);
469 		lru_gen_migrate_mm(mm);
470 		ret = true;
471 	}
472 	task_unlock(tsk);
473 	return ret;
474 }
475 
try_to_set_owner(struct task_struct * g,struct mm_struct * mm)476 static bool try_to_set_owner(struct task_struct *g, struct mm_struct *mm)
477 {
478 	struct task_struct *t;
479 
480 	for_each_thread(g, t) {
481 		struct mm_struct *t_mm = READ_ONCE(t->mm);
482 		if (t_mm == mm) {
483 			if (__try_to_set_owner(t, mm))
484 				return true;
485 		} else if (t_mm)
486 			break;
487 	}
488 
489 	return false;
490 }
491 
492 /*
493  * A task is exiting.   If it owned this mm, find a new owner for the mm.
494  */
mm_update_next_owner(struct mm_struct * mm)495 void mm_update_next_owner(struct mm_struct *mm)
496 {
497 	struct task_struct *g, *p = current;
498 
499 	/*
500 	 * If the exiting or execing task is not the owner, it's
501 	 * someone else's problem.
502 	 */
503 	if (mm->owner != p)
504 		return;
505 	/*
506 	 * The current owner is exiting/execing and there are no other
507 	 * candidates.  Do not leave the mm pointing to a possibly
508 	 * freed task structure.
509 	 */
510 	if (atomic_read(&mm->mm_users) <= 1) {
511 		WRITE_ONCE(mm->owner, NULL);
512 		return;
513 	}
514 
515 	read_lock(&tasklist_lock);
516 	/*
517 	 * Search in the children
518 	 */
519 	list_for_each_entry(g, &p->children, sibling) {
520 		if (try_to_set_owner(g, mm))
521 			goto ret;
522 	}
523 	/*
524 	 * Search in the siblings
525 	 */
526 	list_for_each_entry(g, &p->real_parent->children, sibling) {
527 		if (try_to_set_owner(g, mm))
528 			goto ret;
529 	}
530 	/*
531 	 * Search through everything else, we should not get here often.
532 	 */
533 	for_each_process(g) {
534 		if (atomic_read(&mm->mm_users) <= 1)
535 			break;
536 		if (g->flags & PF_KTHREAD)
537 			continue;
538 		if (try_to_set_owner(g, mm))
539 			goto ret;
540 	}
541 	read_unlock(&tasklist_lock);
542 	/*
543 	 * We found no owner yet mm_users > 1: this implies that we are
544 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
545 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
546 	 */
547 	WRITE_ONCE(mm->owner, NULL);
548  ret:
549 	return;
550 
551 }
552 #endif /* CONFIG_MEMCG */
553 
554 /*
555  * Turn us into a lazy TLB process if we
556  * aren't already..
557  */
exit_mm(void)558 static void exit_mm(void)
559 {
560 	struct mm_struct *mm = current->mm;
561 
562 	exit_mm_release(current, mm);
563 	if (!mm)
564 		return;
565 	mmap_read_lock(mm);
566 	mmgrab_lazy_tlb(mm);
567 	BUG_ON(mm != current->active_mm);
568 	/* more a memory barrier than a real lock */
569 	task_lock(current);
570 	/*
571 	 * When a thread stops operating on an address space, the loop
572 	 * in membarrier_private_expedited() may not observe that
573 	 * tsk->mm, and the loop in membarrier_global_expedited() may
574 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
575 	 * rq->membarrier_state, so those would not issue an IPI.
576 	 * Membarrier requires a memory barrier after accessing
577 	 * user-space memory, before clearing tsk->mm or the
578 	 * rq->membarrier_state.
579 	 */
580 	smp_mb__after_spinlock();
581 	local_irq_disable();
582 	current->mm = NULL;
583 	membarrier_update_current_mm(NULL);
584 	enter_lazy_tlb(mm, current);
585 	local_irq_enable();
586 	task_unlock(current);
587 	mmap_read_unlock(mm);
588 	mm_update_next_owner(mm);
589 	mmput(mm);
590 	if (test_thread_flag(TIF_MEMDIE))
591 		exit_oom_victim();
592 }
593 
find_alive_thread(struct task_struct * p)594 static struct task_struct *find_alive_thread(struct task_struct *p)
595 {
596 	struct task_struct *t;
597 
598 	for_each_thread(p, t) {
599 		if (!(t->flags & PF_EXITING))
600 			return t;
601 	}
602 	return NULL;
603 }
604 
find_child_reaper(struct task_struct * father,struct list_head * dead)605 static struct task_struct *find_child_reaper(struct task_struct *father,
606 						struct list_head *dead)
607 	__releases(&tasklist_lock)
608 	__acquires(&tasklist_lock)
609 {
610 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
611 	struct task_struct *reaper = pid_ns->child_reaper;
612 	struct task_struct *p, *n;
613 
614 	if (likely(reaper != father))
615 		return reaper;
616 
617 	reaper = find_alive_thread(father);
618 	if (reaper) {
619 		pid_ns->child_reaper = reaper;
620 		return reaper;
621 	}
622 
623 	write_unlock_irq(&tasklist_lock);
624 
625 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
626 		list_del_init(&p->ptrace_entry);
627 		release_task(p);
628 	}
629 
630 	zap_pid_ns_processes(pid_ns);
631 	write_lock_irq(&tasklist_lock);
632 
633 	return father;
634 }
635 
636 /*
637  * When we die, we re-parent all our children, and try to:
638  * 1. give them to another thread in our thread group, if such a member exists
639  * 2. give it to the first ancestor process which prctl'd itself as a
640  *    child_subreaper for its children (like a service manager)
641  * 3. give it to the init process (PID 1) in our pid namespace
642  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)643 static struct task_struct *find_new_reaper(struct task_struct *father,
644 					   struct task_struct *child_reaper)
645 {
646 	struct task_struct *thread, *reaper;
647 
648 	thread = find_alive_thread(father);
649 	if (thread)
650 		return thread;
651 
652 	if (father->signal->has_child_subreaper) {
653 		unsigned int ns_level = task_pid(father)->level;
654 		/*
655 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
656 		 * We can't check reaper != child_reaper to ensure we do not
657 		 * cross the namespaces, the exiting parent could be injected
658 		 * by setns() + fork().
