1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 #include <linux/cacheinfo.h>
35 #include <linux/rcuwait.h>
36
37 struct mempolicy;
38 struct anon_vma;
39 struct anon_vma_chain;
40 struct user_struct;
41 struct pt_regs;
42 struct folio_batch;
43
44 void arch_mm_preinit(void);
45 void mm_core_init(void);
46 void init_mm_internals(void);
47
48 extern atomic_long_t _totalram_pages;
totalram_pages(void)49 static inline unsigned long totalram_pages(void)
50 {
51 return (unsigned long)atomic_long_read(&_totalram_pages);
52 }
53
totalram_pages_inc(void)54 static inline void totalram_pages_inc(void)
55 {
56 atomic_long_inc(&_totalram_pages);
57 }
58
totalram_pages_dec(void)59 static inline void totalram_pages_dec(void)
60 {
61 atomic_long_dec(&_totalram_pages);
62 }
63
totalram_pages_add(long count)64 static inline void totalram_pages_add(long count)
65 {
66 atomic_long_add(count, &_totalram_pages);
67 }
68
69 extern void * high_memory;
70
71 #ifdef CONFIG_SYSCTL
72 extern int sysctl_legacy_va_layout;
73 #else
74 #define sysctl_legacy_va_layout 0
75 #endif
76
77 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
78 extern const int mmap_rnd_bits_min;
79 extern int mmap_rnd_bits_max __ro_after_init;
80 extern int mmap_rnd_bits __read_mostly;
81 #endif
82 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
83 extern const int mmap_rnd_compat_bits_min;
84 extern const int mmap_rnd_compat_bits_max;
85 extern int mmap_rnd_compat_bits __read_mostly;
86 #endif
87
88 #ifndef DIRECT_MAP_PHYSMEM_END
89 # ifdef MAX_PHYSMEM_BITS
90 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1)
91 # else
92 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63))
93 # endif
94 #endif
95
96 #include <asm/page.h>
97 #include <asm/processor.h>
98
99 #ifndef __pa_symbol
100 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
101 #endif
102
103 #ifndef page_to_virt
104 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
105 #endif
106
107 #ifndef lm_alias
108 #define lm_alias(x) __va(__pa_symbol(x))
109 #endif
110
111 /*
112 * To prevent common memory management code establishing
113 * a zero page mapping on a read fault.
114 * This macro should be defined within <asm/pgtable.h>.
115 * s390 does this to prevent multiplexing of hardware bits
116 * related to the physical page in case of virtualization.
117 */
118 #ifndef mm_forbids_zeropage
119 #define mm_forbids_zeropage(X) (0)
120 #endif
121
122 /*
123 * On some architectures it is expensive to call memset() for small sizes.
124 * If an architecture decides to implement their own version of
125 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
126 * define their own version of this macro in <asm/pgtable.h>
127 */
128 #if BITS_PER_LONG == 64
129 /* This function must be updated when the size of struct page grows above 96
130 * or reduces below 56. The idea that compiler optimizes out switch()
131 * statement, and only leaves move/store instructions. Also the compiler can
132 * combine write statements if they are both assignments and can be reordered,
133 * this can result in several of the writes here being dropped.
134 */
135 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)136 static inline void __mm_zero_struct_page(struct page *page)
137 {
138 unsigned long *_pp = (void *)page;
139
140 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
141 BUILD_BUG_ON(sizeof(struct page) & 7);
142 BUILD_BUG_ON(sizeof(struct page) < 56);
143 BUILD_BUG_ON(sizeof(struct page) > 96);
144
145 switch (sizeof(struct page)) {
146 case 96:
147 _pp[11] = 0;
148 fallthrough;
149 case 88:
150 _pp[10] = 0;
151 fallthrough;
152 case 80:
153 _pp[9] = 0;
154 fallthrough;
155 case 72:
156 _pp[8] = 0;
157 fallthrough;
158 case 64:
159 _pp[7] = 0;
160 fallthrough;
161 case 56:
162 _pp[6] = 0;
163 _pp[5] = 0;
164 _pp[4] = 0;
165 _pp[3] = 0;
166 _pp[2] = 0;
167 _pp[1] = 0;
168 _pp[0] = 0;
169 }
170 }
171 #else
172 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
173 #endif
174
175 /*
176 * Default maximum number of active map areas, this limits the number of vmas
177 * per mm struct. Users can overwrite this number by sysctl but there is a
178 * problem.
179 *
180 * When a program's coredump is generated as ELF format, a section is created
181 * per a vma. In ELF, the number of sections is represented in unsigned short.
182 * This means the number of sections should be smaller than 65535 at coredump.
183 * Because the kernel adds some informative sections to a image of program at
184 * generating coredump, we need some margin. The number of extra sections is
185 * 1-3 now and depends on arch. We use "5" as safe margin, here.
186 *
187 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
188 * not a hard limit any more. Although some userspace tools can be surprised by
189 * that.
190 */
191 #define MAPCOUNT_ELF_CORE_MARGIN (5)
192 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
193
194 extern int sysctl_max_map_count;
195
196 extern unsigned long sysctl_user_reserve_kbytes;
197 extern unsigned long sysctl_admin_reserve_kbytes;
198
199 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
200 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
201 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
202 #else
203 #define nth_page(page,n) ((page) + (n))
204 #define folio_page_idx(folio, p) ((p) - &(folio)->page)
205 #endif
206
207 /* to align the pointer to the (next) page boundary */
208 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
209
210 /* to align the pointer to the (prev) page boundary */
211 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
212
213 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
214 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
215
lru_to_folio(struct list_head * head)216 static inline struct folio *lru_to_folio(struct list_head *head)
217 {
218 return list_entry((head)->prev, struct folio, lru);
219 }
220
221 void setup_initial_init_mm(void *start_code, void *end_code,
222 void *end_data, void *brk);
223
224 /*
225 * Linux kernel virtual memory manager primitives.
226 * The idea being to have a "virtual" mm in the same way
227 * we have a virtual fs - giving a cleaner interface to the
228 * mm details, and allowing different kinds of memory mappings
229 * (from shared memory to executable loading to arbitrary
230 * mmap() functions).
231 */
232
233 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
234 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
235 void vm_area_free(struct vm_area_struct *);
236
237 #ifndef CONFIG_MMU
238 extern struct rb_root nommu_region_tree;
239 extern struct rw_semaphore nommu_region_sem;
240
241 extern unsigned int kobjsize(const void *objp);
242 #endif
243
244 /*
245 * vm_flags in vm_area_struct, see mm_types.h.
246 * When changing, update also include/trace/events/mmflags.h
247 */
248 #define VM_NONE 0x00000000
249
250 #define VM_READ 0x00000001 /* currently active flags */
251 #define VM_WRITE 0x00000002
252 #define VM_EXEC 0x00000004
253 #define VM_SHARED 0x00000008
254
255 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
256 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
257 #define VM_MAYWRITE 0x00000020
258 #define VM_MAYEXEC 0x00000040
259 #define VM_MAYSHARE 0x00000080
260
261 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
262 #ifdef CONFIG_MMU
263 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
264 #else /* CONFIG_MMU */
265 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
266 #define VM_UFFD_MISSING 0
267 #endif /* CONFIG_MMU */
268 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
269 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
270
271 #define VM_LOCKED 0x00002000
272 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
273
274 /* Used by sys_madvise() */
275 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
276 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
277
278 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
279 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
280 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
281 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
282 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
283 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
284 #define VM_SYNC 0x00800000 /* Synchronous page faults */
285 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
286 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
287 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
288
289 #ifdef CONFIG_MEM_SOFT_DIRTY
290 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
291 #else
292 # define VM_SOFTDIRTY 0
293 #endif
294
295 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
296 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
297 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
298 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
299
300 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
301 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
302 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
303 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
306 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */
308 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
309 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
310 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
311 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
312 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
313 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5)
314 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6)
315 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
316
317 #ifdef CONFIG_ARCH_HAS_PKEYS
318 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
319 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0
320 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1
321 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
322 #if CONFIG_ARCH_PKEY_BITS > 3
323 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
324 #else
325 # define VM_PKEY_BIT3 0
326 #endif
327 #if CONFIG_ARCH_PKEY_BITS > 4
328 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
329 #else
330 # define VM_PKEY_BIT4 0
331 #endif
332 #endif /* CONFIG_ARCH_HAS_PKEYS */
333
334 #ifdef CONFIG_X86_USER_SHADOW_STACK
335 /*
336 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
337 * support core mm.
338 *
339 * These VMAs will get a single end guard page. This helps userspace protect
340 * itself from attacks. A single page is enough for current shadow stack archs
341 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
342 * for more details on the guard size.
343 */
344 # define VM_SHADOW_STACK VM_HIGH_ARCH_5
345 #endif
346
347 #if defined(CONFIG_ARM64_GCS)
348 /*
349 * arm64's Guarded Control Stack implements similar functionality and
350 * has similar constraints to shadow stacks.
351 */
352 # define VM_SHADOW_STACK VM_HIGH_ARCH_6
353 #endif
354
355 #ifndef VM_SHADOW_STACK
356 # define VM_SHADOW_STACK VM_NONE
357 #endif
358
359 #if defined(CONFIG_X86)
360 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
361 #elif defined(CONFIG_PPC64)
362 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
363 #elif defined(CONFIG_PARISC)
364 # define VM_GROWSUP VM_ARCH_1
365 #elif defined(CONFIG_SPARC64)
366 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
367 # define VM_ARCH_CLEAR VM_SPARC_ADI
368 #elif defined(CONFIG_ARM64)
369 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
370 # define VM_ARCH_CLEAR VM_ARM64_BTI
371 #elif !defined(CONFIG_MMU)
372 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
373 #endif
374
375 #if defined(CONFIG_ARM64_MTE)
376 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */
377 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */
378 #else
379 # define VM_MTE VM_NONE
380 # define VM_MTE_ALLOWED VM_NONE
381 #endif
382
383 #ifndef VM_GROWSUP
384 # define VM_GROWSUP VM_NONE
385 #endif
386
387 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
388 # define VM_UFFD_MINOR_BIT 41
389 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
390 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
391 # define VM_UFFD_MINOR VM_NONE
392 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
393
394 /*
395 * This flag is used to connect VFIO to arch specific KVM code. It
396 * indicates that the memory under this VMA is safe for use with any
397 * non-cachable memory type inside KVM. Some VFIO devices, on some
398 * platforms, are thought to be unsafe and can cause machine crashes
399 * if KVM does not lock down the memory type.
400 */
401 #ifdef CONFIG_64BIT
402 #define VM_ALLOW_ANY_UNCACHED_BIT 39
403 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT)
404 #else
405 #define VM_ALLOW_ANY_UNCACHED VM_NONE
406 #endif
407
408 #ifdef CONFIG_64BIT
409 #define VM_DROPPABLE_BIT 40
410 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT)
411 #elif defined(CONFIG_PPC32)
412 #define VM_DROPPABLE VM_ARCH_1
413 #else
414 #define VM_DROPPABLE VM_NONE
415 #endif
416
417 #ifdef CONFIG_64BIT
418 /* VM is sealed, in vm_flags */
419 #define VM_SEALED _BITUL(63)
420 #endif
421
422 /* Bits set in the VMA until the stack is in its final location */
423 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
424
425 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
426
427 /* Common data flag combinations */
428 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
429 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
430 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
431 VM_MAYWRITE | VM_MAYEXEC)
432 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
433 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
434
435 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
436 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
437 #endif
438
439 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
440 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
441 #endif
442
443 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
444
445 #ifdef CONFIG_STACK_GROWSUP
446 #define VM_STACK VM_GROWSUP
447 #define VM_STACK_EARLY VM_GROWSDOWN
448 #else
449 #define VM_STACK VM_GROWSDOWN
450 #define VM_STACK_EARLY 0
451 #endif
452
453 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
454
455 /* VMA basic access permission flags */
456 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
457
458
459 /*
460 * Special vmas that are non-mergable, non-mlock()able.
461 */
462 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
463
464 /* This mask prevents VMA from being scanned with khugepaged */
465 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
466
467 /* This mask defines which mm->def_flags a process can inherit its parent */
468 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
469
470 /* This mask represents all the VMA flag bits used by mlock */
471 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
472
473 /* Arch-specific flags to clear when updating VM flags on protection change */
474 #ifndef VM_ARCH_CLEAR
475 # define VM_ARCH_CLEAR VM_NONE
476 #endif
477 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
478
479 /*
480 * mapping from the currently active vm_flags protection bits (the
481 * low four bits) to a page protection mask..
482 */
483
484 /*
485 * The default fault flags that should be used by most of the
486 * arch-specific page fault handlers.
487 */
488 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
489 FAULT_FLAG_KILLABLE | \
490 FAULT_FLAG_INTERRUPTIBLE)
491
492 /**
493 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
494 * @flags: Fault flags.
495 *
496 * This is mostly used for places where we want to try to avoid taking
497 * the mmap_lock for too long a time when waiting for another condition
498 * to change, in which case we can try to be polite to release the
499 * mmap_lock in the first round to avoid potential starvation of other
500 * processes that would also want the mmap_lock.
501 *
502 * Return: true if the page fault allows retry and this is the first
503 * attempt of the fault handling; false otherwise.
504 */
fault_flag_allow_retry_first(enum fault_flag flags)505 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
506 {
507 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
508 (!(flags & FAULT_FLAG_TRIED));
509 }
510
511 #define FAULT_FLAG_TRACE \
512 { FAULT_FLAG_WRITE, "WRITE" }, \
513 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
514 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
515 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
516 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
517 { FAULT_FLAG_TRIED, "TRIED" }, \
518 { FAULT_FLAG_USER, "USER" }, \
519 { FAULT_FLAG_REMOTE, "REMOTE" }, \
520 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
521 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
522 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
523
524 /*
525 * vm_fault is filled by the pagefault handler and passed to the vma's
526 * ->fault function. The vma's ->fault is responsible for returning a bitmask
527 * of VM_FAULT_xxx flags that give details about how the fault was handled.
528 *
529 * MM layer fills up gfp_mask for page allocations but fault handler might
530 * alter it if its implementation requires a different allocation context.
531 *
532 * pgoff should be used in favour of virtual_address, if possible.
533 */
534 struct vm_fault {
535 const struct {
536 struct vm_area_struct *vma; /* Target VMA */
537 gfp_t gfp_mask; /* gfp mask to be used for allocations */
538 pgoff_t pgoff; /* Logical page offset based on vma */
539 unsigned long address; /* Faulting virtual address - masked */
540 unsigned long real_address; /* Faulting virtual address - unmasked */
541 };
542 enum fault_flag flags; /* FAULT_FLAG_xxx flags
543 * XXX: should really be 'const' */
544 pmd_t *pmd; /* Pointer to pmd entry matching
545 * the 'address' */
546 pud_t *pud; /* Pointer to pud entry matching
547 * the 'address'
548 */
549 union {
550 pte_t orig_pte; /* Value of PTE at the time of fault */
551 pmd_t orig_pmd; /* Value of PMD at the time of fault,
552 * used by PMD fault only.
553 */
554 };
555
556 struct page *cow_page; /* Page handler may use for COW fault */
557 struct page *page; /* ->fault handlers should return a
558 * page here, unless VM_FAULT_NOPAGE
559 * is set (which is also implied by
560 * VM_FAULT_ERROR).
561 */
562 /* These three entries are valid only while holding ptl lock */
563 pte_t *pte; /* Pointer to pte entry matching
564 * the 'address'. NULL if the page
565 * table hasn't been allocated.
566 */
567 spinlock_t *ptl; /* Page table lock.
568 * Protects pte page table if 'pte'
569 * is not NULL, otherwise pmd.
570 */
571 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
572 * vm_ops->map_pages() sets up a page
573 * table from atomic context.
574 * do_fault_around() pre-allocates
575 * page table to avoid allocation from
576 * atomic context.
577 */
578 };
579
580 /*
581 * These are the virtual MM functions - opening of an area, closing and
582 * unmapping it (needed to keep files on disk up-to-date etc), pointer
583 * to the functions called when a no-page or a wp-page exception occurs.
584 */
585 struct vm_operations_struct {
586 void (*open)(struct vm_area_struct * area);
587 /**
588 * @close: Called when the VMA is being removed from the MM.
589 * Context: User context. May sleep. Caller holds mmap_lock.
590 */
591 void (*close)(struct vm_area_struct * area);
592 /* Called any time before splitting to check if it's allowed */
593 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
594 int (*mremap)(struct vm_area_struct *area);
595 /*
596 * Called by mprotect() to make driver-specific permission
597 * checks before mprotect() is finalised. The VMA must not
598 * be modified. Returns 0 if mprotect() can proceed.
599 */
600 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
601 unsigned long end, unsigned long newflags);
602 vm_fault_t (*fault)(struct vm_fault *vmf);
603 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
604 vm_fault_t (*map_pages)(struct vm_fault *vmf,
605 pgoff_t start_pgoff, pgoff_t end_pgoff);
606 unsigned long (*pagesize)(struct vm_area_struct * area);
607
608 /* notification that a previously read-only page is about to become
609 * writable, if an error is returned it will cause a SIGBUS */
610 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
611
612 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
613 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
614
615 /* called by access_process_vm when get_user_pages() fails, typically
616 * for use by special VMAs. See also generic_access_phys() for a generic
617 * implementation useful for any iomem mapping.
