1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SWAPOPS_H
3 #define _LINUX_SWAPOPS_H
4 
5 #include <linux/radix-tree.h>
6 #include <linux/bug.h>
7 #include <linux/mm_types.h>
8 
9 #ifdef CONFIG_MMU
10 
11 #ifdef CONFIG_SWAP
12 #include <linux/swapfile.h>
13 #endif	/* CONFIG_SWAP */
14 
15 /*
16  * swapcache pages are stored in the swapper_space radix tree.  We want to
17  * get good packing density in that tree, so the index should be dense in
18  * the low-order bits.
19  *
20  * We arrange the `type' and `offset' fields so that `type' is at the six
21  * high-order bits of the swp_entry_t and `offset' is right-aligned in the
22  * remaining bits.  Although `type' itself needs only five bits, we allow for
23  * shmem/tmpfs to shift it all up a further one bit: see swp_to_radix_entry().
24  *
25  * swp_entry_t's are *never* stored anywhere in their arch-dependent format.
26  */
27 #define SWP_TYPE_SHIFT	(BITS_PER_XA_VALUE - MAX_SWAPFILES_SHIFT)
28 #define SWP_OFFSET_MASK	((1UL << SWP_TYPE_SHIFT) - 1)
29 
30 /*
31  * Definitions only for PFN swap entries (see is_pfn_swap_entry()).  To
32  * store PFN, we only need SWP_PFN_BITS bits.  Each of the pfn swap entries
33  * can use the extra bits to store other information besides PFN.
34  */
35 #ifdef MAX_PHYSMEM_BITS
36 #define SWP_PFN_BITS		(MAX_PHYSMEM_BITS - PAGE_SHIFT)
37 #else  /* MAX_PHYSMEM_BITS */
38 #define SWP_PFN_BITS		min_t(int, \
39 				      sizeof(phys_addr_t) * 8 - PAGE_SHIFT, \
40 				      SWP_TYPE_SHIFT)
41 #endif	/* MAX_PHYSMEM_BITS */
42 #define SWP_PFN_MASK		(BIT(SWP_PFN_BITS) - 1)
43 
44 /**
45  * Migration swap entry specific bitfield definitions.  Layout:
46  *
47  *   |----------+--------------------|
48  *   | swp_type | swp_offset         |
49  *   |----------+--------+-+-+-------|
50  *   |          | resv   |D|A|  PFN  |
51  *   |----------+--------+-+-+-------|
52  *
53  * @SWP_MIG_YOUNG_BIT: Whether the page used to have young bit set (bit A)
54  * @SWP_MIG_DIRTY_BIT: Whether the page used to have dirty bit set (bit D)
55  *
56  * Note: A/D bits will be stored in migration entries iff there're enough
57  * free bits in arch specific swp offset.  By default we'll ignore A/D bits
58  * when migrating a page.  Please refer to migration_entry_supports_ad()
59  * for more information.  If there're more bits besides PFN and A/D bits,
60  * they should be reserved and always be zeros.
61  */
62 #define SWP_MIG_YOUNG_BIT		(SWP_PFN_BITS)
63 #define SWP_MIG_DIRTY_BIT		(SWP_PFN_BITS + 1)
64 #define SWP_MIG_TOTAL_BITS		(SWP_PFN_BITS + 2)
65 
66 #define SWP_MIG_YOUNG			BIT(SWP_MIG_YOUNG_BIT)
67 #define SWP_MIG_DIRTY			BIT(SWP_MIG_DIRTY_BIT)
68 
69 static inline bool is_pfn_swap_entry(swp_entry_t entry);
70 
71 /* Clear all flags but only keep swp_entry_t related information */
pte_swp_clear_flags(pte_t pte)72 static inline pte_t pte_swp_clear_flags(pte_t pte)
73 {
74 	if (pte_swp_exclusive(pte))
75 		pte = pte_swp_clear_exclusive(pte);
76 	if (pte_swp_soft_dirty(pte))
77 		pte = pte_swp_clear_soft_dirty(pte);
78 	if (pte_swp_uffd_wp(pte))
79 		pte = pte_swp_clear_uffd_wp(pte);
80 	return pte;
81 }
82 
83 /*
84  * Store a type+offset into a swp_entry_t in an arch-independent format
85  */
swp_entry(unsigned long type,pgoff_t offset)86 static inline swp_entry_t swp_entry(unsigned long type, pgoff_t offset)
87 {
88 	swp_entry_t ret;
89 
90 	ret.val = (type << SWP_TYPE_SHIFT) | (offset & SWP_OFFSET_MASK);
91 	return ret;
92 }
93 
94 /*
95  * Extract the `type' field from a swp_entry_t.  The swp_entry_t is in
96  * arch-independent format
97  */
swp_type(swp_entry_t entry)98 static inline unsigned swp_type(swp_entry_t entry)
99 {
100 	return (entry.val >> SWP_TYPE_SHIFT);
101 }
102 
103 /*
104  * Extract the `offset' field from a swp_entry_t.  The swp_entry_t is in
105  * arch-independent format
106  */
swp_offset(swp_entry_t entry)107 static inline pgoff_t swp_offset(swp_entry_t entry)
108 {
109 	return entry.val & SWP_OFFSET_MASK;
110 }
111 
112 /*
113  * This should only be called upon a pfn swap entry to get the PFN stored
114  * in the swap entry.  Please refers to is_pfn_swap_entry() for definition
115  * of pfn swap entry.
