1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #ifndef _LINUX_BPF_VERIFIER_H
5 #define _LINUX_BPF_VERIFIER_H 1
6
7 #include <linux/bpf.h> /* for enum bpf_reg_type */
8 #include <linux/btf.h> /* for struct btf and btf_id() */
9 #include <linux/filter.h> /* for MAX_BPF_STACK */
10 #include <linux/tnum.h>
11
12 /* Maximum variable offset umax_value permitted when resolving memory accesses.
13 * In practice this is far bigger than any realistic pointer offset; this limit
14 * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
15 */
16 #define BPF_MAX_VAR_OFF (1 << 29)
17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO]. This ensures
18 * that converting umax_value to int cannot overflow.
19 */
20 #define BPF_MAX_VAR_SIZ (1 << 29)
21 /* size of tmp_str_buf in bpf_verifier.
22 * we need at least 306 bytes to fit full stack mask representation
23 * (in the "-8,-16,...,-512" form)
24 */
25 #define TMP_STR_BUF_LEN 320
26 /* Patch buffer size */
27 #define INSN_BUF_SIZE 32
28
29 /* Liveness marks, used for registers and spilled-regs (in stack slots).
30 * Read marks propagate upwards until they find a write mark; they record that
31 * "one of this state's descendants read this reg" (and therefore the reg is
32 * relevant for states_equal() checks).
33 * Write marks collect downwards and do not propagate; they record that "the
34 * straight-line code that reached this state (from its parent) wrote this reg"
35 * (and therefore that reads propagated from this state or its descendants
36 * should not propagate to its parent).
37 * A state with a write mark can receive read marks; it just won't propagate
38 * them to its parent, since the write mark is a property, not of the state,
39 * but of the link between it and its parent. See mark_reg_read() and
40 * mark_stack_slot_read() in kernel/bpf/verifier.c.
41 */
42 enum bpf_reg_liveness {
43 REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
44 REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
45 REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
46 REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
47 REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
48 REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
49 };
50
51 #define ITER_PREFIX "bpf_iter_"
52
53 enum bpf_iter_state {
54 BPF_ITER_STATE_INVALID, /* for non-first slot */
55 BPF_ITER_STATE_ACTIVE,
56 BPF_ITER_STATE_DRAINED,
57 };
58
59 struct bpf_reg_state {
60 /* Ordering of fields matters. See states_equal() */
61 enum bpf_reg_type type;
62 /*
63 * Fixed part of pointer offset, pointer types only.
64 * Or constant delta between "linked" scalars with the same ID.
65 */
66 s32 off;
67 union {
68 /* valid when type == PTR_TO_PACKET */
69 int range;
70
71 /* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
72 * PTR_TO_MAP_VALUE_OR_NULL
73 */
74 struct {
75 struct bpf_map *map_ptr;
76 /* To distinguish map lookups from outer map
77 * the map_uid is non-zero for registers
78 * pointing to inner maps.
79 */
80 u32 map_uid;
81 };
82
83 /* for PTR_TO_BTF_ID */
84 struct {
85 struct btf *btf;
86 u32 btf_id;
87 };
88
89 struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
90 u32 mem_size;
91 u32 dynptr_id; /* for dynptr slices */
92 };
93
94 /* For dynptr stack slots */
95 struct {
96 enum bpf_dynptr_type type;
97 /* A dynptr is 16 bytes so it takes up 2 stack slots.
98 * We need to track which slot is the first slot
99 * to protect against cases where the user may try to
100 * pass in an address starting at the second slot of the
101 * dynptr.
102 */
103 bool first_slot;
104 } dynptr;
105
106 /* For bpf_iter stack slots */
107 struct {
108 /* BTF container and BTF type ID describing
109 * struct bpf_iter_<type> of an iterator state
110 */
111 struct btf *btf;
112 u32 btf_id;
113 /* packing following two fields to fit iter state into 16 bytes */
114 enum bpf_iter_state state:2;
115 int depth:30;
116 } iter;
117
118 /* For irq stack slots */
119 struct {
120 enum {
121 IRQ_NATIVE_KFUNC,
122 IRQ_LOCK_KFUNC,
123 } kfunc_class;
124 } irq;
125
126 /* Max size from any of the above. */
127 struct {
128 unsigned long raw1;
129 unsigned long raw2;
130 } raw;
131
132 u32 subprogno; /* for PTR_TO_FUNC */
133 };
134 /* For scalar types (SCALAR_VALUE), this represents our knowledge of
135 * the actual value.
136 * For pointer types, this represents the variable part of the offset
137 * from the pointed-to object, and is shared with all bpf_reg_states
138 * with the same id as us.
139 */
140 struct tnum var_off;
141 /* Used to determine if any memory access using this register will
142 * result in a bad access.
143 * These refer to the same value as var_off, not necessarily the actual
144 * contents of the register.
