1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MATH_H
3 #define _LINUX_MATH_H
4 
5 #include <linux/types.h>
6 #include <asm/div64.h>
7 #include <uapi/linux/kernel.h>
8 
9 /*
10  * This looks more complex than it should be. But we need to
11  * get the type for the ~ right in round_down (it needs to be
12  * as wide as the result!), and we want to evaluate the macro
13  * arguments just once each.
14  */
15 #define __round_mask(x, y) ((__typeof__(x))((y)-1))
16 
17 /**
18  * round_up - round up to next specified power of 2
19  * @x: the value to round
20  * @y: multiple to round up to (must be a power of 2)
21  *
22  * Rounds @x up to next multiple of @y (which must be a power of 2).
23  * To perform arbitrary rounding up, use roundup() below.
24  */
25 #define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
26 
27 /**
28  * round_down - round down to next specified power of 2
29  * @x: the value to round
30  * @y: multiple to round down to (must be a power of 2)
31  *
32  * Rounds @x down to next multiple of @y (which must be a power of 2).
33  * To perform arbitrary rounding down, use rounddown() below.
34  */
35 #define round_down(x, y) ((x) & ~__round_mask(x, y))
36 
37 /**
38  * DIV_ROUND_UP_POW2 - divide and round up
39  * @n: numerator
40  * @d: denominator (must be a power of 2)
41  *
42  * Divides @n by @d and rounds up to next multiple of @d (which must be a power
43  * of 2). Avoids integer overflows that may occur with __KERNEL_DIV_ROUND_UP().
44  * Performance is roughly equivalent to __KERNEL_DIV_ROUND_UP().
45  */
46 #define DIV_ROUND_UP_POW2(n, d) \
47 	((n) / (d) + !!((n) & ((d) - 1)))
48 
49 #define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
50 
51 #define DIV_ROUND_DOWN_ULL(ll, d) \
52 	({ unsigned long long _tmp = (ll); do_div(_tmp, d); _tmp; })
53 
54 #define DIV_ROUND_UP_ULL(ll, d) \
55 	DIV_ROUND_DOWN_ULL((unsigned long long)(ll) + (d) - 1, (d))
56 
57 #if BITS_PER_LONG == 32
58 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
59 #else
60 # define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
61 #endif
62 
63 /**
64  * roundup - round up to the next specified multiple
65  * @x: the value to up
66  * @y: multiple to round up to
67  *
68  * Rounds @x up to next multiple of @y. If @y will always be a power
69  * of 2, consider using the faster round_up().
70  */
71 #define roundup(x, y) (					\
72 {							\
73 	typeof(y) __y = y;				\
74 	(((x) + (__y - 1)) / __y) * __y;		\
75 }							\
76 )
77 /**
78  * rounddown - round down to next specified multiple
79  * @x: the value to round
80  * @y: multiple to round down to
81  *
82  * Rounds @x down to next multiple of @y. If @y will always be a power
83  * of 2, consider using the faster round_down().
84  */
85 #define rounddown(x, y) (				\
86 {							\
87 	typeof(x) __x = (x);				\
88 	__x - (__x % (y));				\
89 }							\
90 )
91 
92 /*
93  * Divide positive or negative dividend by positive or negative divisor
94  * and round to closest integer. Result is undefined for negative
95  * divisors if the dividend variable type is unsigned and for negative
96  * dividends if the divisor variable type is unsigned.
97  */
98 #define DIV_ROUND_CLOSEST(x, divisor)(			\
99 {							\
100 	typeof(x) __x = x;				\
101 	typeof(divisor) __d = divisor;			\
102 	(((typeof(x))-1) > 0 ||				\
103 	 ((typeof(divisor))-1) > 0 ||			\
104 	 (((__x) > 0) == ((__d) > 0))) ?		\
105 		(((__x) + ((__d) / 2)) / (__d)) :	\
106 		(((__x) - ((__d) / 2)) / (__d));	\
107 }							\
108 )
109 /*
110  * Same as above but for u64 dividends. divisor must be a 32-bit
111  * number.