618 */
619 int (*access)(struct vm_area_struct *vma, unsigned long addr,
620 void *buf, int len, int write);
621
622 /* Called by the /proc/PID/maps code to ask the vma whether it
623 * has a special name. Returning non-NULL will also cause this
624 * vma to be dumped unconditionally. */
625 const char *(*name)(struct vm_area_struct *vma);
626
627 #ifdef CONFIG_NUMA
628 /*
629 * set_policy() op must add a reference to any non-NULL @new mempolicy
630 * to hold the policy upon return. Caller should pass NULL @new to
631 * remove a policy and fall back to surrounding context--i.e. do not
632 * install a MPOL_DEFAULT policy, nor the task or system default
633 * mempolicy.
634 */
635 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
636
637 /*
638 * get_policy() op must add reference [mpol_get()] to any policy at
639 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
640 * in mm/mempolicy.c will do this automatically.
641 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
642 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
643 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
644 * must return NULL--i.e., do not "fallback" to task or system default
645 * policy.
646 */
647 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
648 unsigned long addr, pgoff_t *ilx);
649 #endif
650 /*
651 * Called by vm_normal_page() for special PTEs to find the
652 * page for @addr. This is useful if the default behavior
653 * (using pte_page()) would not find the correct page.
654 */
655 struct page *(*find_special_page)(struct vm_area_struct *vma,
656 unsigned long addr);
657 };
658
659 #ifdef CONFIG_NUMA_BALANCING
vma_numab_state_init(struct vm_area_struct * vma)660 static inline void vma_numab_state_init(struct vm_area_struct *vma)
661 {
662 vma->numab_state = NULL;
663 }
vma_numab_state_free(struct vm_area_struct * vma)664 static inline void vma_numab_state_free(struct vm_area_struct *vma)
665 {
666 kfree(vma->numab_state);
667 }
668 #else
vma_numab_state_init(struct vm_area_struct * vma)669 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
vma_numab_state_free(struct vm_area_struct * vma)670 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
671 #endif /* CONFIG_NUMA_BALANCING */
672
673 #ifdef CONFIG_PER_VMA_LOCK
vma_lock_init(struct vm_area_struct * vma,bool reset_refcnt)674 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt)
675 {
676 #ifdef CONFIG_DEBUG_LOCK_ALLOC
677 static struct lock_class_key lockdep_key;
678
679 lockdep_init_map(&vma->vmlock_dep_map, "vm_lock", &lockdep_key, 0);
680 #endif
681 if (reset_refcnt)
682 refcount_set(&vma->vm_refcnt, 0);
683 vma->vm_lock_seq = UINT_MAX;
684 }
685
is_vma_writer_only(int refcnt)686 static inline bool is_vma_writer_only(int refcnt)
687 {
688 /*
689 * With a writer and no readers, refcnt is VMA_LOCK_OFFSET if the vma
690 * is detached and (VMA_LOCK_OFFSET + 1) if it is attached. Waiting on
691 * a detached vma happens only in vma_mark_detached() and is a rare
692 * case, therefore most of the time there will be no unnecessary wakeup.
693 */
694 return refcnt & VMA_LOCK_OFFSET && refcnt <= VMA_LOCK_OFFSET + 1;
695 }
696
vma_refcount_put(struct vm_area_struct * vma)697 static inline void vma_refcount_put(struct vm_area_struct *vma)
698 {
699 /* Use a copy of vm_mm in case vma is freed after we drop vm_refcnt */
700 struct mm_struct *mm = vma->vm_mm;
701 int oldcnt;
702
703 rwsem_release(&vma->vmlock_dep_map, _RET_IP_);
704 if (!__refcount_dec_and_test(&vma->vm_refcnt, &oldcnt)) {
705
706 if (is_vma_writer_only(oldcnt - 1))
707 rcuwait_wake_up(&mm->vma_writer_wait);
708 }
709 }
710
711 /*
712 * Try to read-lock a vma. The function is allowed to occasionally yield false
713 * locked result to avoid performance overhead, in which case we fall back to
714 * using mmap_lock. The function should never yield false unlocked result.
715 * False locked result is possible if mm_lock_seq overflows or if vma gets
716 * reused and attached to a different mm before we lock it.
717 * Returns the vma on success, NULL on failure to lock and EAGAIN if vma got
718 * detached.
719 */
vma_start_read(struct mm_struct * mm,struct vm_area_struct * vma)720 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm,
721 struct vm_area_struct *vma)
722 {
723 int oldcnt;
724
725 /*
726 * Check before locking. A race might cause false locked result.
727 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
728 * ACQUIRE semantics, because this is just a lockless check whose result
729 * we don't rely on for anything - the mm_lock_seq read against which we
730 * need ordering is below.
731 */
732 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(mm->mm_lock_seq.sequence))
733 return NULL;
734
735 /*
736 * If VMA_LOCK_OFFSET is set, __refcount_inc_not_zero_limited_acquire()
737 * will fail because VMA_REF_LIMIT is less than VMA_LOCK_OFFSET.
738 * Acquire fence is required here to avoid reordering against later
739 * vm_lock_seq check and checks inside lock_vma_under_rcu().
740 */
741 if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt,
742 VMA_REF_LIMIT))) {
743 /* return EAGAIN if vma got detached from under us */
744 return oldcnt ? NULL : ERR_PTR(-EAGAIN);
745 }
746
747 rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_);
748 /*
749 * Overflow of vm_lock_seq/mm_lock_seq might produce false locked result.
750 * False unlocked result is impossible because we modify and check
751 * vma->vm_lock_seq under vma->vm_refcnt protection and mm->mm_lock_seq
752 * modification invalidates all existing locks.
753 *
754 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
755 * racing with vma_end_write_all(), we only start reading from the VMA
756 * after it has been unlocked.
757 * This pairs with RELEASE semantics in vma_end_write_all().
758 */
759 if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&mm->mm_lock_seq))) {
760 vma_refcount_put(vma);
761 return NULL;
762 }
763
764 return vma;
765 }
766
767 /*
768 * Use only while holding mmap read lock which guarantees that locking will not
769 * fail (nobody can concurrently write-lock the vma). vma_start_read() should
770 * not be used in such cases because it might fail due to mm_lock_seq overflow.
771 * This functionality is used to obtain vma read lock and drop the mmap read lock.
772 */
vma_start_read_locked_nested(struct vm_area_struct * vma,int subclass)773 static inline bool vma_start_read_locked_nested(struct vm_area_struct *vma, int subclass)
774 {
775 int oldcnt;
776
777 mmap_assert_locked(vma->vm_mm);
778 if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt,
779 VMA_REF_LIMIT)))
780 return false;
781
782 rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_);
783 return true;
784 }
785
786 /*
787 * Use only while holding mmap read lock which guarantees that locking will not
788 * fail (nobody can concurrently write-lock the vma). vma_start_read() should
789 * not be used in such cases because it might fail due to mm_lock_seq overflow.
790 * This functionality is used to obtain vma read lock and drop the mmap read lock.
791 */
vma_start_read_locked(struct vm_area_struct * vma)792 static inline bool vma_start_read_locked(struct vm_area_struct *vma)
793 {
794 return vma_start_read_locked_nested(vma, 0);
795 }
796
vma_end_read(struct vm_area_struct * vma)797 static inline void vma_end_read(struct vm_area_struct *vma)
798 {
799 vma_refcount_put(vma);
800 }
801
802 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
__is_vma_write_locked(struct vm_area_struct * vma,unsigned int * mm_lock_seq)803 static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq)
804 {
805 mmap_assert_write_locked(vma->vm_mm);
806
807 /*
808 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
809 * mm->mm_lock_seq can't be concurrently modified.
810 */
811 *mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence;
812 return (vma->vm_lock_seq == *mm_lock_seq);
813 }
814
815 void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq);
816
817 /*
818 * Begin writing to a VMA.
819 * Exclude concurrent readers under the per-VMA lock until the currently
820 * write-locked mmap_lock is dropped or downgraded.
821 */
vma_start_write(struct vm_area_struct * vma)822 static inline void vma_start_write(struct vm_area_struct *vma)
823 {
824 unsigned int mm_lock_seq;
825
826 if (__is_vma_write_locked(vma, &mm_lock_seq))
827 return;
828
829 __vma_start_write(vma, mm_lock_seq);
830 }
831
vma_assert_write_locked(struct vm_area_struct * vma)832 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
833 {
834 unsigned int mm_lock_seq;
835
836 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
837 }
838
vma_assert_locked(struct vm_area_struct * vma)839 static inline void vma_assert_locked(struct vm_area_struct *vma)
840 {
841 unsigned int mm_lock_seq;
842
843 VM_BUG_ON_VMA(refcount_read(&vma->vm_refcnt) <= 1 &&
844 !__is_vma_write_locked(vma, &mm_lock_seq), vma);
845 }
846
847 /*
848 * WARNING: to avoid racing with vma_mark_attached()/vma_mark_detached(), these
849 * assertions should be made either under mmap_write_lock or when the object
850 * has been isolated under mmap_write_lock, ensuring no competing writers.
851 */
vma_assert_attached(struct vm_area_struct * vma)852 static inline void vma_assert_attached(struct vm_area_struct *vma)
853 {
854 WARN_ON_ONCE(!refcount_read(&vma->vm_refcnt));
855 }
856
vma_assert_detached(struct vm_area_struct * vma)857 static inline void vma_assert_detached(struct vm_area_struct *vma)
858 {
859 WARN_ON_ONCE(refcount_read(&vma->vm_refcnt));
860 }
861
vma_mark_attached(struct vm_area_struct * vma)862 static inline void vma_mark_attached(struct vm_area_struct *vma)
863 {
864 vma_assert_write_locked(vma);
865 vma_assert_detached(vma);
866 refcount_set_release(&vma->vm_refcnt, 1);
867 }
868
869 void vma_mark_detached(struct vm_area_struct *vma);
870
release_fault_lock(struct vm_fault * vmf)871 static inline void release_fault_lock(struct vm_fault *vmf)
872 {
873 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
874 vma_end_read(vmf->vma);
875 else
876 mmap_read_unlock(vmf->vma->vm_mm);
877 }
878
assert_fault_locked(struct vm_fault * vmf)879 static inline void assert_fault_locked(struct vm_fault *vmf)
880 {
881 if (vmf->flags & FAULT_FLAG_VMA_LOCK)
882 vma_assert_locked(vmf->vma);
883 else
884 mmap_assert_locked(vmf->vma->vm_mm);
885 }
886
887 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
888 unsigned long address);
889
890 #else /* CONFIG_PER_VMA_LOCK */
891
vma_lock_init(struct vm_area_struct * vma,bool reset_refcnt)892 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) {}
vma_start_read(struct mm_struct * mm,struct vm_area_struct * vma)893 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm,
894 struct vm_area_struct *vma)
895 { return NULL; }
vma_end_read(struct vm_area_struct * vma)896 static inline void vma_end_read(struct vm_area_struct *vma) {}
vma_start_write(struct vm_area_struct * vma)897 static inline void vma_start_write(struct vm_area_struct *vma) {}
vma_assert_write_locked(struct vm_area_struct * vma)898 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
899 { mmap_assert_write_locked(vma->vm_mm); }
vma_assert_attached(struct vm_area_struct * vma)900 static inline void vma_assert_attached(struct vm_area_struct *vma) {}
vma_assert_detached(struct vm_area_struct * vma)901 static inline void vma_assert_detached(struct vm_area_struct *vma) {}
vma_mark_attached(struct vm_area_struct * vma)902 static inline void vma_mark_attached(struct vm_area_struct *vma) {}
vma_mark_detached(struct vm_area_struct * vma)903 static inline void vma_mark_detached(struct vm_area_struct *vma) {}
904
lock_vma_under_rcu(struct mm_struct * mm,unsigned long address)905 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
906 unsigned long address)
907 {
908 return NULL;
909 }
910
vma_assert_locked(struct vm_area_struct * vma)911 static inline void vma_assert_locked(struct vm_area_struct *vma)
912 {
913 mmap_assert_locked(vma->vm_mm);
914 }
915
release_fault_lock(struct vm_fault * vmf)916 static inline void release_fault_lock(struct vm_fault *vmf)
917 {
918 mmap_read_unlock(vmf->vma->vm_mm);
919 }
920
assert_fault_locked(struct vm_fault * vmf)921 static inline void assert_fault_locked(struct vm_fault *vmf)
922 {
923 mmap_assert_locked(vmf->vma->vm_mm);
924 }
925
926 #endif /* CONFIG_PER_VMA_LOCK */
927
928 extern const struct vm_operations_struct vma_dummy_vm_ops;
929
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)930 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
931 {
932 memset(vma, 0, sizeof(*vma));
933 vma->vm_mm = mm;
934 vma->vm_ops = &vma_dummy_vm_ops;
935 INIT_LIST_HEAD(&vma->anon_vma_chain);
936 vma_lock_init(vma, false);
937 }
938
939 /* Use when VMA is not part of the VMA tree and needs no locking */
vm_flags_init(struct vm_area_struct * vma,vm_flags_t flags)940 static inline void vm_flags_init(struct vm_area_struct *vma,
941 vm_flags_t flags)
942 {
943 ACCESS_PRIVATE(vma, __vm_flags) = flags;
944 }
945
946 /*
947 * Use when VMA is part of the VMA tree and modifications need coordination
948 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
949 * it should be locked explicitly beforehand.
950 */
vm_flags_reset(struct vm_area_struct * vma,vm_flags_t flags)951 static inline void vm_flags_reset(struct vm_area_struct *vma,
952 vm_flags_t flags)
953 {
954 vma_assert_write_locked(vma);
955 vm_flags_init(vma, flags);
956 }
957
vm_flags_reset_once(struct vm_area_struct * vma,vm_flags_t flags)958 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
959 vm_flags_t flags)
960 {
961 vma_assert_write_locked(vma);
962 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
963 }
964
vm_flags_set(struct vm_area_struct * vma,vm_flags_t flags)965 static inline void vm_flags_set(struct vm_area_struct *vma,
966 vm_flags_t flags)
967 {
968 vma_start_write(vma);
969 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
970 }
971
vm_flags_clear(struct vm_area_struct * vma,vm_flags_t flags)972 static inline void vm_flags_clear(struct vm_area_struct *vma,
973 vm_flags_t flags)
974 {
975 vma_start_write(vma);
976 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
977 }
978
979 /*
980 * Use only if VMA is not part of the VMA tree or has no other users and
981 * therefore needs no locking.
982 */
__vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)983 static inline void __vm_flags_mod(struct vm_area_struct *vma,
984 vm_flags_t set, vm_flags_t clear)
985 {
986 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
987 }
988
989 /*
990 * Use only when the order of set/clear operations is unimportant, otherwise
991 * use vm_flags_{set|clear} explicitly.
992 */
vm_flags_mod(struct vm_area_struct * vma,vm_flags_t set,vm_flags_t clear)993 static inline void vm_flags_mod(struct vm_area_struct *vma,
994 vm_flags_t set, vm_flags_t clear)
995 {
996 vma_start_write(vma);
997 __vm_flags_mod(vma, set, clear);
998 }
999
vma_set_anonymous(struct vm_area_struct * vma)1000 static inline void vma_set_anonymous(struct vm_area_struct *vma)
1001 {
1002 vma->vm_ops = NULL;
1003 }
1004
vma_is_anonymous(struct vm_area_struct * vma)1005 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1006 {
1007 return !vma->vm_ops;
1008 }
1009
1010 /*
1011 * Indicate if the VMA is a heap for the given task; for
1012 * /proc/PID/maps that is the heap of the main task.
1013 */
vma_is_initial_heap(const struct vm_area_struct * vma)1014 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
1015 {
1016 return vma->vm_start < vma->vm_mm->brk &&
1017 vma->vm_end > vma->vm_mm->start_brk;
1018 }
1019
1020 /*
1021 * Indicate if the VMA is a stack for the given task; for
1022 * /proc/PID/maps that is the stack of the main task.
1023 */
vma_is_initial_stack(const struct vm_area_struct * vma)1024 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
1025 {
1026 /*
1027 * We make no effort to guess what a given thread considers to be
1028 * its "stack". It's not even well-defined for programs written
1029 * languages like Go.
