1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PAGEMAP_H
3 #define _LINUX_PAGEMAP_H
4 
5 /*
6  * Copyright 1995 Linus Torvalds
7  */
8 #include <linux/mm.h>
9 #include <linux/fs.h>
10 #include <linux/list.h>
11 #include <linux/highmem.h>
12 #include <linux/compiler.h>
13 #include <linux/uaccess.h>
14 #include <linux/gfp.h>
15 #include <linux/bitops.h>
16 #include <linux/hardirq.h> /* for in_interrupt() */
17 #include <linux/hugetlb_inline.h>
18 
19 struct folio_batch;
20 
21 unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 					pgoff_t start, pgoff_t end);
23 
invalidate_remote_inode(struct inode * inode)24 static inline void invalidate_remote_inode(struct inode *inode)
25 {
26 	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 	    S_ISLNK(inode->i_mode))
28 		invalidate_mapping_pages(inode->i_mapping, 0, -1);
29 }
30 int invalidate_inode_pages2(struct address_space *mapping);
31 int invalidate_inode_pages2_range(struct address_space *mapping,
32 		pgoff_t start, pgoff_t end);
33 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count);
34 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count);
35 int filemap_invalidate_pages(struct address_space *mapping,
36 			     loff_t pos, loff_t end, bool nowait);
37 
38 int write_inode_now(struct inode *, int sync);
39 int filemap_fdatawrite(struct address_space *);
40 int filemap_flush(struct address_space *);
41 int filemap_fdatawait_keep_errors(struct address_space *mapping);
42 int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
43 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
44 		loff_t start_byte, loff_t end_byte);
45 int filemap_invalidate_inode(struct inode *inode, bool flush,
46 			     loff_t start, loff_t end);
47 
filemap_fdatawait(struct address_space * mapping)48 static inline int filemap_fdatawait(struct address_space *mapping)
49 {
50 	return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
51 }
52 
53 bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
54 int filemap_write_and_wait_range(struct address_space *mapping,
55 		loff_t lstart, loff_t lend);
56 int __filemap_fdatawrite_range(struct address_space *mapping,
57 		loff_t start, loff_t end, int sync_mode);
58 int filemap_fdatawrite_range(struct address_space *mapping,
59 		loff_t start, loff_t end);
60 int filemap_check_errors(struct address_space *mapping);
61 void __filemap_set_wb_err(struct address_space *mapping, int err);
62 int filemap_fdatawrite_wbc(struct address_space *mapping,
63 			   struct writeback_control *wbc);
64 int kiocb_write_and_wait(struct kiocb *iocb, size_t count);
65 
filemap_write_and_wait(struct address_space * mapping)66 static inline int filemap_write_and_wait(struct address_space *mapping)
67 {
68 	return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
69 }
70 
71 /**
72  * filemap_set_wb_err - set a writeback error on an address_space
73  * @mapping: mapping in which to set writeback error
74  * @err: error to be set in mapping
75  *
76  * When writeback fails in some way, we must record that error so that
77  * userspace can be informed when fsync and the like are called.  We endeavor
78  * to report errors on any file that was open at the time of the error.  Some
79  * internal callers also need to know when writeback errors have occurred.
80  *
81  * When a writeback error occurs, most filesystems will want to call
82  * filemap_set_wb_err to record the error in the mapping so that it will be
83  * automatically reported whenever fsync is called on the file.
84  */
filemap_set_wb_err(struct address_space * mapping,int err)85 static inline void filemap_set_wb_err(struct address_space *mapping, int err)
86 {
87 	/* Fastpath for common case of no error */
88 	if (unlikely(err))
89 		__filemap_set_wb_err(mapping, err);
90 }
91 
92 /**
93  * filemap_check_wb_err - has an error occurred since the mark was sampled?
94  * @mapping: mapping to check for writeback errors
95  * @since: previously-sampled errseq_t
96  *
97  * Grab the errseq_t value from the mapping, and see if it has changed "since"
98  * the given value was sampled.
99  *
100  * If it has then report the latest error set, otherwise return 0.
101  */
filemap_check_wb_err(struct address_space * mapping,errseq_t since)102 static inline int filemap_check_wb_err(struct address_space *mapping,
103 					errseq_t since)
104 {
105 	return errseq_check(&mapping->wb_err, since);
106 }
107 
108 /**
109  * filemap_sample_wb_err - sample the current errseq_t to test for later errors
110  * @mapping: mapping to be sampled
111  *
112  * Writeback errors are always reported relative to a particular sample point
113  * in the past. This function provides those sample points.
114  */
filemap_sample_wb_err(struct address_space * mapping)115 static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
116 {
117 	return errseq_sample(&mapping->wb_err);
118 }
119 
120 /**
121  * file_sample_sb_err - sample the current errseq_t to test for later errors
122  * @file: file pointer to be sampled
123  *
124  * Grab the most current superblock-level errseq_t value for the given
125  * struct file.
126  */
file_sample_sb_err(struct file * file)127 static inline errseq_t file_sample_sb_err(struct file *file)
128 {
129 	return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
130 }
131 
132 /*
133  * Flush file data before changing attributes.  Caller must hold any locks
134  * required to prevent further writes to this file until we're done setting
135  * flags.
136  */
inode_drain_writes(struct inode * inode)137 static inline int inode_drain_writes(struct inode *inode)
138 {
139 	inode_dio_wait(inode);
140 	return filemap_write_and_wait(inode->i_mapping);
141 }
142 
mapping_empty(struct address_space * mapping)143 static inline bool mapping_empty(struct address_space *mapping)
144 {
145 	return xa_empty(&mapping->i_pages);
146 }
147 
148 /*
149  * mapping_shrinkable - test if page cache state allows inode reclaim
150  * @mapping: the page cache mapping
151  *
152  * This checks the mapping's cache state for the pupose of inode
153  * reclaim and LRU management.
154  *
155  * The caller is expected to hold the i_lock, but is not required to
156  * hold the i_pages lock, which usually protects cache state. That's
157  * because the i_lock and the list_lru lock that protect the inode and
158  * its LRU state don't nest inside the irq-safe i_pages lock.
159  *
160  * Cache deletions are performed under the i_lock, which ensures that
161  * when an inode goes empty, it will reliably get queued on the LRU.
162  *
163  * Cache additions do not acquire the i_lock and may race with this
164  * check, in which case we'll report the inode as shrinkable when it
165  * has cache pages. This is okay: the shrinker also checks the
166  * refcount and the referenced bit, which will be elevated or set in
167  * the process of adding new cache pages to an inode.
168  */
mapping_shrinkable(struct address_space * mapping)169 static inline bool mapping_shrinkable(struct address_space *mapping)
170 {
171 	void *head;
172 
173 	/*
174 	 * On highmem systems, there could be lowmem pressure from the
175 	 * inodes before there is highmem pressure from the page
176 	 * cache. Make inodes shrinkable regardless of cache state.
177 	 */
178 	if (IS_ENABLED(CONFIG_HIGHMEM))
179 		return true;
180 
181 	/* Cache completely empty? Shrink away. */
182 	head = rcu_access_pointer(mapping->i_pages.xa_head);
183 	if (!head)
184 		return true;
185 
186 	/*
187 	 * The xarray stores single offset-0 entries directly in the
188 	 * head pointer, which allows non-resident page cache entries
189 	 * to escape the shadow shrinker's list of xarray nodes. The
190 	 * inode shrinker needs to pick them up under memory pressure.
191 	 */
192 	if (!xa_is_node(head) && xa_is_value(head))
193 		return true;
194 
195 	return false;
196 }
197 
198 /*
199  * Bits in mapping->flags.
