1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3  * Read-Copy Update mechanism for mutual exclusion
4  *
5  * Copyright IBM Corporation, 2001
6  *
7  * Author: Dipankar Sarma <dipankar@in.ibm.com>
8  *
9  * Based on the original work by Paul McKenney <paulmck@vnet.ibm.com>
10  * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
11  * Papers:
12  * http://www.rdrop.com/users/paulmck/paper/rclockpdcsproof.pdf
13  * http://lse.sourceforge.net/locking/rclock_OLS.2001.05.01c.sc.pdf (OLS2001)
14  *
15  * For detailed explanation of Read-Copy Update mechanism see -
16  *		http://lse.sourceforge.net/locking/rcupdate.html
17  *
18  */
19 
20 #ifndef __LINUX_RCUPDATE_H
21 #define __LINUX_RCUPDATE_H
22 
23 #include <linux/types.h>
24 #include <linux/compiler.h>
25 #include <linux/atomic.h>
26 #include <linux/irqflags.h>
27 #include <linux/preempt.h>
28 #include <linux/bottom_half.h>
29 #include <linux/lockdep.h>
30 #include <linux/cleanup.h>
31 #include <asm/processor.h>
32 #include <linux/context_tracking_irq.h>
33 
34 #define ULONG_CMP_GE(a, b)	(ULONG_MAX / 2 >= (a) - (b))
35 #define ULONG_CMP_LT(a, b)	(ULONG_MAX / 2 < (a) - (b))
36 
37 #define RCU_SEQ_CTR_SHIFT    2
38 #define RCU_SEQ_STATE_MASK   ((1 << RCU_SEQ_CTR_SHIFT) - 1)
39 
40 /* Exported common interfaces */
41 void call_rcu(struct rcu_head *head, rcu_callback_t func);
42 void rcu_barrier_tasks(void);
43 void synchronize_rcu(void);
44 
45 struct rcu_gp_oldstate;
46 unsigned long get_completed_synchronize_rcu(void);
47 void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
48 
49 // Maximum number of unsigned long values corresponding to
50 // not-yet-completed RCU grace periods.
51 #define NUM_ACTIVE_RCU_POLL_OLDSTATE 2
52 
53 /**
54  * same_state_synchronize_rcu - Are two old-state values identical?
55  * @oldstate1: First old-state value.
56  * @oldstate2: Second old-state value.
57  *
58  * The two old-state values must have been obtained from either
59  * get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or
60  * get_completed_synchronize_rcu().  Returns @true if the two values are
61  * identical and @false otherwise.  This allows structures whose lifetimes
62  * are tracked by old-state values to push these values to a list header,
63  * allowing those structures to be slightly smaller.
64  */
same_state_synchronize_rcu(unsigned long oldstate1,unsigned long oldstate2)65 static inline bool same_state_synchronize_rcu(unsigned long oldstate1, unsigned long oldstate2)
66 {
67 	return oldstate1 == oldstate2;
68 }
69 
70 #ifdef CONFIG_PREEMPT_RCU
71 
72 void __rcu_read_lock(void);
73 void __rcu_read_unlock(void);
74 
75 /*
76  * Defined as a macro as it is a very low level header included from
77  * areas that don't even know about current.  This gives the rcu_read_lock()
78  * nesting depth, but makes sense only if CONFIG_PREEMPT_RCU -- in other
79  * types of kernel builds, the rcu_read_lock() nesting depth is unknowable.
80  */
81 #define rcu_preempt_depth() READ_ONCE(current->rcu_read_lock_nesting)
82 
83 #else /* #ifdef CONFIG_PREEMPT_RCU */
84 
85 #ifdef CONFIG_TINY_RCU
86 #define rcu_read_unlock_strict() do { } while (0)
87 #else
88 void rcu_read_unlock_strict(void);
89 #endif
90 
__rcu_read_lock(void)91 static inline void __rcu_read_lock(void)
92 {
93 	preempt_disable();
94 }
95 
__rcu_read_unlock(void)96 static inline void __rcu_read_unlock(void)
97 {
98 	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
99 		rcu_read_unlock_strict();
100 	preempt_enable();
101 }
102 
rcu_preempt_depth(void)103 static inline int rcu_preempt_depth(void)
104 {
105 	return 0;
106 }
107 
108 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
109 
110 #ifdef CONFIG_RCU_LAZY
111 void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
112 #else
call_rcu_hurry(struct rcu_head * head,rcu_callback_t func)113 static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
114 {
115 	call_rcu(head, func);
116 }
117 #endif
118 
119 /* Internal to kernel */
120 void rcu_init(void);
121 extern int rcu_scheduler_active;
122 void rcu_sched_clock_irq(int user);
123 
124 #ifdef CONFIG_RCU_STALL_COMMON
125 void rcu_sysrq_start(void);
126 void rcu_sysrq_end(void);
127 #else /* #ifdef CONFIG_RCU_STALL_COMMON */
rcu_sysrq_start(void)128 static inline void rcu_sysrq_start(void) { }
rcu_sysrq_end(void)129 static inline void rcu_sysrq_end(void) { }
130 #endif /* #else #ifdef CONFIG_RCU_STALL_COMMON */
131 
132 #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
133 void rcu_irq_work_resched(void);
134 #else
rcu_irq_work_resched(void)135 static __always_inline void rcu_irq_work_resched(void) { }
136 #endif
137 
138 #ifdef CONFIG_RCU_NOCB_CPU
139 void rcu_init_nohz(void);
140 int rcu_nocb_cpu_offload(int cpu);
141 int rcu_nocb_cpu_deoffload(int cpu);
142 void rcu_nocb_flush_deferred_wakeup(void);
143 
144 #define RCU_NOCB_LOCKDEP_WARN(c, s) RCU_LOCKDEP_WARN(c, s)
145 
146 #else /* #ifdef CONFIG_RCU_NOCB_CPU */
147 
rcu_init_nohz(void)148 static inline void rcu_init_nohz(void) { }
rcu_nocb_cpu_offload(int cpu)149 static inline int rcu_nocb_cpu_offload(int cpu) { return -EINVAL; }
rcu_nocb_cpu_deoffload(int cpu)150 static inline int rcu_nocb_cpu_deoffload(int cpu) { return 0; }
rcu_nocb_flush_deferred_wakeup(void)151 static inline void rcu_nocb_flush_deferred_wakeup(void) { }
152 
153 #define RCU_NOCB_LOCKDEP_WARN(c, s)
154 
155 #endif /* #else #ifdef CONFIG_RCU_NOCB_CPU */
156 
157 /*
158  * Note a quasi-voluntary context switch for RCU-tasks's benefit.
159  * This is a macro rather than an inline function to avoid #include hell.