659 		 * We check pid->level, this is slightly more efficient than
660 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
661 		 */
662 		for (reaper = father->real_parent;
663 		     task_pid(reaper)->level == ns_level;
664 		     reaper = reaper->real_parent) {
665 			if (reaper == &init_task)
666 				break;
667 			if (!reaper->signal->is_child_subreaper)
668 				continue;
669 			thread = find_alive_thread(reaper);
670 			if (thread)
671 				return thread;
672 		}
673 	}
674 
675 	return child_reaper;
676 }
677 
678 /*
679 * Any that need to be release_task'd are put on the @dead list.
680  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)681 static void reparent_leader(struct task_struct *father, struct task_struct *p,
682 				struct list_head *dead)
683 {
684 	if (unlikely(p->exit_state == EXIT_DEAD))
685 		return;
686 
687 	/* We don't want people slaying init. */
688 	p->exit_signal = SIGCHLD;
689 
690 	/* If it has exited notify the new parent about this child's death. */
691 	if (!p->ptrace &&
692 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
693 		if (do_notify_parent(p, p->exit_signal)) {
694 			p->exit_state = EXIT_DEAD;
695 			list_add(&p->ptrace_entry, dead);
696 		}
697 	}
698 
699 	kill_orphaned_pgrp(p, father);
700 }
701 
702 /*
703  * This does two things:
704  *
705  * A.  Make init inherit all the child processes
706  * B.  Check to see if any process groups have become orphaned
707  *	as a result of our exiting, and if they have any stopped
708  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
709  */
forget_original_parent(struct task_struct * father,struct list_head * dead)710 static void forget_original_parent(struct task_struct *father,
711 					struct list_head *dead)
712 {
713 	struct task_struct *p, *t, *reaper;
714 
715 	if (unlikely(!list_empty(&father->ptraced)))
716 		exit_ptrace(father, dead);
717 
718 	/* Can drop and reacquire tasklist_lock */
719 	reaper = find_child_reaper(father, dead);
720 	if (list_empty(&father->children))
721 		return;
722 
723 	reaper = find_new_reaper(father, reaper);
724 	list_for_each_entry(p, &father->children, sibling) {
725 		for_each_thread(p, t) {
726 			RCU_INIT_POINTER(t->real_parent, reaper);
727 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
728 			if (likely(!t->ptrace))
729 				t->parent = t->real_parent;
730 			if (t->pdeath_signal)
731 				group_send_sig_info(t->pdeath_signal,
732 						    SEND_SIG_NOINFO, t,
733 						    PIDTYPE_TGID);
734 		}
735 		/*
736 		 * If this is a threaded reparent there is no need to
737 		 * notify anyone anything has happened.
738 		 */
739 		if (!same_thread_group(reaper, father))
740 			reparent_leader(father, p, dead);
741 	}
742 	list_splice_tail_init(&father->children, &reaper->children);
743 }
744 
745 /*
746  * Send signals to all our closest relatives so that they know
747  * to properly mourn us..
748  */
exit_notify(struct task_struct * tsk,int group_dead)749 static void exit_notify(struct task_struct *tsk, int group_dead)
750 {
751 	bool autoreap;
752 	struct task_struct *p, *n;
753 	LIST_HEAD(dead);
754 
755 	write_lock_irq(&tasklist_lock);
756 	forget_original_parent(tsk, &dead);
757 
758 	if (group_dead)
759 		kill_orphaned_pgrp(tsk->group_leader, NULL);
760 
761 	tsk->exit_state = EXIT_ZOMBIE;
762 
763 	if (unlikely(tsk->ptrace)) {
764 		int sig = thread_group_leader(tsk) &&
765 				thread_group_empty(tsk) &&
766 				!ptrace_reparented(tsk) ?
767 			tsk->exit_signal : SIGCHLD;
768 		autoreap = do_notify_parent(tsk, sig);
769 	} else if (thread_group_leader(tsk)) {
770 		autoreap = thread_group_empty(tsk) &&
771 			do_notify_parent(tsk, tsk->exit_signal);
772 	} else {
773 		autoreap = true;
774 		/* untraced sub-thread */
775 		do_notify_pidfd(tsk);
776 	}
777 
778 	if (autoreap) {
779 		tsk->exit_state = EXIT_DEAD;
780 		list_add(&tsk->ptrace_entry, &dead);
781 	}
782 
783 	/* mt-exec, de_thread() is waiting for group leader */
784 	if (unlikely(tsk->signal->notify_count < 0))
785 		wake_up_process(tsk->signal->group_exec_task);
786 	write_unlock_irq(&tasklist_lock);
787 
788 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
789 		list_del_init(&p->ptrace_entry);
790 		release_task(p);
791 	}
792 }
793 
794 #ifdef CONFIG_DEBUG_STACK_USAGE
stack_not_used(struct task_struct * p)795 unsigned long stack_not_used(struct task_struct *p)
796 {
797 	unsigned long *n = end_of_stack(p);
798 
799 	do {	/* Skip over canary */
800 # ifdef CONFIG_STACK_GROWSUP
801 		n--;
802 # else
803 		n++;
804 # endif
805 	} while (!*n);
806 
807 # ifdef CONFIG_STACK_GROWSUP
808 	return (unsigned long)end_of_stack(p) - (unsigned long)n;
809 # else
810 	return (unsigned long)n - (unsigned long)end_of_stack(p);
811 # endif
812 }
813 
814 /* Count the maximum pages reached in kernel stacks */
kstack_histogram(unsigned long used_stack)815 static inline void kstack_histogram(unsigned long used_stack)
816 {
817 #ifdef CONFIG_VM_EVENT_COUNTERS
818 	if (used_stack <= 1024)
819 		count_vm_event(KSTACK_1K);
820 #if THREAD_SIZE > 1024
821 	else if (used_stack <= 2048)
822 		count_vm_event(KSTACK_2K);
823 #endif
824 #if THREAD_SIZE > 2048
825 	else if (used_stack <= 4096)
