1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Shared application/kernel submission and completion ring pairs, for
4 * supporting fast/efficient IO.
5 *
6 * A note on the read/write ordering memory barriers that are matched between
7 * the application and kernel side.
8 *
9 * After the application reads the CQ ring tail, it must use an
10 * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11 * before writing the tail (using smp_load_acquire to read the tail will
12 * do). It also needs a smp_mb() before updating CQ head (ordering the
13 * entry load(s) with the head store), pairing with an implicit barrier
14 * through a control-dependency in io_get_cqe (smp_store_release to
15 * store head will do). Failure to do so could lead to reading invalid
16 * CQ entries.
17 *
18 * Likewise, the application must use an appropriate smp_wmb() before
19 * writing the SQ tail (ordering SQ entry stores with the tail store),
20 * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21 * to store the tail will do). And it needs a barrier ordering the SQ
22 * head load before writing new SQ entries (smp_load_acquire to read
23 * head will do).
24 *
25 * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26 * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27 * updating the SQ tail; a full memory barrier smp_mb() is needed
28 * between.
29 *
30 * Also see the examples in the liburing library:
31 *
32 * git://git.kernel.dk/liburing
33 *
34 * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35 * from data shared between the kernel and application. This is done both
36 * for ordering purposes, but also to ensure that once a value is loaded from
37 * data that the application could potentially modify, it remains stable.
38 *
39 * Copyright (C) 2018-2019 Jens Axboe
40 * Copyright (c) 2018-2019 Christoph Hellwig
41 */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <net/compat.h>
47 #include <linux/refcount.h>
48 #include <linux/uio.h>
49 #include <linux/bits.h>
50
51 #include <linux/sched/signal.h>
52 #include <linux/fs.h>
53 #include <linux/file.h>
54 #include <linux/mm.h>
55 #include <linux/mman.h>
56 #include <linux/percpu.h>
57 #include <linux/slab.h>
58 #include <linux/bvec.h>
59 #include <linux/net.h>
60 #include <net/sock.h>
61 #include <linux/anon_inodes.h>
62 #include <linux/sched/mm.h>
63 #include <linux/uaccess.h>
64 #include <linux/nospec.h>
65 #include <linux/fsnotify.h>
66 #include <linux/fadvise.h>
67 #include <linux/task_work.h>
68 #include <linux/io_uring.h>
69 #include <linux/io_uring/cmd.h>
70 #include <linux/audit.h>
71 #include <linux/security.h>
72 #include <linux/jump_label.h>
73 #include <asm/shmparam.h>
74
75 #define CREATE_TRACE_POINTS
76 #include <trace/events/io_uring.h>
77
78 #include <uapi/linux/io_uring.h>
79
80 #include "io-wq.h"
81
82 #include "io_uring.h"
83 #include "opdef.h"
84 #include "refs.h"
85 #include "tctx.h"
86 #include "register.h"
87 #include "sqpoll.h"
88 #include "fdinfo.h"
89 #include "kbuf.h"
90 #include "rsrc.h"
91 #include "cancel.h"
92 #include "net.h"
93 #include "notif.h"
94 #include "waitid.h"
95 #include "futex.h"
96 #include "napi.h"
97 #include "uring_cmd.h"
98 #include "msg_ring.h"
99 #include "memmap.h"
100 #include "zcrx.h"
101
102 #include "timeout.h"
103 #include "poll.h"
104 #include "rw.h"
105 #include "alloc_cache.h"
106 #include "eventfd.h"
107
108 #define SQE_COMMON_FLAGS (IOSQE_FIXED_FILE | IOSQE_IO_LINK | \
109 IOSQE_IO_HARDLINK | IOSQE_ASYNC)
110
111 #define SQE_VALID_FLAGS (SQE_COMMON_FLAGS | IOSQE_BUFFER_SELECT | \
112 IOSQE_IO_DRAIN | IOSQE_CQE_SKIP_SUCCESS)
113
114 #define IO_REQ_LINK_FLAGS (REQ_F_LINK | REQ_F_HARDLINK)
115
116 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
117 REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS | \
118 REQ_F_ASYNC_DATA)
119
120 #define IO_REQ_CLEAN_SLOW_FLAGS (REQ_F_REFCOUNT | IO_REQ_LINK_FLAGS | \
121 REQ_F_REISSUE | IO_REQ_CLEAN_FLAGS)
122
123 #define IO_TCTX_REFS_CACHE_NR (1U << 10)
124
125 #define IO_COMPL_BATCH 32
126 #define IO_REQ_ALLOC_BATCH 8
127 #define IO_LOCAL_TW_DEFAULT_MAX 20
128
129 struct io_defer_entry {
130 struct list_head list;
131 struct io_kiocb *req;
132 u32 seq;
133 };
134
135 /* requests with any of those set should undergo io_disarm_next() */
136 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
137
138 /*
139 * No waiters. It's larger than any valid value of the tw counter
140 * so that tests against ->cq_wait_nr would fail and skip wake_up().
141 */
142 #define IO_CQ_WAKE_INIT (-1U)
143 /* Forced wake up if there is a waiter regardless of ->cq_wait_nr */
144 #define IO_CQ_WAKE_FORCE (IO_CQ_WAKE_INIT >> 1)
145
146 static bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
147 struct io_uring_task *tctx,
148 bool cancel_all,
149 bool is_sqpoll_thread);
150
151 static void io_queue_sqe(struct io_kiocb *req);
152
153 static __read_mostly DEFINE_STATIC_KEY_FALSE(io_key_has_sqarray);
154
155 struct kmem_cache *req_cachep;
156 static struct workqueue_struct *iou_wq __ro_after_init;
157
158 static int __read_mostly sysctl_io_uring_disabled;
159 static int __read_mostly sysctl_io_uring_group = -1;
160
161 #ifdef CONFIG_SYSCTL
162 static const struct ctl_table kernel_io_uring_disabled_table[] = {
163 {
164 .procname = "io_uring_disabled",
165 .data = &sysctl_io_uring_disabled,
166 .maxlen = sizeof(sysctl_io_uring_disabled),
167 .mode = 0644,
168 .proc_handler = proc_dointvec_minmax,
169 .extra1 = SYSCTL_ZERO,
170 .extra2 = SYSCTL_TWO,
171 },
172 {
173 .procname = "io_uring_group",
174 .data = &sysctl_io_uring_group,
175 .maxlen = sizeof(gid_t),
176 .mode = 0644,
177 .proc_handler = proc_dointvec,
178 },
179 };
180 #endif
181
__io_cqring_events(struct io_ring_ctx * ctx)182 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
183 {
184 return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
185 }
186
__io_cqring_events_user(struct io_ring_ctx * ctx)187 static inline unsigned int __io_cqring_events_user(struct io_ring_ctx *ctx)
188 {
189 return READ_ONCE(ctx->rings->cq.tail) - READ_ONCE(ctx->rings->cq.head);
190 }
191
io_match_linked(struct io_kiocb * head)192 static bool io_match_linked(struct io_kiocb *head)
193 {
194 struct io_kiocb *req;
195
196 io_for_each_link(req, head) {
197 if (req->flags & REQ_F_INFLIGHT)
198 return true;
199 }
200 return false;
201 }
202
203 /*
204 * As io_match_task() but protected against racing with linked timeouts.
205 * User must not hold timeout_lock.
206 */
io_match_task_safe(struct io_kiocb * head,struct io_uring_task * tctx,bool cancel_all)207 bool io_match_task_safe(struct io_kiocb *head, struct io_uring_task *tctx,
208 bool cancel_all)
209 {
210 bool matched;
211
212 if (tctx && head->tctx != tctx)
213 return false;
214 if (cancel_all)
215 return true;
216
217 if (head->flags & REQ_F_LINK_TIMEOUT) {
218 struct io_ring_ctx *ctx = head->ctx;
219
220 /* protect against races with linked timeouts */
221 raw_spin_lock_irq(&ctx->timeout_lock);
222 matched = io_match_linked(head);
223 raw_spin_unlock_irq(&ctx->timeout_lock);
224 } else {
225 matched = io_match_linked(head);
226 }
227 return matched;
228 }
229
req_fail_link_node(struct io_kiocb * req,int res)230 static inline void req_fail_link_node(struct io_kiocb *req, int res)
231 {
232 req_set_fail(req);
233 io_req_set_res(req, res, 0);
234 }
235
io_req_add_to_cache(struct io_kiocb * req,struct io_ring_ctx * ctx)236 static inline void io_req_add_to_cache(struct io_kiocb *req, struct io_ring_ctx *ctx)
237 {
238 wq_stack_add_head(&req->comp_list, &ctx->submit_state.free_list);
239 }
240
io_ring_ctx_ref_free(struct percpu_ref * ref)241 static __cold void io_ring_ctx_ref_free(struct percpu_ref *ref)
242 {
243 struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
244
245 complete(&ctx->ref_comp);
246 }
247
io_fallback_req_func(struct work_struct * work)248 static __cold void io_fallback_req_func(struct work_struct *work)
249 {
250 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
251 fallback_work.work);
252 struct llist_node *node = llist_del_all(&ctx->fallback_llist);
253 struct io_kiocb *req, *tmp;
254 struct io_tw_state ts = {};
255
256 percpu_ref_get(&ctx->refs);
257 mutex_lock(&ctx->uring_lock);
258 llist_for_each_entry_safe(req, tmp, node, io_task_work.node)
259 req->io_task_work.func(req, ts);
260 io_submit_flush_completions(ctx);
261 mutex_unlock(&ctx->uring_lock);
262 percpu_ref_put(&ctx->refs);
263 }
264
io_alloc_hash_table(struct io_hash_table * table,unsigned bits)265 static int io_alloc_hash_table(struct io_hash_table *table, unsigned bits)
266 {
267 unsigned int hash_buckets;
268 int i;
269
270 do {
271 hash_buckets = 1U << bits;
272 table->hbs = kvmalloc_array(hash_buckets, sizeof(table->hbs[0]),
273 GFP_KERNEL_ACCOUNT);
274 if (table->hbs)
275 break;
276 if (bits == 1)
277 return -ENOMEM;
278 bits--;
279 } while (1);
280
281 table->hash_bits = bits;
282 for (i = 0; i < hash_buckets; i++)
283 INIT_HLIST_HEAD(&table->hbs[i].list);
284 return 0;
285 }
286
io_free_alloc_caches(struct io_ring_ctx * ctx)287 static void io_free_alloc_caches(struct io_ring_ctx *ctx)
288 {
289 io_alloc_cache_free(&ctx->apoll_cache, kfree);
290 io_alloc_cache_free(&ctx->netmsg_cache, io_netmsg_cache_free);
291 io_alloc_cache_free(&ctx->rw_cache, io_rw_cache_free);
292 io_alloc_cache_free(&ctx->cmd_cache, io_cmd_cache_free);
293 io_alloc_cache_free(&ctx->msg_cache, kfree);
294 io_futex_cache_free(ctx);
295 io_rsrc_cache_free(ctx);
296 }
297
io_ring_ctx_alloc(struct io_uring_params * p)298 static __cold struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
299 {
300 struct io_ring_ctx *ctx;
301 int hash_bits;
302 bool ret;
303
304 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
305 if (!ctx)
306 return NULL;
307
308 xa_init(&ctx->io_bl_xa);
309
310 /*
311 * Use 5 bits less than the max cq entries, that should give us around
312 * 32 entries per hash list if totally full and uniformly spread, but
313 * don't keep too many buckets to not overconsume memory.
314 */
315 hash_bits = ilog2(p->cq_entries) - 5;
316 hash_bits = clamp(hash_bits, 1, 8);
317 if (io_alloc_hash_table(&ctx->cancel_table, hash_bits))
318 goto err;
319 if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
320 0, GFP_KERNEL))
321 goto err;
322
323 ctx->flags = p->flags;
324 ctx->hybrid_poll_time = LLONG_MAX;
325 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
326 init_waitqueue_head(&ctx->sqo_sq_wait);
327 INIT_LIST_HEAD(&ctx->sqd_list);
328 INIT_LIST_HEAD(&ctx->cq_overflow_list);
329 ret = io_alloc_cache_init(&ctx->apoll_cache, IO_POLL_ALLOC_CACHE_MAX,
330 sizeof(struct async_poll), 0);
331 ret |= io_alloc_cache_init(&ctx->netmsg_cache, IO_ALLOC_CACHE_MAX,
332 sizeof(struct io_async_msghdr),
333 offsetof(struct io_async_msghdr, clear));
334 ret |= io_alloc_cache_init(&ctx->rw_cache, IO_ALLOC_CACHE_MAX,
335 sizeof(struct io_async_rw),
336 offsetof(struct io_async_rw, clear));
337 ret |= io_alloc_cache_init(&ctx->cmd_cache, IO_ALLOC_CACHE_MAX,
338 sizeof(struct io_async_cmd),
339 sizeof(struct io_async_cmd));
340 spin_lock_init(&ctx->msg_lock);
341 ret |= io_alloc_cache_init(&ctx->msg_cache, IO_ALLOC_CACHE_MAX,
342 sizeof(struct io_kiocb), 0);
343 ret |= io_futex_cache_init(ctx);
344 ret |= io_rsrc_cache_init(ctx);
345 if (ret)
346 goto free_ref;
347 init_completion(&ctx->ref_comp);
348 xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
349 mutex_init(&ctx->uring_lock);
350 init_waitqueue_head(&ctx->cq_wait);
351 init_waitqueue_head(&ctx->poll_wq);
352 spin_lock_init(&ctx->completion_lock);
353 raw_spin_lock_init(&ctx->timeout_lock);
354 INIT_WQ_LIST(&ctx->iopoll_list);
355 INIT_LIST_HEAD(&ctx->defer_list);
356 INIT_LIST_HEAD(&ctx->timeout_list);
357 INIT_LIST_HEAD(&ctx->ltimeout_list);
358 init_llist_head(&ctx->work_llist);
359 INIT_LIST_HEAD(&ctx->tctx_list);
360 ctx->submit_state.free_list.next = NULL;
361 INIT_HLIST_HEAD(&ctx->waitid_list);
362 #ifdef CONFIG_FUTEX
363 INIT_HLIST_HEAD(&ctx->futex_list);
364 #endif
365 INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
366 INIT_WQ_LIST(&ctx->submit_state.compl_reqs);
367 INIT_HLIST_HEAD(&ctx->cancelable_uring_cmd);
368 io_napi_init(ctx);
369 mutex_init(&ctx->mmap_lock);
370
371 return ctx;
372
373 free_ref:
374 percpu_ref_exit(&ctx->refs);
375 err:
376 io_free_alloc_caches(ctx);
377 kvfree(ctx->cancel_table.hbs);
378 xa_destroy(&ctx->io_bl_xa);
379 kfree(ctx);
380 return NULL;
381 }
382
io_account_cq_overflow(struct io_ring_ctx * ctx)383 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
384 {
385 struct io_rings *r = ctx->rings;
386
387 WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
388 ctx->cq_extra--;
389 }
390
req_need_defer(struct io_kiocb * req,u32 seq)391 static bool req_need_defer(struct io_kiocb *req, u32 seq)
392 {
393 if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
394 struct io_ring_ctx *ctx = req->ctx;
395
396 return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
397 }
398
399 return false;
400 }
401
io_clean_op(struct io_kiocb * req)402 static void io_clean_op(struct io_kiocb *req)
403 {
404 if (unlikely(req->flags & REQ_F_BUFFER_SELECTED))
405 io_kbuf_drop_legacy(req);
406
407 if (req->flags & REQ_F_NEED_CLEANUP) {
408 const struct io_cold_def *def = &io_cold_defs[req->opcode];
409
410 if (def->cleanup)
411 def->cleanup(req);
412 }
413 if ((req->flags & REQ_F_POLLED) && req->apoll) {
414 kfree(req->apoll->double_poll);
415 kfree(req->apoll);
416 req->apoll = NULL;
417 }
418 if (req->flags & REQ_F_INFLIGHT)
419 atomic_dec(&req->tctx->inflight_tracked);
420 if (req->flags & REQ_F_CREDS)
421 put_cred(req->creds);
422 if (req->flags & REQ_F_ASYNC_DATA) {
423 kfree(req->async_data);
424 req->async_data = NULL;
425 }
426 req->flags &= ~IO_REQ_CLEAN_FLAGS;
427 }
428
io_req_track_inflight(struct io_kiocb * req)429 static inline void io_req_track_inflight(struct io_kiocb *req)
430 {
431 if (!(req->flags & REQ_F_INFLIGHT)) {
432 req->flags |= REQ_F_INFLIGHT;
433 atomic_inc(&req->tctx->inflight_tracked);
434 }
435 }
436
__io_prep_linked_timeout(struct io_kiocb * req)437 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
438 {
439 if (WARN_ON_ONCE(!req->link))
440 return NULL;
441
442 req->flags &= ~REQ_F_ARM_LTIMEOUT;
443 req->flags |= REQ_F_LINK_TIMEOUT;
444
445 /* linked timeouts should have two refs once prep'ed */
446 io_req_set_refcount(req);
447 __io_req_set_refcount(req->link, 2);
448 return req->link;
449 }
450
io_prep_async_work(struct io_kiocb * req)451 static void io_prep_async_work(struct io_kiocb *req)
452 {
453 const struct io_issue_def *def = &io_issue_defs[req->opcode];
454 struct io_ring_ctx *ctx = req->ctx;
455
456 if (!(req->flags & REQ_F_CREDS)) {
457 req->flags |= REQ_F_CREDS;
458 req->creds = get_current_cred();
459 }
460
461 req->work.list.next = NULL;
462 atomic_set(&req->work.flags, 0);
463 if (req->flags & REQ_F_FORCE_ASYNC)
464 atomic_or(IO_WQ_WORK_CONCURRENT, &req->work.flags);
465
466 if (req->file && !(req->flags & REQ_F_FIXED_FILE))
467 req->flags |= io_file_get_flags(req->file);
468
469 if (req->file && (req->flags & REQ_F_ISREG)) {
470 bool should_hash = def->hash_reg_file;
471
472 /* don't serialize this request if the fs doesn't need it */
473 if (should_hash && (req->file->f_flags & O_DIRECT) &&
474 (req->file->f_op->fop_flags & FOP_DIO_PARALLEL_WRITE))
475 should_hash = false;
476 if (should_hash || (ctx->flags & IORING_SETUP_IOPOLL))
477 io_wq_hash_work(&req->work, file_inode(req->file));
478 } else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
479 if (def->unbound_nonreg_file)
480 atomic_or(IO_WQ_WORK_UNBOUND, &req->work.flags);
481 }
482 }
483
io_prep_async_link(struct io_kiocb * req)484 static void io_prep_async_link(struct io_kiocb *req)
485 {
486 struct io_kiocb *cur;
487
488 if (req->flags & REQ_F_LINK_TIMEOUT) {
489 struct io_ring_ctx *ctx = req->ctx;
490
491 raw_spin_lock_irq(&ctx->timeout_lock);
492 io_for_each_link(cur, req)
493 io_prep_async_work(cur);
494 raw_spin_unlock_irq(&ctx->timeout_lock);
495 } else {
496 io_for_each_link(cur, req)
497 io_prep_async_work(cur);
498 }
499 }
500
io_queue_iowq(struct io_kiocb * req)501 static void io_queue_iowq(struct io_kiocb *req)
502 {
503 struct io_uring_task *tctx = req->tctx;
504
505 BUG_ON(!tctx);
506
507 if ((current->flags & PF_KTHREAD) || !tctx->io_wq) {
508 io_req_task_queue_fail(req, -ECANCELED);
509 return;
510 }
511
512 /* init ->work of the whole link before punting */
513 io_prep_async_link(req);
514
515 /*
516 * Not expected to happen, but if we do have a bug where this _can_
517 * happen, catch it here and ensure the request is marked as
518 * canceled. That will make io-wq go through the usual work cancel
519 * procedure rather than attempt to run this request (or create a new
520 * worker for it).
