1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/delay.h>
21 #include <linux/export.h>
22 #include <linux/bug.h>
23 #include <linux/kthread.h>
24 #include <linux/stop_machine.h>
25 #include <linux/mutex.h>
26 #include <linux/gfp.h>
27 #include <linux/suspend.h>
28 #include <linux/lockdep.h>
29 #include <linux/tick.h>
30 #include <linux/irq.h>
31 #include <linux/nmi.h>
32 #include <linux/smpboot.h>
33 #include <linux/relay.h>
34 #include <linux/slab.h>
35 #include <linux/scs.h>
36 #include <linux/percpu-rwsem.h>
37 #include <linux/cpuset.h>
38 #include <linux/random.h>
39 #include <linux/cc_platform.h>
40
41 #include <trace/events/power.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/cpuhp.h>
44
45 #include "smpboot.h"
46
47 /**
48 * struct cpuhp_cpu_state - Per cpu hotplug state storage
49 * @state: The current cpu state
50 * @target: The target state
51 * @fail: Current CPU hotplug callback state
52 * @thread: Pointer to the hotplug thread
53 * @should_run: Thread should execute
54 * @rollback: Perform a rollback
55 * @single: Single callback invocation
56 * @bringup: Single callback bringup or teardown selector
57 * @node: Remote CPU node; for multi-instance, do a
58 * single entry callback for install/remove
59 * @last: For multi-instance rollback, remember how far we got
60 * @cb_state: The state for a single callback (install/uninstall)
61 * @result: Result of the operation
62 * @ap_sync_state: State for AP synchronization
63 * @done_up: Signal completion to the issuer of the task for cpu-up
64 * @done_down: Signal completion to the issuer of the task for cpu-down
65 */
66 struct cpuhp_cpu_state {
67 enum cpuhp_state state;
68 enum cpuhp_state target;
69 enum cpuhp_state fail;
70 #ifdef CONFIG_SMP
71 struct task_struct *thread;
72 bool should_run;
73 bool rollback;
74 bool single;
75 bool bringup;
76 struct hlist_node *node;
77 struct hlist_node *last;
78 enum cpuhp_state cb_state;
79 int result;
80 atomic_t ap_sync_state;
81 struct completion done_up;
82 struct completion done_down;
83 #endif
84 };
85
86 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
87 .fail = CPUHP_INVALID,
88 };
89
90 #ifdef CONFIG_SMP
91 cpumask_t cpus_booted_once_mask;
92 #endif
93
94 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
95 static struct lockdep_map cpuhp_state_up_map =
96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
97 static struct lockdep_map cpuhp_state_down_map =
98 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
99
100
cpuhp_lock_acquire(bool bringup)101 static inline void cpuhp_lock_acquire(bool bringup)
102 {
103 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
104 }
105
cpuhp_lock_release(bool bringup)106 static inline void cpuhp_lock_release(bool bringup)
107 {
108 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
109 }
110 #else
111
cpuhp_lock_acquire(bool bringup)112 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)113 static inline void cpuhp_lock_release(bool bringup) { }
114
115 #endif
116
117 /**
118 * struct cpuhp_step - Hotplug state machine step
119 * @name: Name of the step
120 * @startup: Startup function of the step
121 * @teardown: Teardown function of the step
122 * @cant_stop: Bringup/teardown can't be stopped at this step
123 * @multi_instance: State has multiple instances which get added afterwards
124 */
125 struct cpuhp_step {
126 const char *name;
127 union {
128 int (*single)(unsigned int cpu);
129 int (*multi)(unsigned int cpu,
130 struct hlist_node *node);
131 } startup;
132 union {
133 int (*single)(unsigned int cpu);
134 int (*multi)(unsigned int cpu,
135 struct hlist_node *node);
136 } teardown;
137 /* private: */
138 struct hlist_head list;
139 /* public: */
140 bool cant_stop;
141 bool multi_instance;
142 };
143
144 static DEFINE_MUTEX(cpuhp_state_mutex);
145 static struct cpuhp_step cpuhp_hp_states[];
146
cpuhp_get_step(enum cpuhp_state state)147 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
148 {
149 return cpuhp_hp_states + state;
150 }
151
cpuhp_step_empty(bool bringup,struct cpuhp_step * step)152 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
153 {
154 return bringup ? !step->startup.single : !step->teardown.single;
155 }
156
157 /**
158 * cpuhp_invoke_callback - Invoke the callbacks for a given state
159 * @cpu: The cpu for which the callback should be invoked
160 * @state: The state to do callbacks for
161 * @bringup: True if the bringup callback should be invoked
162 * @node: For multi-instance, do a single entry callback for install/remove
163 * @lastp: For multi-instance rollback, remember how far we got
164 *
165 * Called from cpu hotplug and from the state register machinery.
166 *
167 * Return: %0 on success or a negative errno code
168 */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)169 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
170 bool bringup, struct hlist_node *node,
171 struct hlist_node **lastp)
172 {
173 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
174 struct cpuhp_step *step = cpuhp_get_step(state);
175 int (*cbm)(unsigned int cpu, struct hlist_node *node);
176 int (*cb)(unsigned int cpu);
177 int ret, cnt;
178
179 if (st->fail == state) {
180 st->fail = CPUHP_INVALID;
181 return -EAGAIN;
182 }
183
184 if (cpuhp_step_empty(bringup, step)) {
185 WARN_ON_ONCE(1);
186 return 0;
187 }
188
189 if (!step->multi_instance) {
190 WARN_ON_ONCE(lastp && *lastp);
191 cb = bringup ? step->startup.single : step->teardown.single;
192
193 trace_cpuhp_enter(cpu, st->target, state, cb);
194 ret = cb(cpu);
195 trace_cpuhp_exit(cpu, st->state, state, ret);
196 return ret;
197 }
198 cbm = bringup ? step->startup.multi : step->teardown.multi;
199
200 /* Single invocation for instance add/remove */
201 if (node) {
202 WARN_ON_ONCE(lastp && *lastp);
203 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
204 ret = cbm(cpu, node);
205 trace_cpuhp_exit(cpu, st->state, state, ret);
206 return ret;
207 }
208
209 /* State transition. Invoke on all instances */
210 cnt = 0;
211 hlist_for_each(node, &step->list) {
212 if (lastp && node == *lastp)
213 break;
214
215 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
216 ret = cbm(cpu, node);
217 trace_cpuhp_exit(cpu, st->state, state, ret);
218 if (ret) {
219 if (!lastp)
220 goto err;
221
222 *lastp = node;
223 return ret;
224 }
225 cnt++;
226 }
227 if (lastp)
228 *lastp = NULL;
229 return 0;
230 err:
231 /* Rollback the instances if one failed */
232 cbm = !bringup ? step->startup.multi : step->teardown.multi;
233 if (!cbm)
234 return ret;
235
236 hlist_for_each(node, &step->list) {
237 if (!cnt--)
238 break;
239
240 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
241 ret = cbm(cpu, node);
242 trace_cpuhp_exit(cpu, st->state, state, ret);
243 /*
244 * Rollback must not fail,
245 */
246 WARN_ON_ONCE(ret);
247 }
248 return ret;
249 }
250
251 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)252 static bool cpuhp_is_ap_state(enum cpuhp_state state)
253 {
254 /*
255 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
256 * purposes as that state is handled explicitly in cpu_down.
257 */
258 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
259 }
260
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)261 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
262 {
263 struct completion *done = bringup ? &st->done_up : &st->done_down;
264 wait_for_completion(done);
265 }
266
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)267 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
268 {
269 struct completion *done = bringup ? &st->done_up : &st->done_down;
270 complete(done);
271 }
272
273 /*
274 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
275 */
cpuhp_is_atomic_state(enum cpuhp_state state)276 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
277 {
278 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
279 }
280
281 /* Synchronization state management */
282 enum cpuhp_sync_state {
283 SYNC_STATE_DEAD,
284 SYNC_STATE_KICKED,
285 SYNC_STATE_SHOULD_DIE,
286 SYNC_STATE_ALIVE,
287 SYNC_STATE_SHOULD_ONLINE,
288 SYNC_STATE_ONLINE,
289 };
290
291 #ifdef CONFIG_HOTPLUG_CORE_SYNC
292 /**
293 * cpuhp_ap_update_sync_state - Update synchronization state during bringup/teardown
294 * @state: The synchronization state to set
295 *
296 * No synchronization point. Just update of the synchronization state, but implies
297 * a full barrier so that the AP changes are visible before the control CPU proceeds.
298 */
cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)299 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)
300 {
301 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
302
303 (void)atomic_xchg(st, state);
304 }
305
arch_cpuhp_sync_state_poll(void)306 void __weak arch_cpuhp_sync_state_poll(void) { cpu_relax(); }
307
cpuhp_wait_for_sync_state(unsigned int cpu,enum cpuhp_sync_state state,enum cpuhp_sync_state next_state)308 static bool cpuhp_wait_for_sync_state(unsigned int cpu, enum cpuhp_sync_state state,
309 enum cpuhp_sync_state next_state)
310 {
311 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
312 ktime_t now, end, start = ktime_get();
313 int sync;
314
315 end = start + 10ULL * NSEC_PER_SEC;
316
317 sync = atomic_read(st);
318 while (1) {
319 if (sync == state) {
320 if (!atomic_try_cmpxchg(st, &sync, next_state))
321 continue;
322 return true;
323 }
324
325 now = ktime_get();
326 if (now > end) {
327 /* Timeout. Leave the state unchanged */
328 return false;
329 } else if (now - start < NSEC_PER_MSEC) {
330 /* Poll for one millisecond */
331 arch_cpuhp_sync_state_poll();
332 } else {
333 usleep_range(USEC_PER_MSEC, 2 * USEC_PER_MSEC);
334 }
335 sync = atomic_read(st);
336 }
337 return true;
338 }
339 #else /* CONFIG_HOTPLUG_CORE_SYNC */
cpuhp_ap_update_sync_state(enum cpuhp_sync_state state)340 static inline void cpuhp_ap_update_sync_state(enum cpuhp_sync_state state) { }
341 #endif /* !CONFIG_HOTPLUG_CORE_SYNC */
342
343 #ifdef CONFIG_HOTPLUG_CORE_SYNC_DEAD
344 /**
345 * cpuhp_ap_report_dead - Update synchronization state to DEAD
346 *
347 * No synchronization point. Just update of the synchronization state.
348 */
cpuhp_ap_report_dead(void)349 void cpuhp_ap_report_dead(void)
350 {
351 cpuhp_ap_update_sync_state(SYNC_STATE_DEAD);
352 }
353
arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)354 void __weak arch_cpuhp_cleanup_dead_cpu(unsigned int cpu) { }
355
356 /*
357 * Late CPU shutdown synchronization point. Cannot use cpuhp_state::done_down
358 * because the AP cannot issue complete() at this stage.
359 */
cpuhp_bp_sync_dead(unsigned int cpu)360 static void cpuhp_bp_sync_dead(unsigned int cpu)
361 {
362 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
363 int sync = atomic_read(st);
364
365 do {
366 /* CPU can have reported dead already. Don't overwrite that! */
367 if (sync == SYNC_STATE_DEAD)
368 break;
369 } while (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_SHOULD_DIE));
370
371 if (cpuhp_wait_for_sync_state(cpu, SYNC_STATE_DEAD, SYNC_STATE_DEAD)) {
372 /* CPU reached dead state. Invoke the cleanup function */
373 arch_cpuhp_cleanup_dead_cpu(cpu);
374 return;
375 }
376
377 /* No further action possible. Emit message and give up. */
378 pr_err("CPU%u failed to report dead state\n", cpu);
379 }
380 #else /* CONFIG_HOTPLUG_CORE_SYNC_DEAD */
cpuhp_bp_sync_dead(unsigned int cpu)381 static inline void cpuhp_bp_sync_dead(unsigned int cpu) { }
382 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_DEAD */
383
384 #ifdef CONFIG_HOTPLUG_CORE_SYNC_FULL
385 /**
386 * cpuhp_ap_sync_alive - Synchronize AP with the control CPU once it is alive
387 *
388 * Updates the AP synchronization state to SYNC_STATE_ALIVE and waits
389 * for the BP to release it.
