1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Written by Mark Hemment, 1996 (markhe@nextd.demon.co.uk).
4  *
5  * (C) SGI 2006, Christoph Lameter
6  * 	Cleaned up and restructured to ease the addition of alternative
7  * 	implementations of SLAB allocators.
8  * (C) Linux Foundation 2008-2013
9  *      Unified interface for all slab allocators
10  */
11 
12 #ifndef _LINUX_SLAB_H
13 #define	_LINUX_SLAB_H
14 
15 #include <linux/cache.h>
16 #include <linux/gfp.h>
17 #include <linux/overflow.h>
18 #include <linux/types.h>
19 #include <linux/rcupdate.h>
20 #include <linux/workqueue.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/cleanup.h>
23 #include <linux/hash.h>
24 
25 enum _slab_flag_bits {
26 	_SLAB_CONSISTENCY_CHECKS,
27 	_SLAB_RED_ZONE,
28 	_SLAB_POISON,
29 	_SLAB_KMALLOC,
30 	_SLAB_HWCACHE_ALIGN,
31 	_SLAB_CACHE_DMA,
32 	_SLAB_CACHE_DMA32,
33 	_SLAB_STORE_USER,
34 	_SLAB_PANIC,
35 	_SLAB_TYPESAFE_BY_RCU,
36 	_SLAB_TRACE,
37 #ifdef CONFIG_DEBUG_OBJECTS
38 	_SLAB_DEBUG_OBJECTS,
39 #endif
40 	_SLAB_NOLEAKTRACE,
41 	_SLAB_NO_MERGE,
42 #ifdef CONFIG_FAILSLAB
43 	_SLAB_FAILSLAB,
44 #endif
45 #ifdef CONFIG_MEMCG
46 	_SLAB_ACCOUNT,
47 #endif
48 #ifdef CONFIG_KASAN_GENERIC
49 	_SLAB_KASAN,
50 #endif
51 	_SLAB_NO_USER_FLAGS,
52 #ifdef CONFIG_KFENCE
53 	_SLAB_SKIP_KFENCE,
54 #endif
55 #ifndef CONFIG_SLUB_TINY
56 	_SLAB_RECLAIM_ACCOUNT,
57 #endif
58 	_SLAB_OBJECT_POISON,
59 	_SLAB_CMPXCHG_DOUBLE,
60 #ifdef CONFIG_SLAB_OBJ_EXT
61 	_SLAB_NO_OBJ_EXT,
62 #endif
63 	_SLAB_FLAGS_LAST_BIT
64 };
65 
66 #define __SLAB_FLAG_BIT(nr)	((slab_flags_t __force)(1U << (nr)))
67 #define __SLAB_FLAG_UNUSED	((slab_flags_t __force)(0U))
68 
69 /*
70  * Flags to pass to kmem_cache_create().
71  * The ones marked DEBUG need CONFIG_SLUB_DEBUG enabled, otherwise are no-op
72  */
73 /* DEBUG: Perform (expensive) checks on alloc/free */
74 #define SLAB_CONSISTENCY_CHECKS	__SLAB_FLAG_BIT(_SLAB_CONSISTENCY_CHECKS)
75 /* DEBUG: Red zone objs in a cache */
76 #define SLAB_RED_ZONE		__SLAB_FLAG_BIT(_SLAB_RED_ZONE)
77 /* DEBUG: Poison objects */
78 #define SLAB_POISON		__SLAB_FLAG_BIT(_SLAB_POISON)
79 /* Indicate a kmalloc slab */
80 #define SLAB_KMALLOC		__SLAB_FLAG_BIT(_SLAB_KMALLOC)
81 /**
82  * define SLAB_HWCACHE_ALIGN - Align objects on cache line boundaries.
83  *
84  * Sufficiently large objects are aligned on cache line boundary. For object
85  * size smaller than a half of cache line size, the alignment is on the half of
86  * cache line size. In general, if object size is smaller than 1/2^n of cache
87  * line size, the alignment is adjusted to 1/2^n.
88  *
89  * If explicit alignment is also requested by the respective
90  * &struct kmem_cache_args field, the greater of both is alignments is applied.
91  */
92 #define SLAB_HWCACHE_ALIGN	__SLAB_FLAG_BIT(_SLAB_HWCACHE_ALIGN)
93 /* Use GFP_DMA memory */
94 #define SLAB_CACHE_DMA		__SLAB_FLAG_BIT(_SLAB_CACHE_DMA)
95 /* Use GFP_DMA32 memory */
96 #define SLAB_CACHE_DMA32	__SLAB_FLAG_BIT(_SLAB_CACHE_DMA32)
97 /* DEBUG: Store the last owner for bug hunting */
98 #define SLAB_STORE_USER		__SLAB_FLAG_BIT(_SLAB_STORE_USER)
99 /* Panic if kmem_cache_create() fails */
100 #define SLAB_PANIC		__SLAB_FLAG_BIT(_SLAB_PANIC)
101 /**
102  * define SLAB_TYPESAFE_BY_RCU - **WARNING** READ THIS!
103  *
104  * This delays freeing the SLAB page by a grace period, it does _NOT_
105  * delay object freeing. This means that if you do kmem_cache_free()
106  * that memory location is free to be reused at any time. Thus it may
107  * be possible to see another object there in the same RCU grace period.
108  *
109  * This feature only ensures the memory location backing the object
110  * stays valid, the trick to using this is relying on an independent
111  * object validation pass. Something like:
112  *
113  * ::
114  *
115  *  begin:
116  *   rcu_read_lock();
117  *   obj = lockless_lookup(key);
118  *   if (obj) {
119  *     if (!try_get_ref(obj)) // might fail for free objects
120  *       rcu_read_unlock();
121  *       goto begin;
122  *
123  *     if (obj->key != key) { // not the object we expected
124  *       put_ref(obj);
125  *       rcu_read_unlock();
126  *       goto begin;
127  *     }
128  *   }
129  *  rcu_read_unlock();
130  *
131  * This is useful if we need to approach a kernel structure obliquely,
132  * from its address obtained without the usual locking. We can lock
133  * the structure to stabilize it and check it's still at the given address,
134  * only if we can be sure that the memory has not been meanwhile reused
135  * for some other kind of object (which our subsystem's lock might corrupt).
136  *
137  * rcu_read_lock before reading the address, then rcu_read_unlock after
138  * taking the spinlock within the structure expected at that address.
139  *
140  * Note that object identity check has to be done *after* acquiring a
141  * reference, therefore user has to ensure proper ordering for loads.
