1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3 */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 #include <linux/cfi.h>
33 #include <asm/rqspinlock.h>
34
35 struct bpf_verifier_env;
36 struct bpf_verifier_log;
37 struct perf_event;
38 struct bpf_prog;
39 struct bpf_prog_aux;
40 struct bpf_map;
41 struct bpf_arena;
42 struct sock;
43 struct seq_file;
44 struct btf;
45 struct btf_type;
46 struct exception_table_entry;
47 struct seq_operations;
48 struct bpf_iter_aux_info;
49 struct bpf_local_storage;
50 struct bpf_local_storage_map;
51 struct kobject;
52 struct mem_cgroup;
53 struct module;
54 struct bpf_func_state;
55 struct ftrace_ops;
56 struct cgroup;
57 struct bpf_token;
58 struct user_namespace;
59 struct super_block;
60 struct inode;
61
62 extern struct idr btf_idr;
63 extern spinlock_t btf_idr_lock;
64 extern struct kobject *btf_kobj;
65 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
66 extern bool bpf_global_ma_set;
67
68 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
69 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
70 struct bpf_iter_aux_info *aux);
71 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
72 typedef unsigned int (*bpf_func_t)(const void *,
73 const struct bpf_insn *);
74 struct bpf_iter_seq_info {
75 const struct seq_operations *seq_ops;
76 bpf_iter_init_seq_priv_t init_seq_private;
77 bpf_iter_fini_seq_priv_t fini_seq_private;
78 u32 seq_priv_size;
79 };
80
81 /* map is generic key/value storage optionally accessible by eBPF programs */
82 struct bpf_map_ops {
83 /* funcs callable from userspace (via syscall) */
84 int (*map_alloc_check)(union bpf_attr *attr);
85 struct bpf_map *(*map_alloc)(union bpf_attr *attr);
86 void (*map_release)(struct bpf_map *map, struct file *map_file);
87 void (*map_free)(struct bpf_map *map);
88 int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
89 void (*map_release_uref)(struct bpf_map *map);
90 void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
91 int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
92 union bpf_attr __user *uattr);
93 int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
94 void *value, u64 flags);
95 int (*map_lookup_and_delete_batch)(struct bpf_map *map,
96 const union bpf_attr *attr,
97 union bpf_attr __user *uattr);
98 int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
99 const union bpf_attr *attr,
100 union bpf_attr __user *uattr);
101 int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
102 union bpf_attr __user *uattr);
103
104 /* funcs callable from userspace and from eBPF programs */
105 void *(*map_lookup_elem)(struct bpf_map *map, void *key);
106 long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
107 long (*map_delete_elem)(struct bpf_map *map, void *key);
108 long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
109 long (*map_pop_elem)(struct bpf_map *map, void *value);
110 long (*map_peek_elem)(struct bpf_map *map, void *value);
111 void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
112
113 /* funcs called by prog_array and perf_event_array map */
114 void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
115 int fd);
116 /* If need_defer is true, the implementation should guarantee that
117 * the to-be-put element is still alive before the bpf program, which
118 * may manipulate it, exists.
119 */
120 void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
121 int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
122 u32 (*map_fd_sys_lookup_elem)(void *ptr);
123 void (*map_seq_show_elem)(struct bpf_map *map, void *key,
124 struct seq_file *m);
125 int (*map_check_btf)(const struct bpf_map *map,
126 const struct btf *btf,
127 const struct btf_type *key_type,
128 const struct btf_type *value_type);
129
130 /* Prog poke tracking helpers. */
131 int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
132 void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
133 void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
134 struct bpf_prog *new);
135
136 /* Direct value access helpers. */
137 int (*map_direct_value_addr)(const struct bpf_map *map,
138 u64 *imm, u32 off);
139 int (*map_direct_value_meta)(const struct bpf_map *map,
140 u64 imm, u32 *off);
141 int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
142 __poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
143 struct poll_table_struct *pts);
144 unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr,
145 unsigned long len, unsigned long pgoff,
146 unsigned long flags);
147
148 /* Functions called by bpf_local_storage maps */
149 int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
150 void *owner, u32 size);
151 void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
152 void *owner, u32 size);
153 struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
154
155 /* Misc helpers.*/
156 long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
157
158 /* map_meta_equal must be implemented for maps that can be
159 * used as an inner map. It is a runtime check to ensure
160 * an inner map can be inserted to an outer map.
161 *
162 * Some properties of the inner map has been used during the
163 * verification time. When inserting an inner map at the runtime,
164 * map_meta_equal has to ensure the inserting map has the same
165 * properties that the verifier has used earlier.
166 */
167 bool (*map_meta_equal)(const struct bpf_map *meta0,
168 const struct bpf_map *meta1);
169
170
171 int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
172 struct bpf_func_state *caller,
173 struct bpf_func_state *callee);
174 long (*map_for_each_callback)(struct bpf_map *map,
175 bpf_callback_t callback_fn,
176 void *callback_ctx, u64 flags);
177
178 u64 (*map_mem_usage)(const struct bpf_map *map);
179
180 /* BTF id of struct allocated by map_alloc */
181 int *map_btf_id;
182
183 /* bpf_iter info used to open a seq_file */
184 const struct bpf_iter_seq_info *iter_seq_info;
185 };
186
187 enum {
188 /* Support at most 11 fields in a BTF type */
189 BTF_FIELDS_MAX = 11,
190 };
191
192 enum btf_field_type {
193 BPF_SPIN_LOCK = (1 << 0),
194 BPF_TIMER = (1 << 1),
195 BPF_KPTR_UNREF = (1 << 2),
196 BPF_KPTR_REF = (1 << 3),
197 BPF_KPTR_PERCPU = (1 << 4),
198 BPF_KPTR = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
199 BPF_LIST_HEAD = (1 << 5),
200 BPF_LIST_NODE = (1 << 6),
201 BPF_RB_ROOT = (1 << 7),
202 BPF_RB_NODE = (1 << 8),
203 BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
204 BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
205 BPF_REFCOUNT = (1 << 9),
206 BPF_WORKQUEUE = (1 << 10),
207 BPF_UPTR = (1 << 11),
208 BPF_RES_SPIN_LOCK = (1 << 12),
209 };
210
211 typedef void (*btf_dtor_kfunc_t)(void *);
212
213 struct btf_field_kptr {
214 struct btf *btf;
215 struct module *module;
216 /* dtor used if btf_is_kernel(btf), otherwise the type is
217 * program-allocated, dtor is NULL, and __bpf_obj_drop_impl is used
