1 #ifndef IOU_CORE_H
2 #define IOU_CORE_H
3
4 #include <linux/errno.h>
5 #include <linux/lockdep.h>
6 #include <linux/resume_user_mode.h>
7 #include <linux/kasan.h>
8 #include <linux/poll.h>
9 #include <linux/io_uring_types.h>
10 #include <uapi/linux/eventpoll.h>
11 #include "alloc_cache.h"
12 #include "io-wq.h"
13 #include "slist.h"
14 #include "filetable.h"
15 #include "opdef.h"
16
17 #ifndef CREATE_TRACE_POINTS
18 #include <trace/events/io_uring.h>
19 #endif
20
21 enum {
22 IOU_OK = 0, /* deprecated, use IOU_COMPLETE */
23 IOU_COMPLETE = 0,
24
25 IOU_ISSUE_SKIP_COMPLETE = -EIOCBQUEUED,
26
27 /*
28 * The request has more work to do and should be retried. io_uring will
29 * attempt to wait on the file for eligible opcodes, but otherwise
30 * it'll be handed to iowq for blocking execution. It works for normal
31 * requests as well as for the multi shot mode.
32 */
33 IOU_RETRY = -EAGAIN,
34
35 /*
36 * Requeue the task_work to restart operations on this request. The
37 * actual value isn't important, should just be not an otherwise
38 * valid error code, yet less than -MAX_ERRNO and valid internally.
39 */
40 IOU_REQUEUE = -3072,
41 };
42
43 struct io_wait_queue {
44 struct wait_queue_entry wq;
45 struct io_ring_ctx *ctx;
46 unsigned cq_tail;
47 unsigned cq_min_tail;
48 unsigned nr_timeouts;
49 int hit_timeout;
50 ktime_t min_timeout;
51 ktime_t timeout;
52 struct hrtimer t;
53
54 #ifdef CONFIG_NET_RX_BUSY_POLL
55 ktime_t napi_busy_poll_dt;
56 bool napi_prefer_busy_poll;
57 #endif
58 };
59
io_should_wake(struct io_wait_queue * iowq)60 static inline bool io_should_wake(struct io_wait_queue *iowq)
61 {
62 struct io_ring_ctx *ctx = iowq->ctx;
63 int dist = READ_ONCE(ctx->rings->cq.tail) - (int) iowq->cq_tail;
64
65 /*
66 * Wake up if we have enough events, or if a timeout occurred since we
67 * started waiting. For timeouts, we always want to return to userspace,
68 * regardless of event count.
69 */
70 return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
71 }
72
73 #define IORING_MAX_ENTRIES 32768
74 #define IORING_MAX_CQ_ENTRIES (2 * IORING_MAX_ENTRIES)
75
76 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
77 unsigned int cq_entries, size_t *sq_offset);
78 int io_uring_fill_params(unsigned entries, struct io_uring_params *p);
79 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow);
80 int io_run_task_work_sig(struct io_ring_ctx *ctx);
81 void io_req_defer_failed(struct io_kiocb *req, s32 res);
82 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
83 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags);
84 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags);
85 void __io_commit_cqring_flush(struct io_ring_ctx *ctx);
86
87 struct file *io_file_get_normal(struct io_kiocb *req, int fd);
88 struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
89 unsigned issue_flags);
90
91 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags);
92 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags);
93 void io_req_task_queue(struct io_kiocb *req);
94 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw);
95 void io_req_task_queue_fail(struct io_kiocb *req, int ret);
96 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw);
97 struct llist_node *io_handle_tw_list(struct llist_node *node, unsigned int *count, unsigned int max_entries);
98 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx, unsigned int max_entries, unsigned int *count);
99 void tctx_task_work(struct callback_head *cb);
100 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
101 int io_uring_alloc_task_context(struct task_struct *task,
102 struct io_ring_ctx *ctx);
103
104 int io_ring_add_registered_file(struct io_uring_task *tctx, struct file *file,
105 int start, int end);
106 void io_req_queue_iowq(struct io_kiocb *req);
107
108 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw);
109 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr);
110 int io_do_iopoll(struct io_ring_ctx *ctx, bool force_nonspin);
111 void __io_submit_flush_completions(struct io_ring_ctx *ctx);
112
113 struct io_wq_work *io_wq_free_work(struct io_wq_work *work);
114 void io_wq_submit_work(struct io_wq_work *work);
115
116 void io_free_req(struct io_kiocb *req);
117 void io_queue_next(struct io_kiocb *req);
118 void io_task_refs_refill(struct io_uring_task *tctx);
119 bool __io_alloc_req_refill(struct io_ring_ctx *ctx);
120
121 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
122 bool cancel_all);
123
124 void io_activate_pollwq(struct io_ring_ctx *ctx);
125
io_lockdep_assert_cq_locked(struct io_ring_ctx * ctx)126 static inline void io_lockdep_assert_cq_locked(struct io_ring_ctx *ctx)
127 {
128 #if defined(CONFIG_PROVE_LOCKING)
129 lockdep_assert(in_task());
130
131 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
132 lockdep_assert_held(&ctx->uring_lock);
133
134 if (ctx->flags & IORING_SETUP_IOPOLL) {
135 lockdep_assert_held(&ctx->uring_lock);
136 } else if (!ctx->task_complete) {
137 lockdep_assert_held(&ctx->completion_lock);
138 } else if (ctx->submitter_task) {
139 /*
140 * ->submitter_task may be NULL and we can still post a CQE,
141 * if the ring has been setup with IORING_SETUP_R_DISABLED.
