1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Context tracking: Probe on high level context boundaries such as kernel,
4  * userspace, guest or idle.
5  *
6  * This is used by RCU to remove its dependency on the timer tick while a CPU
7  * runs in idle, userspace or guest mode.
8  *
9  * User/guest tracking started by Frederic Weisbecker:
10  *
11  * Copyright (C) 2012 Red Hat, Inc., Frederic Weisbecker
12  *
13  * Many thanks to Gilad Ben-Yossef, Paul McKenney, Ingo Molnar, Andrew Morton,
14  * Steven Rostedt, Peter Zijlstra for suggestions and improvements.
15  *
16  * RCU extended quiescent state bits imported from kernel/rcu/tree.c
17  * where the relevant authorship may be found.
18  */
19 
20 #include <linux/context_tracking.h>
21 #include <linux/rcupdate.h>
22 #include <linux/sched.h>
23 #include <linux/hardirq.h>
24 #include <linux/export.h>
25 #include <linux/kprobes.h>
26 #include <trace/events/rcu.h>
27 
28 
29 DEFINE_PER_CPU(struct context_tracking, context_tracking) = {
30 #ifdef CONFIG_CONTEXT_TRACKING_IDLE
31 	.nesting = 1,
32 	.nmi_nesting = CT_NESTING_IRQ_NONIDLE,
33 #endif
34 	.state = ATOMIC_INIT(CT_RCU_WATCHING),
35 };
36 EXPORT_SYMBOL_GPL(context_tracking);
37 
38 #ifdef CONFIG_CONTEXT_TRACKING_IDLE
39 #define TPS(x)  tracepoint_string(x)
40 
41 /* Record the current task on exiting RCU-tasks (dyntick-idle entry). */
rcu_task_exit(void)42 static __always_inline void rcu_task_exit(void)
43 {
44 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
45 	WRITE_ONCE(current->rcu_tasks_idle_cpu, smp_processor_id());
46 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
47 }
48 
49 /* Record no current task on entering RCU-tasks (dyntick-idle exit). */
rcu_task_enter(void)50 static __always_inline void rcu_task_enter(void)
51 {
52 #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL)
53 	WRITE_ONCE(current->rcu_tasks_idle_cpu, -1);
54 #endif /* #if defined(CONFIG_TASKS_RCU) && defined(CONFIG_NO_HZ_FULL) */
55 }
56 
57 /* Turn on heavyweight RCU tasks trace readers on kernel exit. */
rcu_task_trace_heavyweight_enter(void)58 static __always_inline void rcu_task_trace_heavyweight_enter(void)
59 {
60 #ifdef CONFIG_TASKS_TRACE_RCU
61 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
62 		current->trc_reader_special.b.need_mb = true;
63 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
64 }
65 
66 /* Turn off heavyweight RCU tasks trace readers on kernel entry. */
rcu_task_trace_heavyweight_exit(void)67 static __always_inline void rcu_task_trace_heavyweight_exit(void)
68 {
69 #ifdef CONFIG_TASKS_TRACE_RCU
70 	if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
71 		current->trc_reader_special.b.need_mb = false;
72 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
73 }
74 
75 /*
76  * Record entry into an extended quiescent state.  This is only to be
77  * called when not already in an extended quiescent state, that is,
78  * RCU is watching prior to the call to this function and is no longer
79  * watching upon return.
80  */
ct_kernel_exit_state(int offset)81 static noinstr void ct_kernel_exit_state(int offset)
82 {
83 	/*
84 	 * CPUs seeing atomic_add_return() must see prior RCU read-side
85 	 * critical sections, and we also must force ordering with the
86 	 * next idle sojourn.
87 	 */
88 	rcu_task_trace_heavyweight_enter();  // Before CT state update!
89 	// RCU is still watching.  Better not be in extended quiescent state!
90 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !rcu_is_watching_curr_cpu());
91 	(void)ct_state_inc(offset);
92 	// RCU is no longer watching.
93 }
94 
95 /*
96  * Record exit from an extended quiescent state.  This is only to be
97  * called from an extended quiescent state, that is, RCU is not watching
98  * prior to the call to this function and is watching upon return.