390 */
cpuhp_ap_sync_alive(void)391 void cpuhp_ap_sync_alive(void)
392 {
393 atomic_t *st = this_cpu_ptr(&cpuhp_state.ap_sync_state);
394
395 cpuhp_ap_update_sync_state(SYNC_STATE_ALIVE);
396
397 /* Wait for the control CPU to release it. */
398 while (atomic_read(st) != SYNC_STATE_SHOULD_ONLINE)
399 cpu_relax();
400 }
401
cpuhp_can_boot_ap(unsigned int cpu)402 static bool cpuhp_can_boot_ap(unsigned int cpu)
403 {
404 atomic_t *st = per_cpu_ptr(&cpuhp_state.ap_sync_state, cpu);
405 int sync = atomic_read(st);
406
407 again:
408 switch (sync) {
409 case SYNC_STATE_DEAD:
410 /* CPU is properly dead */
411 break;
412 case SYNC_STATE_KICKED:
413 /* CPU did not come up in previous attempt */
414 break;
415 case SYNC_STATE_ALIVE:
416 /* CPU is stuck cpuhp_ap_sync_alive(). */
417 break;
418 default:
419 /* CPU failed to report online or dead and is in limbo state. */
420 return false;
421 }
422
423 /* Prepare for booting */
424 if (!atomic_try_cmpxchg(st, &sync, SYNC_STATE_KICKED))
425 goto again;
426
427 return true;
428 }
429
arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)430 void __weak arch_cpuhp_cleanup_kick_cpu(unsigned int cpu) { }
431
432 /*
433 * Early CPU bringup synchronization point. Cannot use cpuhp_state::done_up
434 * because the AP cannot issue complete() so early in the bringup.
435 */
cpuhp_bp_sync_alive(unsigned int cpu)436 static int cpuhp_bp_sync_alive(unsigned int cpu)
437 {
438 int ret = 0;
439
440 if (!IS_ENABLED(CONFIG_HOTPLUG_CORE_SYNC_FULL))
441 return 0;
442
443 if (!cpuhp_wait_for_sync_state(cpu, SYNC_STATE_ALIVE, SYNC_STATE_SHOULD_ONLINE)) {
444 pr_err("CPU%u failed to report alive state\n", cpu);
445 ret = -EIO;
446 }
447
448 /* Let the architecture cleanup the kick alive mechanics. */
449 arch_cpuhp_cleanup_kick_cpu(cpu);
450 return ret;
451 }
452 #else /* CONFIG_HOTPLUG_CORE_SYNC_FULL */
cpuhp_bp_sync_alive(unsigned int cpu)453 static inline int cpuhp_bp_sync_alive(unsigned int cpu) { return 0; }
cpuhp_can_boot_ap(unsigned int cpu)454 static inline bool cpuhp_can_boot_ap(unsigned int cpu) { return true; }
455 #endif /* !CONFIG_HOTPLUG_CORE_SYNC_FULL */
456
457 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
458 static DEFINE_MUTEX(cpu_add_remove_lock);
459 bool cpuhp_tasks_frozen;
460 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
461
462 /*
463 * The following two APIs (cpu_maps_update_begin/done) must be used when
464 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
465 */
cpu_maps_update_begin(void)466 void cpu_maps_update_begin(void)
467 {
468 mutex_lock(&cpu_add_remove_lock);
469 }
470
cpu_maps_update_done(void)471 void cpu_maps_update_done(void)
472 {
473 mutex_unlock(&cpu_add_remove_lock);
474 }
475
476 /*
477 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
478 * Should always be manipulated under cpu_add_remove_lock
479 */
480 static int cpu_hotplug_disabled;
481
482 #ifdef CONFIG_HOTPLUG_CPU
483
484 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
485
486 static bool cpu_hotplug_offline_disabled __ro_after_init;
487
cpus_read_lock(void)488 void cpus_read_lock(void)
489 {
490 percpu_down_read(&cpu_hotplug_lock);
491 }
492 EXPORT_SYMBOL_GPL(cpus_read_lock);
493
cpus_read_trylock(void)494 int cpus_read_trylock(void)
495 {
496 return percpu_down_read_trylock(&cpu_hotplug_lock);
497 }
498 EXPORT_SYMBOL_GPL(cpus_read_trylock);
499
cpus_read_unlock(void)500 void cpus_read_unlock(void)
501 {
502 percpu_up_read(&cpu_hotplug_lock);
503 }
504 EXPORT_SYMBOL_GPL(cpus_read_unlock);
505
cpus_write_lock(void)506 void cpus_write_lock(void)
507 {
508 percpu_down_write(&cpu_hotplug_lock);
509 }
510
cpus_write_unlock(void)511 void cpus_write_unlock(void)
512 {
513 percpu_up_write(&cpu_hotplug_lock);
514 }
515
lockdep_assert_cpus_held(void)516 void lockdep_assert_cpus_held(void)
517 {
518 /*
519 * We can't have hotplug operations before userspace starts running,
520 * and some init codepaths will knowingly not take the hotplug lock.
521 * This is all valid, so mute lockdep until it makes sense to report
522 * unheld locks.
523 */
524 if (system_state < SYSTEM_RUNNING)
525 return;
526
527 percpu_rwsem_assert_held(&cpu_hotplug_lock);
528 }
529 EXPORT_SYMBOL_GPL(lockdep_assert_cpus_held);
530
531 #ifdef CONFIG_LOCKDEP
lockdep_is_cpus_held(void)532 int lockdep_is_cpus_held(void)
533 {
534 return percpu_rwsem_is_held(&cpu_hotplug_lock);
535 }
536 #endif
537
lockdep_acquire_cpus_lock(void)538 static void lockdep_acquire_cpus_lock(void)
539 {
540 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
541 }
542
lockdep_release_cpus_lock(void)543 static void lockdep_release_cpus_lock(void)
544 {
545 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
546 }
547
548 /* Declare CPU offlining not supported */
cpu_hotplug_disable_offlining(void)549 void cpu_hotplug_disable_offlining(void)
550 {
551 cpu_maps_update_begin();
552 cpu_hotplug_offline_disabled = true;
553 cpu_maps_update_done();
554 }
555
556 /*
557 * Wait for currently running CPU hotplug operations to complete (if any) and
558 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
559 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
560 * hotplug path before performing hotplug operations. So acquiring that lock
561 * guarantees mutual exclusion from any currently running hotplug operations.
562 */
cpu_hotplug_disable(void)563 void cpu_hotplug_disable(void)
564 {
565 cpu_maps_update_begin();
566 cpu_hotplug_disabled++;
567 cpu_maps_update_done();
568 }
569 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
570
__cpu_hotplug_enable(void)571 static void __cpu_hotplug_enable(void)
572 {
573 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
574 return;
575 cpu_hotplug_disabled--;
576 }
577
cpu_hotplug_enable(void)578 void cpu_hotplug_enable(void)
579 {
580 cpu_maps_update_begin();
581 __cpu_hotplug_enable();
582 cpu_maps_update_done();
583 }
584 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
585
586 #else
587
lockdep_acquire_cpus_lock(void)588 static void lockdep_acquire_cpus_lock(void)
589 {
590 }
591
lockdep_release_cpus_lock(void)592 static void lockdep_release_cpus_lock(void)
593 {
594 }
595
596 #endif /* CONFIG_HOTPLUG_CPU */
597
598 /*
599 * Architectures that need SMT-specific errata handling during SMT hotplug
600 * should override this.
601 */
arch_smt_update(void)602 void __weak arch_smt_update(void) { }
603
604 #ifdef CONFIG_HOTPLUG_SMT
605
606 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
607 static unsigned int cpu_smt_max_threads __ro_after_init;
608 unsigned int cpu_smt_num_threads __read_mostly = UINT_MAX;
609
cpu_smt_disable(bool force)610 void __init cpu_smt_disable(bool force)
611 {
612 if (!cpu_smt_possible())
613 return;
614
615 if (force) {
616 pr_info("SMT: Force disabled\n");
617 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
618 } else {
619 pr_info("SMT: disabled\n");
620 cpu_smt_control = CPU_SMT_DISABLED;
621 }
622 cpu_smt_num_threads = 1;
623 }
624
625 /*
626 * The decision whether SMT is supported can only be done after the full
627 * CPU identification. Called from architecture code.
628 */
cpu_smt_set_num_threads(unsigned int num_threads,unsigned int max_threads)629 void __init cpu_smt_set_num_threads(unsigned int num_threads,
630 unsigned int max_threads)
631 {
632 WARN_ON(!num_threads || (num_threads > max_threads));
633
634 if (max_threads == 1)
635 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
636
637 cpu_smt_max_threads = max_threads;
638
639 /*
640 * If SMT has been disabled via the kernel command line or SMT is
641 * not supported, set cpu_smt_num_threads to 1 for consistency.
642 * If enabled, take the architecture requested number of threads
643 * to bring up into account.
644 */
645 if (cpu_smt_control != CPU_SMT_ENABLED)
646 cpu_smt_num_threads = 1;
647 else if (num_threads < cpu_smt_num_threads)
648 cpu_smt_num_threads = num_threads;
649 }
650
smt_cmdline_disable(char * str)651 static int __init smt_cmdline_disable(char *str)
652 {
653 cpu_smt_disable(str && !strcmp(str, "force"));
654 return 0;
655 }
656 early_param("nosmt", smt_cmdline_disable);
657
658 /*
659 * For Archicture supporting partial SMT states check if the thread is allowed.
660 * Otherwise this has already been checked through cpu_smt_max_threads when
661 * setting the SMT level.
662 */
cpu_smt_thread_allowed(unsigned int cpu)663 static inline bool cpu_smt_thread_allowed(unsigned int cpu)
664 {
665 #ifdef CONFIG_SMT_NUM_THREADS_DYNAMIC
666 return topology_smt_thread_allowed(cpu);
667 #else
668 return true;
669 #endif
670 }
671
cpu_bootable(unsigned int cpu)672 static inline bool cpu_bootable(unsigned int cpu)
673 {
674 if (cpu_smt_control == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
675 return true;
676
677 /* All CPUs are bootable if controls are not configured */
678 if (cpu_smt_control == CPU_SMT_NOT_IMPLEMENTED)
679 return true;
680
681 /* All CPUs are bootable if CPU is not SMT capable */
682 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
683 return true;
684
685 if (topology_is_primary_thread(cpu))
686 return true;
687
688 /*
689 * On x86 it's required to boot all logical CPUs at least once so
690 * that the init code can get a chance to set CR4.MCE on each
691 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
692 * core will shutdown the machine.
693 */
694 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
695 }
696
697 /* Returns true if SMT is supported and not forcefully (irreversibly) disabled */
cpu_smt_possible(void)698 bool cpu_smt_possible(void)
699 {
700 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
701 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
702 }
703 EXPORT_SYMBOL_GPL(cpu_smt_possible);
704
705 #else
cpu_bootable(unsigned int cpu)706 static inline bool cpu_bootable(unsigned int cpu) { return true; }
707 #endif
708
709 static inline enum cpuhp_state
cpuhp_set_state(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)710 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
711 {
712 enum cpuhp_state prev_state = st->state;
713 bool bringup = st->state < target;
714
715 st->rollback = false;
716 st->last = NULL;
717
718 st->target = target;
719 st->single = false;
720 st->bringup = bringup;
721 if (cpu_dying(cpu) != !bringup)
722 set_cpu_dying(cpu, !bringup);
723
724 return prev_state;
725 }
726
727 static inline void
cpuhp_reset_state(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)728 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
729 enum cpuhp_state prev_state)
730 {
731 bool bringup = !st->bringup;
732
733 st->target = prev_state;
734
735 /*
736 * Already rolling back. No need invert the bringup value or to change
737 * the current state.
738 */
739 if (st->rollback)
740 return;
741
742 st->rollback = true;
743
744 /*
745 * If we have st->last we need to undo partial multi_instance of this
746 * state first. Otherwise start undo at the previous state.
747 */
748 if (!st->last) {
749 if (st->bringup)
750 st->state--;
751 else
752 st->state++;
753 }
754
755 st->bringup = bringup;
756 if (cpu_dying(cpu) != !bringup)
757 set_cpu_dying(cpu, !bringup);
758 }
759
760 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)761 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
762 {
763 if (!st->single && st->state == st->target)
764 return;
765
766 st->result = 0;
767 /*
768 * Make sure the above stores are visible before should_run becomes
769 * true. Paired with the mb() above in cpuhp_thread_fun()
770 */
771 smp_mb();
772 st->should_run = true;
773 wake_up_process(st->thread);
774 wait_for_ap_thread(st, st->bringup);
775 }
776
cpuhp_kick_ap(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)777 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
778 enum cpuhp_state target)
779 {
780 enum cpuhp_state prev_state;
781 int ret;
782
783 prev_state = cpuhp_set_state(cpu, st, target);
784 __cpuhp_kick_ap(st);
785 if ((ret = st->result)) {
786 cpuhp_reset_state(cpu, st, prev_state);
787 __cpuhp_kick_ap(st);
788 }
789
790 return ret;
791 }
792
bringup_wait_for_ap_online(unsigned int cpu)793 static int bringup_wait_for_ap_online(unsigned int cpu)
794 {
795 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
796
797 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
798 wait_for_ap_thread(st, true);
799 if (WARN_ON_ONCE((!cpu_online(cpu))))
800 return -ECANCELED;
801
802 /* Unpark the hotplug thread of the target cpu */
803 kthread_unpark(st->thread);
804
805 /*
806 * SMT soft disabling on X86 requires to bring the CPU out of the
807 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
808 * CPU marked itself as booted_once in notify_cpu_starting() so the
809 * cpu_bootable() check will now return false if this is not the
810 * primary sibling.