1030 */
1031 return vma->vm_start <= vma->vm_mm->start_stack &&
1032 vma->vm_end >= vma->vm_mm->start_stack;
1033 }
1034
vma_is_temporary_stack(struct vm_area_struct * vma)1035 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
1036 {
1037 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1038
1039 if (!maybe_stack)
1040 return false;
1041
1042 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1043 VM_STACK_INCOMPLETE_SETUP)
1044 return true;
1045
1046 return false;
1047 }
1048
vma_is_foreign(struct vm_area_struct * vma)1049 static inline bool vma_is_foreign(struct vm_area_struct *vma)
1050 {
1051 if (!current->mm)
1052 return true;
1053
1054 if (current->mm != vma->vm_mm)
1055 return true;
1056
1057 return false;
1058 }
1059
vma_is_accessible(struct vm_area_struct * vma)1060 static inline bool vma_is_accessible(struct vm_area_struct *vma)
1061 {
1062 return vma->vm_flags & VM_ACCESS_FLAGS;
1063 }
1064
is_shared_maywrite(vm_flags_t vm_flags)1065 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
1066 {
1067 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
1068 (VM_SHARED | VM_MAYWRITE);
1069 }
1070
vma_is_shared_maywrite(struct vm_area_struct * vma)1071 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
1072 {
1073 return is_shared_maywrite(vma->vm_flags);
1074 }
1075
1076 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)1077 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1078 {
1079 return mas_find(&vmi->mas, max - 1);
1080 }
1081
vma_next(struct vma_iterator * vmi)1082 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1083 {
1084 /*
1085 * Uses mas_find() to get the first VMA when the iterator starts.
1086 * Calling mas_next() could skip the first entry.
1087 */
1088 return mas_find(&vmi->mas, ULONG_MAX);
1089 }
1090
1091 static inline
vma_iter_next_range(struct vma_iterator * vmi)1092 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1093 {
1094 return mas_next_range(&vmi->mas, ULONG_MAX);
1095 }
1096
1097
vma_prev(struct vma_iterator * vmi)1098 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1099 {
1100 return mas_prev(&vmi->mas, 0);
1101 }
1102
vma_iter_clear_gfp(struct vma_iterator * vmi,unsigned long start,unsigned long end,gfp_t gfp)1103 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1104 unsigned long start, unsigned long end, gfp_t gfp)
1105 {
1106 __mas_set_range(&vmi->mas, start, end - 1);
1107 mas_store_gfp(&vmi->mas, NULL, gfp);
1108 if (unlikely(mas_is_err(&vmi->mas)))
1109 return -ENOMEM;
1110
1111 return 0;
1112 }
1113
1114 /* Free any unused preallocations */
vma_iter_free(struct vma_iterator * vmi)1115 static inline void vma_iter_free(struct vma_iterator *vmi)
1116 {
1117 mas_destroy(&vmi->mas);
1118 }
1119
vma_iter_bulk_store(struct vma_iterator * vmi,struct vm_area_struct * vma)1120 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1121 struct vm_area_struct *vma)
1122 {
1123 vmi->mas.index = vma->vm_start;
1124 vmi->mas.last = vma->vm_end - 1;
1125 mas_store(&vmi->mas, vma);
1126 if (unlikely(mas_is_err(&vmi->mas)))
1127 return -ENOMEM;
1128
1129 vma_mark_attached(vma);
1130 return 0;
1131 }
1132
vma_iter_invalidate(struct vma_iterator * vmi)1133 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1134 {
1135 mas_pause(&vmi->mas);
1136 }
1137
vma_iter_set(struct vma_iterator * vmi,unsigned long addr)1138 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1139 {
1140 mas_set(&vmi->mas, addr);
1141 }
1142
1143 #define for_each_vma(__vmi, __vma) \
1144 while (((__vma) = vma_next(&(__vmi))) != NULL)
1145
1146 /* The MM code likes to work with exclusive end addresses */
1147 #define for_each_vma_range(__vmi, __vma, __end) \
1148 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1149
1150 #ifdef CONFIG_SHMEM
1151 /*
1152 * The vma_is_shmem is not inline because it is used only by slow
1153 * paths in userfault.
1154 */
1155 bool vma_is_shmem(struct vm_area_struct *vma);
1156 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1157 #else
vma_is_shmem(struct vm_area_struct * vma)1158 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
vma_is_anon_shmem(struct vm_area_struct * vma)1159 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1160 #endif
1161
1162 int vma_is_stack_for_current(struct vm_area_struct *vma);
1163
1164 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1165 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1166
1167 struct mmu_gather;
1168 struct inode;
1169
1170 extern void prep_compound_page(struct page *page, unsigned int order);
1171
folio_large_order(const struct folio * folio)1172 static inline unsigned int folio_large_order(const struct folio *folio)
1173 {
1174 return folio->_flags_1 & 0xff;
1175 }
1176
1177 #ifdef NR_PAGES_IN_LARGE_FOLIO
folio_large_nr_pages(const struct folio * folio)1178 static inline long folio_large_nr_pages(const struct folio *folio)
1179 {
1180 return folio->_nr_pages;
1181 }
1182 #else
folio_large_nr_pages(const struct folio * folio)1183 static inline long folio_large_nr_pages(const struct folio *folio)
1184 {
1185 return 1L << folio_large_order(folio);
1186 }
1187 #endif
1188
1189 /*
1190 * compound_order() can be called without holding a reference, which means
1191 * that niceties like page_folio() don't work. These callers should be
1192 * prepared to handle wild return values. For example, PG_head may be
1193 * set before the order is initialised, or this may be a tail page.
1194 * See compaction.c for some good examples.
1195 */
compound_order(struct page * page)1196 static inline unsigned int compound_order(struct page *page)
1197 {
1198 struct folio *folio = (struct folio *)page;
1199
1200 if (!test_bit(PG_head, &folio->flags))
1201 return 0;
1202 return folio_large_order(folio);
1203 }
1204
1205 /**
1206 * folio_order - The allocation order of a folio.
1207 * @folio: The folio.
1208 *
1209 * A folio is composed of 2^order pages. See get_order() for the definition
1210 * of order.
1211 *
1212 * Return: The order of the folio.
1213 */
folio_order(const struct folio * folio)1214 static inline unsigned int folio_order(const struct folio *folio)
1215 {
1216 if (!folio_test_large(folio))
1217 return 0;
1218 return folio_large_order(folio);
1219 }
1220
1221 /**
1222 * folio_reset_order - Reset the folio order and derived _nr_pages
1223 * @folio: The folio.
1224 *
1225 * Reset the order and derived _nr_pages to 0. Must only be used in the
1226 * process of splitting large folios.
1227 */
folio_reset_order(struct folio * folio)1228 static inline void folio_reset_order(struct folio *folio)
1229 {
1230 if (WARN_ON_ONCE(!folio_test_large(folio)))
1231 return;
1232 folio->_flags_1 &= ~0xffUL;
1233 #ifdef NR_PAGES_IN_LARGE_FOLIO
1234 folio->_nr_pages = 0;
1235 #endif
1236 }
1237
1238 #include <linux/huge_mm.h>
1239
1240 /*
1241 * Methods to modify the page usage count.
1242 *
1243 * What counts for a page usage:
1244 * - cache mapping (page->mapping)
1245 * - private data (page->private)
1246 * - page mapped in a task's page tables, each mapping
1247 * is counted separately
1248 *
1249 * Also, many kernel routines increase the page count before a critical
1250 * routine so they can be sure the page doesn't go away from under them.
1251 */
1252
1253 /*
1254 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1255 */
put_page_testzero(struct page * page)1256 static inline int put_page_testzero(struct page *page)
1257 {
1258 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1259 return page_ref_dec_and_test(page);
1260 }
1261
folio_put_testzero(struct folio * folio)1262 static inline int folio_put_testzero(struct folio *folio)
1263 {
1264 return put_page_testzero(&folio->page);
1265 }
1266
1267 /*
1268 * Try to grab a ref unless the page has a refcount of zero, return false if
1269 * that is the case.
1270 * This can be called when MMU is off so it must not access
1271 * any of the virtual mappings.
1272 */
get_page_unless_zero(struct page * page)1273 static inline bool get_page_unless_zero(struct page *page)
1274 {
1275 return page_ref_add_unless(page, 1, 0);
1276 }
1277
folio_get_nontail_page(struct page * page)1278 static inline struct folio *folio_get_nontail_page(struct page *page)
1279 {
1280 if (unlikely(!get_page_unless_zero(page)))
1281 return NULL;
1282 return (struct folio *)page;
1283 }
1284
1285 extern int page_is_ram(unsigned long pfn);
1286
1287 enum {
1288 REGION_INTERSECTS,
1289 REGION_DISJOINT,
1290 REGION_MIXED,
1291 };
1292
1293 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1294 unsigned long desc);
1295
1296 /* Support for virtually mapped pages */
1297 struct page *vmalloc_to_page(const void *addr);
1298 unsigned long vmalloc_to_pfn(const void *addr);
1299
1300 /*
1301 * Determine if an address is within the vmalloc range
1302 *
1303 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1304 * is no special casing required.
1305 */
1306 #ifdef CONFIG_MMU
1307 extern bool is_vmalloc_addr(const void *x);
1308 extern int is_vmalloc_or_module_addr(const void *x);
1309 #else
is_vmalloc_addr(const void * x)1310 static inline bool is_vmalloc_addr(const void *x)
1311 {
1312 return false;
1313 }
is_vmalloc_or_module_addr(const void * x)1314 static inline int is_vmalloc_or_module_addr(const void *x)
1315 {
1316 return 0;
1317 }
1318 #endif
1319
1320 /*
1321 * How many times the entire folio is mapped as a single unit (eg by a
1322 * PMD or PUD entry). This is probably not what you want, except for
1323 * debugging purposes or implementation of other core folio_*() primitives.
1324 */
folio_entire_mapcount(const struct folio * folio)1325 static inline int folio_entire_mapcount(const struct folio *folio)
1326 {
1327 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1328 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1329 return 0;
1330 return atomic_read(&folio->_entire_mapcount) + 1;
1331 }
1332
folio_large_mapcount(const struct folio * folio)1333 static inline int folio_large_mapcount(const struct folio *folio)
1334 {
1335 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1336 return atomic_read(&folio->_large_mapcount) + 1;
1337 }
1338
1339 /**
1340 * folio_mapcount() - Number of mappings of this folio.
1341 * @folio: The folio.
1342 *
1343 * The folio mapcount corresponds to the number of present user page table
1344 * entries that reference any part of a folio. Each such present user page
1345 * table entry must be paired with exactly on folio reference.
1346 *
1347 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1348 * exactly once.
1349 *
1350 * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1351 * references the entire folio counts exactly once, even when such special
1352 * page table entries are comprised of multiple ordinary page table entries.
1353 *
1354 * Will report 0 for pages which cannot be mapped into userspace, such as
1355 * slab, page tables and similar.
1356 *
1357 * Return: The number of times this folio is mapped.
1358 */
folio_mapcount(const struct folio * folio)1359 static inline int folio_mapcount(const struct folio *folio)
1360 {
1361 int mapcount;
1362
1363 if (likely(!folio_test_large(folio))) {
1364 mapcount = atomic_read(&folio->_mapcount) + 1;
1365 if (page_mapcount_is_type(mapcount))
1366 mapcount = 0;
1367 return mapcount;
1368 }
1369 return folio_large_mapcount(folio);
1370 }
1371
1372 /**
1373 * folio_mapped - Is this folio mapped into userspace?
1374 * @folio: The folio.
1375 *
1376 * Return: True if any page in this folio is referenced by user page tables.
1377 */
folio_mapped(const struct folio * folio)1378 static inline bool folio_mapped(const struct folio *folio)
1379 {
1380 return folio_mapcount(folio) >= 1;
1381 }
1382
1383 /*
1384 * Return true if this page is mapped into pagetables.
1385 * For compound page it returns true if any sub-page of compound page is mapped,
1386 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1387 */
page_mapped(const struct page * page)1388 static inline bool page_mapped(const struct page *page)
1389 {
1390 return folio_mapped(page_folio(page));
1391 }
1392
virt_to_head_page(const void * x)1393 static inline struct page *virt_to_head_page(const void *x)
1394 {
1395 struct page *page = virt_to_page(x);
1396
1397 return compound_head(page);
1398 }
1399
virt_to_folio(const void * x)1400 static inline struct folio *virt_to_folio(const void *x)
1401 {
1402 struct page *page = virt_to_page(x);
1403
1404 return page_folio(page);
1405 }
1406
1407 void __folio_put(struct folio *folio);
1408
1409 void split_page(struct page *page, unsigned int order);
1410 void folio_copy(struct folio *dst, struct folio *src);
1411 int folio_mc_copy(struct folio *dst, struct folio *src);
1412
1413 unsigned long nr_free_buffer_pages(void);
1414
1415 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)1416 static inline unsigned long page_size(struct page *page)
1417 {
1418 return PAGE_SIZE << compound_order(page);
1419 }
1420
1421 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)1422 static inline unsigned int page_shift(struct page *page)
1423 {
1424 return PAGE_SHIFT + compound_order(page);
1425 }
1426
1427 /**
1428 * thp_order - Order of a transparent huge page.
1429 * @page: Head page of a transparent huge page.
1430 */
thp_order(struct page * page)1431 static inline unsigned int thp_order(struct page *page)
1432 {
1433 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1434 return compound_order(page);
1435 }
1436
1437 /**
1438 * thp_size - Size of a transparent huge page.
1439 * @page: Head page of a transparent huge page.
1440 *
1441 * Return: Number of bytes in this page.
1442 */
thp_size(struct page * page)1443 static inline unsigned long thp_size(struct page *page)
1444 {
1445 return PAGE_SIZE << thp_order(page);
1446 }
1447
1448 #ifdef CONFIG_MMU
1449 /*
1450 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1451 * servicing faults for write access. In the normal case, do always want
1452 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1453 * that do not have writing enabled, when used by access_process_vm.
1454 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1455 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1456 {
1457 if (likely(vma->vm_flags & VM_WRITE))
1458 pte = pte_mkwrite(pte, vma);
1459 return pte;
1460 }
1461
1462 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1463 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1464 struct page *page, unsigned int nr, unsigned long addr);
1465
1466 vm_fault_t finish_fault(struct vm_fault *vmf);
1467 #endif
1468
1469 /*
1470 * Multiple processes may "see" the same page. E.g. for untouched
1471 * mappings of /dev/null, all processes see the same page full of
1472 * zeroes, and text pages of executables and shared libraries have
1473 * only one copy in memory, at most, normally.
1474 *
1475 * For the non-reserved pages, page_count(page) denotes a reference count.
1476 * page_count() == 0 means the page is free. page->lru is then used for
1477 * freelist management in the buddy allocator.
1478 * page_count() > 0 means the page has been allocated.
1479 *
1480 * Pages are allocated by the slab allocator in order to provide memory
1481 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1482 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1483 * unless a particular usage is carefully commented. (the responsibility of
1484 * freeing the kmalloc memory is the caller's, of course).
1485 *
1486 * A page may be used by anyone else who does a __get_free_page().
1487 * In this case, page_count still tracks the references, and should only
1488 * be used through the normal accessor functions. The top bits of page->flags
1489 * and page->virtual store page management information, but all other fields
1490 * are unused and could be used privately, carefully. The management of this
1491 * page is the responsibility of the one who allocated it, and those who have
1492 * subsequently been given references to it.
1493 *
1494 * The other pages (we may call them "pagecache pages") are completely
1495 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1496 * The following discussion applies only to them.
1497 *
1498 * A pagecache page contains an opaque `private' member, which belongs to the
1499 * page's address_space. Usually, this is the address of a circular list of
1500 * the page's disk buffers. PG_private must be set to tell the VM to call
1501 * into the filesystem to release these pages.
1502 *
1503 * A page may belong to an inode's memory mapping. In this case, page->mapping
1504 * is the pointer to the inode, and page->index is the file offset of the page,
1505 * in units of PAGE_SIZE.
1506 *
1507 * If pagecache pages are not associated with an inode, they are said to be
1508 * anonymous pages. These may become associated with the swapcache, and in that
1509 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1510 *
1511 * In either case (swapcache or inode backed), the pagecache itself holds one
1512 * reference to the page. Setting PG_private should also increment the
1513 * refcount. The each user mapping also has a reference to the page.
1514 *
1515 * The pagecache pages are stored in a per-mapping radix tree, which is
1516 * rooted at mapping->i_pages, and indexed by offset.
1517 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1518 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1519 *
1520 * All pagecache pages may be subject to I/O:
1521 * - inode pages may need to be read from disk,
1522 * - inode pages which have been modified and are MAP_SHARED may need
1523 * to be written back to the inode on disk,
1524 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1525 * modified may need to be swapped out to swap space and (later) to be read
1526 * back into memory.
1527 */
1528
1529 /* 127: arbitrary random number, small enough to assemble well */
1530 #define folio_ref_zero_or_close_to_overflow(folio) \
1531 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1532
1533 /**
1534 * folio_get - Increment the reference count on a folio.
1535 * @folio: The folio.
1536 *
1537 * Context: May be called in any context, as long as you know that
1538 * you have a refcount on the folio. If you do not already have one,
1539 * folio_try_get() may be the right interface for you to use.