160  */
161 #ifdef CONFIG_TASKS_RCU_GENERIC
162 
163 # ifdef CONFIG_TASKS_RCU
164 # define rcu_tasks_classic_qs(t, preempt)				\
165 	do {								\
166 		if (!(preempt) && READ_ONCE((t)->rcu_tasks_holdout))	\
167 			WRITE_ONCE((t)->rcu_tasks_holdout, false);	\
168 	} while (0)
169 void call_rcu_tasks(struct rcu_head *head, rcu_callback_t func);
170 void synchronize_rcu_tasks(void);
171 void rcu_tasks_torture_stats_print(char *tt, char *tf);
172 # else
173 # define rcu_tasks_classic_qs(t, preempt) do { } while (0)
174 # define call_rcu_tasks call_rcu
175 # define synchronize_rcu_tasks synchronize_rcu
176 # endif
177 
178 # ifdef CONFIG_TASKS_TRACE_RCU
179 // Bits for ->trc_reader_special.b.need_qs field.
180 #define TRC_NEED_QS		0x1  // Task needs a quiescent state.
181 #define TRC_NEED_QS_CHECKED	0x2  // Task has been checked for needing quiescent state.
182 
183 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new);
184 void rcu_tasks_trace_qs_blkd(struct task_struct *t);
185 
186 # define rcu_tasks_trace_qs(t)							\
187 	do {									\
188 		int ___rttq_nesting = READ_ONCE((t)->trc_reader_nesting);	\
189 										\
190 		if (unlikely(READ_ONCE((t)->trc_reader_special.b.need_qs) == TRC_NEED_QS) &&	\
191 		    likely(!___rttq_nesting)) {					\
192 			rcu_trc_cmpxchg_need_qs((t), TRC_NEED_QS, TRC_NEED_QS_CHECKED);	\
193 		} else if (___rttq_nesting && ___rttq_nesting != INT_MIN &&	\
194 			   !READ_ONCE((t)->trc_reader_special.b.blocked)) {	\
195 			rcu_tasks_trace_qs_blkd(t);				\
196 		}								\
197 	} while (0)
198 void rcu_tasks_trace_torture_stats_print(char *tt, char *tf);
199 # else
200 # define rcu_tasks_trace_qs(t) do { } while (0)
201 # endif
202 
203 #define rcu_tasks_qs(t, preempt)					\
204 do {									\
205 	rcu_tasks_classic_qs((t), (preempt));				\
206 	rcu_tasks_trace_qs(t);						\
207 } while (0)
208 
209 # ifdef CONFIG_TASKS_RUDE_RCU
210 void synchronize_rcu_tasks_rude(void);
211 void rcu_tasks_rude_torture_stats_print(char *tt, char *tf);
212 # endif
213 
214 #define rcu_note_voluntary_context_switch(t) rcu_tasks_qs(t, false)
215 void exit_tasks_rcu_start(void);
216 void exit_tasks_rcu_finish(void);
217 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
218 #define rcu_tasks_classic_qs(t, preempt) do { } while (0)
219 #define rcu_tasks_qs(t, preempt) do { } while (0)
220 #define rcu_note_voluntary_context_switch(t) do { } while (0)
221 #define call_rcu_tasks call_rcu
222 #define synchronize_rcu_tasks synchronize_rcu
exit_tasks_rcu_start(void)223 static inline void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)224 static inline void exit_tasks_rcu_finish(void) { }
225 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
226 
227 /**
228  * rcu_trace_implies_rcu_gp - does an RCU Tasks Trace grace period imply an RCU grace period?
229  *
230  * As an accident of implementation, an RCU Tasks Trace grace period also
231  * acts as an RCU grace period.  However, this could change at any time.
232  * Code relying on this accident must call this function to verify that
233  * this accident is still happening.
234  *
235  * You have been warned!
236  */
rcu_trace_implies_rcu_gp(void)237 static inline bool rcu_trace_implies_rcu_gp(void) { return true; }
238 
239 /**
240  * cond_resched_tasks_rcu_qs - Report potential quiescent states to RCU
241  *
242  * This macro resembles cond_resched(), except that it is defined to
243  * report potential quiescent states to RCU-tasks even if the cond_resched()
244  * machinery were to be shut off, as some advocate for PREEMPTION kernels.
245  */
246 #define cond_resched_tasks_rcu_qs() \
247 do { \
248 	rcu_tasks_qs(current, false); \
249 	cond_resched(); \
250 } while (0)
251 
252 /**
253  * rcu_softirq_qs_periodic - Report RCU and RCU-Tasks quiescent states
254  * @old_ts: jiffies at start of processing.
255  *
256  * This helper is for long-running softirq handlers, such as NAPI threads in
257  * networking. The caller should initialize the variable passed in as @old_ts
258  * at the beginning of the softirq handler. When invoked frequently, this macro
259  * will invoke rcu_softirq_qs() every 100 milliseconds thereafter, which will
260  * provide both RCU and RCU-Tasks quiescent states. Note that this macro
261  * modifies its old_ts argument.
262  *
263  * Because regions of code that have disabled softirq act as RCU read-side
264  * critical sections, this macro should be invoked with softirq (and
265  * preemption) enabled.
266  *
267  * The macro is not needed when CONFIG_PREEMPT_RT is defined. RT kernels would
268  * have more chance to invoke schedule() calls and provide necessary quiescent
269  * states. As a contrast, calling cond_resched() only won't achieve the same
270  * effect because cond_resched() does not provide RCU-Tasks quiescent states.
271  */
272 #define rcu_softirq_qs_periodic(old_ts) \
273 do { \
274 	if (!IS_ENABLED(CONFIG_PREEMPT_RT) && \
275 	    time_after(jiffies, (old_ts) + HZ / 10)) { \
276 		preempt_disable(); \
277 		rcu_softirq_qs(); \
278 		preempt_enable(); \
279 		(old_ts) = jiffies; \
280 	} \
281 } while (0)
282 
283 /*
284  * Infrastructure to implement the synchronize_() primitives in
285  * TREE_RCU and rcu_barrier_() primitives in TINY_RCU.
286  */
287 
288 #if defined(CONFIG_TREE_RCU)
289 #include <linux/rcutree.h>
290 #elif defined(CONFIG_TINY_RCU)
291 #include <linux/rcutiny.h>
292 #else
293 #error "Unknown RCU implementation specified to kernel configuration"
294 #endif
295 
296 /*
297  * The init_rcu_head_on_stack() and destroy_rcu_head_on_stack() calls
298  * are needed for dynamic initialization and destruction of rcu_head
299  * on the stack, and init_rcu_head()/destroy_rcu_head() are needed for
300  * dynamic initialization and destruction of statically allocated rcu_head
301  * structures.  However, rcu_head structures allocated dynamically in the
302  * heap don't need any initialization.