826 		count_vm_event(KSTACK_4K);
827 #endif
828 #if THREAD_SIZE > 4096
829 	else if (used_stack <= 8192)
830 		count_vm_event(KSTACK_8K);
831 #endif
832 #if THREAD_SIZE > 8192
833 	else if (used_stack <= 16384)
834 		count_vm_event(KSTACK_16K);
835 #endif
836 #if THREAD_SIZE > 16384
837 	else if (used_stack <= 32768)
838 		count_vm_event(KSTACK_32K);
839 #endif
840 #if THREAD_SIZE > 32768
841 	else if (used_stack <= 65536)
842 		count_vm_event(KSTACK_64K);
843 #endif
844 #if THREAD_SIZE > 65536
845 	else
846 		count_vm_event(KSTACK_REST);
847 #endif
848 #endif /* CONFIG_VM_EVENT_COUNTERS */
849 }
850 
check_stack_usage(void)851 static void check_stack_usage(void)
852 {
853 	static DEFINE_SPINLOCK(low_water_lock);
854 	static int lowest_to_date = THREAD_SIZE;
855 	unsigned long free;
856 
857 	free = stack_not_used(current);
858 	kstack_histogram(THREAD_SIZE - free);
859 
860 	if (free >= lowest_to_date)
861 		return;
862 
863 	spin_lock(&low_water_lock);
864 	if (free < lowest_to_date) {
865 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
866 			current->comm, task_pid_nr(current), free);
867 		lowest_to_date = free;
868 	}
869 	spin_unlock(&low_water_lock);
870 }
871 #else
check_stack_usage(void)872 static inline void check_stack_usage(void) {}
873 #endif
874 
synchronize_group_exit(struct task_struct * tsk,long code)875 static void synchronize_group_exit(struct task_struct *tsk, long code)
876 {
877 	struct sighand_struct *sighand = tsk->sighand;
878 	struct signal_struct *signal = tsk->signal;
879 
880 	spin_lock_irq(&sighand->siglock);
881 	signal->quick_threads--;
882 	if ((signal->quick_threads == 0) &&
883 	    !(signal->flags & SIGNAL_GROUP_EXIT)) {
884 		signal->flags = SIGNAL_GROUP_EXIT;
885 		signal->group_exit_code = code;
886 		signal->group_stop_count = 0;
887 	}
888 	spin_unlock_irq(&sighand->siglock);
889 }
890 
do_exit(long code)891 void __noreturn do_exit(long code)
892 {
893 	struct task_struct *tsk = current;
894 	int group_dead;
895 
896 	WARN_ON(irqs_disabled());
897 
898 	synchronize_group_exit(tsk, code);
899 
900 	WARN_ON(tsk->plug);
901 
902 	kcov_task_exit(tsk);
903 	kmsan_task_exit(tsk);
904 
905 	coredump_task_exit(tsk);
906 	ptrace_event(PTRACE_EVENT_EXIT, code);
907 	user_events_exit(tsk);
908 
909 	io_uring_files_cancel();
910 	exit_signals(tsk);  /* sets PF_EXITING */
911 
912 	seccomp_filter_release(tsk);
913 
914 	acct_update_integrals(tsk);
915 	group_dead = atomic_dec_and_test(&tsk->signal->live);
916 	if (group_dead) {
917 		/*
918 		 * If the last thread of global init has exited, panic
919 		 * immediately to get a useable coredump.
920 		 */
921 		if (unlikely(is_global_init(tsk)))
922 			panic("Attempted to kill init! exitcode=0x%08x\n",
923 				tsk->signal->group_exit_code ?: (int)code);
924 
925 #ifdef CONFIG_POSIX_TIMERS
926 		hrtimer_cancel(&tsk->signal->real_timer);
927 		exit_itimers(tsk);
928 #endif
929 		if (tsk->mm)
930 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
931 	}
932 	acct_collect(code, group_dead);
933 	if (group_dead)
934 		tty_audit_exit();
935 	audit_free(tsk);
936 
937 	tsk->exit_code = code;
938 	taskstats_exit(tsk, group_dead);
939 
940 	exit_mm();
941 
942 	if (group_dead)
943 		acct_process();
944 	trace_sched_process_exit(tsk);
945 
946 	exit_sem(tsk);
947 	exit_shm(tsk);
948 	exit_files(tsk);
949 	exit_fs(tsk);
950 	if (group_dead)
951 		disassociate_ctty(1);
952 	exit_task_namespaces(tsk);
953 	exit_task_work(tsk);
954 	exit_thread(tsk);
955 
956 	/*
957 	 * Flush inherited counters to the parent - before the parent
958 	 * gets woken up by child-exit notifications.
959 	 *
960 	 * because of cgroup mode, must be called before cgroup_exit()
961 	 */
962 	perf_event_exit_task(tsk);
963 
964 	sched_autogroup_exit_task(tsk);
965 	cgroup_exit(tsk);
966 
967 	/*
968 	 * FIXME: do that only when needed, using sched_exit tracepoint
969 	 */
970 	flush_ptrace_hw_breakpoint(tsk);
971 
972 	exit_tasks_rcu_start();
973 	exit_notify(tsk, group_dead);
974 	proc_exit_connector(tsk);
975 	mpol_put_task_policy(tsk);
976 #ifdef CONFIG_FUTEX
977 	if (unlikely(current->pi_state_cache))
978 		kfree(current->pi_state_cache);
979 #endif
980 	/*
981 	 * Make sure we are holding no locks:
982 	 */
983 	debug_check_no_locks_held();
984 
985 	if (tsk->io_context)
986 		exit_io_context(tsk);
987 
988 	if (tsk->splice_pipe)
989 		free_pipe_info(tsk->splice_pipe);
990 
991 	if (tsk->task_frag.page)
992 		put_page(tsk->task_frag.page);
993 
994 	exit_task_stack_account(tsk);
995 
996 	check_stack_usage();
997 	preempt_disable();
998 	if (tsk->nr_dirtied)
999 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
1000 	exit_rcu();
1001 	exit_tasks_rcu_finish();
1002 
1003 	lockdep_free_task(tsk);
1004 	do_task_dead();
1005 }
1006 
make_task_dead(int signr)1007 void __noreturn make_task_dead(int signr)
1008 {
1009 	/*
1010 	 * Take the task off the cpu after something catastrophic has
1011 	 * happened.
1012 	 *
1013 	 * We can get here from a kernel oops, sometimes with preemption off.
1014 	 * Start by checking for critical errors.
1015 	 * Then fix up important state like USER_DS and preemption.
1016 	 * Then do everything else.