1540 */
folio_get(struct folio * folio)1541 static inline void folio_get(struct folio *folio)
1542 {
1543 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1544 folio_ref_inc(folio);
1545 }
1546
get_page(struct page * page)1547 static inline void get_page(struct page *page)
1548 {
1549 struct folio *folio = page_folio(page);
1550 if (WARN_ON_ONCE(folio_test_slab(folio)))
1551 return;
1552 folio_get(folio);
1553 }
1554
try_get_page(struct page * page)1555 static inline __must_check bool try_get_page(struct page *page)
1556 {
1557 page = compound_head(page);
1558 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1559 return false;
1560 page_ref_inc(page);
1561 return true;
1562 }
1563
1564 /**
1565 * folio_put - Decrement the reference count on a folio.
1566 * @folio: The folio.
1567 *
1568 * If the folio's reference count reaches zero, the memory will be
1569 * released back to the page allocator and may be used by another
1570 * allocation immediately. Do not access the memory or the struct folio
1571 * after calling folio_put() unless you can be sure that it wasn't the
1572 * last reference.
1573 *
1574 * Context: May be called in process or interrupt context, but not in NMI
1575 * context. May be called while holding a spinlock.
1576 */
folio_put(struct folio * folio)1577 static inline void folio_put(struct folio *folio)
1578 {
1579 if (folio_put_testzero(folio))
1580 __folio_put(folio);
1581 }
1582
1583 /**
1584 * folio_put_refs - Reduce the reference count on a folio.
1585 * @folio: The folio.
1586 * @refs: The amount to subtract from the folio's reference count.
1587 *
1588 * If the folio's reference count reaches zero, the memory will be
1589 * released back to the page allocator and may be used by another
1590 * allocation immediately. Do not access the memory or the struct folio
1591 * after calling folio_put_refs() unless you can be sure that these weren't
1592 * the last references.
1593 *
1594 * Context: May be called in process or interrupt context, but not in NMI
1595 * context. May be called while holding a spinlock.
1596 */
folio_put_refs(struct folio * folio,int refs)1597 static inline void folio_put_refs(struct folio *folio, int refs)
1598 {
1599 if (folio_ref_sub_and_test(folio, refs))
1600 __folio_put(folio);
1601 }
1602
1603 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1604
1605 /*
1606 * union release_pages_arg - an array of pages or folios
1607 *
1608 * release_pages() releases a simple array of multiple pages, and
1609 * accepts various different forms of said page array: either
1610 * a regular old boring array of pages, an array of folios, or
1611 * an array of encoded page pointers.
1612 *
1613 * The transparent union syntax for this kind of "any of these
1614 * argument types" is all kinds of ugly, so look away.
1615 */
1616 typedef union {
1617 struct page **pages;
1618 struct folio **folios;
1619 struct encoded_page **encoded_pages;
1620 } release_pages_arg __attribute__ ((__transparent_union__));
1621
1622 void release_pages(release_pages_arg, int nr);
1623
1624 /**
1625 * folios_put - Decrement the reference count on an array of folios.
1626 * @folios: The folios.
1627 *
1628 * Like folio_put(), but for a batch of folios. This is more efficient
1629 * than writing the loop yourself as it will optimise the locks which need
1630 * to be taken if the folios are freed. The folios batch is returned
1631 * empty and ready to be reused for another batch; there is no need to
1632 * reinitialise it.
1633 *
1634 * Context: May be called in process or interrupt context, but not in NMI
1635 * context. May be called while holding a spinlock.
1636 */
folios_put(struct folio_batch * folios)1637 static inline void folios_put(struct folio_batch *folios)
1638 {
1639 folios_put_refs(folios, NULL);
1640 }
1641
put_page(struct page * page)1642 static inline void put_page(struct page *page)
1643 {
1644 struct folio *folio = page_folio(page);
1645
1646 if (folio_test_slab(folio))
1647 return;
1648
1649 folio_put(folio);
1650 }
1651
1652 /*
1653 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1654 * the page's refcount so that two separate items are tracked: the original page
1655 * reference count, and also a new count of how many pin_user_pages() calls were
1656 * made against the page. ("gup-pinned" is another term for the latter).
1657 *
1658 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1659 * distinct from normal pages. As such, the unpin_user_page() call (and its
1660 * variants) must be used in order to release gup-pinned pages.
1661 *
1662 * Choice of value:
1663 *
1664 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1665 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1666 * simpler, due to the fact that adding an even power of two to the page
1667 * refcount has the effect of using only the upper N bits, for the code that
1668 * counts up using the bias value. This means that the lower bits are left for
1669 * the exclusive use of the original code that increments and decrements by one
1670 * (or at least, by much smaller values than the bias value).
1671 *
1672 * Of course, once the lower bits overflow into the upper bits (and this is
1673 * OK, because subtraction recovers the original values), then visual inspection
1674 * no longer suffices to directly view the separate counts. However, for normal
1675 * applications that don't have huge page reference counts, this won't be an
1676 * issue.
1677 *
1678 * Locking: the lockless algorithm described in folio_try_get_rcu()
1679 * provides safe operation for get_user_pages(), folio_mkclean() and
1680 * other calls that race to set up page table entries.
1681 */
1682 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1683
1684 void unpin_user_page(struct page *page);
1685 void unpin_folio(struct folio *folio);
1686 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1687 bool make_dirty);
1688 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1689 bool make_dirty);
1690 void unpin_user_pages(struct page **pages, unsigned long npages);
1691 void unpin_user_folio(struct folio *folio, unsigned long npages);
1692 void unpin_folios(struct folio **folios, unsigned long nfolios);
1693
is_cow_mapping(vm_flags_t flags)1694 static inline bool is_cow_mapping(vm_flags_t flags)
1695 {
1696 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1697 }
1698
1699 #ifndef CONFIG_MMU
is_nommu_shared_mapping(vm_flags_t flags)1700 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1701 {
1702 /*
1703 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1704 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1705 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1706 * underlying memory if ptrace is active, so this is only possible if
1707 * ptrace does not apply. Note that there is no mprotect() to upgrade
1708 * write permissions later.
1709 */
1710 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1711 }
1712 #endif
1713
1714 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1715 #define SECTION_IN_PAGE_FLAGS
1716 #endif
1717
1718 /*
1719 * The identification function is mainly used by the buddy allocator for
1720 * determining if two pages could be buddies. We are not really identifying
1721 * the zone since we could be using the section number id if we do not have
1722 * node id available in page flags.
1723 * We only guarantee that it will return the same value for two combinable
1724 * pages in a zone.
1725 */
page_zone_id(struct page * page)1726 static inline int page_zone_id(struct page *page)
1727 {
1728 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1729 }
1730
1731 #ifdef NODE_NOT_IN_PAGE_FLAGS
1732 int page_to_nid(const struct page *page);
1733 #else
page_to_nid(const struct page * page)1734 static inline int page_to_nid(const struct page *page)
1735 {
1736 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1737 }
1738 #endif
1739
folio_nid(const struct folio * folio)1740 static inline int folio_nid(const struct folio *folio)
1741 {
1742 return page_to_nid(&folio->page);
1743 }
1744
1745 #ifdef CONFIG_NUMA_BALANCING
1746 /* page access time bits needs to hold at least 4 seconds */
1747 #define PAGE_ACCESS_TIME_MIN_BITS 12
1748 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1749 #define PAGE_ACCESS_TIME_BUCKETS \
1750 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1751 #else
1752 #define PAGE_ACCESS_TIME_BUCKETS 0
1753 #endif
1754
1755 #define PAGE_ACCESS_TIME_MASK \
1756 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1757
cpu_pid_to_cpupid(int cpu,int pid)1758 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1759 {
1760 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1761 }
1762
cpupid_to_pid(int cpupid)1763 static inline int cpupid_to_pid(int cpupid)
1764 {
1765 return cpupid & LAST__PID_MASK;
1766 }
1767
cpupid_to_cpu(int cpupid)1768 static inline int cpupid_to_cpu(int cpupid)
1769 {
1770 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1771 }
1772
cpupid_to_nid(int cpupid)1773 static inline int cpupid_to_nid(int cpupid)
1774 {
1775 return cpu_to_node(cpupid_to_cpu(cpupid));
1776 }
1777
cpupid_pid_unset(int cpupid)1778 static inline bool cpupid_pid_unset(int cpupid)
1779 {
1780 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1781 }
1782
cpupid_cpu_unset(int cpupid)1783 static inline bool cpupid_cpu_unset(int cpupid)
1784 {
1785 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1786 }
1787
__cpupid_match_pid(pid_t task_pid,int cpupid)1788 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1789 {
1790 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1791 }
1792
1793 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1794 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1795 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1796 {
1797 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1798 }
1799
folio_last_cpupid(struct folio * folio)1800 static inline int folio_last_cpupid(struct folio *folio)
1801 {
1802 return folio->_last_cpupid;
1803 }
page_cpupid_reset_last(struct page * page)1804 static inline void page_cpupid_reset_last(struct page *page)
1805 {
1806 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1807 }
1808 #else
folio_last_cpupid(struct folio * folio)1809 static inline int folio_last_cpupid(struct folio *folio)
1810 {
1811 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1812 }
1813
1814 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1815
page_cpupid_reset_last(struct page * page)1816 static inline void page_cpupid_reset_last(struct page *page)
1817 {
1818 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1819 }
1820 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1821
folio_xchg_access_time(struct folio * folio,int time)1822 static inline int folio_xchg_access_time(struct folio *folio, int time)
1823 {
1824 int last_time;
1825
1826 last_time = folio_xchg_last_cpupid(folio,
1827 time >> PAGE_ACCESS_TIME_BUCKETS);
1828 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1829 }
1830
vma_set_access_pid_bit(struct vm_area_struct * vma)1831 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1832 {
1833 unsigned int pid_bit;
1834
1835 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1836 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1837 __set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1838 }
1839 }
1840
1841 bool folio_use_access_time(struct folio *folio);
1842 #else /* !CONFIG_NUMA_BALANCING */
folio_xchg_last_cpupid(struct folio * folio,int cpupid)1843 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1844 {
1845 return folio_nid(folio); /* XXX */
1846 }
1847
folio_xchg_access_time(struct folio * folio,int time)1848 static inline int folio_xchg_access_time(struct folio *folio, int time)
1849 {
1850 return 0;
1851 }
1852
folio_last_cpupid(struct folio * folio)1853 static inline int folio_last_cpupid(struct folio *folio)
1854 {
1855 return folio_nid(folio); /* XXX */
1856 }
1857
cpupid_to_nid(int cpupid)1858 static inline int cpupid_to_nid(int cpupid)
1859 {
1860 return -1;
1861 }
1862
cpupid_to_pid(int cpupid)1863 static inline int cpupid_to_pid(int cpupid)
1864 {
1865 return -1;
1866 }
1867
cpupid_to_cpu(int cpupid)1868 static inline int cpupid_to_cpu(int cpupid)
1869 {
1870 return -1;
1871 }
1872
cpu_pid_to_cpupid(int nid,int pid)1873 static inline int cpu_pid_to_cpupid(int nid, int pid)
1874 {
1875 return -1;
1876 }
1877
cpupid_pid_unset(int cpupid)1878 static inline bool cpupid_pid_unset(int cpupid)
1879 {
1880 return true;
1881 }
1882
page_cpupid_reset_last(struct page * page)1883 static inline void page_cpupid_reset_last(struct page *page)
1884 {
1885 }
1886
cpupid_match_pid(struct task_struct * task,int cpupid)1887 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1888 {
1889 return false;
1890 }
1891
vma_set_access_pid_bit(struct vm_area_struct * vma)1892 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1893 {
1894 }
folio_use_access_time(struct folio * folio)1895 static inline bool folio_use_access_time(struct folio *folio)
1896 {
1897 return false;
1898 }
1899 #endif /* CONFIG_NUMA_BALANCING */
1900
1901 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1902
1903 /*
1904 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1905 * setting tags for all pages to native kernel tag value 0xff, as the default
1906 * value 0x00 maps to 0xff.
1907 */
1908
page_kasan_tag(const struct page * page)1909 static inline u8 page_kasan_tag(const struct page *page)
1910 {
1911 u8 tag = KASAN_TAG_KERNEL;
1912
1913 if (kasan_enabled()) {
1914 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1915 tag ^= 0xff;
1916 }
1917
1918 return tag;
1919 }
1920
page_kasan_tag_set(struct page * page,u8 tag)1921 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1922 {
1923 unsigned long old_flags, flags;
1924
1925 if (!kasan_enabled())
1926 return;
1927
1928 tag ^= 0xff;
1929 old_flags = READ_ONCE(page->flags);
1930 do {
1931 flags = old_flags;
1932 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1933 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1934 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1935 }
1936
page_kasan_tag_reset(struct page * page)1937 static inline void page_kasan_tag_reset(struct page *page)
1938 {
1939 if (kasan_enabled())
1940 page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1941 }
1942
1943 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1944
page_kasan_tag(const struct page * page)1945 static inline u8 page_kasan_tag(const struct page *page)
1946 {
1947 return 0xff;
1948 }
1949
page_kasan_tag_set(struct page * page,u8 tag)1950 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1951 static inline void page_kasan_tag_reset(struct page *page) { }
1952
1953 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1954
page_zone(const struct page * page)1955 static inline struct zone *page_zone(const struct page *page)
1956 {
1957 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1958 }
1959
page_pgdat(const struct page * page)1960 static inline pg_data_t *page_pgdat(const struct page *page)
1961 {
1962 return NODE_DATA(page_to_nid(page));
1963 }
1964
folio_zone(const struct folio * folio)1965 static inline struct zone *folio_zone(const struct folio *folio)
1966 {
1967 return page_zone(&folio->page);
1968 }
1969
folio_pgdat(const struct folio * folio)1970 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1971 {
1972 return page_pgdat(&folio->page);
1973 }
1974
1975 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1976 static inline void set_page_section(struct page *page, unsigned long section)
1977 {
1978 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1979 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1980 }
1981
page_to_section(const struct page * page)1982 static inline unsigned long page_to_section(const struct page *page)
1983 {
1984 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1985 }
1986 #endif
1987
1988 /**
1989 * folio_pfn - Return the Page Frame Number of a folio.
1990 * @folio: The folio.
1991 *
1992 * A folio may contain multiple pages. The pages have consecutive
1993 * Page Frame Numbers.
1994 *
1995 * Return: The Page Frame Number of the first page in the folio.
1996 */
folio_pfn(const struct folio * folio)1997 static inline unsigned long folio_pfn(const struct folio *folio)
1998 {
1999 return page_to_pfn(&folio->page);
2000 }
2001
pfn_folio(unsigned long pfn)2002 static inline struct folio *pfn_folio(unsigned long pfn)
2003 {
2004 return page_folio(pfn_to_page(pfn));
2005 }
2006
folio_has_pincount(const struct folio * folio)2007 static inline bool folio_has_pincount(const struct folio *folio)
2008 {
2009 if (IS_ENABLED(CONFIG_64BIT))
2010 return folio_test_large(folio);
2011 return folio_order(folio) > 1;
2012 }
2013
2014 /**
2015 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
2016 * @folio: The folio.
2017 *
2018 * This function checks if a folio has been pinned via a call to
2019 * a function in the pin_user_pages() family.
2020 *
2021 * For small folios, the return value is partially fuzzy: false is not fuzzy,
2022 * because it means "definitely not pinned for DMA", but true means "probably
2023 * pinned for DMA, but possibly a false positive due to having at least
2024 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
2025 *
2026 * False positives are OK, because: a) it's unlikely for a folio to
2027 * get that many refcounts, and b) all the callers of this routine are
2028 * expected to be able to deal gracefully with a false positive.
2029 *
2030 * For most large folios, the result will be exactly correct. That's because
2031 * we have more tracking data available: the _pincount field is used
2032 * instead of the GUP_PIN_COUNTING_BIAS scheme.
2033 *
2034 * For more information, please see Documentation/core-api/pin_user_pages.rst.
2035 *
2036 * Return: True, if it is likely that the folio has been "dma-pinned".
2037 * False, if the folio is definitely not dma-pinned.
2038 */
folio_maybe_dma_pinned(struct folio * folio)2039 static inline bool folio_maybe_dma_pinned(struct folio *folio)
2040 {
2041 if (folio_has_pincount(folio))
2042 return atomic_read(&folio->_pincount) > 0;
2043
2044 /*
2045 * folio_ref_count() is signed. If that refcount overflows, then
2046 * folio_ref_count() returns a negative value, and callers will avoid
2047 * further incrementing the refcount.
2048 *
2049 * Here, for that overflow case, use the sign bit to count a little
2050 * bit higher via unsigned math, and thus still get an accurate result.
2051 */
2052 return ((unsigned int)folio_ref_count(folio)) >=
2053 GUP_PIN_COUNTING_BIAS;
2054 }
2055
2056 /*
2057 * This should most likely only be called during fork() to see whether we
2058 * should break the cow immediately for an anon page on the src mm.
2059 *
2060 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
2061 */
folio_needs_cow_for_dma(struct vm_area_struct * vma,struct folio * folio)2062 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
2063 struct folio *folio)
2064 {
2065 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
2066
2067 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
2068 return false;
2069
2070 return folio_maybe_dma_pinned(folio);
2071 }
2072
2073 /**
2074 * is_zero_page - Query if a page is a zero page
2075 * @page: The page to query
2076 *
2077 * This returns true if @page is one of the permanent zero pages.