303  */
304 #ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
305 void init_rcu_head(struct rcu_head *head);
306 void destroy_rcu_head(struct rcu_head *head);
307 void init_rcu_head_on_stack(struct rcu_head *head);
308 void destroy_rcu_head_on_stack(struct rcu_head *head);
309 #else /* !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
init_rcu_head(struct rcu_head * head)310 static inline void init_rcu_head(struct rcu_head *head) { }
destroy_rcu_head(struct rcu_head * head)311 static inline void destroy_rcu_head(struct rcu_head *head) { }
init_rcu_head_on_stack(struct rcu_head * head)312 static inline void init_rcu_head_on_stack(struct rcu_head *head) { }
destroy_rcu_head_on_stack(struct rcu_head * head)313 static inline void destroy_rcu_head_on_stack(struct rcu_head *head) { }
314 #endif	/* #else !CONFIG_DEBUG_OBJECTS_RCU_HEAD */
315 
316 #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU)
317 bool rcu_lockdep_current_cpu_online(void);
318 #else /* #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
rcu_lockdep_current_cpu_online(void)319 static inline bool rcu_lockdep_current_cpu_online(void) { return true; }
320 #endif /* #else #if defined(CONFIG_HOTPLUG_CPU) && defined(CONFIG_PROVE_RCU) */
321 
322 extern struct lockdep_map rcu_lock_map;
323 extern struct lockdep_map rcu_bh_lock_map;
324 extern struct lockdep_map rcu_sched_lock_map;
325 extern struct lockdep_map rcu_callback_map;
326 
327 #ifdef CONFIG_DEBUG_LOCK_ALLOC
328 
rcu_lock_acquire(struct lockdep_map * map)329 static inline void rcu_lock_acquire(struct lockdep_map *map)
330 {
331 	lock_acquire(map, 0, 0, 2, 0, NULL, _THIS_IP_);
332 }
333 
rcu_try_lock_acquire(struct lockdep_map * map)334 static inline void rcu_try_lock_acquire(struct lockdep_map *map)
335 {
336 	lock_acquire(map, 0, 1, 2, 0, NULL, _THIS_IP_);
337 }
338 
rcu_lock_release(struct lockdep_map * map)339 static inline void rcu_lock_release(struct lockdep_map *map)
340 {
341 	lock_release(map, _THIS_IP_);
342 }
343 
344 int debug_lockdep_rcu_enabled(void);
345 int rcu_read_lock_held(void);
346 int rcu_read_lock_bh_held(void);
347 int rcu_read_lock_sched_held(void);
348 int rcu_read_lock_any_held(void);
349 
350 #else /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
351 
352 # define rcu_lock_acquire(a)		do { } while (0)
353 # define rcu_try_lock_acquire(a)	do { } while (0)
354 # define rcu_lock_release(a)		do { } while (0)
355 
rcu_read_lock_held(void)356 static inline int rcu_read_lock_held(void)
357 {
358 	return 1;
359 }
360 
rcu_read_lock_bh_held(void)361 static inline int rcu_read_lock_bh_held(void)
362 {
363 	return 1;
364 }
365 
rcu_read_lock_sched_held(void)366 static inline int rcu_read_lock_sched_held(void)
367 {
368 	return !preemptible();
369 }
370 
rcu_read_lock_any_held(void)371 static inline int rcu_read_lock_any_held(void)
372 {
373 	return !preemptible();
374 }
375 
debug_lockdep_rcu_enabled(void)376 static inline int debug_lockdep_rcu_enabled(void)
377 {
378 	return 0;
379 }
380 
381 #endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
382 
383 #ifdef CONFIG_PROVE_RCU
384 
385 /**
386  * RCU_LOCKDEP_WARN - emit lockdep splat if specified condition is met
387  * @c: condition to check
388  * @s: informative message
389  *
390  * This checks debug_lockdep_rcu_enabled() before checking (c) to
391  * prevent early boot splats due to lockdep not yet being initialized,
392  * and rechecks it after checking (c) to prevent false-positive splats
393  * due to races with lockdep being disabled.  See commit 3066820034b5dd
394  * ("rcu: Reject RCU_LOCKDEP_WARN() false positives") for more detail.
395  */
396 #define RCU_LOCKDEP_WARN(c, s)						\
397 	do {								\
398 		static bool __section(".data..unlikely") __warned;	\
399 		if (debug_lockdep_rcu_enabled() && (c) &&		\
400 		    debug_lockdep_rcu_enabled() && !__warned) {		\
401 			__warned = true;				\
402 			lockdep_rcu_suspicious(__FILE__, __LINE__, s);	\
403 		}							\
404 	} while (0)
405 
406 #ifndef CONFIG_PREEMPT_RCU
rcu_preempt_sleep_check(void)407 static inline void rcu_preempt_sleep_check(void)
408 {
409 	RCU_LOCKDEP_WARN(lock_is_held(&rcu_lock_map),
410 			 "Illegal context switch in RCU read-side critical section");
411 }
412 #else // #ifndef CONFIG_PREEMPT_RCU
rcu_preempt_sleep_check(void)413 static inline void rcu_preempt_sleep_check(void) { }
414 #endif // #else // #ifndef CONFIG_PREEMPT_RCU
415 
416 #define rcu_sleep_check()						\
417 	do {								\
418 		rcu_preempt_sleep_check();				\
419 		if (!IS_ENABLED(CONFIG_PREEMPT_RT))			\
420 		    RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map),	\
421 				 "Illegal context switch in RCU-bh read-side critical section"); \
422 		RCU_LOCKDEP_WARN(lock_is_held(&rcu_sched_lock_map),	\
423 				 "Illegal context switch in RCU-sched read-side critical section"); \
424 	} while (0)
425 
426 // See RCU_LOCKDEP_WARN() for an explanation of the double call to
427 // debug_lockdep_rcu_enabled().
lockdep_assert_rcu_helper(bool c)428 static inline bool lockdep_assert_rcu_helper(bool c)
429 {
430 	return debug_lockdep_rcu_enabled() &&
431 	       (c || !rcu_is_watching() || !rcu_lockdep_current_cpu_online()) &&
432 	       debug_lockdep_rcu_enabled();
433 }
434 
435 /**
436  * lockdep_assert_in_rcu_read_lock - WARN if not protected by rcu_read_lock()
437  *
438  * Splats if lockdep is enabled and there is no rcu_read_lock() in effect.