200  */
201 enum mapping_flags {
202 	AS_EIO		= 0,	/* IO error on async write */
203 	AS_ENOSPC	= 1,	/* ENOSPC on async write */
204 	AS_MM_ALL_LOCKS	= 2,	/* under mm_take_all_locks() */
205 	AS_UNEVICTABLE	= 3,	/* e.g., ramdisk, SHM_LOCK */
206 	AS_EXITING	= 4, 	/* final truncate in progress */
207 	/* writeback related tags are not used */
208 	AS_NO_WRITEBACK_TAGS = 5,
209 	AS_RELEASE_ALWAYS = 6,	/* Call ->release_folio(), even if no private data */
210 	AS_STABLE_WRITES = 7,	/* must wait for writeback before modifying
211 				   folio contents */
212 	AS_INACCESSIBLE = 8,	/* Do not attempt direct R/W access to the mapping */
213 	/* Bits 16-25 are used for FOLIO_ORDER */
214 	AS_FOLIO_ORDER_BITS = 5,
215 	AS_FOLIO_ORDER_MIN = 16,
216 	AS_FOLIO_ORDER_MAX = AS_FOLIO_ORDER_MIN + AS_FOLIO_ORDER_BITS,
217 };
218 
219 #define AS_FOLIO_ORDER_BITS_MASK ((1u << AS_FOLIO_ORDER_BITS) - 1)
220 #define AS_FOLIO_ORDER_MIN_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MIN)
221 #define AS_FOLIO_ORDER_MAX_MASK (AS_FOLIO_ORDER_BITS_MASK << AS_FOLIO_ORDER_MAX)
222 #define AS_FOLIO_ORDER_MASK (AS_FOLIO_ORDER_MIN_MASK | AS_FOLIO_ORDER_MAX_MASK)
223 
224 /**
225  * mapping_set_error - record a writeback error in the address_space
226  * @mapping: the mapping in which an error should be set
227  * @error: the error to set in the mapping
228  *
229  * When writeback fails in some way, we must record that error so that
230  * userspace can be informed when fsync and the like are called.  We endeavor
231  * to report errors on any file that was open at the time of the error.  Some
232  * internal callers also need to know when writeback errors have occurred.
233  *
234  * When a writeback error occurs, most filesystems will want to call
235  * mapping_set_error to record the error in the mapping so that it can be
236  * reported when the application calls fsync(2).
237  */
mapping_set_error(struct address_space * mapping,int error)238 static inline void mapping_set_error(struct address_space *mapping, int error)
239 {
240 	if (likely(!error))
241 		return;
242 
243 	/* Record in wb_err for checkers using errseq_t based tracking */
244 	__filemap_set_wb_err(mapping, error);
245 
246 	/* Record it in superblock */
247 	if (mapping->host)
248 		errseq_set(&mapping->host->i_sb->s_wb_err, error);
249 
250 	/* Record it in flags for now, for legacy callers */
251 	if (error == -ENOSPC)
252 		set_bit(AS_ENOSPC, &mapping->flags);
253 	else
254 		set_bit(AS_EIO, &mapping->flags);
255 }
256 
mapping_set_unevictable(struct address_space * mapping)257 static inline void mapping_set_unevictable(struct address_space *mapping)
258 {
259 	set_bit(AS_UNEVICTABLE, &mapping->flags);
260 }
261 
mapping_clear_unevictable(struct address_space * mapping)262 static inline void mapping_clear_unevictable(struct address_space *mapping)
263 {
264 	clear_bit(AS_UNEVICTABLE, &mapping->flags);
265 }
266 
mapping_unevictable(struct address_space * mapping)267 static inline bool mapping_unevictable(struct address_space *mapping)
268 {
269 	return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
270 }
271 
mapping_set_exiting(struct address_space * mapping)272 static inline void mapping_set_exiting(struct address_space *mapping)
273 {
274 	set_bit(AS_EXITING, &mapping->flags);
275 }
276 
mapping_exiting(struct address_space * mapping)277 static inline int mapping_exiting(struct address_space *mapping)
278 {
279 	return test_bit(AS_EXITING, &mapping->flags);
280 }
281 
mapping_set_no_writeback_tags(struct address_space * mapping)282 static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
283 {
284 	set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
285 }
286 
mapping_use_writeback_tags(struct address_space * mapping)287 static inline int mapping_use_writeback_tags(struct address_space *mapping)
288 {
289 	return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
290 }
291 
mapping_release_always(const struct address_space * mapping)292 static inline bool mapping_release_always(const struct address_space *mapping)
293 {
294 	return test_bit(AS_RELEASE_ALWAYS, &mapping->flags);
295 }
296 
mapping_set_release_always(struct address_space * mapping)297 static inline void mapping_set_release_always(struct address_space *mapping)
298 {
299 	set_bit(AS_RELEASE_ALWAYS, &mapping->flags);
300 }
301 
mapping_clear_release_always(struct address_space * mapping)302 static inline void mapping_clear_release_always(struct address_space *mapping)
303 {
304 	clear_bit(AS_RELEASE_ALWAYS, &mapping->flags);
305 }
306 
mapping_stable_writes(const struct address_space * mapping)307 static inline bool mapping_stable_writes(const struct address_space *mapping)
308 {
309 	return test_bit(AS_STABLE_WRITES, &mapping->flags);
310 }
311 
mapping_set_stable_writes(struct address_space * mapping)312 static inline void mapping_set_stable_writes(struct address_space *mapping)
313 {
314 	set_bit(AS_STABLE_WRITES, &mapping->flags);
315 }
316 
mapping_clear_stable_writes(struct address_space * mapping)317 static inline void mapping_clear_stable_writes(struct address_space *mapping)
318 {
319 	clear_bit(AS_STABLE_WRITES, &mapping->flags);
320 }
321 
mapping_set_inaccessible(struct address_space * mapping)322 static inline void mapping_set_inaccessible(struct address_space *mapping)
323 {
324 	/*
325 	 * It's expected inaccessible mappings are also unevictable. Compaction
326 	 * migrate scanner (isolate_migratepages_block()) relies on this to
327 	 * reduce page locking.
328 	 */
329 	set_bit(AS_UNEVICTABLE, &mapping->flags);
330 	set_bit(AS_INACCESSIBLE, &mapping->flags);
331 }
332 
mapping_inaccessible(struct address_space * mapping)333 static inline bool mapping_inaccessible(struct address_space *mapping)
334 {
335 	return test_bit(AS_INACCESSIBLE, &mapping->flags);
336 }
337 
mapping_gfp_mask(struct address_space * mapping)338 static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
339 {
340 	return mapping->gfp_mask;
341 }
342 
343 /* Restricts the given gfp_mask to what the mapping allows. */
mapping_gfp_constraint(struct address_space * mapping,gfp_t gfp_mask)344 static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
345 		gfp_t gfp_mask)
346 {
347 	return mapping_gfp_mask(mapping) & gfp_mask;
348 }
349 
350 /*
351  * This is non-atomic.  Only to be used before the mapping is activated.
352  * Probably needs a barrier...
353  */
mapping_set_gfp_mask(struct address_space * m,gfp_t mask)354 static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
355 {
356 	m->gfp_mask = mask;
357 }
358 
359 /*
360  * There are some parts of the kernel which assume that PMD entries
361  * are exactly HPAGE_PMD_ORDER.  Those should be fixed, but until then,
362  * limit the maximum allocation order to PMD size.  I'm not aware of any
363  * assumptions about maximum order if THP are disabled, but 8 seems like
364  * a good order (that's 1MB if you're using 4kB pages)
365  */
366 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
367 #define PREFERRED_MAX_PAGECACHE_ORDER	HPAGE_PMD_ORDER
368 #else
369 #define PREFERRED_MAX_PAGECACHE_ORDER	8
370 #endif
371 
372 /*
373  * xas_split_alloc() does not support arbitrary orders. This implies no
374  * 512MB THP on ARM64 with 64KB base page size.