99  */
ct_kernel_enter_state(int offset)100 static noinstr void ct_kernel_enter_state(int offset)
101 {
102 	int seq;
103 
104 	/*
105 	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
106 	 * and we also must force ordering with the next RCU read-side
107 	 * critical section.
108 	 */
109 	seq = ct_state_inc(offset);
110 	// RCU is now watching.  Better not be in an extended quiescent state!
111 	rcu_task_trace_heavyweight_exit();  // After CT state update!
112 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !(seq & CT_RCU_WATCHING));
113 }
114 
115 /*
116  * Enter an RCU extended quiescent state, which can be either the
117  * idle loop or adaptive-tickless usermode execution.
118  *
119  * We crowbar the ->nmi_nesting field to zero to allow for
120  * the possibility of usermode upcalls having messed up our count
121  * of interrupt nesting level during the prior busy period.
122  */
ct_kernel_exit(bool user,int offset)123 static void noinstr ct_kernel_exit(bool user, int offset)
124 {
125 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
126 
127 	WARN_ON_ONCE(ct_nmi_nesting() != CT_NESTING_IRQ_NONIDLE);
128 	WRITE_ONCE(ct->nmi_nesting, 0);
129 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
130 		     ct_nesting() == 0);
131 	if (ct_nesting() != 1) {
132 		// RCU will still be watching, so just do accounting and leave.
133 		ct->nesting--;
134 		return;
135 	}
136 
137 	instrumentation_begin();
138 	lockdep_assert_irqs_disabled();
139 	trace_rcu_watching(TPS("End"), ct_nesting(), 0, ct_rcu_watching());
140 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
141 	rcu_preempt_deferred_qs(current);
142 
143 	// instrumentation for the noinstr ct_kernel_exit_state()
144 	instrument_atomic_write(&ct->state, sizeof(ct->state));
145 
146 	instrumentation_end();
147 	WRITE_ONCE(ct->nesting, 0); /* Avoid irq-access tearing. */
148 	// RCU is watching here ...
149 	ct_kernel_exit_state(offset);
150 	// ... but is no longer watching here.
151 	rcu_task_exit();
152 }
153 
154 /*
155  * Exit an RCU extended quiescent state, which can be either the
156  * idle loop or adaptive-tickless usermode execution.
157  *
158  * We crowbar the ->nmi_nesting field to CT_NESTING_IRQ_NONIDLE to
159  * allow for the possibility of usermode upcalls messing up our count of
160  * interrupt nesting level during the busy period that is just now starting.
161  */
ct_kernel_enter(bool user,int offset)162 static void noinstr ct_kernel_enter(bool user, int offset)
163 {
164 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
165 	long oldval;
166 
167 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled());
168 	oldval = ct_nesting();
169 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
170 	if (oldval) {
171 		// RCU was already watching, so just do accounting and leave.
172 		ct->nesting++;
173 		return;
174 	}
175 	rcu_task_enter();
176 	// RCU is not watching here ...
177 	ct_kernel_enter_state(offset);
178 	// ... but is watching here.
179 	instrumentation_begin();
180 
181 	// instrumentation for the noinstr ct_kernel_enter_state()
182 	instrument_atomic_write(&ct->state, sizeof(ct->state));
183 
184 	trace_rcu_watching(TPS("Start"), ct_nesting(), 1, ct_rcu_watching());
185 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
186 	WRITE_ONCE(ct->nesting, 1);
187 	WARN_ON_ONCE(ct_nmi_nesting());
188 	WRITE_ONCE(ct->nmi_nesting, CT_NESTING_IRQ_NONIDLE);
189 	instrumentation_end();
190 }
191 
192 /**
193  * ct_nmi_exit - inform RCU of exit from NMI context
194  *
195  * If we are returning from the outermost NMI handler that interrupted an
196  * RCU-idle period, update ct->state and ct->nmi_nesting
197  * to let the RCU grace-period handling know that the CPU is back to
198  * being RCU-idle.
199  *
200  * If you add or remove a call to ct_nmi_exit(), be sure to test
201  * with CONFIG_RCU_EQS_DEBUG=y.
202  */
ct_nmi_exit(void)203 void noinstr ct_nmi_exit(void)
204 {
205 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
206 
207 	instrumentation_begin();
208 	/*
209 	 * Check for ->nmi_nesting underflow and bad CT state.