218 */
219 btf_dtor_kfunc_t dtor;
220 u32 btf_id;
221 };
222
223 struct btf_field_graph_root {
224 struct btf *btf;
225 u32 value_btf_id;
226 u32 node_offset;
227 struct btf_record *value_rec;
228 };
229
230 struct btf_field {
231 u32 offset;
232 u32 size;
233 enum btf_field_type type;
234 union {
235 struct btf_field_kptr kptr;
236 struct btf_field_graph_root graph_root;
237 };
238 };
239
240 struct btf_record {
241 u32 cnt;
242 u32 field_mask;
243 int spin_lock_off;
244 int res_spin_lock_off;
245 int timer_off;
246 int wq_off;
247 int refcount_off;
248 struct btf_field fields[];
249 };
250
251 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
252 struct bpf_rb_node_kern {
253 struct rb_node rb_node;
254 void *owner;
255 } __attribute__((aligned(8)));
256
257 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
258 struct bpf_list_node_kern {
259 struct list_head list_head;
260 void *owner;
261 } __attribute__((aligned(8)));
262
263 struct bpf_map {
264 const struct bpf_map_ops *ops;
265 struct bpf_map *inner_map_meta;
266 #ifdef CONFIG_SECURITY
267 void *security;
268 #endif
269 enum bpf_map_type map_type;
270 u32 key_size;
271 u32 value_size;
272 u32 max_entries;
273 u64 map_extra; /* any per-map-type extra fields */
274 u32 map_flags;
275 u32 id;
276 struct btf_record *record;
277 int numa_node;
278 u32 btf_key_type_id;
279 u32 btf_value_type_id;
280 u32 btf_vmlinux_value_type_id;
281 struct btf *btf;
282 #ifdef CONFIG_MEMCG
283 struct obj_cgroup *objcg;
284 #endif
285 char name[BPF_OBJ_NAME_LEN];
286 struct mutex freeze_mutex;
287 atomic64_t refcnt;
288 atomic64_t usercnt;
289 /* rcu is used before freeing and work is only used during freeing */
290 union {
291 struct work_struct work;
292 struct rcu_head rcu;
293 };
294 atomic64_t writecnt;
295 /* 'Ownership' of program-containing map is claimed by the first program
296 * that is going to use this map or by the first program which FD is
297 * stored in the map to make sure that all callers and callees have the
298 * same prog type, JITed flag and xdp_has_frags flag.
299 */
300 struct {
301 const struct btf_type *attach_func_proto;
302 spinlock_t lock;
303 enum bpf_prog_type type;
304 bool jited;
305 bool xdp_has_frags;
306 } owner;
307 bool bypass_spec_v1;
308 bool frozen; /* write-once; write-protected by freeze_mutex */
309 bool free_after_mult_rcu_gp;
310 bool free_after_rcu_gp;
311 atomic64_t sleepable_refcnt;
312 s64 __percpu *elem_count;
313 };
314
btf_field_type_name(enum btf_field_type type)315 static inline const char *btf_field_type_name(enum btf_field_type type)
316 {
317 switch (type) {
318 case BPF_SPIN_LOCK:
319 return "bpf_spin_lock";
320 case BPF_RES_SPIN_LOCK:
321 return "bpf_res_spin_lock";
322 case BPF_TIMER:
323 return "bpf_timer";
324 case BPF_WORKQUEUE:
325 return "bpf_wq";
326 case BPF_KPTR_UNREF:
327 case BPF_KPTR_REF:
328 return "kptr";
329 case BPF_KPTR_PERCPU:
330 return "percpu_kptr";
331 case BPF_UPTR:
332 return "uptr";
333 case BPF_LIST_HEAD:
334 return "bpf_list_head";
335 case BPF_LIST_NODE:
336 return "bpf_list_node";
337 case BPF_RB_ROOT:
338 return "bpf_rb_root";
339 case BPF_RB_NODE:
340 return "bpf_rb_node";
341 case BPF_REFCOUNT:
342 return "bpf_refcount";
343 default:
344 WARN_ON_ONCE(1);
345 return "unknown";
346 }
347 }
348
btf_field_type_size(enum btf_field_type type)349 static inline u32 btf_field_type_size(enum btf_field_type type)
350 {
351 switch (type) {
352 case BPF_SPIN_LOCK:
353 return sizeof(struct bpf_spin_lock);
354 case BPF_RES_SPIN_LOCK:
355 return sizeof(struct bpf_res_spin_lock);
356 case BPF_TIMER:
357 return sizeof(struct bpf_timer);
358 case BPF_WORKQUEUE:
359 return sizeof(struct bpf_wq);
360 case BPF_KPTR_UNREF:
361 case BPF_KPTR_REF:
362 case BPF_KPTR_PERCPU:
363 case BPF_UPTR:
364 return sizeof(u64);
365 case BPF_LIST_HEAD:
366 return sizeof(struct bpf_list_head);
367 case BPF_LIST_NODE:
368 return sizeof(struct bpf_list_node);
369 case BPF_RB_ROOT:
370 return sizeof(struct bpf_rb_root);
371 case BPF_RB_NODE:
372 return sizeof(struct bpf_rb_node);
373 case BPF_REFCOUNT:
374 return sizeof(struct bpf_refcount);
375 default:
376 WARN_ON_ONCE(1);
377 return 0;
378 }
379 }
380
btf_field_type_align(enum btf_field_type type)381 static inline u32 btf_field_type_align(enum btf_field_type type)
382 {
383 switch (type) {
384 case BPF_SPIN_LOCK:
385 return __alignof__(struct bpf_spin_lock);
386 case BPF_RES_SPIN_LOCK:
387 return __alignof__(struct bpf_res_spin_lock);
388 case BPF_TIMER:
389 return __alignof__(struct bpf_timer);
390 case BPF_WORKQUEUE:
391 return __alignof__(struct bpf_wq);
392 case BPF_KPTR_UNREF:
393 case BPF_KPTR_REF:
394 case BPF_KPTR_PERCPU:
395 case BPF_UPTR:
396 return __alignof__(u64);
397 case BPF_LIST_HEAD:
398 return __alignof__(struct bpf_list_head);
399 case BPF_LIST_NODE:
400 return __alignof__(struct bpf_list_node);
401 case BPF_RB_ROOT:
402 return __alignof__(struct bpf_rb_root);
403 case BPF_RB_NODE:
404 return __alignof__(struct bpf_rb_node);
405 case BPF_REFCOUNT:
406 return __alignof__(struct bpf_refcount);
407 default:
408 WARN_ON_ONCE(1);
409 return 0;
410 }
411 }
412
bpf_obj_init_field(const struct btf_field * field,void * addr)413 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
414 {
415 memset(addr, 0, field->size);
416
417 switch (field->type) {
418 case BPF_REFCOUNT:
419 refcount_set((refcount_t *)addr, 1);
420 break;
421 case BPF_RB_NODE:
422 RB_CLEAR_NODE((struct rb_node *)addr);
423 break;
424 case BPF_LIST_HEAD:
425 case BPF_LIST_NODE:
426 INIT_LIST_HEAD((struct list_head *)addr);
427 break;
428 case BPF_RB_ROOT:
429 /* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
430 case BPF_SPIN_LOCK:
431 case BPF_RES_SPIN_LOCK:
432 case BPF_TIMER:
433 case BPF_WORKQUEUE:
434 case BPF_KPTR_UNREF:
435 case BPF_KPTR_REF:
436 case BPF_KPTR_PERCPU:
437 case BPF_UPTR:
438 break;
439 default:
440 WARN_ON_ONCE(1);
441 return;
442 }
443 }
444
btf_record_has_field(const struct btf_record * rec,enum btf_field_type type)445 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
446 {
447 if (IS_ERR_OR_NULL(rec))
448 return false;
449 return rec->field_mask & type;
450 }
451
bpf_obj_init(const struct btf_record * rec,void * obj)452 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
453 {
454 int i;
455
456 if (IS_ERR_OR_NULL(rec))
457 return;
458 for (i = 0; i < rec->cnt; i++)
459 bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
460 }
461
462 /* 'dst' must be a temporary buffer and should not point to memory that is being
463 * used in parallel by a bpf program or bpf syscall, otherwise the access from
464 * the bpf program or bpf syscall may be corrupted by the reinitialization,
465 * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
466 * allocator, it is still possible for 'dst' to be used in parallel by a bpf
467 * program or bpf syscall.