811 */
812 if (!cpu_bootable(cpu))
813 return -ECANCELED;
814 return 0;
815 }
816
817 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
cpuhp_kick_ap_alive(unsigned int cpu)818 static int cpuhp_kick_ap_alive(unsigned int cpu)
819 {
820 if (!cpuhp_can_boot_ap(cpu))
821 return -EAGAIN;
822
823 return arch_cpuhp_kick_ap_alive(cpu, idle_thread_get(cpu));
824 }
825
cpuhp_bringup_ap(unsigned int cpu)826 static int cpuhp_bringup_ap(unsigned int cpu)
827 {
828 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
829 int ret;
830
831 /*
832 * Some architectures have to walk the irq descriptors to
833 * setup the vector space for the cpu which comes online.
834 * Prevent irq alloc/free across the bringup.
835 */
836 irq_lock_sparse();
837
838 ret = cpuhp_bp_sync_alive(cpu);
839 if (ret)
840 goto out_unlock;
841
842 ret = bringup_wait_for_ap_online(cpu);
843 if (ret)
844 goto out_unlock;
845
846 irq_unlock_sparse();
847
848 if (st->target <= CPUHP_AP_ONLINE_IDLE)
849 return 0;
850
851 return cpuhp_kick_ap(cpu, st, st->target);
852
853 out_unlock:
854 irq_unlock_sparse();
855 return ret;
856 }
857 #else
bringup_cpu(unsigned int cpu)858 static int bringup_cpu(unsigned int cpu)
859 {
860 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
861 struct task_struct *idle = idle_thread_get(cpu);
862 int ret;
863
864 if (!cpuhp_can_boot_ap(cpu))
865 return -EAGAIN;
866
867 /*
868 * Some architectures have to walk the irq descriptors to
869 * setup the vector space for the cpu which comes online.
870 *
871 * Prevent irq alloc/free across the bringup by acquiring the
872 * sparse irq lock. Hold it until the upcoming CPU completes the
873 * startup in cpuhp_online_idle() which allows to avoid
874 * intermediate synchronization points in the architecture code.
875 */
876 irq_lock_sparse();
877
878 ret = __cpu_up(cpu, idle);
879 if (ret)
880 goto out_unlock;
881
882 ret = cpuhp_bp_sync_alive(cpu);
883 if (ret)
884 goto out_unlock;
885
886 ret = bringup_wait_for_ap_online(cpu);
887 if (ret)
888 goto out_unlock;
889
890 irq_unlock_sparse();
891
892 if (st->target <= CPUHP_AP_ONLINE_IDLE)
893 return 0;
894
895 return cpuhp_kick_ap(cpu, st, st->target);
896
897 out_unlock:
898 irq_unlock_sparse();
899 return ret;
900 }
901 #endif
902
finish_cpu(unsigned int cpu)903 static int finish_cpu(unsigned int cpu)
904 {
905 struct task_struct *idle = idle_thread_get(cpu);
906 struct mm_struct *mm = idle->active_mm;
907
908 /*
909 * sched_force_init_mm() ensured the use of &init_mm,
910 * drop that refcount now that the CPU has stopped.
911 */
912 WARN_ON(mm != &init_mm);
913 idle->active_mm = NULL;
914 mmdrop_lazy_tlb(mm);
915
916 return 0;
917 }
918
919 /*
920 * Hotplug state machine related functions
921 */
922
923 /*
924 * Get the next state to run. Empty ones will be skipped. Returns true if a
925 * state must be run.
926 *
927 * st->state will be modified ahead of time, to match state_to_run, as if it
928 * has already ran.
929 */
cpuhp_next_state(bool bringup,enum cpuhp_state * state_to_run,struct cpuhp_cpu_state * st,enum cpuhp_state target)930 static bool cpuhp_next_state(bool bringup,
931 enum cpuhp_state *state_to_run,
932 struct cpuhp_cpu_state *st,
933 enum cpuhp_state target)
934 {
935 do {
936 if (bringup) {
937 if (st->state >= target)
938 return false;
939
940 *state_to_run = ++st->state;
941 } else {
942 if (st->state <= target)
943 return false;
944
945 *state_to_run = st->state--;
946 }
947
948 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
949 break;
950 } while (true);
951
952 return true;
953 }
954
__cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target,bool nofail)955 static int __cpuhp_invoke_callback_range(bool bringup,
956 unsigned int cpu,
957 struct cpuhp_cpu_state *st,
958 enum cpuhp_state target,
959 bool nofail)
960 {
961 enum cpuhp_state state;
962 int ret = 0;
963
964 while (cpuhp_next_state(bringup, &state, st, target)) {
965 int err;
966
967 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
968 if (!err)
969 continue;
970
971 if (nofail) {
972 pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
973 cpu, bringup ? "UP" : "DOWN",
974 cpuhp_get_step(st->state)->name,
975 st->state, err);
976 ret = -1;
977 } else {
978 ret = err;
979 break;
980 }
981 }
982
983 return ret;
984 }
985
cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)986 static inline int cpuhp_invoke_callback_range(bool bringup,
987 unsigned int cpu,
988 struct cpuhp_cpu_state *st,
989 enum cpuhp_state target)
990 {
991 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
992 }
993
cpuhp_invoke_callback_range_nofail(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)994 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
995 unsigned int cpu,
996 struct cpuhp_cpu_state *st,
997 enum cpuhp_state target)
998 {
999 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
1000 }
1001
can_rollback_cpu(struct cpuhp_cpu_state * st)1002 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
1003 {
1004 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
1005 return true;
1006 /*
1007 * When CPU hotplug is disabled, then taking the CPU down is not
1008 * possible because takedown_cpu() and the architecture and
1009 * subsystem specific mechanisms are not available. So the CPU
1010 * which would be completely unplugged again needs to stay around
1011 * in the current state.
1012 */
1013 return st->state <= CPUHP_BRINGUP_CPU;
1014 }
1015
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1016 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1017 enum cpuhp_state target)
1018 {
1019 enum cpuhp_state prev_state = st->state;
1020 int ret = 0;
1021
1022 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1023 if (ret) {
1024 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
1025 ret, cpu, cpuhp_get_step(st->state)->name,
1026 st->state);
1027
1028 cpuhp_reset_state(cpu, st, prev_state);
1029 if (can_rollback_cpu(st))
1030 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
1031 prev_state));
1032 }
1033 return ret;
1034 }
1035
1036 /*
1037 * The cpu hotplug threads manage the bringup and teardown of the cpus
1038 */
cpuhp_should_run(unsigned int cpu)1039 static int cpuhp_should_run(unsigned int cpu)
1040 {
1041 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1042
1043 return st->should_run;
1044 }
1045
1046 /*
1047 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
1048 * callbacks when a state gets [un]installed at runtime.
1049 *
1050 * Each invocation of this function by the smpboot thread does a single AP
1051 * state callback.
1052 *
1053 * It has 3 modes of operation:
1054 * - single: runs st->cb_state
1055 * - up: runs ++st->state, while st->state < st->target
1056 * - down: runs st->state--, while st->state > st->target
1057 *
1058 * When complete or on error, should_run is cleared and the completion is fired.
1059 */
cpuhp_thread_fun(unsigned int cpu)1060 static void cpuhp_thread_fun(unsigned int cpu)
1061 {
1062 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1063 bool bringup = st->bringup;
1064 enum cpuhp_state state;
1065
1066 if (WARN_ON_ONCE(!st->should_run))
1067 return;
1068
1069 /*
1070 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
1071 * that if we see ->should_run we also see the rest of the state.
1072 */
1073 smp_mb();
1074
1075 /*
1076 * The BP holds the hotplug lock, but we're now running on the AP,
1077 * ensure that anybody asserting the lock is held, will actually find
1078 * it so.
1079 */
1080 lockdep_acquire_cpus_lock();
1081 cpuhp_lock_acquire(bringup);
1082
1083 if (st->single) {
1084 state = st->cb_state;
1085 st->should_run = false;
1086 } else {
1087 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
1088 if (!st->should_run)
1089 goto end;
1090 }
1091
1092 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
1093
1094 if (cpuhp_is_atomic_state(state)) {
1095 local_irq_disable();
1096 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1097 local_irq_enable();
1098
1099 /*
1100 * STARTING/DYING must not fail!
1101 */
1102 WARN_ON_ONCE(st->result);
1103 } else {
1104 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
1105 }
1106
1107 if (st->result) {
1108 /*
1109 * If we fail on a rollback, we're up a creek without no
1110 * paddle, no way forward, no way back. We loose, thanks for
1111 * playing.
1112 */
1113 WARN_ON_ONCE(st->rollback);
1114 st->should_run = false;
1115 }
1116
1117 end:
1118 cpuhp_lock_release(bringup);
1119 lockdep_release_cpus_lock();
1120
1121 if (!st->should_run)
1122 complete_ap_thread(st, bringup);
1123 }
1124
1125 /* Invoke a single callback on a remote cpu */
1126 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1127 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
1128 struct hlist_node *node)
1129 {
1130 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1131 int ret;
1132
1133 if (!cpu_online(cpu))
1134 return 0;
1135
1136 cpuhp_lock_acquire(false);
1137 cpuhp_lock_release(false);
1138
1139 cpuhp_lock_acquire(true);
1140 cpuhp_lock_release(true);
1141
1142 /*
1143 * If we are up and running, use the hotplug thread. For early calls
1144 * we invoke the thread function directly.
1145 */
1146 if (!st->thread)
1147 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1148
1149 st->rollback = false;
1150 st->last = NULL;
1151
1152 st->node = node;
1153 st->bringup = bringup;
1154 st->cb_state = state;
1155 st->single = true;
1156
1157 __cpuhp_kick_ap(st);
1158
1159 /*
1160 * If we failed and did a partial, do a rollback.
1161 */
1162 if ((ret = st->result) && st->last) {
1163 st->rollback = true;
1164 st->bringup = !bringup;
1165
1166 __cpuhp_kick_ap(st);
1167 }
1168
1169 /*
1170 * Clean up the leftovers so the next hotplug operation wont use stale
1171 * data.
1172 */
1173 st->node = st->last = NULL;
1174 return ret;
1175 }
1176
cpuhp_kick_ap_work(unsigned int cpu)1177 static int cpuhp_kick_ap_work(unsigned int cpu)
1178 {
1179 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1180 enum cpuhp_state prev_state = st->state;
1181 int ret;
1182
1183 cpuhp_lock_acquire(false);
1184 cpuhp_lock_release(false);
1185
1186 cpuhp_lock_acquire(true);
1187 cpuhp_lock_release(true);
1188
1189 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
1190 ret = cpuhp_kick_ap(cpu, st, st->target);
1191 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
1192
1193 return ret;
1194 }
1195
1196 static struct smp_hotplug_thread cpuhp_threads = {
1197 .store = &cpuhp_state.thread,
1198 .thread_should_run = cpuhp_should_run,
1199 .thread_fn = cpuhp_thread_fun,
1200 .thread_comm = "cpuhp/%u",
1201 .selfparking = true,
1202 };
1203
cpuhp_init_state(void)1204 static __init void cpuhp_init_state(void)
1205 {
1206 struct cpuhp_cpu_state *st;
1207 int cpu;
1208
1209 for_each_possible_cpu(cpu) {
1210 st = per_cpu_ptr(&cpuhp_state, cpu);
1211 init_completion(&st->done_up);
1212 init_completion(&st->done_down);
1213 }
1214 }
1215
cpuhp_threads_init(void)1216 void __init cpuhp_threads_init(void)
1217 {
1218 cpuhp_init_state();
1219 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
1220 kthread_unpark(this_cpu_read(cpuhp_state.thread));
1221 }
1222
1223 #ifdef CONFIG_HOTPLUG_CPU
1224 #ifndef arch_clear_mm_cpumask_cpu
1225 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
1226 #endif
1227
1228 /**
1229 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
1230 * @cpu: a CPU id
1231 *
1232 * This function walks all processes, finds a valid mm struct for each one and
1233 * then clears a corresponding bit in mm's cpumask. While this all sounds
1234 * trivial, there are various non-obvious corner cases, which this function
1235 * tries to solve in a safe manner.
1236 *
1237 * Also note that the function uses a somewhat relaxed locking scheme, so it may
1238 * be called only for an already offlined CPU.
1239 */
clear_tasks_mm_cpumask(int cpu)1240 void clear_tasks_mm_cpumask(int cpu)
1241 {
1242 struct task_struct *p;
1243
1244 /*
1245 * This function is called after the cpu is taken down and marked
1246 * offline, so its not like new tasks will ever get this cpu set in
1247 * their mm mask. -- Peter Zijlstra
1248 * Thus, we may use rcu_read_lock() here, instead of grabbing
1249 * full-fledged tasklist_lock.