210 	 * (We are exiting an NMI handler, so RCU better be paying attention
211 	 * to us!)
212 	 */
213 	WARN_ON_ONCE(ct_nmi_nesting() <= 0);
214 	WARN_ON_ONCE(!rcu_is_watching_curr_cpu());
215 
216 	/*
217 	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
218 	 * leave it in non-RCU-idle state.
219 	 */
220 	if (ct_nmi_nesting() != 1) {
221 		trace_rcu_watching(TPS("--="), ct_nmi_nesting(), ct_nmi_nesting() - 2,
222 				  ct_rcu_watching());
223 		WRITE_ONCE(ct->nmi_nesting, /* No store tearing. */
224 			   ct_nmi_nesting() - 2);
225 		instrumentation_end();
226 		return;
227 	}
228 
229 	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
230 	trace_rcu_watching(TPS("Endirq"), ct_nmi_nesting(), 0, ct_rcu_watching());
231 	WRITE_ONCE(ct->nmi_nesting, 0); /* Avoid store tearing. */
232 
233 	// instrumentation for the noinstr ct_kernel_exit_state()
234 	instrument_atomic_write(&ct->state, sizeof(ct->state));
235 	instrumentation_end();
236 
237 	// RCU is watching here ...
238 	ct_kernel_exit_state(CT_RCU_WATCHING);
239 	// ... but is no longer watching here.
240 
241 	if (!in_nmi())
242 		rcu_task_exit();
243 }
244 
245 /**
246  * ct_nmi_enter - inform RCU of entry to NMI context
247  *
248  * If the CPU was idle from RCU's viewpoint, update ct->state and
249  * ct->nmi_nesting to let the RCU grace-period handling know
250  * that the CPU is active.  This implementation permits nested NMIs, as
251  * long as the nesting level does not overflow an int.  (You will probably
252  * run out of stack space first.)
253  *
254  * If you add or remove a call to ct_nmi_enter(), be sure to test
255  * with CONFIG_RCU_EQS_DEBUG=y.
256  */
ct_nmi_enter(void)257 void noinstr ct_nmi_enter(void)
258 {
259 	long incby = 2;
260 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
261 
262 	/* Complain about underflow. */
263 	WARN_ON_ONCE(ct_nmi_nesting() < 0);
264 
265 	/*
266 	 * If idle from RCU viewpoint, atomically increment CT state
267 	 * to mark non-idle and increment ->nmi_nesting by one.
268 	 * Otherwise, increment ->nmi_nesting by two.  This means
269 	 * if ->nmi_nesting is equal to one, we are guaranteed
270 	 * to be in the outermost NMI handler that interrupted an RCU-idle
271 	 * period (observation due to Andy Lutomirski).
272 	 */
273 	if (!rcu_is_watching_curr_cpu()) {
274 
275 		if (!in_nmi())
276 			rcu_task_enter();
277 
278 		// RCU is not watching here ...
279 		ct_kernel_enter_state(CT_RCU_WATCHING);
280 		// ... but is watching here.
281 
282 		instrumentation_begin();
283 		// instrumentation for the noinstr rcu_is_watching_curr_cpu()
284 		instrument_atomic_read(&ct->state, sizeof(ct->state));
285 		// instrumentation for the noinstr ct_kernel_enter_state()
286 		instrument_atomic_write(&ct->state, sizeof(ct->state));
287 
288 		incby = 1;
289 	} else if (!in_nmi()) {
290 		instrumentation_begin();
291 		rcu_irq_enter_check_tick();
292 	} else  {
293 		instrumentation_begin();
294 	}
295 
296 	trace_rcu_watching(incby == 1 ? TPS("Startirq") : TPS("++="),
297 			  ct_nmi_nesting(),
298 			  ct_nmi_nesting() + incby, ct_rcu_watching());
299 	instrumentation_end();
300 	WRITE_ONCE(ct->nmi_nesting, /* Prevent store tearing. */
301 		   ct_nmi_nesting() + incby);
302 	barrier();
303 }
304 
305 /**
306  * ct_idle_enter - inform RCU that current CPU is entering idle
307  *
308  * Enter idle mode, in other words, -leave- the mode in which RCU
309  * read-side critical sections can occur.  (Though RCU read-side
310  * critical sections can occur in irq handlers in idle, a possibility
311  * handled by irq_enter() and irq_exit().)
