1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3 
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/kasan.h>
8 #include <linux/poll.h>
9 #include <linux/io_uring_types.h>
10 #include <uapi/linux/eventpoll.h>
11 #include "alloc_cache.h"
12 #include "io-wq.h"
13 #include "slist.h"
14 #include "filetable.h"
15 #include "opdef.h"
16 
17 #ifndef CREATE_TRACE_POINTS
18 #include <trace/events/io_uring.h>
19 #endif
20 
21 enum {
22 	IOU_OK			= 0, /* deprecated, use IOU_COMPLETE */
23 	IOU_COMPLETE		= 0,
24 
25 	IOU_ISSUE_SKIP_COMPLETE	= -EIOCBQUEUED,
26 
27 	/*
28 	 * The request has more work to do and should be retried. io_uring will
29 	 * attempt to wait on the file for eligible opcodes, but otherwise
30 	 * it'll be handed to iowq for blocking execution. It works for normal
31 	 * requests as well as for the multi shot mode.
32 	 */
33 	IOU_RETRY		= -EAGAIN,
34 
35 	/*
36 	 * Requeue the task_work to restart operations on this request. The
37 	 * actual value isn't important, should just be not an otherwise
38 	 * valid error code, yet less than -MAX_ERRNO and valid internally.
39 	 */
40 	IOU_REQUEUE		= -3072,
41 };
42 
43 struct io_wait_queue {
44 	struct wait_queue_entry wq;
45 	struct io_ring_ctx *ctx;
46 	unsigned cq_tail;
47 	unsigned cq_min_tail;
48 	unsigned nr_timeouts;
49 	int hit_timeout;
50 	ktime_t min_timeout;
51 	ktime_t timeout;
52 	struct hrtimer t;
53 
54 #ifdef CONFIG_NET_RX_BUSY_POLL
55 	ktime_t napi_busy_poll_dt;
56 	bool napi_prefer_busy_poll;
57 #endif
58 };
59 
io_should_wake(struct io_wait_queue * iowq)60 static inline bool io_should_wake(struct io_wait_queue *iowq)
61 {
62 	struct io_ring_ctx *ctx = iowq->ctx;
63 	int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
64 
65 	/*
66 	 * Wake up if we have enough events, or if a timeout occurred since we
67 	 * started waiting. For timeouts, we always want to return to userspace,
68 	 * regardless of event count.
69 	 */
70 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
71 }
72 
73 #define IORING_MAX_ENTRIES	32768
74 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
75 
76 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
77 			 unsigned int cq_entries, size_t *sq_offset);
78 int io_uring_fill_params(unsigned entries, struct io_uring_params *p);
79 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow);
80 int io_run_task_work_sig(struct io_ring_ctx *ctx);
81 void io_req_defer_failed(struct io_kiocb *req, s32 res);
82 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
83 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
84 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags);
85 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
86 
87 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
88 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
89 			       unsigned issue_flags);
90 
91 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
92 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags);
93 void io_req_task_queue(struct io_kiocb *req);
94 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw);
95 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
96 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw);
97 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries);
98 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count);
99 void tctx_task_work(struct callback_head *cb);
100 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
101 int io_uring_alloc_task_context(struct task_struct *task,
102 				struct io_ring_ctx *ctx);
103 
104 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
105 				     int start, int end);
106 void io_req_queue_iowq(struct io_kiocb *req);
107 
108 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw);
109 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
110 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
111 void __io_submit_flush_completions(struct io_ring_ctx *ctx);
112 
113 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
114 void io_wq_submit_work(struct io_wq_work *work);
115 
116 void io_free_req(struct io_kiocb *req);
117 void io_queue_next(struct io_kiocb *req);
118 void io_task_refs_refill(struct io_uring_task *tctx);
119 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
120 
121 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
122 			bool cancel_all);
123 
124 void io_activate_pollwq(struct io_ring_ctx *ctx);
125 
io_lockdep_assert_cq_locked(struct io_ring_ctx * ctx)126 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
127 {
128 #if defined(CONFIG_PROVE_LOCKING)
129 	lockdep_assert(in_task());
130 
131 	if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
132 		lockdep_assert_held(&ctx->uring_lock);
133 
134 	if (ctx->flags & IORING_SETUP_IOPOLL) {
135 		lockdep_assert_held(&ctx->uring_lock);
136 	} else if (!ctx->task_complete) {
137 		lockdep_assert_held(&ctx->completion_lock);
138 	} else if (ctx->submitter_task) {
139 		/*
140 		 * ->submitter_task may be NULL and we can still post a CQE,
141 		 * if the ring has been setup with IORING_SETUP_R_DISABLED.
142 		 * Not from an SQE, as those cannot be submitted, but via
143 		 * updating tagged resources.