375  */
376 #define MAX_XAS_ORDER		(XA_CHUNK_SHIFT * 2 - 1)
377 #define MAX_PAGECACHE_ORDER	min(MAX_XAS_ORDER, PREFERRED_MAX_PAGECACHE_ORDER)
378 
379 /*
380  * mapping_max_folio_size_supported() - Check the max folio size supported
381  *
382  * The filesystem should call this function at mount time if there is a
383  * requirement on the folio mapping size in the page cache.
384  */
mapping_max_folio_size_supported(void)385 static inline size_t mapping_max_folio_size_supported(void)
386 {
387 	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
388 		return 1U << (PAGE_SHIFT + MAX_PAGECACHE_ORDER);
389 	return PAGE_SIZE;
390 }
391 
392 /*
393  * mapping_set_folio_order_range() - Set the orders supported by a file.
394  * @mapping: The address space of the file.
395  * @min: Minimum folio order (between 0-MAX_PAGECACHE_ORDER inclusive).
396  * @max: Maximum folio order (between @min-MAX_PAGECACHE_ORDER inclusive).
397  *
398  * The filesystem should call this function in its inode constructor to
399  * indicate which base size (min) and maximum size (max) of folio the VFS
400  * can use to cache the contents of the file.  This should only be used
401  * if the filesystem needs special handling of folio sizes (ie there is
402  * something the core cannot know).
403  * Do not tune it based on, eg, i_size.
404  *
405  * Context: This should not be called while the inode is active as it
406  * is non-atomic.
407  */
mapping_set_folio_order_range(struct address_space * mapping,unsigned int min,unsigned int max)408 static inline void mapping_set_folio_order_range(struct address_space *mapping,
409 						 unsigned int min,
410 						 unsigned int max)
411 {
412 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
413 		return;
414 
415 	if (min > MAX_PAGECACHE_ORDER)
416 		min = MAX_PAGECACHE_ORDER;
417 
418 	if (max > MAX_PAGECACHE_ORDER)
419 		max = MAX_PAGECACHE_ORDER;
420 
421 	if (max < min)
422 		max = min;
423 
424 	mapping->flags = (mapping->flags & ~AS_FOLIO_ORDER_MASK) |
425 		(min << AS_FOLIO_ORDER_MIN) | (max << AS_FOLIO_ORDER_MAX);
426 }
427 
mapping_set_folio_min_order(struct address_space * mapping,unsigned int min)428 static inline void mapping_set_folio_min_order(struct address_space *mapping,
429 					       unsigned int min)
430 {
431 	mapping_set_folio_order_range(mapping, min, MAX_PAGECACHE_ORDER);
432 }
433 
434 /**
435  * mapping_set_large_folios() - Indicate the file supports large folios.
436  * @mapping: The address space of the file.
437  *
438  * The filesystem should call this function in its inode constructor to
439  * indicate that the VFS can use large folios to cache the contents of
440  * the file.
441  *
442  * Context: This should not be called while the inode is active as it
443  * is non-atomic.
444  */
mapping_set_large_folios(struct address_space * mapping)445 static inline void mapping_set_large_folios(struct address_space *mapping)
446 {
447 	mapping_set_folio_order_range(mapping, 0, MAX_PAGECACHE_ORDER);
448 }
449 
450 static inline unsigned int
mapping_max_folio_order(const struct address_space * mapping)451 mapping_max_folio_order(const struct address_space *mapping)
452 {
453 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
454 		return 0;
455 	return (mapping->flags & AS_FOLIO_ORDER_MAX_MASK) >> AS_FOLIO_ORDER_MAX;
456 }
457 
458 static inline unsigned int
mapping_min_folio_order(const struct address_space * mapping)459 mapping_min_folio_order(const struct address_space *mapping)
460 {
461 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
462 		return 0;
463 	return (mapping->flags & AS_FOLIO_ORDER_MIN_MASK) >> AS_FOLIO_ORDER_MIN;
464 }
465 
466 static inline unsigned long
mapping_min_folio_nrpages(struct address_space * mapping)467 mapping_min_folio_nrpages(struct address_space *mapping)
468 {
469 	return 1UL << mapping_min_folio_order(mapping);
470 }
471 
472 /**
473  * mapping_align_index() - Align index for this mapping.
474  * @mapping: The address_space.
475  * @index: The page index.
476  *
477  * The index of a folio must be naturally aligned.  If you are adding a
478  * new folio to the page cache and need to know what index to give it,
479  * call this function.
480  */
mapping_align_index(struct address_space * mapping,pgoff_t index)481 static inline pgoff_t mapping_align_index(struct address_space *mapping,
482 					  pgoff_t index)
483 {
484 	return round_down(index, mapping_min_folio_nrpages(mapping));
485 }
486 
487 /*
488  * Large folio support currently depends on THP.  These dependencies are
489  * being worked on but are not yet fixed.
490  */
mapping_large_folio_support(struct address_space * mapping)491 static inline bool mapping_large_folio_support(struct address_space *mapping)
492 {
493 	/* AS_FOLIO_ORDER is only reasonable for pagecache folios */
494 	VM_WARN_ONCE((unsigned long)mapping & PAGE_MAPPING_ANON,
495 			"Anonymous mapping always supports large folio");
496 
497 	return mapping_max_folio_order(mapping) > 0;
498 }
499 
500 /* Return the maximum folio size for this pagecache mapping, in bytes. */
mapping_max_folio_size(const struct address_space * mapping)501 static inline size_t mapping_max_folio_size(const struct address_space *mapping)
502 {
503 	return PAGE_SIZE << mapping_max_folio_order(mapping);
504 }
505 
filemap_nr_thps(struct address_space * mapping)506 static inline int filemap_nr_thps(struct address_space *mapping)
507 {
508 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
509 	return atomic_read(&mapping->nr_thps);
510 #else
511 	return 0;
512 #endif
513 }
514 
filemap_nr_thps_inc(struct address_space * mapping)515 static inline void filemap_nr_thps_inc(struct address_space *mapping)
516 {
517 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
518 	if (!mapping_large_folio_support(mapping))
519 		atomic_inc(&mapping->nr_thps);
520 #else
521 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
522 #endif
523 }
524 
filemap_nr_thps_dec(struct address_space * mapping)525 static inline void filemap_nr_thps_dec(struct address_space *mapping)
526 {
527 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
528 	if (!mapping_large_folio_support(mapping))
529 		atomic_dec(&mapping->nr_thps);
530 #else
531 	WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
532 #endif
533 }
534 
535 struct address_space *folio_mapping(struct folio *);
536 struct address_space *swapcache_mapping(struct folio *);
537 
538 /**
539  * folio_flush_mapping - Find the file mapping this folio belongs to.
540  * @folio: The folio.
541  *
542  * For folios which are in the page cache, return the mapping that this
543  * page belongs to.  Anonymous folios return NULL, even if they're in
544  * the swap cache.  Other kinds of folio also return NULL.
545  *
546  * This is ONLY used by architecture cache flushing code.  If you aren't
547  * writing cache flushing code, you want either folio_mapping() or
548  * folio_file_mapping().
549  */
folio_flush_mapping(struct folio * folio)550 static inline struct address_space *folio_flush_mapping(struct folio *folio)
551 {
552 	if (unlikely(folio_test_swapcache(folio)))
553 		return NULL;
554 
555 	return folio_mapping(folio);
556 }
557 
558 /**
559  * folio_inode - Get the host inode for this folio.
560  * @folio: The folio.
561  *
562  * For folios which are in the page cache, return the inode that this folio
563  * belongs to.
564  *
565  * Do not call this for folios which aren't in the page cache.