468 */
check_and_init_map_value(struct bpf_map * map,void * dst)469 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
470 {
471 bpf_obj_init(map->record, dst);
472 }
473
474 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
475 * forced to use 'long' read/writes to try to atomically copy long counters.
476 * Best-effort only. No barriers here, since it _will_ race with concurrent
477 * updates from BPF programs. Called from bpf syscall and mostly used with
478 * size 8 or 16 bytes, so ask compiler to inline it.
479 */
bpf_long_memcpy(void * dst,const void * src,u32 size)480 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
481 {
482 const long *lsrc = src;
483 long *ldst = dst;
484
485 size /= sizeof(long);
486 while (size--)
487 data_race(*ldst++ = *lsrc++);
488 }
489
490 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
bpf_obj_memcpy(struct btf_record * rec,void * dst,void * src,u32 size,bool long_memcpy)491 static inline void bpf_obj_memcpy(struct btf_record *rec,
492 void *dst, void *src, u32 size,
493 bool long_memcpy)
494 {
495 u32 curr_off = 0;
496 int i;
497
498 if (IS_ERR_OR_NULL(rec)) {
499 if (long_memcpy)
500 bpf_long_memcpy(dst, src, round_up(size, 8));
501 else
502 memcpy(dst, src, size);
503 return;
504 }
505
506 for (i = 0; i < rec->cnt; i++) {
507 u32 next_off = rec->fields[i].offset;
508 u32 sz = next_off - curr_off;
509
510 memcpy(dst + curr_off, src + curr_off, sz);
511 curr_off += rec->fields[i].size + sz;
512 }
513 memcpy(dst + curr_off, src + curr_off, size - curr_off);
514 }
515
copy_map_value(struct bpf_map * map,void * dst,void * src)516 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
517 {
518 bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
519 }
520
copy_map_value_long(struct bpf_map * map,void * dst,void * src)521 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
522 {
523 bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
524 }
525
bpf_obj_swap_uptrs(const struct btf_record * rec,void * dst,void * src)526 static inline void bpf_obj_swap_uptrs(const struct btf_record *rec, void *dst, void *src)
527 {
528 unsigned long *src_uptr, *dst_uptr;
529 const struct btf_field *field;
530 int i;
531
532 if (!btf_record_has_field(rec, BPF_UPTR))
533 return;
534
535 for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) {
536 if (field->type != BPF_UPTR)
537 continue;
538
539 src_uptr = src + field->offset;
540 dst_uptr = dst + field->offset;
541 swap(*src_uptr, *dst_uptr);
542 }
543 }
544
bpf_obj_memzero(struct btf_record * rec,void * dst,u32 size)545 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
546 {
547 u32 curr_off = 0;
548 int i;
549
550 if (IS_ERR_OR_NULL(rec)) {
551 memset(dst, 0, size);
552 return;
553 }
554
555 for (i = 0; i < rec->cnt; i++) {
556 u32 next_off = rec->fields[i].offset;
557 u32 sz = next_off - curr_off;
558
559 memset(dst + curr_off, 0, sz);
560 curr_off += rec->fields[i].size + sz;
561 }
562 memset(dst + curr_off, 0, size - curr_off);
563 }
564
zero_map_value(struct bpf_map * map,void * dst)565 static inline void zero_map_value(struct bpf_map *map, void *dst)
566 {
567 bpf_obj_memzero(map->record, dst, map->value_size);
568 }
569
570 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
571 bool lock_src);
572 void bpf_timer_cancel_and_free(void *timer);
573 void bpf_wq_cancel_and_free(void *timer);
574 void bpf_list_head_free(const struct btf_field *field, void *list_head,
575 struct bpf_spin_lock *spin_lock);
576 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
577 struct bpf_spin_lock *spin_lock);
578 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena);
579 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena);
580 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
581
582 struct bpf_offload_dev;
583 struct bpf_offloaded_map;
584
585 struct bpf_map_dev_ops {
586 int (*map_get_next_key)(struct bpf_offloaded_map *map,
587 void *key, void *next_key);
588 int (*map_lookup_elem)(struct bpf_offloaded_map *map,
589 void *key, void *value);
590 int (*map_update_elem)(struct bpf_offloaded_map *map,
591 void *key, void *value, u64 flags);
592 int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
593 };
594
595 struct bpf_offloaded_map {
596 struct bpf_map map;
597 struct net_device *netdev;
598 const struct bpf_map_dev_ops *dev_ops;
599 void *dev_priv;
600 struct list_head offloads;
601 };
602
map_to_offmap(struct bpf_map * map)603 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
604 {
605 return container_of(map, struct bpf_offloaded_map, map);
606 }
607
bpf_map_offload_neutral(const struct bpf_map * map)608 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
609 {
610 return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
611 }
612
bpf_map_support_seq_show(const struct bpf_map * map)613 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
614 {
615 return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
616 map->ops->map_seq_show_elem;
617 }
618
619 int map_check_no_btf(const struct bpf_map *map,
620 const struct btf *btf,
621 const struct btf_type *key_type,
622 const struct btf_type *value_type);
623
624 bool bpf_map_meta_equal(const struct bpf_map *meta0,
625 const struct bpf_map *meta1);
626
627 extern const struct bpf_map_ops bpf_map_offload_ops;
628
629 /* bpf_type_flag contains a set of flags that are applicable to the values of
630 * arg_type, ret_type and reg_type. For example, a pointer value may be null,
631 * or a memory is read-only. We classify types into two categories: base types
632 * and extended types. Extended types are base types combined with a type flag.