1250 */
1251 WARN_ON(cpu_online(cpu));
1252 rcu_read_lock();
1253 for_each_process(p) {
1254 struct task_struct *t;
1255
1256 /*
1257 * Main thread might exit, but other threads may still have
1258 * a valid mm. Find one.
1259 */
1260 t = find_lock_task_mm(p);
1261 if (!t)
1262 continue;
1263 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1264 task_unlock(t);
1265 }
1266 rcu_read_unlock();
1267 }
1268
1269 /* Take this CPU down. */
take_cpu_down(void * _param)1270 static int take_cpu_down(void *_param)
1271 {
1272 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1273 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1274 int err, cpu = smp_processor_id();
1275
1276 /* Ensure this CPU doesn't handle any more interrupts. */
1277 err = __cpu_disable();
1278 if (err < 0)
1279 return err;
1280
1281 /*
1282 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1283 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1284 */
1285 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1286
1287 /*
1288 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1289 */
1290 cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1291
1292 /* Park the stopper thread */
1293 stop_machine_park(cpu);
1294 return 0;
1295 }
1296
takedown_cpu(unsigned int cpu)1297 static int takedown_cpu(unsigned int cpu)
1298 {
1299 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1300 int err;
1301
1302 /* Park the smpboot threads */
1303 kthread_park(st->thread);
1304
1305 /*
1306 * Prevent irq alloc/free while the dying cpu reorganizes the
1307 * interrupt affinities.
1308 */
1309 irq_lock_sparse();
1310
1311 /*
1312 * So now all preempt/rcu users must observe !cpu_active().
1313 */
1314 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1315 if (err) {
1316 /* CPU refused to die */
1317 irq_unlock_sparse();
1318 /* Unpark the hotplug thread so we can rollback there */
1319 kthread_unpark(st->thread);
1320 return err;
1321 }
1322 BUG_ON(cpu_online(cpu));
1323
1324 /*
1325 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1326 * all runnable tasks from the CPU, there's only the idle task left now
1327 * that the migration thread is done doing the stop_machine thing.
1328 *
1329 * Wait for the stop thread to go away.
1330 */
1331 wait_for_ap_thread(st, false);
1332 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1333
1334 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1335 irq_unlock_sparse();
1336
1337 hotplug_cpu__broadcast_tick_pull(cpu);
1338 /* This actually kills the CPU. */
1339 __cpu_die(cpu);
1340
1341 cpuhp_bp_sync_dead(cpu);
1342
1343 lockdep_cleanup_dead_cpu(cpu, idle_thread_get(cpu));
1344
1345 /*
1346 * Callbacks must be re-integrated right away to the RCU state machine.
1347 * Otherwise an RCU callback could block a further teardown function
1348 * waiting for its completion.
1349 */
1350 rcutree_migrate_callbacks(cpu);
1351
1352 return 0;
1353 }
1354
cpuhp_complete_idle_dead(void * arg)1355 static void cpuhp_complete_idle_dead(void *arg)
1356 {
1357 struct cpuhp_cpu_state *st = arg;
1358
1359 complete_ap_thread(st, false);
1360 }
1361
cpuhp_report_idle_dead(void)1362 void cpuhp_report_idle_dead(void)
1363 {
1364 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1365
1366 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1367 tick_assert_timekeeping_handover();
1368 rcutree_report_cpu_dead();
1369 st->state = CPUHP_AP_IDLE_DEAD;
1370 /*
1371 * We cannot call complete after rcutree_report_cpu_dead() so we delegate it
1372 * to an online cpu.
1373 */
1374 smp_call_function_single(cpumask_first(cpu_online_mask),
1375 cpuhp_complete_idle_dead, st, 0);
1376 }
1377
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1378 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1379 enum cpuhp_state target)
1380 {
1381 enum cpuhp_state prev_state = st->state;
1382 int ret = 0;
1383
1384 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1385 if (ret) {
1386 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1387 ret, cpu, cpuhp_get_step(st->state)->name,
1388 st->state);
1389
1390 cpuhp_reset_state(cpu, st, prev_state);
1391
1392 if (st->state < prev_state)
1393 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1394 prev_state));
1395 }
1396
1397 return ret;
1398 }
1399
1400 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1401 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1402 enum cpuhp_state target)
1403 {
1404 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1405 int prev_state, ret = 0;
1406
1407 if (num_online_cpus() == 1)
1408 return -EBUSY;
1409
1410 if (!cpu_present(cpu))
1411 return -EINVAL;
1412
1413 cpus_write_lock();
1414
1415 cpuhp_tasks_frozen = tasks_frozen;
1416
1417 prev_state = cpuhp_set_state(cpu, st, target);
1418 /*
1419 * If the current CPU state is in the range of the AP hotplug thread,
1420 * then we need to kick the thread.
1421 */
1422 if (st->state > CPUHP_TEARDOWN_CPU) {
1423 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1424 ret = cpuhp_kick_ap_work(cpu);
1425 /*
1426 * The AP side has done the error rollback already. Just
1427 * return the error code..
1428 */
1429 if (ret)
1430 goto out;
1431
1432 /*
1433 * We might have stopped still in the range of the AP hotplug
1434 * thread. Nothing to do anymore.
1435 */
1436 if (st->state > CPUHP_TEARDOWN_CPU)
1437 goto out;
1438
1439 st->target = target;
1440 }
1441 /*
1442 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1443 * to do the further cleanups.
1444 */
1445 ret = cpuhp_down_callbacks(cpu, st, target);
1446 if (ret && st->state < prev_state) {
1447 if (st->state == CPUHP_TEARDOWN_CPU) {
1448 cpuhp_reset_state(cpu, st, prev_state);
1449 __cpuhp_kick_ap(st);
1450 } else {
1451 WARN(1, "DEAD callback error for CPU%d", cpu);
1452 }
1453 }
1454
1455 out:
1456 cpus_write_unlock();
1457 arch_smt_update();
1458 return ret;
1459 }
1460
1461 struct cpu_down_work {
1462 unsigned int cpu;
1463 enum cpuhp_state target;
1464 };
1465
__cpu_down_maps_locked(void * arg)1466 static long __cpu_down_maps_locked(void *arg)
1467 {
1468 struct cpu_down_work *work = arg;
1469
1470 return _cpu_down(work->cpu, 0, work->target);
1471 }
1472
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1473 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1474 {
1475 struct cpu_down_work work = { .cpu = cpu, .target = target, };
1476
1477 /*
1478 * If the platform does not support hotplug, report it explicitly to
1479 * differentiate it from a transient offlining failure.
1480 */
1481 if (cpu_hotplug_offline_disabled)
1482 return -EOPNOTSUPP;
1483 if (cpu_hotplug_disabled)
1484 return -EBUSY;
1485
1486 /*
1487 * Ensure that the control task does not run on the to be offlined
1488 * CPU to prevent a deadlock against cfs_b->period_timer.
1489 * Also keep at least one housekeeping cpu onlined to avoid generating
1490 * an empty sched_domain span.
1491 */
1492 for_each_cpu_and(cpu, cpu_online_mask, housekeeping_cpumask(HK_TYPE_DOMAIN)) {
1493 if (cpu != work.cpu)
1494 return work_on_cpu(cpu, __cpu_down_maps_locked, &work);
1495 }
1496 return -EBUSY;
1497 }
1498
cpu_down(unsigned int cpu,enum cpuhp_state target)1499 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1500 {
1501 int err;
1502
1503 cpu_maps_update_begin();
1504 err = cpu_down_maps_locked(cpu, target);
1505 cpu_maps_update_done();
1506 return err;
1507 }
1508
1509 /**
1510 * cpu_device_down - Bring down a cpu device
1511 * @dev: Pointer to the cpu device to offline
1512 *
1513 * This function is meant to be used by device core cpu subsystem only.
1514 *
1515 * Other subsystems should use remove_cpu() instead.
1516 *
1517 * Return: %0 on success or a negative errno code
1518 */
cpu_device_down(struct device * dev)1519 int cpu_device_down(struct device *dev)
1520 {
1521 return cpu_down(dev->id, CPUHP_OFFLINE);
1522 }
1523
remove_cpu(unsigned int cpu)1524 int remove_cpu(unsigned int cpu)
1525 {
1526 int ret;
1527
1528 lock_device_hotplug();
1529 ret = device_offline(get_cpu_device(cpu));
1530 unlock_device_hotplug();
1531
1532 return ret;
1533 }
1534 EXPORT_SYMBOL_GPL(remove_cpu);
1535
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1536 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1537 {
1538 unsigned int cpu;
1539 int error;
1540
1541 cpu_maps_update_begin();
1542
1543 /*
1544 * Make certain the cpu I'm about to reboot on is online.
1545 *
1546 * This is inline to what migrate_to_reboot_cpu() already do.
1547 */
1548 if (!cpu_online(primary_cpu))
1549 primary_cpu = cpumask_first(cpu_online_mask);
1550
1551 for_each_online_cpu(cpu) {
1552 if (cpu == primary_cpu)
1553 continue;
1554
1555 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1556 if (error) {
1557 pr_err("Failed to offline CPU%d - error=%d",
1558 cpu, error);
1559 break;
1560 }
1561 }
1562
1563 /*
1564 * Ensure all but the reboot CPU are offline.
1565 */
1566 BUG_ON(num_online_cpus() > 1);
1567
1568 /*
1569 * Make sure the CPUs won't be enabled by someone else after this
1570 * point. Kexec will reboot to a new kernel shortly resetting
1571 * everything along the way.
1572 */
1573 cpu_hotplug_disabled++;
1574
1575 cpu_maps_update_done();
1576 }
1577
1578 #else
1579 #define takedown_cpu NULL
1580 #endif /*CONFIG_HOTPLUG_CPU*/
1581
1582 /**
1583 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1584 * @cpu: cpu that just started
1585 *
1586 * It must be called by the arch code on the new cpu, before the new cpu
1587 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1588 */
notify_cpu_starting(unsigned int cpu)1589 void notify_cpu_starting(unsigned int cpu)
1590 {
1591 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1592 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1593
1594 rcutree_report_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1595 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1596
1597 /*
1598 * STARTING must not fail!
1599 */
1600 cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1601 }
1602
1603 /*
1604 * Called from the idle task. Wake up the controlling task which brings the
1605 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1606 * online bringup to the hotplug thread.
1607 */
cpuhp_online_idle(enum cpuhp_state state)1608 void cpuhp_online_idle(enum cpuhp_state state)
1609 {
1610 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1611
1612 /* Happens for the boot cpu */
1613 if (state != CPUHP_AP_ONLINE_IDLE)
1614 return;
1615
1616 cpuhp_ap_update_sync_state(SYNC_STATE_ONLINE);
1617
1618 /*
1619 * Unpark the stopper thread before we start the idle loop (and start
1620 * scheduling); this ensures the stopper task is always available.
1621 */
1622 stop_machine_unpark(smp_processor_id());
1623
1624 st->state = CPUHP_AP_ONLINE_IDLE;
1625 complete_ap_thread(st, true);
1626 }
1627
1628 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1629 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1630 {
1631 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1632 struct task_struct *idle;
1633 int ret = 0;
1634
1635 cpus_write_lock();
1636
1637 if (!cpu_present(cpu)) {
1638 ret = -EINVAL;
1639 goto out;
1640 }
1641
1642 /*
1643 * The caller of cpu_up() might have raced with another
1644 * caller. Nothing to do.
1645 */
1646 if (st->state >= target)
1647 goto out;
1648
1649 if (st->state == CPUHP_OFFLINE) {
1650 /* Let it fail before we try to bring the cpu up */
1651 idle = idle_thread_get(cpu);
1652 if (IS_ERR(idle)) {
1653 ret = PTR_ERR(idle);
1654 goto out;
1655 }
1656
1657 /*
1658 * Reset stale stack state from the last time this CPU was online.
1659 */
1660 scs_task_reset(idle);
1661 kasan_unpoison_task_stack(idle);
1662 }
1663
1664 cpuhp_tasks_frozen = tasks_frozen;
1665
1666 cpuhp_set_state(cpu, st, target);
1667 /*
1668 * If the current CPU state is in the range of the AP hotplug thread,
1669 * then we need to kick the thread once more.
1670 */
1671 if (st->state > CPUHP_BRINGUP_CPU) {
1672 ret = cpuhp_kick_ap_work(cpu);
1673 /*
1674 * The AP side has done the error rollback already. Just
1675 * return the error code..
1676 */
1677 if (ret)
1678 goto out;
1679 }
1680
1681 /*
1682 * Try to reach the target state. We max out on the BP at
1683 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1684 * responsible for bringing it up to the target state.