1017 	 */
1018 	struct task_struct *tsk = current;
1019 	unsigned int limit;
1020 
1021 	if (unlikely(in_interrupt()))
1022 		panic("Aiee, killing interrupt handler!");
1023 	if (unlikely(!tsk->pid))
1024 		panic("Attempted to kill the idle task!");
1025 
1026 	if (unlikely(irqs_disabled())) {
1027 		pr_info("note: %s[%d] exited with irqs disabled\n",
1028 			current->comm, task_pid_nr(current));
1029 		local_irq_enable();
1030 	}
1031 	if (unlikely(in_atomic())) {
1032 		pr_info("note: %s[%d] exited with preempt_count %d\n",
1033 			current->comm, task_pid_nr(current),
1034 			preempt_count());
1035 		preempt_count_set(PREEMPT_ENABLED);
1036 	}
1037 
1038 	/*
1039 	 * Every time the system oopses, if the oops happens while a reference
1040 	 * to an object was held, the reference leaks.
1041 	 * If the oops doesn't also leak memory, repeated oopsing can cause
1042 	 * reference counters to wrap around (if they're not using refcount_t).
1043 	 * This means that repeated oopsing can make unexploitable-looking bugs
1044 	 * exploitable through repeated oopsing.
1045 	 * To make sure this can't happen, place an upper bound on how often the
1046 	 * kernel may oops without panic().
1047 	 */
1048 	limit = READ_ONCE(oops_limit);
1049 	if (atomic_inc_return(&oops_count) >= limit && limit)
1050 		panic("Oopsed too often (kernel.oops_limit is %d)", limit);
1051 
1052 	/*
1053 	 * We're taking recursive faults here in make_task_dead. Safest is to just
1054 	 * leave this task alone and wait for reboot.
1055 	 */
1056 	if (unlikely(tsk->flags & PF_EXITING)) {
1057 		pr_alert("Fixing recursive fault but reboot is needed!\n");
1058 		futex_exit_recursive(tsk);
1059 		tsk->exit_state = EXIT_DEAD;
1060 		refcount_inc(&tsk->rcu_users);
1061 		do_task_dead();
1062 	}
1063 
1064 	do_exit(signr);
1065 }
1066 
SYSCALL_DEFINE1(exit,int,error_code)1067 SYSCALL_DEFINE1(exit, int, error_code)
1068 {
1069 	do_exit((error_code&0xff)<<8);
1070 }
1071 
1072 /*
1073  * Take down every thread in the group.  This is called by fatal signals
1074  * as well as by sys_exit_group (below).
1075  */
1076 void __noreturn
do_group_exit(int exit_code)1077 do_group_exit(int exit_code)
1078 {
1079 	struct signal_struct *sig = current->signal;
1080 
1081 	if (sig->flags & SIGNAL_GROUP_EXIT)
1082 		exit_code = sig->group_exit_code;
1083 	else if (sig->group_exec_task)
1084 		exit_code = 0;
1085 	else {
1086 		struct sighand_struct *const sighand = current->sighand;
1087 
1088 		spin_lock_irq(&sighand->siglock);
1089 		if (sig->flags & SIGNAL_GROUP_EXIT)
1090 			/* Another thread got here before we took the lock.  */
1091 			exit_code = sig->group_exit_code;
1092 		else if (sig->group_exec_task)
1093 			exit_code = 0;
1094 		else {
1095 			sig->group_exit_code = exit_code;
1096 			sig->flags = SIGNAL_GROUP_EXIT;
1097 			zap_other_threads(current);
1098 		}
1099 		spin_unlock_irq(&sighand->siglock);
1100 	}
1101 
1102 	do_exit(exit_code);
1103 	/* NOTREACHED */
1104 }
1105 
1106 /*
1107  * this kills every thread in the thread group. Note that any externally
1108  * wait4()-ing process will get the correct exit code - even if this
1109  * thread is not the thread group leader.
1110  */
SYSCALL_DEFINE1(exit_group,int,error_code)1111 SYSCALL_DEFINE1(exit_group, int, error_code)
1112 {
1113 	do_group_exit((error_code & 0xff) << 8);
1114 	/* NOTREACHED */
1115 	return 0;
1116 }
1117 
eligible_pid(struct wait_opts * wo,struct task_struct * p)1118 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
1119 {
1120 	return	wo->wo_type == PIDTYPE_MAX ||
1121 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
1122 }
1123 
1124 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)1125 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
1126 {
1127 	if (!eligible_pid(wo, p))
1128 		return 0;
1129 
1130 	/*
1131 	 * Wait for all children (clone and not) if __WALL is set or
1132 	 * if it is traced by us.
1133 	 */
1134 	if (ptrace || (wo->wo_flags & __WALL))
1135 		return 1;
1136 
1137 	/*
1138 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
1139 	 * otherwise, wait for non-clone children *only*.
1140 	 *
1141 	 * Note: a "clone" child here is one that reports to its parent
1142 	 * using a signal other than SIGCHLD, or a non-leader thread which
1143 	 * we can only see if it is traced by us.
1144 	 */
1145 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
1146 		return 0;
1147 
1148 	return 1;
1149 }
1150 
1151 /*
1152  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
1153  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1154  * the lock and this task is uninteresting.  If we return nonzero, we have
1155  * released the lock and the system call should return.
1156  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)1157 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
1158 {
1159 	int state, status;
1160 	pid_t pid = task_pid_vnr(p);
1161 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1162 	struct waitid_info *infop;
1163 
1164 	if (!likely(wo->wo_flags & WEXITED))
1165 		return 0;
1166 
1167 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1168 		status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1169 			? p->signal->group_exit_code : p->exit_code;
1170 		get_task_struct(p);
1171 		read_unlock(&tasklist_lock);
1172 		sched_annotate_sleep();
1173 		if (wo->wo_rusage)
1174 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1175 		put_task_struct(p);
1176 		goto out_info;
1177 	}
1178 	/*
1179 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1180 	 */
1181 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1182 		EXIT_TRACE : EXIT_DEAD;
1183 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1184 		return 0;
1185 	/*
1186 	 * We own this thread, nobody else can reap it.
1187 	 */
1188 	read_unlock(&tasklist_lock);
1189 	sched_annotate_sleep();
1190 
1191 	/*
1192 	 * Check thread_group_leader() to exclude the traced sub-threads.
1193 	 */
1194 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1195 		struct signal_struct *sig = p->signal;
1196 		struct signal_struct *psig = current->signal;
1197 		unsigned long maxrss;
1198 		u64 tgutime, tgstime;
1199 
1200 		/*
1201 		 * The resource counters for the group leader are in its
1202 		 * own task_struct.  Those for dead threads in the group
1203 		 * are in its signal_struct, as are those for the child
1204 		 * processes it has previously reaped.  All these
1205 		 * accumulate in the parent's signal_struct c* fields.