144 		 */
145 		if (!percpu_ref_is_dying(&ctx->refs))
146 			lockdep_assert(current == ctx->submitter_task);
147 	}
148 #endif
149 }
150 
io_is_compat(struct io_ring_ctx * ctx)151 static inline bool io_is_compat(struct io_ring_ctx *ctx)
152 {
153 	return IS_ENABLED(CONFIG_COMPAT) && unlikely(ctx->compat);
154 }
155 
io_req_task_work_add(struct io_kiocb * req)156 static inline void io_req_task_work_add(struct io_kiocb *req)
157 {
158 	__io_req_task_work_add(req, 0);
159 }
160 
io_submit_flush_completions(struct io_ring_ctx * ctx)161 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
162 {
163 	if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
164 	    ctx->submit_state.cq_flush)
165 		__io_submit_flush_completions(ctx);
166 }
167 
168 #define io_for_each_link(pos, head) \
169 	for (pos = (head); pos; pos = pos->link)
170 
io_get_cqe_overflow(struct io_ring_ctx * ctx,struct io_uring_cqe ** ret,bool overflow)171 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx,
172 					struct io_uring_cqe **ret,
173 					bool overflow)
174 {
175 	io_lockdep_assert_cq_locked(ctx);
176 
177 	if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) {
178 		if (unlikely(!io_cqe_cache_refill(ctx, overflow)))
179 			return false;
180 	}
181 	*ret = ctx->cqe_cached;
182 	ctx->cached_cq_tail++;
183 	ctx->cqe_cached++;
184 	if (ctx->flags & IORING_SETUP_CQE32)
185 		ctx->cqe_cached++;
186 	return true;
187 }
188 
io_get_cqe(struct io_ring_ctx * ctx,struct io_uring_cqe ** ret)189 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret)
190 {
191 	return io_get_cqe_overflow(ctx, ret, false);
192 }
193 
io_defer_get_uncommited_cqe(struct io_ring_ctx * ctx,struct io_uring_cqe ** cqe_ret)194 static inline bool io_defer_get_uncommited_cqe(struct io_ring_ctx *ctx,
195 					       struct io_uring_cqe **cqe_ret)
196 {
197 	io_lockdep_assert_cq_locked(ctx);
198 
199 	ctx->cq_extra++;
200 	ctx->submit_state.cq_flush = true;
201 	return io_get_cqe(ctx, cqe_ret);
202 }
203 
io_fill_cqe_req(struct io_ring_ctx * ctx,struct io_kiocb * req)204 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
205 					    struct io_kiocb *req)
206 {
207 	struct io_uring_cqe *cqe;
208 
209 	/*
210 	 * If we can't get a cq entry, userspace overflowed the
211 	 * submission (by quite a lot). Increment the overflow count in
212 	 * the ring.
213 	 */
214 	if (unlikely(!io_get_cqe(ctx, &cqe)))
215 		return false;
216 
217 
218 	memcpy(cqe, &req->cqe, sizeof(*cqe));
219 	if (ctx->flags & IORING_SETUP_CQE32) {
220 		memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe));
221 		memset(&req->big_cqe, 0, sizeof(req->big_cqe));
222 	}
223 
224 	if (trace_io_uring_complete_enabled())
225 		trace_io_uring_complete(req->ctx, req, cqe);
226 	return true;
227 }
228 
req_set_fail(struct io_kiocb * req)229 static inline void req_set_fail(struct io_kiocb *req)
230 {
231 	req->flags |= REQ_F_FAIL;
232 	if (req->flags & REQ_F_CQE_SKIP) {
233 		req->flags &= ~REQ_F_CQE_SKIP;
234 		req->flags |= REQ_F_SKIP_LINK_CQES;
235 	}
236 }
237 
io_req_set_res(struct io_kiocb * req,s32 res,u32 cflags)238 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
239 {
240 	req->cqe.res = res;
241 	req->cqe.flags = cflags;
242 }
243 
io_uring_alloc_async_data(struct io_alloc_cache * cache,struct io_kiocb * req)244 static inline void *io_uring_alloc_async_data(struct io_alloc_cache *cache,
245 					      struct io_kiocb *req)
246 {
247 	if (cache) {
248 		req->async_data = io_cache_alloc(cache, GFP_KERNEL);
249 	} else {
250 		const struct io_issue_def *def = &io_issue_defs[req->opcode];
251 
252 		WARN_ON_ONCE(!def->async_size);
253 		req->async_data = kmalloc(def->async_size, GFP_KERNEL);
254 	}
255 	if (req->async_data)
256 		req->flags |= REQ_F_ASYNC_DATA;
257 	return req->async_data;
258 }
259 
req_has_async_data(struct io_kiocb * req)260 static inline bool req_has_async_data(struct io_kiocb *req)
261 {
262 	return req->flags & REQ_F_ASYNC_DATA;
263 }
264 
io_put_file(struct io_kiocb * req)265 static inline void io_put_file(struct io_kiocb *req)
266 {
267 	if (!(req->flags & REQ_F_FIXED_FILE) && req->file)
268 		fput(req->file);
269 }
270 
io_ring_submit_unlock(struct io_ring_ctx * ctx,unsigned issue_flags)271 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
272 					 unsigned issue_flags)
273 {
274 	lockdep_assert_held(&ctx->uring_lock);
275 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
276 		mutex_unlock(&ctx->uring_lock);
277 }
278 
io_ring_submit_lock(struct io_ring_ctx * ctx,unsigned issue_flags)279 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
280 				       unsigned issue_flags)
281 {
282 	/*
283 	 * "Normal" inline submissions always hold the uring_lock, since we
284 	 * grab it from the system call. Same is true for the SQPOLL offload.