145 */
146 s64 smin_value; /* minimum possible (s64)value */
147 s64 smax_value; /* maximum possible (s64)value */
148 u64 umin_value; /* minimum possible (u64)value */
149 u64 umax_value; /* maximum possible (u64)value */
150 s32 s32_min_value; /* minimum possible (s32)value */
151 s32 s32_max_value; /* maximum possible (s32)value */
152 u32 u32_min_value; /* minimum possible (u32)value */
153 u32 u32_max_value; /* maximum possible (u32)value */
154 /* For PTR_TO_PACKET, used to find other pointers with the same variable
155 * offset, so they can share range knowledge.
156 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
157 * came from, when one is tested for != NULL.
158 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
159 * for the purpose of tracking that it's freed.
160 * For PTR_TO_SOCKET this is used to share which pointers retain the
161 * same reference to the socket, to determine proper reference freeing.
162 * For stack slots that are dynptrs, this is used to track references to
163 * the dynptr to determine proper reference freeing.
164 * Similarly to dynptrs, we use ID to track "belonging" of a reference
165 * to a specific instance of bpf_iter.
166 */
167 /*
168 * Upper bit of ID is used to remember relationship between "linked"
169 * registers. Example:
170 * r1 = r2; both will have r1->id == r2->id == N
171 * r1 += 10; r1->id == N | BPF_ADD_CONST and r1->off == 10
172 */
173 #define BPF_ADD_CONST (1U << 31)
174 u32 id;
175 /* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
176 * from a pointer-cast helper, bpf_sk_fullsock() and
177 * bpf_tcp_sock().
178 *
179 * Consider the following where "sk" is a reference counted
180 * pointer returned from "sk = bpf_sk_lookup_tcp();":
181 *
182 * 1: sk = bpf_sk_lookup_tcp();
183 * 2: if (!sk) { return 0; }
184 * 3: fullsock = bpf_sk_fullsock(sk);
185 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
186 * 5: tp = bpf_tcp_sock(fullsock);
187 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
188 * 7: bpf_sk_release(sk);
189 * 8: snd_cwnd = tp->snd_cwnd; // verifier will complain
190 *
191 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
192 * "tp" ptr should be invalidated also. In order to do that,
193 * the reg holding "fullsock" and "sk" need to remember
194 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
195 * such that the verifier can reset all regs which have
196 * ref_obj_id matching the sk_reg->id.
197 *
198 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
199 * sk_reg->id will stay as NULL-marking purpose only.
200 * After NULL-marking is done, sk_reg->id can be reset to 0.
201 *
202 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
203 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
204 *
205 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
206 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
207 * which is the same as sk_reg->ref_obj_id.
208 *
209 * From the verifier perspective, if sk, fullsock and tp
210 * are not NULL, they are the same ptr with different
211 * reg->type. In particular, bpf_sk_release(tp) is also
212 * allowed and has the same effect as bpf_sk_release(sk).
213 */
214 u32 ref_obj_id;
215 /* parentage chain for liveness checking */
216 struct bpf_reg_state *parent;
217 /* Inside the callee two registers can be both PTR_TO_STACK like
218 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
219 * while another to the caller's stack. To differentiate them 'frameno'
220 * is used which is an index in bpf_verifier_state->frame[] array
221 * pointing to bpf_func_state.
222 */
223 u32 frameno;
224 /* Tracks subreg definition. The stored value is the insn_idx of the
225 * writing insn. This is safe because subreg_def is used before any insn
226 * patching which only happens after main verification finished.
227 */
228 s32 subreg_def;
229 enum bpf_reg_liveness live;
230 /* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
231 bool precise;
232 };
233
234 enum bpf_stack_slot_type {
235 STACK_INVALID, /* nothing was stored in this stack slot */
236 STACK_SPILL, /* register spilled into stack */
237 STACK_MISC, /* BPF program wrote some data into this slot */
238 STACK_ZERO, /* BPF program wrote constant zero */
239 /* A dynptr is stored in this stack slot. The type of dynptr
240 * is stored in bpf_stack_state->spilled_ptr.dynptr.type
241 */
242 STACK_DYNPTR,
243 STACK_ITER,
244 STACK_IRQ_FLAG,
245 };
246
247 #define BPF_REG_SIZE 8 /* size of eBPF register in bytes */
248
249 #define BPF_REGMASK_ARGS ((1 << BPF_REG_1) | (1 << BPF_REG_2) | \
250 (1 << BPF_REG_3) | (1 << BPF_REG_4) | \
251 (1 << BPF_REG_5))
252
253 #define BPF_DYNPTR_SIZE sizeof(struct bpf_dynptr_kern)
254 #define BPF_DYNPTR_NR_SLOTS (BPF_DYNPTR_SIZE / BPF_REG_SIZE)
255
256 struct bpf_stack_state {
257 struct bpf_reg_state spilled_ptr;
258 u8 slot_type[BPF_REG_SIZE];
259 };
260
261 struct bpf_reference_state {
262 /* Each reference object has a type. Ensure REF_TYPE_PTR is zero to
263 * default to pointer reference on zero initialization of a state.