312  *
313  * If you add or remove a call to ct_idle_enter(), be sure to test with
314  * CONFIG_RCU_EQS_DEBUG=y.
315  */
ct_idle_enter(void)316 void noinstr ct_idle_enter(void)
317 {
318 	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !raw_irqs_disabled());
319 	ct_kernel_exit(false, CT_RCU_WATCHING + CT_STATE_IDLE);
320 }
321 EXPORT_SYMBOL_GPL(ct_idle_enter);
322 
323 /**
324  * ct_idle_exit - inform RCU that current CPU is leaving idle
325  *
326  * Exit idle mode, in other words, -enter- the mode in which RCU
327  * read-side critical sections can occur.
328  *
329  * If you add or remove a call to ct_idle_exit(), be sure to test with
330  * CONFIG_RCU_EQS_DEBUG=y.
331  */
ct_idle_exit(void)332 void noinstr ct_idle_exit(void)
333 {
334 	unsigned long flags;
335 
336 	raw_local_irq_save(flags);
337 	ct_kernel_enter(false, CT_RCU_WATCHING - CT_STATE_IDLE);
338 	raw_local_irq_restore(flags);
339 }
340 EXPORT_SYMBOL_GPL(ct_idle_exit);
341 
342 /**
343  * ct_irq_enter - inform RCU that current CPU is entering irq away from idle
344  *
345  * Enter an interrupt handler, which might possibly result in exiting
346  * idle mode, in other words, entering the mode in which read-side critical
347  * sections can occur.  The caller must have disabled interrupts.
348  *
349  * Note that the Linux kernel is fully capable of entering an interrupt
350  * handler that it never exits, for example when doing upcalls to user mode!
351  * This code assumes that the idle loop never does upcalls to user mode.
352  * If your architecture's idle loop does do upcalls to user mode (or does
353  * anything else that results in unbalanced calls to the irq_enter() and
354  * irq_exit() functions), RCU will give you what you deserve, good and hard.
355  * But very infrequently and irreproducibly.
356  *
357  * Use things like work queues to work around this limitation.
358  *
359  * You have been warned.
360  *
361  * If you add or remove a call to ct_irq_enter(), be sure to test with
362  * CONFIG_RCU_EQS_DEBUG=y.
363  */
ct_irq_enter(void)364 noinstr void ct_irq_enter(void)
365 {
366 	lockdep_assert_irqs_disabled();
367 	ct_nmi_enter();
368 }
369 
370 /**
371  * ct_irq_exit - inform RCU that current CPU is exiting irq towards idle
372  *
373  * Exit from an interrupt handler, which might possibly result in entering
374  * idle mode, in other words, leaving the mode in which read-side critical
375  * sections can occur.  The caller must have disabled interrupts.
376  *
377  * This code assumes that the idle loop never does anything that might
378  * result in unbalanced calls to irq_enter() and irq_exit().  If your
379  * architecture's idle loop violates this assumption, RCU will give you what
380  * you deserve, good and hard.  But very infrequently and irreproducibly.
381  *
382  * Use things like work queues to work around this limitation.
383  *
384  * You have been warned.
385  *
386  * If you add or remove a call to ct_irq_exit(), be sure to test with
387  * CONFIG_RCU_EQS_DEBUG=y.
388  */
ct_irq_exit(void)389 noinstr void ct_irq_exit(void)
390 {
391 	lockdep_assert_irqs_disabled();
392 	ct_nmi_exit();
393 }
394 
395 /*
396  * Wrapper for ct_irq_enter() where interrupts are enabled.
397  *
398  * If you add or remove a call to ct_irq_enter_irqson(), be sure to test
399  * with CONFIG_RCU_EQS_DEBUG=y.
400  */
ct_irq_enter_irqson(void)401 void ct_irq_enter_irqson(void)
402 {
403 	unsigned long flags;
404 
405 	local_irq_save(flags);
406 	ct_irq_enter();
407 	local_irq_restore(flags);
408 }
409 
410 /*
411  * Wrapper for ct_irq_exit() where interrupts are enabled.
412  *
413  * If you add or remove a call to ct_irq_exit_irqson(), be sure to test
414  * with CONFIG_RCU_EQS_DEBUG=y.