142 * Not from an SQE, as those cannot be submitted, but via
143 * updating tagged resources.
144 */
145 if (!percpu_ref_is_dying(&ctx->refs))
146 lockdep_assert(current == ctx->submitter_task);
147 }
148 #endif
149 }
150
io_is_compat(struct io_ring_ctx * ctx)151 static inline bool io_is_compat(struct io_ring_ctx *ctx)
152 {
153 return IS_ENABLED(CONFIG_COMPAT) && unlikely(ctx->compat);
154 }
155
io_req_task_work_add(struct io_kiocb * req)156 static inline void io_req_task_work_add(struct io_kiocb *req)
157 {
158 __io_req_task_work_add(req, 0);
159 }
160
io_submit_flush_completions(struct io_ring_ctx * ctx)161 static inline void io_submit_flush_completions(struct io_ring_ctx *ctx)
162 {
163 if (!wq_list_empty(&ctx->submit_state.compl_reqs) ||
164 ctx->submit_state.cq_flush)
165 __io_submit_flush_completions(ctx);
166 }
167
168 #define io_for_each_link(pos, head) \
169 for (pos = (head); pos; pos = pos->link)
170
io_get_cqe_overflow(struct io_ring_ctx * ctx,struct io_uring_cqe ** ret,bool overflow)171 static inline bool io_get_cqe_overflow(struct io_ring_ctx *ctx,
172 struct io_uring_cqe **ret,
173 bool overflow)
174 {
175 io_lockdep_assert_cq_locked(ctx);
176
177 if (unlikely(ctx->cqe_cached >= ctx->cqe_sentinel)) {
178 if (unlikely(!io_cqe_cache_refill(ctx, overflow)))
179 return false;
180 }
181 *ret = ctx->cqe_cached;
182 ctx->cached_cq_tail++;
183 ctx->cqe_cached++;
184 if (ctx->flags & IORING_SETUP_CQE32)
185 ctx->cqe_cached++;
186 return true;
187 }
188
io_get_cqe(struct io_ring_ctx * ctx,struct io_uring_cqe ** ret)189 static inline bool io_get_cqe(struct io_ring_ctx *ctx, struct io_uring_cqe **ret)
190 {
191 return io_get_cqe_overflow(ctx, ret, false);
192 }
193
io_defer_get_uncommited_cqe(struct io_ring_ctx * ctx,struct io_uring_cqe ** cqe_ret)194 static inline bool io_defer_get_uncommited_cqe(struct io_ring_ctx *ctx,
195 struct io_uring_cqe **cqe_ret)
196 {
197 io_lockdep_assert_cq_locked(ctx);
198
199 ctx->cq_extra++;
200 ctx->submit_state.cq_flush = true;
201 return io_get_cqe(ctx, cqe_ret);
202 }
203
io_fill_cqe_req(struct io_ring_ctx * ctx,struct io_kiocb * req)204 static __always_inline bool io_fill_cqe_req(struct io_ring_ctx *ctx,
205 struct io_kiocb *req)
206 {
207 struct io_uring_cqe *cqe;
208
209 /*
210 * If we can't get a cq entry, userspace overflowed the
211 * submission (by quite a lot). Increment the overflow count in
212 * the ring.