439  */
440 #define lockdep_assert_in_rcu_read_lock() \
441 	WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map)))
442 
443 /**
444  * lockdep_assert_in_rcu_read_lock_bh - WARN if not protected by rcu_read_lock_bh()
445  *
446  * Splats if lockdep is enabled and there is no rcu_read_lock_bh() in effect.
447  * Note that local_bh_disable() and friends do not suffice here, instead an
448  * actual rcu_read_lock_bh() is required.
449  */
450 #define lockdep_assert_in_rcu_read_lock_bh() \
451 	WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_bh_lock_map)))
452 
453 /**
454  * lockdep_assert_in_rcu_read_lock_sched - WARN if not protected by rcu_read_lock_sched()
455  *
456  * Splats if lockdep is enabled and there is no rcu_read_lock_sched()
457  * in effect.  Note that preempt_disable() and friends do not suffice here,
458  * instead an actual rcu_read_lock_sched() is required.
459  */
460 #define lockdep_assert_in_rcu_read_lock_sched() \
461 	WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_sched_lock_map)))
462 
463 /**
464  * lockdep_assert_in_rcu_reader - WARN if not within some type of RCU reader
465  *
466  * Splats if lockdep is enabled and there is no RCU reader of any
467  * type in effect.  Note that regions of code protected by things like
468  * preempt_disable, local_bh_disable(), and local_irq_disable() all qualify
469  * as RCU readers.
470  *
471  * Note that this will never trigger in PREEMPT_NONE or PREEMPT_VOLUNTARY
472  * kernels that are not also built with PREEMPT_COUNT.  But if you have
473  * lockdep enabled, you might as well also enable PREEMPT_COUNT.
474  */
475 #define lockdep_assert_in_rcu_reader()								\
476 	WARN_ON_ONCE(lockdep_assert_rcu_helper(!lock_is_held(&rcu_lock_map) &&			\
477 					       !lock_is_held(&rcu_bh_lock_map) &&		\
478 					       !lock_is_held(&rcu_sched_lock_map) &&		\
479 					       preemptible()))
480 
481 #else /* #ifdef CONFIG_PROVE_RCU */
482 
483 #define RCU_LOCKDEP_WARN(c, s) do { } while (0 && (c))
484 #define rcu_sleep_check() do { } while (0)
485 
486 #define lockdep_assert_in_rcu_read_lock() do { } while (0)
487 #define lockdep_assert_in_rcu_read_lock_bh() do { } while (0)
488 #define lockdep_assert_in_rcu_read_lock_sched() do { } while (0)
489 #define lockdep_assert_in_rcu_reader() do { } while (0)
490 
491 #endif /* #else #ifdef CONFIG_PROVE_RCU */
492 
493 /*
494  * Helper functions for rcu_dereference_check(), rcu_dereference_protected()
495  * and rcu_assign_pointer().  Some of these could be folded into their
496  * callers, but they are left separate in order to ease introduction of
497  * multiple pointers markings to match different RCU implementations
498  * (e.g., __srcu), should this make sense in the future.
499  */
500 
501 #ifdef __CHECKER__
502 #define rcu_check_sparse(p, space) \
503 	((void)(((typeof(*p) space *)p) == p))
504 #else /* #ifdef __CHECKER__ */
505 #define rcu_check_sparse(p, space)
506 #endif /* #else #ifdef __CHECKER__ */
507 
508 #define __unrcu_pointer(p, local)					\
509 ({									\
510 	typeof(*p) *local = (typeof(*p) *__force)(p);			\
511 	rcu_check_sparse(p, __rcu);					\
512 	((typeof(*p) __force __kernel *)(local)); 			\
513 })
514 /**
515  * unrcu_pointer - mark a pointer as not being RCU protected
516  * @p: pointer needing to lose its __rcu property
517  *
518  * Converts @p from an __rcu pointer to a __kernel pointer.
519  * This allows an __rcu pointer to be used with xchg() and friends.
520  */
521 #define unrcu_pointer(p) __unrcu_pointer(p, __UNIQUE_ID(rcu))
522 
523 #define __rcu_access_pointer(p, local, space) \
524 ({ \
525 	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
526 	rcu_check_sparse(p, space); \
527 	((typeof(*p) __force __kernel *)(local)); \
528 })
529 #define __rcu_dereference_check(p, local, c, space) \
530 ({ \
531 	/* Dependency order vs. p above. */ \
532 	typeof(*p) *local = (typeof(*p) *__force)READ_ONCE(p); \
533 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_check() usage"); \
534 	rcu_check_sparse(p, space); \
535 	((typeof(*p) __force __kernel *)(local)); \
536 })
537 #define __rcu_dereference_protected(p, local, c, space) \
538 ({ \
539 	RCU_LOCKDEP_WARN(!(c), "suspicious rcu_dereference_protected() usage"); \
540 	rcu_check_sparse(p, space); \
541 	((typeof(*p) __force __kernel *)(p)); \
542 })
543 #define __rcu_dereference_raw(p, local) \
544 ({ \
545 	/* Dependency order vs. p above. */ \
546 	typeof(p) local = READ_ONCE(p); \
547 	((typeof(*p) __force __kernel *)(local)); \
548 })
549 #define rcu_dereference_raw(p) __rcu_dereference_raw(p, __UNIQUE_ID(rcu))
550 
551 /**
552  * RCU_INITIALIZER() - statically initialize an RCU-protected global variable
553  * @v: The value to statically initialize with.
554  */
555 #define RCU_INITIALIZER(v) (typeof(*(v)) __force __rcu *)(v)
556 
557 /**
558  * rcu_assign_pointer() - assign to RCU-protected pointer
559  * @p: pointer to assign to
560  * @v: value to assign (publish)
561  *
562  * Assigns the specified value to the specified RCU-protected
563  * pointer, ensuring that any concurrent RCU readers will see
564  * any prior initialization.
565  *
566  * Inserts memory barriers on architectures that require them
567  * (which is most of them), and also prevents the compiler from
568  * reordering the code that initializes the structure after the pointer
569  * assignment.  More importantly, this call documents which pointers
570  * will be dereferenced by RCU read-side code.
571  *
572  * In some special cases, you may use RCU_INIT_POINTER() instead
573  * of rcu_assign_pointer().  RCU_INIT_POINTER() is a bit faster due
574  * to the fact that it does not constrain either the CPU or the compiler.
575  * That said, using RCU_INIT_POINTER() when you should have used
576  * rcu_assign_pointer() is a very bad thing that results in
577  * impossible-to-diagnose memory corruption.  So please be careful.
578  * See the RCU_INIT_POINTER() comment header for details.
579  *
580  * Note that rcu_assign_pointer() evaluates each of its arguments only
581  * once, appearances notwithstanding.  One of the "extra" evaluations
582  * is in typeof() and the other visible only to sparse (__CHECKER__),
583  * neither of which actually execute the argument.  As with most cpp
584  * macros, this execute-arguments-only-once property is important, so
585  * please be careful when making changes to rcu_assign_pointer() and the
586  * other macros that it invokes.