1206 		 *
1207 		 * We don't bother to take a lock here to protect these
1208 		 * p->signal fields because the whole thread group is dead
1209 		 * and nobody can change them.
1210 		 *
1211 		 * psig->stats_lock also protects us from our sub-threads
1212 		 * which can reap other children at the same time.
1213 		 *
1214 		 * We use thread_group_cputime_adjusted() to get times for
1215 		 * the thread group, which consolidates times for all threads
1216 		 * in the group including the group leader.
1217 		 */
1218 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1219 		write_seqlock_irq(&psig->stats_lock);
1220 		psig->cutime += tgutime + sig->cutime;
1221 		psig->cstime += tgstime + sig->cstime;
1222 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1223 		psig->cmin_flt +=
1224 			p->min_flt + sig->min_flt + sig->cmin_flt;
1225 		psig->cmaj_flt +=
1226 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1227 		psig->cnvcsw +=
1228 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1229 		psig->cnivcsw +=
1230 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1231 		psig->cinblock +=
1232 			task_io_get_inblock(p) +
1233 			sig->inblock + sig->cinblock;
1234 		psig->coublock +=
1235 			task_io_get_oublock(p) +
1236 			sig->oublock + sig->coublock;
1237 		maxrss = max(sig->maxrss, sig->cmaxrss);
1238 		if (psig->cmaxrss < maxrss)
1239 			psig->cmaxrss = maxrss;
1240 		task_io_accounting_add(&psig->ioac, &p->ioac);
1241 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1242 		write_sequnlock_irq(&psig->stats_lock);
1243 	}
1244 
1245 	if (wo->wo_rusage)
1246 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1247 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1248 		? p->signal->group_exit_code : p->exit_code;
1249 	wo->wo_stat = status;
1250 
1251 	if (state == EXIT_TRACE) {
1252 		write_lock_irq(&tasklist_lock);
1253 		/* We dropped tasklist, ptracer could die and untrace */
1254 		ptrace_unlink(p);
1255 
1256 		/* If parent wants a zombie, don't release it now */
1257 		state = EXIT_ZOMBIE;
1258 		if (do_notify_parent(p, p->exit_signal))
1259 			state = EXIT_DEAD;
1260 		p->exit_state = state;
1261 		write_unlock_irq(&tasklist_lock);
1262 	}
1263 	if (state == EXIT_DEAD)
1264 		release_task(p);
1265 
1266 out_info:
1267 	infop = wo->wo_info;
1268 	if (infop) {
1269 		if ((status & 0x7f) == 0) {
1270 			infop->cause = CLD_EXITED;
1271 			infop->status = status >> 8;
1272 		} else {
1273 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1274 			infop->status = status & 0x7f;
1275 		}
1276 		infop->pid = pid;
1277 		infop->uid = uid;
1278 	}
1279 
1280 	return pid;
1281 }
1282 
task_stopped_code(struct task_struct * p,bool ptrace)1283 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1284 {
1285 	if (ptrace) {
1286 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1287 			return &p->exit_code;
1288 	} else {
1289 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1290 			return &p->signal->group_exit_code;
1291 	}
1292 	return NULL;
1293 }
1294 
1295 /**
1296  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1297  * @wo: wait options
1298  * @ptrace: is the wait for ptrace
1299  * @p: task to wait for
1300  *
1301  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1302  *
1303  * CONTEXT:
1304  * read_lock(&tasklist_lock), which is released if return value is
1305  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1306  *
1307  * RETURNS:
1308  * 0 if wait condition didn't exist and search for other wait conditions
1309  * should continue.  Non-zero return, -errno on failure and @p's pid on
1310  * success, implies that tasklist_lock is released and wait condition
1311  * search should terminate.
1312  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1313 static int wait_task_stopped(struct wait_opts *wo,
1314 				int ptrace, struct task_struct *p)
1315 {
1316 	struct waitid_info *infop;
1317 	int exit_code, *p_code, why;
1318 	uid_t uid = 0; /* unneeded, required by compiler */
1319 	pid_t pid;
1320 
1321 	/*
1322 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1323 	 */
1324 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1325 		return 0;
1326 
1327 	if (!task_stopped_code(p, ptrace))
1328 		return 0;
1329 
1330 	exit_code = 0;
1331 	spin_lock_irq(&p->sighand->siglock);
1332 
1333 	p_code = task_stopped_code(p, ptrace);
1334 	if (unlikely(!p_code))
1335 		goto unlock_sig;
1336 
1337 	exit_code = *p_code;
1338 	if (!exit_code)
1339 		goto unlock_sig;
1340 
1341 	if (!unlikely(wo->wo_flags & WNOWAIT))
1342 		*p_code = 0;
1343 
1344 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1345 unlock_sig:
1346 	spin_unlock_irq(&p->sighand->siglock);
1347 	if (!exit_code)
1348 		return 0;
1349 
1350 	/*
1351 	 * Now we are pretty sure this task is interesting.
1352 	 * Make sure it doesn't get reaped out from under us while we
1353 	 * give up the lock and then examine it below.  We don't want to
1354 	 * keep holding onto the tasklist_lock while we call getrusage and
1355 	 * possibly take page faults for user memory.
1356 	 */
1357 	get_task_struct(p);
1358 	pid = task_pid_vnr(p);
1359 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1360 	read_unlock(&tasklist_lock);
1361 	sched_annotate_sleep();
1362 	if (wo->wo_rusage)
1363 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1364 	put_task_struct(p);
1365 
1366 	if (likely(!(wo->wo_flags & WNOWAIT)))
1367 		wo->wo_stat = (exit_code << 8) | 0x7f;
1368 
1369 	infop = wo->wo_info;
1370 	if (infop) {
1371 		infop->cause = why;
1372 		infop->status = exit_code;
1373 		infop->pid = pid;
1374 		infop->uid = uid;
1375 	}
1376 	return pid;
1377 }
1378 
1379 /*
1380  * Handle do_wait work for one task in a live, non-stopped state.
1381  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1382  * the lock and this task is uninteresting.  If we return nonzero, we have
1383  * released the lock and the system call should return.
