1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_VERIFIER_H
5 #define _LINUX_BPF_VERIFIER_H 1
6 
7 #include <linux/bpf.h> /* for enum bpf_reg_type */
8 #include <linux/btf.h> /* for struct btf and btf_id() */
9 #include <linux/filter.h> /* for MAX_BPF_STACK */
10 #include <linux/tnum.h>
11 
12 /* Maximum variable offset umax_value permitted when resolving memory accesses.
13  * In practice this is far bigger than any realistic pointer offset; this limit
14  * ensures that umax_value + (int)off + (int)size cannot overflow a u64.
15  */
16 #define BPF_MAX_VAR_OFF	(1 << 29)
17 /* Maximum variable size permitted for ARG_CONST_SIZE[_OR_ZERO].  This ensures
18  * that converting umax_value to int cannot overflow.
19  */
20 #define BPF_MAX_VAR_SIZ	(1 << 29)
21 /* size of tmp_str_buf in bpf_verifier.
22  * we need at least 306 bytes to fit full stack mask representation
23  * (in the "-8,-16,...,-512" form)
24  */
25 #define TMP_STR_BUF_LEN 320
26 /* Patch buffer size */
27 #define INSN_BUF_SIZE 32
28 
29 /* Liveness marks, used for registers and spilled-regs (in stack slots).
30  * Read marks propagate upwards until they find a write mark; they record that
31  * "one of this state's descendants read this reg" (and therefore the reg is
32  * relevant for states_equal() checks).
33  * Write marks collect downwards and do not propagate; they record that "the
34  * straight-line code that reached this state (from its parent) wrote this reg"
35  * (and therefore that reads propagated from this state or its descendants
36  * should not propagate to its parent).
37  * A state with a write mark can receive read marks; it just won't propagate
38  * them to its parent, since the write mark is a property, not of the state,
39  * but of the link between it and its parent.  See mark_reg_read() and
40  * mark_stack_slot_read() in kernel/bpf/verifier.c.
41  */
42 enum bpf_reg_liveness {
43 	REG_LIVE_NONE = 0, /* reg hasn't been read or written this branch */
44 	REG_LIVE_READ32 = 0x1, /* reg was read, so we're sensitive to initial value */
45 	REG_LIVE_READ64 = 0x2, /* likewise, but full 64-bit content matters */
46 	REG_LIVE_READ = REG_LIVE_READ32 | REG_LIVE_READ64,
47 	REG_LIVE_WRITTEN = 0x4, /* reg was written first, screening off later reads */
48 	REG_LIVE_DONE = 0x8, /* liveness won't be updating this register anymore */
49 };
50 
51 #define ITER_PREFIX "bpf_iter_"
52 
53 enum bpf_iter_state {
54 	BPF_ITER_STATE_INVALID, /* for non-first slot */
55 	BPF_ITER_STATE_ACTIVE,
56 	BPF_ITER_STATE_DRAINED,
57 };
58 
59 struct bpf_reg_state {
60 	/* Ordering of fields matters.  See states_equal() */
61 	enum bpf_reg_type type;
62 	/*
63 	 * Fixed part of pointer offset, pointer types only.
64 	 * Or constant delta between "linked" scalars with the same ID.
65 	 */
66 	s32 off;
67 	union {
68 		/* valid when type == PTR_TO_PACKET */
69 		int range;
70 
71 		/* valid when type == CONST_PTR_TO_MAP | PTR_TO_MAP_VALUE |
72 		 *   PTR_TO_MAP_VALUE_OR_NULL
73 		 */
74 		struct {
75 			struct bpf_map *map_ptr;
76 			/* To distinguish map lookups from outer map
77 			 * the map_uid is non-zero for registers
78 			 * pointing to inner maps.
79 			 */
80 			u32 map_uid;
81 		};
82 
83 		/* for PTR_TO_BTF_ID */
84 		struct {
85 			struct btf *btf;
86 			u32 btf_id;
87 		};
88 
89 		struct { /* for PTR_TO_MEM | PTR_TO_MEM_OR_NULL */
90 			u32 mem_size;
91 			u32 dynptr_id; /* for dynptr slices */
92 		};
93 
94 		/* For dynptr stack slots */
95 		struct {
96 			enum bpf_dynptr_type type;
97 			/* A dynptr is 16 bytes so it takes up 2 stack slots.
98 			 * We need to track which slot is the first slot
99 			 * to protect against cases where the user may try to
100 			 * pass in an address starting at the second slot of the
101 			 * dynptr.
102 			 */
103 			bool first_slot;
104 		} dynptr;
105 
106 		/* For bpf_iter stack slots */
107 		struct {
108 			/* BTF container and BTF type ID describing
109 			 * struct bpf_iter_<type> of an iterator state
110 			 */
111 			struct btf *btf;
112 			u32 btf_id;
113 			/* packing following two fields to fit iter state into 16 bytes */
114 			enum bpf_iter_state state:2;
115 			int depth:30;
116 		} iter;
117 
118 		/* For irq stack slots */
119 		struct {
120 			enum {
121 				IRQ_NATIVE_KFUNC,
122 				IRQ_LOCK_KFUNC,
123 			} kfunc_class;
124 		} irq;
125 
126 		/* Max size from any of the above. */
127 		struct {
128 			unsigned long raw1;
129 			unsigned long raw2;
130 		} raw;
131 
132 		u32 subprogno; /* for PTR_TO_FUNC */
133 	};
134 	/* For scalar types (SCALAR_VALUE), this represents our knowledge of
135 	 * the actual value.
136 	 * For pointer types, this represents the variable part of the offset
137 	 * from the pointed-to object, and is shared with all bpf_reg_states
138 	 * with the same id as us.
139 	 */
140 	struct tnum var_off;
141 	/* Used to determine if any memory access using this register will
142 	 * result in a bad access.
143 	 * These refer to the same value as var_off, not necessarily the actual
144 	 * contents of the register.