2078 */
is_zero_page(const struct page * page)2079 static inline bool is_zero_page(const struct page *page)
2080 {
2081 return is_zero_pfn(page_to_pfn(page));
2082 }
2083
2084 /**
2085 * is_zero_folio - Query if a folio is a zero page
2086 * @folio: The folio to query
2087 *
2088 * This returns true if @folio is one of the permanent zero pages.
2089 */
is_zero_folio(const struct folio * folio)2090 static inline bool is_zero_folio(const struct folio *folio)
2091 {
2092 return is_zero_page(&folio->page);
2093 }
2094
2095 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2096 #ifdef CONFIG_MIGRATION
folio_is_longterm_pinnable(struct folio * folio)2097 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2098 {
2099 #ifdef CONFIG_CMA
2100 int mt = folio_migratetype(folio);
2101
2102 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2103 return false;
2104 #endif
2105 /* The zero page can be "pinned" but gets special handling. */
2106 if (is_zero_folio(folio))
2107 return true;
2108
2109 /* Coherent device memory must always allow eviction. */
2110 if (folio_is_device_coherent(folio))
2111 return false;
2112
2113 /*
2114 * Filesystems can only tolerate transient delays to truncate and
2115 * hole-punch operations
2116 */
2117 if (folio_is_fsdax(folio))
2118 return false;
2119
2120 /* Otherwise, non-movable zone folios can be pinned. */
2121 return !folio_is_zone_movable(folio);
2122
2123 }
2124 #else
folio_is_longterm_pinnable(struct folio * folio)2125 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2126 {
2127 return true;
2128 }
2129 #endif
2130
set_page_zone(struct page * page,enum zone_type zone)2131 static inline void set_page_zone(struct page *page, enum zone_type zone)
2132 {
2133 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2134 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2135 }
2136
set_page_node(struct page * page,unsigned long node)2137 static inline void set_page_node(struct page *page, unsigned long node)
2138 {
2139 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2140 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2141 }
2142
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)2143 static inline void set_page_links(struct page *page, enum zone_type zone,
2144 unsigned long node, unsigned long pfn)
2145 {
2146 set_page_zone(page, zone);
2147 set_page_node(page, node);
2148 #ifdef SECTION_IN_PAGE_FLAGS
2149 set_page_section(page, pfn_to_section_nr(pfn));
2150 #endif
2151 }
2152
2153 /**
2154 * folio_nr_pages - The number of pages in the folio.
2155 * @folio: The folio.
2156 *
2157 * Return: A positive power of two.
2158 */
folio_nr_pages(const struct folio * folio)2159 static inline long folio_nr_pages(const struct folio *folio)
2160 {
2161 if (!folio_test_large(folio))
2162 return 1;
2163 return folio_large_nr_pages(folio);
2164 }
2165
2166 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2167 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2168 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER)
2169 #else
2170 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES
2171 #endif
2172
2173 /*
2174 * compound_nr() returns the number of pages in this potentially compound
2175 * page. compound_nr() can be called on a tail page, and is defined to
2176 * return 1 in that case.
2177 */
compound_nr(struct page * page)2178 static inline long compound_nr(struct page *page)
2179 {
2180 struct folio *folio = (struct folio *)page;
2181
2182 if (!test_bit(PG_head, &folio->flags))
2183 return 1;
2184 return folio_large_nr_pages(folio);
2185 }
2186
2187 /**
2188 * thp_nr_pages - The number of regular pages in this huge page.
2189 * @page: The head page of a huge page.
2190 */
thp_nr_pages(struct page * page)2191 static inline long thp_nr_pages(struct page *page)
2192 {
2193 return folio_nr_pages((struct folio *)page);
2194 }
2195
2196 /**
2197 * folio_next - Move to the next physical folio.
2198 * @folio: The folio we're currently operating on.
2199 *
2200 * If you have physically contiguous memory which may span more than
2201 * one folio (eg a &struct bio_vec), use this function to move from one
2202 * folio to the next. Do not use it if the memory is only virtually
2203 * contiguous as the folios are almost certainly not adjacent to each
2204 * other. This is the folio equivalent to writing ``page++``.
2205 *
2206 * Context: We assume that the folios are refcounted and/or locked at a
2207 * higher level and do not adjust the reference counts.
2208 * Return: The next struct folio.
2209 */
folio_next(struct folio * folio)2210 static inline struct folio *folio_next(struct folio *folio)
2211 {
2212 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2213 }
2214
2215 /**
2216 * folio_shift - The size of the memory described by this folio.
2217 * @folio: The folio.
2218 *
2219 * A folio represents a number of bytes which is a power-of-two in size.
2220 * This function tells you which power-of-two the folio is. See also
2221 * folio_size() and folio_order().
2222 *
2223 * Context: The caller should have a reference on the folio to prevent
2224 * it from being split. It is not necessary for the folio to be locked.
2225 * Return: The base-2 logarithm of the size of this folio.
2226 */
folio_shift(const struct folio * folio)2227 static inline unsigned int folio_shift(const struct folio *folio)
2228 {
2229 return PAGE_SHIFT + folio_order(folio);
2230 }
2231
2232 /**
2233 * folio_size - The number of bytes in a folio.
2234 * @folio: The folio.
2235 *
2236 * Context: The caller should have a reference on the folio to prevent
2237 * it from being split. It is not necessary for the folio to be locked.
2238 * Return: The number of bytes in this folio.
2239 */
folio_size(const struct folio * folio)2240 static inline size_t folio_size(const struct folio *folio)
2241 {
2242 return PAGE_SIZE << folio_order(folio);
2243 }
2244
2245 /**
2246 * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2247 * tables of more than one MM
2248 * @folio: The folio.
2249 *
2250 * This function checks if the folio maybe currently mapped into more than one
2251 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2252 * MM ("mapped exclusively").
2253 *
2254 * For KSM folios, this function also returns "mapped shared" when a folio is
2255 * mapped multiple times into the same MM, because the individual page mappings
2256 * are independent.
2257 *
2258 * For small anonymous folios and anonymous hugetlb folios, the return
2259 * value will be exactly correct: non-KSM folios can only be mapped at most once
2260 * into an MM, and they cannot be partially mapped. KSM folios are
2261 * considered shared even if mapped multiple times into the same MM.
2262 *
2263 * For other folios, the result can be fuzzy:
2264 * #. For partially-mappable large folios (THP), the return value can wrongly
2265 * indicate "mapped shared" (false positive) if a folio was mapped by
2266 * more than two MMs at one point in time.
2267 * #. For pagecache folios (including hugetlb), the return value can wrongly
2268 * indicate "mapped shared" (false positive) when two VMAs in the same MM
2269 * cover the same file range.
2270 *
2271 * Further, this function only considers current page table mappings that
2272 * are tracked using the folio mapcount(s).
2273 *
2274 * This function does not consider:
2275 * #. If the folio might get mapped in the (near) future (e.g., swapcache,
2276 * pagecache, temporary unmapping for migration).
2277 * #. If the folio is mapped differently (VM_PFNMAP).
2278 * #. If hugetlb page table sharing applies. Callers might want to check
2279 * hugetlb_pmd_shared().
2280 *
2281 * Return: Whether the folio is estimated to be mapped into more than one MM.
2282 */
folio_maybe_mapped_shared(struct folio * folio)2283 static inline bool folio_maybe_mapped_shared(struct folio *folio)
2284 {
2285 int mapcount = folio_mapcount(folio);
2286
2287 /* Only partially-mappable folios require more care. */
2288 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2289 return mapcount > 1;
2290
2291 /*
2292 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2293 * simply assume "mapped shared", nobody should really care
2294 * about this for arbitrary kernel allocations.
2295 */
2296 if (!IS_ENABLED(CONFIG_MM_ID))
2297 return true;
2298
2299 /*
2300 * A single mapping implies "mapped exclusively", even if the
2301 * folio flag says something different: it's easier to handle this
2302 * case here instead of on the RMAP hot path.
2303 */
2304 if (mapcount <= 1)
2305 return false;
2306 return folio_test_large_maybe_mapped_shared(folio);
2307 }
2308
2309 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)2310 static inline int arch_make_folio_accessible(struct folio *folio)
2311 {
2312 return 0;
2313 }
2314 #endif
2315
2316 /*
2317 * Some inline functions in vmstat.h depend on page_zone()
2318 */
2319 #include <linux/vmstat.h>
2320
2321 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2322 #define HASHED_PAGE_VIRTUAL
2323 #endif
2324
2325 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)2326 static inline void *page_address(const struct page *page)
2327 {
2328 return page->virtual;
2329 }
set_page_address(struct page * page,void * address)2330 static inline void set_page_address(struct page *page, void *address)
2331 {
2332 page->virtual = address;
2333 }
2334 #define page_address_init() do { } while(0)
2335 #endif
2336
2337 #if defined(HASHED_PAGE_VIRTUAL)
2338 void *page_address(const struct page *page);
2339 void set_page_address(struct page *page, void *virtual);
2340 void page_address_init(void);
2341 #endif
2342
lowmem_page_address(const struct page * page)2343 static __always_inline void *lowmem_page_address(const struct page *page)
2344 {
2345 return page_to_virt(page);
2346 }
2347
2348 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2349 #define page_address(page) lowmem_page_address(page)
2350 #define set_page_address(page, address) do { } while(0)
2351 #define page_address_init() do { } while(0)
2352 #endif
2353
folio_address(const struct folio * folio)2354 static inline void *folio_address(const struct folio *folio)
2355 {
2356 return page_address(&folio->page);
2357 }
2358
2359 /*
2360 * Return true only if the page has been allocated with
2361 * ALLOC_NO_WATERMARKS and the low watermark was not
2362 * met implying that the system is under some pressure.
2363 */
page_is_pfmemalloc(const struct page * page)2364 static inline bool page_is_pfmemalloc(const struct page *page)
2365 {
2366 /*
2367 * lru.next has bit 1 set if the page is allocated from the
2368 * pfmemalloc reserves. Callers may simply overwrite it if
2369 * they do not need to preserve that information.
2370 */
2371 return (uintptr_t)page->lru.next & BIT(1);
2372 }
2373
2374 /*
2375 * Return true only if the folio has been allocated with
2376 * ALLOC_NO_WATERMARKS and the low watermark was not
2377 * met implying that the system is under some pressure.
2378 */
folio_is_pfmemalloc(const struct folio * folio)2379 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2380 {
2381 /*
2382 * lru.next has bit 1 set if the page is allocated from the
2383 * pfmemalloc reserves. Callers may simply overwrite it if
2384 * they do not need to preserve that information.
2385 */
2386 return (uintptr_t)folio->lru.next & BIT(1);
2387 }
2388
2389 /*
2390 * Only to be called by the page allocator on a freshly allocated
2391 * page.
2392 */
set_page_pfmemalloc(struct page * page)2393 static inline void set_page_pfmemalloc(struct page *page)
2394 {
2395 page->lru.next = (void *)BIT(1);
2396 }
2397
clear_page_pfmemalloc(struct page * page)2398 static inline void clear_page_pfmemalloc(struct page *page)
2399 {
2400 page->lru.next = NULL;
2401 }
2402
2403 /*
2404 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2405 */
2406 extern void pagefault_out_of_memory(void);
2407
2408 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2409 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2410 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2411
2412 /*
2413 * Parameter block passed down to zap_pte_range in exceptional cases.
2414 */
2415 struct zap_details {
2416 struct folio *single_folio; /* Locked folio to be unmapped */
2417 bool even_cows; /* Zap COWed private pages too? */
2418 bool reclaim_pt; /* Need reclaim page tables? */
2419 zap_flags_t zap_flags; /* Extra flags for zapping */
2420 };
2421
2422 /*
2423 * Whether to drop the pte markers, for example, the uffd-wp information for
2424 * file-backed memory. This should only be specified when we will completely
2425 * drop the page in the mm, either by truncation or unmapping of the vma. By
2426 * default, the flag is not set.
2427 */
2428 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2429 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2430 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2431
2432 #ifdef CONFIG_SCHED_MM_CID
2433 void sched_mm_cid_before_execve(struct task_struct *t);
2434 void sched_mm_cid_after_execve(struct task_struct *t);
2435 void sched_mm_cid_fork(struct task_struct *t);
2436 void sched_mm_cid_exit_signals(struct task_struct *t);
task_mm_cid(struct task_struct * t)2437 static inline int task_mm_cid(struct task_struct *t)
2438 {
2439 return t->mm_cid;
2440 }
2441 #else
sched_mm_cid_before_execve(struct task_struct * t)2442 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
sched_mm_cid_after_execve(struct task_struct * t)2443 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
sched_mm_cid_fork(struct task_struct * t)2444 static inline void sched_mm_cid_fork(struct task_struct *t) { }
sched_mm_cid_exit_signals(struct task_struct * t)2445 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
task_mm_cid(struct task_struct * t)2446 static inline int task_mm_cid(struct task_struct *t)
2447 {
2448 /*
2449 * Use the processor id as a fall-back when the mm cid feature is
2450 * disabled. This provides functional per-cpu data structure accesses
2451 * in user-space, althrough it won't provide the memory usage benefits.
2452 */
2453 return raw_smp_processor_id();
2454 }
2455 #endif
2456
2457 #ifdef CONFIG_MMU
2458 extern bool can_do_mlock(void);
2459 #else
can_do_mlock(void)2460 static inline bool can_do_mlock(void) { return false; }
2461 #endif
2462 extern int user_shm_lock(size_t, struct ucounts *);
2463 extern void user_shm_unlock(size_t, struct ucounts *);
2464
2465 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2466 pte_t pte);
2467 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2468 pte_t pte);
2469 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2470 unsigned long addr, pmd_t pmd);
2471 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2472 pmd_t pmd);
2473
2474 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2475 unsigned long size);
2476 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2477 unsigned long size, struct zap_details *details);
zap_vma_pages(struct vm_area_struct * vma)2478 static inline void zap_vma_pages(struct vm_area_struct *vma)
2479 {
2480 zap_page_range_single(vma, vma->vm_start,
2481 vma->vm_end - vma->vm_start, NULL);
2482 }
2483 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2484 struct vm_area_struct *start_vma, unsigned long start,
2485 unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2486
2487 struct mmu_notifier_range;
2488
2489 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2490 unsigned long end, unsigned long floor, unsigned long ceiling);
2491 int
2492 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2493 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2494 void *buf, int len, int write);
2495
2496 struct follow_pfnmap_args {
2497 /**
2498 * Inputs:
2499 * @vma: Pointer to @vm_area_struct struct
2500 * @address: the virtual address to walk
2501 */
2502 struct vm_area_struct *vma;
2503 unsigned long address;
2504 /**
2505 * Internals:
2506 *
2507 * The caller shouldn't touch any of these.