1384  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1385 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1386 {
1387 	struct waitid_info *infop;
1388 	pid_t pid;
1389 	uid_t uid;
1390 
1391 	if (!unlikely(wo->wo_flags & WCONTINUED))
1392 		return 0;
1393 
1394 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1395 		return 0;
1396 
1397 	spin_lock_irq(&p->sighand->siglock);
1398 	/* Re-check with the lock held.  */
1399 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1400 		spin_unlock_irq(&p->sighand->siglock);
1401 		return 0;
1402 	}
1403 	if (!unlikely(wo->wo_flags & WNOWAIT))
1404 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1405 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1406 	spin_unlock_irq(&p->sighand->siglock);
1407 
1408 	pid = task_pid_vnr(p);
1409 	get_task_struct(p);
1410 	read_unlock(&tasklist_lock);
1411 	sched_annotate_sleep();
1412 	if (wo->wo_rusage)
1413 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1414 	put_task_struct(p);
1415 
1416 	infop = wo->wo_info;
1417 	if (!infop) {
1418 		wo->wo_stat = 0xffff;
1419 	} else {
1420 		infop->cause = CLD_CONTINUED;
1421 		infop->pid = pid;
1422 		infop->uid = uid;
1423 		infop->status = SIGCONT;
1424 	}
1425 	return pid;
1426 }
1427 
1428 /*
1429  * Consider @p for a wait by @parent.
1430  *
1431  * -ECHILD should be in ->notask_error before the first call.
1432  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1433  * Returns zero if the search for a child should continue;
1434  * then ->notask_error is 0 if @p is an eligible child,
1435  * or still -ECHILD.
1436  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1437 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1438 				struct task_struct *p)
1439 {
1440 	/*
1441 	 * We can race with wait_task_zombie() from another thread.
1442 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1443 	 * can't confuse the checks below.
1444 	 */
1445 	int exit_state = READ_ONCE(p->exit_state);
1446 	int ret;
1447 
1448 	if (unlikely(exit_state == EXIT_DEAD))
1449 		return 0;
1450 
1451 	ret = eligible_child(wo, ptrace, p);
1452 	if (!ret)
1453 		return ret;
1454 
1455 	if (unlikely(exit_state == EXIT_TRACE)) {
1456 		/*
1457 		 * ptrace == 0 means we are the natural parent. In this case
1458 		 * we should clear notask_error, debugger will notify us.
1459 		 */
1460 		if (likely(!ptrace))
1461 			wo->notask_error = 0;
1462 		return 0;
1463 	}
1464 
1465 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1466 		/*
1467 		 * If it is traced by its real parent's group, just pretend
1468 		 * the caller is ptrace_do_wait() and reap this child if it
1469 		 * is zombie.
1470 		 *
1471 		 * This also hides group stop state from real parent; otherwise
1472 		 * a single stop can be reported twice as group and ptrace stop.
1473 		 * If a ptracer wants to distinguish these two events for its
1474 		 * own children it should create a separate process which takes
1475 		 * the role of real parent.
1476 		 */
1477 		if (!ptrace_reparented(p))
1478 			ptrace = 1;
1479 	}
1480 
1481 	/* slay zombie? */
1482 	if (exit_state == EXIT_ZOMBIE) {
1483 		/* we don't reap group leaders with subthreads */
1484 		if (!delay_group_leader(p)) {
1485 			/*
1486 			 * A zombie ptracee is only visible to its ptracer.
1487 			 * Notification and reaping will be cascaded to the
1488 			 * real parent when the ptracer detaches.
1489 			 */
1490 			if (unlikely(ptrace) || likely(!p->ptrace))
1491 				return wait_task_zombie(wo, p);
1492 		}
1493 
1494 		/*
1495 		 * Allow access to stopped/continued state via zombie by
1496 		 * falling through.  Clearing of notask_error is complex.
1497 		 *
1498 		 * When !@ptrace:
1499 		 *
1500 		 * If WEXITED is set, notask_error should naturally be
1501 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1502 		 * so, if there are live subthreads, there are events to
1503 		 * wait for.  If all subthreads are dead, it's still safe
1504 		 * to clear - this function will be called again in finite
1505 		 * amount time once all the subthreads are released and
1506 		 * will then return without clearing.
1507 		 *
1508 		 * When @ptrace:
1509 		 *
1510 		 * Stopped state is per-task and thus can't change once the
1511 		 * target task dies.  Only continued and exited can happen.
1512 		 * Clear notask_error if WCONTINUED | WEXITED.
1513 		 */
1514 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1515 			wo->notask_error = 0;
1516 	} else {
1517 		/*
1518 		 * @p is alive and it's gonna stop, continue or exit, so
1519 		 * there always is something to wait for.
1520 		 */
1521 		wo->notask_error = 0;
1522 	}
1523 
1524 	/*
1525 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1526 	 * is used and the two don't interact with each other.
1527 	 */
1528 	ret = wait_task_stopped(wo, ptrace, p);
1529 	if (ret)
1530 		return ret;
1531 
1532 	/*
1533 	 * Wait for continued.  There's only one continued state and the
1534 	 * ptracer can consume it which can confuse the real parent.  Don't
1535 	 * use WCONTINUED from ptracer.  You don't need or want it.
1536 	 */
1537 	return wait_task_continued(wo, p);
1538 }
1539 
1540 /*
1541  * Do the work of do_wait() for one thread in the group, @tsk.
1542  *
1543  * -ECHILD should be in ->notask_error before the first call.
1544  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1545  * Returns zero if the search for a child should continue; then
1546  * ->notask_error is 0 if there were any eligible children,
1547  * or still -ECHILD.