587  */
588 #define rcu_assign_pointer(p, v)					      \
589 do {									      \
590 	uintptr_t _r_a_p__v = (uintptr_t)(v);				      \
591 	rcu_check_sparse(p, __rcu);					      \
592 									      \
593 	if (__builtin_constant_p(v) && (_r_a_p__v) == (uintptr_t)NULL)	      \
594 		WRITE_ONCE((p), (typeof(p))(_r_a_p__v));		      \
595 	else								      \
596 		smp_store_release(&p, RCU_INITIALIZER((typeof(p))_r_a_p__v)); \
597 } while (0)
598 
599 /**
600  * rcu_replace_pointer() - replace an RCU pointer, returning its old value
601  * @rcu_ptr: RCU pointer, whose old value is returned
602  * @ptr: regular pointer
603  * @c: the lockdep conditions under which the dereference will take place
604  *
605  * Perform a replacement, where @rcu_ptr is an RCU-annotated
606  * pointer and @c is the lockdep argument that is passed to the
607  * rcu_dereference_protected() call used to read that pointer.  The old
608  * value of @rcu_ptr is returned, and @rcu_ptr is set to @ptr.
609  */
610 #define rcu_replace_pointer(rcu_ptr, ptr, c)				\
611 ({									\
612 	typeof(ptr) __tmp = rcu_dereference_protected((rcu_ptr), (c));	\
613 	rcu_assign_pointer((rcu_ptr), (ptr));				\
614 	__tmp;								\
615 })
616 
617 /**
618  * rcu_access_pointer() - fetch RCU pointer with no dereferencing
619  * @p: The pointer to read
620  *
621  * Return the value of the specified RCU-protected pointer, but omit the
622  * lockdep checks for being in an RCU read-side critical section.  This is
623  * useful when the value of this pointer is accessed, but the pointer is
624  * not dereferenced, for example, when testing an RCU-protected pointer
625  * against NULL.  Although rcu_access_pointer() may also be used in cases
626  * where update-side locks prevent the value of the pointer from changing,
627  * you should instead use rcu_dereference_protected() for this use case.
628  * Within an RCU read-side critical section, there is little reason to
629  * use rcu_access_pointer().
630  *
631  * It is usually best to test the rcu_access_pointer() return value
632  * directly in order to avoid accidental dereferences being introduced
633  * by later inattentive changes.  In other words, assigning the
634  * rcu_access_pointer() return value to a local variable results in an
635  * accident waiting to happen.
636  *
637  * It is also permissible to use rcu_access_pointer() when read-side
638  * access to the pointer was removed at least one grace period ago, as is
639  * the case in the context of the RCU callback that is freeing up the data,
640  * or after a synchronize_rcu() returns.  This can be useful when tearing
641  * down multi-linked structures after a grace period has elapsed.  However,
642  * rcu_dereference_protected() is normally preferred for this use case.
643  */
644 #define rcu_access_pointer(p) __rcu_access_pointer((p), __UNIQUE_ID(rcu), __rcu)
645 
646 /**
647  * rcu_dereference_check() - rcu_dereference with debug checking
648  * @p: The pointer to read, prior to dereferencing
649  * @c: The conditions under which the dereference will take place
650  *
651  * Do an rcu_dereference(), but check that the conditions under which the
652  * dereference will take place are correct.  Typically the conditions
653  * indicate the various locking conditions that should be held at that
654  * point.  The check should return true if the conditions are satisfied.
655  * An implicit check for being in an RCU read-side critical section
656  * (rcu_read_lock()) is included.
657  *
658  * For example:
659  *
660  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock));
661  *
662  * could be used to indicate to lockdep that foo->bar may only be dereferenced
663  * if either rcu_read_lock() is held, or that the lock required to replace
664  * the bar struct at foo->bar is held.
665  *
666  * Note that the list of conditions may also include indications of when a lock
667  * need not be held, for example during initialisation or destruction of the
668  * target struct:
669  *
670  *	bar = rcu_dereference_check(foo->bar, lockdep_is_held(&foo->lock) ||
671  *					      atomic_read(&foo->usage) == 0);
672  *
673  * Inserts memory barriers on architectures that require them
674  * (currently only the Alpha), prevents the compiler from refetching
675  * (and from merging fetches), and, more importantly, documents exactly
676  * which pointers are protected by RCU and checks that the pointer is
677  * annotated as __rcu.
678  */
679 #define rcu_dereference_check(p, c) \
680 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
681 				(c) || rcu_read_lock_held(), __rcu)
682 
683 /**
684  * rcu_dereference_bh_check() - rcu_dereference_bh with debug checking
685  * @p: The pointer to read, prior to dereferencing
686  * @c: The conditions under which the dereference will take place
687  *
688  * This is the RCU-bh counterpart to rcu_dereference_check().  However,
689  * please note that starting in v5.0 kernels, vanilla RCU grace periods
690  * wait for local_bh_disable() regions of code in addition to regions of
691  * code demarked by rcu_read_lock() and rcu_read_unlock().  This means
692  * that synchronize_rcu(), call_rcu, and friends all take not only
693  * rcu_read_lock() but also rcu_read_lock_bh() into account.
694  */
695 #define rcu_dereference_bh_check(p, c) \
696 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
697 				(c) || rcu_read_lock_bh_held(), __rcu)
698 
699 /**
700  * rcu_dereference_sched_check() - rcu_dereference_sched with debug checking
701  * @p: The pointer to read, prior to dereferencing
702  * @c: The conditions under which the dereference will take place
703  *
704  * This is the RCU-sched counterpart to rcu_dereference_check().
705  * However, please note that starting in v5.0 kernels, vanilla RCU grace
706  * periods wait for preempt_disable() regions of code in addition to
707  * regions of code demarked by rcu_read_lock() and rcu_read_unlock().
708  * This means that synchronize_rcu(), call_rcu, and friends all take not
709  * only rcu_read_lock() but also rcu_read_lock_sched() into account.
710  */
711 #define rcu_dereference_sched_check(p, c) \
712 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), \
713 				(c) || rcu_read_lock_sched_held(), \
714 				__rcu)
715 
716 /*
717  * The tracing infrastructure traces RCU (we want that), but unfortunately
718  * some of the RCU checks causes tracing to lock up the system.
719  *
720  * The no-tracing version of rcu_dereference_raw() must not call
721  * rcu_read_lock_held().