142  * Similarly, when initializing objects allocated with SLAB_TYPESAFE_BY_RCU,
143  * the newly allocated object has to be fully initialized *before* its
144  * refcount gets initialized and proper ordering for stores is required.
145  * refcount_{add|inc}_not_zero_acquire() and refcount_set_release() are
146  * designed with the proper fences required for reference counting objects
147  * allocated with SLAB_TYPESAFE_BY_RCU.
148  *
149  * Note that it is not possible to acquire a lock within a structure
150  * allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
151  * as described above.  The reason is that SLAB_TYPESAFE_BY_RCU pages
152  * are not zeroed before being given to the slab, which means that any
153  * locks must be initialized after each and every kmem_struct_alloc().
154  * Alternatively, make the ctor passed to kmem_cache_create() initialize
155  * the locks at page-allocation time, as is done in __i915_request_ctor(),
156  * sighand_ctor(), and anon_vma_ctor().  Such a ctor permits readers
157  * to safely acquire those ctor-initialized locks under rcu_read_lock()
158  * protection.
159  *
160  * Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
161  */
162 #define SLAB_TYPESAFE_BY_RCU	__SLAB_FLAG_BIT(_SLAB_TYPESAFE_BY_RCU)
163 /* Trace allocations and frees */
164 #define SLAB_TRACE		__SLAB_FLAG_BIT(_SLAB_TRACE)
165 
166 /* Flag to prevent checks on free */
167 #ifdef CONFIG_DEBUG_OBJECTS
168 # define SLAB_DEBUG_OBJECTS	__SLAB_FLAG_BIT(_SLAB_DEBUG_OBJECTS)
169 #else
170 # define SLAB_DEBUG_OBJECTS	__SLAB_FLAG_UNUSED
171 #endif
172 
173 /* Avoid kmemleak tracing */
174 #define SLAB_NOLEAKTRACE	__SLAB_FLAG_BIT(_SLAB_NOLEAKTRACE)
175 
176 /*
177  * Prevent merging with compatible kmem caches. This flag should be used
178  * cautiously. Valid use cases:
179  *
180  * - caches created for self-tests (e.g. kunit)
181  * - general caches created and used by a subsystem, only when a
182  *   (subsystem-specific) debug option is enabled
183  * - performance critical caches, should be very rare and consulted with slab
184  *   maintainers, and not used together with CONFIG_SLUB_TINY
185  */
186 #define SLAB_NO_MERGE		__SLAB_FLAG_BIT(_SLAB_NO_MERGE)
187 
188 /* Fault injection mark */
189 #ifdef CONFIG_FAILSLAB
190 # define SLAB_FAILSLAB		__SLAB_FLAG_BIT(_SLAB_FAILSLAB)
191 #else
192 # define SLAB_FAILSLAB		__SLAB_FLAG_UNUSED
193 #endif
194 /**
195  * define SLAB_ACCOUNT - Account allocations to memcg.
196  *
197  * All object allocations from this cache will be memcg accounted, regardless of
198  * __GFP_ACCOUNT being or not being passed to individual allocations.
199  */
200 #ifdef CONFIG_MEMCG
201 # define SLAB_ACCOUNT		__SLAB_FLAG_BIT(_SLAB_ACCOUNT)
202 #else
203 # define SLAB_ACCOUNT		__SLAB_FLAG_UNUSED
204 #endif
205 
206 #ifdef CONFIG_KASAN_GENERIC
207 #define SLAB_KASAN		__SLAB_FLAG_BIT(_SLAB_KASAN)
208 #else
209 #define SLAB_KASAN		__SLAB_FLAG_UNUSED
210 #endif
211 
212 /*
213  * Ignore user specified debugging flags.
214  * Intended for caches created for self-tests so they have only flags
215  * specified in the code and other flags are ignored.
216  */
217 #define SLAB_NO_USER_FLAGS	__SLAB_FLAG_BIT(_SLAB_NO_USER_FLAGS)
218 
219 #ifdef CONFIG_KFENCE
220 #define SLAB_SKIP_KFENCE	__SLAB_FLAG_BIT(_SLAB_SKIP_KFENCE)
221 #else
222 #define SLAB_SKIP_KFENCE	__SLAB_FLAG_UNUSED
223 #endif
224 
225 /* The following flags affect the page allocator grouping pages by mobility */
226 /**
227  * define SLAB_RECLAIM_ACCOUNT - Objects are reclaimable.
228  *
229  * Use this flag for caches that have an associated shrinker. As a result, slab
230  * pages are allocated with __GFP_RECLAIMABLE, which affects grouping pages by
231  * mobility, and are accounted in SReclaimable counter in /proc/meminfo
232  */
233 #ifndef CONFIG_SLUB_TINY
234 #define SLAB_RECLAIM_ACCOUNT	__SLAB_FLAG_BIT(_SLAB_RECLAIM_ACCOUNT)
235 #else
236 #define SLAB_RECLAIM_ACCOUNT	__SLAB_FLAG_UNUSED
237 #endif
238 #define SLAB_TEMPORARY		SLAB_RECLAIM_ACCOUNT	/* Objects are short-lived */
239 
240 /* Slab created using create_boot_cache */
241 #ifdef CONFIG_SLAB_OBJ_EXT
242 #define SLAB_NO_OBJ_EXT		__SLAB_FLAG_BIT(_SLAB_NO_OBJ_EXT)
243 #else
244 #define SLAB_NO_OBJ_EXT		__SLAB_FLAG_UNUSED
245 #endif
246 
247 /*
248  * ZERO_SIZE_PTR will be returned for zero sized kmalloc requests.
249  *
250  * Dereferencing ZERO_SIZE_PTR will lead to a distinct access fault.
251  *
252  * ZERO_SIZE_PTR can be passed to kfree though in the same way that NULL can.
253  * Both make kfree a no-op.
254  */
255 #define ZERO_SIZE_PTR ((void *)16)
256 
257 #define ZERO_OR_NULL_PTR(x) ((unsigned long)(x) <= \
258 				(unsigned long)ZERO_SIZE_PTR)
259 
260 #include <linux/kasan.h>
261 
262 struct list_lru;
263 struct mem_cgroup;
264 /*
265  * struct kmem_cache related prototypes
266  */
267 bool slab_is_available(void);
268 
269 /**
270  * struct kmem_cache_args - Less common arguments for kmem_cache_create()
271  *
272  * Any uninitialized fields of the structure are interpreted as unused. The
273  * exception is @freeptr_offset where %0 is a valid value, so
274  * @use_freeptr_offset must be also set to %true in order to interpret the field
275  * as used. For @useroffset %0 is also valid, but only with non-%0
276  * @usersize.