1548  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1549 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1550 {
1551 	struct task_struct *p;
1552 
1553 	list_for_each_entry(p, &tsk->children, sibling) {
1554 		int ret = wait_consider_task(wo, 0, p);
1555 
1556 		if (ret)
1557 			return ret;
1558 	}
1559 
1560 	return 0;
1561 }
1562 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1563 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1564 {
1565 	struct task_struct *p;
1566 
1567 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1568 		int ret = wait_consider_task(wo, 1, p);
1569 
1570 		if (ret)
1571 			return ret;
1572 	}
1573 
1574 	return 0;
1575 }
1576 
pid_child_should_wake(struct wait_opts * wo,struct task_struct * p)1577 bool pid_child_should_wake(struct wait_opts *wo, struct task_struct *p)
1578 {
1579 	if (!eligible_pid(wo, p))
1580 		return false;
1581 
1582 	if ((wo->wo_flags & __WNOTHREAD) && wo->child_wait.private != p->parent)
1583 		return false;
1584 
1585 	return true;
1586 }
1587 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1588 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1589 				int sync, void *key)
1590 {
1591 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1592 						child_wait);
1593 	struct task_struct *p = key;
1594 
1595 	if (pid_child_should_wake(wo, p))
1596 		return default_wake_function(wait, mode, sync, key);
1597 
1598 	return 0;
1599 }
1600 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1601 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1602 {
1603 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1604 			   TASK_INTERRUPTIBLE, p);
1605 }
1606 
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1607 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1608 				 struct task_struct *target)
1609 {
1610 	struct task_struct *parent =
1611 		!ptrace ? target->real_parent : target->parent;
1612 
1613 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1614 				     same_thread_group(current, parent));
1615 }
1616 
1617 /*
1618  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1619  * and tracee lists to find the target task.
1620  */
do_wait_pid(struct wait_opts * wo)1621 static int do_wait_pid(struct wait_opts *wo)
1622 {
1623 	bool ptrace;
1624 	struct task_struct *target;
1625 	int retval;
1626 
1627 	ptrace = false;
1628 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1629 	if (target && is_effectively_child(wo, ptrace, target)) {
1630 		retval = wait_consider_task(wo, ptrace, target);
1631 		if (retval)
1632 			return retval;
1633 	}
1634 
1635 	ptrace = true;
1636 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1637 	if (target && target->ptrace &&
1638 	    is_effectively_child(wo, ptrace, target)) {
1639 		retval = wait_consider_task(wo, ptrace, target);
1640 		if (retval)
1641 			return retval;
1642 	}
1643 
1644 	return 0;
1645 }
1646 
__do_wait(struct wait_opts * wo)1647 long __do_wait(struct wait_opts *wo)
1648 {
1649 	long retval;
1650 
1651 	/*
1652 	 * If there is nothing that can match our criteria, just get out.
1653 	 * We will clear ->notask_error to zero if we see any child that
1654 	 * might later match our criteria, even if we are not able to reap
1655 	 * it yet.
1656 	 */
1657 	wo->notask_error = -ECHILD;
1658 	if ((wo->wo_type < PIDTYPE_MAX) &&
1659 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1660 		goto notask;
1661 
1662 	read_lock(&tasklist_lock);
1663 
1664 	if (wo->wo_type == PIDTYPE_PID) {
1665 		retval = do_wait_pid(wo);
1666 		if (retval)
1667 			return retval;
1668 	} else {
1669 		struct task_struct *tsk = current;
1670 
1671 		do {
1672 			retval = do_wait_thread(wo, tsk);
1673 			if (retval)
1674 				return retval;
1675 
1676 			retval = ptrace_do_wait(wo, tsk);
1677 			if (retval)
1678 				return retval;
1679 
1680 			if (wo->wo_flags & __WNOTHREAD)
1681 				break;
1682 		} while_each_thread(current, tsk);
1683 	}
1684 	read_unlock(&tasklist_lock);
1685 
1686 notask:
1687 	retval = wo->notask_error;
1688 	if (!retval && !(wo->wo_flags & WNOHANG))
1689 		return -ERESTARTSYS;
1690 
1691 	return retval;
1692 }
1693 
do_wait(struct wait_opts * wo)1694 static long do_wait(struct wait_opts *wo)
1695 {
1696 	int retval;
1697 
1698 	trace_sched_process_wait(wo->wo_pid);
1699 
1700 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1701 	wo->child_wait.private = current;
1702 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1703 
1704 	do {
1705 		set_current_state(TASK_INTERRUPTIBLE);
1706 		retval = __do_wait(wo);
1707 		if (retval != -ERESTARTSYS)
1708 			break;
1709 		if (signal_pending(current))
1710 			break;
1711 		schedule();
1712 	} while (1);
1713 
1714 	__set_current_state(TASK_RUNNING);
1715 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1716 	return retval;
1717 }
1718 
kernel_waitid_prepare(struct wait_opts * wo,int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1719 int kernel_waitid_prepare(struct wait_opts *wo, int which, pid_t upid,
1720 			  struct waitid_info *infop, int options,
1721 			  struct rusage *ru)
1722 {
1723 	unsigned int f_flags = 0;
1724 	struct pid *pid = NULL;
1725 	enum pid_type type;
1726 
1727 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1728 			__WNOTHREAD|__WCLONE|__WALL))
1729 		return -EINVAL;
1730 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1731 		return -EINVAL;
1732 
1733 	switch (which) {
1734 	case P_ALL:
1735 		type = PIDTYPE_MAX;
1736 		break;
1737 	case P_PID:
1738 		type = PIDTYPE_PID;
1739 		if (upid <= 0)
1740 			return -EINVAL;
1741 
1742 		pid = find_get_pid(upid);
1743 		break;
1744 	case P_PGID:
1745 		type = PIDTYPE_PGID;
1746 		if (upid < 0)
1747 			return -EINVAL;
1748 
1749 		if (upid)
1750 			pid = find_get_pid(upid);
1751 		else
1752 			pid = get_task_pid(current, PIDTYPE_PGID);
1753 		break;
1754 	case P_PIDFD:
1755 		type = PIDTYPE_PID;
1756 		if (upid < 0)
1757 			return -EINVAL;
1758 
1759 		pid = pidfd_get_pid(upid, &f_flags);
1760 		if (IS_ERR(pid))
1761 			return PTR_ERR(pid);
1762 
1763 		break;
1764 	default:
1765 		return -EINVAL;
1766 	}
1767 
1768 	wo->wo_type	= type;
1769 	wo->wo_pid	= pid;
1770 	wo->wo_flags	= options;
1771 	wo->wo_info	= infop;
1772 	wo->wo_rusage	= ru;
