1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Read-Copy Update mechanism for mutual exclusion
4 *
5 * Copyright IBM Corporation, 2001
6 *
7 * Author: Dipankar Sarma <dipankar@in.ibm.com>
8 *
9 * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11 * Papers:
12 * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13 * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14 *
15 * For detailed explanation of Read-Copy Update mechanism see -
16 * http://lse.sourceforge.net/locking/rcupdate.html
17 *
18 */
19
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <linux/cleanup.h>
31 #include <asm/processor.h>
32 #include <linux/context_tracking_irq.h>
33
34 #define ULONG_CMP_GE(a, b) (ULONG_MAX / 2 >= (a) - (b))
35 #define ULONG_CMP_LT(a, b) (ULONG_MAX / 2 < (a) - (b))
36
37 #define RCU_SEQ_CTR_SHIFT 2
38 #define RCU_SEQ_STATE_MASK ((1 << RCU_SEQ_CTR_SHIFT) - 1)
39
40 /* Exported common interfaces */
41 void call_rcu(struct rcu_head *head, rcu_callback_t func);
42 void rcu_barrier_tasks(void);
43 void synchronize_rcu(void);
44
45 struct rcu_gp_oldstate;
46 unsigned long get_completed_synchronize_rcu(void);
47 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
48
49 // Maximum number of unsigned long values corresponding to
50 // not-yet-completed RCU grace periods.
51 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
52
53 /**
54 * same_state_synchronize_rcu - Are two old-state values identical?
55 * @oldstate1: First old-state value.
56 * @oldstate2: Second old-state value.
57 *
58 * The two old-state values must have been obtained from either
59 * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
60 * get_completed_synchronize_rcu(). Returns @true if the two values are
61 * identical and @false otherwise. This allows structures whose lifetimes
62 * are tracked by old-state values to push these values to a list header,
63 * allowing those structures to be slightly smaller.
64 */
same_state_synchronize_rcu(unsigned long oldstate1,unsigned long oldstate2)65 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
66 {
67 return oldstate1 == oldstate2;
68 }
69
70 #ifdef CONFIG_PREEMPT_RCU
71
72 void __rcu_read_lock(void);
73 void __rcu_read_unlock(void);
74
75 /*
76 * Defined as a macro as it is a very low level header included from
77 * areas that don't even know about current. This gives the rcu_read_lock()
78 * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
79 * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
80 */
81 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
82
83 #else /* #ifdef CONFIG_PREEMPT_RCU */
84
85 #ifdef CONFIG_TINY_RCU
86 #define rcu_read_unlock_strict() do { } while (0)
87 #else
88 void rcu_read_unlock_strict(void);
89 #endif
90
__rcu_read_lock(void)91 static inline void __rcu_read_lock(void)
92 {
93 preempt_disable();
94 }
95
__rcu_read_unlock(void)96 static inline void __rcu_read_unlock(void)
97 {
98 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
99 rcu_read_unlock_strict();
100 preempt_enable();
101 }
102
rcu_preempt_depth(void)103 static inline int rcu_preempt_depth(void)
104 {
105 return 0;
106 }
107
108 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
109
110 #ifdef CONFIG_RCU_LAZY
111 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
112 #else
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)113 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
114 {
115 call_rcu(head, func);
116 }
117 #endif
118
119 /* Internal to kernel */
120 void rcu_init(void);
121 extern int rcu_scheduler_active;
122 void rcu_sched_clock_irq(int user);
123
124 #ifdef CONFIG_RCU_STALL_COMMON
125 void rcu_sysrq_start(void);
126 void rcu_sysrq_end(void);
127 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)128 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)129 static inline void rcu_sysrq_end(void) { }
130 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
131
132 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
133 void rcu_irq_work_resched(void);
134 #else
rcu_irq_work_resched(void)135 static __always_inline void rcu_irq_work_resched(void) { }
136 #endif
137
138 #ifdef CONFIG_RCU_NOCB_CPU
139 void rcu_init_nohz(void);
140 int rcu_nocb_cpu_offload(int cpu);
141 int rcu_nocb_cpu_deoffload(int cpu);
142 void rcu_nocb_flush_deferred_wakeup(void);
143
144 #define RCU_NOCB_LOCKDEP_WARN(c, s) RCU_LOCKDEP_WARN(c, s)
145
146 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
147
rcu_init_nohz(void)148 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)149 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)150 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)151 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
152
153 #define RCU_NOCB_LOCKDEP_WARN(c, s)
154
155 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
156
157 /*
158 * Note a quasi-voluntary context switch for RCU-tasks's benefit.
159 * This is a macro rather than an inline function to avoid #include hell.
160 */
161 #ifdef CONFIG_TASKS_RCU_GENERIC
162
163 # ifdef CONFIG_TASKS_RCU
164 # define rcu_tasks_classic_qs(t, preempt) \
165 do { \
166 if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout)) \
167 WRITE_ONCE((t)->rcu_tasks_holdout, false); \
168 } while (0)
169 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
170 void synchronize_rcu_tasks(void);
171 void rcu_tasks_torture_stats_print(char *tt, char *tf);
172 # else
173 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
174 # define call_rcu_tasks call_rcu
175 # define synchronize_rcu_tasks synchronize_rcu
176 # endif
177
178 # ifdef CONFIG_TASKS_TRACE_RCU
179 // Bits for ->trc_reader_special.b.need_qs field.
180 #define TRC_NEED_QS 0x1 // Task needs a quiescent state.