277  *
278  * When %NULL args is passed to kmem_cache_create(), it is equivalent to all
279  * fields unused.
280  */
281 struct kmem_cache_args {
282 	/**
283 	 * @align: The required alignment for the objects.
284 	 *
285 	 * %0 means no specific alignment is requested.
286 	 */
287 	unsigned int align;
288 	/**
289 	 * @useroffset: Usercopy region offset.
290 	 *
291 	 * %0 is a valid offset, when @usersize is non-%0
292 	 */
293 	unsigned int useroffset;
294 	/**
295 	 * @usersize: Usercopy region size.
296 	 *
297 	 * %0 means no usercopy region is specified.
298 	 */
299 	unsigned int usersize;
300 	/**
301 	 * @freeptr_offset: Custom offset for the free pointer
302 	 * in &SLAB_TYPESAFE_BY_RCU caches
303 	 *
304 	 * By default &SLAB_TYPESAFE_BY_RCU caches place the free pointer
305 	 * outside of the object. This might cause the object to grow in size.
306 	 * Cache creators that have a reason to avoid this can specify a custom
307 	 * free pointer offset in their struct where the free pointer will be
308 	 * placed.
309 	 *
310 	 * Note that placing the free pointer inside the object requires the
311 	 * caller to ensure that no fields are invalidated that are required to
312 	 * guard against object recycling (See &SLAB_TYPESAFE_BY_RCU for
313 	 * details).
314 	 *
315 	 * Using %0 as a value for @freeptr_offset is valid. If @freeptr_offset
316 	 * is specified, %use_freeptr_offset must be set %true.
317 	 *
318 	 * Note that @ctor currently isn't supported with custom free pointers
319 	 * as a @ctor requires an external free pointer.
320 	 */
321 	unsigned int freeptr_offset;
322 	/**
323 	 * @use_freeptr_offset: Whether a @freeptr_offset is used.
324 	 */
325 	bool use_freeptr_offset;
326 	/**
327 	 * @ctor: A constructor for the objects.
328 	 *
329 	 * The constructor is invoked for each object in a newly allocated slab
330 	 * page. It is the cache user's responsibility to free object in the
331 	 * same state as after calling the constructor, or deal appropriately
332 	 * with any differences between a freshly constructed and a reallocated
333 	 * object.
334 	 *
335 	 * %NULL means no constructor.
336 	 */
337 	void (*ctor)(void *);
338 };
339 
340 struct kmem_cache *__kmem_cache_create_args(const char *name,
341 					    unsigned int object_size,
342 					    struct kmem_cache_args *args,
343 					    slab_flags_t flags);
344 static inline struct kmem_cache *
__kmem_cache_create(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,void (* ctor)(void *))345 __kmem_cache_create(const char *name, unsigned int size, unsigned int align,
346 		    slab_flags_t flags, void (*ctor)(void *))
347 {
348 	struct kmem_cache_args kmem_args = {
349 		.align	= align,
350 		.ctor	= ctor,
351 	};
352 
353 	return __kmem_cache_create_args(name, size, &kmem_args, flags);
354 }
355 
356 /**
357  * kmem_cache_create_usercopy - Create a kmem cache with a region suitable
358  * for copying to userspace.
359  * @name: A string which is used in /proc/slabinfo to identify this cache.
360  * @size: The size of objects to be created in this cache.
361  * @align: The required alignment for the objects.
362  * @flags: SLAB flags
363  * @useroffset: Usercopy region offset
364  * @usersize: Usercopy region size
365  * @ctor: A constructor for the objects, or %NULL.
366  *
367  * This is a legacy wrapper, new code should use either KMEM_CACHE_USERCOPY()
368  * if whitelisting a single field is sufficient, or kmem_cache_create() with
369  * the necessary parameters passed via the args parameter (see
370  * &struct kmem_cache_args)
371  *
372  * Return: a pointer to the cache on success, NULL on failure.
373  */
374 static inline struct kmem_cache *
kmem_cache_create_usercopy(const char * name,unsigned int size,unsigned int align,slab_flags_t flags,unsigned int useroffset,unsigned int usersize,void (* ctor)(void *))375 kmem_cache_create_usercopy(const char *name, unsigned int size,
376 			   unsigned int align, slab_flags_t flags,
377 			   unsigned int useroffset, unsigned int usersize,
378 			   void (*ctor)(void *))
379 {
380 	struct kmem_cache_args kmem_args = {
381 		.align		= align,
382 		.ctor		= ctor,
383 		.useroffset	= useroffset,
384 		.usersize	= usersize,
385 	};
386 
387 	return __kmem_cache_create_args(name, size, &kmem_args, flags);
388 }
389 
390 /* If NULL is passed for @args, use this variant with default arguments. */
391 static inline struct kmem_cache *
__kmem_cache_default_args(const char * name,unsigned int size,struct kmem_cache_args * args,slab_flags_t flags)392 __kmem_cache_default_args(const char *name, unsigned int size,
393 			  struct kmem_cache_args *args,
394 			  slab_flags_t flags)
395 {
396 	struct kmem_cache_args kmem_default_args = {};
397 
398 	/* Make sure we don't get passed garbage. */
399 	if (WARN_ON_ONCE(args))
400 		return ERR_PTR(-EINVAL);
401 
402 	return __kmem_cache_create_args(name, size, &kmem_default_args, flags);
403 }
404 
405 /**
406  * kmem_cache_create - Create a kmem cache.
407  * @__name: A string which is used in /proc/slabinfo to identify this cache.
408  * @__object_size: The size of objects to be created in this cache.
409  * @__args: Optional arguments, see &struct kmem_cache_args. Passing %NULL
410  *	    means defaults will be used for all the arguments.
411  *
412  * This is currently implemented as a macro using ``_Generic()`` to call
413  * either the new variant of the function, or a legacy one.
414  *
415  * The new variant has 4 parameters:
416  * ``kmem_cache_create(name, object_size, args, flags)``
417  *
418  * See __kmem_cache_create_args() which implements this.
419  *
420  * The legacy variant has 5 parameters:
421  * ``kmem_cache_create(name, object_size, align, flags, ctor)``
422  *
423  * The align and ctor parameters map to the respective fields of
424  * &struct kmem_cache_args
425  *
426  * Context: Cannot be called within a interrupt, but can be interrupted.
427  *
428  * Return: a pointer to the cache on success, NULL on failure.