566  */
folio_inode(struct folio * folio)567 static inline struct inode *folio_inode(struct folio *folio)
568 {
569 	return folio->mapping->host;
570 }
571 
572 /**
573  * folio_attach_private - Attach private data to a folio.
574  * @folio: Folio to attach data to.
575  * @data: Data to attach to folio.
576  *
577  * Attaching private data to a folio increments the page's reference count.
578  * The data must be detached before the folio will be freed.
579  */
folio_attach_private(struct folio * folio,void * data)580 static inline void folio_attach_private(struct folio *folio, void *data)
581 {
582 	folio_get(folio);
583 	folio->private = data;
584 	folio_set_private(folio);
585 }
586 
587 /**
588  * folio_change_private - Change private data on a folio.
589  * @folio: Folio to change the data on.
590  * @data: Data to set on the folio.
591  *
592  * Change the private data attached to a folio and return the old
593  * data.  The page must previously have had data attached and the data
594  * must be detached before the folio will be freed.
595  *
596  * Return: Data that was previously attached to the folio.
597  */
folio_change_private(struct folio * folio,void * data)598 static inline void *folio_change_private(struct folio *folio, void *data)
599 {
600 	void *old = folio_get_private(folio);
601 
602 	folio->private = data;
603 	return old;
604 }
605 
606 /**
607  * folio_detach_private - Detach private data from a folio.
608  * @folio: Folio to detach data from.
609  *
610  * Removes the data that was previously attached to the folio and decrements
611  * the refcount on the page.
612  *
613  * Return: Data that was attached to the folio.
614  */
folio_detach_private(struct folio * folio)615 static inline void *folio_detach_private(struct folio *folio)
616 {
617 	void *data = folio_get_private(folio);
618 
619 	if (!folio_test_private(folio))
620 		return NULL;
621 	folio_clear_private(folio);
622 	folio->private = NULL;
623 	folio_put(folio);
624 
625 	return data;
626 }
627 
attach_page_private(struct page * page,void * data)628 static inline void attach_page_private(struct page *page, void *data)
629 {
630 	folio_attach_private(page_folio(page), data);
631 }
632 
detach_page_private(struct page * page)633 static inline void *detach_page_private(struct page *page)
634 {
635 	return folio_detach_private(page_folio(page));
636 }
637 
638 #ifdef CONFIG_NUMA
639 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order);
640 #else
filemap_alloc_folio_noprof(gfp_t gfp,unsigned int order)641 static inline struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
642 {
643 	return folio_alloc_noprof(gfp, order);
644 }
645 #endif
646 
647 #define filemap_alloc_folio(...)				\
648 	alloc_hooks(filemap_alloc_folio_noprof(__VA_ARGS__))
649 
__page_cache_alloc(gfp_t gfp)650 static inline struct page *__page_cache_alloc(gfp_t gfp)
651 {
652 	return &filemap_alloc_folio(gfp, 0)->page;
653 }
654 
readahead_gfp_mask(struct address_space * x)655 static inline gfp_t readahead_gfp_mask(struct address_space *x)
656 {
657 	return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
658 }
659 
660 typedef int filler_t(struct file *, struct folio *);
661 
662 pgoff_t page_cache_next_miss(struct address_space *mapping,
663 			     pgoff_t index, unsigned long max_scan);
664 pgoff_t page_cache_prev_miss(struct address_space *mapping,
665 			     pgoff_t index, unsigned long max_scan);
666 
667 /**
668  * typedef fgf_t - Flags for getting folios from the page cache.
669  *
670  * Most users of the page cache will not need to use these flags;
671  * there are convenience functions such as filemap_get_folio() and
672  * filemap_lock_folio().  For users which need more control over exactly
673  * what is done with the folios, these flags to __filemap_get_folio()
674  * are available.
675  *
676  * * %FGP_ACCESSED - The folio will be marked accessed.
677  * * %FGP_LOCK - The folio is returned locked.
678  * * %FGP_CREAT - If no folio is present then a new folio is allocated,
679  *   added to the page cache and the VM's LRU list.  The folio is
680  *   returned locked.
681  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
682  *   folio is already in cache.  If the folio was allocated, unlock it
683  *   before returning so the caller can do the same dance.
684  * * %FGP_WRITE - The folio will be written to by the caller.
685  * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
686  * * %FGP_NOWAIT - Don't block on the folio lock.
687  * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
688  * * %FGP_DONTCACHE - Uncached buffered IO
689  * * %FGP_WRITEBEGIN - The flags to use in a filesystem write_begin()
690  *   implementation.
691  */
692 typedef unsigned int __bitwise fgf_t;
693 
694 #define FGP_ACCESSED		((__force fgf_t)0x00000001)
695 #define FGP_LOCK		((__force fgf_t)0x00000002)
696 #define FGP_CREAT		((__force fgf_t)0x00000004)
697 #define FGP_WRITE		((__force fgf_t)0x00000008)
698 #define FGP_NOFS		((__force fgf_t)0x00000010)
699 #define FGP_NOWAIT		((__force fgf_t)0x00000020)
700 #define FGP_FOR_MMAP		((__force fgf_t)0x00000040)
701 #define FGP_STABLE		((__force fgf_t)0x00000080)
702 #define FGP_DONTCACHE		((__force fgf_t)0x00000100)
703 #define FGF_GET_ORDER(fgf)	(((__force unsigned)fgf) >> 26)	/* top 6 bits */
704 
705 #define FGP_WRITEBEGIN		(FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
706 
filemap_get_order(size_t size)707 static inline unsigned int filemap_get_order(size_t size)
708 {
709 	unsigned int shift = ilog2(size);
710 
711 	if (shift <= PAGE_SHIFT)
712 		return 0;
713 
714 	return shift - PAGE_SHIFT;
715 }
716 
717 /**
718  * fgf_set_order - Encode a length in the fgf_t flags.
719  * @size: The suggested size of the folio to create.
720  *
721  * The caller of __filemap_get_folio() can use this to suggest a preferred
722  * size for the folio that is created.  If there is already a folio at
723  * the index, it will be returned, no matter what its size.  If a folio
724  * is freshly created, it may be of a different size than requested
725  * due to alignment constraints, memory pressure, or the presence of
726  * other folios at nearby indices.
727  */
fgf_set_order(size_t size)728 static inline fgf_t fgf_set_order(size_t size)
729 {
730 	unsigned int order = filemap_get_order(size);
731 
732 	if (!order)
733 		return 0;
734 	return (__force fgf_t)(order << 26);
735 }
736 
737 void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
738 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
739 		fgf_t fgp_flags, gfp_t gfp);
740 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
741 		fgf_t fgp_flags, gfp_t gfp);
742 
743 /**
744  * filemap_get_folio - Find and get a folio.
745  * @mapping: The address_space to search.
746  * @index: The page index.
747  *
748  * Looks up the page cache entry at @mapping & @index.  If a folio is
749  * present, it is returned with an increased refcount.
750  *
751  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
752  * this index.  Will not return a shadow, swap or DAX entry.
753  */
filemap_get_folio(struct address_space * mapping,pgoff_t index)754 static inline struct folio *filemap_get_folio(struct address_space *mapping,
755 					pgoff_t index)
756 {
757 	return __filemap_get_folio(mapping, index, 0, 0);
758 }
759 
760 /**
761  * filemap_lock_folio - Find and lock a folio.
762  * @mapping: The address_space to search.
763  * @index: The page index.
764  *
765  * Looks up the page cache entry at @mapping & @index.  If a folio is
766  * present, it is returned locked with an increased refcount.
767  *
768  * Context: May sleep.
769  * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
770  * this index.  Will not return a shadow, swap or DAX entry.