181 #define TRC_NEED_QS_CHECKED 0x2 // Task has been checked for needing quiescent state.
182
183 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
184 void rcu_tasks_trace_qs_blkd(struct task_struct *t);
185
186 # define rcu_tasks_trace_qs(t) \
187 do { \
188 int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting); \
189 \
190 if (unlikely(READ_ONCE((t)->trc_reader_special.b.need_qs) == TRC_NEED_QS) && \
191 likely(!___rttq_nesting)) { \
192 rcu_trc_cmpxchg_need_qs((t), TRC_NEED_QS, TRC_NEED_QS_CHECKED); \
193 } else if (___rttq_nesting && ___rttq_nesting != INT_MIN && \
194 !READ_ONCE((t)->trc_reader_special.b.blocked)) { \
195 rcu_tasks_trace_qs_blkd(t); \
196 } \
197 } while (0)
198 void rcu_tasks_trace_torture_stats_print(char *tt, char *tf);
199 # else
200 # define rcu_tasks_trace_qs(t) do { } while (0)
201 # endif
202
203 #define rcu_tasks_qs(t, preempt) \
204 do { \
205 rcu_tasks_classic_qs((t), (preempt)); \
206 rcu_tasks_trace_qs(t); \
207 } while (0)
208
209 # ifdef CONFIG_TASKS_RUDE_RCU
210 void synchronize_rcu_tasks_rude(void);
211 void rcu_tasks_rude_torture_stats_print(char *tt, char *tf);
212 # endif
213
214 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
215 void exit_tasks_rcu_start(void);
216 void exit_tasks_rcu_finish(void);
217 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
218 #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
219 #define rcu_tasks_qs(t, preempt) do { } while (0)
220 #define rcu_note_voluntary_context_switch(t) do { } while (0)
221 #define call_rcu_tasks call_rcu
222 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)223 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)224 static inline void exit_tasks_rcu_finish(void) { }
225 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
226
227 /**
228 * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
229 *
230 * As an accident of implementation, an RCU Tasks Trace grace period also
231 * acts as an RCU grace period. However, this could change at any time.
232 * Code relying on this accident must call this function to verify that
233 * this accident is still happening.
234 *
235 * You have been warned!
236 */
rcu_trace_implies_rcu_gp(void)237 static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
238
239 /**
240 * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
241 *
242 * This macro resembles cond_resched(), except that it is defined to
243 * report potential quiescent states to RCU-tasks even if the cond_resched()
244 * machinery were to be shut off, as some advocate for PREEMPTION kernels.
245 */
246 #define cond_resched_tasks_rcu_qs() \
247 do { \
248 rcu_tasks_qs(current, false); \
249 cond_resched(); \
250 } while (0)
251
252 /**
253 * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states
254 * @old_ts: jiffies at start of processing.
255 *
256 * This helper is for long-running softirq handlers, such as NAPI threads in
257 * networking. The caller should initialize the variable passed in as @old_ts
258 * at the beginning of the softirq handler. When invoked frequently, this macro
259 * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will
260 * provide both RCU and RCU-Tasks quiescent states. Note that this macro
261 * modifies its old_ts argument.
262 *
263 * Because regions of code that have disabled softirq act as RCU read-side
264 * critical sections, this macro should be invoked with softirq (and
265 * preemption) enabled.
266 *
267 * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would
268 * have more chance to invoke schedule() calls and provide necessary quiescent
269 * states. As a contrast, calling cond_resched() only won't achieve the same
270 * effect because cond_resched() does not provide RCU-Tasks quiescent states.
271 */
272 #define rcu_softirq_qs_periodic(old_ts) \
273 do { \
274 if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \
275 time_after(jiffies, (old_ts) + HZ / 10)) { \
276 preempt_disable(); \
277 rcu_softirq_qs(); \
278 preempt_enable(); \
279 (old_ts) = jiffies; \
280 } \
281 } while (0)
282
283 /*
284 * Infrastructure to implement the synchronize_() primitives in
285 * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
286 */
287
288 #if defined(CONFIG_TREE_RCU)
289 #include <linux/rcutree.h>
290 #elif defined(CONFIG_TINY_RCU)
291 #include <linux/rcutiny.h>
292 #else
293 #error "Unknown RCU implementation specified to kernel configuration"
294 #endif
295
296 /*
297 * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
298 * are needed for dynamic initialization and destruction of rcu_head
299 * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
300 * dynamic initialization and destruction of statically allocated rcu_head
301 * structures. However, rcu_head structures allocated dynamically in the
302 * heap don't need any initialization.