2508 */
2509 spinlock_t *lock;
2510 pte_t *ptep;
2511 /**
2512 * Outputs:
2513 *
2514 * @pfn: the PFN of the address
2515 * @addr_mask: address mask covering pfn
2516 * @pgprot: the pgprot_t of the mapping
2517 * @writable: whether the mapping is writable
2518 * @special: whether the mapping is a special mapping (real PFN maps)
2519 */
2520 unsigned long pfn;
2521 unsigned long addr_mask;
2522 pgprot_t pgprot;
2523 bool writable;
2524 bool special;
2525 };
2526 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2527 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2528
2529 extern void truncate_pagecache(struct inode *inode, loff_t new);
2530 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2531 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2532 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2533 int generic_error_remove_folio(struct address_space *mapping,
2534 struct folio *folio);
2535
2536 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2537 unsigned long address, struct pt_regs *regs);
2538
2539 #ifdef CONFIG_MMU
2540 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2541 unsigned long address, unsigned int flags,
2542 struct pt_regs *regs);
2543 extern int fixup_user_fault(struct mm_struct *mm,
2544 unsigned long address, unsigned int fault_flags,
2545 bool *unlocked);
2546 void unmap_mapping_pages(struct address_space *mapping,
2547 pgoff_t start, pgoff_t nr, bool even_cows);
2548 void unmap_mapping_range(struct address_space *mapping,
2549 loff_t const holebegin, loff_t const holelen, int even_cows);
2550 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)2551 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2552 unsigned long address, unsigned int flags,
2553 struct pt_regs *regs)
2554 {
2555 /* should never happen if there's no MMU */
2556 BUG();
2557 return VM_FAULT_SIGBUS;
2558 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)2559 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2560 unsigned int fault_flags, bool *unlocked)
2561 {
2562 /* should never happen if there's no MMU */
2563 BUG();
2564 return -EFAULT;
2565 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)2566 static inline void unmap_mapping_pages(struct address_space *mapping,
2567 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)2568 static inline void unmap_mapping_range(struct address_space *mapping,
2569 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2570 #endif
2571
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)2572 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2573 loff_t const holebegin, loff_t const holelen)
2574 {
2575 unmap_mapping_range(mapping, holebegin, holelen, 0);
2576 }
2577
2578 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2579 unsigned long addr);
2580
2581 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2582 void *buf, int len, unsigned int gup_flags);
2583 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2584 void *buf, int len, unsigned int gup_flags);
2585
2586 #ifdef CONFIG_BPF_SYSCALL
2587 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr,
2588 void *buf, int len, unsigned int gup_flags);
2589 #endif
2590
2591 long get_user_pages_remote(struct mm_struct *mm,
2592 unsigned long start, unsigned long nr_pages,
2593 unsigned int gup_flags, struct page **pages,
2594 int *locked);
2595 long pin_user_pages_remote(struct mm_struct *mm,
2596 unsigned long start, unsigned long nr_pages,
2597 unsigned int gup_flags, struct page **pages,
2598 int *locked);
2599
2600 /*
2601 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2602 */
get_user_page_vma_remote(struct mm_struct * mm,unsigned long addr,int gup_flags,struct vm_area_struct ** vmap)2603 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2604 unsigned long addr,
2605 int gup_flags,
2606 struct vm_area_struct **vmap)
2607 {
2608 struct page *page;
2609 struct vm_area_struct *vma;
2610 int got;
2611
2612 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2613 return ERR_PTR(-EINVAL);
2614
2615 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2616
2617 if (got < 0)
2618 return ERR_PTR(got);
2619
2620 vma = vma_lookup(mm, addr);
2621 if (WARN_ON_ONCE(!vma)) {
2622 put_page(page);
2623 return ERR_PTR(-EINVAL);
2624 }
2625
2626 *vmap = vma;
2627 return page;
2628 }
2629
2630 long get_user_pages(unsigned long start, unsigned long nr_pages,
2631 unsigned int gup_flags, struct page **pages);
2632 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2633 unsigned int gup_flags, struct page **pages);
2634 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2635 struct page **pages, unsigned int gup_flags);
2636 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2637 struct page **pages, unsigned int gup_flags);
2638 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2639 struct folio **folios, unsigned int max_folios,
2640 pgoff_t *offset);
2641 int folio_add_pins(struct folio *folio, unsigned int pins);
2642
2643 int get_user_pages_fast(unsigned long start, int nr_pages,
2644 unsigned int gup_flags, struct page **pages);
2645 int pin_user_pages_fast(unsigned long start, int nr_pages,
2646 unsigned int gup_flags, struct page **pages);
2647 void folio_add_pin(struct folio *folio);
2648
2649 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2650 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2651 struct task_struct *task, bool bypass_rlim);
2652
2653 struct kvec;
2654 struct page *get_dump_page(unsigned long addr, int *locked);
2655
2656 bool folio_mark_dirty(struct folio *folio);
2657 bool folio_mark_dirty_lock(struct folio *folio);
2658 bool set_page_dirty(struct page *page);
2659 int set_page_dirty_lock(struct page *page);
2660
2661 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2662
2663 /*
2664 * Flags used by change_protection(). For now we make it a bitmap so
2665 * that we can pass in multiple flags just like parameters. However
2666 * for now all the callers are only use one of the flags at the same
2667 * time.
2668 */
2669 /*
2670 * Whether we should manually check if we can map individual PTEs writable,
2671 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2672 * PTEs automatically in a writable mapping.
2673 */
2674 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2675 /* Whether this protection change is for NUMA hints */
2676 #define MM_CP_PROT_NUMA (1UL << 1)
2677 /* Whether this change is for write protecting */
2678 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2679 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2680 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2681 MM_CP_UFFD_WP_RESOLVE)
2682
2683 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2684 pte_t pte);
2685 extern long change_protection(struct mmu_gather *tlb,
2686 struct vm_area_struct *vma, unsigned long start,
2687 unsigned long end, unsigned long cp_flags);
2688 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2689 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2690 unsigned long start, unsigned long end, unsigned long newflags);
2691
2692 /*
2693 * doesn't attempt to fault and will return short.
2694 */
2695 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2696 unsigned int gup_flags, struct page **pages);
2697
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2698 static inline bool get_user_page_fast_only(unsigned long addr,
2699 unsigned int gup_flags, struct page **pagep)
2700 {
2701 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2702 }
2703 /*
2704 * per-process(per-mm_struct) statistics.
2705 */
get_mm_counter(struct mm_struct * mm,int member)2706 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2707 {
2708 return percpu_counter_read_positive(&mm->rss_stat[member]);
2709 }
2710
2711 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2712
add_mm_counter(struct mm_struct * mm,int member,long value)2713 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2714 {
2715 percpu_counter_add(&mm->rss_stat[member], value);
2716
2717 mm_trace_rss_stat(mm, member);
2718 }
2719
inc_mm_counter(struct mm_struct * mm,int member)2720 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2721 {
2722 percpu_counter_inc(&mm->rss_stat[member]);
2723
2724 mm_trace_rss_stat(mm, member);
2725 }
2726
dec_mm_counter(struct mm_struct * mm,int member)2727 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2728 {
2729 percpu_counter_dec(&mm->rss_stat[member]);
2730
2731 mm_trace_rss_stat(mm, member);
2732 }
2733
2734 /* Optimized variant when folio is already known not to be anon */
mm_counter_file(struct folio * folio)2735 static inline int mm_counter_file(struct folio *folio)
2736 {
2737 if (folio_test_swapbacked(folio))
2738 return MM_SHMEMPAGES;
2739 return MM_FILEPAGES;
2740 }
2741
mm_counter(struct folio * folio)2742 static inline int mm_counter(struct folio *folio)
2743 {
2744 if (folio_test_anon(folio))
2745 return MM_ANONPAGES;
2746 return mm_counter_file(folio);
2747 }
2748
get_mm_rss(struct mm_struct * mm)2749 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2750 {
2751 return get_mm_counter(mm, MM_FILEPAGES) +
2752 get_mm_counter(mm, MM_ANONPAGES) +
2753 get_mm_counter(mm, MM_SHMEMPAGES);
2754 }
2755
get_mm_hiwater_rss(struct mm_struct * mm)2756 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2757 {
2758 return max(mm->hiwater_rss, get_mm_rss(mm));
2759 }
2760
get_mm_hiwater_vm(struct mm_struct * mm)2761 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2762 {
2763 return max(mm->hiwater_vm, mm->total_vm);
2764 }
2765
update_hiwater_rss(struct mm_struct * mm)2766 static inline void update_hiwater_rss(struct mm_struct *mm)
2767 {
2768 unsigned long _rss = get_mm_rss(mm);
2769
2770 if ((mm)->hiwater_rss < _rss)
2771 (mm)->hiwater_rss = _rss;
2772 }
2773
update_hiwater_vm(struct mm_struct * mm)2774 static inline void update_hiwater_vm(struct mm_struct *mm)
2775 {
2776 if (mm->hiwater_vm < mm->total_vm)
2777 mm->hiwater_vm = mm->total_vm;
2778 }
2779
reset_mm_hiwater_rss(struct mm_struct * mm)2780 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2781 {
2782 mm->hiwater_rss = get_mm_rss(mm);
2783 }
2784
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2785 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2786 struct mm_struct *mm)
2787 {
2788 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2789
2790 if (*maxrss < hiwater_rss)
2791 *maxrss = hiwater_rss;
2792 }
2793
2794 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2795 static inline int pte_special(pte_t pte)
2796 {
2797 return 0;
2798 }
2799
pte_mkspecial(pte_t pte)2800 static inline pte_t pte_mkspecial(pte_t pte)
2801 {
2802 return pte;
2803 }
2804 #endif
2805
2806 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
pmd_special(pmd_t pmd)2807 static inline bool pmd_special(pmd_t pmd)
2808 {
2809 return false;
2810 }
2811
pmd_mkspecial(pmd_t pmd)2812 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2813 {
2814 return pmd;
2815 }
2816 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2817
2818 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
pud_special(pud_t pud)2819 static inline bool pud_special(pud_t pud)
2820 {
2821 return false;
2822 }
2823
pud_mkspecial(pud_t pud)2824 static inline pud_t pud_mkspecial(pud_t pud)
2825 {
2826 return pud;
2827 }
2828 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2829
2830 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2831 static inline int pte_devmap(pte_t pte)
2832 {
2833 return 0;
2834 }
2835 #endif
2836
2837 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2838 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2839 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2840 spinlock_t **ptl)
2841 {
2842 pte_t *ptep;
2843 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2844 return ptep;
2845 }
2846
2847 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2848 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2849 unsigned long address)
2850 {
2851 return 0;
2852 }
2853 #else
2854 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2855 #endif
2856
2857 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2858 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2859 unsigned long address)
2860 {
2861 return 0;
2862 }
mm_inc_nr_puds(struct mm_struct * mm)2863 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2864 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2865
2866 #else
2867 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2868
mm_inc_nr_puds(struct mm_struct * mm)2869 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2870 {
2871 if (mm_pud_folded(mm))
2872 return;
2873 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2874 }
2875
mm_dec_nr_puds(struct mm_struct * mm)2876 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2877 {
2878 if (mm_pud_folded(mm))
2879 return;
2880 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2881 }
2882 #endif
2883
2884 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2885 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2886 unsigned long address)
2887 {
2888 return 0;
2889 }
2890
mm_inc_nr_pmds(struct mm_struct * mm)2891 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2892 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2893
2894 #else
2895 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2896
mm_inc_nr_pmds(struct mm_struct * mm)2897 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2898 {
2899 if (mm_pmd_folded(mm))
2900 return;
2901 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2902 }
2903
mm_dec_nr_pmds(struct mm_struct * mm)2904 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2905 {
2906 if (mm_pmd_folded(mm))
2907 return;
2908 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2909 }
2910 #endif
2911
2912 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2913 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2914 {
2915 atomic_long_set(&mm->pgtables_bytes, 0);
2916 }
2917
mm_pgtables_bytes(const struct mm_struct * mm)2918 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2919 {
2920 return atomic_long_read(&mm->pgtables_bytes);
2921 }
2922
mm_inc_nr_ptes(struct mm_struct * mm)2923 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2924 {
2925 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2926 }
2927
mm_dec_nr_ptes(struct mm_struct * mm)2928 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2929 {
2930 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2931 }
2932 #else
2933
mm_pgtables_bytes_init(struct mm_struct * mm)2934 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2935 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2936 {
2937 return 0;
2938 }
2939
mm_inc_nr_ptes(struct mm_struct * mm)2940 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2941 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2942 #endif
2943
2944 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2945 int __pte_alloc_kernel(pmd_t *pmd);
2946
2947 #if defined(CONFIG_MMU)
2948
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2949 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2950 unsigned long address)
2951 {
2952 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2953 NULL : p4d_offset(pgd, address);
2954 }
2955
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2956 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2957 unsigned long address)
2958 {
2959 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2960 NULL : pud_offset(p4d, address);
2961 }
2962
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2963 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2964 {
2965 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2966 NULL: pmd_offset(pud, address);
2967 }
2968 #endif /* CONFIG_MMU */
2969
virt_to_ptdesc(const void * x)2970 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2971 {
2972 return page_ptdesc(virt_to_page(x));
2973 }
2974
ptdesc_to_virt(const struct ptdesc * pt)2975 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2976 {
2977 return page_to_virt(ptdesc_page(pt));
2978 }
2979
ptdesc_address(const struct ptdesc * pt)2980 static inline void *ptdesc_address(const struct ptdesc *pt)
2981 {
2982 return folio_address(ptdesc_folio(pt));
2983 }
2984
pagetable_is_reserved(struct ptdesc * pt)2985 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2986 {
2987 return folio_test_reserved(ptdesc_folio(pt));
2988 }
2989
2990 /**
2991 * pagetable_alloc - Allocate pagetables
2992 * @gfp: GFP flags
2993 * @order: desired pagetable order
2994 *
2995 * pagetable_alloc allocates memory for page tables as well as a page table
2996 * descriptor to describe that memory.
2997 *
2998 * Return: The ptdesc describing the allocated page tables.
2999 */
pagetable_alloc_noprof(gfp_t gfp,unsigned int order)3000 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
3001 {
3002 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
3003
3004 return page_ptdesc(page);
3005 }
3006 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
3007
3008 /**
3009 * pagetable_free - Free pagetables
3010 * @pt: The page table descriptor
3011 *
3012 * pagetable_free frees the memory of all page tables described by a page
3013 * table descriptor and the memory for the descriptor itself.
3014 */
pagetable_free(struct ptdesc * pt)3015 static inline void pagetable_free(struct ptdesc *pt)
3016 {
3017 struct page *page = ptdesc_page(pt);
3018
3019 __free_pages(page, compound_order(page));
3020 }
3021
3022 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
3023 #if ALLOC_SPLIT_PTLOCKS
3024 void __init ptlock_cache_init(void);
3025 bool ptlock_alloc(struct ptdesc *ptdesc);
3026 void ptlock_free(struct ptdesc *ptdesc);
3027
ptlock_ptr(struct ptdesc * ptdesc)3028 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3029 {
3030 return ptdesc->ptl;
3031 }
3032 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)3033 static inline void ptlock_cache_init(void)
3034 {
3035 }
3036
ptlock_alloc(struct ptdesc * ptdesc)3037 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
3038 {
3039 return true;
3040 }
3041
ptlock_free(struct ptdesc * ptdesc)3042 static inline void ptlock_free(struct ptdesc *ptdesc)
3043 {
3044 }
3045
ptlock_ptr(struct ptdesc * ptdesc)3046 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3047 {
3048 return &ptdesc->ptl;
3049 }
3050 #endif /* ALLOC_SPLIT_PTLOCKS */
3051
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)3052 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3053 {
3054 return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
3055 }
3056
ptep_lockptr(struct mm_struct * mm,pte_t * pte)3057 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3058 {
3059 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
3060 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
3061 return ptlock_ptr(virt_to_ptdesc(pte));
3062 }
3063
ptlock_init(struct ptdesc * ptdesc)3064 static inline bool ptlock_init(struct ptdesc *ptdesc)
3065 {
3066 /*
3067 * prep_new_page() initialize page->private (and therefore page->ptl)
3068 * with 0. Make sure nobody took it in use in between.
3069 *
3070 * It can happen if arch try to use slab for page table allocation:
3071 * slab code uses page->slab_cache, which share storage with page->ptl.
3072 */
3073 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
3074 if (!ptlock_alloc(ptdesc))
3075 return false;
3076 spin_lock_init(ptlock_ptr(ptdesc));
3077 return true;
3078 }
3079
3080 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3081 /*
3082 * We use mm->page_table_lock to guard all pagetable pages of the mm.
3083 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)3084 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3085 {
3086 return &mm->page_table_lock;
3087 }
ptep_lockptr(struct mm_struct * mm,pte_t * pte)3088 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3089 {
3090 return &mm->page_table_lock;
3091 }
ptlock_cache_init(void)3092 static inline void ptlock_cache_init(void) {}
ptlock_init(struct ptdesc * ptdesc)3093 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
ptlock_free(struct ptdesc * ptdesc)3094 static inline void ptlock_free(struct ptdesc *ptdesc) {}
3095 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3096
__pagetable_ctor(struct ptdesc * ptdesc)3097 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
3098 {
3099 struct folio *folio = ptdesc_folio(ptdesc);
3100
3101 __folio_set_pgtable(folio);
3102 lruvec_stat_add_folio(folio, NR_PAGETABLE);
3103 }
3104
pagetable_dtor(struct ptdesc * ptdesc)3105 static inline void pagetable_dtor(struct ptdesc *ptdesc)
3106 {
3107 struct folio *folio = ptdesc_folio(ptdesc);
3108
3109 ptlock_free(ptdesc);
3110 __folio_clear_pgtable(folio);
3111 lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3112 }
3113
pagetable_dtor_free(struct ptdesc * ptdesc)3114 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
3115 {
3116 pagetable_dtor(ptdesc);
3117 pagetable_free(ptdesc);
3118 }
3119
pagetable_pte_ctor(struct ptdesc * ptdesc)3120 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
3121 {
3122 if (!ptlock_init(ptdesc))
3123 return false;
3124 __pagetable_ctor(ptdesc);
3125 return true;
3126 }
3127
3128 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
__pte_offset_map(pmd_t * pmd,unsigned long addr,pmd_t * pmdvalp)3129 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3130 pmd_t *pmdvalp)
3131 {
3132 pte_t *pte;
3133
3134 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3135 return pte;
3136 }
pte_offset_map(pmd_t * pmd,unsigned long addr)3137 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3138 {
3139 return __pte_offset_map(pmd, addr, NULL);
3140 }
3141
3142 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3143 unsigned long addr, spinlock_t **ptlp);
pte_offset_map_lock(struct mm_struct * mm,pmd_t * pmd,unsigned long addr,spinlock_t ** ptlp)3144 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3145 unsigned long addr, spinlock_t **ptlp)
3146 {
3147 pte_t *pte;
3148
3149 __cond_lock(RCU, __cond_lock(*ptlp,
3150 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3151 return pte;
3152 }
3153
3154 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3155 unsigned long addr, spinlock_t **ptlp);
3156 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3157 unsigned long addr, pmd_t *pmdvalp,
3158 spinlock_t **ptlp);
3159
3160 #define pte_unmap_unlock(pte, ptl) do { \
3161 spin_unlock(ptl); \
3162 pte_unmap(pte); \
3163 } while (0)
3164
3165 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3166
3167 #define pte_alloc_map(mm, pmd, address) \
3168 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3169
3170 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3171 (pte_alloc(mm, pmd) ? \
3172 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3173
3174 #define pte_alloc_kernel(pmd, address) \
3175 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3176 NULL: pte_offset_kernel(pmd, address))
3177
3178 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3179
pmd_pgtable_page(pmd_t * pmd)3180 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3181 {
3182 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3183 return virt_to_page((void *)((unsigned long) pmd & mask));
3184 }
3185
pmd_ptdesc(pmd_t * pmd)3186 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3187 {
3188 return page_ptdesc(pmd_pgtable_page(pmd));
3189 }
3190
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3191 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3192 {
3193 return ptlock_ptr(pmd_ptdesc(pmd));
3194 }
3195
pmd_ptlock_init(struct ptdesc * ptdesc)3196 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3197 {
3198 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3199 ptdesc->pmd_huge_pte = NULL;
3200 #endif
3201 return ptlock_init(ptdesc);
3202 }
3203
3204 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3205
3206 #else
3207
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)3208 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3209 {
3210 return &mm->page_table_lock;
3211 }
3212
pmd_ptlock_init(struct ptdesc * ptdesc)3213 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3214
3215 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3216
3217 #endif
3218
pmd_lock(struct mm_struct * mm,pmd_t * pmd)3219 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3220 {
3221 spinlock_t *ptl = pmd_lockptr(mm, pmd);
3222 spin_lock(ptl);
3223 return ptl;
3224 }
3225
pagetable_pmd_ctor(struct ptdesc * ptdesc)3226 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3227 {
3228 if (!pmd_ptlock_init(ptdesc))
3229 return false;
3230 ptdesc_pmd_pts_init(ptdesc);
3231 __pagetable_ctor(ptdesc);
3232 return true;
3233 }
3234
3235 /*
3236 * No scalability reason to split PUD locks yet, but follow the same pattern
3237 * as the PMD locks to make it easier if we decide to. The VM should not be
3238 * considered ready to switch to split PUD locks yet; there may be places
3239 * which need to be converted from page_table_lock.