429  */
430 #define kmem_cache_create(__name, __object_size, __args, ...)           \
431 	_Generic((__args),                                              \
432 		struct kmem_cache_args *: __kmem_cache_create_args,	\
433 		void *: __kmem_cache_default_args,			\
434 		default: __kmem_cache_create)(__name, __object_size, __args, __VA_ARGS__)
435 
436 void kmem_cache_destroy(struct kmem_cache *s);
437 int kmem_cache_shrink(struct kmem_cache *s);
438 
439 /*
440  * Please use this macro to create slab caches. Simply specify the
441  * name of the structure and maybe some flags that are listed above.
442  *
443  * The alignment of the struct determines object alignment. If you
444  * f.e. add ____cacheline_aligned_in_smp to the struct declaration
445  * then the objects will be properly aligned in SMP configurations.
446  */
447 #define KMEM_CACHE(__struct, __flags)                                   \
448 	__kmem_cache_create_args(#__struct, sizeof(struct __struct),    \
449 			&(struct kmem_cache_args) {			\
450 				.align	= __alignof__(struct __struct), \
451 			}, (__flags))
452 
453 /*
454  * To whitelist a single field for copying to/from usercopy, use this
455  * macro instead for KMEM_CACHE() above.
456  */
457 #define KMEM_CACHE_USERCOPY(__struct, __flags, __field)						\
458 	__kmem_cache_create_args(#__struct, sizeof(struct __struct),				\
459 			&(struct kmem_cache_args) {						\
460 				.align		= __alignof__(struct __struct),			\
461 				.useroffset	= offsetof(struct __struct, __field),		\
462 				.usersize	= sizeof_field(struct __struct, __field),	\
463 			}, (__flags))
464 
465 /*
466  * Common kmalloc functions provided by all allocators
467  */
468 void * __must_check krealloc_noprof(const void *objp, size_t new_size,
469 				    gfp_t flags) __realloc_size(2);
470 #define krealloc(...)				alloc_hooks(krealloc_noprof(__VA_ARGS__))
471 
472 void kfree(const void *objp);
473 void kfree_sensitive(const void *objp);
474 size_t __ksize(const void *objp);
475 
476 DEFINE_FREE(kfree, void *, if (!IS_ERR_OR_NULL(_T)) kfree(_T))
477 DEFINE_FREE(kfree_sensitive, void *, if (_T) kfree_sensitive(_T))
478 
479 /**
480  * ksize - Report actual allocation size of associated object
481  *
482  * @objp: Pointer returned from a prior kmalloc()-family allocation.
483  *
484  * This should not be used for writing beyond the originally requested
485  * allocation size. Either use krealloc() or round up the allocation size
486  * with kmalloc_size_roundup() prior to allocation. If this is used to
487  * access beyond the originally requested allocation size, UBSAN_BOUNDS
488  * and/or FORTIFY_SOURCE may trip, since they only know about the
489  * originally allocated size via the __alloc_size attribute.
490  */
491 size_t ksize(const void *objp);
492 
493 #ifdef CONFIG_PRINTK
494 bool kmem_dump_obj(void *object);
495 #else
kmem_dump_obj(void * object)496 static inline bool kmem_dump_obj(void *object) { return false; }
497 #endif
498 
499 /*
500  * Some archs want to perform DMA into kmalloc caches and need a guaranteed
501  * alignment larger than the alignment of a 64-bit integer.
502  * Setting ARCH_DMA_MINALIGN in arch headers allows that.
503  */
504 #ifdef ARCH_HAS_DMA_MINALIGN
505 #if ARCH_DMA_MINALIGN > 8 && !defined(ARCH_KMALLOC_MINALIGN)
506 #define ARCH_KMALLOC_MINALIGN ARCH_DMA_MINALIGN
507 #endif
508 #endif
509 
510 #ifndef ARCH_KMALLOC_MINALIGN
511 #define ARCH_KMALLOC_MINALIGN __alignof__(unsigned long long)
512 #elif ARCH_KMALLOC_MINALIGN > 8
513 #define KMALLOC_MIN_SIZE ARCH_KMALLOC_MINALIGN
514 #define KMALLOC_SHIFT_LOW ilog2(KMALLOC_MIN_SIZE)
515 #endif
516 
517 /*
518  * Setting ARCH_SLAB_MINALIGN in arch headers allows a different alignment.
519  * Intended for arches that get misalignment faults even for 64 bit integer
520  * aligned buffers.
521  */
522 #ifndef ARCH_SLAB_MINALIGN
523 #define ARCH_SLAB_MINALIGN __alignof__(unsigned long long)
524 #endif
525 
526 /*
527  * Arches can define this function if they want to decide the minimum slab
528  * alignment at runtime. The value returned by the function must be a power
529  * of two and >= ARCH_SLAB_MINALIGN.
530  */
531 #ifndef arch_slab_minalign
arch_slab_minalign(void)532 static inline unsigned int arch_slab_minalign(void)
533 {
534 	return ARCH_SLAB_MINALIGN;
535 }
536 #endif
537 
538 /*
539  * kmem_cache_alloc and friends return pointers aligned to ARCH_SLAB_MINALIGN.
540  * kmalloc and friends return pointers aligned to both ARCH_KMALLOC_MINALIGN
541  * and ARCH_SLAB_MINALIGN, but here we only assume the former alignment.
542  */
543 #define __assume_kmalloc_alignment __assume_aligned(ARCH_KMALLOC_MINALIGN)
544 #define __assume_slab_alignment __assume_aligned(ARCH_SLAB_MINALIGN)
545 #define __assume_page_alignment __assume_aligned(PAGE_SIZE)
546 
547 /*
548  * Kmalloc array related definitions
549  */
550 
551 /*
552  * SLUB directly allocates requests fitting in to an order-1 page
553  * (PAGE_SIZE*2).  Larger requests are passed to the page allocator.
554  */
555 #define KMALLOC_SHIFT_HIGH	(PAGE_SHIFT + 1)
556 #define KMALLOC_SHIFT_MAX	(MAX_PAGE_ORDER + PAGE_SHIFT)
557 #ifndef KMALLOC_SHIFT_LOW
558 #define KMALLOC_SHIFT_LOW	3
559 #endif
560 
561 /* Maximum allocatable size */
562 #define KMALLOC_MAX_SIZE	(1UL << KMALLOC_SHIFT_MAX)
563 /* Maximum size for which we actually use a slab cache */
564 #define KMALLOC_MAX_CACHE_SIZE	(1UL << KMALLOC_SHIFT_HIGH)
565 /* Maximum order allocatable via the slab allocator */
566 #define KMALLOC_MAX_ORDER	(KMALLOC_SHIFT_MAX - PAGE_SHIFT)
567 
568 /*
569  * Kmalloc subsystem.