1685 */
1686 target = min((int)target, CPUHP_BRINGUP_CPU);
1687 ret = cpuhp_up_callbacks(cpu, st, target);
1688 out:
1689 cpus_write_unlock();
1690 arch_smt_update();
1691 return ret;
1692 }
1693
cpu_up(unsigned int cpu,enum cpuhp_state target)1694 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1695 {
1696 int err = 0;
1697
1698 if (!cpu_possible(cpu)) {
1699 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1700 cpu);
1701 return -EINVAL;
1702 }
1703
1704 err = try_online_node(cpu_to_node(cpu));
1705 if (err)
1706 return err;
1707
1708 cpu_maps_update_begin();
1709
1710 if (cpu_hotplug_disabled) {
1711 err = -EBUSY;
1712 goto out;
1713 }
1714 if (!cpu_bootable(cpu)) {
1715 err = -EPERM;
1716 goto out;
1717 }
1718
1719 err = _cpu_up(cpu, 0, target);
1720 out:
1721 cpu_maps_update_done();
1722 return err;
1723 }
1724
1725 /**
1726 * cpu_device_up - Bring up a cpu device
1727 * @dev: Pointer to the cpu device to online
1728 *
1729 * This function is meant to be used by device core cpu subsystem only.
1730 *
1731 * Other subsystems should use add_cpu() instead.
1732 *
1733 * Return: %0 on success or a negative errno code
1734 */
cpu_device_up(struct device * dev)1735 int cpu_device_up(struct device *dev)
1736 {
1737 return cpu_up(dev->id, CPUHP_ONLINE);
1738 }
1739
add_cpu(unsigned int cpu)1740 int add_cpu(unsigned int cpu)
1741 {
1742 int ret;
1743
1744 lock_device_hotplug();
1745 ret = device_online(get_cpu_device(cpu));
1746 unlock_device_hotplug();
1747
1748 return ret;
1749 }
1750 EXPORT_SYMBOL_GPL(add_cpu);
1751
1752 /**
1753 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1754 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1755 *
1756 * On some architectures like arm64, we can hibernate on any CPU, but on
1757 * wake up the CPU we hibernated on might be offline as a side effect of
1758 * using maxcpus= for example.
1759 *
1760 * Return: %0 on success or a negative errno code
1761 */
bringup_hibernate_cpu(unsigned int sleep_cpu)1762 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1763 {
1764 int ret;
1765
1766 if (!cpu_online(sleep_cpu)) {
1767 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1768 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1769 if (ret) {
1770 pr_err("Failed to bring hibernate-CPU up!\n");
1771 return ret;
1772 }
1773 }
1774 return 0;
1775 }
1776
cpuhp_bringup_mask(const struct cpumask * mask,unsigned int ncpus,enum cpuhp_state target)1777 static void __init cpuhp_bringup_mask(const struct cpumask *mask, unsigned int ncpus,
1778 enum cpuhp_state target)
1779 {
1780 unsigned int cpu;
1781
1782 for_each_cpu(cpu, mask) {
1783 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1784
1785 if (cpu_up(cpu, target) && can_rollback_cpu(st)) {
1786 /*
1787 * If this failed then cpu_up() might have only
1788 * rolled back to CPUHP_BP_KICK_AP for the final
1789 * online. Clean it up. NOOP if already rolled back.
1790 */
1791 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st, CPUHP_OFFLINE));
1792 }
1793
1794 if (!--ncpus)
1795 break;
1796 }
1797 }
1798
1799 #ifdef CONFIG_HOTPLUG_PARALLEL
1800 static bool __cpuhp_parallel_bringup __ro_after_init = true;
1801
parallel_bringup_parse_param(char * arg)1802 static int __init parallel_bringup_parse_param(char *arg)
1803 {
1804 return kstrtobool(arg, &__cpuhp_parallel_bringup);
1805 }
1806 early_param("cpuhp.parallel", parallel_bringup_parse_param);
1807
1808 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_smt_aware(void)1809 static inline bool cpuhp_smt_aware(void)
1810 {
1811 return cpu_smt_max_threads > 1;
1812 }
1813
cpuhp_get_primary_thread_mask(void)1814 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1815 {
1816 return cpu_primary_thread_mask;
1817 }
1818 #else
cpuhp_smt_aware(void)1819 static inline bool cpuhp_smt_aware(void)
1820 {
1821 return false;
1822 }
cpuhp_get_primary_thread_mask(void)1823 static inline const struct cpumask *cpuhp_get_primary_thread_mask(void)
1824 {
1825 return cpu_none_mask;
1826 }
1827 #endif
1828
arch_cpuhp_init_parallel_bringup(void)1829 bool __weak arch_cpuhp_init_parallel_bringup(void)
1830 {
1831 return true;
1832 }
1833
1834 /*
1835 * On architectures which have enabled parallel bringup this invokes all BP
1836 * prepare states for each of the to be onlined APs first. The last state
1837 * sends the startup IPI to the APs. The APs proceed through the low level
1838 * bringup code in parallel and then wait for the control CPU to release
1839 * them one by one for the final onlining procedure.
1840 *
1841 * This avoids waiting for each AP to respond to the startup IPI in
1842 * CPUHP_BRINGUP_CPU.
1843 */
cpuhp_bringup_cpus_parallel(unsigned int ncpus)1844 static bool __init cpuhp_bringup_cpus_parallel(unsigned int ncpus)
1845 {
1846 const struct cpumask *mask = cpu_present_mask;
1847
1848 if (__cpuhp_parallel_bringup)
1849 __cpuhp_parallel_bringup = arch_cpuhp_init_parallel_bringup();
1850 if (!__cpuhp_parallel_bringup)
1851 return false;
1852
1853 if (cpuhp_smt_aware()) {
1854 const struct cpumask *pmask = cpuhp_get_primary_thread_mask();
1855 static struct cpumask tmp_mask __initdata;
1856
1857 /*
1858 * X86 requires to prevent that SMT siblings stopped while
1859 * the primary thread does a microcode update for various
1860 * reasons. Bring the primary threads up first.
1861 */
1862 cpumask_and(&tmp_mask, mask, pmask);
1863 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_BP_KICK_AP);
1864 cpuhp_bringup_mask(&tmp_mask, ncpus, CPUHP_ONLINE);
1865 /* Account for the online CPUs */
1866 ncpus -= num_online_cpus();
1867 if (!ncpus)
1868 return true;
1869 /* Create the mask for secondary CPUs */
1870 cpumask_andnot(&tmp_mask, mask, pmask);
1871 mask = &tmp_mask;
1872 }
1873
1874 /* Bring the not-yet started CPUs up */
1875 cpuhp_bringup_mask(mask, ncpus, CPUHP_BP_KICK_AP);
1876 cpuhp_bringup_mask(mask, ncpus, CPUHP_ONLINE);
1877 return true;
1878 }
1879 #else
cpuhp_bringup_cpus_parallel(unsigned int ncpus)1880 static inline bool cpuhp_bringup_cpus_parallel(unsigned int ncpus) { return false; }
1881 #endif /* CONFIG_HOTPLUG_PARALLEL */
1882
bringup_nonboot_cpus(unsigned int max_cpus)1883 void __init bringup_nonboot_cpus(unsigned int max_cpus)
1884 {
1885 if (!max_cpus)
1886 return;
1887
1888 /* Try parallel bringup optimization if enabled */
1889 if (cpuhp_bringup_cpus_parallel(max_cpus))
1890 return;
1891
1892 /* Full per CPU serialized bringup */
1893 cpuhp_bringup_mask(cpu_present_mask, max_cpus, CPUHP_ONLINE);
1894 }
1895
1896 #ifdef CONFIG_PM_SLEEP_SMP
1897 static cpumask_var_t frozen_cpus;
1898
freeze_secondary_cpus(int primary)1899 int freeze_secondary_cpus(int primary)
1900 {
1901 int cpu, error = 0;
1902
1903 cpu_maps_update_begin();
1904 if (primary == -1) {
1905 primary = cpumask_first(cpu_online_mask);
1906 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1907 primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1908 } else {
1909 if (!cpu_online(primary))
1910 primary = cpumask_first(cpu_online_mask);
1911 }
1912
1913 /*
1914 * We take down all of the non-boot CPUs in one shot to avoid races
1915 * with the userspace trying to use the CPU hotplug at the same time
1916 */
1917 cpumask_clear(frozen_cpus);
1918
1919 pr_info("Disabling non-boot CPUs ...\n");
1920 for (cpu = nr_cpu_ids - 1; cpu >= 0; cpu--) {
1921 if (!cpu_online(cpu) || cpu == primary)
1922 continue;
1923
1924 if (pm_wakeup_pending()) {
1925 pr_info("Wakeup pending. Abort CPU freeze\n");
1926 error = -EBUSY;
1927 break;
1928 }
1929
1930 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1931 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1932 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1933 if (!error)
1934 cpumask_set_cpu(cpu, frozen_cpus);
1935 else {
1936 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1937 break;
1938 }
1939 }
1940
1941 if (!error)
1942 BUG_ON(num_online_cpus() > 1);
1943 else
1944 pr_err("Non-boot CPUs are not disabled\n");
1945
1946 /*
1947 * Make sure the CPUs won't be enabled by someone else. We need to do
1948 * this even in case of failure as all freeze_secondary_cpus() users are
1949 * supposed to do thaw_secondary_cpus() on the failure path.
1950 */
1951 cpu_hotplug_disabled++;
1952
1953 cpu_maps_update_done();
1954 return error;
1955 }
1956
arch_thaw_secondary_cpus_begin(void)1957 void __weak arch_thaw_secondary_cpus_begin(void)
1958 {
1959 }
1960
arch_thaw_secondary_cpus_end(void)1961 void __weak arch_thaw_secondary_cpus_end(void)
1962 {
1963 }
1964
thaw_secondary_cpus(void)1965 void thaw_secondary_cpus(void)
1966 {
1967 int cpu, error;
1968
1969 /* Allow everyone to use the CPU hotplug again */
1970 cpu_maps_update_begin();
1971 __cpu_hotplug_enable();
1972 if (cpumask_empty(frozen_cpus))
1973 goto out;
1974
1975 pr_info("Enabling non-boot CPUs ...\n");
1976
1977 arch_thaw_secondary_cpus_begin();
1978
1979 for_each_cpu(cpu, frozen_cpus) {
1980 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1981 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1982 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1983 if (!error) {
1984 pr_info("CPU%d is up\n", cpu);
1985 continue;
1986 }
1987 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1988 }
1989
1990 arch_thaw_secondary_cpus_end();
1991
1992 cpumask_clear(frozen_cpus);
1993 out:
1994 cpu_maps_update_done();
1995 }
1996
alloc_frozen_cpus(void)1997 static int __init alloc_frozen_cpus(void)
1998 {
1999 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
2000 return -ENOMEM;
2001 return 0;
2002 }
2003 core_initcall(alloc_frozen_cpus);
2004
2005 /*
2006 * When callbacks for CPU hotplug notifications are being executed, we must
2007 * ensure that the state of the system with respect to the tasks being frozen
2008 * or not, as reported by the notification, remains unchanged *throughout the
2009 * duration* of the execution of the callbacks.
2010 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
2011 *
2012 * This synchronization is implemented by mutually excluding regular CPU
2013 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
2014 * Hibernate notifications.
2015 */
2016 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)2017 cpu_hotplug_pm_callback(struct notifier_block *nb,
2018 unsigned long action, void *ptr)
2019 {
2020 switch (action) {
2021
2022 case PM_SUSPEND_PREPARE:
2023 case PM_HIBERNATION_PREPARE:
2024 cpu_hotplug_disable();
2025 break;
2026
2027 case PM_POST_SUSPEND:
2028 case PM_POST_HIBERNATION:
2029 cpu_hotplug_enable();
2030 break;
2031
2032 default:
2033 return NOTIFY_DONE;
2034 }
2035
2036 return NOTIFY_OK;
2037 }
2038
2039
cpu_hotplug_pm_sync_init(void)2040 static int __init cpu_hotplug_pm_sync_init(void)
2041 {
2042 /*
2043 * cpu_hotplug_pm_callback has higher priority than x86
2044 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
2045 * to disable cpu hotplug to avoid cpu hotplug race.