264 */
265 enum ref_state_type {
266 REF_TYPE_PTR = (1 << 1),
267 REF_TYPE_IRQ = (1 << 2),
268 REF_TYPE_LOCK = (1 << 3),
269 REF_TYPE_RES_LOCK = (1 << 4),
270 REF_TYPE_RES_LOCK_IRQ = (1 << 5),
271 REF_TYPE_LOCK_MASK = REF_TYPE_LOCK | REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ,
272 } type;
273 /* Track each reference created with a unique id, even if the same
274 * instruction creates the reference multiple times (eg, via CALL).
275 */
276 int id;
277 /* Instruction where the allocation of this reference occurred. This
278 * is used purely to inform the user of a reference leak.
279 */
280 int insn_idx;
281 /* Use to keep track of the source object of a lock, to ensure
282 * it matches on unlock.
283 */
284 void *ptr;
285 };
286
287 struct bpf_retval_range {
288 s32 minval;
289 s32 maxval;
290 };
291
292 /* state of the program:
293 * type of all registers and stack info
294 */
295 struct bpf_func_state {
296 struct bpf_reg_state regs[MAX_BPF_REG];
297 /* index of call instruction that called into this func */
298 int callsite;
299 /* stack frame number of this function state from pov of
300 * enclosing bpf_verifier_state.
301 * 0 = main function, 1 = first callee.
302 */
303 u32 frameno;
304 /* subprog number == index within subprog_info
305 * zero == main subprog
306 */
307 u32 subprogno;
308 /* Every bpf_timer_start will increment async_entry_cnt.
309 * It's used to distinguish:
310 * void foo(void) { for(;;); }
311 * void foo(void) { bpf_timer_set_callback(,foo); }
312 */
313 u32 async_entry_cnt;
314 struct bpf_retval_range callback_ret_range;
315 bool in_callback_fn;
316 bool in_async_callback_fn;
317 bool in_exception_callback_fn;
318 /* For callback calling functions that limit number of possible
319 * callback executions (e.g. bpf_loop) keeps track of current
320 * simulated iteration number.
321 * Value in frame N refers to number of times callback with frame
322 * N+1 was simulated, e.g. for the following call:
323 *
324 * bpf_loop(..., fn, ...); | suppose current frame is N
325 * | fn would be simulated in frame N+1
326 * | number of simulations is tracked in frame N
327 */
328 u32 callback_depth;
329
330 /* The following fields should be last. See copy_func_state() */
331 /* The state of the stack. Each element of the array describes BPF_REG_SIZE
332 * (i.e. 8) bytes worth of stack memory.
333 * stack[0] represents bytes [*(r10-8)..*(r10-1)]
334 * stack[1] represents bytes [*(r10-16)..*(r10-9)]
335 * ...
336 * stack[allocated_stack/8 - 1] represents [*(r10-allocated_stack)..*(r10-allocated_stack+7)]
337 */
338 struct bpf_stack_state *stack;
339 /* Size of the current stack, in bytes. The stack state is tracked below, in
340 * `stack`. allocated_stack is always a multiple of BPF_REG_SIZE.
341 */
342 int allocated_stack;
343 };
344
345 #define MAX_CALL_FRAMES 8
346
347 /* instruction history flags, used in bpf_insn_hist_entry.flags field */
348 enum {
349 /* instruction references stack slot through PTR_TO_STACK register;
350 * we also store stack's frame number in lower 3 bits (MAX_CALL_FRAMES is 8)
351 * and accessed stack slot's index in next 6 bits (MAX_BPF_STACK is 512,
352 * 8 bytes per slot, so slot index (spi) is [0, 63])
353 */
354 INSN_F_FRAMENO_MASK = 0x7, /* 3 bits */
355
356 INSN_F_SPI_MASK = 0x3f, /* 6 bits */
357 INSN_F_SPI_SHIFT = 3, /* shifted 3 bits to the left */
358
359 INSN_F_STACK_ACCESS = BIT(9), /* we need 10 bits total */
360 };
361
362 static_assert(INSN_F_FRAMENO_MASK + 1 >= MAX_CALL_FRAMES);
363 static_assert(INSN_F_SPI_MASK + 1 >= MAX_BPF_STACK / 8);
364
365 struct bpf_insn_hist_entry {
366 u32 idx;
367 /* insn idx can't be bigger than 1 million */
368 u32 prev_idx : 22;
369 /* special flags, e.g., whether insn is doing register stack spill/load */
370 u32 flags : 10;
371 /* additional registers that need precision tracking when this
372 * jump is backtracked, vector of six 10-bit records
373 */
374 u64 linked_regs;
375 };
376
377 /* Maximum number of register states that can exist at once */
378 #define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES)
379 struct bpf_verifier_state {
380 /* call stack tracking */
381 struct bpf_func_state *frame[MAX_CALL_FRAMES];
382 struct bpf_verifier_state *parent;
383 /* Acquired reference states */
384 struct bpf_reference_state *refs;
385 /*
386 * 'branches' field is the number of branches left to explore:
387 * 0 - all possible paths from this state reached bpf_exit or
388 * were safely pruned
389 * 1 - at least one path is being explored.
