1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * Variant of atomic_t specialized for reference counts.
4  *
5  * The interface matches the atomic_t interface (to aid in porting) but only
6  * provides the few functions one should use for reference counting.
7  *
8  * Saturation semantics
9  * ====================
10  *
11  * refcount_t differs from atomic_t in that the counter saturates at
12  * REFCOUNT_SATURATED and will not move once there. This avoids wrapping the
13  * counter and causing 'spurious' use-after-free issues. In order to avoid the
14  * cost associated with introducing cmpxchg() loops into all of the saturating
15  * operations, we temporarily allow the counter to take on an unchecked value
16  * and then explicitly set it to REFCOUNT_SATURATED on detecting that underflow
17  * or overflow has occurred. Although this is racy when multiple threads
18  * access the refcount concurrently, by placing REFCOUNT_SATURATED roughly
19  * equidistant from 0 and INT_MAX we minimise the scope for error:
20  *
21  * 	                           INT_MAX     REFCOUNT_SATURATED   UINT_MAX
22  *   0                          (0x7fff_ffff)    (0xc000_0000)    (0xffff_ffff)
23  *   +--------------------------------+----------------+----------------+
24  *                                     <---------- bad value! ---------->
25  *
26  * (in a signed view of the world, the "bad value" range corresponds to
27  * a negative counter value).
28  *
29  * As an example, consider a refcount_inc() operation that causes the counter
30  * to overflow:
31  *
32  * 	int old = atomic_fetch_add_relaxed(r);
33  *	// old is INT_MAX, refcount now INT_MIN (0x8000_0000)
34  *	if (old < 0)
35  *		atomic_set(r, REFCOUNT_SATURATED);
36  *
37  * If another thread also performs a refcount_inc() operation between the two
38  * atomic operations, then the count will continue to edge closer to 0. If it
39  * reaches a value of 1 before /any/ of the threads reset it to the saturated
40  * value, then a concurrent refcount_dec_and_test() may erroneously free the
41  * underlying object.
42  * Linux limits the maximum number of tasks to PID_MAX_LIMIT, which is currently
43  * 0x400000 (and can't easily be raised in the future beyond FUTEX_TID_MASK).
44  * With the current PID limit, if no batched refcounting operations are used and
45  * the attacker can't repeatedly trigger kernel oopses in the middle of refcount
46  * operations, this makes it impossible for a saturated refcount to leave the
47  * saturation range, even if it is possible for multiple uses of the same
48  * refcount to nest in the context of a single task:
49  *
50  *     (UINT_MAX+1-REFCOUNT_SATURATED) / PID_MAX_LIMIT =
51  *     0x40000000 / 0x400000 = 0x100 = 256
52  *
53  * If hundreds of references are added/removed with a single refcounting
54  * operation, it may potentially be possible to leave the saturation range; but
55  * given the precise timing details involved with the round-robin scheduling of
56  * each thread manipulating the refcount and the need to hit the race multiple
57  * times in succession, there doesn't appear to be a practical avenue of attack
58  * even if using refcount_add() operations with larger increments.
59  *
60  * Memory ordering
61  * ===============
62  *
63  * Memory ordering rules are slightly relaxed wrt regular atomic_t functions
64  * and provide only what is strictly required for refcounts.
65  *
66  * The increments are fully relaxed; these will not provide ordering. The
67  * rationale is that whatever is used to obtain the object we're increasing the
68  * reference count on will provide the ordering. For locked data structures,
69  * its the lock acquire, for RCU/lockless data structures its the dependent
70  * load.
71  *
72  * Do note that inc_not_zero() provides a control dependency which will order
73  * future stores against the inc, this ensures we'll never modify the object
74  * if we did not in fact acquire a reference.
75  *
76  * The decrements will provide release order, such that all the prior loads and
77  * stores will be issued before, it also provides a control dependency, which
78  * will order us against the subsequent free().
79  *
80  * The control dependency is against the load of the cmpxchg (ll/sc) that
81  * succeeded. This means the stores aren't fully ordered, but this is fine
82  * because the 1->0 transition indicates no concurrency.
83  *
84  * Note that the allocator is responsible for ordering things between free()
85  * and alloc().