213 */
214 if (unlikely(!io_get_cqe(ctx, &cqe)))
215 return false;
216
217
218 memcpy(cqe, &req->cqe, sizeof(*cqe));
219 if (ctx->flags & IORING_SETUP_CQE32) {
220 memcpy(cqe->big_cqe, &req->big_cqe, sizeof(*cqe));
221 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
222 }
223
224 if (trace_io_uring_complete_enabled())
225 trace_io_uring_complete(req->ctx, req, cqe);
226 return true;
227 }
228
req_set_fail(struct io_kiocb * req)229 static inline void req_set_fail(struct io_kiocb *req)
230 {
231 req->flags |= REQ_F_FAIL;
232 if (req->flags & REQ_F_CQE_SKIP) {
233 req->flags &= ~REQ_F_CQE_SKIP;
234 req->flags |= REQ_F_SKIP_LINK_CQES;
235 }
236 }
237
io_req_set_res(struct io_kiocb * req,s32 res,u32 cflags)238 static inline void io_req_set_res(struct io_kiocb *req, s32 res, u32 cflags)
239 {
240 req->cqe.res = res;
241 req->cqe.flags = cflags;
242 }
243
io_uring_alloc_async_data(struct io_alloc_cache * cache,struct io_kiocb * req)244 static inline void *io_uring_alloc_async_data(struct io_alloc_cache *cache,
245 struct io_kiocb *req)
246 {
247 if (cache) {
248 req->async_data = io_cache_alloc(cache, GFP_KERNEL);
249 } else {
250 const struct io_issue_def *def = &io_issue_defs[req->opcode];
251
252 WARN_ON_ONCE(!def->async_size);
253 req->async_data = kmalloc(def->async_size, GFP_KERNEL);
254 }
255 if (req->async_data)
256 req->flags |= REQ_F_ASYNC_DATA;
257 return req->async_data;
258 }
259
req_has_async_data(struct io_kiocb * req)260 static inline bool req_has_async_data(struct io_kiocb *req)
261 {
262 return req->flags & REQ_F_ASYNC_DATA;
263 }
264
io_put_file(struct io_kiocb * req)265 static inline void io_put_file(struct io_kiocb *req)
266 {
267 if (!(req->flags & REQ_F_FIXED_FILE) && req->file)
268 fput(req->file);
269 }
270
io_ring_submit_unlock(struct io_ring_ctx * ctx,unsigned issue_flags)271 static inline void io_ring_submit_unlock(struct io_ring_ctx *ctx,
272 unsigned issue_flags)
273 {
274 lockdep_assert_held(&ctx->uring_lock);
275 if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
276 mutex_unlock(&ctx->uring_lock);
277 }
278
io_ring_submit_lock(struct io_ring_ctx * ctx,unsigned issue_flags)279 static inline void io_ring_submit_lock(struct io_ring_ctx *ctx,
280 unsigned issue_flags)
281 {
282 /*
283 * "Normal" inline submissions always hold the uring_lock, since we
284 * grab it from the system call. Same is true for the SQPOLL offload.
285 * The only exception is when we've detached the request and issue it
286 * from an async worker thread, grab the lock for that case.
287 */
288 if (unlikely(issue_flags & IO_URING_F_UNLOCKED))
289 mutex_lock(&ctx->uring_lock);
290 lockdep_assert_held(&ctx->uring_lock);
291 }
292
io_commit_cqring(struct io_ring_ctx * ctx)293 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
294 {
295 /* order cqe stores with ring update */
296 smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
297 }
298
io_poll_wq_wake(struct io_ring_ctx * ctx)299 static inline void io_poll_wq_wake(struct io_ring_ctx *ctx)
300 {
301 if (wq_has_sleeper(&ctx->poll_wq))
302 __wake_up(&ctx->poll_wq, TASK_NORMAL, 0,
303 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
304 }
305
io_cqring_wake(struct io_ring_ctx * ctx)306 static inline void io_cqring_wake(struct io_ring_ctx *ctx)
307 {
308 /*
309 * Trigger waitqueue handler on all waiters on our waitqueue. This
310 * won't necessarily wake up all the tasks, io_should_wake() will make
311 * that decision.