3240 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)3241 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3242 {
3243 return &mm->page_table_lock;
3244 }
3245
pud_lock(struct mm_struct * mm,pud_t * pud)3246 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3247 {
3248 spinlock_t *ptl = pud_lockptr(mm, pud);
3249
3250 spin_lock(ptl);
3251 return ptl;
3252 }
3253
pagetable_pud_ctor(struct ptdesc * ptdesc)3254 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3255 {
3256 __pagetable_ctor(ptdesc);
3257 }
3258
pagetable_p4d_ctor(struct ptdesc * ptdesc)3259 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3260 {
3261 __pagetable_ctor(ptdesc);
3262 }
3263
pagetable_pgd_ctor(struct ptdesc * ptdesc)3264 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3265 {
3266 __pagetable_ctor(ptdesc);
3267 }
3268
3269 extern void __init pagecache_init(void);
3270 extern void free_initmem(void);
3271
3272 /*
3273 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3274 * into the buddy system. The freed pages will be poisoned with pattern
3275 * "poison" if it's within range [0, UCHAR_MAX].
3276 * Return pages freed into the buddy system.
3277 */
3278 extern unsigned long free_reserved_area(void *start, void *end,
3279 int poison, const char *s);
3280
3281 extern void adjust_managed_page_count(struct page *page, long count);
3282
3283 extern void reserve_bootmem_region(phys_addr_t start,
3284 phys_addr_t end, int nid);
3285
3286 /* Free the reserved page into the buddy system, so it gets managed. */
3287 void free_reserved_page(struct page *page);
3288
mark_page_reserved(struct page * page)3289 static inline void mark_page_reserved(struct page *page)
3290 {
3291 SetPageReserved(page);
3292 adjust_managed_page_count(page, -1);
3293 }
3294
free_reserved_ptdesc(struct ptdesc * pt)3295 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3296 {
3297 free_reserved_page(ptdesc_page(pt));
3298 }
3299
3300 /*
3301 * Default method to free all the __init memory into the buddy system.
3302 * The freed pages will be poisoned with pattern "poison" if it's within
3303 * range [0, UCHAR_MAX].
3304 * Return pages freed into the buddy system.
3305 */
free_initmem_default(int poison)3306 static inline unsigned long free_initmem_default(int poison)
3307 {
3308 extern char __init_begin[], __init_end[];
3309
3310 return free_reserved_area(&__init_begin, &__init_end,
3311 poison, "unused kernel image (initmem)");
3312 }
3313
get_num_physpages(void)3314 static inline unsigned long get_num_physpages(void)
3315 {
3316 int nid;
3317 unsigned long phys_pages = 0;
3318
3319 for_each_online_node(nid)
3320 phys_pages += node_present_pages(nid);
3321
3322 return phys_pages;
3323 }
3324
3325 /*
3326 * Using memblock node mappings, an architecture may initialise its
3327 * zones, allocate the backing mem_map and account for memory holes in an
3328 * architecture independent manner.
3329 *
3330 * An architecture is expected to register range of page frames backed by
3331 * physical memory with memblock_add[_node]() before calling
3332 * free_area_init() passing in the PFN each zone ends at. At a basic
3333 * usage, an architecture is expected to do something like
3334 *
3335 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3336 * max_highmem_pfn};
3337 * for_each_valid_physical_page_range()
3338 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3339 * free_area_init(max_zone_pfns);
3340 */
3341 void free_area_init(unsigned long *max_zone_pfn);
3342 unsigned long node_map_pfn_alignment(void);
3343 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3344 unsigned long end_pfn);
3345 extern void get_pfn_range_for_nid(unsigned int nid,
3346 unsigned long *start_pfn, unsigned long *end_pfn);
3347
3348 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)3349 static inline int early_pfn_to_nid(unsigned long pfn)
3350 {
3351 return 0;
3352 }
3353 #else
3354 /* please see mm/page_alloc.c */
3355 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3356 #endif
3357
3358 extern void mem_init(void);
3359 extern void __init mmap_init(void);
3360
3361 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(void)3362 static inline void show_mem(void)
3363 {
3364 __show_mem(0, NULL, MAX_NR_ZONES - 1);
3365 }
3366 extern long si_mem_available(void);
3367 extern void si_meminfo(struct sysinfo * val);
3368 extern void si_meminfo_node(struct sysinfo *val, int nid);
3369
3370 extern __printf(3, 4)
3371 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3372
3373 extern void setup_per_cpu_pageset(void);
3374
3375 /* nommu.c */
3376 extern atomic_long_t mmap_pages_allocated;
3377 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3378
3379 /* interval_tree.c */
3380 void vma_interval_tree_insert(struct vm_area_struct *node,
3381 struct rb_root_cached *root);
3382 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3383 struct vm_area_struct *prev,
3384 struct rb_root_cached *root);
3385 void vma_interval_tree_remove(struct vm_area_struct *node,
3386 struct rb_root_cached *root);
3387 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3388 unsigned long start, unsigned long last);
3389 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3390 unsigned long start, unsigned long last);
3391
3392 #define vma_interval_tree_foreach(vma, root, start, last) \
3393 for (vma = vma_interval_tree_iter_first(root, start, last); \
3394 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3395
3396 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3397 struct rb_root_cached *root);
3398 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3399 struct rb_root_cached *root);
3400 struct anon_vma_chain *
3401 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3402 unsigned long start, unsigned long last);
3403 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3404 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3405 #ifdef CONFIG_DEBUG_VM_RB
3406 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3407 #endif
3408
3409 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
3410 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3411 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3412
3413 /* mmap.c */
3414 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3415 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3416 extern void exit_mmap(struct mm_struct *);
3417 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3418 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3419 unsigned long addr, bool write);
3420
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)3421 static inline int check_data_rlimit(unsigned long rlim,
3422 unsigned long new,
3423 unsigned long start,
3424 unsigned long end_data,
3425 unsigned long start_data)
3426 {
3427 if (rlim < RLIM_INFINITY) {
3428 if (((new - start) + (end_data - start_data)) > rlim)
3429 return -ENOSPC;
3430 }
3431
3432 return 0;
3433 }
3434
3435 extern int mm_take_all_locks(struct mm_struct *mm);
3436 extern void mm_drop_all_locks(struct mm_struct *mm);
3437
3438 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3439 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3440 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3441 extern struct file *get_task_exe_file(struct task_struct *task);
3442
3443 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3444 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3445
3446 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3447 const struct vm_special_mapping *sm);
3448 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3449 unsigned long addr, unsigned long len,
3450 unsigned long flags,
3451 const struct vm_special_mapping *spec);
3452
3453 unsigned long randomize_stack_top(unsigned long stack_top);
3454 unsigned long randomize_page(unsigned long start, unsigned long range);
3455
3456 unsigned long
3457 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3458 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3459
3460 static inline unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)3461 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3462 unsigned long pgoff, unsigned long flags)
3463 {
3464 return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3465 }
3466
3467 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3468 unsigned long len, unsigned long prot, unsigned long flags,
3469 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3470 struct list_head *uf);
3471 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3472 unsigned long start, size_t len, struct list_head *uf,
3473 bool unlock);
3474 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3475 struct mm_struct *mm, unsigned long start,
3476 unsigned long end, struct list_head *uf, bool unlock);
3477 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3478 struct list_head *uf);
3479 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3480
3481 #ifdef CONFIG_MMU
3482 extern int __mm_populate(unsigned long addr, unsigned long len,
3483 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)3484 static inline void mm_populate(unsigned long addr, unsigned long len)
3485 {
3486 /* Ignore errors */
3487 (void) __mm_populate(addr, len, 1);
3488 }
3489 #else
mm_populate(unsigned long addr,unsigned long len)3490 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3491 #endif
3492
3493 /* This takes the mm semaphore itself */
3494 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3495 extern int vm_munmap(unsigned long, size_t);
3496 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3497 unsigned long, unsigned long,
3498 unsigned long, unsigned long);
3499
3500 struct vm_unmapped_area_info {
3501 #define VM_UNMAPPED_AREA_TOPDOWN 1
3502 unsigned long flags;
3503 unsigned long length;
3504 unsigned long low_limit;
3505 unsigned long high_limit;
3506 unsigned long align_mask;
3507 unsigned long align_offset;
3508 unsigned long start_gap;
3509 };
3510
3511 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3512
3513 /* truncate.c */
3514 extern void truncate_inode_pages(struct address_space *, loff_t);
3515 extern void truncate_inode_pages_range(struct address_space *,
3516 loff_t lstart, loff_t lend);
3517 extern void truncate_inode_pages_final(struct address_space *);
3518
3519 /* generic vm_area_ops exported for stackable file systems */
3520 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3521 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3522 pgoff_t start_pgoff, pgoff_t end_pgoff);
3523 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3524
3525 extern unsigned long stack_guard_gap;
3526 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3527 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3528 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3529
3530 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3531 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3532 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3533 struct vm_area_struct **pprev);
3534
3535 /*
3536 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3537 * NULL if none. Assume start_addr < end_addr.
3538 */
3539 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3540 unsigned long start_addr, unsigned long end_addr);
3541
3542 /**
3543 * vma_lookup() - Find a VMA at a specific address
3544 * @mm: The process address space.
3545 * @addr: The user address.
3546 *
3547 * Return: The vm_area_struct at the given address, %NULL otherwise.
3548 */
3549 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)3550 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3551 {
3552 return mtree_load(&mm->mm_mt, addr);
3553 }
3554
stack_guard_start_gap(struct vm_area_struct * vma)3555 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3556 {
3557 if (vma->vm_flags & VM_GROWSDOWN)
3558 return stack_guard_gap;
3559
3560 /* See reasoning around the VM_SHADOW_STACK definition */
3561 if (vma->vm_flags & VM_SHADOW_STACK)
3562 return PAGE_SIZE;
3563
3564 return 0;
3565 }
3566
vm_start_gap(struct vm_area_struct * vma)3567 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3568 {
3569 unsigned long gap = stack_guard_start_gap(vma);
3570 unsigned long vm_start = vma->vm_start;
3571
3572 vm_start -= gap;
3573 if (vm_start > vma->vm_start)
3574 vm_start = 0;
3575 return vm_start;
3576 }
3577
vm_end_gap(struct vm_area_struct * vma)3578 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3579 {
3580 unsigned long vm_end = vma->vm_end;
3581
3582 if (vma->vm_flags & VM_GROWSUP) {
3583 vm_end += stack_guard_gap;
3584 if (vm_end < vma->vm_end)
3585 vm_end = -PAGE_SIZE;
3586 }
3587 return vm_end;
3588 }
3589
vma_pages(struct vm_area_struct * vma)3590 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3591 {
3592 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3593 }
3594
3595 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)3596 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3597 unsigned long vm_start, unsigned long vm_end)
3598 {
3599 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3600
3601 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3602 vma = NULL;
3603
3604 return vma;
3605 }
3606
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)3607 static inline bool range_in_vma(struct vm_area_struct *vma,
3608 unsigned long start, unsigned long end)
3609 {
3610 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3611 }
3612
3613 #ifdef CONFIG_MMU
3614 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3615 void vma_set_page_prot(struct vm_area_struct *vma);
3616 #else
vm_get_page_prot(unsigned long vm_flags)3617 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3618 {
3619 return __pgprot(0);
3620 }
vma_set_page_prot(struct vm_area_struct * vma)3621 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3622 {
3623 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3624 }
3625 #endif
3626
3627 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3628
3629 #ifdef CONFIG_NUMA_BALANCING
3630 unsigned long change_prot_numa(struct vm_area_struct *vma,
3631 unsigned long start, unsigned long end);
3632 #endif
3633
3634 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3635 unsigned long addr);
3636 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3637 unsigned long pfn, unsigned long size, pgprot_t);
3638 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3639 unsigned long pfn, unsigned long size, pgprot_t prot);
3640 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3641 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3642 struct page **pages, unsigned long *num);
3643 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3644 unsigned long num);
3645 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3646 unsigned long num);
3647 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3648 bool write);
3649 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3650 unsigned long pfn);
3651 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3652 unsigned long pfn, pgprot_t pgprot);
3653 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3654 pfn_t pfn);
3655 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3656 unsigned long addr, pfn_t pfn);
3657 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3658
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)3659 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3660 unsigned long addr, struct page *page)
3661 {
3662 int err = vm_insert_page(vma, addr, page);
3663
3664 if (err == -ENOMEM)
3665 return VM_FAULT_OOM;
3666 if (err < 0 && err != -EBUSY)
3667 return VM_FAULT_SIGBUS;
3668
3669 return VM_FAULT_NOPAGE;
3670 }
3671
3672 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)3673 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3674 unsigned long addr, unsigned long pfn,
3675 unsigned long size, pgprot_t prot)
3676 {
3677 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3678 }
3679 #endif
3680
vmf_error(int err)3681 static inline vm_fault_t vmf_error(int err)
3682 {
3683 if (err == -ENOMEM)
3684 return VM_FAULT_OOM;
3685 else if (err == -EHWPOISON)
3686 return VM_FAULT_HWPOISON;
3687 return VM_FAULT_SIGBUS;
3688 }
3689
3690 /*
3691 * Convert errno to return value for ->page_mkwrite() calls.
3692 *
3693 * This should eventually be merged with vmf_error() above, but will need a
3694 * careful audit of all vmf_error() callers.
3695 */
vmf_fs_error(int err)3696 static inline vm_fault_t vmf_fs_error(int err)
3697 {
3698 if (err == 0)
3699 return VM_FAULT_LOCKED;
3700 if (err == -EFAULT || err == -EAGAIN)
3701 return VM_FAULT_NOPAGE;
3702 if (err == -ENOMEM)
3703 return VM_FAULT_OOM;
3704 /* -ENOSPC, -EDQUOT, -EIO ... */
3705 return VM_FAULT_SIGBUS;
3706 }
3707
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3708 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3709 {
3710 if (vm_fault & VM_FAULT_OOM)
3711 return -ENOMEM;
3712 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3713 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3714 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3715 return -EFAULT;
3716 return 0;
3717 }
3718
3719 /*
3720 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3721 * a (NUMA hinting) fault is required.
3722 */
gup_can_follow_protnone(struct vm_area_struct * vma,unsigned int flags)3723 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3724 unsigned int flags)
3725 {
3726 /*
3727 * If callers don't want to honor NUMA hinting faults, no need to
3728 * determine if we would actually have to trigger a NUMA hinting fault.
3729 */
3730 if (!(flags & FOLL_HONOR_NUMA_FAULT))
3731 return true;
3732
3733 /*
3734 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3735 *
3736 * Requiring a fault here even for inaccessible VMAs would mean that
3737 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3738 * refuses to process NUMA hinting faults in inaccessible VMAs.