303 */
304 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
305 void init_rcu_head(struct rcu_head *head);
306 void destroy_rcu_head(struct rcu_head *head);
307 void init_rcu_head_on_stack(struct rcu_head *head);
308 void destroy_rcu_head_on_stack(struct rcu_head *head);
309 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)310 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)311 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)312 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)313 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
314 #endif /* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
315
316 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
317 bool rcu_lockdep_current_cpu_online(void);
318 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)319 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
320 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
321
322 extern struct lockdep_map rcu_lock_map;
323 extern struct lockdep_map rcu_bh_lock_map;
324 extern struct lockdep_map rcu_sched_lock_map;
325 extern struct lockdep_map rcu_callback_map;
326
327 #ifdef CONFIG_DEBUG_LOCK_ALLOC
328
rcu_lock_acquire(struct lockdep_map * map)329 static inline void rcu_lock_acquire(struct lockdep_map *map)
330 {
331 lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
332 }
333
rcu_try_lock_acquire(struct lockdep_map * map)334 static inline void rcu_try_lock_acquire(struct lockdep_map *map)
335 {
336 lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_);
337 }
338
rcu_lock_release(struct lockdep_map * map)339 static inline void rcu_lock_release(struct lockdep_map *map)
340 {
341 lock_release(map, _THIS_IP_);
342 }
343
344 int debug_lockdep_rcu_enabled(void);
345 int rcu_read_lock_held(void);
346 int rcu_read_lock_bh_held(void);
347 int rcu_read_lock_sched_held(void);
348 int rcu_read_lock_any_held(void);
349
350 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
351
352 # define rcu_lock_acquire(a) do { } while (0)
353 # define rcu_try_lock_acquire(a) do { } while (0)
354 # define rcu_lock_release(a) do { } while (0)
355
rcu_read_lock_held(void)356 static inline int rcu_read_lock_held(void)
357 {
358 return 1;
359 }
360
rcu_read_lock_bh_held(void)361 static inline int rcu_read_lock_bh_held(void)
362 {
363 return 1;
364 }
365
rcu_read_lock_sched_held(void)366 static inline int rcu_read_lock_sched_held(void)
367 {
368 return !preemptible();
369 }
370
rcu_read_lock_any_held(void)371 static inline int rcu_read_lock_any_held(void)
372 {
373 return !preemptible();
374 }
375
debug_lockdep_rcu_enabled(void)376 static inline int debug_lockdep_rcu_enabled(void)
377 {
378 return 0;
379 }
380
381 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
382
383 #ifdef CONFIG_PROVE_RCU
384
385 /**
386 * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
387 * @c: condition to check
388 * @s: informative message
389 *
390 * This checks debug_lockdep_rcu_enabled() before checking (c) to
391 * prevent early boot splats due to lockdep not yet being initialized,
392 * and rechecks it after checking (c) to prevent false-positive splats
393 * due to races with lockdep being disabled. See commit 3066820034b5dd
394 * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
395 */
396 #define RCU_LOCKDEP_WARN(c, s) \
397 do { \
398 static bool __section(".data..unlikely") __warned; \
399 if (debug_lockdep_rcu_enabled() && (c) && \
400 debug_lockdep_rcu_enabled() && !__warned) { \
401 __warned = true; \
402 lockdep_rcu_suspicious(__FILE__, __LINE__, s); \
403 } \
404 } while (0)
405
406 #ifndef CONFIG_PREEMPT_RCU
rcu_preempt_sleep_check(void)407 static inline void rcu_preempt_sleep_check(void)
408 {
409 RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
410 "Illegal context switch in RCU read-side critical section");
411 }
412 #else // #ifndef CONFIG_PREEMPT_RCU
rcu_preempt_sleep_check(void)413 static inline void rcu_preempt_sleep_check(void) { }
414 #endif // #else // #ifndef CONFIG_PREEMPT_RCU
415
416 #define rcu_sleep_check() \
417 do { \
418 rcu_preempt_sleep_check(); \
419 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) \
420 RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map), \
421 "Illegal context switch in RCU-bh read-side critical section"); \
422 RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map), \
423 "Illegal context switch in RCU-sched read-side critical section"); \
424 } while (0)
425
426 // See RCU_LOCKDEP_WARN() for an explanation of the double call to
427 // debug_lockdep_rcu_enabled().
lockdep_assert_rcu_helper(bool c)428 static inline bool lockdep_assert_rcu_helper(bool c)
429 {
430 return debug_lockdep_rcu_enabled() &&
431 (c || !rcu_is_watching() || !rcu_lockdep_current_cpu_online()) &&
432 debug_lockdep_rcu_enabled();
433 }
434
435 /**
436 * lockdep_assert_in_rcu_read_lock - WARN if not protected by rcu_read_lock()
437 *
438 * Splats if lockdep is enabled and there is no rcu_read_lock() in effect.
439 */
440 #define lockdep_assert_in_rcu_read_lock() \
441 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map)))
442
443 /**
444 * lockdep_assert_in_rcu_read_lock_bh - WARN if not protected by rcu_read_lock_bh()
445 *
446 * Splats if lockdep is enabled and there is no rcu_read_lock_bh() in effect.
447 * Note that local_bh_disable() and friends do not suffice here, instead an
448 * actual rcu_read_lock_bh() is required.
449 */
450 #define lockdep_assert_in_rcu_read_lock_bh() \
451 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_bh_lock_map)))
452
453 /**
454 * lockdep_assert_in_rcu_read_lock_sched - WARN if not protected by rcu_read_lock_sched()
455 *
456 * Splats if lockdep is enabled and there is no rcu_read_lock_sched()
457 * in effect. Note that preempt_disable() and friends do not suffice here,
458 * instead an actual rcu_read_lock_sched() is required.
459 */
460 #define lockdep_assert_in_rcu_read_lock_sched() \
461 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_sched_lock_map)))
462
463 /**
464 * lockdep_assert_in_rcu_reader - WARN if not within some type of RCU reader
465 *
466 * Splats if lockdep is enabled and there is no RCU reader of any
467 * type in effect. Note that regions of code protected by things like
468 * preempt_disable, local_bh_disable(), and local_irq_disable() all qualify
469 * as RCU readers.
470 *
471 * Note that this will never trigger in PREEMPT_NONE or PREEMPT_VOLUNTARY
472 * kernels that are not also built with PREEMPT_COUNT. But if you have
473 * lockdep enabled, you might as well also enable PREEMPT_COUNT.