1773 	if (f_flags & O_NONBLOCK)
1774 		wo->wo_flags |= WNOHANG;
1775 
1776 	return 0;
1777 }
1778 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1779 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1780 			  int options, struct rusage *ru)
1781 {
1782 	struct wait_opts wo;
1783 	long ret;
1784 
1785 	ret = kernel_waitid_prepare(&wo, which, upid, infop, options, ru);
1786 	if (ret)
1787 		return ret;
1788 
1789 	ret = do_wait(&wo);
1790 	if (!ret && !(options & WNOHANG) && (wo.wo_flags & WNOHANG))
1791 		ret = -EAGAIN;
1792 
1793 	put_pid(wo.wo_pid);
1794 	return ret;
1795 }
1796 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1797 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1798 		infop, int, options, struct rusage __user *, ru)
1799 {
1800 	struct rusage r;
1801 	struct waitid_info info = {.status = 0};
1802 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1803 	int signo = 0;
1804 
1805 	if (err > 0) {
1806 		signo = SIGCHLD;
1807 		err = 0;
1808 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1809 			return -EFAULT;
1810 	}
1811 	if (!infop)
1812 		return err;
1813 
1814 	if (!user_write_access_begin(infop, sizeof(*infop)))
1815 		return -EFAULT;
1816 
1817 	unsafe_put_user(signo, &infop->si_signo, Efault);
1818 	unsafe_put_user(0, &infop->si_errno, Efault);
1819 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1820 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1821 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1822 	unsafe_put_user(info.status, &infop->si_status, Efault);
1823 	user_write_access_end();
1824 	return err;
1825 Efault:
1826 	user_write_access_end();
1827 	return -EFAULT;
1828 }
1829 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1830 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1831 		  struct rusage *ru)
1832 {
1833 	struct wait_opts wo;
1834 	struct pid *pid = NULL;
1835 	enum pid_type type;
1836 	long ret;
1837 
1838 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1839 			__WNOTHREAD|__WCLONE|__WALL))
1840 		return -EINVAL;
1841 
1842 	/* -INT_MIN is not defined */
1843 	if (upid == INT_MIN)
1844 		return -ESRCH;
1845 
1846 	if (upid == -1)
1847 		type = PIDTYPE_MAX;
1848 	else if (upid < 0) {
1849 		type = PIDTYPE_PGID;
1850 		pid = find_get_pid(-upid);
1851 	} else if (upid == 0) {
1852 		type = PIDTYPE_PGID;
1853 		pid = get_task_pid(current, PIDTYPE_PGID);
1854 	} else /* upid > 0 */ {
1855 		type = PIDTYPE_PID;
1856 		pid = find_get_pid(upid);
1857 	}
1858 
1859 	wo.wo_type	= type;
1860 	wo.wo_pid	= pid;
1861 	wo.wo_flags	= options | WEXITED;
1862 	wo.wo_info	= NULL;
1863 	wo.wo_stat	= 0;
1864 	wo.wo_rusage	= ru;
1865 	ret = do_wait(&wo);
1866 	put_pid(pid);
1867 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1868 		ret = -EFAULT;
1869 
1870 	return ret;
1871 }
1872 
kernel_wait(pid_t pid,int * stat)1873 int kernel_wait(pid_t pid, int *stat)
1874 {
1875 	struct wait_opts wo = {
1876 		.wo_type	= PIDTYPE_PID,
1877 		.wo_pid		= find_get_pid(pid),
1878 		.wo_flags	= WEXITED,
1879 	};
1880 	int ret;
1881 
1882 	ret = do_wait(&wo);
1883 	if (ret > 0 && wo.wo_stat)
1884 		*stat = wo.wo_stat;
1885 	put_pid(wo.wo_pid);
1886 	return ret;
1887 }
1888 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1889 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1890 		int, options, struct rusage __user *, ru)
1891 {
1892 	struct rusage r;
1893 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1894 
1895 	if (err > 0) {
1896 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1897 			return -EFAULT;
1898 	}
1899 	return err;
1900 }
1901 
1902 #ifdef __ARCH_WANT_SYS_WAITPID
1903 
1904 /*
1905  * sys_waitpid() remains for compatibility. waitpid() should be
1906  * implemented by calling sys_wait4() from libc.a.
1907  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1908 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1909 {
1910 	return kernel_wait4(pid, stat_addr, options, NULL);
1911 }
1912 
1913 #endif
1914 
1915 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1916 COMPAT_SYSCALL_DEFINE4(wait4,
1917 	compat_pid_t, pid,
1918 	compat_uint_t __user *, stat_addr,
1919 	int, options,
1920 	struct compat_rusage __user *, ru)
1921 {
1922 	struct rusage r;
1923 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1924 	if (err > 0) {
1925 		if (ru && put_compat_rusage(&r, ru))
1926 			return -EFAULT;
1927 	}
1928 	return err;
1929 }
1930 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1931 COMPAT_SYSCALL_DEFINE5(waitid,
1932 		int, which, compat_pid_t, pid,
1933 		struct compat_siginfo __user *, infop, int, options,
1934 		struct compat_rusage __user *, uru)
1935 {
1936 	struct rusage ru;
1937 	struct waitid_info info = {.status = 0};
1938 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1939 	int signo = 0;
1940 	if (err > 0) {
1941 		signo = SIGCHLD;
1942 		err = 0;
1943 		if (uru) {
1944 			/* kernel_waitid() overwrites everything in ru */
1945 			if (COMPAT_USE_64BIT_TIME)
1946 				err = copy_to_user(uru, &ru, sizeof(ru));
1947 			else
1948 				err = put_compat_rusage(&ru, uru);
1949 			if (err)
1950 				return -EFAULT;
1951 		}
1952 	}
1953 
1954 	if (!infop)
1955 		return err;
1956 
1957 	if (!user_write_access_begin(infop, sizeof(*infop)))
1958 		return -EFAULT;
1959 
1960 	unsafe_put_user(signo, &infop->si_signo, Efault);
1961 	unsafe_put_user(0, &infop->si_errno, Efault);
1962 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1963 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1964 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1965 	unsafe_put_user(info.status, &infop->si_status, Efault);
1966 	user_write_access_end();
1967 	return err;
1968 Efault:
1969 	user_write_access_end();
1970 	return -EFAULT;
1971 }
1972 #endif
1973 
1974 /*
1975  * This needs to be __function_aligned as GCC implicitly makes any
1976  * implementation of abort() cold and drops alignment specified by
1977  * -falign-functions=N.
1978  *
1979  * See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=88345#c11
1980  */
abort(void)1981 __weak __function_aligned void abort(void)
1982 {
1983 	BUG();
1984 
1985 	/* if that doesn't kill us, halt */
1986 	panic("Oops failed to kill thread");
1987 }
1988 EXPORT_SYMBOL(abort);
1989