285 	 * The only exception is when we've detached the request and issue it
286 	 * from an async worker thread, grab the lock for that case.
287 	 */
288 	if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
289 		mutex_lock(&ctx->uring_lock);
290 	lockdep_assert_held(&ctx->uring_lock);
291 }
292 
io_commit_cqring(struct io_ring_ctx * ctx)293 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
294 {
295 	/* order cqe stores with ring update */
296 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
297 }
298 
io_poll_wq_wake(struct io_ring_ctx * ctx)299 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
300 {
301 	if (wq_has_sleeper(&ctx->poll_wq))
302 		__wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
303 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
304 }
305 
io_cqring_wake(struct io_ring_ctx * ctx)306 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
307 {
308 	/*
309 	 * Trigger waitqueue handler on all waiters on our waitqueue. This
310 	 * won't necessarily wake up all the tasks, io_should_wake() will make
311 	 * that decision.
312 	 *
313 	 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
314 	 * set in the mask so that if we recurse back into our own poll
315 	 * waitqueue handlers, we know we have a dependency between eventfd or
316 	 * epoll and should terminate multishot poll at that point.
317 	 */
318 	if (wq_has_sleeper(&ctx->cq_wait))
319 		__wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
320 				poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
321 }
322 
io_sqring_full(struct io_ring_ctx * ctx)323 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
324 {
325 	struct io_rings *r = ctx->rings;
326 
327 	/*
328 	 * SQPOLL must use the actual sqring head, as using the cached_sq_head
329 	 * is race prone if the SQPOLL thread has grabbed entries but not yet
330 	 * committed them to the ring. For !SQPOLL, this doesn't matter, but
331 	 * since this helper is just used for SQPOLL sqring waits (or POLLOUT),
332 	 * just read the actual sqring head unconditionally.
333 	 */
334 	return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries;
335 }
336 
io_sqring_entries(struct io_ring_ctx * ctx)337 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
338 {
339 	struct io_rings *rings = ctx->rings;
340 	unsigned int entries;
341 
342 	/* make sure SQ entry isn't read before tail */
343 	entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
344 	return min(entries, ctx->sq_entries);
345 }
346 
io_run_task_work(void)347 static inline int io_run_task_work(void)
348 {
349 	bool ret = false;
350 
351 	/*
352 	 * Always check-and-clear the task_work notification signal. With how
353 	 * signaling works for task_work, we can find it set with nothing to
354 	 * run. We need to clear it for that case, like get_signal() does.
355 	 */
356 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
357 		clear_notify_signal();
358 	/*
359 	 * PF_IO_WORKER never returns to userspace, so check here if we have
360 	 * notify work that needs processing.
361 	 */
362 	if (current->flags & PF_IO_WORKER) {
363 		if (test_thread_flag(TIF_NOTIFY_RESUME)) {
364 			__set_current_state(TASK_RUNNING);
365 			resume_user_mode_work(NULL);
366 		}
367 		if (current->io_uring) {
368 			unsigned int count = 0;
369 
370 			__set_current_state(TASK_RUNNING);
371 			tctx_task_work_run(current->io_uring, UINT_MAX, &count);
372 			if (count)
373 				ret = true;
374 		}
375 	}
376 	if (task_work_pending(current)) {
377 		__set_current_state(TASK_RUNNING);
378 		task_work_run();
379 		ret = true;
380 	}
381 
382 	return ret;
383 }
384 
io_local_work_pending(struct io_ring_ctx * ctx)385 static inline bool io_local_work_pending(struct io_ring_ctx *ctx)
386 {
387 	return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist);
388 }
389 
io_task_work_pending(struct io_ring_ctx * ctx)390 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
391 {
392 	return task_work_pending(current) || io_local_work_pending(ctx);
393 }
394 
io_tw_lock(struct io_ring_ctx * ctx,io_tw_token_t tw)395 static inline void io_tw_lock(struct io_ring_ctx *ctx, io_tw_token_t tw)
396 {
397 	lockdep_assert_held(&ctx->uring_lock);
398 }
399 
400 /*
401  * Don't complete immediately but use deferred completion infrastructure.