570  */
571 #ifndef KMALLOC_MIN_SIZE
572 #define KMALLOC_MIN_SIZE (1 << KMALLOC_SHIFT_LOW)
573 #endif
574 
575 /*
576  * This restriction comes from byte sized index implementation.
577  * Page size is normally 2^12 bytes and, in this case, if we want to use
578  * byte sized index which can represent 2^8 entries, the size of the object
579  * should be equal or greater to 2^12 / 2^8 = 2^4 = 16.
580  * If minimum size of kmalloc is less than 16, we use it as minimum object
581  * size and give up to use byte sized index.
582  */
583 #define SLAB_OBJ_MIN_SIZE      (KMALLOC_MIN_SIZE < 16 ? \
584                                (KMALLOC_MIN_SIZE) : 16)
585 
586 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
587 #define RANDOM_KMALLOC_CACHES_NR	15 // # of cache copies
588 #else
589 #define RANDOM_KMALLOC_CACHES_NR	0
590 #endif
591 
592 /*
593  * Whenever changing this, take care of that kmalloc_type() and
594  * create_kmalloc_caches() still work as intended.
595  *
596  * KMALLOC_NORMAL can contain only unaccounted objects whereas KMALLOC_CGROUP
597  * is for accounted but unreclaimable and non-dma objects. All the other
598  * kmem caches can have both accounted and unaccounted objects.
599  */
600 enum kmalloc_cache_type {
601 	KMALLOC_NORMAL = 0,
602 #ifndef CONFIG_ZONE_DMA
603 	KMALLOC_DMA = KMALLOC_NORMAL,
604 #endif
605 #ifndef CONFIG_MEMCG
606 	KMALLOC_CGROUP = KMALLOC_NORMAL,
607 #endif
608 	KMALLOC_RANDOM_START = KMALLOC_NORMAL,
609 	KMALLOC_RANDOM_END = KMALLOC_RANDOM_START + RANDOM_KMALLOC_CACHES_NR,
610 #ifdef CONFIG_SLUB_TINY
611 	KMALLOC_RECLAIM = KMALLOC_NORMAL,
612 #else
613 	KMALLOC_RECLAIM,
614 #endif
615 #ifdef CONFIG_ZONE_DMA
616 	KMALLOC_DMA,
617 #endif
618 #ifdef CONFIG_MEMCG
619 	KMALLOC_CGROUP,
620 #endif
621 	NR_KMALLOC_TYPES
622 };
623 
624 typedef struct kmem_cache * kmem_buckets[KMALLOC_SHIFT_HIGH + 1];
625 
626 extern kmem_buckets kmalloc_caches[NR_KMALLOC_TYPES];
627 
628 /*
629  * Define gfp bits that should not be set for KMALLOC_NORMAL.
630  */
631 #define KMALLOC_NOT_NORMAL_BITS					\
632 	(__GFP_RECLAIMABLE |					\
633 	(IS_ENABLED(CONFIG_ZONE_DMA)   ? __GFP_DMA : 0) |	\
634 	(IS_ENABLED(CONFIG_MEMCG) ? __GFP_ACCOUNT : 0))
635 
636 extern unsigned long random_kmalloc_seed;
637 
kmalloc_type(gfp_t flags,unsigned long caller)638 static __always_inline enum kmalloc_cache_type kmalloc_type(gfp_t flags, unsigned long caller)
639 {
640 	/*
641 	 * The most common case is KMALLOC_NORMAL, so test for it
642 	 * with a single branch for all the relevant flags.
643 	 */
644 	if (likely((flags & KMALLOC_NOT_NORMAL_BITS) == 0))
645 #ifdef CONFIG_RANDOM_KMALLOC_CACHES
646 		/* RANDOM_KMALLOC_CACHES_NR (=15) copies + the KMALLOC_NORMAL */
647 		return KMALLOC_RANDOM_START + hash_64(caller ^ random_kmalloc_seed,
648 						      ilog2(RANDOM_KMALLOC_CACHES_NR + 1));
649 #else
650 		return KMALLOC_NORMAL;
651 #endif
652 
653 	/*
654 	 * At least one of the flags has to be set. Their priorities in
655 	 * decreasing order are:
656 	 *  1) __GFP_DMA
657 	 *  2) __GFP_RECLAIMABLE
658 	 *  3) __GFP_ACCOUNT
659 	 */
660 	if (IS_ENABLED(CONFIG_ZONE_DMA) && (flags & __GFP_DMA))
661 		return KMALLOC_DMA;
662 	if (!IS_ENABLED(CONFIG_MEMCG) || (flags & __GFP_RECLAIMABLE))
663 		return KMALLOC_RECLAIM;
664 	else
665 		return KMALLOC_CGROUP;
666 }
667 
668 /*
669  * Figure out which kmalloc slab an allocation of a certain size
670  * belongs to.
671  * 0 = zero alloc
672  * 1 =  65 .. 96 bytes
673  * 2 = 129 .. 192 bytes
674  * n = 2^(n-1)+1 .. 2^n
675  *
676  * Note: __kmalloc_index() is compile-time optimized, and not runtime optimized;
677  * typical usage is via kmalloc_index() and therefore evaluated at compile-time.
678  * Callers where !size_is_constant should only be test modules, where runtime
679  * overheads of __kmalloc_index() can be tolerated.  Also see kmalloc_slab().
680  */
__kmalloc_index(size_t size,bool size_is_constant)681 static __always_inline unsigned int __kmalloc_index(size_t size,
682 						    bool size_is_constant)
683 {
684 	if (!size)
685 		return 0;
686 
687 	if (size <= KMALLOC_MIN_SIZE)
688 		return KMALLOC_SHIFT_LOW;
689 
690 	if (KMALLOC_MIN_SIZE <= 32 && size > 64 && size <= 96)
691 		return 1;
692 	if (KMALLOC_MIN_SIZE <= 64 && size > 128 && size <= 192)
693 		return 2;
694 	if (size <=          8) return 3;
695 	if (size <=         16) return 4;
696 	if (size <=         32) return 5;
697 	if (size <=         64) return 6;
698 	if (size <=        128) return 7;
699 	if (size <=        256) return 8;
700 	if (size <=        512) return 9;
701 	if (size <=       1024) return 10;
702 	if (size <=   2 * 1024) return 11;
703 	if (size <=   4 * 1024) return 12;
704 	if (size <=   8 * 1024) return 13;
705 	if (size <=  16 * 1024) return 14;
706 	if (size <=  32 * 1024) return 15;
707 	if (size <=  64 * 1024) return 16;
708 	if (size <= 128 * 1024) return 17;
709 	if (size <= 256 * 1024) return 18;
710 	if (size <= 512 * 1024) return 19;
711 	if (size <= 1024 * 1024) return 20;
712 	if (size <=  2 * 1024 * 1024) return 21;
713 
714 	if (!IS_ENABLED(CONFIG_PROFILE_ALL_BRANCHES) && size_is_constant)
715 		BUILD_BUG_ON_MSG(1, "unexpected size in kmalloc_index()");
716 	else
717 		BUG();
718 
719 	/* Will never be reached. Needed because the compiler may complain */
720 	return -1;
721 }
722 static_assert(PAGE_SHIFT <= 20);
723 #define kmalloc_index(s) __kmalloc_index(s, true)
724 
725 #include <linux/alloc_tag.h>
726 
727 /**
728  * kmem_cache_alloc - Allocate an object
729  * @cachep: The cache to allocate from.