86  *
87  * The decrements dec_and_test() and sub_and_test() also provide acquire
88  * ordering on success.
89  *
90  * refcount_{add|inc}_not_zero_acquire() and refcount_set_release() provide
91  * acquire and release ordering for cases when the memory occupied by the
92  * object might be reused to store another object. This is important for the
93  * cases where secondary validation is required to detect such reuse, e.g.
94  * SLAB_TYPESAFE_BY_RCU. The secondary validation checks have to happen after
95  * the refcount is taken, hence acquire order is necessary. Similarly, when the
96  * object is initialized, all stores to its attributes should be visible before
97  * the refcount is set, otherwise a stale attribute value might be used by
98  * another task which succeeds in taking a refcount to the new object.
99  */
100 
101 #ifndef _LINUX_REFCOUNT_H
102 #define _LINUX_REFCOUNT_H
103 
104 #include <linux/atomic.h>
105 #include <linux/bug.h>
106 #include <linux/compiler.h>
107 #include <linux/limits.h>
108 #include <linux/refcount_types.h>
109 #include <linux/spinlock_types.h>
110 
111 struct mutex;
112 
113 #define REFCOUNT_INIT(n)	{ .refs = ATOMIC_INIT(n), }
114 #define REFCOUNT_MAX		INT_MAX
115 #define REFCOUNT_SATURATED	(INT_MIN / 2)
116 
117 enum refcount_saturation_type {
118 	REFCOUNT_ADD_NOT_ZERO_OVF,
119 	REFCOUNT_ADD_OVF,
120 	REFCOUNT_ADD_UAF,
121 	REFCOUNT_SUB_UAF,
122 	REFCOUNT_DEC_LEAK,
123 };
124 
125 void refcount_warn_saturate(refcount_t *r, enum refcount_saturation_type t);
126 
127 /**
128  * refcount_set - set a refcount's value
129  * @r: the refcount
130  * @n: value to which the refcount will be set
131  */
refcount_set(refcount_t * r,int n)132 static inline void refcount_set(refcount_t *r, int n)
133 {
134 	atomic_set(&r->refs, n);
135 }
136 
137 /**
138  * refcount_set_release - set a refcount's value with release ordering
139  * @r: the refcount
140  * @n: value to which the refcount will be set
141  *
142  * This function should be used when memory occupied by the object might be
143  * reused to store another object -- consider SLAB_TYPESAFE_BY_RCU.
144  *
145  * Provides release memory ordering which will order previous memory operations
146  * against this store. This ensures all updates to this object are visible
147  * once the refcount is set and stale values from the object previously
148  * occupying this memory are overwritten with new ones.
149  *
150  * This function should be called only after new object is fully initialized.
151  * After this call the object should be considered visible to other tasks even
152  * if it was not yet added into an object collection normally used to discover
153  * it. This is because other tasks might have discovered the object previously
154  * occupying the same memory and after memory reuse they can succeed in taking
155  * refcount to the new object and start using it.
156  */
refcount_set_release(refcount_t * r,int n)157 static inline void refcount_set_release(refcount_t *r, int n)
158 {
159 	atomic_set_release(&r->refs, n);
160 }
161 
162 /**
163  * refcount_read - get a refcount's value
164  * @r: the refcount
165  *
166  * Return: the refcount's value
167  */
refcount_read(const refcount_t * r)168 static inline unsigned int refcount_read(const refcount_t *r)
169 {
170 	return atomic_read(&r->refs);
171 }
172 
173 static inline __must_check __signed_wrap
__refcount_add_not_zero(int i,refcount_t * r,int * oldp)174 bool __refcount_add_not_zero(int i, refcount_t *r, int *oldp)
175 {
176 	int old = refcount_read(r);
177 
178 	do {
179 		if (!old)
180 			break;
181 	} while (!atomic_try_cmpxchg_relaxed(&r->refs, &old, old + i));
182 
183 	if (oldp)
184 		*oldp = old;
185 
186 	if (unlikely(old < 0 || old + i < 0))
187 		refcount_warn_saturate(r, REFCOUNT_ADD_NOT_ZERO_OVF);
188 
189 	return old;
190 }
191 
192 /**
193  * refcount_add_not_zero - add a value to a refcount unless it is 0
194  * @i: the value to add to the refcount
195  * @r: the refcount
196  *
197  * Will saturate at REFCOUNT_SATURATED and WARN.