116  */
swp_offset_pfn(swp_entry_t entry)117 static inline unsigned long swp_offset_pfn(swp_entry_t entry)
118 {
119 	VM_BUG_ON(!is_pfn_swap_entry(entry));
120 	return swp_offset(entry) & SWP_PFN_MASK;
121 }
122 
123 /* check whether a pte points to a swap entry */
is_swap_pte(pte_t pte)124 static inline int is_swap_pte(pte_t pte)
125 {
126 	return !pte_none(pte) && !pte_present(pte);
127 }
128 
129 /*
130  * Convert the arch-dependent pte representation of a swp_entry_t into an
131  * arch-independent swp_entry_t.
132  */
pte_to_swp_entry(pte_t pte)133 static inline swp_entry_t pte_to_swp_entry(pte_t pte)
134 {
135 	swp_entry_t arch_entry;
136 
137 	pte = pte_swp_clear_flags(pte);
138 	arch_entry = __pte_to_swp_entry(pte);
139 	return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
140 }
141 
142 /*
143  * Convert the arch-independent representation of a swp_entry_t into the
144  * arch-dependent pte representation.
145  */
swp_entry_to_pte(swp_entry_t entry)146 static inline pte_t swp_entry_to_pte(swp_entry_t entry)
147 {
148 	swp_entry_t arch_entry;
149 
150 	arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
151 	return __swp_entry_to_pte(arch_entry);
152 }
153 
radix_to_swp_entry(void * arg)154 static inline swp_entry_t radix_to_swp_entry(void *arg)
155 {
156 	swp_entry_t entry;
157 
158 	entry.val = xa_to_value(arg);
159 	return entry;
160 }
161 
swp_to_radix_entry(swp_entry_t entry)162 static inline void *swp_to_radix_entry(swp_entry_t entry)
163 {
164 	return xa_mk_value(entry.val);
165 }
166 
167 #if IS_ENABLED(CONFIG_DEVICE_PRIVATE)
make_readable_device_private_entry(pgoff_t offset)168 static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
169 {
170 	return swp_entry(SWP_DEVICE_READ, offset);
171 }
172 
make_writable_device_private_entry(pgoff_t offset)173 static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
174 {
175 	return swp_entry(SWP_DEVICE_WRITE, offset);
176 }
177 
is_device_private_entry(swp_entry_t entry)178 static inline bool is_device_private_entry(swp_entry_t entry)
179 {
180 	int type = swp_type(entry);
181 	return type == SWP_DEVICE_READ || type == SWP_DEVICE_WRITE;
182 }
183 
is_writable_device_private_entry(swp_entry_t entry)184 static inline bool is_writable_device_private_entry(swp_entry_t entry)
185 {
186 	return unlikely(swp_type(entry) == SWP_DEVICE_WRITE);
187 }
188 
make_device_exclusive_entry(pgoff_t offset)189 static inline swp_entry_t make_device_exclusive_entry(pgoff_t offset)
190 {
191 	return swp_entry(SWP_DEVICE_EXCLUSIVE, offset);
192 }
193 
is_device_exclusive_entry(swp_entry_t entry)194 static inline bool is_device_exclusive_entry(swp_entry_t entry)
195 {
196 	return swp_type(entry) == SWP_DEVICE_EXCLUSIVE;
197 }
198 