145 	 */
146 	s64 smin_value; /* minimum possible (s64)value */
147 	s64 smax_value; /* maximum possible (s64)value */
148 	u64 umin_value; /* minimum possible (u64)value */
149 	u64 umax_value; /* maximum possible (u64)value */
150 	s32 s32_min_value; /* minimum possible (s32)value */
151 	s32 s32_max_value; /* maximum possible (s32)value */
152 	u32 u32_min_value; /* minimum possible (u32)value */
153 	u32 u32_max_value; /* maximum possible (u32)value */
154 	/* For PTR_TO_PACKET, used to find other pointers with the same variable
155 	 * offset, so they can share range knowledge.
156 	 * For PTR_TO_MAP_VALUE_OR_NULL this is used to share which map value we
157 	 * came from, when one is tested for != NULL.
158 	 * For PTR_TO_MEM_OR_NULL this is used to identify memory allocation
159 	 * for the purpose of tracking that it's freed.
160 	 * For PTR_TO_SOCKET this is used to share which pointers retain the
161 	 * same reference to the socket, to determine proper reference freeing.
162 	 * For stack slots that are dynptrs, this is used to track references to
163 	 * the dynptr to determine proper reference freeing.
164 	 * Similarly to dynptrs, we use ID to track "belonging" of a reference
165 	 * to a specific instance of bpf_iter.
166 	 */
167 	/*
168 	 * Upper bit of ID is used to remember relationship between "linked"
169 	 * registers. Example:
170 	 * r1 = r2;    both will have r1->id == r2->id == N
171 	 * r1 += 10;   r1->id == N | BPF_ADD_CONST and r1->off == 10
172 	 */
173 #define BPF_ADD_CONST (1U << 31)
174 	u32 id;
175 	/* PTR_TO_SOCKET and PTR_TO_TCP_SOCK could be a ptr returned
176 	 * from a pointer-cast helper, bpf_sk_fullsock() and
177 	 * bpf_tcp_sock().
178 	 *
179 	 * Consider the following where "sk" is a reference counted
180 	 * pointer returned from "sk = bpf_sk_lookup_tcp();":
181 	 *
182 	 * 1: sk = bpf_sk_lookup_tcp();
183 	 * 2: if (!sk) { return 0; }
184 	 * 3: fullsock = bpf_sk_fullsock(sk);
185 	 * 4: if (!fullsock) { bpf_sk_release(sk); return 0; }
186 	 * 5: tp = bpf_tcp_sock(fullsock);
187 	 * 6: if (!tp) { bpf_sk_release(sk); return 0; }
188 	 * 7: bpf_sk_release(sk);
189 	 * 8: snd_cwnd = tp->snd_cwnd;  // verifier will complain
190 	 *
191 	 * After bpf_sk_release(sk) at line 7, both "fullsock" ptr and
192 	 * "tp" ptr should be invalidated also.  In order to do that,
193 	 * the reg holding "fullsock" and "sk" need to remember
194 	 * the original refcounted ptr id (i.e. sk_reg->id) in ref_obj_id
195 	 * such that the verifier can reset all regs which have
196 	 * ref_obj_id matching the sk_reg->id.
197 	 *
198 	 * sk_reg->ref_obj_id is set to sk_reg->id at line 1.
199 	 * sk_reg->id will stay as NULL-marking purpose only.
200 	 * After NULL-marking is done, sk_reg->id can be reset to 0.
201 	 *
202 	 * After "fullsock = bpf_sk_fullsock(sk);" at line 3,
203 	 * fullsock_reg->ref_obj_id is set to sk_reg->ref_obj_id.
204 	 *
205 	 * After "tp = bpf_tcp_sock(fullsock);" at line 5,
206 	 * tp_reg->ref_obj_id is set to fullsock_reg->ref_obj_id
207 	 * which is the same as sk_reg->ref_obj_id.
208 	 *
209 	 * From the verifier perspective, if sk, fullsock and tp
210 	 * are not NULL, they are the same ptr with different
211 	 * reg->type.  In particular, bpf_sk_release(tp) is also
212 	 * allowed and has the same effect as bpf_sk_release(sk).
213 	 */
214 	u32 ref_obj_id;
215 	/* parentage chain for liveness checking */
216 	struct bpf_reg_state *parent;
217 	/* Inside the callee two registers can be both PTR_TO_STACK like
218 	 * R1=fp-8 and R2=fp-8, but one of them points to this function stack
219 	 * while another to the caller's stack. To differentiate them 'frameno'
220 	 * is used which is an index in bpf_verifier_state->frame[] array
221 	 * pointing to bpf_func_state.
222 	 */
223 	u32 frameno;
224 	/* Tracks subreg definition. The stored value is the insn_idx of the
225 	 * writing insn. This is safe because subreg_def is used before any insn
226 	 * patching which only happens after main verification finished.
227 	 */
228 	s32 subreg_def;
229 	enum bpf_reg_liveness live;
230 	/* if (!precise && SCALAR_VALUE) min/max/tnum don't affect safety */
231 	bool precise;
232 };
233 
234 enum bpf_stack_slot_type {
235 	STACK_INVALID,    /* nothing was stored in this stack slot */
236 	STACK_SPILL,      /* register spilled into stack */
237 	STACK_MISC,	  /* BPF program wrote some data into this slot */
238 	STACK_ZERO,	  /* BPF program wrote constant zero */
239 	/* A dynptr is stored in this stack slot. The type of dynptr
240 	 * is stored in bpf_stack_state->spilled_ptr.dynptr.type
241 	 */
242 	STACK_DYNPTR,
243 	STACK_ITER,
244 	STACK_IRQ_FLAG,
245 };
246 
247 #define BPF_REG_SIZE 8	/* size of eBPF register in bytes */
248 
249 #define BPF_REGMASK_ARGS ((1 << BPF_REG_1) | (1 << BPF_REG_2) | \
250 			  (1 << BPF_REG_3) | (1 << BPF_REG_4) | \
251 			  (1 << BPF_REG_5))
252 
253 #define BPF_DYNPTR_SIZE		sizeof(struct bpf_dynptr_kern)
254 #define BPF_DYNPTR_NR_SLOTS		(BPF_DYNPTR_SIZE / BPF_REG_SIZE)
255 
256 struct bpf_stack_state {
257 	struct bpf_reg_state spilled_ptr;
258 	u8 slot_type[BPF_REG_SIZE];
259 };
260 
261 struct bpf_reference_state {
262 	/* Each reference object has a type. Ensure REF_TYPE_PTR is zero to
263 	 * default to pointer reference on zero initialization of a state.