415  */
ct_irq_exit_irqson(void)416 void ct_irq_exit_irqson(void)
417 {
418 	unsigned long flags;
419 
420 	local_irq_save(flags);
421 	ct_irq_exit();
422 	local_irq_restore(flags);
423 }
424 #else
ct_kernel_exit(bool user,int offset)425 static __always_inline void ct_kernel_exit(bool user, int offset) { }
ct_kernel_enter(bool user,int offset)426 static __always_inline void ct_kernel_enter(bool user, int offset) { }
427 #endif /* #ifdef CONFIG_CONTEXT_TRACKING_IDLE */
428 
429 #ifdef CONFIG_CONTEXT_TRACKING_USER
430 
431 #define CREATE_TRACE_POINTS
432 #include <trace/events/context_tracking.h>
433 
434 DEFINE_STATIC_KEY_FALSE_RO(context_tracking_key);
435 EXPORT_SYMBOL_GPL(context_tracking_key);
436 
context_tracking_recursion_enter(void)437 static noinstr bool context_tracking_recursion_enter(void)
438 {
439 	int recursion;
440 
441 	recursion = __this_cpu_inc_return(context_tracking.recursion);
442 	if (recursion == 1)
443 		return true;
444 
445 	WARN_ONCE((recursion < 1), "Invalid context tracking recursion value %d\n", recursion);
446 	__this_cpu_dec(context_tracking.recursion);
447 
448 	return false;
449 }
450 
context_tracking_recursion_exit(void)451 static __always_inline void context_tracking_recursion_exit(void)
452 {
453 	__this_cpu_dec(context_tracking.recursion);
454 }
455 
456 /**
457  * __ct_user_enter - Inform the context tracking that the CPU is going
458  *		     to enter user or guest space mode.
459  *
460  * @state: userspace context-tracking state to enter.
461  *
462  * This function must be called right before we switch from the kernel
463  * to user or guest space, when it's guaranteed the remaining kernel
464  * instructions to execute won't use any RCU read side critical section
465  * because this function sets RCU in extended quiescent state.
466  */
__ct_user_enter(enum ctx_state state)467 void noinstr __ct_user_enter(enum ctx_state state)
468 {
469 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
470 	lockdep_assert_irqs_disabled();
471 
472 	/* Kernel threads aren't supposed to go to userspace */
473 	WARN_ON_ONCE(!current->mm);
474 
475 	if (!context_tracking_recursion_enter())
476 		return;
477 
478 	if (__ct_state() != state) {
479 		if (ct->active) {
480 			/*
481 			 * At this stage, only low level arch entry code remains and
482 			 * then we'll run in userspace. We can assume there won't be
483 			 * any RCU read-side critical section until the next call to
484 			 * user_exit() or ct_irq_enter(). Let's remove RCU's dependency
485 			 * on the tick.
486 			 */
487 			if (state == CT_STATE_USER) {
488 				instrumentation_begin();
489 				trace_user_enter(0);
490 				vtime_user_enter(current);
491 				instrumentation_end();
492 			}
493 			/*
494 			 * Other than generic entry implementation, we may be past the last
495 			 * rescheduling opportunity in the entry code. Trigger a self IPI
496 			 * that will fire and reschedule once we resume in user/guest mode.
497 			 */
498 			rcu_irq_work_resched();
499 
500 			/*
501 			 * Enter RCU idle mode right before resuming userspace.  No use of RCU
502 			 * is permitted between this call and rcu_eqs_exit(). This way the
503 			 * CPU doesn't need to maintain the tick for RCU maintenance purposes
504 			 * when the CPU runs in userspace.
505 			 */
506 			ct_kernel_exit(true, CT_RCU_WATCHING + state);
507 
508 			/*
509 			 * Special case if we only track user <-> kernel transitions for tickless
510 			 * cputime accounting but we don't support RCU extended quiescent state.
511 			 * In this we case we don't care about any concurrency/ordering.
512 			 */
513 			if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE))
514 				raw_atomic_set(&ct->state, state);
515 		} else {
516 			/*
517 			 * Even if context tracking is disabled on this CPU, because it's outside
518 			 * the full dynticks mask for example, we still have to keep track of the
519 			 * context transitions and states to prevent inconsistency on those of
520 			 * other CPUs.