633 *
634 * Currently there are no more than 32 base types in arg_type, ret_type and
635 * reg_types.
636 */
637 #define BPF_BASE_TYPE_BITS 8
638
639 enum bpf_type_flag {
640 /* PTR may be NULL. */
641 PTR_MAYBE_NULL = BIT(0 + BPF_BASE_TYPE_BITS),
642
643 /* MEM is read-only. When applied on bpf_arg, it indicates the arg is
644 * compatible with both mutable and immutable memory.
645 */
646 MEM_RDONLY = BIT(1 + BPF_BASE_TYPE_BITS),
647
648 /* MEM points to BPF ring buffer reservation. */
649 MEM_RINGBUF = BIT(2 + BPF_BASE_TYPE_BITS),
650
651 /* MEM is in user address space. */
652 MEM_USER = BIT(3 + BPF_BASE_TYPE_BITS),
653
654 /* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
655 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
656 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
657 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
658 * to the specified cpu.
659 */
660 MEM_PERCPU = BIT(4 + BPF_BASE_TYPE_BITS),
661
662 /* Indicates that the argument will be released. */
663 OBJ_RELEASE = BIT(5 + BPF_BASE_TYPE_BITS),
664
665 /* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
666 * unreferenced and referenced kptr loaded from map value using a load
667 * instruction, so that they can only be dereferenced but not escape the
668 * BPF program into the kernel (i.e. cannot be passed as arguments to
669 * kfunc or bpf helpers).
670 */
671 PTR_UNTRUSTED = BIT(6 + BPF_BASE_TYPE_BITS),
672
673 /* MEM can be uninitialized. */
674 MEM_UNINIT = BIT(7 + BPF_BASE_TYPE_BITS),
675
676 /* DYNPTR points to memory local to the bpf program. */
677 DYNPTR_TYPE_LOCAL = BIT(8 + BPF_BASE_TYPE_BITS),
678
679 /* DYNPTR points to a kernel-produced ringbuf record. */
680 DYNPTR_TYPE_RINGBUF = BIT(9 + BPF_BASE_TYPE_BITS),
681
682 /* Size is known at compile time. */
683 MEM_FIXED_SIZE = BIT(10 + BPF_BASE_TYPE_BITS),
684
685 /* MEM is of an allocated object of type in program BTF. This is used to
686 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
687 */
688 MEM_ALLOC = BIT(11 + BPF_BASE_TYPE_BITS),
689
690 /* PTR was passed from the kernel in a trusted context, and may be
691 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
692 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
693 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
694 * without invoking bpf_kptr_xchg(). What we really need to know is
695 * whether a pointer is safe to pass to a kfunc or BPF helper function.
696 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
697 * helpers, they do not cover all possible instances of unsafe
698 * pointers. For example, a pointer that was obtained from walking a
699 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
700 * fact that it may be NULL, invalid, etc. This is due to backwards
701 * compatibility requirements, as this was the behavior that was first
702 * introduced when kptrs were added. The behavior is now considered
703 * deprecated, and PTR_UNTRUSTED will eventually be removed.
704 *
705 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
706 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
707 * For example, pointers passed to tracepoint arguments are considered
708 * PTR_TRUSTED, as are pointers that are passed to struct_ops
709 * callbacks. As alluded to above, pointers that are obtained from
710 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
711 * struct task_struct *task is PTR_TRUSTED, then accessing
712 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
713 * in a BPF register. Similarly, pointers passed to certain programs
714 * types such as kretprobes are not guaranteed to be valid, as they may
715 * for example contain an object that was recently freed.
716 */
717 PTR_TRUSTED = BIT(12 + BPF_BASE_TYPE_BITS),
718
719 /* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
720 MEM_RCU = BIT(13 + BPF_BASE_TYPE_BITS),
721
722 /* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
723 * Currently only valid for linked-list and rbtree nodes. If the nodes
724 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
725 */
726 NON_OWN_REF = BIT(14 + BPF_BASE_TYPE_BITS),
727
728 /* DYNPTR points to sk_buff */
729 DYNPTR_TYPE_SKB = BIT(15 + BPF_BASE_TYPE_BITS),
730
731 /* DYNPTR points to xdp_buff */
732 DYNPTR_TYPE_XDP = BIT(16 + BPF_BASE_TYPE_BITS),
733
734 /* Memory must be aligned on some architectures, used in combination with
735 * MEM_FIXED_SIZE.
736 */
737 MEM_ALIGNED = BIT(17 + BPF_BASE_TYPE_BITS),
738
739 /* MEM is being written to, often combined with MEM_UNINIT. Non-presence
740 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the
741 * MEM_UNINIT means that memory needs to be initialized since it is also
742 * read.
743 */
744 MEM_WRITE = BIT(18 + BPF_BASE_TYPE_BITS),
745
746 __BPF_TYPE_FLAG_MAX,
747 __BPF_TYPE_LAST_FLAG = __BPF_TYPE_FLAG_MAX - 1,
748 };
749
750 #define DYNPTR_TYPE_FLAG_MASK (DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
751 | DYNPTR_TYPE_XDP)
752
753 /* Max number of base types. */
754 #define BPF_BASE_TYPE_LIMIT (1UL << BPF_BASE_TYPE_BITS)
755
756 /* Max number of all types. */
757 #define BPF_TYPE_LIMIT (__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
758
759 /* function argument constraints */
760 enum bpf_arg_type {
761 ARG_DONTCARE = 0, /* unused argument in helper function */
762
763 /* the following constraints used to prototype
764 * bpf_map_lookup/update/delete_elem() functions
765 */
766 ARG_CONST_MAP_PTR, /* const argument used as pointer to bpf_map */
767 ARG_PTR_TO_MAP_KEY, /* pointer to stack used as map key */
768 ARG_PTR_TO_MAP_VALUE, /* pointer to stack used as map value */
769
770 /* Used to prototype bpf_memcmp() and other functions that access data
771 * on eBPF program stack
772 */
773 ARG_PTR_TO_MEM, /* pointer to valid memory (stack, packet, map value) */
774 ARG_PTR_TO_ARENA,
775
776 ARG_CONST_SIZE, /* number of bytes accessed from memory */
777 ARG_CONST_SIZE_OR_ZERO, /* number of bytes accessed from memory or 0 */
778
779 ARG_PTR_TO_CTX, /* pointer to context */
780 ARG_ANYTHING, /* any (initialized) argument is ok */
781 ARG_PTR_TO_SPIN_LOCK, /* pointer to bpf_spin_lock */
782 ARG_PTR_TO_SOCK_COMMON, /* pointer to sock_common */
783 ARG_PTR_TO_SOCKET, /* pointer to bpf_sock (fullsock) */
784 ARG_PTR_TO_BTF_ID, /* pointer to in-kernel struct */
785 ARG_PTR_TO_RINGBUF_MEM, /* pointer to dynamically reserved ringbuf memory */
786 ARG_CONST_ALLOC_SIZE_OR_ZERO, /* number of allocated bytes requested */
787 ARG_PTR_TO_BTF_ID_SOCK_COMMON, /* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
788 ARG_PTR_TO_PERCPU_BTF_ID, /* pointer to in-kernel percpu type */
789 ARG_PTR_TO_FUNC, /* pointer to a bpf program function */
790 ARG_PTR_TO_STACK, /* pointer to stack */
791 ARG_PTR_TO_CONST_STR, /* pointer to a null terminated read-only string */
792 ARG_PTR_TO_TIMER, /* pointer to bpf_timer */
793 ARG_KPTR_XCHG_DEST, /* pointer to destination that kptrs are bpf_kptr_xchg'd into */
794 ARG_PTR_TO_DYNPTR, /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
795 __BPF_ARG_TYPE_MAX,
796
797 /* Extended arg_types. */
798 ARG_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
799 ARG_PTR_TO_MEM_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
800 ARG_PTR_TO_CTX_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
801 ARG_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
802 ARG_PTR_TO_STACK_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
803 ARG_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
804 /* Pointer to memory does not need to be initialized, since helper function
805 * fills all bytes or clears them in error case.