312 *
313 * Pass in EPOLLIN|EPOLL_URING_WAKE as the poll wakeup key. The latter
314 * set in the mask so that if we recurse back into our own poll
315 * waitqueue handlers, we know we have a dependency between eventfd or
316 * epoll and should terminate multishot poll at that point.
317 */
318 if (wq_has_sleeper(&ctx->cq_wait))
319 __wake_up(&ctx->cq_wait, TASK_NORMAL, 0,
320 poll_to_key(EPOLL_URING_WAKE | EPOLLIN));
321 }
322
io_sqring_full(struct io_ring_ctx * ctx)323 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
324 {
325 struct io_rings *r = ctx->rings;
326
327 /*
328 * SQPOLL must use the actual sqring head, as using the cached_sq_head
329 * is race prone if the SQPOLL thread has grabbed entries but not yet
330 * committed them to the ring. For !SQPOLL, this doesn't matter, but
331 * since this helper is just used for SQPOLL sqring waits (or POLLOUT),
332 * just read the actual sqring head unconditionally.
333 */
334 return READ_ONCE(r->sq.tail) - READ_ONCE(r->sq.head) == ctx->sq_entries;
335 }
336
io_sqring_entries(struct io_ring_ctx * ctx)337 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
338 {
339 struct io_rings *rings = ctx->rings;
340 unsigned int entries;
341
342 /* make sure SQ entry isn't read before tail */
343 entries = smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
344 return min(entries, ctx->sq_entries);
345 }
346
io_run_task_work(void)347 static inline int io_run_task_work(void)
348 {
349 bool ret = false;
350
351 /*
352 * Always check-and-clear the task_work notification signal. With how
353 * signaling works for task_work, we can find it set with nothing to
354 * run. We need to clear it for that case, like get_signal() does.
355 */
356 if (test_thread_flag(TIF_NOTIFY_SIGNAL))
357 clear_notify_signal();
358 /*
359 * PF_IO_WORKER never returns to userspace, so check here if we have
360 * notify work that needs processing.
361 */
362 if (current->flags & PF_IO_WORKER) {
363 if (test_thread_flag(TIF_NOTIFY_RESUME)) {
364 __set_current_state(TASK_RUNNING);
365 resume_user_mode_work(NULL);
366 }
367 if (current->io_uring) {
368 unsigned int count = 0;
369
370 __set_current_state(TASK_RUNNING);
371 tctx_task_work_run(current->io_uring, UINT_MAX, &count);
372 if (count)
373 ret = true;
374 }
375 }
376 if (task_work_pending(current)) {
377 __set_current_state(TASK_RUNNING);
378 task_work_run();
379 ret = true;
380 }
381
382 return ret;
383 }
384
io_local_work_pending(struct io_ring_ctx * ctx)385 static inline bool io_local_work_pending(struct io_ring_ctx *ctx)
386 {
387 return !llist_empty(&ctx->work_llist) || !llist_empty(&ctx->retry_llist);
388 }
389
io_task_work_pending(struct io_ring_ctx * ctx)390 static inline bool io_task_work_pending(struct io_ring_ctx *ctx)
391 {
392 return task_work_pending(current) || io_local_work_pending(ctx);
393 }
394
io_tw_lock(struct io_ring_ctx * ctx,io_tw_token_t tw)395 static inline void io_tw_lock(struct io_ring_ctx *ctx, io_tw_token_t tw)
396 {
397 lockdep_assert_held(&ctx->uring_lock);
398 }
399
400 /*
401 * Don't complete immediately but use deferred completion infrastructure.
402 * Protected by ->uring_lock and can only be used either with
403 * IO_URING_F_COMPLETE_DEFER or inside a tw handler holding the mutex.