199 #else /* CONFIG_DEVICE_PRIVATE */
make_readable_device_private_entry(pgoff_t offset)200 static inline swp_entry_t make_readable_device_private_entry(pgoff_t offset)
201 {
202 	return swp_entry(0, 0);
203 }
204 
make_writable_device_private_entry(pgoff_t offset)205 static inline swp_entry_t make_writable_device_private_entry(pgoff_t offset)
206 {
207 	return swp_entry(0, 0);
208 }
209 
is_device_private_entry(swp_entry_t entry)210 static inline bool is_device_private_entry(swp_entry_t entry)
211 {
212 	return false;
213 }
214 
is_writable_device_private_entry(swp_entry_t entry)215 static inline bool is_writable_device_private_entry(swp_entry_t entry)
216 {
217 	return false;
218 }
219 
make_device_exclusive_entry(pgoff_t offset)220 static inline swp_entry_t make_device_exclusive_entry(pgoff_t offset)
221 {
222 	return swp_entry(0, 0);
223 }
224 
is_device_exclusive_entry(swp_entry_t entry)225 static inline bool is_device_exclusive_entry(swp_entry_t entry)
226 {
227 	return false;
228 }
229 
230 #endif /* CONFIG_DEVICE_PRIVATE */
231 
232 #ifdef CONFIG_MIGRATION
is_migration_entry(swp_entry_t entry)233 static inline int is_migration_entry(swp_entry_t entry)
234 {
235 	return unlikely(swp_type(entry) == SWP_MIGRATION_READ ||
236 			swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE ||
237 			swp_type(entry) == SWP_MIGRATION_WRITE);
238 }
239 
is_writable_migration_entry(swp_entry_t entry)240 static inline int is_writable_migration_entry(swp_entry_t entry)
241 {
242 	return unlikely(swp_type(entry) == SWP_MIGRATION_WRITE);
243 }
244 
is_readable_migration_entry(swp_entry_t entry)245 static inline int is_readable_migration_entry(swp_entry_t entry)
246 {
247 	return unlikely(swp_type(entry) == SWP_MIGRATION_READ);
248 }
249 
is_readable_exclusive_migration_entry(swp_entry_t entry)250 static inline int is_readable_exclusive_migration_entry(swp_entry_t entry)
251 {
252 	return unlikely(swp_type(entry) == SWP_MIGRATION_READ_EXCLUSIVE);
253 }
254 
make_readable_migration_entry(pgoff_t offset)255 static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
256 {
257 	return swp_entry(SWP_MIGRATION_READ, offset);
258 }
259 
make_readable_exclusive_migration_entry(pgoff_t offset)260 static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset)
261 {
262 	return swp_entry(SWP_MIGRATION_READ_EXCLUSIVE, offset);
263 }
264 
make_writable_migration_entry(pgoff_t offset)265 static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
266 {
267 	return swp_entry(SWP_MIGRATION_WRITE, offset);
268 }
269 
270 /*
271  * Returns whether the host has large enough swap offset field to support
272  * carrying over pgtable A/D bits for page migrations.  The result is
273  * pretty much arch specific.