722  */
723 #define rcu_dereference_raw_check(p) \
724 	__rcu_dereference_check((p), __UNIQUE_ID(rcu), 1, __rcu)
725 
726 /**
727  * rcu_dereference_protected() - fetch RCU pointer when updates prevented
728  * @p: The pointer to read, prior to dereferencing
729  * @c: The conditions under which the dereference will take place
730  *
731  * Return the value of the specified RCU-protected pointer, but omit
732  * the READ_ONCE().  This is useful in cases where update-side locks
733  * prevent the value of the pointer from changing.  Please note that this
734  * primitive does *not* prevent the compiler from repeating this reference
735  * or combining it with other references, so it should not be used without
736  * protection of appropriate locks.
737  *
738  * This function is only for update-side use.  Using this function
739  * when protected only by rcu_read_lock() will result in infrequent
740  * but very ugly failures.
741  */
742 #define rcu_dereference_protected(p, c) \
743 	__rcu_dereference_protected((p), __UNIQUE_ID(rcu), (c), __rcu)
744 
745 
746 /**
747  * rcu_dereference() - fetch RCU-protected pointer for dereferencing
748  * @p: The pointer to read, prior to dereferencing
749  *
750  * This is a simple wrapper around rcu_dereference_check().
751  */
752 #define rcu_dereference(p) rcu_dereference_check(p, 0)
753 
754 /**
755  * rcu_dereference_bh() - fetch an RCU-bh-protected pointer for dereferencing
756  * @p: The pointer to read, prior to dereferencing
757  *
758  * Makes rcu_dereference_check() do the dirty work.
759  */
760 #define rcu_dereference_bh(p) rcu_dereference_bh_check(p, 0)
761 
762 /**
763  * rcu_dereference_sched() - fetch RCU-sched-protected pointer for dereferencing
764  * @p: The pointer to read, prior to dereferencing
765  *
766  * Makes rcu_dereference_check() do the dirty work.
767  */
768 #define rcu_dereference_sched(p) rcu_dereference_sched_check(p, 0)
769 
770 /**
771  * rcu_pointer_handoff() - Hand off a pointer from RCU to other mechanism
772  * @p: The pointer to hand off
773  *
774  * This is simply an identity function, but it documents where a pointer
775  * is handed off from RCU to some other synchronization mechanism, for
776  * example, reference counting or locking.  In C11, it would map to
777  * kill_dependency().  It could be used as follows::
778  *
779  *	rcu_read_lock();
780  *	p = rcu_dereference(gp);
781  *	long_lived = is_long_lived(p);
782  *	if (long_lived) {
783  *		if (!atomic_inc_not_zero(p->refcnt))
784  *			long_lived = false;
785  *		else
786  *			p = rcu_pointer_handoff(p);
787  *	}
788  *	rcu_read_unlock();
789  */
790 #define rcu_pointer_handoff(p) (p)
791 
792 /**
793  * rcu_read_lock() - mark the beginning of an RCU read-side critical section
794  *
795  * When synchronize_rcu() is invoked on one CPU while other CPUs
796  * are within RCU read-side critical sections, then the
797  * synchronize_rcu() is guaranteed to block until after all the other
798  * CPUs exit their critical sections.  Similarly, if call_rcu() is invoked
799  * on one CPU while other CPUs are within RCU read-side critical
800  * sections, invocation of the corresponding RCU callback is deferred
801  * until after the all the other CPUs exit their critical sections.
802  *
803  * Both synchronize_rcu() and call_rcu() also wait for regions of code
804  * with preemption disabled, including regions of code with interrupts or
805  * softirqs disabled.
806  *
807  * Note, however, that RCU callbacks are permitted to run concurrently
808  * with new RCU read-side critical sections.  One way that this can happen
809  * is via the following sequence of events: (1) CPU 0 enters an RCU
810  * read-side critical section, (2) CPU 1 invokes call_rcu() to register
811  * an RCU callback, (3) CPU 0 exits the RCU read-side critical section,
812  * (4) CPU 2 enters a RCU read-side critical section, (5) the RCU
813  * callback is invoked.  This is legal, because the RCU read-side critical
814  * section that was running concurrently with the call_rcu() (and which
815  * therefore might be referencing something that the corresponding RCU
816  * callback would free up) has completed before the corresponding
817  * RCU callback is invoked.
818  *
819  * RCU read-side critical sections may be nested.  Any deferred actions
820  * will be deferred until the outermost RCU read-side critical section
821  * completes.
822  *
823  * You can avoid reading and understanding the next paragraph by
824  * following this rule: don't put anything in an rcu_read_lock() RCU
825  * read-side critical section that would block in a !PREEMPTION kernel.
826  * But if you want the full story, read on!
827  *
828  * In non-preemptible RCU implementations (pure TREE_RCU and TINY_RCU),
829  * it is illegal to block while in an RCU read-side critical section.
830  * In preemptible RCU implementations (PREEMPT_RCU) in CONFIG_PREEMPTION
831  * kernel builds, RCU read-side critical sections may be preempted,
832  * but explicit blocking is illegal.  Finally, in preemptible RCU
833  * implementations in real-time (with -rt patchset) kernel builds, RCU
834  * read-side critical sections may be preempted and they may also block, but
835  * only when acquiring spinlocks that are subject to priority inheritance.
836  */
rcu_read_lock(void)837 static __always_inline void rcu_read_lock(void)
838 {
839 	__rcu_read_lock();
840 	__acquire(RCU);
841 	rcu_lock_acquire(&rcu_lock_map);
842 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
843 			 "rcu_read_lock() used illegally while idle");
844 }
845 
846 /*
847  * So where is rcu_write_lock()?  It does not exist, as there is no
848  * way for writers to lock out RCU readers.  This is a feature, not
849  * a bug -- this property is what provides RCU's performance benefits.
850  * Of course, writers must coordinate with each other.  The normal
851  * spinlock primitives work well for this, but any other technique may be
852  * used as well.  RCU does not care how the writers keep out of each
853  * others' way, as long as they do so.
854  */
855 
856 /**
857  * rcu_read_unlock() - marks the end of an RCU read-side critical section.
858  *
859  * In almost all situations, rcu_read_unlock() is immune from deadlock.
860  * This deadlock immunity also extends to the scheduler's runqueue
861  * and priority-inheritance spinlocks, courtesy of the quiescent-state
862  * deferral that is carried out when rcu_read_unlock() is invoked with
863  * interrupts disabled.
864  *
865  * See rcu_read_lock() for more information.
866  */
rcu_read_unlock(void)867 static inline void rcu_read_unlock(void)
868 {
869 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
870 			 "rcu_read_unlock() used illegally while idle");
871 	rcu_lock_release(&rcu_lock_map); /* Keep acq info for rls diags. */
872 	__release(RCU);
873 	__rcu_read_unlock();
874 }
875 
876 /**
877  * rcu_read_lock_bh() - mark the beginning of an RCU-bh critical section
878  *
879  * This is equivalent to rcu_read_lock(), but also disables softirqs.