730  * @flags: See kmalloc().
731  *
732  * Allocate an object from this cache.
733  * See kmem_cache_zalloc() for a shortcut of adding __GFP_ZERO to flags.
734  *
735  * Return: pointer to the new object or %NULL in case of error
736  */
737 void *kmem_cache_alloc_noprof(struct kmem_cache *cachep,
738 			      gfp_t flags) __assume_slab_alignment __malloc;
739 #define kmem_cache_alloc(...)			alloc_hooks(kmem_cache_alloc_noprof(__VA_ARGS__))
740 
741 void *kmem_cache_alloc_lru_noprof(struct kmem_cache *s, struct list_lru *lru,
742 			    gfp_t gfpflags) __assume_slab_alignment __malloc;
743 #define kmem_cache_alloc_lru(...)	alloc_hooks(kmem_cache_alloc_lru_noprof(__VA_ARGS__))
744 
745 /**
746  * kmem_cache_charge - memcg charge an already allocated slab memory
747  * @objp: address of the slab object to memcg charge
748  * @gfpflags: describe the allocation context
749  *
750  * kmem_cache_charge allows charging a slab object to the current memcg,
751  * primarily in cases where charging at allocation time might not be possible
752  * because the target memcg is not known (i.e. softirq context)
753  *
754  * The objp should be pointer returned by the slab allocator functions like
755  * kmalloc (with __GFP_ACCOUNT in flags) or kmem_cache_alloc. The memcg charge
756  * behavior can be controlled through gfpflags parameter, which affects how the
757  * necessary internal metadata can be allocated. Including __GFP_NOFAIL denotes
758  * that overcharging is requested instead of failure, but is not applied for the
759  * internal metadata allocation.
760  *
761  * There are several cases where it will return true even if the charging was
762  * not done:
763  * More specifically:
764  *
765  * 1. For !CONFIG_MEMCG or cgroup_disable=memory systems.
766  * 2. Already charged slab objects.
767  * 3. For slab objects from KMALLOC_NORMAL caches - allocated by kmalloc()
768  *    without __GFP_ACCOUNT
769  * 4. Allocating internal metadata has failed
770  *
771  * Return: true if charge was successful otherwise false.
772  */
773 bool kmem_cache_charge(void *objp, gfp_t gfpflags);
774 void kmem_cache_free(struct kmem_cache *s, void *objp);
775 
776 kmem_buckets *kmem_buckets_create(const char *name, slab_flags_t flags,
777 				  unsigned int useroffset, unsigned int usersize,
778 				  void (*ctor)(void *));
779 
780 /*
781  * Bulk allocation and freeing operations. These are accelerated in an
782  * allocator specific way to avoid taking locks repeatedly or building
783  * metadata structures unnecessarily.
784  *
785  * Note that interrupts must be enabled when calling these functions.
786  */
787 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p);
788 
789 int kmem_cache_alloc_bulk_noprof(struct kmem_cache *s, gfp_t flags, size_t size, void **p);
790 #define kmem_cache_alloc_bulk(...)	alloc_hooks(kmem_cache_alloc_bulk_noprof(__VA_ARGS__))
791 
kfree_bulk(size_t size,void ** p)792 static __always_inline void kfree_bulk(size_t size, void **p)
793 {
794 	kmem_cache_free_bulk(NULL, size, p);
795 }
796 
797 void *kmem_cache_alloc_node_noprof(struct kmem_cache *s, gfp_t flags,
798 				   int node) __assume_slab_alignment __malloc;
799 #define kmem_cache_alloc_node(...)	alloc_hooks(kmem_cache_alloc_node_noprof(__VA_ARGS__))
800 
801 /*
802  * These macros allow declaring a kmem_buckets * parameter alongside size, which
803  * can be compiled out with CONFIG_SLAB_BUCKETS=n so that a large number of call
804  * sites don't have to pass NULL.
805  */
806 #ifdef CONFIG_SLAB_BUCKETS
807 #define DECL_BUCKET_PARAMS(_size, _b)	size_t (_size), kmem_buckets *(_b)
808 #define PASS_BUCKET_PARAMS(_size, _b)	(_size), (_b)
809 #define PASS_BUCKET_PARAM(_b)		(_b)
810 #else
811 #define DECL_BUCKET_PARAMS(_size, _b)	size_t (_size)
812 #define PASS_BUCKET_PARAMS(_size, _b)	(_size)
813 #define PASS_BUCKET_PARAM(_b)		NULL
814 #endif
815 
816 /*
817  * The following functions are not to be used directly and are intended only
818  * for internal use from kmalloc() and kmalloc_node()
819  * with the exception of kunit tests
820  */
821 
822 void *__kmalloc_noprof(size_t size, gfp_t flags)
823 				__assume_kmalloc_alignment __alloc_size(1);
824 
825 void *__kmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
826 				__assume_kmalloc_alignment __alloc_size(1);
827 
828 void *__kmalloc_cache_noprof(struct kmem_cache *s, gfp_t flags, size_t size)
829 				__assume_kmalloc_alignment __alloc_size(3);
830 
831 void *__kmalloc_cache_node_noprof(struct kmem_cache *s, gfp_t gfpflags,
832 				  int node, size_t size)
833 				__assume_kmalloc_alignment __alloc_size(4);
834 
835 void *__kmalloc_large_noprof(size_t size, gfp_t flags)
836 				__assume_page_alignment __alloc_size(1);
837 
838 void *__kmalloc_large_node_noprof(size_t size, gfp_t flags, int node)
839 				__assume_page_alignment __alloc_size(1);
840 
841 /**
842  * kmalloc - allocate kernel memory
843  * @size: how many bytes of memory are required.