3739 */
3740 return !vma_is_accessible(vma);
3741 }
3742
3743 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3744 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3745 unsigned long size, pte_fn_t fn, void *data);
3746 extern int apply_to_existing_page_range(struct mm_struct *mm,
3747 unsigned long address, unsigned long size,
3748 pte_fn_t fn, void *data);
3749
3750 #ifdef CONFIG_PAGE_POISONING
3751 extern void __kernel_poison_pages(struct page *page, int numpages);
3752 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3753 extern bool _page_poisoning_enabled_early;
3754 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3755 static inline bool page_poisoning_enabled(void)
3756 {
3757 return _page_poisoning_enabled_early;
3758 }
3759 /*
3760 * For use in fast paths after init_mem_debugging() has run, or when a
3761 * false negative result is not harmful when called too early.
3762 */
page_poisoning_enabled_static(void)3763 static inline bool page_poisoning_enabled_static(void)
3764 {
3765 return static_branch_unlikely(&_page_poisoning_enabled);
3766 }
kernel_poison_pages(struct page * page,int numpages)3767 static inline void kernel_poison_pages(struct page *page, int numpages)
3768 {
3769 if (page_poisoning_enabled_static())
3770 __kernel_poison_pages(page, numpages);
3771 }
kernel_unpoison_pages(struct page * page,int numpages)3772 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3773 {
3774 if (page_poisoning_enabled_static())
3775 __kernel_unpoison_pages(page, numpages);
3776 }
3777 #else
page_poisoning_enabled(void)3778 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3779 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3780 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3781 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3782 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3783 #endif
3784
3785 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3786 static inline bool want_init_on_alloc(gfp_t flags)
3787 {
3788 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3789 &init_on_alloc))
3790 return true;
3791 return flags & __GFP_ZERO;
3792 }
3793
3794 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3795 static inline bool want_init_on_free(void)
3796 {
3797 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3798 &init_on_free);
3799 }
3800
3801 extern bool _debug_pagealloc_enabled_early;
3802 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3803
debug_pagealloc_enabled(void)3804 static inline bool debug_pagealloc_enabled(void)
3805 {
3806 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3807 _debug_pagealloc_enabled_early;
3808 }
3809
3810 /*
3811 * For use in fast paths after mem_debugging_and_hardening_init() has run,
3812 * or when a false negative result is not harmful when called too early.
3813 */
debug_pagealloc_enabled_static(void)3814 static inline bool debug_pagealloc_enabled_static(void)
3815 {
3816 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3817 return false;
3818
3819 return static_branch_unlikely(&_debug_pagealloc_enabled);
3820 }
3821
3822 /*
3823 * To support DEBUG_PAGEALLOC architecture must ensure that
3824 * __kernel_map_pages() never fails
3825 */
3826 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3827 #ifdef CONFIG_DEBUG_PAGEALLOC
debug_pagealloc_map_pages(struct page * page,int numpages)3828 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3829 {
3830 if (debug_pagealloc_enabled_static())
3831 __kernel_map_pages(page, numpages, 1);
3832 }
3833
debug_pagealloc_unmap_pages(struct page * page,int numpages)3834 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3835 {
3836 if (debug_pagealloc_enabled_static())
3837 __kernel_map_pages(page, numpages, 0);
3838 }
3839
3840 extern unsigned int _debug_guardpage_minorder;
3841 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3842
debug_guardpage_minorder(void)3843 static inline unsigned int debug_guardpage_minorder(void)
3844 {
3845 return _debug_guardpage_minorder;
3846 }
3847
debug_guardpage_enabled(void)3848 static inline bool debug_guardpage_enabled(void)
3849 {
3850 return static_branch_unlikely(&_debug_guardpage_enabled);
3851 }
3852
page_is_guard(struct page * page)3853 static inline bool page_is_guard(struct page *page)
3854 {
3855 if (!debug_guardpage_enabled())
3856 return false;
3857
3858 return PageGuard(page);
3859 }
3860
3861 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3862 static inline bool set_page_guard(struct zone *zone, struct page *page,
3863 unsigned int order)
3864 {
3865 if (!debug_guardpage_enabled())
3866 return false;
3867 return __set_page_guard(zone, page, order);
3868 }
3869
3870 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3871 static inline void clear_page_guard(struct zone *zone, struct page *page,
3872 unsigned int order)
3873 {
3874 if (!debug_guardpage_enabled())
3875 return;
3876 __clear_page_guard(zone, page, order);
3877 }
3878
3879 #else /* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3880 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3881 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
debug_guardpage_minorder(void)3882 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3883 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3884 static inline bool page_is_guard(struct page *page) { return false; }
set_page_guard(struct zone * zone,struct page * page,unsigned int order)3885 static inline bool set_page_guard(struct zone *zone, struct page *page,
3886 unsigned int order) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order)3887 static inline void clear_page_guard(struct zone *zone, struct page *page,
3888 unsigned int order) {}
3889 #endif /* CONFIG_DEBUG_PAGEALLOC */
3890
3891 #ifdef __HAVE_ARCH_GATE_AREA
3892 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3893 extern int in_gate_area_no_mm(unsigned long addr);
3894 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3895 #else
get_gate_vma(struct mm_struct * mm)3896 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3897 {
3898 return NULL;
3899 }
in_gate_area_no_mm(unsigned long addr)3900 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3901 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3902 {
3903 return 0;
3904 }
3905 #endif /* __HAVE_ARCH_GATE_AREA */
3906
3907 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3908
3909 void drop_slab(void);
3910
3911 #ifndef CONFIG_MMU
3912 #define randomize_va_space 0
3913 #else
3914 extern int randomize_va_space;
3915 #endif
3916
3917 const char * arch_vma_name(struct vm_area_struct *vma);
3918 #ifdef CONFIG_MMU
3919 void print_vma_addr(char *prefix, unsigned long rip);
3920 #else
print_vma_addr(char * prefix,unsigned long rip)3921 static inline void print_vma_addr(char *prefix, unsigned long rip)
3922 {
3923 }
3924 #endif
3925
3926 void *sparse_buffer_alloc(unsigned long size);
3927 unsigned long section_map_size(void);
3928 struct page * __populate_section_memmap(unsigned long pfn,
3929 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3930 struct dev_pagemap *pgmap);
3931 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3932 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3933 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3934 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3935 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3936 struct vmem_altmap *altmap, unsigned long ptpfn,
3937 unsigned long flags);
3938 void *vmemmap_alloc_block(unsigned long size, int node);
3939 struct vmem_altmap;
3940 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3941 struct vmem_altmap *altmap);
3942 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3943 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3944 unsigned long addr, unsigned long next);
3945 int vmemmap_check_pmd(pmd_t *pmd, int node,
3946 unsigned long addr, unsigned long next);
3947 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3948 int node, struct vmem_altmap *altmap);
3949 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3950 int node, struct vmem_altmap *altmap);
3951 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3952 struct vmem_altmap *altmap);
3953 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
3954 unsigned long headsize);
3955 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
3956 unsigned long headsize);
3957 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
3958 unsigned long headsize);
3959 void vmemmap_populate_print_last(void);
3960 #ifdef CONFIG_MEMORY_HOTPLUG
3961 void vmemmap_free(unsigned long start, unsigned long end,
3962 struct vmem_altmap *altmap);
3963 #endif
3964
3965 #ifdef CONFIG_SPARSEMEM_VMEMMAP
vmem_altmap_offset(struct vmem_altmap * altmap)3966 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3967 {
3968 /* number of pfns from base where pfn_to_page() is valid */
3969 if (altmap)
3970 return altmap->reserve + altmap->free;
3971 return 0;
3972 }
3973
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3974 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3975 unsigned long nr_pfns)
3976 {
3977 altmap->alloc -= nr_pfns;
3978 }
3979 #else
vmem_altmap_offset(struct vmem_altmap * altmap)3980 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3981 {
3982 return 0;
3983 }
3984
vmem_altmap_free(struct vmem_altmap * altmap,unsigned long nr_pfns)3985 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3986 unsigned long nr_pfns)
3987 {
3988 }
3989 #endif
3990
3991 #define VMEMMAP_RESERVE_NR 2
3992 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
__vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)3993 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3994 struct dev_pagemap *pgmap)
3995 {
3996 unsigned long nr_pages;
3997 unsigned long nr_vmemmap_pages;
3998
3999 if (!pgmap || !is_power_of_2(sizeof(struct page)))
4000 return false;
4001
4002 nr_pages = pgmap_vmemmap_nr(pgmap);
4003 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
4004 /*
4005 * For vmemmap optimization with DAX we need minimum 2 vmemmap
4006 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
4007 */
4008 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
4009 }
4010 /*
4011 * If we don't have an architecture override, use the generic rule
4012 */
4013 #ifndef vmemmap_can_optimize
4014 #define vmemmap_can_optimize __vmemmap_can_optimize
4015 #endif
4016
4017 #else
vmemmap_can_optimize(struct vmem_altmap * altmap,struct dev_pagemap * pgmap)4018 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
4019 struct dev_pagemap *pgmap)
4020 {
4021 return false;
4022 }
4023 #endif
4024
4025 enum mf_flags {
4026 MF_COUNT_INCREASED = 1 << 0,
4027 MF_ACTION_REQUIRED = 1 << 1,
4028 MF_MUST_KILL = 1 << 2,
4029 MF_SOFT_OFFLINE = 1 << 3,
4030 MF_UNPOISON = 1 << 4,
4031 MF_SW_SIMULATED = 1 << 5,
4032 MF_NO_RETRY = 1 << 6,
4033 MF_MEM_PRE_REMOVE = 1 << 7,
4034 };
4035 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
4036 unsigned long count, int mf_flags);
4037 extern int memory_failure(unsigned long pfn, int flags);
4038 extern void memory_failure_queue_kick(int cpu);
4039 extern int unpoison_memory(unsigned long pfn);
4040 extern atomic_long_t num_poisoned_pages __read_mostly;
4041 extern int soft_offline_page(unsigned long pfn, int flags);
4042 #ifdef CONFIG_MEMORY_FAILURE
4043 /*
4044 * Sysfs entries for memory failure handling statistics.
4045 */
4046 extern const struct attribute_group memory_failure_attr_group;
4047 extern void memory_failure_queue(unsigned long pfn, int flags);
4048 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4049 bool *migratable_cleared);
4050 void num_poisoned_pages_inc(unsigned long pfn);
4051 void num_poisoned_pages_sub(unsigned long pfn, long i);
4052 #else
memory_failure_queue(unsigned long pfn,int flags)4053 static inline void memory_failure_queue(unsigned long pfn, int flags)
4054 {
4055 }
4056
__get_huge_page_for_hwpoison(unsigned long pfn,int flags,bool * migratable_cleared)4057 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4058 bool *migratable_cleared)
4059 {
4060 return 0;
4061 }
4062
num_poisoned_pages_inc(unsigned long pfn)4063 static inline void num_poisoned_pages_inc(unsigned long pfn)
4064 {
4065 }
4066
num_poisoned_pages_sub(unsigned long pfn,long i)4067 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4068 {
4069 }
4070 #endif
4071
4072 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4073 extern void memblk_nr_poison_inc(unsigned long pfn);
4074 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4075 #else
memblk_nr_poison_inc(unsigned long pfn)4076 static inline void memblk_nr_poison_inc(unsigned long pfn)
4077 {
4078 }
4079
memblk_nr_poison_sub(unsigned long pfn,long i)4080 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4081 {
4082 }
4083 #endif
4084
4085 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)4086 static inline int arch_memory_failure(unsigned long pfn, int flags)
4087 {
4088 return -ENXIO;
4089 }
4090 #endif
4091
4092 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)4093 static inline bool arch_is_platform_page(u64 paddr)
4094 {
4095 return false;
4096 }
4097 #endif
4098
4099 /*
4100 * Error handlers for various types of pages.
4101 */
4102 enum mf_result {
4103 MF_IGNORED, /* Error: cannot be handled */
4104 MF_FAILED, /* Error: handling failed */
4105 MF_DELAYED, /* Will be handled later */
4106 MF_RECOVERED, /* Successfully recovered */
4107 };
4108
4109 enum mf_action_page_type {
4110 MF_MSG_KERNEL,
4111 MF_MSG_KERNEL_HIGH_ORDER,
4112 MF_MSG_DIFFERENT_COMPOUND,
4113 MF_MSG_HUGE,
4114 MF_MSG_FREE_HUGE,
4115 MF_MSG_GET_HWPOISON,
4116 MF_MSG_UNMAP_FAILED,
4117 MF_MSG_DIRTY_SWAPCACHE,
4118 MF_MSG_CLEAN_SWAPCACHE,
4119 MF_MSG_DIRTY_MLOCKED_LRU,
4120 MF_MSG_CLEAN_MLOCKED_LRU,
4121 MF_MSG_DIRTY_UNEVICTABLE_LRU,
4122 MF_MSG_CLEAN_UNEVICTABLE_LRU,
4123 MF_MSG_DIRTY_LRU,
4124 MF_MSG_CLEAN_LRU,
4125 MF_MSG_TRUNCATED_LRU,
4126 MF_MSG_BUDDY,
4127 MF_MSG_DAX,
4128 MF_MSG_UNSPLIT_THP,
4129 MF_MSG_ALREADY_POISONED,
4130 MF_MSG_UNKNOWN,
4131 };
4132
4133 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4134 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4135 int copy_user_large_folio(struct folio *dst, struct folio *src,
4136 unsigned long addr_hint,
4137 struct vm_area_struct *vma);
4138 long copy_folio_from_user(struct folio *dst_folio,
4139 const void __user *usr_src,
4140 bool allow_pagefault);
4141
4142 /**
4143 * vma_is_special_huge - Are transhuge page-table entries considered special?
4144 * @vma: Pointer to the struct vm_area_struct to consider
4145 *
4146 * Whether transhuge page-table entries are considered "special" following
4147 * the definition in vm_normal_page().
4148 *
4149 * Return: true if transhuge page-table entries should be considered special,
4150 * false otherwise.
4151 */
vma_is_special_huge(const struct vm_area_struct * vma)4152 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4153 {
4154 return vma_is_dax(vma) || (vma->vm_file &&
4155 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4156 }
4157
4158 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4159
4160 #if MAX_NUMNODES > 1
4161 void __init setup_nr_node_ids(void);
4162 #else
setup_nr_node_ids(void)4163 static inline void setup_nr_node_ids(void) {}
4164 #endif
4165
4166 extern int memcmp_pages(struct page *page1, struct page *page2);
4167
pages_identical(struct page * page1,struct page * page2)4168 static inline int pages_identical(struct page *page1, struct page *page2)
4169 {
4170 return !memcmp_pages(page1, page2);
4171 }
4172
4173 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4174 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4175 pgoff_t first_index, pgoff_t nr,
4176 pgoff_t bitmap_pgoff,
4177 unsigned long *bitmap,
4178 pgoff_t *start,
4179 pgoff_t *end);
4180
4181 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4182 pgoff_t first_index, pgoff_t nr);
4183 #endif
4184
4185 #ifdef CONFIG_ANON_VMA_NAME
4186 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4187 unsigned long len_in,
4188 struct anon_vma_name *anon_name);
4189 #else
4190 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)4191 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4192 unsigned long len_in, struct anon_vma_name *anon_name) {
4193 return 0;
4194 }
4195 #endif
4196
4197 #ifdef CONFIG_UNACCEPTED_MEMORY
4198
4199 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4200 void accept_memory(phys_addr_t start, unsigned long size);
4201
4202 #else
4203
range_contains_unaccepted_memory(phys_addr_t start,unsigned long size)4204 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4205 unsigned long size)
4206 {
4207 return false;
4208 }
4209
accept_memory(phys_addr_t start,unsigned long size)4210 static inline void accept_memory(phys_addr_t start, unsigned long size)
4211 {
4212 }
4213
4214 #endif
4215
pfn_is_unaccepted_memory(unsigned long pfn)4216 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4217 {
4218 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4219 }
4220
4221 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4222 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4223
4224 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4225 int reserve_mem_release_by_name(const char *name);
4226
4227 #ifdef CONFIG_64BIT
4228 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4229 #else
do_mseal(unsigned long start,size_t len_in,unsigned long flags)4230 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4231 {
4232 /* noop on 32 bit */
4233 return 0;
4234 }
4235 #endif
4236
4237 /*
4238 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4239 * be zeroed or not.
4240 */
user_alloc_needs_zeroing(void)4241 static inline bool user_alloc_needs_zeroing(void)
4242 {
4243 /*
4244 * for user folios, arch with cache aliasing requires cache flush and
4245 * arc changes folio->flags to make icache coherent with dcache, so
4246 * always return false to make caller use
4247 * clear_user_page()/clear_user_highpage().
4248 */
4249 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4250 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4251 &init_on_alloc);
4252 }
4253
4254 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4255 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4256 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4257
4258
4259 /*
4260 * mseal of userspace process's system mappings.
4261 */
4262 #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS
4263 #define VM_SEALED_SYSMAP VM_SEALED
4264 #else
4265 #define VM_SEALED_SYSMAP VM_NONE
4266 #endif
4267
4268 #endif /* _LINUX_MM_H */
4269