274  */
migration_entry_supports_ad(void)275 static inline bool migration_entry_supports_ad(void)
276 {
277 #ifdef CONFIG_SWAP
278 	return swap_migration_ad_supported;
279 #else  /* CONFIG_SWAP */
280 	return false;
281 #endif	/* CONFIG_SWAP */
282 }
283 
make_migration_entry_young(swp_entry_t entry)284 static inline swp_entry_t make_migration_entry_young(swp_entry_t entry)
285 {
286 	if (migration_entry_supports_ad())
287 		return swp_entry(swp_type(entry),
288 				 swp_offset(entry) | SWP_MIG_YOUNG);
289 	return entry;
290 }
291 
is_migration_entry_young(swp_entry_t entry)292 static inline bool is_migration_entry_young(swp_entry_t entry)
293 {
294 	if (migration_entry_supports_ad())
295 		return swp_offset(entry) & SWP_MIG_YOUNG;
296 	/* Keep the old behavior of aging page after migration */
297 	return false;
298 }
299 
make_migration_entry_dirty(swp_entry_t entry)300 static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry)
301 {
302 	if (migration_entry_supports_ad())
303 		return swp_entry(swp_type(entry),
304 				 swp_offset(entry) | SWP_MIG_DIRTY);
305 	return entry;
306 }
307 
is_migration_entry_dirty(swp_entry_t entry)308 static inline bool is_migration_entry_dirty(swp_entry_t entry)
309 {
310 	if (migration_entry_supports_ad())
311 		return swp_offset(entry) & SWP_MIG_DIRTY;
312 	/* Keep the old behavior of clean page after migration */
313 	return false;
314 }
315 
316 extern void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
317 					unsigned long address);
318 extern void migration_entry_wait_huge(struct vm_area_struct *vma, unsigned long addr, pte_t *pte);
319 #else  /* CONFIG_MIGRATION */
make_readable_migration_entry(pgoff_t offset)320 static inline swp_entry_t make_readable_migration_entry(pgoff_t offset)
321 {
322 	return swp_entry(0, 0);
323 }
324 
make_readable_exclusive_migration_entry(pgoff_t offset)325 static inline swp_entry_t make_readable_exclusive_migration_entry(pgoff_t offset)
326 {
327 	return swp_entry(0, 0);
328 }
329 
make_writable_migration_entry(pgoff_t offset)330 static inline swp_entry_t make_writable_migration_entry(pgoff_t offset)
331 {
332 	return swp_entry(0, 0);
333 }
334 
is_migration_entry(swp_entry_t swp)335 static inline int is_migration_entry(swp_entry_t swp)
336 {
337 	return 0;
338 }
339 
migration_entry_wait(struct mm_struct * mm,pmd_t * pmd,unsigned long address)340 static inline void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
341 					unsigned long address) { }
migration_entry_wait_huge(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)342 static inline void migration_entry_wait_huge(struct vm_area_struct *vma,
343 					     unsigned long addr, pte_t *pte) { }
is_writable_migration_entry(swp_entry_t entry)344 static inline int is_writable_migration_entry(swp_entry_t entry)
345 {
346 	return 0;
347 }
is_readable_migration_entry(swp_entry_t entry)348 static inline int is_readable_migration_entry(swp_entry_t entry)
349 {
350 	return 0;
351 }
352 
make_migration_entry_young(swp_entry_t entry)353 static inline swp_entry_t make_migration_entry_young(swp_entry_t entry)
354 {
355 	return entry;
356 }
357 
is_migration_entry_young(swp_entry_t entry)358 static inline bool is_migration_entry_young(swp_entry_t entry)
359 {
360 	return false;
361 }
362 
make_migration_entry_dirty(swp_entry_t entry)363 static inline swp_entry_t make_migration_entry_dirty(swp_entry_t entry)
364 {
365 	return entry;
366 }
367 
is_migration_entry_dirty(swp_entry_t entry)368 static inline bool is_migration_entry_dirty(swp_entry_t entry)
369 {
370 	return false;
371 }
372 #endif	/* CONFIG_MIGRATION */
373 
374 #ifdef CONFIG_MEMORY_FAILURE
375 
376 /*
377  * Support for hardware poisoned pages
378  */
make_hwpoison_entry(struct page * page)379 static inline swp_entry_t make_hwpoison_entry(struct page *page)
380 {
381 	BUG_ON(!PageLocked(page));
382 	return swp_entry(SWP_HWPOISON, page_to_pfn(page));
383 }
384 
is_hwpoison_entry(swp_entry_t entry)385 static inline int is_hwpoison_entry(swp_entry_t entry)
386 {
387 	return swp_type(entry) == SWP_HWPOISON;
388 }
389 
390 #else
391 
make_hwpoison_entry(struct page * page)392 static inline swp_entry_t make_hwpoison_entry(struct page *page)
393 {
394 	return swp_entry(0, 0);
395 }
396 
is_hwpoison_entry(swp_entry_t swp)397 static inline int is_hwpoison_entry(swp_entry_t swp)
398 {
399 	return 0;
400 }
401 #endif
402 
403 typedef unsigned long pte_marker;
404 
405 #define  PTE_MARKER_UFFD_WP			BIT(0)
406 /*
407  * "Poisoned" here is meant in the very general sense of "future accesses are
408  * invalid", instead of referring very specifically to hardware memory errors.