474 */
475 #define lockdep_assert_in_rcu_reader() \
476 WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map) && \
477 !lock_is_held(&rcu_bh_lock_map) && \
478 !lock_is_held(&rcu_sched_lock_map) && \
479 preemptible()))
480
481 #else /* #ifdef CONFIG_PROVE_RCU */
482
483 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
484 #define rcu_sleep_check() do { } while (0)
485
486 #define lockdep_assert_in_rcu_read_lock() do { } while (0)
487 #define lockdep_assert_in_rcu_read_lock_bh() do { } while (0)
488 #define lockdep_assert_in_rcu_read_lock_sched() do { } while (0)
489 #define lockdep_assert_in_rcu_reader() do { } while (0)
490
491 #endif /* #else #ifdef CONFIG_PROVE_RCU */
492
493 /*
494 * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
495 * and rcu_assign_pointer(). Some of these could be folded into their
496 * callers, but they are left separate in order to ease introduction of
497 * multiple pointers markings to match different RCU implementations
498 * (e.g., __srcu), should this make sense in the future.
499 */
500
501 #ifdef __CHECKER__
502 #define rcu_check_sparse(p, space) \
503 ((void)(((typeof(*p) space *)p) == p))
504 #else /* #ifdef __CHECKER__ */
505 #define rcu_check_sparse(p, space)
506 #endif /* #else #ifdef __CHECKER__ */
507
508 #define __unrcu_pointer(p, local) \
509 ({ \
510 typeof(*p) *local = (typeof(*p) *__force)(p); \
511 rcu_check_sparse(p, __rcu); \
512 ((typeof(*p) __force __kernel *)(local)); \
513 })
514 /**
515 * unrcu_pointer - mark a pointer as not being RCU protected
516 * @p: pointer needing to lose its __rcu property
517 *
518 * Converts @p from an __rcu pointer to a __kernel pointer.
519 * This allows an __rcu pointer to be used with xchg() and friends.
520 */
521 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
522
523 #define __rcu_access_pointer(p, local, space) \
524 ({ \
525 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
526 rcu_check_sparse(p, space); \
527 ((typeof(*p) __force __kernel *)(local)); \
528 })
529 #define __rcu_dereference_check(p, local, c, space) \
530 ({ \
531 /* Dependency order vs. p above. */ \
532 typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
533 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
534 rcu_check_sparse(p, space); \
535 ((typeof(*p) __force __kernel *)(local)); \
536 })
537 #define __rcu_dereference_protected(p, local, c, space) \
538 ({ \
539 RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
540 rcu_check_sparse(p, space); \
541 ((typeof(*p) __force __kernel *)(p)); \
542 })
543 #define __rcu_dereference_raw(p, local) \
544 ({ \
545 /* Dependency order vs. p above. */ \
546 typeof(p) local = READ_ONCE(p); \
547 ((typeof(*p) __force __kernel *)(local)); \
548 })
549 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
550
551 /**
552 * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
553 * @v: The value to statically initialize with.
554 */
555 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
556
557 /**
558 * rcu_assign_pointer() - assign to RCU-protected pointer
559 * @p: pointer to assign to
560 * @v: value to assign (publish)
561 *
562 * Assigns the specified value to the specified RCU-protected
563 * pointer, ensuring that any concurrent RCU readers will see
564 * any prior initialization.
565 *
566 * Inserts memory barriers on architectures that require them
567 * (which is most of them), and also prevents the compiler from
568 * reordering the code that initializes the structure after the pointer
569 * assignment. More importantly, this call documents which pointers
570 * will be dereferenced by RCU read-side code.
571 *
572 * In some special cases, you may use RCU_INIT_POINTER() instead
573 * of rcu_assign_pointer(). RCU_INIT_POINTER() is a bit faster due
574 * to the fact that it does not constrain either the CPU or the compiler.
575 * That said, using RCU_INIT_POINTER() when you should have used
576 * rcu_assign_pointer() is a very bad thing that results in
577 * impossible-to-diagnose memory corruption. So please be careful.
578 * See the RCU_INIT_POINTER() comment header for details.
579 *
580 * Note that rcu_assign_pointer() evaluates each of its arguments only
581 * once, appearances notwithstanding. One of the "extra" evaluations
582 * is in typeof() and the other visible only to sparse (__CHECKER__),
583 * neither of which actually execute the argument. As with most cpp
584 * macros, this execute-arguments-only-once property is important, so
585 * please be careful when making changes to rcu_assign_pointer() and the
586 * other macros that it invokes.
587 */
588 #define rcu_assign_pointer(p, v) \
589 do { \
590 uintptr_t _r_a_p__v = (uintptr_t)(v); \
591 rcu_check_sparse(p, __rcu); \
592 \
593 if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL) \
594 WRITE_ONCE((p), (typeof(p))(_r_a_p__v)); \
595 else \
596 smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
597 } while (0)
598
599 /**
600 * rcu_replace_pointer() - replace an RCU pointer, returning its old value
601 * @rcu_ptr: RCU pointer, whose old value is returned
602 * @ptr: regular pointer
603 * @c: the lockdep conditions under which the dereference will take place
604 *
605 * Perform a replacement, where @rcu_ptr is an RCU-annotated
606 * pointer and @c is the lockdep argument that is passed to the
607 * rcu_dereference_protected() call used to read that pointer. The old
608 * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
609 */
610 #define rcu_replace_pointer(rcu_ptr, ptr, c) \
611 ({ \
612 typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c)); \
613 rcu_assign_pointer((rcu_ptr), (ptr)); \
614 __tmp; \
615 })
616
617 /**
618 * rcu_access_pointer() - fetch RCU pointer with no dereferencing
619 * @p: The pointer to read
620 *
621 * Return the value of the specified RCU-protected pointer, but omit the
622 * lockdep checks for being in an RCU read-side critical section. This is
623 * useful when the value of this pointer is accessed, but the pointer is
624 * not dereferenced, for example, when testing an RCU-protected pointer
625 * against NULL. Although rcu_access_pointer() may also be used in cases
626 * where update-side locks prevent the value of the pointer from changing,
627 * you should instead use rcu_dereference_protected() for this use case.