521 */
522 if (WARN_ON_ONCE(!same_thread_group(tctx->task, current)))
523 atomic_or(IO_WQ_WORK_CANCEL, &req->work.flags);
524
525 trace_io_uring_queue_async_work(req, io_wq_is_hashed(&req->work));
526 io_wq_enqueue(tctx->io_wq, &req->work);
527 }
528
io_req_queue_iowq_tw(struct io_kiocb * req,io_tw_token_t tw)529 static void io_req_queue_iowq_tw(struct io_kiocb *req, io_tw_token_t tw)
530 {
531 io_queue_iowq(req);
532 }
533
io_req_queue_iowq(struct io_kiocb * req)534 void io_req_queue_iowq(struct io_kiocb *req)
535 {
536 req->io_task_work.func = io_req_queue_iowq_tw;
537 io_req_task_work_add(req);
538 }
539
io_queue_deferred(struct io_ring_ctx * ctx)540 static __cold noinline void io_queue_deferred(struct io_ring_ctx *ctx)
541 {
542 spin_lock(&ctx->completion_lock);
543 while (!list_empty(&ctx->defer_list)) {
544 struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
545 struct io_defer_entry, list);
546
547 if (req_need_defer(de->req, de->seq))
548 break;
549 list_del_init(&de->list);
550 io_req_task_queue(de->req);
551 kfree(de);
552 }
553 spin_unlock(&ctx->completion_lock);
554 }
555
__io_commit_cqring_flush(struct io_ring_ctx * ctx)556 void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
557 {
558 if (ctx->poll_activated)
559 io_poll_wq_wake(ctx);
560 if (ctx->off_timeout_used)
561 io_flush_timeouts(ctx);
562 if (ctx->drain_active)
563 io_queue_deferred(ctx);
564 if (ctx->has_evfd)
565 io_eventfd_flush_signal(ctx);
566 }
567
__io_cq_lock(struct io_ring_ctx * ctx)568 static inline void __io_cq_lock(struct io_ring_ctx *ctx)
569 {
570 if (!ctx->lockless_cq)
571 spin_lock(&ctx->completion_lock);
572 }
573
io_cq_lock(struct io_ring_ctx * ctx)574 static inline void io_cq_lock(struct io_ring_ctx *ctx)
575 __acquires(ctx->completion_lock)
576 {
577 spin_lock(&ctx->completion_lock);
578 }
579
__io_cq_unlock_post(struct io_ring_ctx * ctx)580 static inline void __io_cq_unlock_post(struct io_ring_ctx *ctx)
581 {
582 io_commit_cqring(ctx);
583 if (!ctx->task_complete) {
584 if (!ctx->lockless_cq)
585 spin_unlock(&ctx->completion_lock);
586 /* IOPOLL rings only need to wake up if it's also SQPOLL */
587 if (!ctx->syscall_iopoll)
588 io_cqring_wake(ctx);
589 }
590 io_commit_cqring_flush(ctx);
591 }
592
io_cq_unlock_post(struct io_ring_ctx * ctx)593 static void io_cq_unlock_post(struct io_ring_ctx *ctx)
594 __releases(ctx->completion_lock)
595 {
596 io_commit_cqring(ctx);
597 spin_unlock(&ctx->completion_lock);
598 io_cqring_wake(ctx);
599 io_commit_cqring_flush(ctx);
600 }
601
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool dying)602 static void __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool dying)
603 {
604 size_t cqe_size = sizeof(struct io_uring_cqe);
605
606 lockdep_assert_held(&ctx->uring_lock);
607
608 /* don't abort if we're dying, entries must get freed */
609 if (!dying && __io_cqring_events(ctx) == ctx->cq_entries)
610 return;
611
612 if (ctx->flags & IORING_SETUP_CQE32)
613 cqe_size <<= 1;
614
615 io_cq_lock(ctx);
616 while (!list_empty(&ctx->cq_overflow_list)) {
617 struct io_uring_cqe *cqe;
618 struct io_overflow_cqe *ocqe;
619
620 ocqe = list_first_entry(&ctx->cq_overflow_list,
621 struct io_overflow_cqe, list);
622
623 if (!dying) {
624 if (!io_get_cqe_overflow(ctx, &cqe, true))
625 break;
626 memcpy(cqe, &ocqe->cqe, cqe_size);
627 }
628 list_del(&ocqe->list);
629 kfree(ocqe);
630
631 /*
632 * For silly syzbot cases that deliberately overflow by huge
633 * amounts, check if we need to resched and drop and
634 * reacquire the locks if so. Nothing real would ever hit this.
635 * Ideally we'd have a non-posting unlock for this, but hard
636 * to care for a non-real case.
637 */
638 if (need_resched()) {
639 ctx->cqe_sentinel = ctx->cqe_cached;
640 io_cq_unlock_post(ctx);
641 mutex_unlock(&ctx->uring_lock);
642 cond_resched();
643 mutex_lock(&ctx->uring_lock);
644 io_cq_lock(ctx);
645 }
646 }
647
648 if (list_empty(&ctx->cq_overflow_list)) {
649 clear_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
650 atomic_andnot(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
651 }
652 io_cq_unlock_post(ctx);
653 }
654
io_cqring_overflow_kill(struct io_ring_ctx * ctx)655 static void io_cqring_overflow_kill(struct io_ring_ctx *ctx)
656 {
657 if (ctx->rings)
658 __io_cqring_overflow_flush(ctx, true);
659 }
660
io_cqring_do_overflow_flush(struct io_ring_ctx * ctx)661 static void io_cqring_do_overflow_flush(struct io_ring_ctx *ctx)
662 {
663 mutex_lock(&ctx->uring_lock);
664 __io_cqring_overflow_flush(ctx, false);
665 mutex_unlock(&ctx->uring_lock);
666 }
667
668 /* must to be called somewhat shortly after putting a request */
io_put_task(struct io_kiocb * req)669 static inline void io_put_task(struct io_kiocb *req)
670 {
671 struct io_uring_task *tctx = req->tctx;
672
673 if (likely(tctx->task == current)) {
674 tctx->cached_refs++;
675 } else {
676 percpu_counter_sub(&tctx->inflight, 1);
677 if (unlikely(atomic_read(&tctx->in_cancel)))
678 wake_up(&tctx->wait);
679 put_task_struct(tctx->task);
680 }
681 }
682
io_task_refs_refill(struct io_uring_task * tctx)683 void io_task_refs_refill(struct io_uring_task *tctx)
684 {
685 unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
686
687 percpu_counter_add(&tctx->inflight, refill);
688 refcount_add(refill, ¤t->usage);
689 tctx->cached_refs += refill;
690 }
691
io_uring_drop_tctx_refs(struct task_struct * task)692 static __cold void io_uring_drop_tctx_refs(struct task_struct *task)
693 {
694 struct io_uring_task *tctx = task->io_uring;
695 unsigned int refs = tctx->cached_refs;
696
697 if (refs) {
698 tctx->cached_refs = 0;
699 percpu_counter_sub(&tctx->inflight, refs);
700 put_task_struct_many(task, refs);
701 }
702 }
703
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags,u64 extra1,u64 extra2)704 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
705 s32 res, u32 cflags, u64 extra1, u64 extra2)
706 {
707 struct io_overflow_cqe *ocqe;
708 size_t ocq_size = sizeof(struct io_overflow_cqe);
709 bool is_cqe32 = (ctx->flags & IORING_SETUP_CQE32);
710
711 lockdep_assert_held(&ctx->completion_lock);
712
713 if (is_cqe32)
714 ocq_size += sizeof(struct io_uring_cqe);
715
716 ocqe = kmalloc(ocq_size, GFP_ATOMIC | __GFP_ACCOUNT);
717 trace_io_uring_cqe_overflow(ctx, user_data, res, cflags, ocqe);
718 if (!ocqe) {
719 /*
720 * If we're in ring overflow flush mode, or in task cancel mode,
721 * or cannot allocate an overflow entry, then we need to drop it
722 * on the floor.
723 */
724 io_account_cq_overflow(ctx);
725 set_bit(IO_CHECK_CQ_DROPPED_BIT, &ctx->check_cq);
726 return false;
727 }
728 if (list_empty(&ctx->cq_overflow_list)) {
729 set_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq);
730 atomic_or(IORING_SQ_CQ_OVERFLOW, &ctx->rings->sq_flags);
731
732 }
733 ocqe->cqe.user_data = user_data;
734 ocqe->cqe.res = res;
735 ocqe->cqe.flags = cflags;
736 if (is_cqe32) {
737 ocqe->cqe.big_cqe[0] = extra1;
738 ocqe->cqe.big_cqe[1] = extra2;
739 }
740 list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
741 return true;
742 }
743
io_req_cqe_overflow(struct io_kiocb * req)744 static void io_req_cqe_overflow(struct io_kiocb *req)
745 {
746 io_cqring_event_overflow(req->ctx, req->cqe.user_data,
747 req->cqe.res, req->cqe.flags,
748 req->big_cqe.extra1, req->big_cqe.extra2);
749 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
750 }
751
752 /*
753 * writes to the cq entry need to come after reading head; the
754 * control dependency is enough as we're using WRITE_ONCE to
755 * fill the cq entry
756 */
io_cqe_cache_refill(struct io_ring_ctx * ctx,bool overflow)757 bool io_cqe_cache_refill(struct io_ring_ctx *ctx, bool overflow)
758 {
759 struct io_rings *rings = ctx->rings;
760 unsigned int off = ctx->cached_cq_tail & (ctx->cq_entries - 1);
761 unsigned int free, queued, len;
762
763 /*
764 * Posting into the CQ when there are pending overflowed CQEs may break
765 * ordering guarantees, which will affect links, F_MORE users and more.
766 * Force overflow the completion.
767 */
768 if (!overflow && (ctx->check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT)))
769 return false;
770
771 /* userspace may cheat modifying the tail, be safe and do min */
772 queued = min(__io_cqring_events(ctx), ctx->cq_entries);
773 free = ctx->cq_entries - queued;
774 /* we need a contiguous range, limit based on the current array offset */
775 len = min(free, ctx->cq_entries - off);
776 if (!len)
777 return false;
778
779 if (ctx->flags & IORING_SETUP_CQE32) {
780 off <<= 1;
781 len <<= 1;
782 }
783
784 ctx->cqe_cached = &rings->cqes[off];
785 ctx->cqe_sentinel = ctx->cqe_cached + len;
786 return true;
787 }
788
io_fill_cqe_aux(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)789 static bool io_fill_cqe_aux(struct io_ring_ctx *ctx, u64 user_data, s32 res,
790 u32 cflags)
791 {
792 struct io_uring_cqe *cqe;
793
794 ctx->cq_extra++;
795
796 /*
797 * If we can't get a cq entry, userspace overflowed the
798 * submission (by quite a lot). Increment the overflow count in
799 * the ring.
800 */
801 if (likely(io_get_cqe(ctx, &cqe))) {
802 WRITE_ONCE(cqe->user_data, user_data);
803 WRITE_ONCE(cqe->res, res);
804 WRITE_ONCE(cqe->flags, cflags);
805
806 if (ctx->flags & IORING_SETUP_CQE32) {
807 WRITE_ONCE(cqe->big_cqe[0], 0);
808 WRITE_ONCE(cqe->big_cqe[1], 0);
809 }
810
811 trace_io_uring_complete(ctx, NULL, cqe);
812 return true;
813 }
814 return false;
815 }
816
io_post_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)817 bool io_post_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
818 {
819 bool filled;
820
821 io_cq_lock(ctx);
822 filled = io_fill_cqe_aux(ctx, user_data, res, cflags);
823 if (!filled)
824 filled = io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
825 io_cq_unlock_post(ctx);
826 return filled;
827 }
828
829 /*
830 * Must be called from inline task_work so we now a flush will happen later,
831 * and obviously with ctx->uring_lock held (tw always has that).
832 */
io_add_aux_cqe(struct io_ring_ctx * ctx,u64 user_data,s32 res,u32 cflags)833 void io_add_aux_cqe(struct io_ring_ctx *ctx, u64 user_data, s32 res, u32 cflags)
834 {
835 if (!io_fill_cqe_aux(ctx, user_data, res, cflags)) {
836 spin_lock(&ctx->completion_lock);
837 io_cqring_event_overflow(ctx, user_data, res, cflags, 0, 0);
838 spin_unlock(&ctx->completion_lock);
839 }
840 ctx->submit_state.cq_flush = true;
841 }
842
843 /*
844 * A helper for multishot requests posting additional CQEs.
845 * Should only be used from a task_work including IO_URING_F_MULTISHOT.
846 */
io_req_post_cqe(struct io_kiocb * req,s32 res,u32 cflags)847 bool io_req_post_cqe(struct io_kiocb *req, s32 res, u32 cflags)
848 {
849 struct io_ring_ctx *ctx = req->ctx;
850 bool posted;
851
852 /*
853 * If multishot has already posted deferred completions, ensure that
854 * those are flushed first before posting this one. If not, CQEs
855 * could get reordered.
856 */
857 if (!wq_list_empty(&ctx->submit_state.compl_reqs))
858 __io_submit_flush_completions(ctx);
859
860 lockdep_assert(!io_wq_current_is_worker());
861 lockdep_assert_held(&ctx->uring_lock);
862
863 if (!ctx->lockless_cq) {
864 spin_lock(&ctx->completion_lock);
865 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
866 spin_unlock(&ctx->completion_lock);
867 } else {
868 posted = io_fill_cqe_aux(ctx, req->cqe.user_data, res, cflags);
869 }
870
871 ctx->submit_state.cq_flush = true;
872 return posted;
873 }
874
io_req_complete_post(struct io_kiocb * req,unsigned issue_flags)875 static void io_req_complete_post(struct io_kiocb *req, unsigned issue_flags)
876 {
877 struct io_ring_ctx *ctx = req->ctx;
878 bool completed = true;
879
880 /*
881 * All execution paths but io-wq use the deferred completions by
882 * passing IO_URING_F_COMPLETE_DEFER and thus should not end up here.
883 */
884 if (WARN_ON_ONCE(!(issue_flags & IO_URING_F_IOWQ)))
885 return;
886
887 /*
888 * Handle special CQ sync cases via task_work. DEFER_TASKRUN requires
889 * the submitter task context, IOPOLL protects with uring_lock.
890 */
891 if (ctx->lockless_cq || (req->flags & REQ_F_REISSUE)) {
892 defer_complete:
893 req->io_task_work.func = io_req_task_complete;
894 io_req_task_work_add(req);
895 return;
896 }
897
898 io_cq_lock(ctx);
899 if (!(req->flags & REQ_F_CQE_SKIP))
900 completed = io_fill_cqe_req(ctx, req);
901 io_cq_unlock_post(ctx);
902
903 if (!completed)
904 goto defer_complete;
905
906 /*
907 * We don't free the request here because we know it's called from
908 * io-wq only, which holds a reference, so it cannot be the last put.
909 */
910 req_ref_put(req);
911 }
912
io_req_defer_failed(struct io_kiocb * req,s32 res)913 void io_req_defer_failed(struct io_kiocb *req, s32 res)
914 __must_hold(&ctx->uring_lock)
915 {
916 const struct io_cold_def *def = &io_cold_defs[req->opcode];
917
918 lockdep_assert_held(&req->ctx->uring_lock);
919
920 req_set_fail(req);
921 io_req_set_res(req, res, io_put_kbuf(req, res, IO_URING_F_UNLOCKED));
922 if (def->fail)
923 def->fail(req);
924 io_req_complete_defer(req);
925 }
926
927 /*
928 * Don't initialise the fields below on every allocation, but do that in
929 * advance and keep them valid across allocations.
930 */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)931 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
932 {
933 req->ctx = ctx;
934 req->buf_node = NULL;
935 req->file_node = NULL;
936 req->link = NULL;
937 req->async_data = NULL;
938 /* not necessary, but safer to zero */
939 memset(&req->cqe, 0, sizeof(req->cqe));
940 memset(&req->big_cqe, 0, sizeof(req->big_cqe));
941 }
942
943 /*
944 * A request might get retired back into the request caches even before opcode
945 * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
946 * Because of that, io_alloc_req() should be called only under ->uring_lock
947 * and with extra caution to not get a request that is still worked on.
948 */
__io_alloc_req_refill(struct io_ring_ctx * ctx)949 __cold bool __io_alloc_req_refill(struct io_ring_ctx *ctx)
950 __must_hold(&ctx->uring_lock)
951 {
952 gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
953 void *reqs[IO_REQ_ALLOC_BATCH];
954 int ret;
955
956 ret = kmem_cache_alloc_bulk(req_cachep, gfp, ARRAY_SIZE(reqs), reqs);
957
958 /*
959 * Bulk alloc is all-or-nothing. If we fail to get a batch,
960 * retry single alloc to be on the safe side.
961 */
962 if (unlikely(ret <= 0)) {
963 reqs[0] = kmem_cache_alloc(req_cachep, gfp);
964 if (!reqs[0])
965 return false;
966 ret = 1;
967 }
968
969 percpu_ref_get_many(&ctx->refs, ret);
970 while (ret--) {
971 struct io_kiocb *req = reqs[ret];
972
973 io_preinit_req(req, ctx);
974 io_req_add_to_cache(req, ctx);
975 }
976 return true;
977 }
978
io_free_req(struct io_kiocb * req)979 __cold void io_free_req(struct io_kiocb *req)
980 {
981 /* refs were already put, restore them for io_req_task_complete() */
982 req->flags &= ~REQ_F_REFCOUNT;
983 /* we only want to free it, don't post CQEs */
984 req->flags |= REQ_F_CQE_SKIP;
985 req->io_task_work.func = io_req_task_complete;
986 io_req_task_work_add(req);
987 }
988
__io_req_find_next_prep(struct io_kiocb * req)989 static void __io_req_find_next_prep(struct io_kiocb *req)
990 {
991 struct io_ring_ctx *ctx = req->ctx;
992
993 spin_lock(&ctx->completion_lock);
994 io_disarm_next(req);
995 spin_unlock(&ctx->completion_lock);
996 }
997
io_req_find_next(struct io_kiocb * req)998 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
999 {
1000 struct io_kiocb *nxt;
1001
1002 /*
1003 * If LINK is set, we have dependent requests in this chain. If we
1004 * didn't fail this request, queue the first one up, moving any other
1005 * dependencies to the next request. In case of failure, fail the rest
1006 * of the chain.