806 */
807 ARG_PTR_TO_UNINIT_MEM = MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM,
808 /* Pointer to valid memory of size known at compile time. */
809 ARG_PTR_TO_FIXED_SIZE_MEM = MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
810
811 /* This must be the last entry. Its purpose is to ensure the enum is
812 * wide enough to hold the higher bits reserved for bpf_type_flag.
813 */
814 __BPF_ARG_TYPE_LIMIT = BPF_TYPE_LIMIT,
815 };
816 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
817
818 /* type of values returned from helper functions */
819 enum bpf_return_type {
820 RET_INTEGER, /* function returns integer */
821 RET_VOID, /* function doesn't return anything */
822 RET_PTR_TO_MAP_VALUE, /* returns a pointer to map elem value */
823 RET_PTR_TO_SOCKET, /* returns a pointer to a socket */
824 RET_PTR_TO_TCP_SOCK, /* returns a pointer to a tcp_sock */
825 RET_PTR_TO_SOCK_COMMON, /* returns a pointer to a sock_common */
826 RET_PTR_TO_MEM, /* returns a pointer to memory */
827 RET_PTR_TO_MEM_OR_BTF_ID, /* returns a pointer to a valid memory or a btf_id */
828 RET_PTR_TO_BTF_ID, /* returns a pointer to a btf_id */
829 __BPF_RET_TYPE_MAX,
830
831 /* Extended ret_types. */
832 RET_PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
833 RET_PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
834 RET_PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
835 RET_PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
836 RET_PTR_TO_RINGBUF_MEM_OR_NULL = PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
837 RET_PTR_TO_DYNPTR_MEM_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_MEM,
838 RET_PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
839 RET_PTR_TO_BTF_ID_TRUSTED = PTR_TRUSTED | RET_PTR_TO_BTF_ID,
840
841 /* This must be the last entry. Its purpose is to ensure the enum is
842 * wide enough to hold the higher bits reserved for bpf_type_flag.
843 */
844 __BPF_RET_TYPE_LIMIT = BPF_TYPE_LIMIT,
845 };
846 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
847
848 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
849 * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
850 * instructions after verifying
851 */
852 struct bpf_func_proto {
853 u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
854 bool gpl_only;
855 bool pkt_access;
856 bool might_sleep;
857 /* set to true if helper follows contract for llvm
858 * attribute bpf_fastcall:
859 * - void functions do not scratch r0
860 * - functions taking N arguments scratch only registers r1-rN
861 */
862 bool allow_fastcall;
863 enum bpf_return_type ret_type;
864 union {
865 struct {
866 enum bpf_arg_type arg1_type;
867 enum bpf_arg_type arg2_type;
868 enum bpf_arg_type arg3_type;
869 enum bpf_arg_type arg4_type;
870 enum bpf_arg_type arg5_type;
871 };
872 enum bpf_arg_type arg_type[5];
873 };
874 union {
875 struct {
876 u32 *arg1_btf_id;
877 u32 *arg2_btf_id;
878 u32 *arg3_btf_id;
879 u32 *arg4_btf_id;
880 u32 *arg5_btf_id;
881 };
882 u32 *arg_btf_id[5];
883 struct {
884 size_t arg1_size;
885 size_t arg2_size;
886 size_t arg3_size;
887 size_t arg4_size;
888 size_t arg5_size;
889 };
890 size_t arg_size[5];
891 };
892 int *ret_btf_id; /* return value btf_id */
893 bool (*allowed)(const struct bpf_prog *prog);
894 };
895
896 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
897 * the first argument to eBPF programs.
898 * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
899 */
900 struct bpf_context;
901
902 enum bpf_access_type {
903 BPF_READ = 1,
904 BPF_WRITE = 2
905 };
906
907 /* types of values stored in eBPF registers */
908 /* Pointer types represent:
909 * pointer
910 * pointer + imm
911 * pointer + (u16) var
912 * pointer + (u16) var + imm
913 * if (range > 0) then [ptr, ptr + range - off) is safe to access
914 * if (id > 0) means that some 'var' was added
915 * if (off > 0) means that 'imm' was added
916 */
917 enum bpf_reg_type {
918 NOT_INIT = 0, /* nothing was written into register */
919 SCALAR_VALUE, /* reg doesn't contain a valid pointer */
920 PTR_TO_CTX, /* reg points to bpf_context */
921 CONST_PTR_TO_MAP, /* reg points to struct bpf_map */
922 PTR_TO_MAP_VALUE, /* reg points to map element value */
923 PTR_TO_MAP_KEY, /* reg points to a map element key */
924 PTR_TO_STACK, /* reg == frame_pointer + offset */
925 PTR_TO_PACKET_META, /* skb->data - meta_len */
926 PTR_TO_PACKET, /* reg points to skb->data */
927 PTR_TO_PACKET_END, /* skb->data + headlen */
928 PTR_TO_FLOW_KEYS, /* reg points to bpf_flow_keys */
929 PTR_TO_SOCKET, /* reg points to struct bpf_sock */
930 PTR_TO_SOCK_COMMON, /* reg points to sock_common */
931 PTR_TO_TCP_SOCK, /* reg points to struct tcp_sock */
932 PTR_TO_TP_BUFFER, /* reg points to a writable raw tp's buffer */
933 PTR_TO_XDP_SOCK, /* reg points to struct xdp_sock */
934 /* PTR_TO_BTF_ID points to a kernel struct that does not need
935 * to be null checked by the BPF program. This does not imply the
936 * pointer is _not_ null and in practice this can easily be a null
937 * pointer when reading pointer chains. The assumption is program
938 * context will handle null pointer dereference typically via fault
939 * handling. The verifier must keep this in mind and can make no
940 * assumptions about null or non-null when doing branch analysis.