264 	 */
265 	enum ref_state_type {
266 		REF_TYPE_PTR		= (1 << 1),
267 		REF_TYPE_IRQ		= (1 << 2),
268 		REF_TYPE_LOCK		= (1 << 3),
269 		REF_TYPE_RES_LOCK 	= (1 << 4),
270 		REF_TYPE_RES_LOCK_IRQ	= (1 << 5),
271 		REF_TYPE_LOCK_MASK	= REF_TYPE_LOCK | REF_TYPE_RES_LOCK | REF_TYPE_RES_LOCK_IRQ,
272 	} type;
273 	/* Track each reference created with a unique id, even if the same
274 	 * instruction creates the reference multiple times (eg, via CALL).
275 	 */
276 	int id;
277 	/* Instruction where the allocation of this reference occurred. This
278 	 * is used purely to inform the user of a reference leak.
279 	 */
280 	int insn_idx;
281 	/* Use to keep track of the source object of a lock, to ensure
282 	 * it matches on unlock.
283 	 */
284 	void *ptr;
285 };
286 
287 struct bpf_retval_range {
288 	s32 minval;
289 	s32 maxval;
290 };
291 
292 /* state of the program:
293  * type of all registers and stack info
294  */
295 struct bpf_func_state {
296 	struct bpf_reg_state regs[MAX_BPF_REG];
297 	/* index of call instruction that called into this func */
298 	int callsite;
299 	/* stack frame number of this function state from pov of
300 	 * enclosing bpf_verifier_state.
301 	 * 0 = main function, 1 = first callee.
302 	 */
303 	u32 frameno;
304 	/* subprog number == index within subprog_info
305 	 * zero == main subprog
306 	 */
307 	u32 subprogno;
308 	/* Every bpf_timer_start will increment async_entry_cnt.
309 	 * It's used to distinguish:
310 	 * void foo(void) { for(;;); }
311 	 * void foo(void) { bpf_timer_set_callback(,foo); }
312 	 */
313 	u32 async_entry_cnt;
314 	struct bpf_retval_range callback_ret_range;
315 	bool in_callback_fn;
316 	bool in_async_callback_fn;
317 	bool in_exception_callback_fn;
318 	/* For callback calling functions that limit number of possible
319 	 * callback executions (e.g. bpf_loop) keeps track of current
320 	 * simulated iteration number.
321 	 * Value in frame N refers to number of times callback with frame
322 	 * N+1 was simulated, e.g. for the following call:
323 	 *
324 	 *   bpf_loop(..., fn, ...); | suppose current frame is N
325 	 *                           | fn would be simulated in frame N+1
326 	 *                           | number of simulations is tracked in frame N
327 	 */
328 	u32 callback_depth;
329 
330 	/* The following fields should be last. See copy_func_state() */
331 	/* The state of the stack. Each element of the array describes BPF_REG_SIZE
332 	 * (i.e. 8) bytes worth of stack memory.
333 	 * stack[0] represents bytes [*(r10-8)..*(r10-1)]
334 	 * stack[1] represents bytes [*(r10-16)..*(r10-9)]
335 	 * ...
336 	 * stack[allocated_stack/8 - 1] represents [*(r10-allocated_stack)..*(r10-allocated_stack+7)]
337 	 */
338 	struct bpf_stack_state *stack;
339 	/* Size of the current stack, in bytes. The stack state is tracked below, in
340 	 * `stack`. allocated_stack is always a multiple of BPF_REG_SIZE.
341 	 */
342 	int allocated_stack;
343 };
344 
345 #define MAX_CALL_FRAMES 8
346 
347 /* instruction history flags, used in bpf_insn_hist_entry.flags field */
348 enum {
349 	/* instruction references stack slot through PTR_TO_STACK register;
350 	 * we also store stack's frame number in lower 3 bits (MAX_CALL_FRAMES is 8)
351 	 * and accessed stack slot's index in next 6 bits (MAX_BPF_STACK is 512,
352 	 * 8 bytes per slot, so slot index (spi) is [0, 63])
353 	 */
354 	INSN_F_FRAMENO_MASK = 0x7, /* 3 bits */
355 
356 	INSN_F_SPI_MASK = 0x3f, /* 6 bits */
357 	INSN_F_SPI_SHIFT = 3, /* shifted 3 bits to the left */
358 
359 	INSN_F_STACK_ACCESS = BIT(9), /* we need 10 bits total */
360 };
361 
362 static_assert(INSN_F_FRAMENO_MASK + 1 >= MAX_CALL_FRAMES);
363 static_assert(INSN_F_SPI_MASK + 1 >= MAX_BPF_STACK / 8);
364 
365 struct bpf_insn_hist_entry {
366 	u32 idx;
367 	/* insn idx can't be bigger than 1 million */
368 	u32 prev_idx : 22;
369 	/* special flags, e.g., whether insn is doing register stack spill/load */
370 	u32 flags : 10;
371 	/* additional registers that need precision tracking when this
372 	 * jump is backtracked, vector of six 10-bit records
373 	 */
374 	u64 linked_regs;
375 };
376 
377 /* Maximum number of register states that can exist at once */
378 #define BPF_ID_MAP_SIZE ((MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE) * MAX_CALL_FRAMES)
379 struct bpf_verifier_state {
380 	/* call stack tracking */
381 	struct bpf_func_state *frame[MAX_CALL_FRAMES];
382 	struct bpf_verifier_state *parent;
383 	/* Acquired reference states */
384 	struct bpf_reference_state *refs;
385 	/*
386 	 * 'branches' field is the number of branches left to explore:
387 	 * 0 - all possible paths from this state reached bpf_exit or
388 	 * were safely pruned
389 	 * 1 - at least one path is being explored.