1007 */
1008 if (unlikely(req->flags & IO_DISARM_MASK))
1009 __io_req_find_next_prep(req);
1010 nxt = req->link;
1011 req->link = NULL;
1012 return nxt;
1013 }
1014
ctx_flush_and_put(struct io_ring_ctx * ctx,io_tw_token_t tw)1015 static void ctx_flush_and_put(struct io_ring_ctx *ctx, io_tw_token_t tw)
1016 {
1017 if (!ctx)
1018 return;
1019 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1020 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1021
1022 io_submit_flush_completions(ctx);
1023 mutex_unlock(&ctx->uring_lock);
1024 percpu_ref_put(&ctx->refs);
1025 }
1026
1027 /*
1028 * Run queued task_work, returning the number of entries processed in *count.
1029 * If more entries than max_entries are available, stop processing once this
1030 * is reached and return the rest of the list.
1031 */
io_handle_tw_list(struct llist_node * node,unsigned int * count,unsigned int max_entries)1032 struct llist_node *io_handle_tw_list(struct llist_node *node,
1033 unsigned int *count,
1034 unsigned int max_entries)
1035 {
1036 struct io_ring_ctx *ctx = NULL;
1037 struct io_tw_state ts = { };
1038
1039 do {
1040 struct llist_node *next = node->next;
1041 struct io_kiocb *req = container_of(node, struct io_kiocb,
1042 io_task_work.node);
1043
1044 if (req->ctx != ctx) {
1045 ctx_flush_and_put(ctx, ts);
1046 ctx = req->ctx;
1047 mutex_lock(&ctx->uring_lock);
1048 percpu_ref_get(&ctx->refs);
1049 }
1050 INDIRECT_CALL_2(req->io_task_work.func,
1051 io_poll_task_func, io_req_rw_complete,
1052 req, ts);
1053 node = next;
1054 (*count)++;
1055 if (unlikely(need_resched())) {
1056 ctx_flush_and_put(ctx, ts);
1057 ctx = NULL;
1058 cond_resched();
1059 }
1060 } while (node && *count < max_entries);
1061
1062 ctx_flush_and_put(ctx, ts);
1063 return node;
1064 }
1065
__io_fallback_tw(struct llist_node * node,bool sync)1066 static __cold void __io_fallback_tw(struct llist_node *node, bool sync)
1067 {
1068 struct io_ring_ctx *last_ctx = NULL;
1069 struct io_kiocb *req;
1070
1071 while (node) {
1072 req = container_of(node, struct io_kiocb, io_task_work.node);
1073 node = node->next;
1074 if (last_ctx != req->ctx) {
1075 if (last_ctx) {
1076 if (sync)
1077 flush_delayed_work(&last_ctx->fallback_work);
1078 percpu_ref_put(&last_ctx->refs);
1079 }
1080 last_ctx = req->ctx;
1081 percpu_ref_get(&last_ctx->refs);
1082 }
1083 if (llist_add(&req->io_task_work.node, &last_ctx->fallback_llist))
1084 schedule_delayed_work(&last_ctx->fallback_work, 1);
1085 }
1086
1087 if (last_ctx) {
1088 if (sync)
1089 flush_delayed_work(&last_ctx->fallback_work);
1090 percpu_ref_put(&last_ctx->refs);
1091 }
1092 }
1093
io_fallback_tw(struct io_uring_task * tctx,bool sync)1094 static void io_fallback_tw(struct io_uring_task *tctx, bool sync)
1095 {
1096 struct llist_node *node = llist_del_all(&tctx->task_list);
1097
1098 __io_fallback_tw(node, sync);
1099 }
1100
tctx_task_work_run(struct io_uring_task * tctx,unsigned int max_entries,unsigned int * count)1101 struct llist_node *tctx_task_work_run(struct io_uring_task *tctx,
1102 unsigned int max_entries,
1103 unsigned int *count)
1104 {
1105 struct llist_node *node;
1106
1107 if (unlikely(current->flags & PF_EXITING)) {
1108 io_fallback_tw(tctx, true);
1109 return NULL;
1110 }
1111
1112 node = llist_del_all(&tctx->task_list);
1113 if (node) {
1114 node = llist_reverse_order(node);
1115 node = io_handle_tw_list(node, count, max_entries);
1116 }
1117
1118 /* relaxed read is enough as only the task itself sets ->in_cancel */
1119 if (unlikely(atomic_read(&tctx->in_cancel)))
1120 io_uring_drop_tctx_refs(current);
1121
1122 trace_io_uring_task_work_run(tctx, *count);
1123 return node;
1124 }
1125
tctx_task_work(struct callback_head * cb)1126 void tctx_task_work(struct callback_head *cb)
1127 {
1128 struct io_uring_task *tctx;
1129 struct llist_node *ret;
1130 unsigned int count = 0;
1131
1132 tctx = container_of(cb, struct io_uring_task, task_work);
1133 ret = tctx_task_work_run(tctx, UINT_MAX, &count);
1134 /* can't happen */
1135 WARN_ON_ONCE(ret);
1136 }
1137
io_req_local_work_add(struct io_kiocb * req,unsigned flags)1138 static void io_req_local_work_add(struct io_kiocb *req, unsigned flags)
1139 {
1140 struct io_ring_ctx *ctx = req->ctx;
1141 unsigned nr_wait, nr_tw, nr_tw_prev;
1142 struct llist_node *head;
1143
1144 /* See comment above IO_CQ_WAKE_INIT */
1145 BUILD_BUG_ON(IO_CQ_WAKE_FORCE <= IORING_MAX_CQ_ENTRIES);
1146
1147 /*
1148 * We don't know how many reuqests is there in the link and whether
1149 * they can even be queued lazily, fall back to non-lazy.
1150 */
1151 if (req->flags & IO_REQ_LINK_FLAGS)
1152 flags &= ~IOU_F_TWQ_LAZY_WAKE;
1153
1154 guard(rcu)();
1155
1156 head = READ_ONCE(ctx->work_llist.first);
1157 do {
1158 nr_tw_prev = 0;
1159 if (head) {
1160 struct io_kiocb *first_req = container_of(head,
1161 struct io_kiocb,
1162 io_task_work.node);
1163 /*
1164 * Might be executed at any moment, rely on
1165 * SLAB_TYPESAFE_BY_RCU to keep it alive.
1166 */
1167 nr_tw_prev = READ_ONCE(first_req->nr_tw);
1168 }
1169
1170 /*
1171 * Theoretically, it can overflow, but that's fine as one of
1172 * previous adds should've tried to wake the task.
1173 */
1174 nr_tw = nr_tw_prev + 1;
1175 if (!(flags & IOU_F_TWQ_LAZY_WAKE))
1176 nr_tw = IO_CQ_WAKE_FORCE;
1177
1178 req->nr_tw = nr_tw;
1179 req->io_task_work.node.next = head;
1180 } while (!try_cmpxchg(&ctx->work_llist.first, &head,
1181 &req->io_task_work.node));
1182
1183 /*
1184 * cmpxchg implies a full barrier, which pairs with the barrier
1185 * in set_current_state() on the io_cqring_wait() side. It's used
1186 * to ensure that either we see updated ->cq_wait_nr, or waiters
1187 * going to sleep will observe the work added to the list, which
1188 * is similar to the wait/wawke task state sync.
1189 */
1190
1191 if (!head) {
1192 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1193 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1194 if (ctx->has_evfd)
1195 io_eventfd_signal(ctx);
1196 }
1197
1198 nr_wait = atomic_read(&ctx->cq_wait_nr);
1199 /* not enough or no one is waiting */
1200 if (nr_tw < nr_wait)
1201 return;
1202 /* the previous add has already woken it up */
1203 if (nr_tw_prev >= nr_wait)
1204 return;
1205 wake_up_state(ctx->submitter_task, TASK_INTERRUPTIBLE);
1206 }
1207
io_req_normal_work_add(struct io_kiocb * req)1208 static void io_req_normal_work_add(struct io_kiocb *req)
1209 {
1210 struct io_uring_task *tctx = req->tctx;
1211 struct io_ring_ctx *ctx = req->ctx;
1212
1213 /* task_work already pending, we're done */
1214 if (!llist_add(&req->io_task_work.node, &tctx->task_list))
1215 return;
1216
1217 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1218 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1219
1220 /* SQPOLL doesn't need the task_work added, it'll run it itself */
1221 if (ctx->flags & IORING_SETUP_SQPOLL) {
1222 __set_notify_signal(tctx->task);
1223 return;
1224 }
1225
1226 if (likely(!task_work_add(tctx->task, &tctx->task_work, ctx->notify_method)))
1227 return;
1228
1229 io_fallback_tw(tctx, false);
1230 }
1231
__io_req_task_work_add(struct io_kiocb * req,unsigned flags)1232 void __io_req_task_work_add(struct io_kiocb *req, unsigned flags)
1233 {
1234 if (req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)
1235 io_req_local_work_add(req, flags);
1236 else
1237 io_req_normal_work_add(req);
1238 }
1239
io_req_task_work_add_remote(struct io_kiocb * req,unsigned flags)1240 void io_req_task_work_add_remote(struct io_kiocb *req, unsigned flags)
1241 {
1242 if (WARN_ON_ONCE(!(req->ctx->flags & IORING_SETUP_DEFER_TASKRUN)))
1243 return;
1244 __io_req_task_work_add(req, flags);
1245 }
1246
io_move_task_work_from_local(struct io_ring_ctx * ctx)1247 static void __cold io_move_task_work_from_local(struct io_ring_ctx *ctx)
1248 {
1249 struct llist_node *node = llist_del_all(&ctx->work_llist);
1250
1251 __io_fallback_tw(node, false);
1252 node = llist_del_all(&ctx->retry_llist);
1253 __io_fallback_tw(node, false);
1254 }
1255
io_run_local_work_continue(struct io_ring_ctx * ctx,int events,int min_events)1256 static bool io_run_local_work_continue(struct io_ring_ctx *ctx, int events,
1257 int min_events)
1258 {
1259 if (!io_local_work_pending(ctx))
1260 return false;
1261 if (events < min_events)
1262 return true;
1263 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1264 atomic_or(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1265 return false;
1266 }
1267
__io_run_local_work_loop(struct llist_node ** node,io_tw_token_t tw,int events)1268 static int __io_run_local_work_loop(struct llist_node **node,
1269 io_tw_token_t tw,
1270 int events)
1271 {
1272 int ret = 0;
1273
1274 while (*node) {
1275 struct llist_node *next = (*node)->next;
1276 struct io_kiocb *req = container_of(*node, struct io_kiocb,
1277 io_task_work.node);
1278 INDIRECT_CALL_2(req->io_task_work.func,
1279 io_poll_task_func, io_req_rw_complete,
1280 req, tw);
1281 *node = next;
1282 if (++ret >= events)
1283 break;
1284 }
1285
1286 return ret;
1287 }
1288
__io_run_local_work(struct io_ring_ctx * ctx,io_tw_token_t tw,int min_events,int max_events)1289 static int __io_run_local_work(struct io_ring_ctx *ctx, io_tw_token_t tw,
1290 int min_events, int max_events)
1291 {
1292 struct llist_node *node;
1293 unsigned int loops = 0;
1294 int ret = 0;
1295
1296 if (WARN_ON_ONCE(ctx->submitter_task != current))
1297 return -EEXIST;
1298 if (ctx->flags & IORING_SETUP_TASKRUN_FLAG)
1299 atomic_andnot(IORING_SQ_TASKRUN, &ctx->rings->sq_flags);
1300 again:
1301 min_events -= ret;
1302 ret = __io_run_local_work_loop(&ctx->retry_llist.first, tw, max_events);
1303 if (ctx->retry_llist.first)
1304 goto retry_done;
1305
1306 /*
1307 * llists are in reverse order, flip it back the right way before
1308 * running the pending items.
1309 */
1310 node = llist_reverse_order(llist_del_all(&ctx->work_llist));
1311 ret += __io_run_local_work_loop(&node, tw, max_events - ret);
1312 ctx->retry_llist.first = node;
1313 loops++;
1314
1315 if (io_run_local_work_continue(ctx, ret, min_events))
1316 goto again;
1317 retry_done:
1318 io_submit_flush_completions(ctx);
1319 if (io_run_local_work_continue(ctx, ret, min_events))
1320 goto again;
1321
1322 trace_io_uring_local_work_run(ctx, ret, loops);
1323 return ret;
1324 }
1325
io_run_local_work_locked(struct io_ring_ctx * ctx,int min_events)1326 static inline int io_run_local_work_locked(struct io_ring_ctx *ctx,
1327 int min_events)
1328 {
1329 struct io_tw_state ts = {};
1330
1331 if (!io_local_work_pending(ctx))
1332 return 0;
1333 return __io_run_local_work(ctx, ts, min_events,
1334 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
1335 }
1336
io_run_local_work(struct io_ring_ctx * ctx,int min_events,int max_events)1337 static int io_run_local_work(struct io_ring_ctx *ctx, int min_events,
1338 int max_events)
1339 {
1340 struct io_tw_state ts = {};
1341 int ret;
1342
1343 mutex_lock(&ctx->uring_lock);
1344 ret = __io_run_local_work(ctx, ts, min_events, max_events);
1345 mutex_unlock(&ctx->uring_lock);
1346 return ret;
1347 }
1348
io_req_task_cancel(struct io_kiocb * req,io_tw_token_t tw)1349 static void io_req_task_cancel(struct io_kiocb *req, io_tw_token_t tw)
1350 {
1351 io_tw_lock(req->ctx, tw);
1352 io_req_defer_failed(req, req->cqe.res);
1353 }
1354
io_req_task_submit(struct io_kiocb * req,io_tw_token_t tw)1355 void io_req_task_submit(struct io_kiocb *req, io_tw_token_t tw)
1356 {
1357 io_tw_lock(req->ctx, tw);
1358 if (unlikely(io_should_terminate_tw()))
1359 io_req_defer_failed(req, -EFAULT);
1360 else if (req->flags & REQ_F_FORCE_ASYNC)
1361 io_queue_iowq(req);
1362 else
1363 io_queue_sqe(req);
1364 }
1365
io_req_task_queue_fail(struct io_kiocb * req,int ret)1366 void io_req_task_queue_fail(struct io_kiocb *req, int ret)
1367 {
1368 io_req_set_res(req, ret, 0);
1369 req->io_task_work.func = io_req_task_cancel;
1370 io_req_task_work_add(req);
1371 }
1372
io_req_task_queue(struct io_kiocb * req)1373 void io_req_task_queue(struct io_kiocb *req)
1374 {
1375 req->io_task_work.func = io_req_task_submit;
1376 io_req_task_work_add(req);
1377 }
1378
io_queue_next(struct io_kiocb * req)1379 void io_queue_next(struct io_kiocb *req)
1380 {
1381 struct io_kiocb *nxt = io_req_find_next(req);
1382
1383 if (nxt)
1384 io_req_task_queue(nxt);
1385 }
1386
io_free_batch_list(struct io_ring_ctx * ctx,struct io_wq_work_node * node)1387 static void io_free_batch_list(struct io_ring_ctx *ctx,
1388 struct io_wq_work_node *node)
1389 __must_hold(&ctx->uring_lock)
1390 {
1391 do {
1392 struct io_kiocb *req = container_of(node, struct io_kiocb,
1393 comp_list);
1394
1395 if (unlikely(req->flags & IO_REQ_CLEAN_SLOW_FLAGS)) {
1396 if (req->flags & REQ_F_REISSUE) {
1397 node = req->comp_list.next;
1398 req->flags &= ~REQ_F_REISSUE;
1399 io_queue_iowq(req);
1400 continue;
1401 }
1402 if (req->flags & REQ_F_REFCOUNT) {
1403 node = req->comp_list.next;
1404 if (!req_ref_put_and_test(req))
1405 continue;
1406 }
1407 if ((req->flags & REQ_F_POLLED) && req->apoll) {
1408 struct async_poll *apoll = req->apoll;
1409
1410 if (apoll->double_poll)
1411 kfree(apoll->double_poll);
1412 io_cache_free(&ctx->apoll_cache, apoll);
1413 req->flags &= ~REQ_F_POLLED;
1414 }
1415 if (req->flags & IO_REQ_LINK_FLAGS)
1416 io_queue_next(req);
1417 if (unlikely(req->flags & IO_REQ_CLEAN_FLAGS))
1418 io_clean_op(req);
1419 }
1420 io_put_file(req);
1421 io_req_put_rsrc_nodes(req);
1422 io_put_task(req);
1423
1424 node = req->comp_list.next;
1425 io_req_add_to_cache(req, ctx);
1426 } while (node);
1427 }
1428
__io_submit_flush_completions(struct io_ring_ctx * ctx)1429 void __io_submit_flush_completions(struct io_ring_ctx *ctx)
1430 __must_hold(&ctx->uring_lock)
1431 {
1432 struct io_submit_state *state = &ctx->submit_state;
1433 struct io_wq_work_node *node;
1434
1435 __io_cq_lock(ctx);
1436 __wq_list_for_each(node, &state->compl_reqs) {
1437 struct io_kiocb *req = container_of(node, struct io_kiocb,
1438 comp_list);
1439
1440 /*
1441 * Requests marked with REQUEUE should not post a CQE, they
1442 * will go through the io-wq retry machinery and post one
1443 * later.
1444 */
1445 if (!(req->flags & (REQ_F_CQE_SKIP | REQ_F_REISSUE)) &&
1446 unlikely(!io_fill_cqe_req(ctx, req))) {
1447 if (ctx->lockless_cq) {
1448 spin_lock(&ctx->completion_lock);
1449 io_req_cqe_overflow(req);
1450 spin_unlock(&ctx->completion_lock);
1451 } else {
1452 io_req_cqe_overflow(req);
1453 }
1454 }
1455 }
1456 __io_cq_unlock_post(ctx);
1457
1458 if (!wq_list_empty(&state->compl_reqs)) {
1459 io_free_batch_list(ctx, state->compl_reqs.first);
1460 INIT_WQ_LIST(&state->compl_reqs);
1461 }
1462 ctx->submit_state.cq_flush = false;
1463 }
1464
io_cqring_events(struct io_ring_ctx * ctx)1465 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
1466 {
1467 /* See comment at the top of this file */
1468 smp_rmb();
1469 return __io_cqring_events(ctx);
1470 }
1471
1472 /*
1473 * We can't just wait for polled events to come to us, we have to actively
1474 * find and complete them.
1475 */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)1476 static __cold void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
1477 {
1478 if (!(ctx->flags & IORING_SETUP_IOPOLL))
1479 return;
1480
1481 mutex_lock(&ctx->uring_lock);
1482 while (!wq_list_empty(&ctx->iopoll_list)) {
1483 /* let it sleep and repeat later if can't complete a request */
1484 if (io_do_iopoll(ctx, true) == 0)
1485 break;
1486 /*
1487 * Ensure we allow local-to-the-cpu processing to take place,
1488 * in this case we need to ensure that we reap all events.
1489 * Also let task_work, etc. to progress by releasing the mutex
1490 */
1491 if (need_resched()) {
1492 mutex_unlock(&ctx->uring_lock);
1493 cond_resched();
1494 mutex_lock(&ctx->uring_lock);
1495 }
1496 }
1497 mutex_unlock(&ctx->uring_lock);
1498 }
1499
io_iopoll_check(struct io_ring_ctx * ctx,unsigned int min_events)1500 static int io_iopoll_check(struct io_ring_ctx *ctx, unsigned int min_events)
1501 {
1502 unsigned int nr_events = 0;
1503 unsigned long check_cq;
1504
1505 min_events = min(min_events, ctx->cq_entries);
1506
1507 lockdep_assert_held(&ctx->uring_lock);
1508
1509 if (!io_allowed_run_tw(ctx))
1510 return -EEXIST;
1511
1512 check_cq = READ_ONCE(ctx->check_cq);
1513 if (unlikely(check_cq)) {
1514 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
1515 __io_cqring_overflow_flush(ctx, false);
1516 /*
1517 * Similarly do not spin if we have not informed the user of any
1518 * dropped CQE.