628 * Within an RCU read-side critical section, there is little reason to
629 * use rcu_access_pointer().
630 *
631 * It is usually best to test the rcu_access_pointer() return value
632 * directly in order to avoid accidental dereferences being introduced
633 * by later inattentive changes. In other words, assigning the
634 * rcu_access_pointer() return value to a local variable results in an
635 * accident waiting to happen.
636 *
637 * It is also permissible to use rcu_access_pointer() when read-side
638 * access to the pointer was removed at least one grace period ago, as is
639 * the case in the context of the RCU callback that is freeing up the data,
640 * or after a synchronize_rcu() returns. This can be useful when tearing
641 * down multi-linked structures after a grace period has elapsed. However,
642 * rcu_dereference_protected() is normally preferred for this use case.
643 */
644 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
645
646 /**
647 * rcu_dereference_check() - rcu_dereference with debug checking
648 * @p: The pointer to read, prior to dereferencing
649 * @c: The conditions under which the dereference will take place
650 *
651 * Do an rcu_dereference(), but check that the conditions under which the
652 * dereference will take place are correct. Typically the conditions
653 * indicate the various locking conditions that should be held at that
654 * point. The check should return true if the conditions are satisfied.
655 * An implicit check for being in an RCU read-side critical section
656 * (rcu_read_lock()) is included.
657 *
658 * For example:
659 *
660 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
661 *
662 * could be used to indicate to lockdep that foo->bar may only be dereferenced
663 * if either rcu_read_lock() is held, or that the lock required to replace
664 * the bar struct at foo->bar is held.
665 *
666 * Note that the list of conditions may also include indications of when a lock
667 * need not be held, for example during initialisation or destruction of the
668 * target struct:
669 *
670 * bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
671 * atomic_read(&foo->usage) == 0);
672 *
673 * Inserts memory barriers on architectures that require them
674 * (currently only the Alpha), prevents the compiler from refetching
675 * (and from merging fetches), and, more importantly, documents exactly
676 * which pointers are protected by RCU and checks that the pointer is
677 * annotated as __rcu.
678 */
679 #define rcu_dereference_check(p, c) \
680 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
681 (c) || rcu_read_lock_held(), __rcu)
682
683 /**
684 * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
685 * @p: The pointer to read, prior to dereferencing
686 * @c: The conditions under which the dereference will take place
687 *
688 * This is the RCU-bh counterpart to rcu_dereference_check(). However,
689 * please note that starting in v5.0 kernels, vanilla RCU grace periods
690 * wait for local_bh_disable() regions of code in addition to regions of
691 * code demarked by rcu_read_lock() and rcu_read_unlock(). This means
692 * that synchronize_rcu(), call_rcu, and friends all take not only
693 * rcu_read_lock() but also rcu_read_lock_bh() into account.
694 */
695 #define rcu_dereference_bh_check(p, c) \
696 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
697 (c) || rcu_read_lock_bh_held(), __rcu)
698
699 /**
700 * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
701 * @p: The pointer to read, prior to dereferencing
702 * @c: The conditions under which the dereference will take place
703 *
704 * This is the RCU-sched counterpart to rcu_dereference_check().
705 * However, please note that starting in v5.0 kernels, vanilla RCU grace
706 * periods wait for preempt_disable() regions of code in addition to
707 * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
708 * This means that synchronize_rcu(), call_rcu, and friends all take not
709 * only rcu_read_lock() but also rcu_read_lock_sched() into account.
710 */
711 #define rcu_dereference_sched_check(p, c) \
712 __rcu_dereference_check((p), __UNIQUE_ID(rcu), \
713 (c) || rcu_read_lock_sched_held(), \
714 __rcu)
715
716 /*
717 * The tracing infrastructure traces RCU (we want that), but unfortunately
718 * some of the RCU checks causes tracing to lock up the system.
719 *
720 * The no-tracing version of rcu_dereference_raw() must not call
721 * rcu_read_lock_held().
722 */
723 #define rcu_dereference_raw_check(p) \
724 __rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
725
726 /**
727 * rcu_dereference_protected() - fetch RCU pointer when updates prevented
728 * @p: The pointer to read, prior to dereferencing
729 * @c: The conditions under which the dereference will take place
730 *
731 * Return the value of the specified RCU-protected pointer, but omit
732 * the READ_ONCE(). This is useful in cases where update-side locks
733 * prevent the value of the pointer from changing. Please note that this
734 * primitive does *not* prevent the compiler from repeating this reference
735 * or combining it with other references, so it should not be used without
736 * protection of appropriate locks.
737 *
738 * This function is only for update-side use. Using this function
739 * when protected only by rcu_read_lock() will result in infrequent
740 * but very ugly failures.