198  *
199  * Provides no memory ordering, it is assumed the caller has guaranteed the
200  * object memory to be stable (RCU, etc.). It does provide a control dependency
201  * and thereby orders future stores. See the comment on top.
202  *
203  * Use of this function is not recommended for the normal reference counting
204  * use case in which references are taken and released one at a time.  In these
205  * cases, refcount_inc(), or one of its variants, should instead be used to
206  * increment a reference count.
207  *
208  * Return: false if the passed refcount is 0, true otherwise
209  */
refcount_add_not_zero(int i,refcount_t * r)210 static inline __must_check bool refcount_add_not_zero(int i, refcount_t *r)
211 {
212 	return __refcount_add_not_zero(i, r, NULL);
213 }
214 
215 static inline __must_check __signed_wrap
__refcount_add_not_zero_limited_acquire(int i,refcount_t * r,int * oldp,int limit)216 bool __refcount_add_not_zero_limited_acquire(int i, refcount_t *r, int *oldp,
217 					     int limit)
218 {
219 	int old = refcount_read(r);
220 
221 	do {
222 		if (!old)
223 			break;
224 
225 		if (i > limit - old) {
226 			if (oldp)
227 				*oldp = old;
228 			return false;
229 		}
230 	} while (!atomic_try_cmpxchg_acquire(&r->refs, &old, old + i));
231 
232 	if (oldp)
233 		*oldp = old;
234 
235 	if (unlikely(old < 0 || old + i < 0))
236 		refcount_warn_saturate(r, REFCOUNT_ADD_NOT_ZERO_OVF);
237 
238 	return old;
239 }
240 
241 static inline __must_check bool
__refcount_inc_not_zero_limited_acquire(refcount_t * r,int * oldp,int limit)242 __refcount_inc_not_zero_limited_acquire(refcount_t *r, int *oldp, int limit)
243 {
244 	return __refcount_add_not_zero_limited_acquire(1, r, oldp, limit);
245 }
246 
247 static inline __must_check __signed_wrap
__refcount_add_not_zero_acquire(int i,refcount_t * r,int * oldp)248 bool __refcount_add_not_zero_acquire(int i, refcount_t *r, int *oldp)
249 {
250 	return __refcount_add_not_zero_limited_acquire(i, r, oldp, INT_MAX);
251 }
252 
253 /**
254  * refcount_add_not_zero_acquire - add a value to a refcount with acquire ordering unless it is 0
255  *
256  * @i: the value to add to the refcount
257  * @r: the refcount
258  *
259  * Will saturate at REFCOUNT_SATURATED and WARN.
260  *
261  * This function should be used when memory occupied by the object might be
262  * reused to store another object -- consider SLAB_TYPESAFE_BY_RCU.
263  *
264  * Provides acquire memory ordering on success, it is assumed the caller has
265  * guaranteed the object memory to be stable (RCU, etc.). It does provide a
266  * control dependency and thereby orders future stores. See the comment on top.
267  *
268  * Use of this function is not recommended for the normal reference counting
269  * use case in which references are taken and released one at a time.  In these
270  * cases, refcount_inc_not_zero_acquire() should instead be used to increment a
271  * reference count.
272  *
273  * Return: false if the passed refcount is 0, true otherwise
274  */
refcount_add_not_zero_acquire(int i,refcount_t * r)275 static inline __must_check bool refcount_add_not_zero_acquire(int i, refcount_t *r)
276 {
277 	return __refcount_add_not_zero_acquire(i, r, NULL);
278 }
279 
280 static inline __signed_wrap
__refcount_add(int i,refcount_t * r,int * oldp)281 void __refcount_add(int i, refcount_t *r, int *oldp)
282 {
283 	int old = atomic_fetch_add_relaxed(i, &r->refs);
284 
285 	if (oldp)
286 		*oldp = old;
287 
288 	if (unlikely(!old))
289 		refcount_warn_saturate(r, REFCOUNT_ADD_UAF);
290 	else if (unlikely(old < 0 || old + i < 0))
291 		refcount_warn_saturate(r, REFCOUNT_ADD_OVF);
292 }
293 
294 /**
295  * refcount_add - add a value to a refcount
296  * @i: the value to add to the refcount
297  * @r: the refcount
298  *
299  * Similar to atomic_add(), but will saturate at REFCOUNT_SATURATED and WARN.