1519 */
1520 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT))
1521 return -EBADR;
1522 }
1523 /*
1524 * Don't enter poll loop if we already have events pending.
1525 * If we do, we can potentially be spinning for commands that
1526 * already triggered a CQE (eg in error).
1527 */
1528 if (io_cqring_events(ctx))
1529 return 0;
1530
1531 do {
1532 int ret = 0;
1533
1534 /*
1535 * If a submit got punted to a workqueue, we can have the
1536 * application entering polling for a command before it gets
1537 * issued. That app will hold the uring_lock for the duration
1538 * of the poll right here, so we need to take a breather every
1539 * now and then to ensure that the issue has a chance to add
1540 * the poll to the issued list. Otherwise we can spin here
1541 * forever, while the workqueue is stuck trying to acquire the
1542 * very same mutex.
1543 */
1544 if (wq_list_empty(&ctx->iopoll_list) ||
1545 io_task_work_pending(ctx)) {
1546 u32 tail = ctx->cached_cq_tail;
1547
1548 (void) io_run_local_work_locked(ctx, min_events);
1549
1550 if (task_work_pending(current) ||
1551 wq_list_empty(&ctx->iopoll_list)) {
1552 mutex_unlock(&ctx->uring_lock);
1553 io_run_task_work();
1554 mutex_lock(&ctx->uring_lock);
1555 }
1556 /* some requests don't go through iopoll_list */
1557 if (tail != ctx->cached_cq_tail ||
1558 wq_list_empty(&ctx->iopoll_list))
1559 break;
1560 }
1561 ret = io_do_iopoll(ctx, !min_events);
1562 if (unlikely(ret < 0))
1563 return ret;
1564
1565 if (task_sigpending(current))
1566 return -EINTR;
1567 if (need_resched())
1568 break;
1569
1570 nr_events += ret;
1571 } while (nr_events < min_events);
1572
1573 return 0;
1574 }
1575
io_req_task_complete(struct io_kiocb * req,io_tw_token_t tw)1576 void io_req_task_complete(struct io_kiocb *req, io_tw_token_t tw)
1577 {
1578 io_req_complete_defer(req);
1579 }
1580
1581 /*
1582 * After the iocb has been issued, it's safe to be found on the poll list.
1583 * Adding the kiocb to the list AFTER submission ensures that we don't
1584 * find it from a io_do_iopoll() thread before the issuer is done
1585 * accessing the kiocb cookie.
1586 */
io_iopoll_req_issued(struct io_kiocb * req,unsigned int issue_flags)1587 static void io_iopoll_req_issued(struct io_kiocb *req, unsigned int issue_flags)
1588 {
1589 struct io_ring_ctx *ctx = req->ctx;
1590 const bool needs_lock = issue_flags & IO_URING_F_UNLOCKED;
1591
1592 /* workqueue context doesn't hold uring_lock, grab it now */
1593 if (unlikely(needs_lock))
1594 mutex_lock(&ctx->uring_lock);
1595
1596 /*
1597 * Track whether we have multiple files in our lists. This will impact
1598 * how we do polling eventually, not spinning if we're on potentially
1599 * different devices.
1600 */
1601 if (wq_list_empty(&ctx->iopoll_list)) {
1602 ctx->poll_multi_queue = false;
1603 } else if (!ctx->poll_multi_queue) {
1604 struct io_kiocb *list_req;
1605
1606 list_req = container_of(ctx->iopoll_list.first, struct io_kiocb,
1607 comp_list);
1608 if (list_req->file != req->file)
1609 ctx->poll_multi_queue = true;
1610 }
1611
1612 /*
1613 * For fast devices, IO may have already completed. If it has, add
1614 * it to the front so we find it first.
1615 */
1616 if (READ_ONCE(req->iopoll_completed))
1617 wq_list_add_head(&req->comp_list, &ctx->iopoll_list);
1618 else
1619 wq_list_add_tail(&req->comp_list, &ctx->iopoll_list);
1620
1621 if (unlikely(needs_lock)) {
1622 /*
1623 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
1624 * in sq thread task context or in io worker task context. If
1625 * current task context is sq thread, we don't need to check
1626 * whether should wake up sq thread.
1627 */
1628 if ((ctx->flags & IORING_SETUP_SQPOLL) &&
1629 wq_has_sleeper(&ctx->sq_data->wait))
1630 wake_up(&ctx->sq_data->wait);
1631
1632 mutex_unlock(&ctx->uring_lock);
1633 }
1634 }
1635
io_file_get_flags(struct file * file)1636 io_req_flags_t io_file_get_flags(struct file *file)
1637 {
1638 io_req_flags_t res = 0;
1639
1640 BUILD_BUG_ON(REQ_F_ISREG_BIT != REQ_F_SUPPORT_NOWAIT_BIT + 1);
1641
1642 if (S_ISREG(file_inode(file)->i_mode))
1643 res |= REQ_F_ISREG;
1644 if ((file->f_flags & O_NONBLOCK) || (file->f_mode & FMODE_NOWAIT))
1645 res |= REQ_F_SUPPORT_NOWAIT;
1646 return res;
1647 }
1648
io_get_sequence(struct io_kiocb * req)1649 static u32 io_get_sequence(struct io_kiocb *req)
1650 {
1651 u32 seq = req->ctx->cached_sq_head;
1652 struct io_kiocb *cur;
1653
1654 /* need original cached_sq_head, but it was increased for each req */
1655 io_for_each_link(cur, req)
1656 seq--;
1657 return seq;
1658 }
1659
io_drain_req(struct io_kiocb * req)1660 static __cold void io_drain_req(struct io_kiocb *req)
1661 __must_hold(&ctx->uring_lock)
1662 {
1663 struct io_ring_ctx *ctx = req->ctx;
1664 struct io_defer_entry *de;
1665 int ret;
1666 u32 seq = io_get_sequence(req);
1667
1668 /* Still need defer if there is pending req in defer list. */
1669 spin_lock(&ctx->completion_lock);
1670 if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list)) {
1671 spin_unlock(&ctx->completion_lock);
1672 queue:
1673 ctx->drain_active = false;
1674 io_req_task_queue(req);
1675 return;
1676 }
1677 spin_unlock(&ctx->completion_lock);
1678
1679 io_prep_async_link(req);
1680 de = kmalloc(sizeof(*de), GFP_KERNEL);
1681 if (!de) {
1682 ret = -ENOMEM;
1683 io_req_defer_failed(req, ret);
1684 return;
1685 }
1686
1687 spin_lock(&ctx->completion_lock);
1688 if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
1689 spin_unlock(&ctx->completion_lock);
1690 kfree(de);
1691 goto queue;
1692 }
1693
1694 trace_io_uring_defer(req);
1695 de->req = req;
1696 de->seq = seq;
1697 list_add_tail(&de->list, &ctx->defer_list);
1698 spin_unlock(&ctx->completion_lock);
1699 }
1700
io_assign_file(struct io_kiocb * req,const struct io_issue_def * def,unsigned int issue_flags)1701 static bool io_assign_file(struct io_kiocb *req, const struct io_issue_def *def,
1702 unsigned int issue_flags)
1703 {
1704 if (req->file || !def->needs_file)
1705 return true;
1706
1707 if (req->flags & REQ_F_FIXED_FILE)
1708 req->file = io_file_get_fixed(req, req->cqe.fd, issue_flags);
1709 else
1710 req->file = io_file_get_normal(req, req->cqe.fd);
1711
1712 return !!req->file;
1713 }
1714
1715 #define REQ_ISSUE_SLOW_FLAGS (REQ_F_CREDS | REQ_F_ARM_LTIMEOUT)
1716
__io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags,const struct io_issue_def * def)1717 static inline int __io_issue_sqe(struct io_kiocb *req,
1718 unsigned int issue_flags,
1719 const struct io_issue_def *def)
1720 {
1721 const struct cred *creds = NULL;
1722 struct io_kiocb *link = NULL;
1723 int ret;
1724
1725 if (unlikely(req->flags & REQ_ISSUE_SLOW_FLAGS)) {
1726 if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
1727 creds = override_creds(req->creds);
1728 if (req->flags & REQ_F_ARM_LTIMEOUT)
1729 link = __io_prep_linked_timeout(req);
1730 }
1731
1732 if (!def->audit_skip)
1733 audit_uring_entry(req->opcode);
1734
1735 ret = def->issue(req, issue_flags);
1736
1737 if (!def->audit_skip)
1738 audit_uring_exit(!ret, ret);
1739
1740 if (unlikely(creds || link)) {
1741 if (creds)
1742 revert_creds(creds);
1743 if (link)
1744 io_queue_linked_timeout(link);
1745 }
1746
1747 return ret;
1748 }
1749
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)1750 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
1751 {
1752 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1753 int ret;
1754
1755 if (unlikely(!io_assign_file(req, def, issue_flags)))
1756 return -EBADF;
1757
1758 ret = __io_issue_sqe(req, issue_flags, def);
1759
1760 if (ret == IOU_OK) {
1761 if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1762 io_req_complete_defer(req);
1763 else
1764 io_req_complete_post(req, issue_flags);
1765
1766 return 0;
1767 }
1768
1769 if (ret == IOU_ISSUE_SKIP_COMPLETE) {
1770 ret = 0;
1771
1772 /* If the op doesn't have a file, we're not polling for it */
1773 if ((req->ctx->flags & IORING_SETUP_IOPOLL) && def->iopoll_queue)
1774 io_iopoll_req_issued(req, issue_flags);
1775 }
1776 return ret;
1777 }
1778
io_poll_issue(struct io_kiocb * req,io_tw_token_t tw)1779 int io_poll_issue(struct io_kiocb *req, io_tw_token_t tw)
1780 {
1781 const unsigned int issue_flags = IO_URING_F_NONBLOCK |
1782 IO_URING_F_MULTISHOT |
1783 IO_URING_F_COMPLETE_DEFER;
1784 int ret;
1785
1786 io_tw_lock(req->ctx, tw);
1787
1788 WARN_ON_ONCE(!req->file);
1789 if (WARN_ON_ONCE(req->ctx->flags & IORING_SETUP_IOPOLL))
1790 return -EFAULT;
1791
1792 ret = __io_issue_sqe(req, issue_flags, &io_issue_defs[req->opcode]);
1793
1794 WARN_ON_ONCE(ret == IOU_ISSUE_SKIP_COMPLETE);
1795 return ret;
1796 }
1797
io_wq_free_work(struct io_wq_work * work)1798 struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
1799 {
1800 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1801 struct io_kiocb *nxt = NULL;
1802
1803 if (req_ref_put_and_test_atomic(req)) {
1804 if (req->flags & IO_REQ_LINK_FLAGS)
1805 nxt = io_req_find_next(req);
1806 io_free_req(req);
1807 }
1808 return nxt ? &nxt->work : NULL;
1809 }
1810
io_wq_submit_work(struct io_wq_work * work)1811 void io_wq_submit_work(struct io_wq_work *work)
1812 {
1813 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
1814 const struct io_issue_def *def = &io_issue_defs[req->opcode];
1815 unsigned int issue_flags = IO_URING_F_UNLOCKED | IO_URING_F_IOWQ;
1816 bool needs_poll = false;
1817 int ret = 0, err = -ECANCELED;
1818
1819 /* one will be dropped by ->io_wq_free_work() after returning to io-wq */
1820 if (!(req->flags & REQ_F_REFCOUNT))
1821 __io_req_set_refcount(req, 2);
1822 else
1823 req_ref_get(req);
1824
1825 /* either cancelled or io-wq is dying, so don't touch tctx->iowq */
1826 if (atomic_read(&work->flags) & IO_WQ_WORK_CANCEL) {
1827 fail:
1828 io_req_task_queue_fail(req, err);
1829 return;
1830 }
1831 if (!io_assign_file(req, def, issue_flags)) {
1832 err = -EBADF;
1833 atomic_or(IO_WQ_WORK_CANCEL, &work->flags);
1834 goto fail;
1835 }
1836
1837 /*
1838 * If DEFER_TASKRUN is set, it's only allowed to post CQEs from the
1839 * submitter task context. Final request completions are handed to the
1840 * right context, however this is not the case of auxiliary CQEs,
1841 * which is the main mean of operation for multishot requests.
1842 * Don't allow any multishot execution from io-wq. It's more restrictive
1843 * than necessary and also cleaner.
1844 */
1845 if (req->flags & (REQ_F_MULTISHOT|REQ_F_APOLL_MULTISHOT)) {
1846 err = -EBADFD;
1847 if (!io_file_can_poll(req))
1848 goto fail;
1849 if (req->file->f_flags & O_NONBLOCK ||
1850 req->file->f_mode & FMODE_NOWAIT) {
1851 err = -ECANCELED;
1852 if (io_arm_poll_handler(req, issue_flags) != IO_APOLL_OK)
1853 goto fail;
1854 return;
1855 } else {
1856 req->flags &= ~(REQ_F_APOLL_MULTISHOT|REQ_F_MULTISHOT);
1857 }
1858 }
1859
1860 if (req->flags & REQ_F_FORCE_ASYNC) {
1861 bool opcode_poll = def->pollin || def->pollout;
1862
1863 if (opcode_poll && io_file_can_poll(req)) {
1864 needs_poll = true;
1865 issue_flags |= IO_URING_F_NONBLOCK;
1866 }
1867 }
1868
1869 do {
1870 ret = io_issue_sqe(req, issue_flags);
1871 if (ret != -EAGAIN)
1872 break;
1873
1874 /*
1875 * If REQ_F_NOWAIT is set, then don't wait or retry with
1876 * poll. -EAGAIN is final for that case.
1877 */
1878 if (req->flags & REQ_F_NOWAIT)
1879 break;
1880
1881 /*
1882 * We can get EAGAIN for iopolled IO even though we're
1883 * forcing a sync submission from here, since we can't
1884 * wait for request slots on the block side.
1885 */
1886 if (!needs_poll) {
1887 if (!(req->ctx->flags & IORING_SETUP_IOPOLL))
1888 break;
1889 if (io_wq_worker_stopped())
1890 break;
1891 cond_resched();
1892 continue;
1893 }
1894
1895 if (io_arm_poll_handler(req, issue_flags) == IO_APOLL_OK)
1896 return;
1897 /* aborted or ready, in either case retry blocking */
1898 needs_poll = false;
1899 issue_flags &= ~IO_URING_F_NONBLOCK;
1900 } while (1);
1901
1902 /* avoid locking problems by failing it from a clean context */
1903 if (ret)
1904 io_req_task_queue_fail(req, ret);
1905 }
1906
io_file_get_fixed(struct io_kiocb * req,int fd,unsigned int issue_flags)1907 inline struct file *io_file_get_fixed(struct io_kiocb *req, int fd,
1908 unsigned int issue_flags)
1909 {
1910 struct io_ring_ctx *ctx = req->ctx;
1911 struct io_rsrc_node *node;
1912 struct file *file = NULL;
1913
1914 io_ring_submit_lock(ctx, issue_flags);
1915 node = io_rsrc_node_lookup(&ctx->file_table.data, fd);
1916 if (node) {
1917 io_req_assign_rsrc_node(&req->file_node, node);
1918 req->flags |= io_slot_flags(node);
1919 file = io_slot_file(node);
1920 }
1921 io_ring_submit_unlock(ctx, issue_flags);
1922 return file;
1923 }
1924
io_file_get_normal(struct io_kiocb * req,int fd)1925 struct file *io_file_get_normal(struct io_kiocb *req, int fd)
1926 {
1927 struct file *file = fget(fd);
1928
1929 trace_io_uring_file_get(req, fd);
1930
1931 /* we don't allow fixed io_uring files */
1932 if (file && io_is_uring_fops(file))
1933 io_req_track_inflight(req);
1934 return file;
1935 }
1936
io_queue_async(struct io_kiocb * req,int ret)1937 static void io_queue_async(struct io_kiocb *req, int ret)
1938 __must_hold(&req->ctx->uring_lock)
1939 {
1940 if (ret != -EAGAIN || (req->flags & REQ_F_NOWAIT)) {
1941 io_req_defer_failed(req, ret);
1942 return;
1943 }
1944
1945 switch (io_arm_poll_handler(req, 0)) {
1946 case IO_APOLL_READY:
1947 io_kbuf_recycle(req, 0);
1948 io_req_task_queue(req);
1949 break;
1950 case IO_APOLL_ABORTED:
1951 io_kbuf_recycle(req, 0);
1952 io_queue_iowq(req);
1953 break;
1954 case IO_APOLL_OK:
1955 break;
1956 }
1957 }
1958
io_queue_sqe(struct io_kiocb * req)1959 static inline void io_queue_sqe(struct io_kiocb *req)
1960 __must_hold(&req->ctx->uring_lock)
1961 {
1962 int ret;
1963
1964 ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
1965
1966 /*
1967 * We async punt it if the file wasn't marked NOWAIT, or if the file
1968 * doesn't support non-blocking read/write attempts
1969 */
1970 if (unlikely(ret))
1971 io_queue_async(req, ret);
1972 }
1973
io_queue_sqe_fallback(struct io_kiocb * req)1974 static void io_queue_sqe_fallback(struct io_kiocb *req)
1975 __must_hold(&req->ctx->uring_lock)
1976 {
1977 if (unlikely(req->flags & REQ_F_FAIL)) {
1978 /*
1979 * We don't submit, fail them all, for that replace hardlinks
1980 * with normal links. Extra REQ_F_LINK is tolerated.
1981 */
1982 req->flags &= ~REQ_F_HARDLINK;
1983 req->flags |= REQ_F_LINK;
1984 io_req_defer_failed(req, req->cqe.res);
1985 } else {
1986 if (unlikely(req->ctx->drain_active))
1987 io_drain_req(req);
1988 else
1989 io_queue_iowq(req);
1990 }
1991 }
1992
1993 /*
1994 * Check SQE restrictions (opcode and flags).
1995 *
1996 * Returns 'true' if SQE is allowed, 'false' otherwise.
1997 */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)1998 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
1999 struct io_kiocb *req,
2000 unsigned int sqe_flags)
2001 {
2002 if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
2003 return false;
2004
2005 if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
2006 ctx->restrictions.sqe_flags_required)
2007 return false;
2008
2009 if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
2010 ctx->restrictions.sqe_flags_required))
2011 return false;
2012
2013 return true;
2014 }
2015
io_init_drain(struct io_ring_ctx * ctx)2016 static void io_init_drain(struct io_ring_ctx *ctx)
2017 {
2018 struct io_kiocb *head = ctx->submit_state.link.head;
2019
2020 ctx->drain_active = true;
2021 if (head) {
2022 /*
2023 * If we need to drain a request in the middle of a link, drain
2024 * the head request and the next request/link after the current
2025 * link. Considering sequential execution of links,
2026 * REQ_F_IO_DRAIN will be maintained for every request of our
2027 * link.