741 */
742 #define rcu_dereference_protected(p, c) \
743 __rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
744
745
746 /**
747 * rcu_dereference() - fetch RCU-protected pointer for dereferencing
748 * @p: The pointer to read, prior to dereferencing
749 *
750 * This is a simple wrapper around rcu_dereference_check().
751 */
752 #define rcu_dereference(p) rcu_dereference_check(p, 0)
753
754 /**
755 * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
756 * @p: The pointer to read, prior to dereferencing
757 *
758 * Makes rcu_dereference_check() do the dirty work.
759 */
760 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
761
762 /**
763 * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
764 * @p: The pointer to read, prior to dereferencing
765 *
766 * Makes rcu_dereference_check() do the dirty work.
767 */
768 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
769
770 /**
771 * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
772 * @p: The pointer to hand off
773 *
774 * This is simply an identity function, but it documents where a pointer
775 * is handed off from RCU to some other synchronization mechanism, for
776 * example, reference counting or locking. In C11, it would map to
777 * kill_dependency(). It could be used as follows::
778 *
779 * rcu_read_lock();
780 * p = rcu_dereference(gp);
781 * long_lived = is_long_lived(p);
782 * if (long_lived) {
783 * if (!atomic_inc_not_zero(p->refcnt))
784 * long_lived = false;
785 * else
786 * p = rcu_pointer_handoff(p);
787 * }
788 * rcu_read_unlock();
789 */
790 #define rcu_pointer_handoff(p) (p)
791
792 /**
793 * rcu_read_lock() - mark the beginning of an RCU read-side critical section
794 *
795 * When synchronize_rcu() is invoked on one CPU while other CPUs
796 * are within RCU read-side critical sections, then the
797 * synchronize_rcu() is guaranteed to block until after all the other
798 * CPUs exit their critical sections. Similarly, if call_rcu() is invoked
799 * on one CPU while other CPUs are within RCU read-side critical
800 * sections, invocation of the corresponding RCU callback is deferred
801 * until after the all the other CPUs exit their critical sections.
802 *
803 * Both synchronize_rcu() and call_rcu() also wait for regions of code
804 * with preemption disabled, including regions of code with interrupts or
805 * softirqs disabled.
806 *
807 * Note, however, that RCU callbacks are permitted to run concurrently
808 * with new RCU read-side critical sections. One way that this can happen
809 * is via the following sequence of events: (1) CPU 0 enters an RCU
810 * read-side critical section, (2) CPU 1 invokes call_rcu() to register
811 * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
812 * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
813 * callback is invoked. This is legal, because the RCU read-side critical
814 * section that was running concurrently with the call_rcu() (and which
815 * therefore might be referencing something that the corresponding RCU
816 * callback would free up) has completed before the corresponding
817 * RCU callback is invoked.
818 *
819 * RCU read-side critical sections may be nested. Any deferred actions
820 * will be deferred until the outermost RCU read-side critical section
821 * completes.
822 *
823 * You can avoid reading and understanding the next paragraph by
824 * following this rule: don't put anything in an rcu_read_lock() RCU
825 * read-side critical section that would block in a !PREEMPTION kernel.
826 * But if you want the full story, read on!
827 *
828 * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
829 * it is illegal to block while in an RCU read-side critical section.
830 * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
831 * kernel builds, RCU read-side critical sections may be preempted,
832 * but explicit blocking is illegal. Finally, in preemptible RCU
833 * implementations in real-time (with -rt patchset) kernel builds, RCU
834 * read-side critical sections may be preempted and they may also block, but
835 * only when acquiring spinlocks that are subject to priority inheritance.
836 */
rcu_read_lock(void)837 static __always_inline void rcu_read_lock(void)
838 {
839 __rcu_read_lock();
840 __acquire(RCU);
841 rcu_lock_acquire(&rcu_lock_map);
842 RCU_LOCKDEP_WARN(!rcu_is_watching(),
843 "rcu_read_lock() used illegally while idle");
844 }
845
846 /*
847 * So where is rcu_write_lock()? It does not exist, as there is no
848 * way for writers to lock out RCU readers. This is a feature, not
849 * a bug -- this property is what provides RCU's performance benefits.
850 * Of course, writers must coordinate with each other. The normal
851 * spinlock primitives work well for this, but any other technique may be
852 * used as well. RCU does not care how the writers keep out of each
853 * others' way, as long as they do so.
854 */
855
856 /**
857 * rcu_read_unlock() - marks the end of an RCU read-side critical section.
858 *
859 * In almost all situations, rcu_read_unlock() is immune from deadlock.
860 * This deadlock immunity also extends to the scheduler's runqueue
861 * and priority-inheritance spinlocks, courtesy of the quiescent-state
862 * deferral that is carried out when rcu_read_unlock() is invoked with
863 * interrupts disabled.
864 *
865 * See rcu_read_lock() for more information.
866 */
rcu_read_unlock(void)867 static inline void rcu_read_unlock(void)
868 {
869 RCU_LOCKDEP_WARN(!rcu_is_watching(),
870 "rcu_read_unlock() used illegally while idle");
871 rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
872 __release(RCU);
873 __rcu_read_unlock();
874 }
875
876 /**
877 * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
878 *
879 * This is equivalent to rcu_read_lock(), but also disables softirqs.
880 * Note that anything else that disables softirqs can also serve as an RCU
881 * read-side critical section. However, please note that this equivalence
882 * applies only to v5.0 and later. Before v5.0, rcu_read_lock() and
883 * rcu_read_lock_bh() were unrelated.