390 	 * This state hasn't reached bpf_exit
391 	 * 2 - at least two paths are being explored.
392 	 * This state is an immediate parent of two children.
393 	 * One is fallthrough branch with branches==1 and another
394 	 * state is pushed into stack (to be explored later) also with
395 	 * branches==1. The parent of this state has branches==1.
396 	 * The verifier state tree connected via 'parent' pointer looks like:
397 	 * 1
398 	 * 1
399 	 * 2 -> 1 (first 'if' pushed into stack)
400 	 * 1
401 	 * 2 -> 1 (second 'if' pushed into stack)
402 	 * 1
403 	 * 1
404 	 * 1 bpf_exit.
405 	 *
406 	 * Once do_check() reaches bpf_exit, it calls update_branch_counts()
407 	 * and the verifier state tree will look:
408 	 * 1
409 	 * 1
410 	 * 2 -> 1 (first 'if' pushed into stack)
411 	 * 1
412 	 * 1 -> 1 (second 'if' pushed into stack)
413 	 * 0
414 	 * 0
415 	 * 0 bpf_exit.
416 	 * After pop_stack() the do_check() will resume at second 'if'.
417 	 *
418 	 * If is_state_visited() sees a state with branches > 0 it means
419 	 * there is a loop. If such state is exactly equal to the current state
420 	 * it's an infinite loop. Note states_equal() checks for states
421 	 * equivalency, so two states being 'states_equal' does not mean
422 	 * infinite loop. The exact comparison is provided by
423 	 * states_maybe_looping() function. It's a stronger pre-check and
424 	 * much faster than states_equal().
425 	 *
426 	 * This algorithm may not find all possible infinite loops or
427 	 * loop iteration count may be too high.
428 	 * In such cases BPF_COMPLEXITY_LIMIT_INSNS limit kicks in.
429 	 */
430 	u32 branches;
431 	u32 insn_idx;
432 	u32 curframe;
433 
434 	u32 acquired_refs;
435 	u32 active_locks;
436 	u32 active_preempt_locks;
437 	u32 active_irq_id;
438 	u32 active_lock_id;
439 	void *active_lock_ptr;
440 	bool active_rcu_lock;
441 
442 	bool speculative;
443 	bool in_sleepable;
444 
445 	/* first and last insn idx of this verifier state */
446 	u32 first_insn_idx;
447 	u32 last_insn_idx;
448 	/* If this state is a part of states loop this field points to some
449 	 * parent of this state such that:
450 	 * - it is also a member of the same states loop;
451 	 * - DFS states traversal starting from initial state visits loop_entry
452 	 *   state before this state.
453 	 * Used to compute topmost loop entry for state loops.
454 	 * State loops might appear because of open coded iterators logic.
455 	 * See get_loop_entry() for more information.
456 	 */
457 	struct bpf_verifier_state *loop_entry;
458 	/* Sub-range of env->insn_hist[] corresponding to this state's
459 	 * instruction history.
460 	 * Backtracking is using it to go from last to first.
461 	 * For most states instruction history is short, 0-3 instructions.
462 	 * For loops can go up to ~40.
463 	 */
464 	u32 insn_hist_start;
465 	u32 insn_hist_end;
466 	u32 dfs_depth;
467 	u32 callback_unroll_depth;
468 	u32 may_goto_depth;
469 	/* If this state was ever pointed-to by other state's loop_entry field
470 	 * this flag would be set to true. Used to avoid freeing such states
471 	 * while they are still in use.
472 	 */
473 	u32 used_as_loop_entry;
474 };
475 
476 #define bpf_get_spilled_reg(slot, frame, mask)				\
477 	(((slot < frame->allocated_stack / BPF_REG_SIZE) &&		\
478 	  ((1 << frame->stack[slot].slot_type[BPF_REG_SIZE - 1]) & (mask))) \
479 	 ? &frame->stack[slot].spilled_ptr : NULL)
480 
481 /* Iterate over 'frame', setting 'reg' to either NULL or a spilled register. */
482 #define bpf_for_each_spilled_reg(iter, frame, reg, mask)			\
483 	for (iter = 0, reg = bpf_get_spilled_reg(iter, frame, mask);		\
484 	     iter < frame->allocated_stack / BPF_REG_SIZE;		\
485 	     iter++, reg = bpf_get_spilled_reg(iter, frame, mask))
486 
487 #define bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, __mask, __expr)   \
488 	({                                                               \
489 		struct bpf_verifier_state *___vstate = __vst;            \
490 		int ___i, ___j;                                          \
491 		for (___i = 0; ___i <= ___vstate->curframe; ___i++) {    \
492 			struct bpf_reg_state *___regs;                   \
493 			__state = ___vstate->frame[___i];                \
494 			___regs = __state->regs;                         \
495 			for (___j = 0; ___j < MAX_BPF_REG; ___j++) {     \
496 				__reg = &___regs[___j];                  \
497 				(void)(__expr);                          \
498 			}                                                \
499 			bpf_for_each_spilled_reg(___j, __state, __reg, __mask) { \
500 				if (!__reg)                              \
501 					continue;                        \
502 				(void)(__expr);                          \
503 			}                                                \