390 * This state hasn't reached bpf_exit
391 * 2 - at least two paths are being explored.
392 * This state is an immediate parent of two children.
393 * One is fallthrough branch with branches==1 and another
394 * state is pushed into stack (to be explored later) also with
395 * branches==1. The parent of this state has branches==1.
396 * The verifier state tree connected via 'parent' pointer looks like:
397 * 1
398 * 1
399 * 2 -> 1 (first 'if' pushed into stack)
400 * 1
401 * 2 -> 1 (second 'if' pushed into stack)
402 * 1
403 * 1
404 * 1 bpf_exit.
405 *
406 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
407 * and the verifier state tree will look:
408 * 1
409 * 1
410 * 2 -> 1 (first 'if' pushed into stack)
411 * 1
412 * 1 -> 1 (second 'if' pushed into stack)
413 * 0
414 * 0
415 * 0 bpf_exit.
416 * After pop_stack() the do_check() will resume at second 'if'.
417 *
418 * If is_state_visited() sees a state with branches > 0 it means
419 * there is a loop. If such state is exactly equal to the current state
420 * it's an infinite loop. Note states_equal() checks for states
421 * equivalency, so two states being 'states_equal' does not mean
422 * infinite loop. The exact comparison is provided by
423 * states_maybe_looping() function. It's a stronger pre-check and
424 * much faster than states_equal().
425 *
426 * This algorithm may not find all possible infinite loops or
427 * loop iteration count may be too high.
428 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
429 */
430 u32 branches;
431 u32 insn_idx;
432 u32 curframe;
433
434 u32 acquired_refs;
435 u32 active_locks;
436 u32 active_preempt_locks;
437 u32 active_irq_id;
438 u32 active_lock_id;
439 void *active_lock_ptr;
440 bool active_rcu_lock;
441
442 bool speculative;
443 bool in_sleepable;
444
445 /* first and last insn idx of this verifier state */
446 u32 first_insn_idx;
447 u32 last_insn_idx;
448 /* If this state is a part of states loop this field points to some
449 * parent of this state such that:
450 * - it is also a member of the same states loop;
451 * - DFS states traversal starting from initial state visits loop_entry
452 * state before this state.
453 * Used to compute topmost loop entry for state loops.
454 * State loops might appear because of open coded iterators logic.
455 * See get_loop_entry() for more information.
456 */
457 struct bpf_verifier_state *loop_entry;
458 /* Sub-range of env->insn_hist[] corresponding to this state's
459 * instruction history.
460 * Backtracking is using it to go from last to first.
461 * For most states instruction history is short, 0-3 instructions.
462 * For loops can go up to ~40.
463 */
464 u32 insn_hist_start;
465 u32 insn_hist_end;
466 u32 dfs_depth;
467 u32 callback_unroll_depth;
468 u32 may_goto_depth;
469 /* If this state was ever pointed-to by other state's loop_entry field
470 * this flag would be set to true. Used to avoid freeing such states
471 * while they are still in use.
472 */
473 u32 used_as_loop_entry;
474 };
475
476 #define bpf_get_spilled_reg(slot, frame, mask) \
477 (((slot < frame->allocated_stack / BPF_REG_SIZE) && \
478 ((1 << frame->stack[slot].slot_type[BPF_REG_SIZE - 1]) & (mask))) \
479 ? &frame->stack[slot].spilled_ptr : NULL)
480
481 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
482 #define bpf_for_each_spilled_reg(iter, frame, reg, mask) \
483 for (iter = 0, reg = bpf_get_spilled_reg(iter, frame, mask); \
484 iter < frame->allocated_stack / BPF_REG_SIZE; \
485 iter++, reg = bpf_get_spilled_reg(iter, frame, mask))
486
487 #define bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, __mask, __expr) \
488 ({ \
489 struct bpf_verifier_state *___vstate = __vst; \
490 int ___i, ___j; \
491 for (___i = 0; ___i <= ___vstate->curframe; ___i++) { \
492 struct bpf_reg_state *___regs; \
493 __state = ___vstate->frame[___i]; \
494 ___regs = __state->regs; \
495 for (___j = 0; ___j < MAX_BPF_REG; ___j++) { \
496 __reg = &___regs[___j]; \
497 (void)(__expr); \
498 } \
499 bpf_for_each_spilled_reg(___j, __state, __reg, __mask) { \
500 if (!__reg) \
501 continue; \
502 (void)(__expr); \
503 } \
504 } \
505 })
506
507 /* Invoke __expr over regsiters in __vst, setting __state and __reg */
508 #define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \
509 bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, 1 << STACK_SPILL, __expr)
510
511 /* linked list of verifier states used to prune search */
512 struct bpf_verifier_state_list {
513 struct bpf_verifier_state state;
514 struct list_head node;
515 u32 miss_cnt;
516 u32 hit_cnt:31;
517 u32 in_free_list:1;
518 };
519
520 struct bpf_loop_inline_state {
521 unsigned int initialized:1; /* set to true upon first entry */
522 unsigned int fit_for_inline:1; /* true if callback function is the same
523 * at each call and flags are always zero
524 */
525 u32 callback_subprogno; /* valid when fit_for_inline is true */
526 };
527
528 /* pointer and state for maps */
529 struct bpf_map_ptr_state {
530 struct bpf_map *map_ptr;
531 bool poison;
532 bool unpriv;
533 };
534
535 /* Possible states for alu_state member. */
536 #define BPF_ALU_SANITIZE_SRC (1U << 0)
537 #define BPF_ALU_SANITIZE_DST (1U << 1)
538 #define BPF_ALU_NEG_VALUE (1U << 2)
539 #define BPF_ALU_NON_POINTER (1U << 3)
540 #define BPF_ALU_IMMEDIATE (1U << 4)
541 #define BPF_ALU_SANITIZE (BPF_ALU_SANITIZE_SRC | \
542 BPF_ALU_SANITIZE_DST)
543
544 struct bpf_insn_aux_data {
545 union {
546 enum bpf_reg_type ptr_type; /* pointer type for load/store insns */
547 struct bpf_map_ptr_state map_ptr_state;
548 s32 call_imm; /* saved imm field of call insn */
549 u32 alu_limit; /* limit for add/sub register with pointer */
550 struct {
551 u32 map_index; /* index into used_maps[] */
552 u32 map_off; /* offset from value base address */
553 };
554 struct {
555 enum bpf_reg_type reg_type; /* type of pseudo_btf_id */
556 union {
557 struct {
558 struct btf *btf;
559 u32 btf_id; /* btf_id for struct typed var */
560 };
561 u32 mem_size; /* mem_size for non-struct typed var */
562 };
563 } btf_var;
564 /* if instruction is a call to bpf_loop this field tracks
565 * the state of the relevant registers to make decision about inlining
566 */
567 struct bpf_loop_inline_state loop_inline_state;
568 };
569 union {
570 /* remember the size of type passed to bpf_obj_new to rewrite R1 */
571 u64 obj_new_size;
572 /* remember the offset of node field within type to rewrite */
573 u64 insert_off;
574 };
575 struct btf_struct_meta *kptr_struct_meta;
576 u64 map_key_state; /* constant (32 bit) key tracking for maps */
577 int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
578 u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
579 bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */
580 bool zext_dst; /* this insn zero extends dst reg */
581 bool needs_zext; /* alu op needs to clear upper bits */
582 bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */
583 bool is_iter_next; /* bpf_iter_<type>_next() kfunc call */
584 bool call_with_percpu_alloc_ptr; /* {this,per}_cpu_ptr() with prog percpu alloc */
585 u8 alu_state; /* used in combination with alu_limit */
586 /* true if STX or LDX instruction is a part of a spill/fill
587 * pattern for a bpf_fastcall call.
588 */
589 u8 fastcall_pattern:1;
590 /* for CALL instructions, a number of spill/fill pairs in the
591 * bpf_fastcall pattern.
592 */
593 u8 fastcall_spills_num:3;
594
595 /* below fields are initialized once */
596 unsigned int orig_idx; /* original instruction index */
597 bool jmp_point;
598 bool prune_point;
599 /* ensure we check state equivalence and save state checkpoint and
600 * this instruction, regardless of any heuristics
601 */
602 bool force_checkpoint;
603 /* true if instruction is a call to a helper function that
604 * accepts callback function as a parameter.
605 */
606 bool calls_callback;
607 /* registers alive before this instruction. */
608 u16 live_regs_before;
609 };
610
611 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
612 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
613
614 #define BPF_VERIFIER_TMP_LOG_SIZE 1024
615
616 struct bpf_verifier_log {
617 /* Logical start and end positions of a "log window" of the verifier log.
618 * start_pos == 0 means we haven't truncated anything.
619 * Once truncation starts to happen, start_pos + len_total == end_pos,
620 * except during log reset situations, in which (end_pos - start_pos)
621 * might get smaller than len_total (see bpf_vlog_reset()).
622 * Generally, (end_pos - start_pos) gives number of useful data in
623 * user log buffer.