2046 */
2047 pm_notifier(cpu_hotplug_pm_callback, 0);
2048 return 0;
2049 }
2050 core_initcall(cpu_hotplug_pm_sync_init);
2051
2052 #endif /* CONFIG_PM_SLEEP_SMP */
2053
2054 int __boot_cpu_id;
2055
2056 #endif /* CONFIG_SMP */
2057
2058 /* Boot processor state steps */
2059 static struct cpuhp_step cpuhp_hp_states[] = {
2060 [CPUHP_OFFLINE] = {
2061 .name = "offline",
2062 .startup.single = NULL,
2063 .teardown.single = NULL,
2064 },
2065 #ifdef CONFIG_SMP
2066 [CPUHP_CREATE_THREADS]= {
2067 .name = "threads:prepare",
2068 .startup.single = smpboot_create_threads,
2069 .teardown.single = NULL,
2070 .cant_stop = true,
2071 },
2072 [CPUHP_PERF_PREPARE] = {
2073 .name = "perf:prepare",
2074 .startup.single = perf_event_init_cpu,
2075 .teardown.single = perf_event_exit_cpu,
2076 },
2077 [CPUHP_RANDOM_PREPARE] = {
2078 .name = "random:prepare",
2079 .startup.single = random_prepare_cpu,
2080 .teardown.single = NULL,
2081 },
2082 [CPUHP_WORKQUEUE_PREP] = {
2083 .name = "workqueue:prepare",
2084 .startup.single = workqueue_prepare_cpu,
2085 .teardown.single = NULL,
2086 },
2087 [CPUHP_HRTIMERS_PREPARE] = {
2088 .name = "hrtimers:prepare",
2089 .startup.single = hrtimers_prepare_cpu,
2090 .teardown.single = NULL,
2091 },
2092 [CPUHP_SMPCFD_PREPARE] = {
2093 .name = "smpcfd:prepare",
2094 .startup.single = smpcfd_prepare_cpu,
2095 .teardown.single = smpcfd_dead_cpu,
2096 },
2097 [CPUHP_RELAY_PREPARE] = {
2098 .name = "relay:prepare",
2099 .startup.single = relay_prepare_cpu,
2100 .teardown.single = NULL,
2101 },
2102 [CPUHP_RCUTREE_PREP] = {
2103 .name = "RCU/tree:prepare",
2104 .startup.single = rcutree_prepare_cpu,
2105 .teardown.single = rcutree_dead_cpu,
2106 },
2107 /*
2108 * On the tear-down path, timers_dead_cpu() must be invoked
2109 * before blk_mq_queue_reinit_notify() from notify_dead(),
2110 * otherwise a RCU stall occurs.
2111 */
2112 [CPUHP_TIMERS_PREPARE] = {
2113 .name = "timers:prepare",
2114 .startup.single = timers_prepare_cpu,
2115 .teardown.single = timers_dead_cpu,
2116 },
2117
2118 #ifdef CONFIG_HOTPLUG_SPLIT_STARTUP
2119 /*
2120 * Kicks the AP alive. AP will wait in cpuhp_ap_sync_alive() until
2121 * the next step will release it.
2122 */
2123 [CPUHP_BP_KICK_AP] = {
2124 .name = "cpu:kick_ap",
2125 .startup.single = cpuhp_kick_ap_alive,
2126 },
2127
2128 /*
2129 * Waits for the AP to reach cpuhp_ap_sync_alive() and then
2130 * releases it for the complete bringup.
2131 */
2132 [CPUHP_BRINGUP_CPU] = {
2133 .name = "cpu:bringup",
2134 .startup.single = cpuhp_bringup_ap,
2135 .teardown.single = finish_cpu,
2136 .cant_stop = true,
2137 },
2138 #else
2139 /*
2140 * All-in-one CPU bringup state which includes the kick alive.
2141 */
2142 [CPUHP_BRINGUP_CPU] = {
2143 .name = "cpu:bringup",
2144 .startup.single = bringup_cpu,
2145 .teardown.single = finish_cpu,
2146 .cant_stop = true,
2147 },
2148 #endif
2149 /* Final state before CPU kills itself */
2150 [CPUHP_AP_IDLE_DEAD] = {
2151 .name = "idle:dead",
2152 },
2153 /*
2154 * Last state before CPU enters the idle loop to die. Transient state
2155 * for synchronization.
2156 */
2157 [CPUHP_AP_OFFLINE] = {
2158 .name = "ap:offline",
2159 .cant_stop = true,
2160 },
2161 /* First state is scheduler control. Interrupts are disabled */
2162 [CPUHP_AP_SCHED_STARTING] = {
2163 .name = "sched:starting",
2164 .startup.single = sched_cpu_starting,
2165 .teardown.single = sched_cpu_dying,
2166 },
2167 [CPUHP_AP_RCUTREE_DYING] = {
2168 .name = "RCU/tree:dying",
2169 .startup.single = NULL,
2170 .teardown.single = rcutree_dying_cpu,
2171 },
2172 [CPUHP_AP_SMPCFD_DYING] = {
2173 .name = "smpcfd:dying",
2174 .startup.single = NULL,
2175 .teardown.single = smpcfd_dying_cpu,
2176 },
2177 [CPUHP_AP_HRTIMERS_DYING] = {
2178 .name = "hrtimers:dying",
2179 .startup.single = hrtimers_cpu_starting,
2180 .teardown.single = hrtimers_cpu_dying,
2181 },
2182 [CPUHP_AP_TICK_DYING] = {
2183 .name = "tick:dying",
2184 .startup.single = NULL,
2185 .teardown.single = tick_cpu_dying,
2186 },
2187 /* Entry state on starting. Interrupts enabled from here on. Transient
2188 * state for synchronsization */
2189 [CPUHP_AP_ONLINE] = {
2190 .name = "ap:online",
2191 },
2192 /*
2193 * Handled on control processor until the plugged processor manages
2194 * this itself.
2195 */
2196 [CPUHP_TEARDOWN_CPU] = {
2197 .name = "cpu:teardown",
2198 .startup.single = NULL,
2199 .teardown.single = takedown_cpu,
2200 .cant_stop = true,
2201 },
2202
2203 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
2204 .name = "sched:waitempty",
2205 .startup.single = NULL,
2206 .teardown.single = sched_cpu_wait_empty,
2207 },
2208
2209 /* Handle smpboot threads park/unpark */
2210 [CPUHP_AP_SMPBOOT_THREADS] = {
2211 .name = "smpboot/threads:online",
2212 .startup.single = smpboot_unpark_threads,
2213 .teardown.single = smpboot_park_threads,
2214 },
2215 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
2216 .name = "irq/affinity:online",
2217 .startup.single = irq_affinity_online_cpu,
2218 .teardown.single = NULL,
2219 },
2220 [CPUHP_AP_PERF_ONLINE] = {
2221 .name = "perf:online",
2222 .startup.single = perf_event_init_cpu,
2223 .teardown.single = perf_event_exit_cpu,
2224 },
2225 [CPUHP_AP_WATCHDOG_ONLINE] = {
2226 .name = "lockup_detector:online",
2227 .startup.single = lockup_detector_online_cpu,
2228 .teardown.single = lockup_detector_offline_cpu,
2229 },
2230 [CPUHP_AP_WORKQUEUE_ONLINE] = {
2231 .name = "workqueue:online",
2232 .startup.single = workqueue_online_cpu,
2233 .teardown.single = workqueue_offline_cpu,
2234 },
2235 [CPUHP_AP_RANDOM_ONLINE] = {
2236 .name = "random:online",
2237 .startup.single = random_online_cpu,
2238 .teardown.single = NULL,
2239 },
2240 [CPUHP_AP_RCUTREE_ONLINE] = {
2241 .name = "RCU/tree:online",
2242 .startup.single = rcutree_online_cpu,
2243 .teardown.single = rcutree_offline_cpu,
2244 },
2245 #endif
2246 /*
2247 * The dynamically registered state space is here
2248 */
2249
2250 #ifdef CONFIG_SMP
2251 /* Last state is scheduler control setting the cpu active */
2252 [CPUHP_AP_ACTIVE] = {
2253 .name = "sched:active",
2254 .startup.single = sched_cpu_activate,
2255 .teardown.single = sched_cpu_deactivate,
2256 },
2257 #endif
2258
2259 /* CPU is fully up and running. */
2260 [CPUHP_ONLINE] = {
2261 .name = "online",
2262 .startup.single = NULL,
2263 .teardown.single = NULL,
2264 },
2265 };
2266
2267 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)2268 static int cpuhp_cb_check(enum cpuhp_state state)
2269 {
2270 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
2271 return -EINVAL;
2272 return 0;
2273 }
2274
2275 /*
2276 * Returns a free for dynamic slot assignment of the Online state. The states
2277 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
2278 * by having no name assigned.
2279 */
cpuhp_reserve_state(enum cpuhp_state state)2280 static int cpuhp_reserve_state(enum cpuhp_state state)
2281 {
2282 enum cpuhp_state i, end;
2283 struct cpuhp_step *step;
2284
2285 switch (state) {
2286 case CPUHP_AP_ONLINE_DYN:
2287 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
2288 end = CPUHP_AP_ONLINE_DYN_END;
2289 break;
2290 case CPUHP_BP_PREPARE_DYN:
2291 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
2292 end = CPUHP_BP_PREPARE_DYN_END;
2293 break;
2294 default:
2295 return -EINVAL;
2296 }
2297
2298 for (i = state; i <= end; i++, step++) {
2299 if (!step->name)
2300 return i;
2301 }
2302 WARN(1, "No more dynamic states available for CPU hotplug\n");
2303 return -ENOSPC;
2304 }
2305
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2306 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
2307 int (*startup)(unsigned int cpu),
2308 int (*teardown)(unsigned int cpu),
2309 bool multi_instance)
2310 {
2311 /* (Un)Install the callbacks for further cpu hotplug operations */
2312 struct cpuhp_step *sp;
2313 int ret = 0;
2314
2315 /*
2316 * If name is NULL, then the state gets removed.
2317 *
2318 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
2319 * the first allocation from these dynamic ranges, so the removal
2320 * would trigger a new allocation and clear the wrong (already
2321 * empty) state, leaving the callbacks of the to be cleared state
2322 * dangling, which causes wreckage on the next hotplug operation.
2323 */
2324 if (name && (state == CPUHP_AP_ONLINE_DYN ||
2325 state == CPUHP_BP_PREPARE_DYN)) {
2326 ret = cpuhp_reserve_state(state);
2327 if (ret < 0)
2328 return ret;
2329 state = ret;
2330 }
2331 sp = cpuhp_get_step(state);
2332 if (name && sp->name)
2333 return -EBUSY;
2334
2335 sp->startup.single = startup;
2336 sp->teardown.single = teardown;
2337 sp->name = name;
2338 sp->multi_instance = multi_instance;
2339 INIT_HLIST_HEAD(&sp->list);
2340 return ret;
2341 }
2342
cpuhp_get_teardown_cb(enum cpuhp_state state)2343 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
2344 {
2345 return cpuhp_get_step(state)->teardown.single;
2346 }
2347
2348 /*
2349 * Call the startup/teardown function for a step either on the AP or
2350 * on the current CPU.
2351 */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)2352 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
2353 struct hlist_node *node)
2354 {
2355 struct cpuhp_step *sp = cpuhp_get_step(state);
2356 int ret;
2357
2358 /*
2359 * If there's nothing to do, we done.
2360 * Relies on the union for multi_instance.
2361 */
2362 if (cpuhp_step_empty(bringup, sp))
2363 return 0;
2364 /*
2365 * The non AP bound callbacks can fail on bringup. On teardown
2366 * e.g. module removal we crash for now.
2367 */
2368 #ifdef CONFIG_SMP
2369 if (cpuhp_is_ap_state(state))
2370 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
2371 else
2372 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2373 #else
2374 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
2375 #endif
2376 BUG_ON(ret && !bringup);
2377 return ret;
2378 }
2379
2380 /*
2381 * Called from __cpuhp_setup_state on a recoverable failure.
2382 *
2383 * Note: The teardown callbacks for rollback are not allowed to fail!
2384 */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)2385 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
2386 struct hlist_node *node)
2387 {
2388 int cpu;
2389
2390 /* Roll back the already executed steps on the other cpus */
2391 for_each_present_cpu(cpu) {
2392 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2393 int cpustate = st->state;
2394
2395 if (cpu >= failedcpu)
2396 break;
2397
2398 /* Did we invoke the startup call on that cpu ? */
2399 if (cpustate >= state)
2400 cpuhp_issue_call(cpu, state, false, node);
2401 }
2402 }
2403
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)2404 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
2405 struct hlist_node *node,
2406 bool invoke)
2407 {
2408 struct cpuhp_step *sp;
2409 int cpu;
2410 int ret;
2411
2412 lockdep_assert_cpus_held();
2413
2414 sp = cpuhp_get_step(state);
2415 if (sp->multi_instance == false)
2416 return -EINVAL;
2417
2418 mutex_lock(&cpuhp_state_mutex);
2419
2420 if (!invoke || !sp->startup.multi)
2421 goto add_node;
2422
2423 /*
2424 * Try to call the startup callback for each present cpu
2425 * depending on the hotplug state of the cpu.