771  */
filemap_lock_folio(struct address_space * mapping,pgoff_t index)772 static inline struct folio *filemap_lock_folio(struct address_space *mapping,
773 					pgoff_t index)
774 {
775 	return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
776 }
777 
778 /**
779  * filemap_grab_folio - grab a folio from the page cache
780  * @mapping: The address space to search
781  * @index: The page index
782  *
783  * Looks up the page cache entry at @mapping & @index. If no folio is found,
784  * a new folio is created. The folio is locked, marked as accessed, and
785  * returned.
786  *
787  * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
788  * and failed to create a folio.
789  */
filemap_grab_folio(struct address_space * mapping,pgoff_t index)790 static inline struct folio *filemap_grab_folio(struct address_space *mapping,
791 					pgoff_t index)
792 {
793 	return __filemap_get_folio(mapping, index,
794 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
795 			mapping_gfp_mask(mapping));
796 }
797 
798 /**
799  * find_get_page - find and get a page reference
800  * @mapping: the address_space to search
801  * @offset: the page index
802  *
803  * Looks up the page cache slot at @mapping & @offset.  If there is a
804  * page cache page, it is returned with an increased refcount.
805  *
806  * Otherwise, %NULL is returned.
807  */
find_get_page(struct address_space * mapping,pgoff_t offset)808 static inline struct page *find_get_page(struct address_space *mapping,
809 					pgoff_t offset)
810 {
811 	return pagecache_get_page(mapping, offset, 0, 0);
812 }
813 
find_get_page_flags(struct address_space * mapping,pgoff_t offset,fgf_t fgp_flags)814 static inline struct page *find_get_page_flags(struct address_space *mapping,
815 					pgoff_t offset, fgf_t fgp_flags)
816 {
817 	return pagecache_get_page(mapping, offset, fgp_flags, 0);
818 }
819 
820 /**
821  * find_lock_page - locate, pin and lock a pagecache page
822  * @mapping: the address_space to search
823  * @index: the page index
824  *
825  * Looks up the page cache entry at @mapping & @index.  If there is a
826  * page cache page, it is returned locked and with an increased
827  * refcount.
828  *
829  * Context: May sleep.
830  * Return: A struct page or %NULL if there is no page in the cache for this
831  * index.
832  */
find_lock_page(struct address_space * mapping,pgoff_t index)833 static inline struct page *find_lock_page(struct address_space *mapping,
834 					pgoff_t index)
835 {
836 	return pagecache_get_page(mapping, index, FGP_LOCK, 0);
837 }
838 
839 /**
840  * find_or_create_page - locate or add a pagecache page
841  * @mapping: the page's address_space
842  * @index: the page's index into the mapping
843  * @gfp_mask: page allocation mode
844  *
845  * Looks up the page cache slot at @mapping & @offset.  If there is a
846  * page cache page, it is returned locked and with an increased
847  * refcount.
848  *
849  * If the page is not present, a new page is allocated using @gfp_mask
850  * and added to the page cache and the VM's LRU list.  The page is
851  * returned locked and with an increased refcount.
852  *
853  * On memory exhaustion, %NULL is returned.
854  *
855  * find_or_create_page() may sleep, even if @gfp_flags specifies an
856  * atomic allocation!
857  */
find_or_create_page(struct address_space * mapping,pgoff_t index,gfp_t gfp_mask)858 static inline struct page *find_or_create_page(struct address_space *mapping,
859 					pgoff_t index, gfp_t gfp_mask)
860 {
861 	return pagecache_get_page(mapping, index,
862 					FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
863 					gfp_mask);
864 }
865 
866 /**
867  * grab_cache_page_nowait - returns locked page at given index in given cache
868  * @mapping: target address_space
869  * @index: the page index
870  *
871  * Same as grab_cache_page(), but do not wait if the page is unavailable.
872  * This is intended for speculative data generators, where the data can
873  * be regenerated if the page couldn't be grabbed.  This routine should
874  * be safe to call while holding the lock for another page.
875  *
876  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
877  * and deadlock against the caller's locked page.
878  */
grab_cache_page_nowait(struct address_space * mapping,pgoff_t index)879 static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
880 				pgoff_t index)
881 {
882 	return pagecache_get_page(mapping, index,
883 			FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
884 			mapping_gfp_mask(mapping));
885 }
886 
887 extern pgoff_t __folio_swap_cache_index(struct folio *folio);
888 
889 /**
890  * folio_index - File index of a folio.
891  * @folio: The folio.
892  *
893  * For a folio which is either in the page cache or the swap cache,
894  * return its index within the address_space it belongs to.  If you know
895  * the page is definitely in the page cache, you can look at the folio's
896  * index directly.
897  *
898  * Return: The index (offset in units of pages) of a folio in its file.
899  */
folio_index(struct folio * folio)900 static inline pgoff_t folio_index(struct folio *folio)
901 {
902 	if (unlikely(folio_test_swapcache(folio)))
903 		return __folio_swap_cache_index(folio);
904 	return folio->index;
905 }
906 
907 /**
908  * folio_next_index - Get the index of the next folio.
909  * @folio: The current folio.
910  *
911  * Return: The index of the folio which follows this folio in the file.
912  */
folio_next_index(struct folio * folio)913 static inline pgoff_t folio_next_index(struct folio *folio)
914 {
915 	return folio->index + folio_nr_pages(folio);
916 }
917 
918 /**
919  * folio_file_page - The page for a particular index.
920  * @folio: The folio which contains this index.
921  * @index: The index we want to look up.
922  *
923  * Sometimes after looking up a folio in the page cache, we need to
924  * obtain the specific page for an index (eg a page fault).
925  *
926  * Return: The page containing the file data for this index.
927  */
folio_file_page(struct folio * folio,pgoff_t index)928 static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
929 {
930 	return folio_page(folio, index & (folio_nr_pages(folio) - 1));
931 }
932 
933 /**
934  * folio_contains - Does this folio contain this index?
935  * @folio: The folio.
936  * @index: The page index within the file.
937  *
938  * Context: The caller should have the page locked in order to prevent
939  * (eg) shmem from moving the page between the page cache and swap cache
940  * and changing its index in the middle of the operation.
941  * Return: true or false.
942  */
folio_contains(struct folio * folio,pgoff_t index)943 static inline bool folio_contains(struct folio *folio, pgoff_t index)
944 {
945 	return index - folio_index(folio) < folio_nr_pages(folio);
946 }
947 
948 /*
949  * Given the page we found in the page cache, return the page corresponding
950  * to this index in the file
951  */
find_subpage(struct page * head,pgoff_t index)952 static inline struct page *find_subpage(struct page *head, pgoff_t index)
953 {
954 	/* HugeTLBfs wants the head page regardless */
955 	if (PageHuge(head))
956 		return head;
957 
958 	return head + (index & (thp_nr_pages(head) - 1));
959 }
960 
961 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
962 		pgoff_t end, struct folio_batch *fbatch);
963 unsigned filemap_get_folios_contig(struct address_space *mapping,
964 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
965 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
966 		pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
967 
968 /*
969  * Returns locked page at given index in given cache, creating it if needed.
970  */
grab_cache_page(struct address_space * mapping,pgoff_t index)971 static inline struct page *grab_cache_page(struct address_space *mapping,
972 								pgoff_t index)
973 {
974 	return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
975 }
976 
977 struct folio *read_cache_folio(struct address_space *, pgoff_t index,
978 		filler_t *filler, struct file *file);
979 struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
980 		gfp_t flags);
981 struct page *read_cache_page(struct address_space *, pgoff_t index,
982 		filler_t *filler, struct file *file);
983 extern struct page * read_cache_page_gfp(struct address_space *mapping,
984 				pgoff_t index, gfp_t gfp_mask);
985 
read_mapping_page(struct address_space * mapping,pgoff_t index,struct file * file)986 static inline struct page *read_mapping_page(struct address_space *mapping,
987 				pgoff_t index, struct file *file)
988 {
989 	return read_cache_page(mapping, index, NULL, file);
990 }
991 
read_mapping_folio(struct address_space * mapping,pgoff_t index,struct file * file)992 static inline struct folio *read_mapping_folio(struct address_space *mapping,
993 				pgoff_t index, struct file *file)
994 {
995 	return read_cache_folio(mapping, index, NULL, file);
996 }
997 
998 /**
999  * page_pgoff - Calculate the logical page offset of this page.