844  * @flags: describe the allocation context
845  *
846  * kmalloc is the normal method of allocating memory
847  * for objects smaller than page size in the kernel.
848  *
849  * The allocated object address is aligned to at least ARCH_KMALLOC_MINALIGN
850  * bytes. For @size of power of two bytes, the alignment is also guaranteed
851  * to be at least to the size. For other sizes, the alignment is guaranteed to
852  * be at least the largest power-of-two divisor of @size.
853  *
854  * The @flags argument may be one of the GFP flags defined at
855  * include/linux/gfp_types.h and described at
856  * :ref:`Documentation/core-api/mm-api.rst <mm-api-gfp-flags>`
857  *
858  * The recommended usage of the @flags is described at
859  * :ref:`Documentation/core-api/memory-allocation.rst <memory_allocation>`
860  *
861  * Below is a brief outline of the most useful GFP flags
862  *
863  * %GFP_KERNEL
864  *	Allocate normal kernel ram. May sleep.
865  *
866  * %GFP_NOWAIT
867  *	Allocation will not sleep.
868  *
869  * %GFP_ATOMIC
870  *	Allocation will not sleep.  May use emergency pools.
871  *
872  * Also it is possible to set different flags by OR'ing
873  * in one or more of the following additional @flags:
874  *
875  * %__GFP_ZERO
876  *	Zero the allocated memory before returning. Also see kzalloc().
877  *
878  * %__GFP_HIGH
879  *	This allocation has high priority and may use emergency pools.
880  *
881  * %__GFP_NOFAIL
882  *	Indicate that this allocation is in no way allowed to fail
883  *	(think twice before using).
884  *
885  * %__GFP_NORETRY
886  *	If memory is not immediately available,
887  *	then give up at once.
888  *
889  * %__GFP_NOWARN
890  *	If allocation fails, don't issue any warnings.
891  *
892  * %__GFP_RETRY_MAYFAIL
893  *	Try really hard to succeed the allocation but fail
894  *	eventually.
895  */
kmalloc_noprof(size_t size,gfp_t flags)896 static __always_inline __alloc_size(1) void *kmalloc_noprof(size_t size, gfp_t flags)
897 {
898 	if (__builtin_constant_p(size) && size) {
899 		unsigned int index;
900 
901 		if (size > KMALLOC_MAX_CACHE_SIZE)
902 			return __kmalloc_large_noprof(size, flags);
903 
904 		index = kmalloc_index(size);
905 		return __kmalloc_cache_noprof(
906 				kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
907 				flags, size);
908 	}
909 	return __kmalloc_noprof(size, flags);
910 }
911 #define kmalloc(...)				alloc_hooks(kmalloc_noprof(__VA_ARGS__))
912 
913 #define kmem_buckets_alloc(_b, _size, _flags)	\
914 	alloc_hooks(__kmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
915 
916 #define kmem_buckets_alloc_track_caller(_b, _size, _flags)	\
917 	alloc_hooks(__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE, _RET_IP_))
918 
kmalloc_node_noprof(size_t size,gfp_t flags,int node)919 static __always_inline __alloc_size(1) void *kmalloc_node_noprof(size_t size, gfp_t flags, int node)
920 {
921 	if (__builtin_constant_p(size) && size) {
922 		unsigned int index;
923 
924 		if (size > KMALLOC_MAX_CACHE_SIZE)
925 			return __kmalloc_large_node_noprof(size, flags, node);
926 
927 		index = kmalloc_index(size);
928 		return __kmalloc_cache_node_noprof(
929 				kmalloc_caches[kmalloc_type(flags, _RET_IP_)][index],
930 				flags, node, size);
931 	}
932 	return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node);
933 }
934 #define kmalloc_node(...)			alloc_hooks(kmalloc_node_noprof(__VA_ARGS__))
935 
936 /**
937  * kmalloc_array - allocate memory for an array.
938  * @n: number of elements.
939  * @size: element size.
940  * @flags: the type of memory to allocate (see kmalloc).
941  */
kmalloc_array_noprof(size_t n,size_t size,gfp_t flags)942 static inline __alloc_size(1, 2) void *kmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
943 {
944 	size_t bytes;
945 
946 	if (unlikely(check_mul_overflow(n, size, &bytes)))
947 		return NULL;
948 	return kmalloc_noprof(bytes, flags);
949 }
950 #define kmalloc_array(...)			alloc_hooks(kmalloc_array_noprof(__VA_ARGS__))
951 
952 /**
953  * krealloc_array - reallocate memory for an array.
954  * @p: pointer to the memory chunk to reallocate
955  * @new_n: new number of elements to alloc
956  * @new_size: new size of a single member of the array
957  * @flags: the type of memory to allocate (see kmalloc)
958  *
959  * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
960  * initial memory allocation, every subsequent call to this API for the same
961  * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
962  * __GFP_ZERO is not fully honored by this API.
963  *
964  * See krealloc_noprof() for further details.
965  *
966  * In any case, the contents of the object pointed to are preserved up to the
967  * lesser of the new and old sizes.
968  */
krealloc_array_noprof(void * p,size_t new_n,size_t new_size,gfp_t flags)969 static inline __realloc_size(2, 3) void * __must_check krealloc_array_noprof(void *p,
970 								       size_t new_n,
971 								       size_t new_size,
972 								       gfp_t flags)
973 {
974 	size_t bytes;
975 
976 	if (unlikely(check_mul_overflow(new_n, new_size, &bytes)))
977 		return NULL;
978 
979 	return krealloc_noprof(p, bytes, flags);
980 }
981 #define krealloc_array(...)			alloc_hooks(krealloc_array_noprof(__VA_ARGS__))
982 
983 /**
984  * kcalloc - allocate memory for an array. The memory is set to zero.
985  * @n: number of elements.
986  * @size: element size.
987  * @flags: the type of memory to allocate (see kmalloc).
988  */
989 #define kcalloc(n, size, flags)		kmalloc_array(n, size, (flags) | __GFP_ZERO)
990 
991 void *__kmalloc_node_track_caller_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node,
992 					 unsigned long caller) __alloc_size(1);
993 #define kmalloc_node_track_caller_noprof(size, flags, node, caller) \
994 	__kmalloc_node_track_caller_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node, caller)
995 #define kmalloc_node_track_caller(...)		\
996 	alloc_hooks(kmalloc_node_track_caller_noprof(__VA_ARGS__, _RET_IP_))
997 
998 /*
999  * kmalloc_track_caller is a special version of kmalloc that records the
1000  * calling function of the routine calling it for slab leak tracking instead
1001  * of just the calling function (confusing, eh?).