504 		}                                                        \
505 	})
506 
507 /* Invoke __expr over regsiters in __vst, setting __state and __reg */
508 #define bpf_for_each_reg_in_vstate(__vst, __state, __reg, __expr) \
509 	bpf_for_each_reg_in_vstate_mask(__vst, __state, __reg, 1 << STACK_SPILL, __expr)
510 
511 /* linked list of verifier states used to prune search */
512 struct bpf_verifier_state_list {
513 	struct bpf_verifier_state state;
514 	struct list_head node;
515 	u32 miss_cnt;
516 	u32 hit_cnt:31;
517 	u32 in_free_list:1;
518 };
519 
520 struct bpf_loop_inline_state {
521 	unsigned int initialized:1; /* set to true upon first entry */
522 	unsigned int fit_for_inline:1; /* true if callback function is the same
523 					* at each call and flags are always zero
524 					*/
525 	u32 callback_subprogno; /* valid when fit_for_inline is true */
526 };
527 
528 /* pointer and state for maps */
529 struct bpf_map_ptr_state {
530 	struct bpf_map *map_ptr;
531 	bool poison;
532 	bool unpriv;
533 };
534 
535 /* Possible states for alu_state member. */
536 #define BPF_ALU_SANITIZE_SRC		(1U << 0)
537 #define BPF_ALU_SANITIZE_DST		(1U << 1)
538 #define BPF_ALU_NEG_VALUE		(1U << 2)
539 #define BPF_ALU_NON_POINTER		(1U << 3)
540 #define BPF_ALU_IMMEDIATE		(1U << 4)
541 #define BPF_ALU_SANITIZE		(BPF_ALU_SANITIZE_SRC | \
542 					 BPF_ALU_SANITIZE_DST)
543 
544 struct bpf_insn_aux_data {
545 	union {
546 		enum bpf_reg_type ptr_type;	/* pointer type for load/store insns */
547 		struct bpf_map_ptr_state map_ptr_state;
548 		s32 call_imm;			/* saved imm field of call insn */
549 		u32 alu_limit;			/* limit for add/sub register with pointer */
550 		struct {
551 			u32 map_index;		/* index into used_maps[] */
552 			u32 map_off;		/* offset from value base address */
553 		};
554 		struct {
555 			enum bpf_reg_type reg_type;	/* type of pseudo_btf_id */
556 			union {
557 				struct {
558 					struct btf *btf;
559 					u32 btf_id;	/* btf_id for struct typed var */
560 				};
561 				u32 mem_size;	/* mem_size for non-struct typed var */
562 			};
563 		} btf_var;
564 		/* if instruction is a call to bpf_loop this field tracks
565 		 * the state of the relevant registers to make decision about inlining
566 		 */
567 		struct bpf_loop_inline_state loop_inline_state;
568 	};
569 	union {
570 		/* remember the size of type passed to bpf_obj_new to rewrite R1 */
571 		u64 obj_new_size;
572 		/* remember the offset of node field within type to rewrite */
573 		u64 insert_off;
574 	};
575 	struct btf_struct_meta *kptr_struct_meta;
576 	u64 map_key_state; /* constant (32 bit) key tracking for maps */
577 	int ctx_field_size; /* the ctx field size for load insn, maybe 0 */
578 	u32 seen; /* this insn was processed by the verifier at env->pass_cnt */
579 	bool sanitize_stack_spill; /* subject to Spectre v4 sanitation */
580 	bool zext_dst; /* this insn zero extends dst reg */
581 	bool needs_zext; /* alu op needs to clear upper bits */
582 	bool storage_get_func_atomic; /* bpf_*_storage_get() with atomic memory alloc */
583 	bool is_iter_next; /* bpf_iter_<type>_next() kfunc call */
584 	bool call_with_percpu_alloc_ptr; /* {this,per}_cpu_ptr() with prog percpu alloc */
585 	u8 alu_state; /* used in combination with alu_limit */
586 	/* true if STX or LDX instruction is a part of a spill/fill
587 	 * pattern for a bpf_fastcall call.
588 	 */
589 	u8 fastcall_pattern:1;
590 	/* for CALL instructions, a number of spill/fill pairs in the
591 	 * bpf_fastcall pattern.
592 	 */
593 	u8 fastcall_spills_num:3;
594 
595 	/* below fields are initialized once */
596 	unsigned int orig_idx; /* original instruction index */
597 	bool jmp_point;
598 	bool prune_point;
599 	/* ensure we check state equivalence and save state checkpoint and
600 	 * this instruction, regardless of any heuristics
601 	 */
602 	bool force_checkpoint;
603 	/* true if instruction is a call to a helper function that
604 	 * accepts callback function as a parameter.
605 	 */
606 	bool calls_callback;
607 	/* registers alive before this instruction. */
608 	u16 live_regs_before;
609 };
610 
611 #define MAX_USED_MAPS 64 /* max number of maps accessed by one eBPF program */
612 #define MAX_USED_BTFS 64 /* max number of BTFs accessed by one BPF program */
613 
614 #define BPF_VERIFIER_TMP_LOG_SIZE	1024
615 
616 struct bpf_verifier_log {
617 	/* Logical start and end positions of a "log window" of the verifier log.
618 	 * start_pos == 0 means we haven't truncated anything.
619 	 * Once truncation starts to happen, start_pos + len_total == end_pos,
620 	 * except during log reset situations, in which (end_pos - start_pos)
621 	 * might get smaller than len_total (see bpf_vlog_reset()).
622 	 * Generally, (end_pos - start_pos) gives number of useful data in
623 	 * user log buffer.