624 */
625 u64 start_pos;
626 u64 end_pos;
627 char __user *ubuf;
628 u32 level;
629 u32 len_total;
630 u32 len_max;
631 char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
632 };
633
634 #define BPF_LOG_LEVEL1 1
635 #define BPF_LOG_LEVEL2 2
636 #define BPF_LOG_STATS 4
637 #define BPF_LOG_FIXED 8
638 #define BPF_LOG_LEVEL (BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
639 #define BPF_LOG_MASK (BPF_LOG_LEVEL | BPF_LOG_STATS | BPF_LOG_FIXED)
640 #define BPF_LOG_KERNEL (BPF_LOG_MASK + 1) /* kernel internal flag */
641 #define BPF_LOG_MIN_ALIGNMENT 8U
642 #define BPF_LOG_ALIGNMENT 40U
643
bpf_verifier_log_needed(const struct bpf_verifier_log * log)644 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
645 {
646 return log && log->level;
647 }
648
649 #define BPF_MAX_SUBPROGS 256
650
651 struct bpf_subprog_arg_info {
652 enum bpf_arg_type arg_type;
653 union {
654 u32 mem_size;
655 u32 btf_id;
656 };
657 };
658
659 enum priv_stack_mode {
660 PRIV_STACK_UNKNOWN,
661 NO_PRIV_STACK,
662 PRIV_STACK_ADAPTIVE,
663 };
664
665 struct bpf_subprog_info {
666 /* 'start' has to be the first field otherwise find_subprog() won't work */
667 u32 start; /* insn idx of function entry point */
668 u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
669 u16 stack_depth; /* max. stack depth used by this function */
670 u16 stack_extra;
671 /* offsets in range [stack_depth .. fastcall_stack_off)
672 * are used for bpf_fastcall spills and fills.
673 */
674 s16 fastcall_stack_off;
675 bool has_tail_call: 1;
676 bool tail_call_reachable: 1;
677 bool has_ld_abs: 1;
678 bool is_cb: 1;
679 bool is_async_cb: 1;
680 bool is_exception_cb: 1;
681 bool args_cached: 1;
682 /* true if bpf_fastcall stack region is used by functions that can't be inlined */
683 bool keep_fastcall_stack: 1;
684 bool changes_pkt_data: 1;
685 bool might_sleep: 1;
686
687 enum priv_stack_mode priv_stack_mode;
688 u8 arg_cnt;
689 struct bpf_subprog_arg_info args[MAX_BPF_FUNC_REG_ARGS];
690 };
691
692 struct bpf_verifier_env;
693
694 struct backtrack_state {
695 struct bpf_verifier_env *env;
696 u32 frame;
697 u32 reg_masks[MAX_CALL_FRAMES];
698 u64 stack_masks[MAX_CALL_FRAMES];
699 };
700
701 struct bpf_id_pair {
702 u32 old;
703 u32 cur;
704 };
705
706 struct bpf_idmap {
707 u32 tmp_id_gen;
708 struct bpf_id_pair map[BPF_ID_MAP_SIZE];
709 };
710
711 struct bpf_idset {
712 u32 count;
713 u32 ids[BPF_ID_MAP_SIZE];
714 };
715
716 /* single container for all structs
717 * one verifier_env per bpf_check() call
718 */
719 struct bpf_verifier_env {
720 u32 insn_idx;
721 u32 prev_insn_idx;
722 struct bpf_prog *prog; /* eBPF program being verified */
723 const struct bpf_verifier_ops *ops;
724 struct module *attach_btf_mod; /* The owner module of prog->aux->attach_btf */
725 struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
726 int stack_size; /* number of states to be processed */
727 bool strict_alignment; /* perform strict pointer alignment checks */
728 bool test_state_freq; /* test verifier with different pruning frequency */
729 bool test_reg_invariants; /* fail verification on register invariants violations */
730 struct bpf_verifier_state *cur_state; /* current verifier state */
731 /* Search pruning optimization, array of list_heads for
732 * lists of struct bpf_verifier_state_list.
733 */
734 struct list_head *explored_states;
735 struct list_head free_list; /* list of struct bpf_verifier_state_list */
736 struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
737 struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
738 u32 used_map_cnt; /* number of used maps */
739 u32 used_btf_cnt; /* number of used BTF objects */
740 u32 id_gen; /* used to generate unique reg IDs */
741 u32 hidden_subprog_cnt; /* number of hidden subprogs */
742 int exception_callback_subprog;
743 bool explore_alu_limits;
744 bool allow_ptr_leaks;
745 /* Allow access to uninitialized stack memory. Writes with fixed offset are
746 * always allowed, so this refers to reads (with fixed or variable offset),
747 * to writes with variable offset and to indirect (helper) accesses.