2028 */
2029 head->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2030 ctx->drain_next = true;
2031 }
2032 }
2033
io_init_fail_req(struct io_kiocb * req,int err)2034 static __cold int io_init_fail_req(struct io_kiocb *req, int err)
2035 {
2036 /* ensure per-opcode data is cleared if we fail before prep */
2037 memset(&req->cmd.data, 0, sizeof(req->cmd.data));
2038 return err;
2039 }
2040
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2041 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
2042 const struct io_uring_sqe *sqe)
2043 __must_hold(&ctx->uring_lock)
2044 {
2045 const struct io_issue_def *def;
2046 unsigned int sqe_flags;
2047 int personality;
2048 u8 opcode;
2049
2050 /* req is partially pre-initialised, see io_preinit_req() */
2051 req->opcode = opcode = READ_ONCE(sqe->opcode);
2052 /* same numerical values with corresponding REQ_F_*, safe to copy */
2053 sqe_flags = READ_ONCE(sqe->flags);
2054 req->flags = (__force io_req_flags_t) sqe_flags;
2055 req->cqe.user_data = READ_ONCE(sqe->user_data);
2056 req->file = NULL;
2057 req->tctx = current->io_uring;
2058 req->cancel_seq_set = false;
2059
2060 if (unlikely(opcode >= IORING_OP_LAST)) {
2061 req->opcode = 0;
2062 return io_init_fail_req(req, -EINVAL);
2063 }
2064 opcode = array_index_nospec(opcode, IORING_OP_LAST);
2065
2066 def = &io_issue_defs[opcode];
2067 if (unlikely(sqe_flags & ~SQE_COMMON_FLAGS)) {
2068 /* enforce forwards compatibility on users */
2069 if (sqe_flags & ~SQE_VALID_FLAGS)
2070 return io_init_fail_req(req, -EINVAL);
2071 if (sqe_flags & IOSQE_BUFFER_SELECT) {
2072 if (!def->buffer_select)
2073 return io_init_fail_req(req, -EOPNOTSUPP);
2074 req->buf_index = READ_ONCE(sqe->buf_group);
2075 }
2076 if (sqe_flags & IOSQE_CQE_SKIP_SUCCESS)
2077 ctx->drain_disabled = true;
2078 if (sqe_flags & IOSQE_IO_DRAIN) {
2079 if (ctx->drain_disabled)
2080 return io_init_fail_req(req, -EOPNOTSUPP);
2081 io_init_drain(ctx);
2082 }
2083 }
2084 if (unlikely(ctx->restricted || ctx->drain_active || ctx->drain_next)) {
2085 if (ctx->restricted && !io_check_restriction(ctx, req, sqe_flags))
2086 return io_init_fail_req(req, -EACCES);
2087 /* knock it to the slow queue path, will be drained there */
2088 if (ctx->drain_active)
2089 req->flags |= REQ_F_FORCE_ASYNC;
2090 /* if there is no link, we're at "next" request and need to drain */
2091 if (unlikely(ctx->drain_next) && !ctx->submit_state.link.head) {
2092 ctx->drain_next = false;
2093 ctx->drain_active = true;
2094 req->flags |= REQ_F_IO_DRAIN | REQ_F_FORCE_ASYNC;
2095 }
2096 }
2097
2098 if (!def->ioprio && sqe->ioprio)
2099 return io_init_fail_req(req, -EINVAL);
2100 if (!def->iopoll && (ctx->flags & IORING_SETUP_IOPOLL))
2101 return io_init_fail_req(req, -EINVAL);
2102
2103 if (def->needs_file) {
2104 struct io_submit_state *state = &ctx->submit_state;
2105
2106 req->cqe.fd = READ_ONCE(sqe->fd);
2107
2108 /*
2109 * Plug now if we have more than 2 IO left after this, and the
2110 * target is potentially a read/write to block based storage.
2111 */
2112 if (state->need_plug && def->plug) {
2113 state->plug_started = true;
2114 state->need_plug = false;
2115 blk_start_plug_nr_ios(&state->plug, state->submit_nr);
2116 }
2117 }
2118
2119 personality = READ_ONCE(sqe->personality);
2120 if (personality) {
2121 int ret;
2122
2123 req->creds = xa_load(&ctx->personalities, personality);
2124 if (!req->creds)
2125 return io_init_fail_req(req, -EINVAL);
2126 get_cred(req->creds);
2127 ret = security_uring_override_creds(req->creds);
2128 if (ret) {
2129 put_cred(req->creds);
2130 return io_init_fail_req(req, ret);
2131 }
2132 req->flags |= REQ_F_CREDS;
2133 }
2134
2135 return def->prep(req, sqe);
2136 }
2137
io_submit_fail_init(const struct io_uring_sqe * sqe,struct io_kiocb * req,int ret)2138 static __cold int io_submit_fail_init(const struct io_uring_sqe *sqe,
2139 struct io_kiocb *req, int ret)
2140 {
2141 struct io_ring_ctx *ctx = req->ctx;
2142 struct io_submit_link *link = &ctx->submit_state.link;
2143 struct io_kiocb *head = link->head;
2144
2145 trace_io_uring_req_failed(sqe, req, ret);
2146
2147 /*
2148 * Avoid breaking links in the middle as it renders links with SQPOLL
2149 * unusable. Instead of failing eagerly, continue assembling the link if
2150 * applicable and mark the head with REQ_F_FAIL. The link flushing code
2151 * should find the flag and handle the rest.
2152 */
2153 req_fail_link_node(req, ret);
2154 if (head && !(head->flags & REQ_F_FAIL))
2155 req_fail_link_node(head, -ECANCELED);
2156
2157 if (!(req->flags & IO_REQ_LINK_FLAGS)) {
2158 if (head) {
2159 link->last->link = req;
2160 link->head = NULL;
2161 req = head;
2162 }
2163 io_queue_sqe_fallback(req);
2164 return ret;
2165 }
2166
2167 if (head)
2168 link->last->link = req;
2169 else
2170 link->head = req;
2171 link->last = req;
2172 return 0;
2173 }
2174
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)2175 static inline int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
2176 const struct io_uring_sqe *sqe)
2177 __must_hold(&ctx->uring_lock)
2178 {
2179 struct io_submit_link *link = &ctx->submit_state.link;
2180 int ret;
2181
2182 ret = io_init_req(ctx, req, sqe);
2183 if (unlikely(ret))
2184 return io_submit_fail_init(sqe, req, ret);
2185
2186 trace_io_uring_submit_req(req);
2187
2188 /*
2189 * If we already have a head request, queue this one for async
2190 * submittal once the head completes. If we don't have a head but
2191 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
2192 * submitted sync once the chain is complete. If none of those
2193 * conditions are true (normal request), then just queue it.
2194 */
2195 if (unlikely(link->head)) {
2196 trace_io_uring_link(req, link->last);
2197 link->last->link = req;
2198 link->last = req;
2199
2200 if (req->flags & IO_REQ_LINK_FLAGS)
2201 return 0;
2202 /* last request of the link, flush it */
2203 req = link->head;
2204 link->head = NULL;
2205 if (req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL))
2206 goto fallback;
2207
2208 } else if (unlikely(req->flags & (IO_REQ_LINK_FLAGS |
2209 REQ_F_FORCE_ASYNC | REQ_F_FAIL))) {
2210 if (req->flags & IO_REQ_LINK_FLAGS) {
2211 link->head = req;
2212 link->last = req;
2213 } else {
2214 fallback:
2215 io_queue_sqe_fallback(req);
2216 }
2217 return 0;
2218 }
2219
2220 io_queue_sqe(req);
2221 return 0;
2222 }
2223
2224 /*
2225 * Batched submission is done, ensure local IO is flushed out.
2226 */
io_submit_state_end(struct io_ring_ctx * ctx)2227 static void io_submit_state_end(struct io_ring_ctx *ctx)
2228 {
2229 struct io_submit_state *state = &ctx->submit_state;
2230
2231 if (unlikely(state->link.head))
2232 io_queue_sqe_fallback(state->link.head);
2233 /* flush only after queuing links as they can generate completions */
2234 io_submit_flush_completions(ctx);
2235 if (state->plug_started)
2236 blk_finish_plug(&state->plug);
2237 }
2238
2239 /*
2240 * Start submission side cache.
2241 */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)2242 static void io_submit_state_start(struct io_submit_state *state,
2243 unsigned int max_ios)
2244 {
2245 state->plug_started = false;
2246 state->need_plug = max_ios > 2;
2247 state->submit_nr = max_ios;
2248 /* set only head, no need to init link_last in advance */
2249 state->link.head = NULL;
2250 }
2251
io_commit_sqring(struct io_ring_ctx * ctx)2252 static void io_commit_sqring(struct io_ring_ctx *ctx)
2253 {
2254 struct io_rings *rings = ctx->rings;
2255
2256 /*
2257 * Ensure any loads from the SQEs are done at this point,
2258 * since once we write the new head, the application could
2259 * write new data to them.
2260 */
2261 smp_store_release(&rings->sq.head, ctx->cached_sq_head);
2262 }
2263
2264 /*
2265 * Fetch an sqe, if one is available. Note this returns a pointer to memory
2266 * that is mapped by userspace. This means that care needs to be taken to
2267 * ensure that reads are stable, as we cannot rely on userspace always
2268 * being a good citizen. If members of the sqe are validated and then later
2269 * used, it's important that those reads are done through READ_ONCE() to
2270 * prevent a re-load down the line.
2271 */
io_get_sqe(struct io_ring_ctx * ctx,const struct io_uring_sqe ** sqe)2272 static bool io_get_sqe(struct io_ring_ctx *ctx, const struct io_uring_sqe **sqe)
2273 {
2274 unsigned mask = ctx->sq_entries - 1;
2275 unsigned head = ctx->cached_sq_head++ & mask;
2276
2277 if (static_branch_unlikely(&io_key_has_sqarray) &&
2278 (!(ctx->flags & IORING_SETUP_NO_SQARRAY))) {
2279 head = READ_ONCE(ctx->sq_array[head]);
2280 if (unlikely(head >= ctx->sq_entries)) {
2281 /* drop invalid entries */
2282 spin_lock(&ctx->completion_lock);
2283 ctx->cq_extra--;
2284 spin_unlock(&ctx->completion_lock);
2285 WRITE_ONCE(ctx->rings->sq_dropped,
2286 READ_ONCE(ctx->rings->sq_dropped) + 1);
2287 return false;
2288 }
2289 head = array_index_nospec(head, ctx->sq_entries);
2290 }
2291
2292 /*
2293 * The cached sq head (or cq tail) serves two purposes:
2294 *
2295 * 1) allows us to batch the cost of updating the user visible
2296 * head updates.
2297 * 2) allows the kernel side to track the head on its own, even
2298 * though the application is the one updating it.
2299 */
2300
2301 /* double index for 128-byte SQEs, twice as long */
2302 if (ctx->flags & IORING_SETUP_SQE128)
2303 head <<= 1;
2304 *sqe = &ctx->sq_sqes[head];
2305 return true;
2306 }
2307
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)2308 int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
2309 __must_hold(&ctx->uring_lock)
2310 {
2311 unsigned int entries = io_sqring_entries(ctx);
2312 unsigned int left;
2313 int ret;
2314
2315 if (unlikely(!entries))
2316 return 0;
2317 /* make sure SQ entry isn't read before tail */
2318 ret = left = min(nr, entries);
2319 io_get_task_refs(left);
2320 io_submit_state_start(&ctx->submit_state, left);
2321
2322 do {
2323 const struct io_uring_sqe *sqe;
2324 struct io_kiocb *req;
2325
2326 if (unlikely(!io_alloc_req(ctx, &req)))
2327 break;
2328 if (unlikely(!io_get_sqe(ctx, &sqe))) {
2329 io_req_add_to_cache(req, ctx);
2330 break;
2331 }
2332
2333 /*
2334 * Continue submitting even for sqe failure if the
2335 * ring was setup with IORING_SETUP_SUBMIT_ALL
2336 */
2337 if (unlikely(io_submit_sqe(ctx, req, sqe)) &&
2338 !(ctx->flags & IORING_SETUP_SUBMIT_ALL)) {
2339 left--;
2340 break;
2341 }
2342 } while (--left);
2343
2344 if (unlikely(left)) {
2345 ret -= left;
2346 /* try again if it submitted nothing and can't allocate a req */
2347 if (!ret && io_req_cache_empty(ctx))
2348 ret = -EAGAIN;
2349 current->io_uring->cached_refs += left;
2350 }
2351
2352 io_submit_state_end(ctx);
2353 /* Commit SQ ring head once we've consumed and submitted all SQEs */
2354 io_commit_sqring(ctx);
2355 return ret;
2356 }
2357
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)2358 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
2359 int wake_flags, void *key)
2360 {
2361 struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue, wq);
2362
2363 /*
2364 * Cannot safely flush overflowed CQEs from here, ensure we wake up
2365 * the task, and the next invocation will do it.
2366 */
2367 if (io_should_wake(iowq) || io_has_work(iowq->ctx))
2368 return autoremove_wake_function(curr, mode, wake_flags, key);
2369 return -1;
2370 }
2371
io_run_task_work_sig(struct io_ring_ctx * ctx)2372 int io_run_task_work_sig(struct io_ring_ctx *ctx)
2373 {
2374 if (io_local_work_pending(ctx)) {
2375 __set_current_state(TASK_RUNNING);
2376 if (io_run_local_work(ctx, INT_MAX, IO_LOCAL_TW_DEFAULT_MAX) > 0)
2377 return 0;
2378 }
2379 if (io_run_task_work() > 0)
2380 return 0;
2381 if (task_sigpending(current))
2382 return -EINTR;
2383 return 0;
2384 }
2385
current_pending_io(void)2386 static bool current_pending_io(void)
2387 {
2388 struct io_uring_task *tctx = current->io_uring;
2389
2390 if (!tctx)
2391 return false;
2392 return percpu_counter_read_positive(&tctx->inflight);
2393 }
2394
io_cqring_timer_wakeup(struct hrtimer * timer)2395 static enum hrtimer_restart io_cqring_timer_wakeup(struct hrtimer *timer)
2396 {
2397 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2398
2399 WRITE_ONCE(iowq->hit_timeout, 1);
2400 iowq->min_timeout = 0;
2401 wake_up_process(iowq->wq.private);
2402 return HRTIMER_NORESTART;
2403 }
2404
2405 /*
2406 * Doing min_timeout portion. If we saw any timeouts, events, or have work,
2407 * wake up. If not, and we have a normal timeout, switch to that and keep
2408 * sleeping.
2409 */
io_cqring_min_timer_wakeup(struct hrtimer * timer)2410 static enum hrtimer_restart io_cqring_min_timer_wakeup(struct hrtimer *timer)
2411 {
2412 struct io_wait_queue *iowq = container_of(timer, struct io_wait_queue, t);
2413 struct io_ring_ctx *ctx = iowq->ctx;
2414
2415 /* no general timeout, or shorter (or equal), we are done */
2416 if (iowq->timeout == KTIME_MAX ||
2417 ktime_compare(iowq->min_timeout, iowq->timeout) >= 0)
2418 goto out_wake;
2419 /* work we may need to run, wake function will see if we need to wake */
2420 if (io_has_work(ctx))
2421 goto out_wake;
2422 /* got events since we started waiting, min timeout is done */
2423 if (iowq->cq_min_tail != READ_ONCE(ctx->rings->cq.tail))
2424 goto out_wake;
2425 /* if we have any events and min timeout expired, we're done */
2426 if (io_cqring_events(ctx))
2427 goto out_wake;
2428
2429 /*
2430 * If using deferred task_work running and application is waiting on
2431 * more than one request, ensure we reset it now where we are switching
2432 * to normal sleeps. Any request completion post min_wait should wake
2433 * the task and return.
2434 */
2435 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2436 atomic_set(&ctx->cq_wait_nr, 1);
2437 smp_mb();
2438 if (!llist_empty(&ctx->work_llist))
2439 goto out_wake;
2440 }
2441
2442 hrtimer_update_function(&iowq->t, io_cqring_timer_wakeup);
2443 hrtimer_set_expires(timer, iowq->timeout);
2444 return HRTIMER_RESTART;
2445 out_wake:
2446 return io_cqring_timer_wakeup(timer);
2447 }
2448
io_cqring_schedule_timeout(struct io_wait_queue * iowq,clockid_t clock_id,ktime_t start_time)2449 static int io_cqring_schedule_timeout(struct io_wait_queue *iowq,
2450 clockid_t clock_id, ktime_t start_time)
2451 {
2452 ktime_t timeout;
2453
2454 if (iowq->min_timeout) {
2455 timeout = ktime_add_ns(iowq->min_timeout, start_time);
2456 hrtimer_setup_on_stack(&iowq->t, io_cqring_min_timer_wakeup, clock_id,
2457 HRTIMER_MODE_ABS);
2458 } else {
2459 timeout = iowq->timeout;
2460 hrtimer_setup_on_stack(&iowq->t, io_cqring_timer_wakeup, clock_id,
2461 HRTIMER_MODE_ABS);
2462 }
2463
2464 hrtimer_set_expires_range_ns(&iowq->t, timeout, 0);
2465 hrtimer_start_expires(&iowq->t, HRTIMER_MODE_ABS);
2466
2467 if (!READ_ONCE(iowq->hit_timeout))
2468 schedule();
2469
2470 hrtimer_cancel(&iowq->t);
2471 destroy_hrtimer_on_stack(&iowq->t);
2472 __set_current_state(TASK_RUNNING);
2473
2474 return READ_ONCE(iowq->hit_timeout) ? -ETIME : 0;
2475 }
2476
2477 struct ext_arg {
2478 size_t argsz;
2479 struct timespec64 ts;
2480 const sigset_t __user *sig;
2481 ktime_t min_time;
2482 bool ts_set;
2483 bool iowait;
2484 };
2485
__io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2486 static int __io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2487 struct io_wait_queue *iowq,
2488 struct ext_arg *ext_arg,
2489 ktime_t start_time)
2490 {
2491 int ret = 0;
2492
2493 /*
2494 * Mark us as being in io_wait if we have pending requests, so cpufreq
2495 * can take into account that the task is waiting for IO - turns out
2496 * to be important for low QD IO.
2497 */
2498 if (ext_arg->iowait && current_pending_io())
2499 current->in_iowait = 1;
2500 if (iowq->timeout != KTIME_MAX || iowq->min_timeout)
2501 ret = io_cqring_schedule_timeout(iowq, ctx->clockid, start_time);
2502 else
2503 schedule();
2504 current->in_iowait = 0;
2505 return ret;
2506 }
2507
2508 /* If this returns > 0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,struct ext_arg * ext_arg,ktime_t start_time)2509 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
2510 struct io_wait_queue *iowq,
2511 struct ext_arg *ext_arg,
2512 ktime_t start_time)
2513 {
2514 if (unlikely(READ_ONCE(ctx->check_cq)))
2515 return 1;
2516 if (unlikely(io_local_work_pending(ctx)))
2517 return 1;
2518 if (unlikely(task_work_pending(current)))
2519 return 1;
2520 if (unlikely(task_sigpending(current)))
2521 return -EINTR;
2522 if (unlikely(io_should_wake(iowq)))
2523 return 0;
2524
2525 return __io_cqring_wait_schedule(ctx, iowq, ext_arg, start_time);
2526 }
2527
2528 /*
2529 * Wait until events become available, if we don't already have some. The
2530 * application must reap them itself, as they reside on the shared cq ring.