521 			 * If a task triggers an exception in userspace, sleep on the exception
522 			 * handler and then migrate to another CPU, that new CPU must know where
523 			 * the exception returns by the time we call exception_exit().
524 			 * This information can only be provided by the previous CPU when it called
525 			 * exception_enter().
526 			 * OTOH we can spare the calls to vtime and RCU when context_tracking.active
527 			 * is false because we know that CPU is not tickless.
528 			 */
529 			if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) {
530 				/* Tracking for vtime only, no concurrent RCU EQS accounting */
531 				raw_atomic_set(&ct->state, state);
532 			} else {
533 				/*
534 				 * Tracking for vtime and RCU EQS. Make sure we don't race
535 				 * with NMIs. OTOH we don't care about ordering here since
536 				 * RCU only requires CT_RCU_WATCHING increments to be fully
537 				 * ordered.
538 				 */
539 				raw_atomic_add(state, &ct->state);
540 			}
541 		}
542 	}
543 	context_tracking_recursion_exit();
544 }
545 EXPORT_SYMBOL_GPL(__ct_user_enter);
546 
547 /*
548  * OBSOLETE:
549  * This function should be noinstr but the below local_irq_restore() is
550  * unsafe because it involves illegal RCU uses through tracing and lockdep.
551  * This is unlikely to be fixed as this function is obsolete. The preferred
552  * way is to call __context_tracking_enter() through user_enter_irqoff()
553  * or context_tracking_guest_enter(). It should be the arch entry code
554  * responsibility to call into context tracking with IRQs disabled.
555  */
ct_user_enter(enum ctx_state state)556 void ct_user_enter(enum ctx_state state)
557 {
558 	unsigned long flags;
559 
560 	/*
561 	 * Some contexts may involve an exception occuring in an irq,
562 	 * leading to that nesting:
563 	 * ct_irq_enter() rcu_eqs_exit(true) rcu_eqs_enter(true) ct_irq_exit()
564 	 * This would mess up the dyntick_nesting count though. And rcu_irq_*()
565 	 * helpers are enough to protect RCU uses inside the exception. So
566 	 * just return immediately if we detect we are in an IRQ.
567 	 */
568 	if (in_interrupt())
569 		return;
570 
571 	local_irq_save(flags);
572 	__ct_user_enter(state);
573 	local_irq_restore(flags);
574 }
575 NOKPROBE_SYMBOL(ct_user_enter);
576 EXPORT_SYMBOL_GPL(ct_user_enter);
577 
578 /**
579  * user_enter_callable() - Unfortunate ASM callable version of user_enter() for
580  *			   archs that didn't manage to check the context tracking
581  *			   static key from low level code.
582  *
583  * This OBSOLETE function should be noinstr but it unsafely calls
584  * local_irq_restore(), involving illegal RCU uses through tracing and lockdep.
585  * This is unlikely to be fixed as this function is obsolete. The preferred
586  * way is to call user_enter_irqoff(). It should be the arch entry code
587  * responsibility to call into context tracking with IRQs disabled.
588  */
user_enter_callable(void)589 void user_enter_callable(void)
590 {
591 	user_enter();
592 }
593 NOKPROBE_SYMBOL(user_enter_callable);
594 
595 /**
596  * __ct_user_exit - Inform the context tracking that the CPU is
597  *		    exiting user or guest mode and entering the kernel.
598  *
599  * @state: userspace context-tracking state being exited from.
600  *
601  * This function must be called after we entered the kernel from user or
602  * guest space before any use of RCU read side critical section. This
603  * potentially include any high level kernel code like syscalls, exceptions,
604  * signal handling, etc...
605  *
606  * This call supports re-entrancy. This way it can be called from any exception
607  * handler without needing to know if we came from userspace or not.
608  */
__ct_user_exit(enum ctx_state state)609 void noinstr __ct_user_exit(enum ctx_state state)
610 {
611 	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
612 
613 	if (!context_tracking_recursion_enter())
614 		return;
615 
616 	if (__ct_state() == state) {
617 		if (ct->active) {
618 			/*
619 			 * Exit RCU idle mode while entering the kernel because it can
620 			 * run a RCU read side critical section anytime.