880  * Note that anything else that disables softirqs can also serve as an RCU
881  * read-side critical section.  However, please note that this equivalence
882  * applies only to v5.0 and later.  Before v5.0, rcu_read_lock() and
883  * rcu_read_lock_bh() were unrelated.
884  *
885  * Note that rcu_read_lock_bh() and the matching rcu_read_unlock_bh()
886  * must occur in the same context, for example, it is illegal to invoke
887  * rcu_read_unlock_bh() from one task if the matching rcu_read_lock_bh()
888  * was invoked from some other task.
889  */
rcu_read_lock_bh(void)890 static inline void rcu_read_lock_bh(void)
891 {
892 	local_bh_disable();
893 	__acquire(RCU_BH);
894 	rcu_lock_acquire(&rcu_bh_lock_map);
895 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
896 			 "rcu_read_lock_bh() used illegally while idle");
897 }
898 
899 /**
900  * rcu_read_unlock_bh() - marks the end of a softirq-only RCU critical section
901  *
902  * See rcu_read_lock_bh() for more information.
903  */
rcu_read_unlock_bh(void)904 static inline void rcu_read_unlock_bh(void)
905 {
906 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
907 			 "rcu_read_unlock_bh() used illegally while idle");
908 	rcu_lock_release(&rcu_bh_lock_map);
909 	__release(RCU_BH);
910 	local_bh_enable();
911 }
912 
913 /**
914  * rcu_read_lock_sched() - mark the beginning of a RCU-sched critical section
915  *
916  * This is equivalent to rcu_read_lock(), but also disables preemption.
917  * Read-side critical sections can also be introduced by anything else that
918  * disables preemption, including local_irq_disable() and friends.  However,
919  * please note that the equivalence to rcu_read_lock() applies only to
920  * v5.0 and later.  Before v5.0, rcu_read_lock() and rcu_read_lock_sched()
921  * were unrelated.
922  *
923  * Note that rcu_read_lock_sched() and the matching rcu_read_unlock_sched()
924  * must occur in the same context, for example, it is illegal to invoke
925  * rcu_read_unlock_sched() from process context if the matching
926  * rcu_read_lock_sched() was invoked from an NMI handler.
927  */
rcu_read_lock_sched(void)928 static inline void rcu_read_lock_sched(void)
929 {
930 	preempt_disable();
931 	__acquire(RCU_SCHED);
932 	rcu_lock_acquire(&rcu_sched_lock_map);
933 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
934 			 "rcu_read_lock_sched() used illegally while idle");
935 }
936 
937 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_lock_sched_notrace(void)938 static inline notrace void rcu_read_lock_sched_notrace(void)
939 {
940 	preempt_disable_notrace();
941 	__acquire(RCU_SCHED);
942 }
943 
944 /**
945  * rcu_read_unlock_sched() - marks the end of a RCU-classic critical section
946  *
947  * See rcu_read_lock_sched() for more information.
948  */
rcu_read_unlock_sched(void)949 static inline void rcu_read_unlock_sched(void)
950 {
951 	RCU_LOCKDEP_WARN(!rcu_is_watching(),
952 			 "rcu_read_unlock_sched() used illegally while idle");
953 	rcu_lock_release(&rcu_sched_lock_map);
954 	__release(RCU_SCHED);
955 	preempt_enable();
956 }
957 
958 /* Used by lockdep and tracing: cannot be traced, cannot call lockdep. */
rcu_read_unlock_sched_notrace(void)959 static inline notrace void rcu_read_unlock_sched_notrace(void)
960 {
961 	__release(RCU_SCHED);
962 	preempt_enable_notrace();
963 }
964 
965 /**
966  * RCU_INIT_POINTER() - initialize an RCU protected pointer
967  * @p: The pointer to be initialized.
968  * @v: The value to initialized the pointer to.
969  *
970  * Initialize an RCU-protected pointer in special cases where readers
971  * do not need ordering constraints on the CPU or the compiler.  These
972  * special cases are:
973  *
974  * 1.	This use of RCU_INIT_POINTER() is NULLing out the pointer *or*
975  * 2.	The caller has taken whatever steps are required to prevent
976  *	RCU readers from concurrently accessing this pointer *or*
977  * 3.	The referenced data structure has already been exposed to
978  *	readers either at compile time or via rcu_assign_pointer() *and*
979  *
980  *	a.	You have not made *any* reader-visible changes to
981  *		this structure since then *or*
982  *	b.	It is OK for readers accessing this structure from its
983  *		new location to see the old state of the structure.  (For
984  *		example, the changes were to statistical counters or to
985  *		other state where exact synchronization is not required.)
986  *
987  * Failure to follow these rules governing use of RCU_INIT_POINTER() will
988  * result in impossible-to-diagnose memory corruption.  As in the structures
989  * will look OK in crash dumps, but any concurrent RCU readers might
990  * see pre-initialized values of the referenced data structure.  So
991  * please be very careful how you use RCU_INIT_POINTER()!!!
992  *
993  * If you are creating an RCU-protected linked structure that is accessed
994  * by a single external-to-structure RCU-protected pointer, then you may
995  * use RCU_INIT_POINTER() to initialize the internal RCU-protected
996  * pointers, but you must use rcu_assign_pointer() to initialize the
997  * external-to-structure pointer *after* you have completely initialized
998  * the reader-accessible portions of the linked structure.
999  *
1000  * Note that unlike rcu_assign_pointer(), RCU_INIT_POINTER() provides no
1001  * ordering guarantees for either the CPU or the compiler.
1002  */
1003 #define RCU_INIT_POINTER(p, v) \
1004 	do { \
1005 		rcu_check_sparse(p, __rcu); \
1006 		WRITE_ONCE(p, RCU_INITIALIZER(v)); \
1007 	} while (0)
1008 
1009 /**
1010  * RCU_POINTER_INITIALIZER() - statically initialize an RCU protected pointer
1011  * @p: The pointer to be initialized.
1012  * @v: The value to initialized the pointer to.
1013  *
1014  * GCC-style initialization for an RCU-protected pointer in a structure field.
1015  */
1016 #define RCU_POINTER_INITIALIZER(p, v) \
1017 		.p = RCU_INITIALIZER(v)
1018 
1019 /**
1020  * kfree_rcu() - kfree an object after a grace period.
1021  * @ptr: pointer to kfree for double-argument invocations.
1022  * @rhf: the name of the struct rcu_head within the type of @ptr.
1023  *
1024  * Many rcu callbacks functions just call kfree() on the base structure.