884 *
885 * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
886 * must occur in the same context, for example, it is illegal to invoke
887 * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
888 * was invoked from some other task.
889 */
rcu_read_lock_bh(void)890 static inline void rcu_read_lock_bh(void)
891 {
892 local_bh_disable();
893 __acquire(RCU_BH);
894 rcu_lock_acquire(&rcu_bh_lock_map);
895 RCU_LOCKDEP_WARN(!rcu_is_watching(),
896 "rcu_read_lock_bh() used illegally while idle");
897 }
898
899 /**
900 * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
901 *
902 * See rcu_read_lock_bh() for more information.
903 */
rcu_read_unlock_bh(void)904 static inline void rcu_read_unlock_bh(void)
905 {
906 RCU_LOCKDEP_WARN(!rcu_is_watching(),
907 "rcu_read_unlock_bh() used illegally while idle");
908 rcu_lock_release(&rcu_bh_lock_map);
909 __release(RCU_BH);
910 local_bh_enable();
911 }
912
913 /**
914 * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
915 *
916 * This is equivalent to rcu_read_lock(), but also disables preemption.
917 * Read-side critical sections can also be introduced by anything else that
918 * disables preemption, including local_irq_disable() and friends. However,
919 * please note that the equivalence to rcu_read_lock() applies only to
920 * v5.0 and later. Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
921 * were unrelated.
922 *
923 * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
924 * must occur in the same context, for example, it is illegal to invoke
925 * rcu_read_unlock_sched() from process context if the matching
926 * rcu_read_lock_sched() was invoked from an NMI handler.
927 */
rcu_read_lock_sched(void)928 static inline void rcu_read_lock_sched(void)
929 {
930 preempt_disable();
931 __acquire(RCU_SCHED);
932 rcu_lock_acquire(&rcu_sched_lock_map);
933 RCU_LOCKDEP_WARN(!rcu_is_watching(),
934 "rcu_read_lock_sched() used illegally while idle");
935 }
936
937 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)938 static inline notrace void rcu_read_lock_sched_notrace(void)
939 {
940 preempt_disable_notrace();
941 __acquire(RCU_SCHED);
942 }
943
944 /**
945 * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
946 *
947 * See rcu_read_lock_sched() for more information.
948 */
rcu_read_unlock_sched(void)949 static inline void rcu_read_unlock_sched(void)
950 {
951 RCU_LOCKDEP_WARN(!rcu_is_watching(),
952 "rcu_read_unlock_sched() used illegally while idle");
953 rcu_lock_release(&rcu_sched_lock_map);
954 __release(RCU_SCHED);
955 preempt_enable();
956 }
957
958 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)959 static inline notrace void rcu_read_unlock_sched_notrace(void)
960 {
961 __release(RCU_SCHED);
962 preempt_enable_notrace();
963 }
964
965 /**
966 * RCU_INIT_POINTER() - initialize an RCU protected pointer
967 * @p: The pointer to be initialized.
968 * @v: The value to initialized the pointer to.
969 *
970 * Initialize an RCU-protected pointer in special cases where readers
971 * do not need ordering constraints on the CPU or the compiler. These
972 * special cases are:
973 *
974 * 1. This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
975 * 2. The caller has taken whatever steps are required to prevent
976 * RCU readers from concurrently accessing this pointer *or*
977 * 3. The referenced data structure has already been exposed to
978 * readers either at compile time or via rcu_assign_pointer() *and*
979 *
980 * a. You have not made *any* reader-visible changes to
981 * this structure since then *or*
982 * b. It is OK for readers accessing this structure from its
983 * new location to see the old state of the structure. (For
984 * example, the changes were to statistical counters or to
985 * other state where exact synchronization is not required.)
986 *
987 * Failure to follow these rules governing use of RCU_INIT_POINTER() will
988 * result in impossible-to-diagnose memory corruption. As in the structures
989 * will look OK in crash dumps, but any concurrent RCU readers might
990 * see pre-initialized values of the referenced data structure. So
991 * please be very careful how you use RCU_INIT_POINTER()!!!
992 *
993 * If you are creating an RCU-protected linked structure that is accessed
994 * by a single external-to-structure RCU-protected pointer, then you may
995 * use RCU_INIT_POINTER() to initialize the internal RCU-protected
996 * pointers, but you must use rcu_assign_pointer() to initialize the
997 * external-to-structure pointer *after* you have completely initialized
998 * the reader-accessible portions of the linked structure.
999 *
1000 * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1001 * ordering guarantees for either the CPU or the compiler.
1002 */
1003 #define RCU_INIT_POINTER(p, v) \
1004 do { \
1005 rcu_check_sparse(p, __rcu); \
1006 WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1007 } while (0)
1008
1009 /**
1010 * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1011 * @p: The pointer to be initialized.
1012 * @v: The value to initialized the pointer to.
1013 *
1014 * GCC-style initialization for an RCU-protected pointer in a structure field.
1015 */
1016 #define RCU_POINTER_INITIALIZER(p, v) \
1017 .p = RCU_INITIALIZER(v)
1018
1019 /**
1020 * kfree_rcu() - kfree an object after a grace period.
1021 * @ptr: pointer to kfree for double-argument invocations.
1022 * @rhf: the name of the struct rcu_head within the type of @ptr.
1023 *
1024 * Many rcu callbacks functions just call kfree() on the base structure.