624 	 */
625 	u64 start_pos;
626 	u64 end_pos;
627 	char __user *ubuf;
628 	u32 level;
629 	u32 len_total;
630 	u32 len_max;
631 	char kbuf[BPF_VERIFIER_TMP_LOG_SIZE];
632 };
633 
634 #define BPF_LOG_LEVEL1	1
635 #define BPF_LOG_LEVEL2	2
636 #define BPF_LOG_STATS	4
637 #define BPF_LOG_FIXED	8
638 #define BPF_LOG_LEVEL	(BPF_LOG_LEVEL1 | BPF_LOG_LEVEL2)
639 #define BPF_LOG_MASK	(BPF_LOG_LEVEL | BPF_LOG_STATS | BPF_LOG_FIXED)
640 #define BPF_LOG_KERNEL	(BPF_LOG_MASK + 1) /* kernel internal flag */
641 #define BPF_LOG_MIN_ALIGNMENT 8U
642 #define BPF_LOG_ALIGNMENT 40U
643 
bpf_verifier_log_needed(const struct bpf_verifier_log * log)644 static inline bool bpf_verifier_log_needed(const struct bpf_verifier_log *log)
645 {
646 	return log && log->level;
647 }
648 
649 #define BPF_MAX_SUBPROGS 256
650 
651 struct bpf_subprog_arg_info {
652 	enum bpf_arg_type arg_type;
653 	union {
654 		u32 mem_size;
655 		u32 btf_id;
656 	};
657 };
658 
659 enum priv_stack_mode {
660 	PRIV_STACK_UNKNOWN,
661 	NO_PRIV_STACK,
662 	PRIV_STACK_ADAPTIVE,
663 };
664 
665 struct bpf_subprog_info {
666 	/* 'start' has to be the first field otherwise find_subprog() won't work */
667 	u32 start; /* insn idx of function entry point */
668 	u32 linfo_idx; /* The idx to the main_prog->aux->linfo */
669 	u16 stack_depth; /* max. stack depth used by this function */
670 	u16 stack_extra;
671 	/* offsets in range [stack_depth .. fastcall_stack_off)
672 	 * are used for bpf_fastcall spills and fills.
673 	 */
674 	s16 fastcall_stack_off;
675 	bool has_tail_call: 1;
676 	bool tail_call_reachable: 1;
677 	bool has_ld_abs: 1;
678 	bool is_cb: 1;
679 	bool is_async_cb: 1;
680 	bool is_exception_cb: 1;
681 	bool args_cached: 1;
682 	/* true if bpf_fastcall stack region is used by functions that can't be inlined */
683 	bool keep_fastcall_stack: 1;
684 	bool changes_pkt_data: 1;
685 	bool might_sleep: 1;
686 
687 	enum priv_stack_mode priv_stack_mode;
688 	u8 arg_cnt;
689 	struct bpf_subprog_arg_info args[MAX_BPF_FUNC_REG_ARGS];
690 };
691 
692 struct bpf_verifier_env;
693 
694 struct backtrack_state {
695 	struct bpf_verifier_env *env;
696 	u32 frame;
697 	u32 reg_masks[MAX_CALL_FRAMES];
698 	u64 stack_masks[MAX_CALL_FRAMES];
699 };
700 
701 struct bpf_id_pair {
702 	u32 old;
703 	u32 cur;
704 };
705 
706 struct bpf_idmap {
707 	u32 tmp_id_gen;
708 	struct bpf_id_pair map[BPF_ID_MAP_SIZE];
709 };
710 
711 struct bpf_idset {
712 	u32 count;
713 	u32 ids[BPF_ID_MAP_SIZE];
714 };
715 
716 /* single container for all structs
717  * one verifier_env per bpf_check() call
718  */
719 struct bpf_verifier_env {
720 	u32 insn_idx;
721 	u32 prev_insn_idx;
722 	struct bpf_prog *prog;		/* eBPF program being verified */
723 	const struct bpf_verifier_ops *ops;
724 	struct module *attach_btf_mod;	/* The owner module of prog->aux->attach_btf */
725 	struct bpf_verifier_stack_elem *head; /* stack of verifier states to be processed */
726 	int stack_size;			/* number of states to be processed */
727 	bool strict_alignment;		/* perform strict pointer alignment checks */
728 	bool test_state_freq;		/* test verifier with different pruning frequency */
729 	bool test_reg_invariants;	/* fail verification on register invariants violations */
730 	struct bpf_verifier_state *cur_state; /* current verifier state */
731 	/* Search pruning optimization, array of list_heads for
732 	 * lists of struct bpf_verifier_state_list.
733 	 */
734 	struct list_head *explored_states;
735 	struct list_head free_list;	/* list of struct bpf_verifier_state_list */
736 	struct bpf_map *used_maps[MAX_USED_MAPS]; /* array of map's used by eBPF program */
737 	struct btf_mod_pair used_btfs[MAX_USED_BTFS]; /* array of BTF's used by BPF program */
738 	u32 used_map_cnt;		/* number of used maps */
739 	u32 used_btf_cnt;		/* number of used BTF objects */
740 	u32 id_gen;			/* used to generate unique reg IDs */
741 	u32 hidden_subprog_cnt;		/* number of hidden subprogs */
742 	int exception_callback_subprog;
743 	bool explore_alu_limits;
744 	bool allow_ptr_leaks;
745 	/* Allow access to uninitialized stack memory. Writes with fixed offset are
746 	 * always allowed, so this refers to reads (with fixed or variable offset),
747 	 * to writes with variable offset and to indirect (helper) accesses.
748 	 */
749 	bool allow_uninit_stack;
750 	bool bpf_capable;
751 	bool bypass_spec_v1;
752 	bool bypass_spec_v4;
753 	bool seen_direct_write;
754 	bool seen_exception;
755 	struct bpf_insn_aux_data *insn_aux_data; /* array of per-insn state */
756 	const struct bpf_line_info *prev_linfo;
757 	struct bpf_verifier_log log;
758 	struct bpf_subprog_info subprog_info[BPF_MAX_SUBPROGS + 2]; /* max + 2 for the fake and exception subprogs */
759 	union {
760 		struct bpf_idmap idmap_scratch;
761 		struct bpf_idset idset_scratch;
762 	};
763 	struct {
764 		int *insn_state;
765 		int *insn_stack;
766 		/* vector of instruction indexes sorted in post-order */
767 		int *insn_postorder;
768 		int cur_stack;
769 		/* current position in the insn_postorder vector */
770 		int cur_postorder;
771 	} cfg;
772 	struct backtrack_state bt;
773 	struct bpf_insn_hist_entry *insn_hist;
774 	struct bpf_insn_hist_entry *cur_hist_ent;
775 	u32 insn_hist_cap;
776 	u32 pass_cnt; /* number of times do_check() was called */
777 	u32 subprog_cnt;
778 	/* number of instructions analyzed by the verifier */
779 	u32 prev_insn_processed, insn_processed;
780 	/* number of jmps, calls, exits analyzed so far */
781 	u32 prev_jmps_processed, jmps_processed;
782 	/* total verification time */
783 	u64 verification_time;
784 	/* maximum number of verifier states kept in 'branching' instructions */
785 	u32 max_states_per_insn;
786 	/* total number of allocated verifier states */
787 	u32 total_states;
788 	/* some states are freed during program analysis.