300  *
301  * Provides no memory ordering, it is assumed the caller has guaranteed the
302  * object memory to be stable (RCU, etc.). It does provide a control dependency
303  * and thereby orders future stores. See the comment on top.
304  *
305  * Use of this function is not recommended for the normal reference counting
306  * use case in which references are taken and released one at a time.  In these
307  * cases, refcount_inc(), or one of its variants, should instead be used to
308  * increment a reference count.
309  */
refcount_add(int i,refcount_t * r)310 static inline void refcount_add(int i, refcount_t *r)
311 {
312 	__refcount_add(i, r, NULL);
313 }
314 
__refcount_inc_not_zero(refcount_t * r,int * oldp)315 static inline __must_check bool __refcount_inc_not_zero(refcount_t *r, int *oldp)
316 {
317 	return __refcount_add_not_zero(1, r, oldp);
318 }
319 
320 /**
321  * refcount_inc_not_zero - increment a refcount unless it is 0
322  * @r: the refcount to increment
323  *
324  * Similar to atomic_inc_not_zero(), but will saturate at REFCOUNT_SATURATED
325  * and WARN.
326  *
327  * Provides no memory ordering, it is assumed the caller has guaranteed the
328  * object memory to be stable (RCU, etc.). It does provide a control dependency
329  * and thereby orders future stores. See the comment on top.
330  *
331  * Return: true if the increment was successful, false otherwise
332  */
refcount_inc_not_zero(refcount_t * r)333 static inline __must_check bool refcount_inc_not_zero(refcount_t *r)
334 {
335 	return __refcount_inc_not_zero(r, NULL);
336 }
337 
__refcount_inc_not_zero_acquire(refcount_t * r,int * oldp)338 static inline __must_check bool __refcount_inc_not_zero_acquire(refcount_t *r, int *oldp)
339 {
340 	return __refcount_add_not_zero_acquire(1, r, oldp);
341 }
342 
343 /**
344  * refcount_inc_not_zero_acquire - increment a refcount with acquire ordering unless it is 0
345  * @r: the refcount to increment
346  *
347  * Similar to refcount_inc_not_zero(), but provides acquire memory ordering on
348  * success.
349  *
350  * This function should be used when memory occupied by the object might be
351  * reused to store another object -- consider SLAB_TYPESAFE_BY_RCU.
352  *
353  * Provides acquire memory ordering on success, it is assumed the caller has
354  * guaranteed the object memory to be stable (RCU, etc.). It does provide a
355  * control dependency and thereby orders future stores. See the comment on top.
356  *
357  * Return: true if the increment was successful, false otherwise
358  */
refcount_inc_not_zero_acquire(refcount_t * r)359 static inline __must_check bool refcount_inc_not_zero_acquire(refcount_t *r)
360 {
361 	return __refcount_inc_not_zero_acquire(r, NULL);
362 }
363 
__refcount_inc(refcount_t * r,int * oldp)364 static inline void __refcount_inc(refcount_t *r, int *oldp)
365 {
366 	__refcount_add(1, r, oldp);
367 }
368 
369 /**
370  * refcount_inc - increment a refcount
371  * @r: the refcount to increment
372  *
373  * Similar to atomic_inc(), but will saturate at REFCOUNT_SATURATED and WARN.
374  *
375  * Provides no memory ordering, it is assumed the caller already has a
376  * reference on the object.
377  *
378  * Will WARN if the refcount is 0, as this represents a possible use-after-free
379  * condition.