941 * Further, when passed into helpers the helpers can not, without
942 * additional context, assume the value is non-null.
943 */
944 PTR_TO_BTF_ID,
945 PTR_TO_MEM, /* reg points to valid memory region */
946 PTR_TO_ARENA,
947 PTR_TO_BUF, /* reg points to a read/write buffer */
948 PTR_TO_FUNC, /* reg points to a bpf program function */
949 CONST_PTR_TO_DYNPTR, /* reg points to a const struct bpf_dynptr */
950 __BPF_REG_TYPE_MAX,
951
952 /* Extended reg_types. */
953 PTR_TO_MAP_VALUE_OR_NULL = PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
954 PTR_TO_SOCKET_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCKET,
955 PTR_TO_SOCK_COMMON_OR_NULL = PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
956 PTR_TO_TCP_SOCK_OR_NULL = PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
957 /* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
958 * been checked for null. Used primarily to inform the verifier
959 * an explicit null check is required for this struct.
960 */
961 PTR_TO_BTF_ID_OR_NULL = PTR_MAYBE_NULL | PTR_TO_BTF_ID,
962
963 /* This must be the last entry. Its purpose is to ensure the enum is
964 * wide enough to hold the higher bits reserved for bpf_type_flag.
965 */
966 __BPF_REG_TYPE_LIMIT = BPF_TYPE_LIMIT,
967 };
968 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
969
970 /* The information passed from prog-specific *_is_valid_access
971 * back to the verifier.
972 */
973 struct bpf_insn_access_aux {
974 enum bpf_reg_type reg_type;
975 bool is_ldsx;
976 union {
977 int ctx_field_size;
978 struct {
979 struct btf *btf;
980 u32 btf_id;
981 u32 ref_obj_id;
982 };
983 };
984 struct bpf_verifier_log *log; /* for verbose logs */
985 bool is_retval; /* is accessing function return value ? */
986 };
987
988 static inline void
bpf_ctx_record_field_size(struct bpf_insn_access_aux * aux,u32 size)989 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
990 {
991 aux->ctx_field_size = size;
992 }
993
bpf_is_ldimm64(const struct bpf_insn * insn)994 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
995 {
996 return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
997 }
998
bpf_pseudo_func(const struct bpf_insn * insn)999 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
1000 {
1001 return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
1002 }
1003
1004 /* Given a BPF_ATOMIC instruction @atomic_insn, return true if it is an
1005 * atomic load or store, and false if it is a read-modify-write instruction.
1006 */
1007 static inline bool
bpf_atomic_is_load_store(const struct bpf_insn * atomic_insn)1008 bpf_atomic_is_load_store(const struct bpf_insn *atomic_insn)
1009 {
1010 switch (atomic_insn->imm) {
1011 case BPF_LOAD_ACQ:
1012 case BPF_STORE_REL:
1013 return true;
1014 default:
1015 return false;
1016 }
1017 }
1018
1019 struct bpf_prog_ops {
1020 int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
1021 union bpf_attr __user *uattr);
1022 };
1023
1024 struct bpf_reg_state;
1025 struct bpf_verifier_ops {
1026 /* return eBPF function prototype for verification */
1027 const struct bpf_func_proto *
1028 (*get_func_proto)(enum bpf_func_id func_id,
1029 const struct bpf_prog *prog);
1030
1031 /* return true if 'size' wide access at offset 'off' within bpf_context
1032 * with 'type' (read or write) is allowed
1033 */
1034 bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
1035 const struct bpf_prog *prog,
1036 struct bpf_insn_access_aux *info);
1037 int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
1038 const struct bpf_prog *prog);
1039 int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog,
1040 s16 ctx_stack_off);
1041 int (*gen_ld_abs)(const struct bpf_insn *orig,
1042 struct bpf_insn *insn_buf);
1043 u32 (*convert_ctx_access)(enum bpf_access_type type,
1044 const struct bpf_insn *src,
1045 struct bpf_insn *dst,
1046 struct bpf_prog *prog, u32 *target_size);
1047 int (*btf_struct_access)(struct bpf_verifier_log *log,
1048 const struct bpf_reg_state *reg,
1049 int off, int size);
1050 };
1051
1052 struct bpf_prog_offload_ops {
1053 /* verifier basic callbacks */
1054 int (*insn_hook)(struct bpf_verifier_env *env,
1055 int insn_idx, int prev_insn_idx);
1056 int (*finalize)(struct bpf_verifier_env *env);
1057 /* verifier optimization callbacks (called after .finalize) */
1058 int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
1059 struct bpf_insn *insn);
1060 int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
1061 /* program management callbacks */
1062 int (*prepare)(struct bpf_prog *prog);
1063 int (*translate)(struct bpf_prog *prog);
1064 void (*destroy)(struct bpf_prog *prog);
1065 };
1066
1067 struct bpf_prog_offload {
1068 struct bpf_prog *prog;
1069 struct net_device *netdev;
1070 struct bpf_offload_dev *offdev;
1071 void *dev_priv;
1072 struct list_head offloads;
1073 bool dev_state;
1074 bool opt_failed;
1075 void *jited_image;
1076 u32 jited_len;
1077 };
1078
1079 enum bpf_cgroup_storage_type {
1080 BPF_CGROUP_STORAGE_SHARED,
1081 BPF_CGROUP_STORAGE_PERCPU,
1082 __BPF_CGROUP_STORAGE_MAX
1083 };
1084
1085 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
1086
1087 /* The longest tracepoint has 12 args.
1088 * See include/trace/bpf_probe.h
1089 */
1090 #define MAX_BPF_FUNC_ARGS 12
1091
1092 /* The maximum number of arguments passed through registers
1093 * a single function may have.
1094 */
1095 #define MAX_BPF_FUNC_REG_ARGS 5
1096
1097 /* The argument is a structure. */
1098 #define BTF_FMODEL_STRUCT_ARG BIT(0)
1099
1100 /* The argument is signed. */
1101 #define BTF_FMODEL_SIGNED_ARG BIT(1)
1102
1103 struct btf_func_model {
1104 u8 ret_size;
1105 u8 ret_flags;
1106 u8 nr_args;
1107 u8 arg_size[MAX_BPF_FUNC_ARGS];
1108 u8 arg_flags[MAX_BPF_FUNC_ARGS];
1109 };
1110
1111 /* Restore arguments before returning from trampoline to let original function
1112 * continue executing. This flag is used for fentry progs when there are no
1113 * fexit progs.
1114 */
1115 #define BPF_TRAMP_F_RESTORE_REGS BIT(0)
1116 /* Call original function after fentry progs, but before fexit progs.