789 	 * this is peak number of states. this number dominates kernel
790 	 * memory consumption during verification
791 	 */
792 	u32 peak_states;
793 	/* longest register parentage chain walked for liveness marking */
794 	u32 longest_mark_read_walk;
795 	u32 free_list_size;
796 	u32 explored_states_size;
797 	bpfptr_t fd_array;
798 
799 	/* bit mask to keep track of whether a register has been accessed
800 	 * since the last time the function state was printed
801 	 */
802 	u32 scratched_regs;
803 	/* Same as scratched_regs but for stack slots */
804 	u64 scratched_stack_slots;
805 	u64 prev_log_pos, prev_insn_print_pos;
806 	/* buffer used to temporary hold constants as scalar registers */
807 	struct bpf_reg_state fake_reg[2];
808 	/* buffer used to generate temporary string representations,
809 	 * e.g., in reg_type_str() to generate reg_type string
810 	 */
811 	char tmp_str_buf[TMP_STR_BUF_LEN];
812 	struct bpf_insn insn_buf[INSN_BUF_SIZE];
813 	struct bpf_insn epilogue_buf[INSN_BUF_SIZE];
814 };
815 
subprog_aux(struct bpf_verifier_env * env,int subprog)816 static inline struct bpf_func_info_aux *subprog_aux(struct bpf_verifier_env *env, int subprog)
817 {
818 	return &env->prog->aux->func_info_aux[subprog];
819 }
820 
subprog_info(struct bpf_verifier_env * env,int subprog)821 static inline struct bpf_subprog_info *subprog_info(struct bpf_verifier_env *env, int subprog)
822 {
823 	return &env->subprog_info[subprog];
824 }
825 
826 __printf(2, 0) void bpf_verifier_vlog(struct bpf_verifier_log *log,
827 				      const char *fmt, va_list args);
828 __printf(2, 3) void bpf_verifier_log_write(struct bpf_verifier_env *env,
829 					   const char *fmt, ...);
830 __printf(2, 3) void bpf_log(struct bpf_verifier_log *log,
831 			    const char *fmt, ...);
832 int bpf_vlog_init(struct bpf_verifier_log *log, u32 log_level,
833 		  char __user *log_buf, u32 log_size);
834 void bpf_vlog_reset(struct bpf_verifier_log *log, u64 new_pos);
835 int bpf_vlog_finalize(struct bpf_verifier_log *log, u32 *log_size_actual);
836 
837 __printf(3, 4) void verbose_linfo(struct bpf_verifier_env *env,
838 				  u32 insn_off,
839 				  const char *prefix_fmt, ...);
840 
cur_func(struct bpf_verifier_env * env)841 static inline struct bpf_func_state *cur_func(struct bpf_verifier_env *env)
842 {
843 	struct bpf_verifier_state *cur = env->cur_state;
844 
845 	return cur->frame[cur->curframe];
846 }
847 
cur_regs(struct bpf_verifier_env * env)848 static inline struct bpf_reg_state *cur_regs(struct bpf_verifier_env *env)
849 {
850 	return cur_func(env)->regs;
851 }
852 
853 int bpf_prog_offload_verifier_prep(struct bpf_prog *prog);
854 int bpf_prog_offload_verify_insn(struct bpf_verifier_env *env,
855 				 int insn_idx, int prev_insn_idx);
856 int bpf_prog_offload_finalize(struct bpf_verifier_env *env);
857 void
858 bpf_prog_offload_replace_insn(struct bpf_verifier_env *env, u32 off,
859 			      struct bpf_insn *insn);
860 void
861 bpf_prog_offload_remove_insns(struct bpf_verifier_env *env, u32 off, u32 cnt);
862 
863 /* this lives here instead of in bpf.h because it needs to dereference tgt_prog */
bpf_trampoline_compute_key(const struct bpf_prog * tgt_prog,struct btf * btf,u32 btf_id)864 static inline u64 bpf_trampoline_compute_key(const struct bpf_prog *tgt_prog,
865 					     struct btf *btf, u32 btf_id)
866 {
867 	if (tgt_prog)
868 		return ((u64)tgt_prog->aux->id << 32) | btf_id;
869 	else
870 		return ((u64)btf_obj_id(btf) << 32) | 0x80000000 | btf_id;
871 }
872 
873 /* unpack the IDs from the key as constructed above */
bpf_trampoline_unpack_key(u64 key,u32 * obj_id,u32 * btf_id)874 static inline void bpf_trampoline_unpack_key(u64 key, u32 *obj_id, u32 *btf_id)
875 {
876 	if (obj_id)
877 		*obj_id = key >> 32;
878 	if (btf_id)
879 		*btf_id = key & 0x7FFFFFFF;
880 }
881 
882 int bpf_check_attach_target(struct bpf_verifier_log *log,
883 			    const struct bpf_prog *prog,
884 			    const struct bpf_prog *tgt_prog,
885 			    u32 btf_id,
886 			    struct bpf_attach_target_info *tgt_info);
887 void bpf_free_kfunc_btf_tab(struct bpf_kfunc_btf_tab *tab);
888 
889 int mark_chain_precision(struct bpf_verifier_env *env, int regno);
890 
891 #define BPF_BASE_TYPE_MASK	GENMASK(BPF_BASE_TYPE_BITS - 1, 0)
892 
893 /* extract base type from bpf_{arg, return, reg}_type. */
base_type(u32 type)894 static inline u32 base_type(u32 type)
895 {
896 	return type & BPF_BASE_TYPE_MASK;
897 }
898 
899 /* extract flags from an extended type. See bpf_type_flag in bpf.h. */
type_flag(u32 type)900 static inline u32 type_flag(u32 type)
901 {
902 	return type & ~BPF_BASE_TYPE_MASK;
903 }
904 
905 /* only use after check_attach_btf_id() */
resolve_prog_type(const struct bpf_prog * prog)906 static inline enum bpf_prog_type resolve_prog_type(const struct bpf_prog *prog)
907 {
908 	return (prog->type == BPF_PROG_TYPE_EXT && prog->aux->saved_dst_prog_type) ?