748 */
749 bool allow_uninit_stack;
750 bool bpf_capable;
751 bool bypass_spec_v1;
752 bool bypass_spec_v4;
753 bool seen_direct_write;
754 bool seen_exception;
755 struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
756 const struct bpf_line_info *prev_linfo;
757 struct bpf_verifier_log log;
758 struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 2]; /* max + 2 for the fake and exception subprogs */
759 union {
760 struct bpf_idmap idmap_scratch;
761 struct bpf_idset idset_scratch;
762 };
763 struct {
764 int *insn_state;
765 int *insn_stack;
766 /* vector of instruction indexes sorted in post-order */
767 int *insn_postorder;
768 int cur_stack;
769 /* current position in the insn_postorder vector */
770 int cur_postorder;
771 } cfg;
772 struct backtrack_state bt;
773 struct bpf_insn_hist_entry *insn_hist;
774 struct bpf_insn_hist_entry *cur_hist_ent;
775 u32 insn_hist_cap;
776 u32 pass_cnt; /* number of times do_check() was called */
777 u32 subprog_cnt;
778 /* number of instructions analyzed by the verifier */
779 u32 prev_insn_processed, insn_processed;
780 /* number of jmps, calls, exits analyzed so far */
781 u32 prev_jmps_processed, jmps_processed;
782 /* total verification time */
783 u64 verification_time;
784 /* maximum number of verifier states kept in 'branching' instructions */
785 u32 max_states_per_insn;
786 /* total number of allocated verifier states */
787 u32 total_states;
788 /* some states are freed during program analysis.
789 * this is peak number of states. this number dominates kernel
790 * memory consumption during verification
791 */
792 u32 peak_states;
793 /* longest register parentage chain walked for liveness marking */
794 u32 longest_mark_read_walk;
795 u32 free_list_size;
796 u32 explored_states_size;
797 bpfptr_t fd_array;
798
799 /* bit mask to keep track of whether a register has been accessed
800 * since the last time the function state was printed
801 */
802 u32 scratched_regs;
803 /* Same as scratched_regs but for stack slots */
804 u64 scratched_stack_slots;
805 u64 prev_log_pos, prev_insn_print_pos;
806 /* buffer used to temporary hold constants as scalar registers */
807 struct bpf_reg_state fake_reg[2];
808 /* buffer used to generate temporary string representations,
809 * e.g., in reg_type_str() to generate reg_type string
810 */
811 char tmp_str_buf[TMP_STR_BUF_LEN];
812 struct bpf_insn insn_buf[INSN_BUF_SIZE];
813 struct bpf_insn epilogue_buf[INSN_BUF_SIZE];
814 };
815
subprog_aux(struct bpf_verifier_env * env,int subprog)816 static inline struct bpf_func_info_aux *subprog_aux(struct bpf_verifier_env *env, int subprog)
817 {
818 return &env->prog->aux->func_info_aux[subprog];
819 }
820
subprog_info(struct bpf_verifier_env * env,int subprog)821 static inline struct bpf_subprog_info *subprog_info(struct bpf_verifier_env *env, int subprog)
822 {
823 return &env->subprog_info[subprog];
824 }
825
826 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
827 const char *fmt, va_list args);
828 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
829 const char *fmt, ...);
830 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
831 const char *fmt, ...);
832 int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level,
833 char __user *log_buf, u32 log_size);
834 void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos);
835 int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual);
836
837 __printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env,
838 u32 insn_off,
839 const char *prefix_fmt, ...);
840
cur_func(struct bpf_verifier_env * env)841 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
842 {
843 struct bpf_verifier_state *cur = env->cur_state;
844
845 return cur->frame[cur->curframe];
846 }
847
cur_regs(struct bpf_verifier_env * env)848 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
849 {
850 return cur_func(env)->regs;
851 }
852
853 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
854 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
855 int insn_idx, int prev_insn_idx);
856 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
857 void
858 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
859 struct bpf_insn *insn);
860 void
861 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
862
863 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
bpf_trampoline_compute_key(const struct bpf_prog * tgt_prog,struct btf * btf,u32 btf_id)864 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
865 struct btf *btf, u32 btf_id)
866 {
867 if (tgt_prog)
868 return ((u64)tgt_prog->aux->id << 32) | btf_id;
869 else
870 return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
871 }
872
873 /* unpack the IDs from the key as constructed above */
bpf_trampoline_unpack_key(u64 key,u32 * obj_id,u32 * btf_id)874 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
875 {
876 if (obj_id)
877 *obj_id = key >> 32;
878 if (btf_id)
879 *btf_id = key & 0x7FFFFFFF;
880 }
881
882 int bpf_check_attach_target(struct bpf_verifier_log *log,
883 const struct bpf_prog *prog,
884 const struct bpf_prog *tgt_prog,
885 u32 btf_id,
886 struct bpf_attach_target_info *tgt_info);
887 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab);
888
889 int mark_chain_precision(struct bpf_verifier_env *env, int regno);
890
891 #define BPF_BASE_TYPE_MASK GENMASK(BPF_BASE_TYPE_BITS - 1, 0)
892
893 /* extract base type from bpf_{arg, return, reg}_type. */
base_type(u32 type)894 static inline u32 base_type(u32 type)
895 {
896 return type & BPF_BASE_TYPE_MASK;
897 }
898
899 /* extract flags from an extended type. See bpf_type_flag in bpf.h. */
type_flag(u32 type)900 static inline u32 type_flag(u32 type)
901 {
902 return type & ~BPF_BASE_TYPE_MASK;
903 }
904
905 /* only use after check_attach_btf_id() */
resolve_prog_type(const struct bpf_prog * prog)906 static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog)
907 {
908 return (prog->type == BPF_PROG_TYPE_EXT && prog->aux->saved_dst_prog_type) ?