1000  * @folio: The folio containing this page.
1001  * @page: The page which we need the offset of.
1002  *
1003  * For file pages, this is the offset from the beginning of the file
1004  * in units of PAGE_SIZE.  For anonymous pages, this is the offset from
1005  * the beginning of the anon_vma in units of PAGE_SIZE.  This will
1006  * return nonsense for KSM pages.
1007  *
1008  * Context: Caller must have a reference on the folio or otherwise
1009  * prevent it from being split or freed.
1010  *
1011  * Return: The offset in units of PAGE_SIZE.
1012  */
page_pgoff(const struct folio * folio,const struct page * page)1013 static inline pgoff_t page_pgoff(const struct folio *folio,
1014 		const struct page *page)
1015 {
1016 	return folio->index + folio_page_idx(folio, page);
1017 }
1018 
1019 /**
1020  * folio_pos - Returns the byte position of this folio in its file.
1021  * @folio: The folio.
1022  */
folio_pos(const struct folio * folio)1023 static inline loff_t folio_pos(const struct folio *folio)
1024 {
1025 	return ((loff_t)folio->index) * PAGE_SIZE;
1026 }
1027 
1028 /*
1029  * Return byte-offset into filesystem object for page.
1030  */
page_offset(struct page * page)1031 static inline loff_t page_offset(struct page *page)
1032 {
1033 	struct folio *folio = page_folio(page);
1034 
1035 	return folio_pos(folio) + folio_page_idx(folio, page) * PAGE_SIZE;
1036 }
1037 
1038 /*
1039  * Get the offset in PAGE_SIZE (even for hugetlb folios).
1040  */
folio_pgoff(struct folio * folio)1041 static inline pgoff_t folio_pgoff(struct folio *folio)
1042 {
1043 	return folio->index;
1044 }
1045 
linear_page_index(struct vm_area_struct * vma,unsigned long address)1046 static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
1047 					unsigned long address)
1048 {
1049 	pgoff_t pgoff;
1050 	pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
1051 	pgoff += vma->vm_pgoff;
1052 	return pgoff;
1053 }
1054 
1055 struct wait_page_key {
1056 	struct folio *folio;
1057 	int bit_nr;
1058 	int page_match;
1059 };
1060 
1061 struct wait_page_queue {
1062 	struct folio *folio;
1063 	int bit_nr;
1064 	wait_queue_entry_t wait;
1065 };
1066 
wake_page_match(struct wait_page_queue * wait_page,struct wait_page_key * key)1067 static inline bool wake_page_match(struct wait_page_queue *wait_page,
1068 				  struct wait_page_key *key)
1069 {
1070 	if (wait_page->folio != key->folio)
1071 	       return false;
1072 	key->page_match = 1;
1073 
1074 	if (wait_page->bit_nr != key->bit_nr)
1075 		return false;
1076 
1077 	return true;
1078 }
1079 
1080 void __folio_lock(struct folio *folio);
1081 int __folio_lock_killable(struct folio *folio);
1082 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf);
1083 void unlock_page(struct page *page);
1084 void folio_unlock(struct folio *folio);
1085 
1086 /**
1087  * folio_trylock() - Attempt to lock a folio.
1088  * @folio: The folio to attempt to lock.
1089  *
1090  * Sometimes it is undesirable to wait for a folio to be unlocked (eg
1091  * when the locks are being taken in the wrong order, or if making
1092  * progress through a batch of folios is more important than processing
1093  * them in order).  Usually folio_lock() is the correct function to call.
1094  *
1095  * Context: Any context.
1096  * Return: Whether the lock was successfully acquired.
1097  */
folio_trylock(struct folio * folio)1098 static inline bool folio_trylock(struct folio *folio)
1099 {
1100 	return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
1101 }
1102 
1103 /*
1104  * Return true if the page was successfully locked
1105  */
trylock_page(struct page * page)1106 static inline bool trylock_page(struct page *page)
1107 {
1108 	return folio_trylock(page_folio(page));
1109 }
1110 
1111 /**
1112  * folio_lock() - Lock this folio.
1113  * @folio: The folio to lock.
1114  *
1115  * The folio lock protects against many things, probably more than it
1116  * should.  It is primarily held while a folio is being brought uptodate,
1117  * either from its backing file or from swap.  It is also held while a
1118  * folio is being truncated from its address_space, so holding the lock
1119  * is sufficient to keep folio->mapping stable.
1120  *
1121  * The folio lock is also held while write() is modifying the page to
1122  * provide POSIX atomicity guarantees (as long as the write does not
1123  * cross a page boundary).  Other modifications to the data in the folio
1124  * do not hold the folio lock and can race with writes, eg DMA and stores
1125  * to mapped pages.
1126  *
1127  * Context: May sleep.  If you need to acquire the locks of two or
1128  * more folios, they must be in order of ascending index, if they are
1129  * in the same address_space.  If they are in different address_spaces,
1130  * acquire the lock of the folio which belongs to the address_space which
1131  * has the lowest address in memory first.
1132  */
folio_lock(struct folio * folio)1133 static inline void folio_lock(struct folio *folio)
1134 {
1135 	might_sleep();
1136 	if (!folio_trylock(folio))
1137 		__folio_lock(folio);
1138 }
1139 
1140 /**
1141  * lock_page() - Lock the folio containing this page.
1142  * @page: The page to lock.
1143  *
1144  * See folio_lock() for a description of what the lock protects.
1145  * This is a legacy function and new code should probably use folio_lock()
1146  * instead.
1147  *
1148  * Context: May sleep.  Pages in the same folio share a lock, so do not
1149  * attempt to lock two pages which share a folio.
1150  */
lock_page(struct page * page)1151 static inline void lock_page(struct page *page)
1152 {
1153 	struct folio *folio;
1154 	might_sleep();
1155 
1156 	folio = page_folio(page);
1157 	if (!folio_trylock(folio))
1158 		__folio_lock(folio);
1159 }
1160 
1161 /**
1162  * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
1163  * @folio: The folio to lock.
1164  *
1165  * Attempts to lock the folio, like folio_lock(), except that the sleep
1166  * to acquire the lock is interruptible by a fatal signal.
1167  *
1168  * Context: May sleep; see folio_lock().
1169  * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
1170  */
folio_lock_killable(struct folio * folio)1171 static inline int folio_lock_killable(struct folio *folio)
1172 {
1173 	might_sleep();
1174 	if (!folio_trylock(folio))
1175 		return __folio_lock_killable(folio);
1176 	return 0;
1177 }
1178 
1179 /*
1180  * folio_lock_or_retry - Lock the folio, unless this would block and the
1181  * caller indicated that it can handle a retry.
1182  *
1183  * Return value and mmap_lock implications depend on flags; see
1184  * __folio_lock_or_retry().
1185  */
folio_lock_or_retry(struct folio * folio,struct vm_fault * vmf)1186 static inline vm_fault_t folio_lock_or_retry(struct folio *folio,
1187 					     struct vm_fault *vmf)
1188 {
1189 	might_sleep();
1190 	if (!folio_trylock(folio))
1191 		return __folio_lock_or_retry(folio, vmf);
1192 	return 0;
1193 }
1194 
1195 /*
1196  * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1197  * and should not be used directly.