2426 */
2427 for_each_present_cpu(cpu) {
2428 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2429 int cpustate = st->state;
2430
2431 if (cpustate < state)
2432 continue;
2433
2434 ret = cpuhp_issue_call(cpu, state, true, node);
2435 if (ret) {
2436 if (sp->teardown.multi)
2437 cpuhp_rollback_install(cpu, state, node);
2438 goto unlock;
2439 }
2440 }
2441 add_node:
2442 ret = 0;
2443 hlist_add_head(node, &sp->list);
2444 unlock:
2445 mutex_unlock(&cpuhp_state_mutex);
2446 return ret;
2447 }
2448
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2449 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2450 bool invoke)
2451 {
2452 int ret;
2453
2454 cpus_read_lock();
2455 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2456 cpus_read_unlock();
2457 return ret;
2458 }
2459 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2460
2461 /**
2462 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2463 * @state: The state to setup
2464 * @name: Name of the step
2465 * @invoke: If true, the startup function is invoked for cpus where
2466 * cpu state >= @state
2467 * @startup: startup callback function
2468 * @teardown: teardown callback function
2469 * @multi_instance: State is set up for multiple instances which get
2470 * added afterwards.
2471 *
2472 * The caller needs to hold cpus read locked while calling this function.
2473 * Return:
2474 * On success:
2475 * Positive state number if @state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN;
2476 * 0 for all other states
2477 * On failure: proper (negative) error code
2478 */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2479 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2480 const char *name, bool invoke,
2481 int (*startup)(unsigned int cpu),
2482 int (*teardown)(unsigned int cpu),
2483 bool multi_instance)
2484 {
2485 int cpu, ret = 0;
2486 bool dynstate;
2487
2488 lockdep_assert_cpus_held();
2489
2490 if (cpuhp_cb_check(state) || !name)
2491 return -EINVAL;
2492
2493 mutex_lock(&cpuhp_state_mutex);
2494
2495 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2496 multi_instance);
2497
2498 dynstate = state == CPUHP_AP_ONLINE_DYN || state == CPUHP_BP_PREPARE_DYN;
2499 if (ret > 0 && dynstate) {
2500 state = ret;
2501 ret = 0;
2502 }
2503
2504 if (ret || !invoke || !startup)
2505 goto out;
2506
2507 /*
2508 * Try to call the startup callback for each present cpu
2509 * depending on the hotplug state of the cpu.
2510 */
2511 for_each_present_cpu(cpu) {
2512 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2513 int cpustate = st->state;
2514
2515 if (cpustate < state)
2516 continue;
2517
2518 ret = cpuhp_issue_call(cpu, state, true, NULL);
2519 if (ret) {
2520 if (teardown)
2521 cpuhp_rollback_install(cpu, state, NULL);
2522 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2523 goto out;
2524 }
2525 }
2526 out:
2527 mutex_unlock(&cpuhp_state_mutex);
2528 /*
2529 * If the requested state is CPUHP_AP_ONLINE_DYN or CPUHP_BP_PREPARE_DYN,
2530 * return the dynamically allocated state in case of success.
2531 */
2532 if (!ret && dynstate)
2533 return state;
2534 return ret;
2535 }
2536 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2537
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2538 int __cpuhp_setup_state(enum cpuhp_state state,
2539 const char *name, bool invoke,
2540 int (*startup)(unsigned int cpu),
2541 int (*teardown)(unsigned int cpu),
2542 bool multi_instance)
2543 {
2544 int ret;
2545
2546 cpus_read_lock();
2547 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2548 teardown, multi_instance);
2549 cpus_read_unlock();
2550 return ret;
2551 }
2552 EXPORT_SYMBOL(__cpuhp_setup_state);
2553
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2554 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2555 struct hlist_node *node, bool invoke)
2556 {
2557 struct cpuhp_step *sp = cpuhp_get_step(state);
2558 int cpu;
2559
2560 BUG_ON(cpuhp_cb_check(state));
2561
2562 if (!sp->multi_instance)
2563 return -EINVAL;
2564
2565 cpus_read_lock();
2566 mutex_lock(&cpuhp_state_mutex);
2567
2568 if (!invoke || !cpuhp_get_teardown_cb(state))
2569 goto remove;
2570 /*
2571 * Call the teardown callback for each present cpu depending
2572 * on the hotplug state of the cpu. This function is not
2573 * allowed to fail currently!
2574 */
2575 for_each_present_cpu(cpu) {
2576 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2577 int cpustate = st->state;
2578
2579 if (cpustate >= state)
2580 cpuhp_issue_call(cpu, state, false, node);
2581 }
2582
2583 remove:
2584 hlist_del(node);
2585 mutex_unlock(&cpuhp_state_mutex);
2586 cpus_read_unlock();
2587
2588 return 0;
2589 }
2590 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2591
2592 /**
2593 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2594 * @state: The state to remove
2595 * @invoke: If true, the teardown function is invoked for cpus where
2596 * cpu state >= @state
2597 *
2598 * The caller needs to hold cpus read locked while calling this function.
2599 * The teardown callback is currently not allowed to fail. Think
2600 * about module removal!
2601 */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2602 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2603 {
2604 struct cpuhp_step *sp = cpuhp_get_step(state);
2605 int cpu;
2606
2607 BUG_ON(cpuhp_cb_check(state));
2608
2609 lockdep_assert_cpus_held();
2610
2611 mutex_lock(&cpuhp_state_mutex);
2612 if (sp->multi_instance) {
2613 WARN(!hlist_empty(&sp->list),
2614 "Error: Removing state %d which has instances left.\n",
2615 state);
2616 goto remove;
2617 }
2618
2619 if (!invoke || !cpuhp_get_teardown_cb(state))
2620 goto remove;
2621
2622 /*
2623 * Call the teardown callback for each present cpu depending
2624 * on the hotplug state of the cpu. This function is not
2625 * allowed to fail currently!
2626 */
2627 for_each_present_cpu(cpu) {
2628 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2629 int cpustate = st->state;
2630
2631 if (cpustate >= state)
2632 cpuhp_issue_call(cpu, state, false, NULL);
2633 }
2634 remove:
2635 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2636 mutex_unlock(&cpuhp_state_mutex);
2637 }
2638 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2639
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2640 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2641 {
2642 cpus_read_lock();
2643 __cpuhp_remove_state_cpuslocked(state, invoke);
2644 cpus_read_unlock();
2645 }
2646 EXPORT_SYMBOL(__cpuhp_remove_state);
2647
2648 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2649 static void cpuhp_offline_cpu_device(unsigned int cpu)
2650 {
2651 struct device *dev = get_cpu_device(cpu);
2652
2653 dev->offline = true;
2654 /* Tell user space about the state change */
2655 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2656 }
2657
cpuhp_online_cpu_device(unsigned int cpu)2658 static void cpuhp_online_cpu_device(unsigned int cpu)
2659 {
2660 struct device *dev = get_cpu_device(cpu);
2661
2662 dev->offline = false;
2663 /* Tell user space about the state change */
2664 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2665 }
2666
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2667 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2668 {
2669 int cpu, ret = 0;
2670
2671 cpu_maps_update_begin();
2672 for_each_online_cpu(cpu) {
2673 if (topology_is_primary_thread(cpu))
2674 continue;
2675 /*
2676 * Disable can be called with CPU_SMT_ENABLED when changing
2677 * from a higher to lower number of SMT threads per core.
2678 */
2679 if (ctrlval == CPU_SMT_ENABLED && cpu_smt_thread_allowed(cpu))
2680 continue;
2681 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2682 if (ret)
2683 break;
2684 /*
2685 * As this needs to hold the cpu maps lock it's impossible
2686 * to call device_offline() because that ends up calling
2687 * cpu_down() which takes cpu maps lock. cpu maps lock
2688 * needs to be held as this might race against in kernel
2689 * abusers of the hotplug machinery (thermal management).
2690 *
2691 * So nothing would update device:offline state. That would
2692 * leave the sysfs entry stale and prevent onlining after
2693 * smt control has been changed to 'off' again. This is
2694 * called under the sysfs hotplug lock, so it is properly
2695 * serialized against the regular offline usage.
2696 */
2697 cpuhp_offline_cpu_device(cpu);
2698 }
2699 if (!ret)
2700 cpu_smt_control = ctrlval;
2701 cpu_maps_update_done();
2702 return ret;
2703 }
2704
2705 /* Check if the core a CPU belongs to is online */
2706 #if !defined(topology_is_core_online)
topology_is_core_online(unsigned int cpu)2707 static inline bool topology_is_core_online(unsigned int cpu)
2708 {
2709 return true;
2710 }
2711 #endif
2712
cpuhp_smt_enable(void)2713 int cpuhp_smt_enable(void)
2714 {
2715 int cpu, ret = 0;
2716
2717 cpu_maps_update_begin();
2718 cpu_smt_control = CPU_SMT_ENABLED;
2719 for_each_present_cpu(cpu) {
2720 /* Skip online CPUs and CPUs on offline nodes */
2721 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2722 continue;
2723 if (!cpu_smt_thread_allowed(cpu) || !topology_is_core_online(cpu))
2724 continue;
2725 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2726 if (ret)
2727 break;
2728 /* See comment in cpuhp_smt_disable() */
2729 cpuhp_online_cpu_device(cpu);
2730 }
2731 cpu_maps_update_done();
2732 return ret;
2733 }
2734 #endif
2735
2736 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
state_show(struct device * dev,struct device_attribute * attr,char * buf)2737 static ssize_t state_show(struct device *dev,
2738 struct device_attribute *attr, char *buf)
2739 {
2740 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2741
2742 return sprintf(buf, "%d\n", st->state);
2743 }
2744 static DEVICE_ATTR_RO(state);
2745
target_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2746 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2747 const char *buf, size_t count)
2748 {
2749 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2750 struct cpuhp_step *sp;
2751 int target, ret;
2752
2753 ret = kstrtoint(buf, 10, &target);
2754 if (ret)
2755 return ret;
2756
2757 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2758 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2759 return -EINVAL;
2760 #else
2761 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2762 return -EINVAL;
2763 #endif
2764
2765 ret = lock_device_hotplug_sysfs();
2766 if (ret)
2767 return ret;
2768
2769 mutex_lock(&cpuhp_state_mutex);
2770 sp = cpuhp_get_step(target);
2771 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2772 mutex_unlock(&cpuhp_state_mutex);
2773 if (ret)
2774 goto out;
2775
2776 if (st->state < target)
2777 ret = cpu_up(dev->id, target);
2778 else if (st->state > target)
2779 ret = cpu_down(dev->id, target);
2780 else if (WARN_ON(st->target != target))
2781 st->target = target;
2782 out:
2783 unlock_device_hotplug();
2784 return ret ? ret : count;
2785 }
2786
target_show(struct device * dev,struct device_attribute * attr,char * buf)2787 static ssize_t target_show(struct device *dev,
2788 struct device_attribute *attr, char *buf)
2789 {
2790 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2791
2792 return sprintf(buf, "%d\n", st->target);
2793 }
2794 static DEVICE_ATTR_RW(target);
2795
fail_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2796 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2797 const char *buf, size_t count)
2798 {
2799 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2800 struct cpuhp_step *sp;
2801 int fail, ret;
2802
2803 ret = kstrtoint(buf, 10, &fail);
2804 if (ret)
2805 return ret;
2806
2807 if (fail == CPUHP_INVALID) {
2808 st->fail = fail;
2809 return count;
2810 }
2811
2812 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2813 return -EINVAL;
2814
2815 /*
2816 * Cannot fail STARTING/DYING callbacks.
2817 */
2818 if (cpuhp_is_atomic_state(fail))
2819 return -EINVAL;
2820
2821 /*
2822 * DEAD callbacks cannot fail...
2823 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2824 * triggering STARTING callbacks, a failure in this state would
2825 * hinder rollback.
2826 */
2827 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2828 return -EINVAL;
2829
2830 /*
2831 * Cannot fail anything that doesn't have callbacks.