112  */
113 #define DIV_ROUND_CLOSEST_ULL(x, divisor)(		\
114 {							\
115 	typeof(divisor) __d = divisor;			\
116 	unsigned long long _tmp = (x) + (__d) / 2;	\
117 	do_div(_tmp, __d);				\
118 	_tmp;						\
119 }							\
120 )
121 
122 #define __STRUCT_FRACT(type)				\
123 struct type##_fract {					\
124 	__##type numerator;				\
125 	__##type denominator;				\
126 };
127 __STRUCT_FRACT(s8)
__STRUCT_FRACT(u8)128 __STRUCT_FRACT(u8)
129 __STRUCT_FRACT(s16)
130 __STRUCT_FRACT(u16)
131 __STRUCT_FRACT(s32)
132 __STRUCT_FRACT(u32)
133 #undef __STRUCT_FRACT
134 
135 /* Calculate "x * n / d" without unnecessary overflow or loss of precision. */
136 #define mult_frac(x, n, d)	\
137 ({				\
138 	typeof(x) x_ = (x);	\
139 	typeof(n) n_ = (n);	\
140 	typeof(d) d_ = (d);	\
141 				\
142 	typeof(x_) q = x_ / d_;	\
143 	typeof(x_) r = x_ % d_;	\
144 	q * n_ + r * n_ / d_;	\
145 })
146 
147 #define sector_div(a, b) do_div(a, b)
148 
149 /**
150  * abs - return absolute value of an argument
151  * @x: the value.  If it is unsigned type, it is converted to signed type first.
152  *     char is treated as if it was signed (regardless of whether it really is)
153  *     but the macro's return type is preserved as char.
154  *
155  * Return: an absolute value of x.
156  */
157 #define abs(x)	__abs_choose_expr(x, long long,				\
158 		__abs_choose_expr(x, long,				\
159 		__abs_choose_expr(x, int,				\
160 		__abs_choose_expr(x, short,				\
161 		__abs_choose_expr(x, char,				\
162 		__builtin_choose_expr(					\
163 			__builtin_types_compatible_p(typeof(x), char),	\
164 			(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
165 			((void)0)))))))
166 
167 #define __abs_choose_expr(x, type, other) __builtin_choose_expr(	\
168 	__builtin_types_compatible_p(typeof(x),   signed type) ||	\
169 	__builtin_types_compatible_p(typeof(x), unsigned type),		\
170 	({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
171 
172 /**
173  * abs_diff - return absolute value of the difference between the arguments
174  * @a: the first argument
175  * @b: the second argument
176  *
177  * @a and @b have to be of the same type. With this restriction we compare
178  * signed to signed and unsigned to unsigned. The result is the subtraction
179  * the smaller of the two from the bigger, hence result is always a positive
180  * value.
181  *
182  * Return: an absolute value of the difference between the @a and @b.
183  */
184 #define abs_diff(a, b) ({			\
185 	typeof(a) __a = (a);			\
186 	typeof(b) __b = (b);			\
187 	(void)(&__a == &__b);			\
188 	__a > __b ? (__a - __b) : (__b - __a);	\
189 })
190 
191 /**
192  * reciprocal_scale - "scale" a value into range [0, ep_ro)
193  * @val: value
194  * @ep_ro: right open interval endpoint
195  *
196  * Perform a "reciprocal multiplication" in order to "scale" a value into
197  * range [0, @ep_ro), where the upper interval endpoint is right-open.
198  * This is useful, e.g. for accessing a index of an array containing
199  * @ep_ro elements, for example. Think of it as sort of modulus, only that
200  * the result isn't that of modulo. ;) Note that if initial input is a
201  * small value, then result will return 0.
202  *
203  * Return: a result based on @val in interval [0, @ep_ro).
204  */
205 static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
206 {
207 	return (u32)(((u64) val * ep_ro) >> 32);
208 }
209 
210 u64 int_pow(u64 base, unsigned int exp);
211 unsigned long int_sqrt(unsigned long);
212 
213 #if BITS_PER_LONG < 64
214 u32 int_sqrt64(u64 x);
215 #else
int_sqrt64(u64 x)216 static inline u32 int_sqrt64(u64 x)
217 {
218 	return (u32)int_sqrt(x);
219 }
220 #endif
221 
222 #endif	/* _LINUX_MATH_H */
223