1025  * These functions are trivial, but their size adds up, and furthermore
1026  * when they are used in a kernel module, that module must invoke the
1027  * high-latency rcu_barrier() function at module-unload time.
1028  *
1029  * The kfree_rcu() function handles this issue. In order to have a universal
1030  * callback function handling different offsets of rcu_head, the callback needs
1031  * to determine the starting address of the freed object, which can be a large
1032  * kmalloc or vmalloc allocation. To allow simply aligning the pointer down to
1033  * page boundary for those, only offsets up to 4095 bytes can be accommodated.
1034  * If the offset is larger than 4095 bytes, a compile-time error will
1035  * be generated in kvfree_rcu_arg_2(). If this error is triggered, you can
1036  * either fall back to use of call_rcu() or rearrange the structure to
1037  * position the rcu_head structure into the first 4096 bytes.
1038  *
1039  * The object to be freed can be allocated either by kmalloc() or
1040  * kmem_cache_alloc().
1041  *
1042  * Note that the allowable offset might decrease in the future.
1043  *
1044  * The BUILD_BUG_ON check must not involve any function calls, hence the
1045  * checks are done in macros here.
1046  */
1047 #define kfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
1048 #define kvfree_rcu(ptr, rhf) kvfree_rcu_arg_2(ptr, rhf)
1049 
1050 /**
1051  * kfree_rcu_mightsleep() - kfree an object after a grace period.
1052  * @ptr: pointer to kfree for single-argument invocations.
1053  *
1054  * When it comes to head-less variant, only one argument
1055  * is passed and that is just a pointer which has to be
1056  * freed after a grace period. Therefore the semantic is
1057  *
1058  *     kfree_rcu_mightsleep(ptr);
1059  *
1060  * where @ptr is the pointer to be freed by kvfree().
1061  *
1062  * Please note, head-less way of freeing is permitted to
1063  * use from a context that has to follow might_sleep()
1064  * annotation. Otherwise, please switch and embed the
1065  * rcu_head structure within the type of @ptr.
1066  */
1067 #define kfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1068 #define kvfree_rcu_mightsleep(ptr) kvfree_rcu_arg_1(ptr)
1069 
1070 /*
1071  * In mm/slab_common.c, no suitable header to include here.
1072  */
1073 void kvfree_call_rcu(struct rcu_head *head, void *ptr);
1074 
1075 /*
1076  * The BUILD_BUG_ON() makes sure the rcu_head offset can be handled. See the
1077  * comment of kfree_rcu() for details.
1078  */
1079 #define kvfree_rcu_arg_2(ptr, rhf)					\
1080 do {									\
1081 	typeof (ptr) ___p = (ptr);					\
1082 									\
1083 	if (___p) {							\
1084 		BUILD_BUG_ON(offsetof(typeof(*(ptr)), rhf) >= 4096);	\
1085 		kvfree_call_rcu(&((___p)->rhf), (void *) (___p));	\
1086 	}								\
1087 } while (0)
1088 
1089 #define kvfree_rcu_arg_1(ptr)					\
1090 do {								\
1091 	typeof(ptr) ___p = (ptr);				\
1092 								\
1093 	if (___p)						\
1094 		kvfree_call_rcu(NULL, (void *) (___p));		\
1095 } while (0)
1096 
1097 /*
1098  * Place this after a lock-acquisition primitive to guarantee that
1099  * an UNLOCK+LOCK pair acts as a full barrier.  This guarantee applies
1100  * if the UNLOCK and LOCK are executed by the same CPU or if the
1101  * UNLOCK and LOCK operate on the same lock variable.
1102  */
1103 #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE
1104 #define smp_mb__after_unlock_lock()	smp_mb()  /* Full ordering for lock. */
1105 #else /* #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1106 #define smp_mb__after_unlock_lock()	do { } while (0)
1107 #endif /* #else #ifdef CONFIG_ARCH_WEAK_RELEASE_ACQUIRE */
1108 
1109 
1110 /* Has the specified rcu_head structure been handed to call_rcu()? */
1111 
1112 /**
1113  * rcu_head_init - Initialize rcu_head for rcu_head_after_call_rcu()
1114  * @rhp: The rcu_head structure to initialize.
1115  *
1116  * If you intend to invoke rcu_head_after_call_rcu() to test whether a
1117  * given rcu_head structure has already been passed to call_rcu(), then
1118  * you must also invoke this rcu_head_init() function on it just after
1119  * allocating that structure.  Calls to this function must not race with
1120  * calls to call_rcu(), rcu_head_after_call_rcu(), or callback invocation.
1121  */
rcu_head_init(struct rcu_head * rhp)1122 static inline void rcu_head_init(struct rcu_head *rhp)
1123 {
1124 	rhp->func = (rcu_callback_t)~0L;
1125 }
1126 
1127 /**
1128  * rcu_head_after_call_rcu() - Has this rcu_head been passed to call_rcu()?
1129  * @rhp: The rcu_head structure to test.
1130  * @f: The function passed to call_rcu() along with @rhp.
1131  *
1132  * Returns @true if the @rhp has been passed to call_rcu() with @func,
1133  * and @false otherwise.  Emits a warning in any other case, including
1134  * the case where @rhp has already been invoked after a grace period.
1135  * Calls to this function must not race with callback invocation.  One way
1136  * to avoid such races is to enclose the call to rcu_head_after_call_rcu()
1137  * in an RCU read-side critical section that includes a read-side fetch
1138  * of the pointer to the structure containing @rhp.
1139  */
1140 static inline bool
rcu_head_after_call_rcu(struct rcu_head * rhp,rcu_callback_t f)1141 rcu_head_after_call_rcu(struct rcu_head *rhp, rcu_callback_t f)
1142 {
1143 	rcu_callback_t func = READ_ONCE(rhp->func);
1144 
1145 	if (func == f)
1146 		return true;
1147 	WARN_ON_ONCE(func != (rcu_callback_t)~0L);
1148 	return false;
1149 }
1150 
1151 /* kernel/ksysfs.c definitions */
1152 extern int rcu_expedited;
1153 extern int rcu_normal;
1154 
1155 DEFINE_LOCK_GUARD_0(rcu,
1156 	do {
1157 		rcu_read_lock();
1158 		/*
1159 		 * sparse doesn't call the cleanup function,
1160 		 * so just release immediately and don't track
1161 		 * the context. We don't need to anyway, since
1162 		 * the whole point of the guard is to not need
1163 		 * the explicit unlock.
1164 		 */
1165 		__release(RCU);
1166 	} while (0),
1167 	rcu_read_unlock())
1168 
1169 #endif /* __LINUX_RCUPDATE_H */
1170