2832 */
2833 mutex_lock(&cpuhp_state_mutex);
2834 sp = cpuhp_get_step(fail);
2835 if (!sp->startup.single && !sp->teardown.single)
2836 ret = -EINVAL;
2837 mutex_unlock(&cpuhp_state_mutex);
2838 if (ret)
2839 return ret;
2840
2841 st->fail = fail;
2842
2843 return count;
2844 }
2845
fail_show(struct device * dev,struct device_attribute * attr,char * buf)2846 static ssize_t fail_show(struct device *dev,
2847 struct device_attribute *attr, char *buf)
2848 {
2849 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2850
2851 return sprintf(buf, "%d\n", st->fail);
2852 }
2853
2854 static DEVICE_ATTR_RW(fail);
2855
2856 static struct attribute *cpuhp_cpu_attrs[] = {
2857 &dev_attr_state.attr,
2858 &dev_attr_target.attr,
2859 &dev_attr_fail.attr,
2860 NULL
2861 };
2862
2863 static const struct attribute_group cpuhp_cpu_attr_group = {
2864 .attrs = cpuhp_cpu_attrs,
2865 .name = "hotplug",
2866 };
2867
states_show(struct device * dev,struct device_attribute * attr,char * buf)2868 static ssize_t states_show(struct device *dev,
2869 struct device_attribute *attr, char *buf)
2870 {
2871 ssize_t cur, res = 0;
2872 int i;
2873
2874 mutex_lock(&cpuhp_state_mutex);
2875 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2876 struct cpuhp_step *sp = cpuhp_get_step(i);
2877
2878 if (sp->name) {
2879 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2880 buf += cur;
2881 res += cur;
2882 }
2883 }
2884 mutex_unlock(&cpuhp_state_mutex);
2885 return res;
2886 }
2887 static DEVICE_ATTR_RO(states);
2888
2889 static struct attribute *cpuhp_cpu_root_attrs[] = {
2890 &dev_attr_states.attr,
2891 NULL
2892 };
2893
2894 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2895 .attrs = cpuhp_cpu_root_attrs,
2896 .name = "hotplug",
2897 };
2898
2899 #ifdef CONFIG_HOTPLUG_SMT
2900
cpu_smt_num_threads_valid(unsigned int threads)2901 static bool cpu_smt_num_threads_valid(unsigned int threads)
2902 {
2903 if (IS_ENABLED(CONFIG_SMT_NUM_THREADS_DYNAMIC))
2904 return threads >= 1 && threads <= cpu_smt_max_threads;
2905 return threads == 1 || threads == cpu_smt_max_threads;
2906 }
2907
2908 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2909 __store_smt_control(struct device *dev, struct device_attribute *attr,
2910 const char *buf, size_t count)
2911 {
2912 int ctrlval, ret, num_threads, orig_threads;
2913 bool force_off;
2914
2915 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2916 return -EPERM;
2917
2918 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2919 return -ENODEV;
2920
2921 if (sysfs_streq(buf, "on")) {
2922 ctrlval = CPU_SMT_ENABLED;
2923 num_threads = cpu_smt_max_threads;
2924 } else if (sysfs_streq(buf, "off")) {
2925 ctrlval = CPU_SMT_DISABLED;
2926 num_threads = 1;
2927 } else if (sysfs_streq(buf, "forceoff")) {
2928 ctrlval = CPU_SMT_FORCE_DISABLED;
2929 num_threads = 1;
2930 } else if (kstrtoint(buf, 10, &num_threads) == 0) {
2931 if (num_threads == 1)
2932 ctrlval = CPU_SMT_DISABLED;
2933 else if (cpu_smt_num_threads_valid(num_threads))
2934 ctrlval = CPU_SMT_ENABLED;
2935 else
2936 return -EINVAL;
2937 } else {
2938 return -EINVAL;
2939 }
2940
2941 ret = lock_device_hotplug_sysfs();
2942 if (ret)
2943 return ret;
2944
2945 orig_threads = cpu_smt_num_threads;
2946 cpu_smt_num_threads = num_threads;
2947
2948 force_off = ctrlval != cpu_smt_control && ctrlval == CPU_SMT_FORCE_DISABLED;
2949
2950 if (num_threads > orig_threads)
2951 ret = cpuhp_smt_enable();
2952 else if (num_threads < orig_threads || force_off)
2953 ret = cpuhp_smt_disable(ctrlval);
2954
2955 unlock_device_hotplug();
2956 return ret ? ret : count;
2957 }
2958
2959 #else /* !CONFIG_HOTPLUG_SMT */
2960 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2961 __store_smt_control(struct device *dev, struct device_attribute *attr,
2962 const char *buf, size_t count)
2963 {
2964 return -ENODEV;
2965 }
2966 #endif /* CONFIG_HOTPLUG_SMT */
2967
2968 static const char *smt_states[] = {
2969 [CPU_SMT_ENABLED] = "on",
2970 [CPU_SMT_DISABLED] = "off",
2971 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2972 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2973 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2974 };
2975
control_show(struct device * dev,struct device_attribute * attr,char * buf)2976 static ssize_t control_show(struct device *dev,
2977 struct device_attribute *attr, char *buf)
2978 {
2979 const char *state = smt_states[cpu_smt_control];
2980
2981 #ifdef CONFIG_HOTPLUG_SMT
2982 /*
2983 * If SMT is enabled but not all threads are enabled then show the
2984 * number of threads. If all threads are enabled show "on". Otherwise
2985 * show the state name.
2986 */
2987 if (cpu_smt_control == CPU_SMT_ENABLED &&
2988 cpu_smt_num_threads != cpu_smt_max_threads)
2989 return sysfs_emit(buf, "%d\n", cpu_smt_num_threads);
2990 #endif
2991
2992 return sysfs_emit(buf, "%s\n", state);
2993 }
2994
control_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2995 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2996 const char *buf, size_t count)
2997 {
2998 return __store_smt_control(dev, attr, buf, count);
2999 }
3000 static DEVICE_ATTR_RW(control);
3001
active_show(struct device * dev,struct device_attribute * attr,char * buf)3002 static ssize_t active_show(struct device *dev,
3003 struct device_attribute *attr, char *buf)
3004 {
3005 return sysfs_emit(buf, "%d\n", sched_smt_active());
3006 }
3007 static DEVICE_ATTR_RO(active);
3008
3009 static struct attribute *cpuhp_smt_attrs[] = {
3010 &dev_attr_control.attr,
3011 &dev_attr_active.attr,
3012 NULL
3013 };
3014
3015 static const struct attribute_group cpuhp_smt_attr_group = {
3016 .attrs = cpuhp_smt_attrs,
3017 .name = "smt",
3018 };
3019
cpu_smt_sysfs_init(void)3020 static int __init cpu_smt_sysfs_init(void)
3021 {
3022 struct device *dev_root;
3023 int ret = -ENODEV;
3024
3025 dev_root = bus_get_dev_root(&cpu_subsys);
3026 if (dev_root) {
3027 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_smt_attr_group);
3028 put_device(dev_root);
3029 }
3030 return ret;
3031 }
3032
cpuhp_sysfs_init(void)3033 static int __init cpuhp_sysfs_init(void)
3034 {
3035 struct device *dev_root;
3036 int cpu, ret;
3037
3038 ret = cpu_smt_sysfs_init();
3039 if (ret)
3040 return ret;
3041
3042 dev_root = bus_get_dev_root(&cpu_subsys);
3043 if (dev_root) {
3044 ret = sysfs_create_group(&dev_root->kobj, &cpuhp_cpu_root_attr_group);
3045 put_device(dev_root);
3046 if (ret)
3047 return ret;
3048 }
3049
3050 for_each_possible_cpu(cpu) {
3051 struct device *dev = get_cpu_device(cpu);
3052
3053 if (!dev)
3054 continue;
3055 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
3056 if (ret)
3057 return ret;
3058 }
3059 return 0;
3060 }
3061 device_initcall(cpuhp_sysfs_init);
3062 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
3063
3064 /*
3065 * cpu_bit_bitmap[] is a special, "compressed" data structure that
3066 * represents all NR_CPUS bits binary values of 1<<nr.
3067 *
3068 * It is used by cpumask_of() to get a constant address to a CPU
3069 * mask value that has a single bit set only.
3070 */
3071
3072 /* cpu_bit_bitmap[0] is empty - so we can back into it */
3073 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
3074 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
3075 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
3076 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
3077
3078 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
3079
3080 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
3081 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
3082 #if BITS_PER_LONG > 32
3083 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
3084 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
3085 #endif
3086 };
3087 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
3088
3089 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
3090 EXPORT_SYMBOL(cpu_all_bits);
3091
3092 #ifdef CONFIG_INIT_ALL_POSSIBLE
3093 struct cpumask __cpu_possible_mask __ro_after_init
3094 = {CPU_BITS_ALL};
3095 #else
3096 struct cpumask __cpu_possible_mask __ro_after_init;
3097 #endif
3098 EXPORT_SYMBOL(__cpu_possible_mask);
3099
3100 struct cpumask __cpu_online_mask __read_mostly;
3101 EXPORT_SYMBOL(__cpu_online_mask);
3102
3103 struct cpumask __cpu_enabled_mask __read_mostly;
3104 EXPORT_SYMBOL(__cpu_enabled_mask);
3105
3106 struct cpumask __cpu_present_mask __read_mostly;
3107 EXPORT_SYMBOL(__cpu_present_mask);
3108
3109 struct cpumask __cpu_active_mask __read_mostly;
3110 EXPORT_SYMBOL(__cpu_active_mask);
3111
3112 struct cpumask __cpu_dying_mask __read_mostly;
3113 EXPORT_SYMBOL(__cpu_dying_mask);
3114
3115 atomic_t __num_online_cpus __read_mostly;
3116 EXPORT_SYMBOL(__num_online_cpus);
3117
init_cpu_present(const struct cpumask * src)3118 void init_cpu_present(const struct cpumask *src)
3119 {
3120 cpumask_copy(&__cpu_present_mask, src);
3121 }
3122
init_cpu_possible(const struct cpumask * src)3123 void init_cpu_possible(const struct cpumask *src)
3124 {
3125 cpumask_copy(&__cpu_possible_mask, src);
3126 }
3127
set_cpu_online(unsigned int cpu,bool online)3128 void set_cpu_online(unsigned int cpu, bool online)
3129 {
3130 /*
3131 * atomic_inc/dec() is required to handle the horrid abuse of this
3132 * function by the reboot and kexec code which invoke it from
3133 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
3134 * regular CPU hotplug is properly serialized.
3135 *
3136 * Note, that the fact that __num_online_cpus is of type atomic_t
3137 * does not protect readers which are not serialized against
3138 * concurrent hotplug operations.
3139 */
3140 if (online) {
3141 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
3142 atomic_inc(&__num_online_cpus);
3143 } else {
3144 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
3145 atomic_dec(&__num_online_cpus);
3146 }
3147 }
3148
3149 /*
3150 * Activate the first processor.
3151 */
boot_cpu_init(void)3152 void __init boot_cpu_init(void)
3153 {
3154 int cpu = smp_processor_id();
3155
3156 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
3157 set_cpu_online(cpu, true);
3158 set_cpu_active(cpu, true);
3159 set_cpu_present(cpu, true);
3160 set_cpu_possible(cpu, true);
3161
3162 #ifdef CONFIG_SMP
3163 __boot_cpu_id = cpu;
3164 #endif
3165 }
3166
3167 /*
3168 * Must be called _AFTER_ setting up the per_cpu areas
3169 */
boot_cpu_hotplug_init(void)3170 void __init boot_cpu_hotplug_init(void)
3171 {
3172 #ifdef CONFIG_SMP
3173 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
3174 atomic_set(this_cpu_ptr(&cpuhp_state.ap_sync_state), SYNC_STATE_ONLINE);
3175 #endif
3176 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
3177 this_cpu_write(cpuhp_state.target, CPUHP_ONLINE);
3178 }
3179
3180 #ifdef CONFIG_CPU_MITIGATIONS
3181 /*
3182 * These are used for a global "mitigations=" cmdline option for toggling
3183 * optional CPU mitigations.
3184 */
3185 enum cpu_mitigations {
3186 CPU_MITIGATIONS_OFF,
3187 CPU_MITIGATIONS_AUTO,
3188 CPU_MITIGATIONS_AUTO_NOSMT,
3189 };
3190
3191 static enum cpu_mitigations cpu_mitigations __ro_after_init = CPU_MITIGATIONS_AUTO;
3192
mitigations_parse_cmdline(char * arg)3193 static int __init mitigations_parse_cmdline(char *arg)
3194 {
3195 if (!strcmp(arg, "off"))
3196 cpu_mitigations = CPU_MITIGATIONS_OFF;
3197 else if (!strcmp(arg, "auto"))
3198 cpu_mitigations = CPU_MITIGATIONS_AUTO;
3199 else if (!strcmp(arg, "auto,nosmt"))
3200 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
3201 else
3202 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
3203 arg);
3204
3205 return 0;
3206 }
3207
3208 /* mitigations=off */
cpu_mitigations_off(void)3209 bool cpu_mitigations_off(void)
3210 {
3211 return cpu_mitigations == CPU_MITIGATIONS_OFF;
3212 }
3213 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
3214
3215 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)3216 bool cpu_mitigations_auto_nosmt(void)
3217 {
3218 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
3219 }
3220 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
3221 #else
mitigations_parse_cmdline(char * arg)3222 static int __init mitigations_parse_cmdline(char *arg)
3223 {
3224 pr_crit("Kernel compiled without mitigations, ignoring 'mitigations'; system may still be vulnerable\n");
3225 return 0;
3226 }
3227 #endif
3228 early_param("mitigations", mitigations_parse_cmdline);
3229