1002  * It's useful when the call to kmalloc comes from a widely-used standard
1003  * allocator where we care about the real place the memory allocation
1004  * request comes from.
1005  */
1006 #define kmalloc_track_caller(...)		kmalloc_node_track_caller(__VA_ARGS__, NUMA_NO_NODE)
1007 
1008 #define kmalloc_track_caller_noprof(...)	\
1009 		kmalloc_node_track_caller_noprof(__VA_ARGS__, NUMA_NO_NODE, _RET_IP_)
1010 
kmalloc_array_node_noprof(size_t n,size_t size,gfp_t flags,int node)1011 static inline __alloc_size(1, 2) void *kmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags,
1012 							  int node)
1013 {
1014 	size_t bytes;
1015 
1016 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1017 		return NULL;
1018 	if (__builtin_constant_p(n) && __builtin_constant_p(size))
1019 		return kmalloc_node_noprof(bytes, flags, node);
1020 	return __kmalloc_node_noprof(PASS_BUCKET_PARAMS(bytes, NULL), flags, node);
1021 }
1022 #define kmalloc_array_node(...)			alloc_hooks(kmalloc_array_node_noprof(__VA_ARGS__))
1023 
1024 #define kcalloc_node(_n, _size, _flags, _node)	\
1025 	kmalloc_array_node(_n, _size, (_flags) | __GFP_ZERO, _node)
1026 
1027 /*
1028  * Shortcuts
1029  */
1030 #define kmem_cache_zalloc(_k, _flags)		kmem_cache_alloc(_k, (_flags)|__GFP_ZERO)
1031 
1032 /**
1033  * kzalloc - allocate memory. The memory is set to zero.
1034  * @size: how many bytes of memory are required.
1035  * @flags: the type of memory to allocate (see kmalloc).
1036  */
kzalloc_noprof(size_t size,gfp_t flags)1037 static inline __alloc_size(1) void *kzalloc_noprof(size_t size, gfp_t flags)
1038 {
1039 	return kmalloc_noprof(size, flags | __GFP_ZERO);
1040 }
1041 #define kzalloc(...)				alloc_hooks(kzalloc_noprof(__VA_ARGS__))
1042 #define kzalloc_node(_size, _flags, _node)	kmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
1043 
1044 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node) __alloc_size(1);
1045 #define kvmalloc_node_noprof(size, flags, node)	\
1046 	__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(size, NULL), flags, node)
1047 #define kvmalloc_node(...)			alloc_hooks(kvmalloc_node_noprof(__VA_ARGS__))
1048 
1049 #define kvmalloc(_size, _flags)			kvmalloc_node(_size, _flags, NUMA_NO_NODE)
1050 #define kvmalloc_noprof(_size, _flags)		kvmalloc_node_noprof(_size, _flags, NUMA_NO_NODE)
1051 #define kvzalloc(_size, _flags)			kvmalloc(_size, (_flags)|__GFP_ZERO)
1052 
1053 #define kvzalloc_node(_size, _flags, _node)	kvmalloc_node(_size, (_flags)|__GFP_ZERO, _node)
1054 #define kmem_buckets_valloc(_b, _size, _flags)	\
1055 	alloc_hooks(__kvmalloc_node_noprof(PASS_BUCKET_PARAMS(_size, _b), _flags, NUMA_NO_NODE))
1056 
1057 static inline __alloc_size(1, 2) void *
kvmalloc_array_node_noprof(size_t n,size_t size,gfp_t flags,int node)1058 kvmalloc_array_node_noprof(size_t n, size_t size, gfp_t flags, int node)
1059 {
1060 	size_t bytes;
1061 
1062 	if (unlikely(check_mul_overflow(n, size, &bytes)))
1063 		return NULL;
1064 
1065 	return kvmalloc_node_noprof(bytes, flags, node);
1066 }
1067 
1068 #define kvmalloc_array_noprof(...)		kvmalloc_array_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
1069 #define kvcalloc_node_noprof(_n,_s,_f,_node)	kvmalloc_array_node_noprof(_n,_s,(_f)|__GFP_ZERO,_node)
1070 #define kvcalloc_noprof(...)			kvcalloc_node_noprof(__VA_ARGS__, NUMA_NO_NODE)
1071 
1072 #define kvmalloc_array(...)			alloc_hooks(kvmalloc_array_noprof(__VA_ARGS__))
1073 #define kvcalloc_node(...)			alloc_hooks(kvcalloc_node_noprof(__VA_ARGS__))
1074 #define kvcalloc(...)				alloc_hooks(kvcalloc_noprof(__VA_ARGS__))
1075 
1076 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
1077 		__realloc_size(2);
1078 #define kvrealloc(...)				alloc_hooks(kvrealloc_noprof(__VA_ARGS__))
1079 
1080 extern void kvfree(const void *addr);
1081 DEFINE_FREE(kvfree, void *, if (!IS_ERR_OR_NULL(_T)) kvfree(_T))
1082 
1083 extern void kvfree_sensitive(const void *addr, size_t len);
1084 
1085 unsigned int kmem_cache_size(struct kmem_cache *s);
1086 
1087 #ifndef CONFIG_KVFREE_RCU_BATCHED
kvfree_rcu_barrier(void)1088 static inline void kvfree_rcu_barrier(void)
1089 {
1090 	rcu_barrier();
1091 }
1092 
kfree_rcu_scheduler_running(void)1093 static inline void kfree_rcu_scheduler_running(void) { }
1094 #else
1095 void kvfree_rcu_barrier(void);
1096 
1097 void kfree_rcu_scheduler_running(void);
1098 #endif
1099 
1100 /**
1101  * kmalloc_size_roundup - Report allocation bucket size for the given size
1102  *
1103  * @size: Number of bytes to round up from.
1104  *
1105  * This returns the number of bytes that would be available in a kmalloc()
1106  * allocation of @size bytes. For example, a 126 byte request would be
1107  * rounded up to the next sized kmalloc bucket, 128 bytes. (This is strictly
1108  * for the general-purpose kmalloc()-based allocations, and is not for the
1109  * pre-sized kmem_cache_alloc()-based allocations.)
1110  *
1111  * Use this to kmalloc() the full bucket size ahead of time instead of using
1112  * ksize() to query the size after an allocation.
1113  */
1114 size_t kmalloc_size_roundup(size_t size);
1115 
1116 void __init kmem_cache_init_late(void);
1117 void __init kvfree_rcu_init(void);
1118 
1119 #endif	/* _LINUX_SLAB_H */
1120