909 		prog->aux->saved_dst_prog_type : prog->type;
910 }
911 
bpf_prog_check_recur(const struct bpf_prog * prog)912 static inline bool bpf_prog_check_recur(const struct bpf_prog *prog)
913 {
914 	switch (resolve_prog_type(prog)) {
915 	case BPF_PROG_TYPE_TRACING:
916 		return prog->expected_attach_type != BPF_TRACE_ITER;
917 	case BPF_PROG_TYPE_STRUCT_OPS:
918 		return prog->aux->jits_use_priv_stack;
919 	case BPF_PROG_TYPE_LSM:
920 		return false;
921 	default:
922 		return true;
923 	}
924 }
925 
926 #define BPF_REG_TRUSTED_MODIFIERS (MEM_ALLOC | PTR_TRUSTED | NON_OWN_REF)
927 
bpf_type_has_unsafe_modifiers(u32 type)928 static inline bool bpf_type_has_unsafe_modifiers(u32 type)
929 {
930 	return type_flag(type) & ~BPF_REG_TRUSTED_MODIFIERS;
931 }
932 
type_is_ptr_alloc_obj(u32 type)933 static inline bool type_is_ptr_alloc_obj(u32 type)
934 {
935 	return base_type(type) == PTR_TO_BTF_ID && type_flag(type) & MEM_ALLOC;
936 }
937 
type_is_non_owning_ref(u32 type)938 static inline bool type_is_non_owning_ref(u32 type)
939 {
940 	return type_is_ptr_alloc_obj(type) && type_flag(type) & NON_OWN_REF;
941 }
942 
type_is_pkt_pointer(enum bpf_reg_type type)943 static inline bool type_is_pkt_pointer(enum bpf_reg_type type)
944 {
945 	type = base_type(type);
946 	return type == PTR_TO_PACKET ||
947 	       type == PTR_TO_PACKET_META;
948 }
949 
type_is_sk_pointer(enum bpf_reg_type type)950 static inline bool type_is_sk_pointer(enum bpf_reg_type type)
951 {
952 	return type == PTR_TO_SOCKET ||
953 		type == PTR_TO_SOCK_COMMON ||
954 		type == PTR_TO_TCP_SOCK ||
955 		type == PTR_TO_XDP_SOCK;
956 }
957 
type_may_be_null(u32 type)958 static inline bool type_may_be_null(u32 type)
959 {
960 	return type & PTR_MAYBE_NULL;
961 }
962 
mark_reg_scratched(struct bpf_verifier_env * env,u32 regno)963 static inline void mark_reg_scratched(struct bpf_verifier_env *env, u32 regno)
964 {
965 	env->scratched_regs |= 1U << regno;
966 }
967 
mark_stack_slot_scratched(struct bpf_verifier_env * env,u32 spi)968 static inline void mark_stack_slot_scratched(struct bpf_verifier_env *env, u32 spi)
969 {
970 	env->scratched_stack_slots |= 1ULL << spi;
971 }
972 
reg_scratched(const struct bpf_verifier_env * env,u32 regno)973 static inline bool reg_scratched(const struct bpf_verifier_env *env, u32 regno)
974 {
975 	return (env->scratched_regs >> regno) & 1;
976 }
977 
stack_slot_scratched(const struct bpf_verifier_env * env,u64 regno)978 static inline bool stack_slot_scratched(const struct bpf_verifier_env *env, u64 regno)
979 {
980 	return (env->scratched_stack_slots >> regno) & 1;
981 }
982 
verifier_state_scratched(const struct bpf_verifier_env * env)983 static inline bool verifier_state_scratched(const struct bpf_verifier_env *env)
984 {
985 	return env->scratched_regs || env->scratched_stack_slots;
986 }
987 
mark_verifier_state_clean(struct bpf_verifier_env * env)988 static inline void mark_verifier_state_clean(struct bpf_verifier_env *env)
989 {
990 	env->scratched_regs = 0U;
991 	env->scratched_stack_slots = 0ULL;
992 }
993 
994 /* Used for printing the entire verifier state. */
mark_verifier_state_scratched(struct bpf_verifier_env * env)995 static inline void mark_verifier_state_scratched(struct bpf_verifier_env *env)
996 {
997 	env->scratched_regs = ~0U;
998 	env->scratched_stack_slots = ~0ULL;
999 }
1000 
bpf_stack_narrow_access_ok(int off,int fill_size,int spill_size)1001 static inline bool bpf_stack_narrow_access_ok(int off, int fill_size, int spill_size)
1002 {
1003 #ifdef __BIG_ENDIAN
1004 	off -= spill_size - fill_size;
1005 #endif
1006 
1007 	return !(off % BPF_REG_SIZE);
1008 }
1009 
1010 const char *reg_type_str(struct bpf_verifier_env *env, enum bpf_reg_type type);
1011 const char *dynptr_type_str(enum bpf_dynptr_type type);
1012 const char *iter_type_str(const struct btf *btf, u32 btf_id);
1013 const char *iter_state_str(enum bpf_iter_state state);
1014 
1015 void print_verifier_state(struct bpf_verifier_env *env, const struct bpf_verifier_state *vstate,
1016 			  u32 frameno, bool print_all);
1017 void print_insn_state(struct bpf_verifier_env *env, const struct bpf_verifier_state *vstate,
1018 		      u32 frameno);
1019 
1020 #endif /* _LINUX_BPF_VERIFIER_H */
1021