2531 */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,u32 flags,struct ext_arg * ext_arg)2532 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events, u32 flags,
2533 struct ext_arg *ext_arg)
2534 {
2535 struct io_wait_queue iowq;
2536 struct io_rings *rings = ctx->rings;
2537 ktime_t start_time;
2538 int ret;
2539
2540 min_events = min_t(int, min_events, ctx->cq_entries);
2541
2542 if (!io_allowed_run_tw(ctx))
2543 return -EEXIST;
2544 if (io_local_work_pending(ctx))
2545 io_run_local_work(ctx, min_events,
2546 max(IO_LOCAL_TW_DEFAULT_MAX, min_events));
2547 io_run_task_work();
2548
2549 if (unlikely(test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)))
2550 io_cqring_do_overflow_flush(ctx);
2551 if (__io_cqring_events_user(ctx) >= min_events)
2552 return 0;
2553
2554 init_waitqueue_func_entry(&iowq.wq, io_wake_function);
2555 iowq.wq.private = current;
2556 INIT_LIST_HEAD(&iowq.wq.entry);
2557 iowq.ctx = ctx;
2558 iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
2559 iowq.cq_min_tail = READ_ONCE(ctx->rings->cq.tail);
2560 iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
2561 iowq.hit_timeout = 0;
2562 iowq.min_timeout = ext_arg->min_time;
2563 iowq.timeout = KTIME_MAX;
2564 start_time = io_get_time(ctx);
2565
2566 if (ext_arg->ts_set) {
2567 iowq.timeout = timespec64_to_ktime(ext_arg->ts);
2568 if (!(flags & IORING_ENTER_ABS_TIMER))
2569 iowq.timeout = ktime_add(iowq.timeout, start_time);
2570 }
2571
2572 if (ext_arg->sig) {
2573 #ifdef CONFIG_COMPAT
2574 if (in_compat_syscall())
2575 ret = set_compat_user_sigmask((const compat_sigset_t __user *)ext_arg->sig,
2576 ext_arg->argsz);
2577 else
2578 #endif
2579 ret = set_user_sigmask(ext_arg->sig, ext_arg->argsz);
2580
2581 if (ret)
2582 return ret;
2583 }
2584
2585 io_napi_busy_loop(ctx, &iowq);
2586
2587 trace_io_uring_cqring_wait(ctx, min_events);
2588 do {
2589 unsigned long check_cq;
2590 int nr_wait;
2591
2592 /* if min timeout has been hit, don't reset wait count */
2593 if (!iowq.hit_timeout)
2594 nr_wait = (int) iowq.cq_tail -
2595 READ_ONCE(ctx->rings->cq.tail);
2596 else
2597 nr_wait = 1;
2598
2599 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
2600 atomic_set(&ctx->cq_wait_nr, nr_wait);
2601 set_current_state(TASK_INTERRUPTIBLE);
2602 } else {
2603 prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
2604 TASK_INTERRUPTIBLE);
2605 }
2606
2607 ret = io_cqring_wait_schedule(ctx, &iowq, ext_arg, start_time);
2608 __set_current_state(TASK_RUNNING);
2609 atomic_set(&ctx->cq_wait_nr, IO_CQ_WAKE_INIT);
2610
2611 /*
2612 * Run task_work after scheduling and before io_should_wake().
2613 * If we got woken because of task_work being processed, run it
2614 * now rather than let the caller do another wait loop.
2615 */
2616 if (io_local_work_pending(ctx))
2617 io_run_local_work(ctx, nr_wait, nr_wait);
2618 io_run_task_work();
2619
2620 /*
2621 * Non-local task_work will be run on exit to userspace, but
2622 * if we're using DEFER_TASKRUN, then we could have waited
2623 * with a timeout for a number of requests. If the timeout
2624 * hits, we could have some requests ready to process. Ensure
2625 * this break is _after_ we have run task_work, to avoid
2626 * deferring running potentially pending requests until the
2627 * next time we wait for events.
2628 */
2629 if (ret < 0)
2630 break;
2631
2632 check_cq = READ_ONCE(ctx->check_cq);
2633 if (unlikely(check_cq)) {
2634 /* let the caller flush overflows, retry */
2635 if (check_cq & BIT(IO_CHECK_CQ_OVERFLOW_BIT))
2636 io_cqring_do_overflow_flush(ctx);
2637 if (check_cq & BIT(IO_CHECK_CQ_DROPPED_BIT)) {
2638 ret = -EBADR;
2639 break;
2640 }
2641 }
2642
2643 if (io_should_wake(&iowq)) {
2644 ret = 0;
2645 break;
2646 }
2647 cond_resched();
2648 } while (1);
2649
2650 if (!(ctx->flags & IORING_SETUP_DEFER_TASKRUN))
2651 finish_wait(&ctx->cq_wait, &iowq.wq);
2652 restore_saved_sigmask_unless(ret == -EINTR);
2653
2654 return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
2655 }
2656
io_rings_free(struct io_ring_ctx * ctx)2657 static void io_rings_free(struct io_ring_ctx *ctx)
2658 {
2659 io_free_region(ctx, &ctx->sq_region);
2660 io_free_region(ctx, &ctx->ring_region);
2661 ctx->rings = NULL;
2662 ctx->sq_sqes = NULL;
2663 }
2664
rings_size(unsigned int flags,unsigned int sq_entries,unsigned int cq_entries,size_t * sq_offset)2665 unsigned long rings_size(unsigned int flags, unsigned int sq_entries,
2666 unsigned int cq_entries, size_t *sq_offset)
2667 {
2668 struct io_rings *rings;
2669 size_t off, sq_array_size;
2670
2671 off = struct_size(rings, cqes, cq_entries);
2672 if (off == SIZE_MAX)
2673 return SIZE_MAX;
2674 if (flags & IORING_SETUP_CQE32) {
2675 if (check_shl_overflow(off, 1, &off))
2676 return SIZE_MAX;
2677 }
2678
2679 #ifdef CONFIG_SMP
2680 off = ALIGN(off, SMP_CACHE_BYTES);
2681 if (off == 0)
2682 return SIZE_MAX;
2683 #endif
2684
2685 if (flags & IORING_SETUP_NO_SQARRAY) {
2686 *sq_offset = SIZE_MAX;
2687 return off;
2688 }
2689
2690 *sq_offset = off;
2691
2692 sq_array_size = array_size(sizeof(u32), sq_entries);
2693 if (sq_array_size == SIZE_MAX)
2694 return SIZE_MAX;
2695
2696 if (check_add_overflow(off, sq_array_size, &off))
2697 return SIZE_MAX;
2698
2699 return off;
2700 }
2701
io_req_caches_free(struct io_ring_ctx * ctx)2702 static void io_req_caches_free(struct io_ring_ctx *ctx)
2703 {
2704 struct io_kiocb *req;
2705 int nr = 0;
2706
2707 mutex_lock(&ctx->uring_lock);
2708
2709 while (!io_req_cache_empty(ctx)) {
2710 req = io_extract_req(ctx);
2711 kmem_cache_free(req_cachep, req);
2712 nr++;
2713 }
2714 if (nr)
2715 percpu_ref_put_many(&ctx->refs, nr);
2716 mutex_unlock(&ctx->uring_lock);
2717 }
2718
io_ring_ctx_free(struct io_ring_ctx * ctx)2719 static __cold void io_ring_ctx_free(struct io_ring_ctx *ctx)
2720 {
2721 io_sq_thread_finish(ctx);
2722
2723 mutex_lock(&ctx->uring_lock);
2724 io_sqe_buffers_unregister(ctx);
2725 io_sqe_files_unregister(ctx);
2726 io_unregister_zcrx_ifqs(ctx);
2727 io_cqring_overflow_kill(ctx);
2728 io_eventfd_unregister(ctx);
2729 io_free_alloc_caches(ctx);
2730 io_destroy_buffers(ctx);
2731 io_free_region(ctx, &ctx->param_region);
2732 mutex_unlock(&ctx->uring_lock);
2733 if (ctx->sq_creds)
2734 put_cred(ctx->sq_creds);
2735 if (ctx->submitter_task)
2736 put_task_struct(ctx->submitter_task);
2737
2738 WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
2739
2740 if (ctx->mm_account) {
2741 mmdrop(ctx->mm_account);
2742 ctx->mm_account = NULL;
2743 }
2744 io_rings_free(ctx);
2745
2746 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
2747 static_branch_dec(&io_key_has_sqarray);
2748
2749 percpu_ref_exit(&ctx->refs);
2750 free_uid(ctx->user);
2751 io_req_caches_free(ctx);
2752 if (ctx->hash_map)
2753 io_wq_put_hash(ctx->hash_map);
2754 io_napi_free(ctx);
2755 kvfree(ctx->cancel_table.hbs);
2756 xa_destroy(&ctx->io_bl_xa);
2757 kfree(ctx);
2758 }
2759
io_activate_pollwq_cb(struct callback_head * cb)2760 static __cold void io_activate_pollwq_cb(struct callback_head *cb)
2761 {
2762 struct io_ring_ctx *ctx = container_of(cb, struct io_ring_ctx,
2763 poll_wq_task_work);
2764
2765 mutex_lock(&ctx->uring_lock);
2766 ctx->poll_activated = true;
2767 mutex_unlock(&ctx->uring_lock);
2768
2769 /*
2770 * Wake ups for some events between start of polling and activation
2771 * might've been lost due to loose synchronisation.
2772 */
2773 wake_up_all(&ctx->poll_wq);
2774 percpu_ref_put(&ctx->refs);
2775 }
2776
io_activate_pollwq(struct io_ring_ctx * ctx)2777 __cold void io_activate_pollwq(struct io_ring_ctx *ctx)
2778 {
2779 spin_lock(&ctx->completion_lock);
2780 /* already activated or in progress */
2781 if (ctx->poll_activated || ctx->poll_wq_task_work.func)
2782 goto out;
2783 if (WARN_ON_ONCE(!ctx->task_complete))
2784 goto out;
2785 if (!ctx->submitter_task)
2786 goto out;
2787 /*
2788 * with ->submitter_task only the submitter task completes requests, we
2789 * only need to sync with it, which is done by injecting a tw
2790 */
2791 init_task_work(&ctx->poll_wq_task_work, io_activate_pollwq_cb);
2792 percpu_ref_get(&ctx->refs);
2793 if (task_work_add(ctx->submitter_task, &ctx->poll_wq_task_work, TWA_SIGNAL))
2794 percpu_ref_put(&ctx->refs);
2795 out:
2796 spin_unlock(&ctx->completion_lock);
2797 }
2798
io_uring_poll(struct file * file,poll_table * wait)2799 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
2800 {
2801 struct io_ring_ctx *ctx = file->private_data;
2802 __poll_t mask = 0;
2803
2804 if (unlikely(!ctx->poll_activated))
2805 io_activate_pollwq(ctx);
2806 /*
2807 * provides mb() which pairs with barrier from wq_has_sleeper
2808 * call in io_commit_cqring
2809 */
2810 poll_wait(file, &ctx->poll_wq, wait);
2811
2812 if (!io_sqring_full(ctx))
2813 mask |= EPOLLOUT | EPOLLWRNORM;
2814
2815 /*
2816 * Don't flush cqring overflow list here, just do a simple check.
2817 * Otherwise there could possible be ABBA deadlock:
2818 * CPU0 CPU1
2819 * ---- ----
2820 * lock(&ctx->uring_lock);
2821 * lock(&ep->mtx);
2822 * lock(&ctx->uring_lock);
2823 * lock(&ep->mtx);
2824 *
2825 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
2826 * pushes them to do the flush.
2827 */
2828
2829 if (__io_cqring_events_user(ctx) || io_has_work(ctx))
2830 mask |= EPOLLIN | EPOLLRDNORM;
2831
2832 return mask;
2833 }
2834
2835 struct io_tctx_exit {
2836 struct callback_head task_work;
2837 struct completion completion;
2838 struct io_ring_ctx *ctx;
2839 };
2840
io_tctx_exit_cb(struct callback_head * cb)2841 static __cold void io_tctx_exit_cb(struct callback_head *cb)
2842 {
2843 struct io_uring_task *tctx = current->io_uring;
2844 struct io_tctx_exit *work;
2845
2846 work = container_of(cb, struct io_tctx_exit, task_work);
2847 /*
2848 * When @in_cancel, we're in cancellation and it's racy to remove the
2849 * node. It'll be removed by the end of cancellation, just ignore it.
2850 * tctx can be NULL if the queueing of this task_work raced with
2851 * work cancelation off the exec path.
2852 */
2853 if (tctx && !atomic_read(&tctx->in_cancel))
2854 io_uring_del_tctx_node((unsigned long)work->ctx);
2855 complete(&work->completion);
2856 }
2857
io_cancel_ctx_cb(struct io_wq_work * work,void * data)2858 static __cold bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
2859 {
2860 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
2861
2862 return req->ctx == data;
2863 }
2864
io_ring_exit_work(struct work_struct * work)2865 static __cold void io_ring_exit_work(struct work_struct *work)
2866 {
2867 struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
2868 unsigned long timeout = jiffies + HZ * 60 * 5;
2869 unsigned long interval = HZ / 20;
2870 struct io_tctx_exit exit;
2871 struct io_tctx_node *node;
2872 int ret;
2873
2874 /*
2875 * If we're doing polled IO and end up having requests being
2876 * submitted async (out-of-line), then completions can come in while
2877 * we're waiting for refs to drop. We need to reap these manually,
2878 * as nobody else will be looking for them.
2879 */
2880 do {
2881 if (test_bit(IO_CHECK_CQ_OVERFLOW_BIT, &ctx->check_cq)) {
2882 mutex_lock(&ctx->uring_lock);
2883 io_cqring_overflow_kill(ctx);
2884 mutex_unlock(&ctx->uring_lock);
2885 }
2886 if (ctx->ifq) {
2887 mutex_lock(&ctx->uring_lock);
2888 io_shutdown_zcrx_ifqs(ctx);
2889 mutex_unlock(&ctx->uring_lock);
2890 }
2891
2892 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2893 io_move_task_work_from_local(ctx);
2894
2895 /* The SQPOLL thread never reaches this path */
2896 while (io_uring_try_cancel_requests(ctx, NULL, true, false))
2897 cond_resched();
2898
2899 if (ctx->sq_data) {
2900 struct io_sq_data *sqd = ctx->sq_data;
2901 struct task_struct *tsk;
2902
2903 io_sq_thread_park(sqd);
2904 tsk = sqd->thread;
2905 if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
2906 io_wq_cancel_cb(tsk->io_uring->io_wq,
2907 io_cancel_ctx_cb, ctx, true);
2908 io_sq_thread_unpark(sqd);
2909 }
2910
2911 io_req_caches_free(ctx);
2912
2913 if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
2914 /* there is little hope left, don't run it too often */
2915 interval = HZ * 60;
2916 }
2917 /*
2918 * This is really an uninterruptible wait, as it has to be
2919 * complete. But it's also run from a kworker, which doesn't
2920 * take signals, so it's fine to make it interruptible. This
2921 * avoids scenarios where we knowingly can wait much longer
2922 * on completions, for example if someone does a SIGSTOP on
2923 * a task that needs to finish task_work to make this loop
2924 * complete. That's a synthetic situation that should not
2925 * cause a stuck task backtrace, and hence a potential panic
2926 * on stuck tasks if that is enabled.
2927 */
2928 } while (!wait_for_completion_interruptible_timeout(&ctx->ref_comp, interval));
2929
2930 init_completion(&exit.completion);
2931 init_task_work(&exit.task_work, io_tctx_exit_cb);
2932 exit.ctx = ctx;
2933
2934 mutex_lock(&ctx->uring_lock);
2935 while (!list_empty(&ctx->tctx_list)) {
2936 WARN_ON_ONCE(time_after(jiffies, timeout));
2937
2938 node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
2939 ctx_node);
2940 /* don't spin on a single task if cancellation failed */
2941 list_rotate_left(&ctx->tctx_list);
2942 ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
2943 if (WARN_ON_ONCE(ret))
2944 continue;
2945
2946 mutex_unlock(&ctx->uring_lock);
2947 /*
2948 * See comment above for
2949 * wait_for_completion_interruptible_timeout() on why this
2950 * wait is marked as interruptible.
2951 */
2952 wait_for_completion_interruptible(&exit.completion);
2953 mutex_lock(&ctx->uring_lock);
2954 }
2955 mutex_unlock(&ctx->uring_lock);
2956 spin_lock(&ctx->completion_lock);
2957 spin_unlock(&ctx->completion_lock);
2958
2959 /* pairs with RCU read section in io_req_local_work_add() */
2960 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
2961 synchronize_rcu();
2962
2963 io_ring_ctx_free(ctx);
2964 }
2965
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)2966 static __cold void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
2967 {
2968 unsigned long index;
2969 struct creds *creds;
2970
2971 mutex_lock(&ctx->uring_lock);
2972 percpu_ref_kill(&ctx->refs);
2973 xa_for_each(&ctx->personalities, index, creds)
2974 io_unregister_personality(ctx, index);
2975 mutex_unlock(&ctx->uring_lock);
2976
2977 flush_delayed_work(&ctx->fallback_work);
2978
2979 INIT_WORK(&ctx->exit_work, io_ring_exit_work);
2980 /*
2981 * Use system_unbound_wq to avoid spawning tons of event kworkers
2982 * if we're exiting a ton of rings at the same time. It just adds
2983 * noise and overhead, there's no discernable change in runtime
2984 * over using system_wq.
2985 */
2986 queue_work(iou_wq, &ctx->exit_work);
2987 }
2988
io_uring_release(struct inode * inode,struct file * file)2989 static int io_uring_release(struct inode *inode, struct file *file)
2990 {
2991 struct io_ring_ctx *ctx = file->private_data;
2992
2993 file->private_data = NULL;
2994 io_ring_ctx_wait_and_kill(ctx);
2995 return 0;
2996 }
2997
2998 struct io_task_cancel {
2999 struct io_uring_task *tctx;
3000 bool all;
3001 };
3002
io_cancel_task_cb(struct io_wq_work * work,void * data)3003 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
3004 {
3005 struct io_kiocb *req = container_of(work, struct io_kiocb, work);
3006 struct io_task_cancel *cancel = data;
3007
3008 return io_match_task_safe(req, cancel->tctx, cancel->all);
3009 }
3010
io_cancel_defer_files(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all)3011 static __cold bool io_cancel_defer_files(struct io_ring_ctx *ctx,
3012 struct io_uring_task *tctx,
3013 bool cancel_all)
3014 {
3015 struct io_defer_entry *de;
3016 LIST_HEAD(list);
3017
3018 spin_lock(&ctx->completion_lock);
3019 list_for_each_entry_reverse(de, &ctx->defer_list, list) {
3020 if (io_match_task_safe(de->req, tctx, cancel_all)) {
3021 list_cut_position(&list, &ctx->defer_list, &de->list);
3022 break;
3023 }
3024 }
3025 spin_unlock(&ctx->completion_lock);
3026 if (list_empty(&list))
3027 return false;
3028
3029 while (!list_empty(&list)) {
3030 de = list_first_entry(&list, struct io_defer_entry, list);
3031 list_del_init(&de->list);
3032 io_req_task_queue_fail(de->req, -ECANCELED);
3033 kfree(de);
3034 }
3035 return true;
3036 }
3037
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)3038 static __cold bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
3039 {
3040 struct io_tctx_node *node;
3041 enum io_wq_cancel cret;
3042 bool ret = false;
3043
3044 mutex_lock(&ctx->uring_lock);
3045 list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
3046 struct io_uring_task *tctx = node->task->io_uring;
3047
3048 /*
3049 * io_wq will stay alive while we hold uring_lock, because it's
3050 * killed after ctx nodes, which requires to take the lock.