1025 * These functions are trivial, but their size adds up, and furthermore
1026 * when they are used in a kernel module, that module must invoke the
1027 * high-latency rcu_barrier() function at module-unload time.
1028 *
1029 * The kfree_rcu() function handles this issue. In order to have a universal
1030 * callback function handling different offsets of rcu_head, the callback needs
1031 * to determine the starting address of the freed object, which can be a large
1032 * kmalloc or vmalloc allocation. To allow simply aligning the pointer down to
1033 * page boundary for those, only offsets up to 4095 bytes can be accommodated.
1034 * If the offset is larger than 4095 bytes, a compile-time error will
1035 * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
1036 * either fall back to use of call_rcu() or rearrange the structure to
1037 * position the rcu_head structure into the first 4096 bytes.
1038 *
1039 * The object to be freed can be allocated either by kmalloc() or
1040 * kmem_cache_alloc().
1041 *
1042 * Note that the allowable offset might decrease in the future.
1043 *
1044 * The BUILD_BUG_ON check must not involve any function calls, hence the
1045 * checks are done in macros here.
1046 */
1047 #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
1048 #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
1049
1050 /**
1051 * kfree_rcu_mightsleep() - kfree an object after a grace period.
1052 * @ptr: pointer to kfree for single-argument invocations.
1053 *
1054 * When it comes to head-less variant, only one argument
1055 * is passed and that is just a pointer which has to be
1056 * freed after a grace period. Therefore the semantic is
1057 *
1058 * kfree_rcu_mightsleep(ptr);
1059 *
1060 * where @ptr is the pointer to be freed by kvfree().
1061 *
1062 * Please note, head-less way of freeing is permitted to
1063 * use from a context that has to follow might_sleep()
1064 * annotation. Otherwise, please switch and embed the
1065 * rcu_head structure within the type of @ptr.
1066 */
1067 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1068 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1069
1070 /*
1071 * In mm/slab_common.c, no suitable header to include here.
1072 */
1073 void kvfree_call_rcu(struct rcu_head *head, void *ptr);
1074
1075 /*
1076 * The BUILD_BUG_ON() makes sure the rcu_head offset can be handled. See the
1077 * comment of kfree_rcu() for details.
1078 */
1079 #define kvfree_rcu_arg_2(ptr, rhf) \
1080 do { \
1081 typeof (ptr) ___p = (ptr); \
1082 \
1083 if (___p) { \
1084 BUILD_BUG_ON(offsetof(typeof(*(ptr)), rhf) >= 4096); \
1085 kvfree_call_rcu(&((___p)->rhf), (void *) (___p)); \
1086 } \
1087 } while (0)
1088
1089 #define kvfree_rcu_arg_1(ptr) \
1090 do { \
1091 typeof(ptr) ___p = (ptr); \
1092 \
1093 if (___p) \
1094 kvfree_call_rcu(NULL, (void *) (___p)); \
1095 } while (0)
1096
1097 /*
1098 * Place this after a lock-acquisition primitive to guarantee that
1099 * an UNLOCK+LOCK pair acts as a full barrier. This guarantee applies
1100 * if the UNLOCK and LOCK are executed by the same CPU or if the
1101 * UNLOCK and LOCK operate on the same lock variable.
1102 */
1103 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1104 #define smp_mb__after_unlock_lock() smp_mb() /* Full ordering for lock. */
1105 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1106 #define smp_mb__after_unlock_lock() do { } while (0)
1107 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1108
1109
1110 /* Has the specified rcu_head structure been handed to call_rcu()? */
1111
1112 /**
1113 * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1114 * @rhp: The rcu_head structure to initialize.
1115 *
1116 * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1117 * given rcu_head structure has already been passed to call_rcu(), then
1118 * you must also invoke this rcu_head_init() function on it just after
1119 * allocating that structure. Calls to this function must not race with
1120 * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1121 */
rcu_head_init(struct rcu_head * rhp)1122 static inline void rcu_head_init(struct rcu_head *rhp)
1123 {
1124 rhp->func = (rcu_callback_t)~0L;
1125 }
1126
1127 /**
1128 * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1129 * @rhp: The rcu_head structure to test.
1130 * @f: The function passed to call_rcu() along with @rhp.
1131 *
1132 * Returns @true if the @rhp has been passed to call_rcu() with @func,
1133 * and @false otherwise. Emits a warning in any other case, including
1134 * the case where @rhp has already been invoked after a grace period.
1135 * Calls to this function must not race with callback invocation. One way
1136 * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1137 * in an RCU read-side critical section that includes a read-side fetch
1138 * of the pointer to the structure containing @rhp.
1139 */
1140 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1141 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1142 {
1143 rcu_callback_t func = READ_ONCE(rhp->func);
1144
1145 if (func == f)
1146 return true;
1147 WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1148 return false;
1149 }
1150
1151 /* kernel/ksysfs.c definitions */
1152 extern int rcu_expedited;
1153 extern int rcu_normal;
1154
1155 DEFINE_LOCK_GUARD_0(rcu,
1156 do {
1157 rcu_read_lock();
1158 /*
1159 * sparse doesn't call the cleanup function,
1160 * so just release immediately and don't track
1161 * the context. We don't need to anyway, since
1162 * the whole point of the guard is to not need
1163 * the explicit unlock.
1164 */
1165 __release(RCU);
1166 } while (0),
1167 rcu_read_unlock())
1168
1169 #endif /* __LINUX_RCUPDATE_H */
1170