1117 * Makes sense for fentry/fexit, normal calls and indirect calls.
1118 */
1119 #define BPF_TRAMP_F_CALL_ORIG BIT(1)
1120 /* Skip current frame and return to parent. Makes sense for fentry/fexit
1121 * programs only. Should not be used with normal calls and indirect calls.
1122 */
1123 #define BPF_TRAMP_F_SKIP_FRAME BIT(2)
1124 /* Store IP address of the caller on the trampoline stack,
1125 * so it's available for trampoline's programs.
1126 */
1127 #define BPF_TRAMP_F_IP_ARG BIT(3)
1128 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1129 #define BPF_TRAMP_F_RET_FENTRY_RET BIT(4)
1130
1131 /* Get original function from stack instead of from provided direct address.
1132 * Makes sense for trampolines with fexit or fmod_ret programs.
1133 */
1134 #define BPF_TRAMP_F_ORIG_STACK BIT(5)
1135
1136 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1137 * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1138 */
1139 #define BPF_TRAMP_F_SHARE_IPMODIFY BIT(6)
1140
1141 /* Indicate that current trampoline is in a tail call context. Then, it has to
1142 * cache and restore tail_call_cnt to avoid infinite tail call loop.
1143 */
1144 #define BPF_TRAMP_F_TAIL_CALL_CTX BIT(7)
1145
1146 /*
1147 * Indicate the trampoline should be suitable to receive indirect calls;
1148 * without this indirectly calling the generated code can result in #UD/#CP,
1149 * depending on the CFI options.
1150 *
1151 * Used by bpf_struct_ops.
1152 *
1153 * Incompatible with FENTRY usage, overloads @func_addr argument.
1154 */
1155 #define BPF_TRAMP_F_INDIRECT BIT(8)
1156
1157 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1158 * bytes on x86.
1159 */
1160 enum {
1161 #if defined(__s390x__)
1162 BPF_MAX_TRAMP_LINKS = 27,
1163 #else
1164 BPF_MAX_TRAMP_LINKS = 38,
1165 #endif
1166 };
1167
1168 struct bpf_tramp_links {
1169 struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1170 int nr_links;
1171 };
1172
1173 struct bpf_tramp_run_ctx;
1174
1175 /* Different use cases for BPF trampoline:
1176 * 1. replace nop at the function entry (kprobe equivalent)
1177 * flags = BPF_TRAMP_F_RESTORE_REGS
1178 * fentry = a set of programs to run before returning from trampoline
1179 *
1180 * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1181 * flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1182 * orig_call = fentry_ip + MCOUNT_INSN_SIZE
1183 * fentry = a set of program to run before calling original function
1184 * fexit = a set of program to run after original function
1185 *
1186 * 3. replace direct call instruction anywhere in the function body
1187 * or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1188 * With flags = 0
1189 * fentry = a set of programs to run before returning from trampoline
1190 * With flags = BPF_TRAMP_F_CALL_ORIG
1191 * orig_call = original callback addr or direct function addr
1192 * fentry = a set of program to run before calling original function
1193 * fexit = a set of program to run after original function
1194 */
1195 struct bpf_tramp_image;
1196 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1197 const struct btf_func_model *m, u32 flags,
1198 struct bpf_tramp_links *tlinks,
1199 void *func_addr);
1200 void *arch_alloc_bpf_trampoline(unsigned int size);
1201 void arch_free_bpf_trampoline(void *image, unsigned int size);
1202 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size);
1203 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1204 struct bpf_tramp_links *tlinks, void *func_addr);
1205
1206 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1207 struct bpf_tramp_run_ctx *run_ctx);
1208 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1209 struct bpf_tramp_run_ctx *run_ctx);
1210 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1211 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1212 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1213 struct bpf_tramp_run_ctx *run_ctx);
1214 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1215 struct bpf_tramp_run_ctx *run_ctx);
1216 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1217 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1218
1219 struct bpf_ksym {
1220 unsigned long start;
1221 unsigned long end;
1222 char name[KSYM_NAME_LEN];
1223 struct list_head lnode;
1224 struct latch_tree_node tnode;
1225 bool prog;
1226 };
1227
1228 enum bpf_tramp_prog_type {
1229 BPF_TRAMP_FENTRY,
1230 BPF_TRAMP_FEXIT,
1231 BPF_TRAMP_MODIFY_RETURN,
1232 BPF_TRAMP_MAX,
1233 BPF_TRAMP_REPLACE, /* more than MAX */
1234 };
1235
1236 struct bpf_tramp_image {
1237 void *image;
1238 int size;
1239 struct bpf_ksym ksym;
1240 struct percpu_ref pcref;
1241 void *ip_after_call;
1242 void *ip_epilogue;
1243 union {
1244 struct rcu_head rcu;
1245 struct work_struct work;
1246 };
1247 };
1248
1249 struct bpf_trampoline {
1250 /* hlist for trampoline_table */
1251 struct hlist_node hlist;
1252 struct ftrace_ops *fops;
1253 /* serializes access to fields of this trampoline */
1254 struct mutex mutex;
1255 refcount_t refcnt;
1256 u32 flags;
1257 u64 key;
1258 struct {
1259 struct btf_func_model model;
1260 void *addr;
1261 bool ftrace_managed;
1262 } func;
1263 /* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1264 * program by replacing one of its functions. func.addr is the address
1265 * of the function it replaced.
1266 */
1267 struct bpf_prog *extension_prog;
1268 /* list of BPF programs using this trampoline */
1269 struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1270 /* Number of attached programs. A counter per kind. */
1271 int progs_cnt[BPF_TRAMP_MAX];
1272 /* Executable image of trampoline */
1273 struct bpf_tramp_image *cur_image;
1274 };
1275
1276 struct bpf_attach_target_info {
1277 struct btf_func_model fmodel;
1278 long tgt_addr;
1279 struct module *tgt_mod;
1280 const char *tgt_name;
1281 const struct btf_type *tgt_type;
1282 };
1283
1284 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1285
1286 struct bpf_dispatcher_prog {
1287 struct bpf_prog *prog;
1288 refcount_t users;
1289 };
1290
1291 struct bpf_dispatcher {
1292 /* dispatcher mutex */
1293 struct mutex mutex;
1294 void *func;
1295 struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1296 int num_progs;
1297 void *image;
1298 void *rw_image;
1299 u32 image_off;
1300 struct bpf_ksym ksym;
1301 #ifdef CONFIG_HAVE_STATIC_CALL
1302 struct static_call_key *sc_key;
1303 void *sc_tramp;
1304 #endif
1305 };
1306
1307 #ifndef __bpfcall
1308 #define __bpfcall __nocfi
1309 #endif
1310
bpf_dispatcher_nop_func(const void * ctx,const struct bpf_insn * insnsi,bpf_func_t bpf_func)1311 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
1312 const void *ctx,
1313 const struct bpf_insn *insnsi,
1314 bpf_func_t bpf_func)
1315 {
1316 return bpf_func(ctx, insnsi);
1317 }
1318
1319 /* the implementation of the opaque uapi struct bpf_dynptr */
1320 struct bpf_dynptr_kern {
1321 void *data;
1322 /* Size represents the number of usable bytes of dynptr data.