1198  */
1199 void folio_wait_bit(struct folio *folio, int bit_nr);
1200 int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1201 
1202 /*
1203  * Wait for a folio to be unlocked.
1204  *
1205  * This must be called with the caller "holding" the folio,
1206  * ie with increased folio reference count so that the folio won't
1207  * go away during the wait.
1208  */
folio_wait_locked(struct folio * folio)1209 static inline void folio_wait_locked(struct folio *folio)
1210 {
1211 	if (folio_test_locked(folio))
1212 		folio_wait_bit(folio, PG_locked);
1213 }
1214 
folio_wait_locked_killable(struct folio * folio)1215 static inline int folio_wait_locked_killable(struct folio *folio)
1216 {
1217 	if (!folio_test_locked(folio))
1218 		return 0;
1219 	return folio_wait_bit_killable(folio, PG_locked);
1220 }
1221 
1222 void folio_end_read(struct folio *folio, bool success);
1223 void wait_on_page_writeback(struct page *page);
1224 void folio_wait_writeback(struct folio *folio);
1225 int folio_wait_writeback_killable(struct folio *folio);
1226 void end_page_writeback(struct page *page);
1227 void folio_end_writeback(struct folio *folio);
1228 void folio_wait_stable(struct folio *folio);
1229 void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1230 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1231 void __folio_cancel_dirty(struct folio *folio);
folio_cancel_dirty(struct folio * folio)1232 static inline void folio_cancel_dirty(struct folio *folio)
1233 {
1234 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1235 	if (folio_test_dirty(folio))
1236 		__folio_cancel_dirty(folio);
1237 }
1238 bool folio_clear_dirty_for_io(struct folio *folio);
1239 bool clear_page_dirty_for_io(struct page *page);
1240 void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1241 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1242 
1243 #ifdef CONFIG_MIGRATION
1244 int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1245 		struct folio *src, enum migrate_mode mode);
1246 #else
1247 #define filemap_migrate_folio NULL
1248 #endif
1249 void folio_end_private_2(struct folio *folio);
1250 void folio_wait_private_2(struct folio *folio);
1251 int folio_wait_private_2_killable(struct folio *folio);
1252 
1253 /*
1254  * Fault in userspace address range.
1255  */
1256 size_t fault_in_writeable(char __user *uaddr, size_t size);
1257 size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1258 size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1259 size_t fault_in_readable(const char __user *uaddr, size_t size);
1260 
1261 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1262 		pgoff_t index, gfp_t gfp);
1263 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1264 		pgoff_t index, gfp_t gfp);
1265 void filemap_remove_folio(struct folio *folio);
1266 void __filemap_remove_folio(struct folio *folio, void *shadow);
1267 void replace_page_cache_folio(struct folio *old, struct folio *new);
1268 void delete_from_page_cache_batch(struct address_space *mapping,
1269 				  struct folio_batch *fbatch);
1270 bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1271 loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1272 		int whence);
1273 
1274 /* Must be non-static for BPF error injection */
1275 int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1276 		pgoff_t index, gfp_t gfp, void **shadowp);
1277 
1278 bool filemap_range_has_writeback(struct address_space *mapping,
1279 				 loff_t start_byte, loff_t end_byte);
1280 
1281 /**
1282  * filemap_range_needs_writeback - check if range potentially needs writeback
1283  * @mapping:           address space within which to check
1284  * @start_byte:        offset in bytes where the range starts
1285  * @end_byte:          offset in bytes where the range ends (inclusive)
1286  *
1287  * Find at least one page in the range supplied, usually used to check if
1288  * direct writing in this range will trigger a writeback. Used by O_DIRECT
1289  * read/write with IOCB_NOWAIT, to see if the caller needs to do
1290  * filemap_write_and_wait_range() before proceeding.
1291  *
1292  * Return: %true if the caller should do filemap_write_and_wait_range() before
1293  * doing O_DIRECT to a page in this range, %false otherwise.
1294  */
filemap_range_needs_writeback(struct address_space * mapping,loff_t start_byte,loff_t end_byte)1295 static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1296 						 loff_t start_byte,
1297 						 loff_t end_byte)
1298 {
1299 	if (!mapping->nrpages)
1300 		return false;
1301 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1302 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1303 		return false;
1304 	return filemap_range_has_writeback(mapping, start_byte, end_byte);
1305 }
1306 
1307 /**
1308  * struct readahead_control - Describes a readahead request.
1309  *
1310  * A readahead request is for consecutive pages.  Filesystems which
1311  * implement the ->readahead method should call readahead_page() or
1312  * readahead_page_batch() in a loop and attempt to start I/O against
1313  * each page in the request.
1314  *
1315  * Most of the fields in this struct are private and should be accessed
1316  * by the functions below.
1317  *
1318  * @file: The file, used primarily by network filesystems for authentication.
1319  *	  May be NULL if invoked internally by the filesystem.
1320  * @mapping: Readahead this filesystem object.
1321  * @ra: File readahead state.  May be NULL.
1322  */
1323 struct readahead_control {
1324 	struct file *file;
1325 	struct address_space *mapping;
1326 	struct file_ra_state *ra;
1327 /* private: use the readahead_* accessors instead */
1328 	pgoff_t _index;
1329 	unsigned int _nr_pages;
1330 	unsigned int _batch_count;
1331 	bool dropbehind;
1332 	bool _workingset;
1333 	unsigned long _pflags;
1334 };
1335 
1336 #define DEFINE_READAHEAD(ractl, f, r, m, i)				\
1337 	struct readahead_control ractl = {				\
1338 		.file = f,						\
1339 		.mapping = m,						\
1340 		.ra = r,						\
1341 		._index = i,						\
1342 	}
1343 
1344 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
1345 
1346 void page_cache_ra_unbounded(struct readahead_control *,
1347 		unsigned long nr_to_read, unsigned long lookahead_count);
1348 void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1349 void page_cache_async_ra(struct readahead_control *, struct folio *,
1350 		unsigned long req_count);
1351 void readahead_expand(struct readahead_control *ractl,
1352 		      loff_t new_start, size_t new_len);
1353 
1354 /**
1355  * page_cache_sync_readahead - generic file readahead
1356  * @mapping: address_space which holds the pagecache and I/O vectors
1357  * @ra: file_ra_state which holds the readahead state
1358  * @file: Used by the filesystem for authentication.
1359  * @index: Index of first page to be read.
1360  * @req_count: Total number of pages being read by the caller.
1361  *
1362  * page_cache_sync_readahead() should be called when a cache miss happened:
1363  * it will submit the read.  The readahead logic may decide to piggyback more
1364  * pages onto the read request if access patterns suggest it will improve
1365  * performance.
1366  */
1367 static inline
page_cache_sync_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,pgoff_t index,unsigned long req_count)1368 void page_cache_sync_readahead(struct address_space *mapping,
1369 		struct file_ra_state *ra, struct file *file, pgoff_t index,
1370 		unsigned long req_count)
1371 {
1372 	DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1373 	page_cache_sync_ra(&ractl, req_count);
1374 }
1375 
1376 /**
1377  * page_cache_async_readahead - file readahead for marked pages
1378  * @mapping: address_space which holds the pagecache and I/O vectors
1379  * @ra: file_ra_state which holds the readahead state
1380  * @file: Used by the filesystem for authentication.
1381  * @folio: The folio which triggered the readahead call.
1382  * @req_count: Total number of pages being read by the caller.
1383  *
1384  * page_cache_async_readahead() should be called when a page is used which
1385  * is marked as PageReadahead; this is a marker to suggest that the application
1386  * has used up enough of the readahead window that we should start pulling in
1387  * more pages.