402  * Protected by ->uring_lock and can only be used either with
403  * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
404  */
io_req_complete_defer(struct io_kiocb * req)405 static inline void io_req_complete_defer(struct io_kiocb *req)
406 	__must_hold(&req->ctx->uring_lock)
407 {
408 	struct io_submit_state *state = &req->ctx->submit_state;
409 
410 	lockdep_assert_held(&req->ctx->uring_lock);
411 
412 	wq_list_add_tail(&req->comp_list, &state->compl_reqs);
413 }
414 
io_commit_cqring_flush(struct io_ring_ctx * ctx)415 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
416 {
417 	if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
418 		     ctx->has_evfd || ctx->poll_activated))
419 		__io_commit_cqring_flush(ctx);
420 }
421 
io_get_task_refs(int nr)422 static inline void io_get_task_refs(int nr)
423 {
424 	struct io_uring_task *tctx = current->io_uring;
425 
426 	tctx->cached_refs -= nr;
427 	if (unlikely(tctx->cached_refs < 0))
428 		io_task_refs_refill(tctx);
429 }
430 
io_req_cache_empty(struct io_ring_ctx * ctx)431 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
432 {
433 	return !ctx->submit_state.free_list.next;
434 }
435 
436 extern struct kmem_cache *req_cachep;
437 
io_extract_req(struct io_ring_ctx * ctx)438 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
439 {
440 	struct io_kiocb *req;
441 
442 	req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
443 	wq_stack_extract(&ctx->submit_state.free_list);
444 	return req;
445 }
446 
io_alloc_req(struct io_ring_ctx * ctx,struct io_kiocb ** req)447 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
448 {
449 	if (unlikely(io_req_cache_empty(ctx))) {
450 		if (!__io_alloc_req_refill(ctx))
451 			return false;
452 	}
453 	*req = io_extract_req(ctx);
454 	return true;
455 }
456 
io_allowed_defer_tw_run(struct io_ring_ctx * ctx)457 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
458 {
459 	return likely(ctx->submitter_task == current);
460 }
461 
io_allowed_run_tw(struct io_ring_ctx * ctx)462 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
463 {
464 	return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
465 		      ctx->submitter_task == current);
466 }
467 
468 /*
469  * Terminate the request if either of these conditions are true:
470  *
471  * 1) It's being executed by the original task, but that task is marked
472  *    with PF_EXITING as it's exiting.
473  * 2) PF_KTHREAD is set, in which case the invoker of the task_work is
474  *    our fallback task_work.
475  */
io_should_terminate_tw(void)476 static inline bool io_should_terminate_tw(void)
477 {
478 	return current->flags & (PF_KTHREAD | PF_EXITING);
479 }
480 
io_req_queue_tw_complete(struct io_kiocb * req,s32 res)481 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
482 {
483 	io_req_set_res(req, res, 0);
484 	req->io_task_work.func = io_req_task_complete;
485 	io_req_task_work_add(req);
486 }
487 
488 /*
489  * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
490  * slot.
491  */
uring_sqe_size(struct io_ring_ctx * ctx)492 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
493 {
494 	if (ctx->flags & IORING_SETUP_SQE128)
495 		return 2 * sizeof(struct io_uring_sqe);
496 	return sizeof(struct io_uring_sqe);
497 }
498 
io_file_can_poll(struct io_kiocb * req)499 static inline bool io_file_can_poll(struct io_kiocb *req)
500 {
501 	if (req->flags & REQ_F_CAN_POLL)
502 		return true;
503 	if (req->file && file_can_poll(req->file)) {
504 		req->flags |= REQ_F_CAN_POLL;
505 		return true;
506 	}
507 	return false;
508 }
509 
io_get_time(struct io_ring_ctx * ctx)510 static inline ktime_t io_get_time(struct io_ring_ctx *ctx)
511 {
512 	if (ctx->clockid == CLOCK_MONOTONIC)
513 		return ktime_get();
514 
515 	return ktime_get_with_offset(ctx->clock_offset);
516 }
517 
518 enum {
519 	IO_CHECK_CQ_OVERFLOW_BIT,
520 	IO_CHECK_CQ_DROPPED_BIT,
521 };
522 
io_has_work(struct io_ring_ctx * ctx)523 static inline bool io_has_work(struct io_ring_ctx *ctx)
524 {
525 	return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
526 	       io_local_work_pending(ctx);
527 }
528 #endif
529