621 			 */
622 			ct_kernel_enter(true, CT_RCU_WATCHING - state);
623 			if (state == CT_STATE_USER) {
624 				instrumentation_begin();
625 				vtime_user_exit(current);
626 				trace_user_exit(0);
627 				instrumentation_end();
628 			}
629 
630 			/*
631 			 * Special case if we only track user <-> kernel transitions for tickless
632 			 * cputime accounting but we don't support RCU extended quiescent state.
633 			 * In this we case we don't care about any concurrency/ordering.
634 			 */
635 			if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE))
636 				raw_atomic_set(&ct->state, CT_STATE_KERNEL);
637 
638 		} else {
639 			if (!IS_ENABLED(CONFIG_CONTEXT_TRACKING_IDLE)) {
640 				/* Tracking for vtime only, no concurrent RCU EQS accounting */
641 				raw_atomic_set(&ct->state, CT_STATE_KERNEL);
642 			} else {
643 				/*
644 				 * Tracking for vtime and RCU EQS. Make sure we don't race
645 				 * with NMIs. OTOH we don't care about ordering here since
646 				 * RCU only requires CT_RCU_WATCHING increments to be fully
647 				 * ordered.
648 				 */
649 				raw_atomic_sub(state, &ct->state);
650 			}
651 		}
652 	}
653 	context_tracking_recursion_exit();
654 }
655 EXPORT_SYMBOL_GPL(__ct_user_exit);
656 
657 /*
658  * OBSOLETE:
659  * This function should be noinstr but the below local_irq_save() is
660  * unsafe because it involves illegal RCU uses through tracing and lockdep.
661  * This is unlikely to be fixed as this function is obsolete. The preferred
662  * way is to call __context_tracking_exit() through user_exit_irqoff()
663  * or context_tracking_guest_exit(). It should be the arch entry code
664  * responsibility to call into context tracking with IRQs disabled.
665  */
ct_user_exit(enum ctx_state state)666 void ct_user_exit(enum ctx_state state)
667 {
668 	unsigned long flags;
669 
670 	if (in_interrupt())
671 		return;
672 
673 	local_irq_save(flags);
674 	__ct_user_exit(state);
675 	local_irq_restore(flags);
676 }
677 NOKPROBE_SYMBOL(ct_user_exit);
678 EXPORT_SYMBOL_GPL(ct_user_exit);
679 
680 /**
681  * user_exit_callable() - Unfortunate ASM callable version of user_exit() for
682  *			  archs that didn't manage to check the context tracking
683  *			  static key from low level code.
684  *
685  * This OBSOLETE function should be noinstr but it unsafely calls local_irq_save(),
686  * involving illegal RCU uses through tracing and lockdep. This is unlikely
687  * to be fixed as this function is obsolete. The preferred way is to call
688  * user_exit_irqoff(). It should be the arch entry code responsibility to
689  * call into context tracking with IRQs disabled.
690  */
user_exit_callable(void)691 void user_exit_callable(void)
692 {
693 	user_exit();
694 }
695 NOKPROBE_SYMBOL(user_exit_callable);
696 
ct_cpu_track_user(int cpu)697 void __init ct_cpu_track_user(int cpu)
698 {
699 	static __initdata bool initialized = false;
700 
701 	if (!per_cpu(context_tracking.active, cpu)) {
702 		per_cpu(context_tracking.active, cpu) = true;
703 		static_branch_inc(&context_tracking_key);
704 	}
705 
706 	if (initialized)
707 		return;
708 
709 #ifdef CONFIG_HAVE_TIF_NOHZ
710 	/*
711 	 * Set TIF_NOHZ to init/0 and let it propagate to all tasks through fork
712 	 * This assumes that init is the only task at this early boot stage.
713 	 */
714 	set_tsk_thread_flag(&init_task, TIF_NOHZ);
715 #endif
716 	WARN_ON_ONCE(!tasklist_empty());
717 
718 	initialized = true;
719 }
720 
721 #ifdef CONFIG_CONTEXT_TRACKING_USER_FORCE
context_tracking_init(void)722 void __init context_tracking_init(void)
723 {
724 	int cpu;
725 
726 	for_each_possible_cpu(cpu)
727 		ct_cpu_track_user(cpu);
728 }
729 #endif
730 
731 #endif /* #ifdef CONFIG_CONTEXT_TRACKING_USER */
732