3051 */
3052 if (!tctx || !tctx->io_wq)
3053 continue;
3054 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
3055 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3056 }
3057 mutex_unlock(&ctx->uring_lock);
3058
3059 return ret;
3060 }
3061
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct io_uring_task * tctx,bool cancel_all,bool is_sqpoll_thread)3062 static __cold bool io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
3063 struct io_uring_task *tctx,
3064 bool cancel_all,
3065 bool is_sqpoll_thread)
3066 {
3067 struct io_task_cancel cancel = { .tctx = tctx, .all = cancel_all, };
3068 enum io_wq_cancel cret;
3069 bool ret = false;
3070
3071 /* set it so io_req_local_work_add() would wake us up */
3072 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN) {
3073 atomic_set(&ctx->cq_wait_nr, 1);
3074 smp_mb();
3075 }
3076
3077 /* failed during ring init, it couldn't have issued any requests */
3078 if (!ctx->rings)
3079 return false;
3080
3081 if (!tctx) {
3082 ret |= io_uring_try_cancel_iowq(ctx);
3083 } else if (tctx->io_wq) {
3084 /*
3085 * Cancels requests of all rings, not only @ctx, but
3086 * it's fine as the task is in exit/exec.
3087 */
3088 cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
3089 &cancel, true);
3090 ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
3091 }
3092
3093 /* SQPOLL thread does its own polling */
3094 if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
3095 is_sqpoll_thread) {
3096 while (!wq_list_empty(&ctx->iopoll_list)) {
3097 io_iopoll_try_reap_events(ctx);
3098 ret = true;
3099 cond_resched();
3100 }
3101 }
3102
3103 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3104 io_allowed_defer_tw_run(ctx))
3105 ret |= io_run_local_work(ctx, INT_MAX, INT_MAX) > 0;
3106 ret |= io_cancel_defer_files(ctx, tctx, cancel_all);
3107 mutex_lock(&ctx->uring_lock);
3108 ret |= io_poll_remove_all(ctx, tctx, cancel_all);
3109 ret |= io_waitid_remove_all(ctx, tctx, cancel_all);
3110 ret |= io_futex_remove_all(ctx, tctx, cancel_all);
3111 ret |= io_uring_try_cancel_uring_cmd(ctx, tctx, cancel_all);
3112 mutex_unlock(&ctx->uring_lock);
3113 ret |= io_kill_timeouts(ctx, tctx, cancel_all);
3114 if (tctx)
3115 ret |= io_run_task_work() > 0;
3116 else
3117 ret |= flush_delayed_work(&ctx->fallback_work);
3118 return ret;
3119 }
3120
tctx_inflight(struct io_uring_task * tctx,bool tracked)3121 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
3122 {
3123 if (tracked)
3124 return atomic_read(&tctx->inflight_tracked);
3125 return percpu_counter_sum(&tctx->inflight);
3126 }
3127
3128 /*
3129 * Find any io_uring ctx that this task has registered or done IO on, and cancel
3130 * requests. @sqd should be not-null IFF it's an SQPOLL thread cancellation.
3131 */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)3132 __cold void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
3133 {
3134 struct io_uring_task *tctx = current->io_uring;
3135 struct io_ring_ctx *ctx;
3136 struct io_tctx_node *node;
3137 unsigned long index;
3138 s64 inflight;
3139 DEFINE_WAIT(wait);
3140
3141 WARN_ON_ONCE(sqd && sqd->thread != current);
3142
3143 if (!current->io_uring)
3144 return;
3145 if (tctx->io_wq)
3146 io_wq_exit_start(tctx->io_wq);
3147
3148 atomic_inc(&tctx->in_cancel);
3149 do {
3150 bool loop = false;
3151
3152 io_uring_drop_tctx_refs(current);
3153 if (!tctx_inflight(tctx, !cancel_all))
3154 break;
3155
3156 /* read completions before cancelations */
3157 inflight = tctx_inflight(tctx, false);
3158 if (!inflight)
3159 break;
3160
3161 if (!sqd) {
3162 xa_for_each(&tctx->xa, index, node) {
3163 /* sqpoll task will cancel all its requests */
3164 if (node->ctx->sq_data)
3165 continue;
3166 loop |= io_uring_try_cancel_requests(node->ctx,
3167 current->io_uring,
3168 cancel_all,
3169 false);
3170 }
3171 } else {
3172 list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
3173 loop |= io_uring_try_cancel_requests(ctx,
3174 current->io_uring,
3175 cancel_all,
3176 true);
3177 }
3178
3179 if (loop) {
3180 cond_resched();
3181 continue;
3182 }
3183
3184 prepare_to_wait(&tctx->wait, &wait, TASK_INTERRUPTIBLE);
3185 io_run_task_work();
3186 io_uring_drop_tctx_refs(current);
3187 xa_for_each(&tctx->xa, index, node) {
3188 if (io_local_work_pending(node->ctx)) {
3189 WARN_ON_ONCE(node->ctx->submitter_task &&
3190 node->ctx->submitter_task != current);
3191 goto end_wait;
3192 }
3193 }
3194 /*
3195 * If we've seen completions, retry without waiting. This
3196 * avoids a race where a completion comes in before we did
3197 * prepare_to_wait().
3198 */
3199 if (inflight == tctx_inflight(tctx, !cancel_all))
3200 schedule();
3201 end_wait:
3202 finish_wait(&tctx->wait, &wait);
3203 } while (1);
3204
3205 io_uring_clean_tctx(tctx);
3206 if (cancel_all) {
3207 /*
3208 * We shouldn't run task_works after cancel, so just leave
3209 * ->in_cancel set for normal exit.
3210 */
3211 atomic_dec(&tctx->in_cancel);
3212 /* for exec all current's requests should be gone, kill tctx */
3213 __io_uring_free(current);
3214 }
3215 }
3216
__io_uring_cancel(bool cancel_all)3217 void __io_uring_cancel(bool cancel_all)
3218 {
3219 io_uring_unreg_ringfd();
3220 io_uring_cancel_generic(cancel_all, NULL);
3221 }
3222
io_get_ext_arg_reg(struct io_ring_ctx * ctx,const struct io_uring_getevents_arg __user * uarg)3223 static struct io_uring_reg_wait *io_get_ext_arg_reg(struct io_ring_ctx *ctx,
3224 const struct io_uring_getevents_arg __user *uarg)
3225 {
3226 unsigned long size = sizeof(struct io_uring_reg_wait);
3227 unsigned long offset = (uintptr_t)uarg;
3228 unsigned long end;
3229
3230 if (unlikely(offset % sizeof(long)))
3231 return ERR_PTR(-EFAULT);
3232
3233 /* also protects from NULL ->cq_wait_arg as the size would be 0 */
3234 if (unlikely(check_add_overflow(offset, size, &end) ||
3235 end > ctx->cq_wait_size))
3236 return ERR_PTR(-EFAULT);
3237
3238 offset = array_index_nospec(offset, ctx->cq_wait_size - size);
3239 return ctx->cq_wait_arg + offset;
3240 }
3241
io_validate_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,size_t argsz)3242 static int io_validate_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3243 const void __user *argp, size_t argsz)
3244 {
3245 struct io_uring_getevents_arg arg;
3246
3247 if (!(flags & IORING_ENTER_EXT_ARG))
3248 return 0;
3249 if (flags & IORING_ENTER_EXT_ARG_REG)
3250 return -EINVAL;
3251 if (argsz != sizeof(arg))
3252 return -EINVAL;
3253 if (copy_from_user(&arg, argp, sizeof(arg)))
3254 return -EFAULT;
3255 return 0;
3256 }
3257
io_get_ext_arg(struct io_ring_ctx * ctx,unsigned flags,const void __user * argp,struct ext_arg * ext_arg)3258 static int io_get_ext_arg(struct io_ring_ctx *ctx, unsigned flags,
3259 const void __user *argp, struct ext_arg *ext_arg)
3260 {
3261 const struct io_uring_getevents_arg __user *uarg = argp;
3262 struct io_uring_getevents_arg arg;
3263
3264 ext_arg->iowait = !(flags & IORING_ENTER_NO_IOWAIT);
3265
3266 /*
3267 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
3268 * is just a pointer to the sigset_t.
3269 */
3270 if (!(flags & IORING_ENTER_EXT_ARG)) {
3271 ext_arg->sig = (const sigset_t __user *) argp;
3272 return 0;
3273 }
3274
3275 if (flags & IORING_ENTER_EXT_ARG_REG) {
3276 struct io_uring_reg_wait *w;
3277
3278 if (ext_arg->argsz != sizeof(struct io_uring_reg_wait))
3279 return -EINVAL;
3280 w = io_get_ext_arg_reg(ctx, argp);
3281 if (IS_ERR(w))
3282 return PTR_ERR(w);
3283
3284 if (w->flags & ~IORING_REG_WAIT_TS)
3285 return -EINVAL;
3286 ext_arg->min_time = READ_ONCE(w->min_wait_usec) * NSEC_PER_USEC;
3287 ext_arg->sig = u64_to_user_ptr(READ_ONCE(w->sigmask));
3288 ext_arg->argsz = READ_ONCE(w->sigmask_sz);
3289 if (w->flags & IORING_REG_WAIT_TS) {
3290 ext_arg->ts.tv_sec = READ_ONCE(w->ts.tv_sec);
3291 ext_arg->ts.tv_nsec = READ_ONCE(w->ts.tv_nsec);
3292 ext_arg->ts_set = true;
3293 }
3294 return 0;
3295 }
3296
3297 /*
3298 * EXT_ARG is set - ensure we agree on the size of it and copy in our
3299 * timespec and sigset_t pointers if good.
3300 */
3301 if (ext_arg->argsz != sizeof(arg))
3302 return -EINVAL;
3303 #ifdef CONFIG_64BIT
3304 if (!user_access_begin(uarg, sizeof(*uarg)))
3305 return -EFAULT;
3306 unsafe_get_user(arg.sigmask, &uarg->sigmask, uaccess_end);
3307 unsafe_get_user(arg.sigmask_sz, &uarg->sigmask_sz, uaccess_end);
3308 unsafe_get_user(arg.min_wait_usec, &uarg->min_wait_usec, uaccess_end);
3309 unsafe_get_user(arg.ts, &uarg->ts, uaccess_end);
3310 user_access_end();
3311 #else
3312 if (copy_from_user(&arg, uarg, sizeof(arg)))
3313 return -EFAULT;
3314 #endif
3315 ext_arg->min_time = arg.min_wait_usec * NSEC_PER_USEC;
3316 ext_arg->sig = u64_to_user_ptr(arg.sigmask);
3317 ext_arg->argsz = arg.sigmask_sz;
3318 if (arg.ts) {
3319 if (get_timespec64(&ext_arg->ts, u64_to_user_ptr(arg.ts)))
3320 return -EFAULT;
3321 ext_arg->ts_set = true;
3322 }
3323 return 0;
3324 #ifdef CONFIG_64BIT
3325 uaccess_end:
3326 user_access_end();
3327 return -EFAULT;
3328 #endif
3329 }
3330
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)3331 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
3332 u32, min_complete, u32, flags, const void __user *, argp,
3333 size_t, argsz)
3334 {
3335 struct io_ring_ctx *ctx;
3336 struct file *file;
3337 long ret;
3338
3339 if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
3340 IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG |
3341 IORING_ENTER_REGISTERED_RING |
3342 IORING_ENTER_ABS_TIMER |
3343 IORING_ENTER_EXT_ARG_REG |
3344 IORING_ENTER_NO_IOWAIT)))
3345 return -EINVAL;
3346
3347 /*
3348 * Ring fd has been registered via IORING_REGISTER_RING_FDS, we
3349 * need only dereference our task private array to find it.
3350 */
3351 if (flags & IORING_ENTER_REGISTERED_RING) {
3352 struct io_uring_task *tctx = current->io_uring;
3353
3354 if (unlikely(!tctx || fd >= IO_RINGFD_REG_MAX))
3355 return -EINVAL;
3356 fd = array_index_nospec(fd, IO_RINGFD_REG_MAX);
3357 file = tctx->registered_rings[fd];
3358 if (unlikely(!file))
3359 return -EBADF;
3360 } else {
3361 file = fget(fd);
3362 if (unlikely(!file))
3363 return -EBADF;
3364 ret = -EOPNOTSUPP;
3365 if (unlikely(!io_is_uring_fops(file)))
3366 goto out;
3367 }
3368
3369 ctx = file->private_data;
3370 ret = -EBADFD;
3371 if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
3372 goto out;
3373
3374 /*
3375 * For SQ polling, the thread will do all submissions and completions.
3376 * Just return the requested submit count, and wake the thread if
3377 * we were asked to.
3378 */
3379 ret = 0;
3380 if (ctx->flags & IORING_SETUP_SQPOLL) {
3381 if (unlikely(ctx->sq_data->thread == NULL)) {
3382 ret = -EOWNERDEAD;
3383 goto out;
3384 }
3385 if (flags & IORING_ENTER_SQ_WAKEUP)
3386 wake_up(&ctx->sq_data->wait);
3387 if (flags & IORING_ENTER_SQ_WAIT)
3388 io_sqpoll_wait_sq(ctx);
3389
3390 ret = to_submit;
3391 } else if (to_submit) {
3392 ret = io_uring_add_tctx_node(ctx);
3393 if (unlikely(ret))
3394 goto out;
3395
3396 mutex_lock(&ctx->uring_lock);
3397 ret = io_submit_sqes(ctx, to_submit);
3398 if (ret != to_submit) {
3399 mutex_unlock(&ctx->uring_lock);
3400 goto out;
3401 }
3402 if (flags & IORING_ENTER_GETEVENTS) {
3403 if (ctx->syscall_iopoll)
3404 goto iopoll_locked;
3405 /*
3406 * Ignore errors, we'll soon call io_cqring_wait() and
3407 * it should handle ownership problems if any.
3408 */
3409 if (ctx->flags & IORING_SETUP_DEFER_TASKRUN)
3410 (void)io_run_local_work_locked(ctx, min_complete);
3411 }
3412 mutex_unlock(&ctx->uring_lock);
3413 }
3414
3415 if (flags & IORING_ENTER_GETEVENTS) {
3416 int ret2;
3417
3418 if (ctx->syscall_iopoll) {
3419 /*
3420 * We disallow the app entering submit/complete with
3421 * polling, but we still need to lock the ring to
3422 * prevent racing with polled issue that got punted to
3423 * a workqueue.
3424 */
3425 mutex_lock(&ctx->uring_lock);
3426 iopoll_locked:
3427 ret2 = io_validate_ext_arg(ctx, flags, argp, argsz);
3428 if (likely(!ret2))
3429 ret2 = io_iopoll_check(ctx, min_complete);
3430 mutex_unlock(&ctx->uring_lock);
3431 } else {
3432 struct ext_arg ext_arg = { .argsz = argsz };
3433
3434 ret2 = io_get_ext_arg(ctx, flags, argp, &ext_arg);
3435 if (likely(!ret2))
3436 ret2 = io_cqring_wait(ctx, min_complete, flags,
3437 &ext_arg);
3438 }
3439
3440 if (!ret) {
3441 ret = ret2;
3442
3443 /*
3444 * EBADR indicates that one or more CQE were dropped.
3445 * Once the user has been informed we can clear the bit
3446 * as they are obviously ok with those drops.
3447 */
3448 if (unlikely(ret2 == -EBADR))
3449 clear_bit(IO_CHECK_CQ_DROPPED_BIT,
3450 &ctx->check_cq);
3451 }
3452 }
3453 out:
3454 if (!(flags & IORING_ENTER_REGISTERED_RING))
3455 fput(file);
3456 return ret;
3457 }
3458
3459 static const struct file_operations io_uring_fops = {
3460 .release = io_uring_release,
3461 .mmap = io_uring_mmap,
3462 .get_unmapped_area = io_uring_get_unmapped_area,
3463 #ifndef CONFIG_MMU
3464 .mmap_capabilities = io_uring_nommu_mmap_capabilities,
3465 #endif
3466 .poll = io_uring_poll,
3467 #ifdef CONFIG_PROC_FS
3468 .show_fdinfo = io_uring_show_fdinfo,
3469 #endif
3470 };
3471
io_is_uring_fops(struct file * file)3472 bool io_is_uring_fops(struct file *file)
3473 {
3474 return file->f_op == &io_uring_fops;
3475 }
3476
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)3477 static __cold int io_allocate_scq_urings(struct io_ring_ctx *ctx,
3478 struct io_uring_params *p)
3479 {
3480 struct io_uring_region_desc rd;
3481 struct io_rings *rings;
3482 size_t size, sq_array_offset;
3483 int ret;
3484
3485 /* make sure these are sane, as we already accounted them */
3486 ctx->sq_entries = p->sq_entries;
3487 ctx->cq_entries = p->cq_entries;
3488
3489 size = rings_size(ctx->flags, p->sq_entries, p->cq_entries,
3490 &sq_array_offset);
3491 if (size == SIZE_MAX)
3492 return -EOVERFLOW;
3493
3494 memset(&rd, 0, sizeof(rd));
3495 rd.size = PAGE_ALIGN(size);
3496 if (ctx->flags & IORING_SETUP_NO_MMAP) {
3497 rd.user_addr = p->cq_off.user_addr;
3498 rd.flags |= IORING_MEM_REGION_TYPE_USER;
3499 }
3500 ret = io_create_region(ctx, &ctx->ring_region, &rd, IORING_OFF_CQ_RING);
3501 if (ret)
3502 return ret;
3503 ctx->rings = rings = io_region_get_ptr(&ctx->ring_region);
3504
3505 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3506 ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
3507 rings->sq_ring_mask = p->sq_entries - 1;
3508 rings->cq_ring_mask = p->cq_entries - 1;
3509 rings->sq_ring_entries = p->sq_entries;
3510 rings->cq_ring_entries = p->cq_entries;
3511
3512 if (p->flags & IORING_SETUP_SQE128)
3513 size = array_size(2 * sizeof(struct io_uring_sqe), p->sq_entries);
3514 else
3515 size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
3516 if (size == SIZE_MAX) {
3517 io_rings_free(ctx);
3518 return -EOVERFLOW;
3519 }
3520
3521 memset(&rd, 0, sizeof(rd));
3522 rd.size = PAGE_ALIGN(size);
3523 if (ctx->flags & IORING_SETUP_NO_MMAP) {
3524 rd.user_addr = p->sq_off.user_addr;
3525 rd.flags |= IORING_MEM_REGION_TYPE_USER;
3526 }
3527 ret = io_create_region(ctx, &ctx->sq_region, &rd, IORING_OFF_SQES);
3528 if (ret) {
3529 io_rings_free(ctx);
3530 return ret;
3531 }
3532 ctx->sq_sqes = io_region_get_ptr(&ctx->sq_region);
3533 return 0;
3534 }
3535
io_uring_install_fd(struct file * file)3536 static int io_uring_install_fd(struct file *file)
3537 {
3538 int fd;
3539
3540 fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
3541 if (fd < 0)
3542 return fd;
3543 fd_install(fd, file);
3544 return fd;
3545 }
3546
3547 /*
3548 * Allocate an anonymous fd, this is what constitutes the application
3549 * visible backing of an io_uring instance. The application mmaps this
3550 * fd to gain access to the SQ/CQ ring details.