404 */
io_req_complete_defer(struct io_kiocb * req)405 static inline void io_req_complete_defer(struct io_kiocb *req)
406 __must_hold(&req->ctx->uring_lock)
407 {
408 struct io_submit_state *state = &req->ctx->submit_state;
409
410 lockdep_assert_held(&req->ctx->uring_lock);
411
412 wq_list_add_tail(&req->comp_list, &state->compl_reqs);
413 }
414
io_commit_cqring_flush(struct io_ring_ctx * ctx)415 static inline void io_commit_cqring_flush(struct io_ring_ctx *ctx)
416 {
417 if (unlikely(ctx->off_timeout_used || ctx->drain_active ||
418 ctx->has_evfd || ctx->poll_activated))
419 __io_commit_cqring_flush(ctx);
420 }
421
io_get_task_refs(int nr)422 static inline void io_get_task_refs(int nr)
423 {
424 struct io_uring_task *tctx = current->io_uring;
425
426 tctx->cached_refs -= nr;
427 if (unlikely(tctx->cached_refs < 0))
428 io_task_refs_refill(tctx);
429 }
430
io_req_cache_empty(struct io_ring_ctx * ctx)431 static inline bool io_req_cache_empty(struct io_ring_ctx *ctx)
432 {
433 return !ctx->submit_state.free_list.next;
434 }
435
436 extern struct kmem_cache *req_cachep;
437
io_extract_req(struct io_ring_ctx * ctx)438 static inline struct io_kiocb *io_extract_req(struct io_ring_ctx *ctx)
439 {
440 struct io_kiocb *req;
441
442 req = container_of(ctx->submit_state.free_list.next, struct io_kiocb, comp_list);
443 wq_stack_extract(&ctx->submit_state.free_list);
444 return req;
445 }
446
io_alloc_req(struct io_ring_ctx * ctx,struct io_kiocb ** req)447 static inline bool io_alloc_req(struct io_ring_ctx *ctx, struct io_kiocb **req)
448 {
449 if (unlikely(io_req_cache_empty(ctx))) {
450 if (!__io_alloc_req_refill(ctx))
451 return false;
452 }
453 *req = io_extract_req(ctx);
454 return true;
455 }
456
io_allowed_defer_tw_run(struct io_ring_ctx * ctx)457 static inline bool io_allowed_defer_tw_run(struct io_ring_ctx *ctx)
458 {
459 return likely(ctx->submitter_task == current);
460 }
461
io_allowed_run_tw(struct io_ring_ctx * ctx)462 static inline bool io_allowed_run_tw(struct io_ring_ctx *ctx)
463 {
464 return likely(!(ctx->flags & IORING_SETUP_DEFER_TASKRUN) ||
465 ctx->submitter_task == current);
466 }
467
468 /*
469 * Terminate the request if either of these conditions are true:
470 *
471 * 1) It's being executed by the original task, but that task is marked
472 * with PF_EXITING as it's exiting.
473 * 2) PF_KTHREAD is set, in which case the invoker of the task_work is
474 * our fallback task_work.
475 */
io_should_terminate_tw(void)476 static inline bool io_should_terminate_tw(void)
477 {
478 return current->flags & (PF_KTHREAD | PF_EXITING);
479 }
480
io_req_queue_tw_complete(struct io_kiocb * req,s32 res)481 static inline void io_req_queue_tw_complete(struct io_kiocb *req, s32 res)
482 {
483 io_req_set_res(req, res, 0);
484 req->io_task_work.func = io_req_task_complete;
485 io_req_task_work_add(req);
486 }
487
488 /*
489 * IORING_SETUP_SQE128 contexts allocate twice the normal SQE size for each
490 * slot.
491 */
uring_sqe_size(struct io_ring_ctx * ctx)492 static inline size_t uring_sqe_size(struct io_ring_ctx *ctx)
493 {
494 if (ctx->flags & IORING_SETUP_SQE128)
495 return 2 * sizeof(struct io_uring_sqe);
496 return sizeof(struct io_uring_sqe);
497 }
498
io_file_can_poll(struct io_kiocb * req)499 static inline bool io_file_can_poll(struct io_kiocb *req)
500 {
501 if (req->flags & REQ_F_CAN_POLL)
502 return true;
503 if (req->file && file_can_poll(req->file)) {
504 req->flags |= REQ_F_CAN_POLL;
505 return true;
506 }
507 return false;
508 }
509
io_get_time(struct io_ring_ctx * ctx)510 static inline ktime_t io_get_time(struct io_ring_ctx *ctx)
511 {
512 if (ctx->clockid == CLOCK_MONOTONIC)
513 return ktime_get();
514
515 return ktime_get_with_offset(ctx->clock_offset);
516 }
517
518 enum {
519 IO_CHECK_CQ_OVERFLOW_BIT,
520 IO_CHECK_CQ_DROPPED_BIT,
521 };
522
io_has_work(struct io_ring_ctx * ctx)523 static inline bool io_has_work(struct io_ring_ctx *ctx)
524 {
525 return test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq) ||
526 io_local_work_pending(ctx);
527 }
528 #endif
529