380  */
refcount_inc(refcount_t * r)381 static inline void refcount_inc(refcount_t *r)
382 {
383 	__refcount_inc(r, NULL);
384 }
385 
386 static inline __must_check __signed_wrap
__refcount_sub_and_test(int i,refcount_t * r,int * oldp)387 bool __refcount_sub_and_test(int i, refcount_t *r, int *oldp)
388 {
389 	int old = atomic_fetch_sub_release(i, &r->refs);
390 
391 	if (oldp)
392 		*oldp = old;
393 
394 	if (old > 0 && old == i) {
395 		smp_acquire__after_ctrl_dep();
396 		return true;
397 	}
398 
399 	if (unlikely(old <= 0 || old - i < 0))
400 		refcount_warn_saturate(r, REFCOUNT_SUB_UAF);
401 
402 	return false;
403 }
404 
405 /**
406  * refcount_sub_and_test - subtract from a refcount and test if it is 0
407  * @i: amount to subtract from the refcount
408  * @r: the refcount
409  *
410  * Similar to atomic_dec_and_test(), but it will WARN, return false and
411  * ultimately leak on underflow and will fail to decrement when saturated
412  * at REFCOUNT_SATURATED.
413  *
414  * Provides release memory ordering, such that prior loads and stores are done
415  * before, and provides an acquire ordering on success such that free()
416  * must come after.
417  *
418  * Use of this function is not recommended for the normal reference counting
419  * use case in which references are taken and released one at a time.  In these
420  * cases, refcount_dec(), or one of its variants, should instead be used to
421  * decrement a reference count.
422  *
423  * Return: true if the resulting refcount is 0, false otherwise
424  */
refcount_sub_and_test(int i,refcount_t * r)425 static inline __must_check bool refcount_sub_and_test(int i, refcount_t *r)
426 {
427 	return __refcount_sub_and_test(i, r, NULL);
428 }
429 
__refcount_dec_and_test(refcount_t * r,int * oldp)430 static inline __must_check bool __refcount_dec_and_test(refcount_t *r, int *oldp)
431 {
432 	return __refcount_sub_and_test(1, r, oldp);
433 }
434 
435 /**
436  * refcount_dec_and_test - decrement a refcount and test if it is 0
437  * @r: the refcount
438  *
439  * Similar to atomic_dec_and_test(), it will WARN on underflow and fail to
440  * decrement when saturated at REFCOUNT_SATURATED.
441  *
442  * Provides release memory ordering, such that prior loads and stores are done
443  * before, and provides an acquire ordering on success such that free()
444  * must come after.
445  *
446  * Return: true if the resulting refcount is 0, false otherwise
447  */
refcount_dec_and_test(refcount_t * r)448 static inline __must_check bool refcount_dec_and_test(refcount_t *r)
449 {
450 	return __refcount_dec_and_test(r, NULL);
451 }
452 
__refcount_dec(refcount_t * r,int * oldp)453 static inline void __refcount_dec(refcount_t *r, int *oldp)
454 {
455 	int old = atomic_fetch_sub_release(1, &r->refs);
456 
457 	if (oldp)
458 		*oldp = old;
459 
460 	if (unlikely(old <= 1))
461 		refcount_warn_saturate(r, REFCOUNT_DEC_LEAK);
462 }
463 
464 /**
465  * refcount_dec - decrement a refcount
466  * @r: the refcount
467  *
468  * Similar to atomic_dec(), it will WARN on underflow and fail to decrement
469  * when saturated at REFCOUNT_SATURATED.
470  *
471  * Provides release memory ordering, such that prior loads and stores are done
472  * before.
473  */
refcount_dec(refcount_t * r)474 static inline void refcount_dec(refcount_t *r)
475 {
476 	__refcount_dec(r, NULL);
477 }
478 
479 extern __must_check bool refcount_dec_if_one(refcount_t *r);
480 extern __must_check bool refcount_dec_not_one(refcount_t *r);
481 extern __must_check bool refcount_dec_and_mutex_lock(refcount_t *r, struct mutex *lock) __cond_acquires(lock);
482 extern __must_check bool refcount_dec_and_lock(refcount_t *r, spinlock_t *lock) __cond_acquires(lock);
483 extern __must_check bool refcount_dec_and_lock_irqsave(refcount_t *r,
484 						       spinlock_t *lock,
485 						       unsigned long *flags) __cond_acquires(lock);
486 #endif /* _LINUX_REFCOUNT_H */
487