1388  */
1389 static inline
page_cache_async_readahead(struct address_space * mapping,struct file_ra_state * ra,struct file * file,struct folio * folio,unsigned long req_count)1390 void page_cache_async_readahead(struct address_space *mapping,
1391 		struct file_ra_state *ra, struct file *file,
1392 		struct folio *folio, unsigned long req_count)
1393 {
1394 	DEFINE_READAHEAD(ractl, file, ra, mapping, folio->index);
1395 	page_cache_async_ra(&ractl, folio, req_count);
1396 }
1397 
__readahead_folio(struct readahead_control * ractl)1398 static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1399 {
1400 	struct folio *folio;
1401 
1402 	BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1403 	ractl->_nr_pages -= ractl->_batch_count;
1404 	ractl->_index += ractl->_batch_count;
1405 
1406 	if (!ractl->_nr_pages) {
1407 		ractl->_batch_count = 0;
1408 		return NULL;
1409 	}
1410 
1411 	folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1412 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1413 	ractl->_batch_count = folio_nr_pages(folio);
1414 
1415 	return folio;
1416 }
1417 
1418 /**
1419  * readahead_page - Get the next page to read.
1420  * @ractl: The current readahead request.
1421  *
1422  * Context: The page is locked and has an elevated refcount.  The caller
1423  * should decreases the refcount once the page has been submitted for I/O
1424  * and unlock the page once all I/O to that page has completed.
1425  * Return: A pointer to the next page, or %NULL if we are done.
1426  */
readahead_page(struct readahead_control * ractl)1427 static inline struct page *readahead_page(struct readahead_control *ractl)
1428 {
1429 	struct folio *folio = __readahead_folio(ractl);
1430 
1431 	return &folio->page;
1432 }
1433 
1434 /**
1435  * readahead_folio - Get the next folio to read.
1436  * @ractl: The current readahead request.
1437  *
1438  * Context: The folio is locked.  The caller should unlock the folio once
1439  * all I/O to that folio has completed.
1440  * Return: A pointer to the next folio, or %NULL if we are done.
1441  */
readahead_folio(struct readahead_control * ractl)1442 static inline struct folio *readahead_folio(struct readahead_control *ractl)
1443 {
1444 	struct folio *folio = __readahead_folio(ractl);
1445 
1446 	if (folio)
1447 		folio_put(folio);
1448 	return folio;
1449 }
1450 
__readahead_batch(struct readahead_control * rac,struct page ** array,unsigned int array_sz)1451 static inline unsigned int __readahead_batch(struct readahead_control *rac,
1452 		struct page **array, unsigned int array_sz)
1453 {
1454 	unsigned int i = 0;
1455 	XA_STATE(xas, &rac->mapping->i_pages, 0);
1456 	struct page *page;
1457 
1458 	BUG_ON(rac->_batch_count > rac->_nr_pages);
1459 	rac->_nr_pages -= rac->_batch_count;
1460 	rac->_index += rac->_batch_count;
1461 	rac->_batch_count = 0;
1462 
1463 	xas_set(&xas, rac->_index);
1464 	rcu_read_lock();
1465 	xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1466 		if (xas_retry(&xas, page))
1467 			continue;
1468 		VM_BUG_ON_PAGE(!PageLocked(page), page);
1469 		VM_BUG_ON_PAGE(PageTail(page), page);
1470 		array[i++] = page;
1471 		rac->_batch_count += thp_nr_pages(page);
1472 		if (i == array_sz)
1473 			break;
1474 	}
1475 	rcu_read_unlock();
1476 
1477 	return i;
1478 }
1479 
1480 /**
1481  * readahead_page_batch - Get a batch of pages to read.
1482  * @rac: The current readahead request.
1483  * @array: An array of pointers to struct page.
1484  *
1485  * Context: The pages are locked and have an elevated refcount.  The caller
1486  * should decreases the refcount once the page has been submitted for I/O
1487  * and unlock the page once all I/O to that page has completed.
1488  * Return: The number of pages placed in the array.  0 indicates the request
1489  * is complete.
1490  */
1491 #define readahead_page_batch(rac, array)				\
1492 	__readahead_batch(rac, array, ARRAY_SIZE(array))
1493 
1494 /**
1495  * readahead_pos - The byte offset into the file of this readahead request.
1496  * @rac: The readahead request.
1497  */
readahead_pos(struct readahead_control * rac)1498 static inline loff_t readahead_pos(struct readahead_control *rac)
1499 {
1500 	return (loff_t)rac->_index * PAGE_SIZE;
1501 }
1502 
1503 /**
1504  * readahead_length - The number of bytes in this readahead request.
1505  * @rac: The readahead request.
1506  */
readahead_length(struct readahead_control * rac)1507 static inline size_t readahead_length(struct readahead_control *rac)
1508 {
1509 	return rac->_nr_pages * PAGE_SIZE;
1510 }
1511 
1512 /**
1513  * readahead_index - The index of the first page in this readahead request.
1514  * @rac: The readahead request.
1515  */
readahead_index(struct readahead_control * rac)1516 static inline pgoff_t readahead_index(struct readahead_control *rac)
1517 {
1518 	return rac->_index;
1519 }
1520 
1521 /**
1522  * readahead_count - The number of pages in this readahead request.
1523  * @rac: The readahead request.
1524  */
readahead_count(struct readahead_control * rac)1525 static inline unsigned int readahead_count(struct readahead_control *rac)
1526 {
1527 	return rac->_nr_pages;
1528 }
1529 
1530 /**
1531  * readahead_batch_length - The number of bytes in the current batch.
1532  * @rac: The readahead request.
1533  */
readahead_batch_length(struct readahead_control * rac)1534 static inline size_t readahead_batch_length(struct readahead_control *rac)
1535 {
1536 	return rac->_batch_count * PAGE_SIZE;
1537 }
1538 
dir_pages(struct inode * inode)1539 static inline unsigned long dir_pages(struct inode *inode)
1540 {
1541 	return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1542 			       PAGE_SHIFT;
1543 }
1544 
1545 /**
1546  * folio_mkwrite_check_truncate - check if folio was truncated
1547  * @folio: the folio to check
1548  * @inode: the inode to check the folio against
1549  *
1550  * Return: the number of bytes in the folio up to EOF,
1551  * or -EFAULT if the folio was truncated.
1552  */
folio_mkwrite_check_truncate(struct folio * folio,struct inode * inode)1553 static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1554 					      struct inode *inode)
1555 {
1556 	loff_t size = i_size_read(inode);
1557 	pgoff_t index = size >> PAGE_SHIFT;
1558 	size_t offset = offset_in_folio(folio, size);
1559 
1560 	if (!folio->mapping)
1561 		return -EFAULT;
1562 
1563 	/* folio is wholly inside EOF */
1564 	if (folio_next_index(folio) - 1 < index)
1565 		return folio_size(folio);
1566 	/* folio is wholly past EOF */
1567 	if (folio->index > index || !offset)
1568 		return -EFAULT;
1569 	/* folio is partially inside EOF */
1570 	return offset;
1571 }
1572 
1573 /**
1574  * i_blocks_per_folio - How many blocks fit in this folio.
1575  * @inode: The inode which contains the blocks.
1576  * @folio: The folio.
1577  *
1578  * If the block size is larger than the size of this folio, return zero.
1579  *
1580  * Context: The caller should hold a refcount on the folio to prevent it
1581  * from being split.
1582  * Return: The number of filesystem blocks covered by this folio.
1583  */
1584 static inline
i_blocks_per_folio(struct inode * inode,struct folio * folio)1585 unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1586 {
1587 	return folio_size(folio) >> inode->i_blkbits;
1588 }
1589 #endif /* _LINUX_PAGEMAP_H */
1590