3551 */
io_uring_get_file(struct io_ring_ctx * ctx)3552 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
3553 {
3554 /* Create a new inode so that the LSM can block the creation. */
3555 return anon_inode_create_getfile("[io_uring]", &io_uring_fops, ctx,
3556 O_RDWR | O_CLOEXEC, NULL);
3557 }
3558
io_uring_sanitise_params(struct io_uring_params * p)3559 static int io_uring_sanitise_params(struct io_uring_params *p)
3560 {
3561 unsigned flags = p->flags;
3562
3563 /* There is no way to mmap rings without a real fd */
3564 if ((flags & IORING_SETUP_REGISTERED_FD_ONLY) &&
3565 !(flags & IORING_SETUP_NO_MMAP))
3566 return -EINVAL;
3567
3568 if (flags & IORING_SETUP_SQPOLL) {
3569 /* IPI related flags don't make sense with SQPOLL */
3570 if (flags & (IORING_SETUP_COOP_TASKRUN |
3571 IORING_SETUP_TASKRUN_FLAG |
3572 IORING_SETUP_DEFER_TASKRUN))
3573 return -EINVAL;
3574 }
3575
3576 if (flags & IORING_SETUP_TASKRUN_FLAG) {
3577 if (!(flags & (IORING_SETUP_COOP_TASKRUN |
3578 IORING_SETUP_DEFER_TASKRUN)))
3579 return -EINVAL;
3580 }
3581
3582 /* HYBRID_IOPOLL only valid with IOPOLL */
3583 if ((flags & IORING_SETUP_HYBRID_IOPOLL) && !(flags & IORING_SETUP_IOPOLL))
3584 return -EINVAL;
3585
3586 /*
3587 * For DEFER_TASKRUN we require the completion task to be the same as
3588 * the submission task. This implies that there is only one submitter.
3589 */
3590 if ((flags & IORING_SETUP_DEFER_TASKRUN) &&
3591 !(flags & IORING_SETUP_SINGLE_ISSUER))
3592 return -EINVAL;
3593
3594 return 0;
3595 }
3596
io_uring_fill_params(unsigned entries,struct io_uring_params * p)3597 int io_uring_fill_params(unsigned entries, struct io_uring_params *p)
3598 {
3599 if (!entries)
3600 return -EINVAL;
3601 if (entries > IORING_MAX_ENTRIES) {
3602 if (!(p->flags & IORING_SETUP_CLAMP))
3603 return -EINVAL;
3604 entries = IORING_MAX_ENTRIES;
3605 }
3606
3607 /*
3608 * Use twice as many entries for the CQ ring. It's possible for the
3609 * application to drive a higher depth than the size of the SQ ring,
3610 * since the sqes are only used at submission time. This allows for
3611 * some flexibility in overcommitting a bit. If the application has
3612 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
3613 * of CQ ring entries manually.
3614 */
3615 p->sq_entries = roundup_pow_of_two(entries);
3616 if (p->flags & IORING_SETUP_CQSIZE) {
3617 /*
3618 * If IORING_SETUP_CQSIZE is set, we do the same roundup
3619 * to a power-of-two, if it isn't already. We do NOT impose
3620 * any cq vs sq ring sizing.
3621 */
3622 if (!p->cq_entries)
3623 return -EINVAL;
3624 if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
3625 if (!(p->flags & IORING_SETUP_CLAMP))
3626 return -EINVAL;
3627 p->cq_entries = IORING_MAX_CQ_ENTRIES;
3628 }
3629 p->cq_entries = roundup_pow_of_two(p->cq_entries);
3630 if (p->cq_entries < p->sq_entries)
3631 return -EINVAL;
3632 } else {
3633 p->cq_entries = 2 * p->sq_entries;
3634 }
3635
3636 p->sq_off.head = offsetof(struct io_rings, sq.head);
3637 p->sq_off.tail = offsetof(struct io_rings, sq.tail);
3638 p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
3639 p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
3640 p->sq_off.flags = offsetof(struct io_rings, sq_flags);
3641 p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
3642 p->sq_off.resv1 = 0;
3643 if (!(p->flags & IORING_SETUP_NO_MMAP))
3644 p->sq_off.user_addr = 0;
3645
3646 p->cq_off.head = offsetof(struct io_rings, cq.head);
3647 p->cq_off.tail = offsetof(struct io_rings, cq.tail);
3648 p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
3649 p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
3650 p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
3651 p->cq_off.cqes = offsetof(struct io_rings, cqes);
3652 p->cq_off.flags = offsetof(struct io_rings, cq_flags);
3653 p->cq_off.resv1 = 0;
3654 if (!(p->flags & IORING_SETUP_NO_MMAP))
3655 p->cq_off.user_addr = 0;
3656
3657 return 0;
3658 }
3659
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)3660 static __cold int io_uring_create(unsigned entries, struct io_uring_params *p,
3661 struct io_uring_params __user *params)
3662 {
3663 struct io_ring_ctx *ctx;
3664 struct io_uring_task *tctx;
3665 struct file *file;
3666 int ret;
3667
3668 ret = io_uring_sanitise_params(p);
3669 if (ret)
3670 return ret;
3671
3672 ret = io_uring_fill_params(entries, p);
3673 if (unlikely(ret))
3674 return ret;
3675
3676 ctx = io_ring_ctx_alloc(p);
3677 if (!ctx)
3678 return -ENOMEM;
3679
3680 ctx->clockid = CLOCK_MONOTONIC;
3681 ctx->clock_offset = 0;
3682
3683 if (!(ctx->flags & IORING_SETUP_NO_SQARRAY))
3684 static_branch_inc(&io_key_has_sqarray);
3685
3686 if ((ctx->flags & IORING_SETUP_DEFER_TASKRUN) &&
3687 !(ctx->flags & IORING_SETUP_IOPOLL) &&
3688 !(ctx->flags & IORING_SETUP_SQPOLL))
3689 ctx->task_complete = true;
3690
3691 if (ctx->task_complete || (ctx->flags & IORING_SETUP_IOPOLL))
3692 ctx->lockless_cq = true;
3693
3694 /*
3695 * lazy poll_wq activation relies on ->task_complete for synchronisation
3696 * purposes, see io_activate_pollwq()
3697 */
3698 if (!ctx->task_complete)
3699 ctx->poll_activated = true;
3700
3701 /*
3702 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
3703 * space applications don't need to do io completion events
3704 * polling again, they can rely on io_sq_thread to do polling
3705 * work, which can reduce cpu usage and uring_lock contention.
3706 */
3707 if (ctx->flags & IORING_SETUP_IOPOLL &&
3708 !(ctx->flags & IORING_SETUP_SQPOLL))
3709 ctx->syscall_iopoll = 1;
3710
3711 ctx->compat = in_compat_syscall();
3712 if (!ns_capable_noaudit(&init_user_ns, CAP_IPC_LOCK))
3713 ctx->user = get_uid(current_user());
3714
3715 /*
3716 * For SQPOLL, we just need a wakeup, always. For !SQPOLL, if
3717 * COOP_TASKRUN is set, then IPIs are never needed by the app.
3718 */
3719 if (ctx->flags & (IORING_SETUP_SQPOLL|IORING_SETUP_COOP_TASKRUN))
3720 ctx->notify_method = TWA_SIGNAL_NO_IPI;
3721 else
3722 ctx->notify_method = TWA_SIGNAL;
3723
3724 /*
3725 * This is just grabbed for accounting purposes. When a process exits,
3726 * the mm is exited and dropped before the files, hence we need to hang
3727 * on to this mm purely for the purposes of being able to unaccount
3728 * memory (locked/pinned vm). It's not used for anything else.
3729 */
3730 mmgrab(current->mm);
3731 ctx->mm_account = current->mm;
3732
3733 ret = io_allocate_scq_urings(ctx, p);
3734 if (ret)
3735 goto err;
3736
3737 if (!(p->flags & IORING_SETUP_NO_SQARRAY))
3738 p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
3739
3740 ret = io_sq_offload_create(ctx, p);
3741 if (ret)
3742 goto err;
3743
3744 p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
3745 IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
3746 IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
3747 IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
3748 IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
3749 IORING_FEAT_RSRC_TAGS | IORING_FEAT_CQE_SKIP |
3750 IORING_FEAT_LINKED_FILE | IORING_FEAT_REG_REG_RING |
3751 IORING_FEAT_RECVSEND_BUNDLE | IORING_FEAT_MIN_TIMEOUT |
3752 IORING_FEAT_RW_ATTR | IORING_FEAT_NO_IOWAIT;
3753
3754 if (copy_to_user(params, p, sizeof(*p))) {
3755 ret = -EFAULT;
3756 goto err;
3757 }
3758
3759 if (ctx->flags & IORING_SETUP_SINGLE_ISSUER
3760 && !(ctx->flags & IORING_SETUP_R_DISABLED))
3761 WRITE_ONCE(ctx->submitter_task, get_task_struct(current));
3762
3763 file = io_uring_get_file(ctx);
3764 if (IS_ERR(file)) {
3765 ret = PTR_ERR(file);
3766 goto err;
3767 }
3768
3769 ret = __io_uring_add_tctx_node(ctx);
3770 if (ret)
3771 goto err_fput;
3772 tctx = current->io_uring;
3773
3774 /*
3775 * Install ring fd as the very last thing, so we don't risk someone
3776 * having closed it before we finish setup
3777 */
3778 if (p->flags & IORING_SETUP_REGISTERED_FD_ONLY)
3779 ret = io_ring_add_registered_file(tctx, file, 0, IO_RINGFD_REG_MAX);
3780 else
3781 ret = io_uring_install_fd(file);
3782 if (ret < 0)
3783 goto err_fput;
3784
3785 trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
3786 return ret;
3787 err:
3788 io_ring_ctx_wait_and_kill(ctx);
3789 return ret;
3790 err_fput:
3791 fput(file);
3792 return ret;
3793 }
3794
3795 /*
3796 * Sets up an aio uring context, and returns the fd. Applications asks for a
3797 * ring size, we return the actual sq/cq ring sizes (among other things) in the
3798 * params structure passed in.
3799 */
io_uring_setup(u32 entries,struct io_uring_params __user * params)3800 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
3801 {
3802 struct io_uring_params p;
3803 int i;
3804
3805 if (copy_from_user(&p, params, sizeof(p)))
3806 return -EFAULT;
3807 for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
3808 if (p.resv[i])
3809 return -EINVAL;
3810 }
3811
3812 if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
3813 IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
3814 IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
3815 IORING_SETUP_R_DISABLED | IORING_SETUP_SUBMIT_ALL |
3816 IORING_SETUP_COOP_TASKRUN | IORING_SETUP_TASKRUN_FLAG |
3817 IORING_SETUP_SQE128 | IORING_SETUP_CQE32 |
3818 IORING_SETUP_SINGLE_ISSUER | IORING_SETUP_DEFER_TASKRUN |
3819 IORING_SETUP_NO_MMAP | IORING_SETUP_REGISTERED_FD_ONLY |
3820 IORING_SETUP_NO_SQARRAY | IORING_SETUP_HYBRID_IOPOLL))
3821 return -EINVAL;
3822
3823 return io_uring_create(entries, &p, params);
3824 }
3825
io_uring_allowed(void)3826 static inline int io_uring_allowed(void)
3827 {
3828 int disabled = READ_ONCE(sysctl_io_uring_disabled);
3829 kgid_t io_uring_group;
3830
3831 if (disabled == 2)
3832 return -EPERM;
3833
3834 if (disabled == 0 || capable(CAP_SYS_ADMIN))
3835 goto allowed_lsm;
3836
3837 io_uring_group = make_kgid(&init_user_ns, sysctl_io_uring_group);
3838 if (!gid_valid(io_uring_group))
3839 return -EPERM;
3840
3841 if (!in_group_p(io_uring_group))
3842 return -EPERM;
3843
3844 allowed_lsm:
3845 return security_uring_allowed();
3846 }
3847
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)3848 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
3849 struct io_uring_params __user *, params)
3850 {
3851 int ret;
3852
3853 ret = io_uring_allowed();
3854 if (ret)
3855 return ret;
3856
3857 return io_uring_setup(entries, params);
3858 }
3859
io_uring_init(void)3860 static int __init io_uring_init(void)
3861 {
3862 struct kmem_cache_args kmem_args = {
3863 .useroffset = offsetof(struct io_kiocb, cmd.data),
3864 .usersize = sizeof_field(struct io_kiocb, cmd.data),
3865 .freeptr_offset = offsetof(struct io_kiocb, work),
3866 .use_freeptr_offset = true,
3867 };
3868
3869 #define __BUILD_BUG_VERIFY_OFFSET_SIZE(stype, eoffset, esize, ename) do { \
3870 BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
3871 BUILD_BUG_ON(sizeof_field(stype, ename) != esize); \
3872 } while (0)
3873
3874 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
3875 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, sizeof(etype), ename)
3876 #define BUILD_BUG_SQE_ELEM_SIZE(eoffset, esize, ename) \
3877 __BUILD_BUG_VERIFY_OFFSET_SIZE(struct io_uring_sqe, eoffset, esize, ename)
3878 BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
3879 BUILD_BUG_SQE_ELEM(0, __u8, opcode);
3880 BUILD_BUG_SQE_ELEM(1, __u8, flags);
3881 BUILD_BUG_SQE_ELEM(2, __u16, ioprio);
3882 BUILD_BUG_SQE_ELEM(4, __s32, fd);
3883 BUILD_BUG_SQE_ELEM(8, __u64, off);
3884 BUILD_BUG_SQE_ELEM(8, __u64, addr2);
3885 BUILD_BUG_SQE_ELEM(8, __u32, cmd_op);
3886 BUILD_BUG_SQE_ELEM(12, __u32, __pad1);
3887 BUILD_BUG_SQE_ELEM(16, __u64, addr);
3888 BUILD_BUG_SQE_ELEM(16, __u64, splice_off_in);
3889 BUILD_BUG_SQE_ELEM(24, __u32, len);
3890 BUILD_BUG_SQE_ELEM(28, __kernel_rwf_t, rw_flags);
3891 BUILD_BUG_SQE_ELEM(28, /* compat */ int, rw_flags);
3892 BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
3893 BUILD_BUG_SQE_ELEM(28, __u32, fsync_flags);
3894 BUILD_BUG_SQE_ELEM(28, /* compat */ __u16, poll_events);
3895 BUILD_BUG_SQE_ELEM(28, __u32, poll32_events);
3896 BUILD_BUG_SQE_ELEM(28, __u32, sync_range_flags);
3897 BUILD_BUG_SQE_ELEM(28, __u32, msg_flags);
3898 BUILD_BUG_SQE_ELEM(28, __u32, timeout_flags);
3899 BUILD_BUG_SQE_ELEM(28, __u32, accept_flags);
3900 BUILD_BUG_SQE_ELEM(28, __u32, cancel_flags);
3901 BUILD_BUG_SQE_ELEM(28, __u32, open_flags);
3902 BUILD_BUG_SQE_ELEM(28, __u32, statx_flags);
3903 BUILD_BUG_SQE_ELEM(28, __u32, fadvise_advice);
3904 BUILD_BUG_SQE_ELEM(28, __u32, splice_flags);
3905 BUILD_BUG_SQE_ELEM(28, __u32, rename_flags);
3906 BUILD_BUG_SQE_ELEM(28, __u32, unlink_flags);
3907 BUILD_BUG_SQE_ELEM(28, __u32, hardlink_flags);
3908 BUILD_BUG_SQE_ELEM(28, __u32, xattr_flags);
3909 BUILD_BUG_SQE_ELEM(28, __u32, msg_ring_flags);
3910 BUILD_BUG_SQE_ELEM(32, __u64, user_data);
3911 BUILD_BUG_SQE_ELEM(40, __u16, buf_index);
3912 BUILD_BUG_SQE_ELEM(40, __u16, buf_group);
3913 BUILD_BUG_SQE_ELEM(42, __u16, personality);
3914 BUILD_BUG_SQE_ELEM(44, __s32, splice_fd_in);
3915 BUILD_BUG_SQE_ELEM(44, __u32, file_index);
3916 BUILD_BUG_SQE_ELEM(44, __u16, addr_len);
3917 BUILD_BUG_SQE_ELEM(46, __u16, __pad3[0]);
3918 BUILD_BUG_SQE_ELEM(48, __u64, addr3);
3919 BUILD_BUG_SQE_ELEM_SIZE(48, 0, cmd);
3920 BUILD_BUG_SQE_ELEM(48, __u64, attr_ptr);
3921 BUILD_BUG_SQE_ELEM(56, __u64, attr_type_mask);
3922 BUILD_BUG_SQE_ELEM(56, __u64, __pad2);
3923
3924 BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
3925 sizeof(struct io_uring_rsrc_update));
3926 BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
3927 sizeof(struct io_uring_rsrc_update2));
3928
3929 /* ->buf_index is u16 */
3930 BUILD_BUG_ON(offsetof(struct io_uring_buf_ring, bufs) != 0);
3931 BUILD_BUG_ON(offsetof(struct io_uring_buf, resv) !=
3932 offsetof(struct io_uring_buf_ring, tail));
3933
3934 /* should fit into one byte */
3935 BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
3936 BUILD_BUG_ON(SQE_COMMON_FLAGS >= (1 << 8));
3937 BUILD_BUG_ON((SQE_VALID_FLAGS | SQE_COMMON_FLAGS) != SQE_VALID_FLAGS);
3938
3939 BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof_field(struct io_kiocb, flags));
3940
3941 BUILD_BUG_ON(sizeof(atomic_t) != sizeof(u32));
3942
3943 /* top 8bits are for internal use */
3944 BUILD_BUG_ON((IORING_URING_CMD_MASK & 0xff000000) != 0);
3945
3946 io_uring_optable_init();
3947
3948 /* imu->dir is u8 */
3949 BUILD_BUG_ON((IO_IMU_DEST | IO_IMU_SOURCE) > U8_MAX);
3950
3951 /*
3952 * Allow user copy in the per-command field, which starts after the
3953 * file in io_kiocb and until the opcode field. The openat2 handling
3954 * requires copying in user memory into the io_kiocb object in that
3955 * range, and HARDENED_USERCOPY will complain if we haven't
3956 * correctly annotated this range.
3957 */
3958 req_cachep = kmem_cache_create("io_kiocb", sizeof(struct io_kiocb), &kmem_args,
3959 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT |
3960 SLAB_TYPESAFE_BY_RCU);
3961
3962 iou_wq = alloc_workqueue("iou_exit", WQ_UNBOUND, 64);
3963 BUG_ON(!iou_wq);
3964
3965 #ifdef CONFIG_SYSCTL
3966 register_sysctl_init("kernel", kernel_io_uring_disabled_table);
3967 #endif
3968
3969 return 0;
3970 };
3971 __initcall(io_uring_init);
3972