409  * This marker is meant to represent any of various different causes of this.
410  *
411  * Note that, when encountered by the faulting logic, PTEs with this marker will
412  * result in VM_FAULT_HWPOISON and thus regardless trigger hardware memory error
413  * logic.
414  */
415 #define  PTE_MARKER_POISONED			BIT(1)
416 /*
417  * Indicates that, on fault, this PTE will case a SIGSEGV signal to be
418  * sent. This means guard markers behave in effect as if the region were mapped
419  * PROT_NONE, rather than if they were a memory hole or equivalent.
420  */
421 #define  PTE_MARKER_GUARD			BIT(2)
422 #define  PTE_MARKER_MASK			(BIT(3) - 1)
423 
make_pte_marker_entry(pte_marker marker)424 static inline swp_entry_t make_pte_marker_entry(pte_marker marker)
425 {
426 	return swp_entry(SWP_PTE_MARKER, marker);
427 }
428 
is_pte_marker_entry(swp_entry_t entry)429 static inline bool is_pte_marker_entry(swp_entry_t entry)
430 {
431 	return swp_type(entry) == SWP_PTE_MARKER;
432 }
433 
pte_marker_get(swp_entry_t entry)434 static inline pte_marker pte_marker_get(swp_entry_t entry)
435 {
436 	return swp_offset(entry) & PTE_MARKER_MASK;
437 }
438 
is_pte_marker(pte_t pte)439 static inline bool is_pte_marker(pte_t pte)
440 {
441 	return is_swap_pte(pte) && is_pte_marker_entry(pte_to_swp_entry(pte));
442 }
443 
make_pte_marker(pte_marker marker)444 static inline pte_t make_pte_marker(pte_marker marker)
445 {
446 	return swp_entry_to_pte(make_pte_marker_entry(marker));
447 }
448 
make_poisoned_swp_entry(void)449 static inline swp_entry_t make_poisoned_swp_entry(void)
450 {
451 	return make_pte_marker_entry(PTE_MARKER_POISONED);
452 }
453 
is_poisoned_swp_entry(swp_entry_t entry)454 static inline int is_poisoned_swp_entry(swp_entry_t entry)
455 {
456 	return is_pte_marker_entry(entry) &&
457 	    (pte_marker_get(entry) & PTE_MARKER_POISONED);
458 
459 }
460 
make_guard_swp_entry(void)461 static inline swp_entry_t make_guard_swp_entry(void)
462 {
463 	return make_pte_marker_entry(PTE_MARKER_GUARD);
464 }
465 
is_guard_swp_entry(swp_entry_t entry)466 static inline int is_guard_swp_entry(swp_entry_t entry)
467 {
468 	return is_pte_marker_entry(entry) &&
469 		(pte_marker_get(entry) & PTE_MARKER_GUARD);
470 }
471 
472 /*
473  * This is a special version to check pte_none() just to cover the case when
474  * the pte is a pte marker.  It existed because in many cases the pte marker
475  * should be seen as a none pte; it's just that we have stored some information
476  * onto the none pte so it becomes not-none any more.
477  *
478  * It should be used when the pte is file-backed, ram-based and backing
479  * userspace pages, like shmem.  It is not needed upon pgtables that do not
480  * support pte markers at all.  For example, it's not needed on anonymous
481  * memory, kernel-only memory (including when the system is during-boot),
482  * non-ram based generic file-system.  It's fine to be used even there, but the
483  * extra pte marker check will be pure overhead.