909 prog->aux->saved_dst_prog_type : prog->type;
910 }
911
bpf_prog_check_recur(const struct bpf_prog * prog)912 static inline bool bpf_prog_check_recur(const struct bpf_prog *prog)
913 {
914 switch (resolve_prog_type(prog)) {
915 case BPF_PROG_TYPE_TRACING:
916 return prog->expected_attach_type != BPF_TRACE_ITER;
917 case BPF_PROG_TYPE_STRUCT_OPS:
918 return prog->aux->jits_use_priv_stack;
919 case BPF_PROG_TYPE_LSM:
920 return false;
921 default:
922 return true;
923 }
924 }
925
926 #define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED | NON_OWN_REF)
927
bpf_type_has_unsafe_modifiers(u32 type)928 static inline bool bpf_type_has_unsafe_modifiers(u32 type)
929 {
930 return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS;
931 }
932
type_is_ptr_alloc_obj(u32 type)933 static inline bool type_is_ptr_alloc_obj(u32 type)
934 {
935 return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
936 }
937
type_is_non_owning_ref(u32 type)938 static inline bool type_is_non_owning_ref(u32 type)
939 {
940 return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
941 }
942
type_is_pkt_pointer(enum bpf_reg_type type)943 static inline bool type_is_pkt_pointer(enum bpf_reg_type type)
944 {
945 type = base_type(type);
946 return type == PTR_TO_PACKET ||
947 type == PTR_TO_PACKET_META;
948 }
949
type_is_sk_pointer(enum bpf_reg_type type)950 static inline bool type_is_sk_pointer(enum bpf_reg_type type)
951 {
952 return type == PTR_TO_SOCKET ||
953 type == PTR_TO_SOCK_COMMON ||
954 type == PTR_TO_TCP_SOCK ||
955 type == PTR_TO_XDP_SOCK;
956 }
957
type_may_be_null(u32 type)958 static inline bool type_may_be_null(u32 type)
959 {
960 return type & PTR_MAYBE_NULL;
961 }
962
mark_reg_scratched(struct bpf_verifier_env * env,u32 regno)963 static inline void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
964 {
965 env->scratched_regs |= 1U << regno;
966 }
967
mark_stack_slot_scratched(struct bpf_verifier_env * env,u32 spi)968 static inline void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
969 {
970 env->scratched_stack_slots |= 1ULL << spi;
971 }
972
reg_scratched(const struct bpf_verifier_env * env,u32 regno)973 static inline bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
974 {
975 return (env->scratched_regs >> regno) & 1;
976 }
977
stack_slot_scratched(const struct bpf_verifier_env * env,u64 regno)978 static inline bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
979 {
980 return (env->scratched_stack_slots >> regno) & 1;
981 }
982
verifier_state_scratched(const struct bpf_verifier_env * env)983 static inline bool verifier_state_scratched(const struct bpf_verifier_env *env)
984 {
985 return env->scratched_regs || env->scratched_stack_slots;
986 }
987
mark_verifier_state_clean(struct bpf_verifier_env * env)988 static inline void mark_verifier_state_clean(struct bpf_verifier_env *env)
989 {
990 env->scratched_regs = 0U;
991 env->scratched_stack_slots = 0ULL;
992 }
993
994 /* Used for printing the entire verifier state. */
mark_verifier_state_scratched(struct bpf_verifier_env * env)995 static inline void mark_verifier_state_scratched(struct bpf_verifier_env *env)
996 {
997 env->scratched_regs = ~0U;
998 env->scratched_stack_slots = ~0ULL;
999 }
1000
bpf_stack_narrow_access_ok(int off,int fill_size,int spill_size)1001 static inline bool bpf_stack_narrow_access_ok(int off, int fill_size, int spill_size)
1002 {
1003 #ifdef __BIG_ENDIAN
1004 off -= spill_size - fill_size;
1005 #endif
1006
1007 return !(off % BPF_REG_SIZE);
1008 }
1009
1010 const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type);
1011 const char *dynptr_type_str(enum bpf_dynptr_type type);
1012 const char *iter_type_str(const struct btf *btf, u32 btf_id);
1013 const char *iter_state_str(enum bpf_iter_state state);
1014
1015 void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_verifier_state *vstate,
1016 u32 frameno, bool print_all);
1017 void print_insn_state(struct bpf_verifier_env *env, const struct bpf_verifier_state *vstate,
1018 u32 frameno);
1019
1020 #endif /* _LINUX_BPF_VERIFIER_H */
1021