484  */
pte_none_mostly(pte_t pte)485 static inline int pte_none_mostly(pte_t pte)
486 {
487 	return pte_none(pte) || is_pte_marker(pte);
488 }
489 
pfn_swap_entry_to_page(swp_entry_t entry)490 static inline struct page *pfn_swap_entry_to_page(swp_entry_t entry)
491 {
492 	struct page *p = pfn_to_page(swp_offset_pfn(entry));
493 
494 	/*
495 	 * Any use of migration entries may only occur while the
496 	 * corresponding page is locked
497 	 */
498 	BUG_ON(is_migration_entry(entry) && !PageLocked(p));
499 
500 	return p;
501 }
502 
pfn_swap_entry_folio(swp_entry_t entry)503 static inline struct folio *pfn_swap_entry_folio(swp_entry_t entry)
504 {
505 	struct folio *folio = pfn_folio(swp_offset_pfn(entry));
506 
507 	/*
508 	 * Any use of migration entries may only occur while the
509 	 * corresponding folio is locked
510 	 */
511 	BUG_ON(is_migration_entry(entry) && !folio_test_locked(folio));
512 
513 	return folio;
514 }
515 
516 /*
517  * A pfn swap entry is a special type of swap entry that always has a pfn stored
518  * in the swap offset. They can either be used to represent unaddressable device
519  * memory, to restrict access to a page undergoing migration or to represent a
520  * pfn which has been hwpoisoned and unmapped.
521  */
is_pfn_swap_entry(swp_entry_t entry)522 static inline bool is_pfn_swap_entry(swp_entry_t entry)
523 {
524 	/* Make sure the swp offset can always store the needed fields */
525 	BUILD_BUG_ON(SWP_TYPE_SHIFT < SWP_PFN_BITS);
526 
527 	return is_migration_entry(entry) || is_device_private_entry(entry) ||
528 	       is_device_exclusive_entry(entry) || is_hwpoison_entry(entry);
529 }
530 
531 struct page_vma_mapped_walk;
532 
533 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
534 extern int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
535 		struct page *page);
536 
537 extern void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
538 		struct page *new);
539 
540 extern void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd);
541 
pmd_to_swp_entry(pmd_t pmd)542 static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
543 {
544 	swp_entry_t arch_entry;
545 
546 	if (pmd_swp_soft_dirty(pmd))
547 		pmd = pmd_swp_clear_soft_dirty(pmd);
548 	if (pmd_swp_uffd_wp(pmd))
549 		pmd = pmd_swp_clear_uffd_wp(pmd);
550 	arch_entry = __pmd_to_swp_entry(pmd);
551 	return swp_entry(__swp_type(arch_entry), __swp_offset(arch_entry));
552 }
553 
swp_entry_to_pmd(swp_entry_t entry)554 static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
555 {
556 	swp_entry_t arch_entry;
557 
558 	arch_entry = __swp_entry(swp_type(entry), swp_offset(entry));
559 	return __swp_entry_to_pmd(arch_entry);
560 }
561 
is_pmd_migration_entry(pmd_t pmd)562 static inline int is_pmd_migration_entry(pmd_t pmd)
563 {
564 	return is_swap_pmd(pmd) && is_migration_entry(pmd_to_swp_entry(pmd));
565 }
566 #else  /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
set_pmd_migration_entry(struct page_vma_mapped_walk * pvmw,struct page * page)567 static inline int set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
568 		struct page *page)
569 {
570 	BUILD_BUG();
571 }
572 
remove_migration_pmd(struct page_vma_mapped_walk * pvmw,struct page * new)573 static inline void remove_migration_pmd(struct page_vma_mapped_walk *pvmw,
574 		struct page *new)
575 {
576 	BUILD_BUG();
577 }
578 
pmd_migration_entry_wait(struct mm_struct * m,pmd_t * p)579 static inline void pmd_migration_entry_wait(struct mm_struct *m, pmd_t *p) { }
580 
pmd_to_swp_entry(pmd_t pmd)581 static inline swp_entry_t pmd_to_swp_entry(pmd_t pmd)
582 {
583 	return swp_entry(0, 0);
584 }
585 
swp_entry_to_pmd(swp_entry_t entry)586 static inline pmd_t swp_entry_to_pmd(swp_entry_t entry)
587 {
588 	return __pmd(0);
589 }
590 
is_pmd_migration_entry(pmd_t pmd)591 static inline int is_pmd_migration_entry(pmd_t pmd)
592 {
593 	return 0;
594 }
595 #endif  /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
596 
non_swap_entry(swp_entry_t entry)597 static inline int non_swap_entry(swp_entry_t entry)
598 {
599 	return swp_type(entry) >= MAX_SWAPFILES;
600 }
601 
602 #endif /* CONFIG_MMU */
603 #endif /* _LINUX_SWAPOPS_H */
604