1323 * If for example the offset is at 4 for a local dynptr whose data is
1324 * of type u64, the number of usable bytes is 4.
1325 *
1326 * The upper 8 bits are reserved. It is as follows:
1327 * Bits 0 - 23 = size
1328 * Bits 24 - 30 = dynptr type
1329 * Bit 31 = whether dynptr is read-only
1330 */
1331 u32 size;
1332 u32 offset;
1333 } __aligned(8);
1334
1335 enum bpf_dynptr_type {
1336 BPF_DYNPTR_TYPE_INVALID,
1337 /* Points to memory that is local to the bpf program */
1338 BPF_DYNPTR_TYPE_LOCAL,
1339 /* Underlying data is a ringbuf record */
1340 BPF_DYNPTR_TYPE_RINGBUF,
1341 /* Underlying data is a sk_buff */
1342 BPF_DYNPTR_TYPE_SKB,
1343 /* Underlying data is a xdp_buff */
1344 BPF_DYNPTR_TYPE_XDP,
1345 };
1346
1347 int bpf_dynptr_check_size(u32 size);
1348 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1349 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
1350 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);
1351 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr);
1352
1353 #ifdef CONFIG_BPF_JIT
1354 int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1355 struct bpf_trampoline *tr,
1356 struct bpf_prog *tgt_prog);
1357 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1358 struct bpf_trampoline *tr,
1359 struct bpf_prog *tgt_prog);
1360 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1361 struct bpf_attach_target_info *tgt_info);
1362 void bpf_trampoline_put(struct bpf_trampoline *tr);
1363 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1364
1365 /*
1366 * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1367 * indirection with a direct call to the bpf program. If the architecture does
1368 * not have STATIC_CALL, avoid a double-indirection.
1369 */
1370 #ifdef CONFIG_HAVE_STATIC_CALL
1371
1372 #define __BPF_DISPATCHER_SC_INIT(_name) \
1373 .sc_key = &STATIC_CALL_KEY(_name), \
1374 .sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1375
1376 #define __BPF_DISPATCHER_SC(name) \
1377 DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1378
1379 #define __BPF_DISPATCHER_CALL(name) \
1380 static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1381
1382 #define __BPF_DISPATCHER_UPDATE(_d, _new) \
1383 __static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1384
1385 #else
1386 #define __BPF_DISPATCHER_SC_INIT(name)
1387 #define __BPF_DISPATCHER_SC(name)
1388 #define __BPF_DISPATCHER_CALL(name) bpf_func(ctx, insnsi)
1389 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1390 #endif
1391
1392 #define BPF_DISPATCHER_INIT(_name) { \
1393 .mutex = __MUTEX_INITIALIZER(_name.mutex), \
1394 .func = &_name##_func, \
1395 .progs = {}, \
1396 .num_progs = 0, \
1397 .image = NULL, \
1398 .image_off = 0, \
1399 .ksym = { \
1400 .name = #_name, \
1401 .lnode = LIST_HEAD_INIT(_name.ksym.lnode), \
1402 }, \
1403 __BPF_DISPATCHER_SC_INIT(_name##_call) \
1404 }
1405
1406 #define DEFINE_BPF_DISPATCHER(name) \
1407 __BPF_DISPATCHER_SC(name); \
1408 noinline __bpfcall unsigned int bpf_dispatcher_##name##_func( \
1409 const void *ctx, \
1410 const struct bpf_insn *insnsi, \
1411 bpf_func_t bpf_func) \
1412 { \
1413 return __BPF_DISPATCHER_CALL(name); \
1414 } \
1415 EXPORT_SYMBOL(bpf_dispatcher_##name##_func); \
1416 struct bpf_dispatcher bpf_dispatcher_##name = \
1417 BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1418
1419 #define DECLARE_BPF_DISPATCHER(name) \
1420 unsigned int bpf_dispatcher_##name##_func( \
1421 const void *ctx, \
1422 const struct bpf_insn *insnsi, \
1423 bpf_func_t bpf_func); \
1424 extern struct bpf_dispatcher bpf_dispatcher_##name;
1425
1426 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1427 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1428 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1429 struct bpf_prog *to);
1430 /* Called only from JIT-enabled code, so there's no need for stubs. */
1431 void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym);
1432 void bpf_image_ksym_add(struct bpf_ksym *ksym);
1433 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1434 void bpf_ksym_add(struct bpf_ksym *ksym);
1435 void bpf_ksym_del(struct bpf_ksym *ksym);
1436 int bpf_jit_charge_modmem(u32 size);
1437 void bpf_jit_uncharge_modmem(u32 size);
1438 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1439 #else
bpf_trampoline_link_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr,struct bpf_prog * tgt_prog)1440 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1441 struct bpf_trampoline *tr,
1442 struct bpf_prog *tgt_prog)
1443 {
1444 return -ENOTSUPP;
1445 }
bpf_trampoline_unlink_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr,struct bpf_prog * tgt_prog)1446 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1447 struct bpf_trampoline *tr,
1448 struct bpf_prog *tgt_prog)
1449 {
1450 return -ENOTSUPP;
1451 }
bpf_trampoline_get(u64 key,struct bpf_attach_target_info * tgt_info)1452 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1453 struct bpf_attach_target_info *tgt_info)
1454 {
1455 return NULL;
1456 }
bpf_trampoline_put(struct bpf_trampoline * tr)1457 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1458 #define DEFINE_BPF_DISPATCHER(name)
1459 #define DECLARE_BPF_DISPATCHER(name)
1460 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1461 #define BPF_DISPATCHER_PTR(name) NULL
bpf_dispatcher_change_prog(struct bpf_dispatcher * d,struct bpf_prog * from,struct bpf_prog * to)1462 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1463 struct bpf_prog *from,
1464 struct bpf_prog *to) {}
is_bpf_image_address(unsigned long address)1465 static inline bool is_bpf_image_address(unsigned long address)
1466 {
1467 return false;
1468 }
bpf_prog_has_trampoline(const struct bpf_prog * prog)1469 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1470 {
1471 return false;
1472 }
1473 #endif
1474
1475 struct bpf_func_info_aux {
1476 u16 linkage;
1477 bool unreliable;
1478 bool called : 1;
1479 bool verified : 1;
1480 };
1481
1482 enum bpf_jit_poke_reason {
1483 BPF_POKE_REASON_TAIL_CALL,
1484 };
1485
1486 /* Descriptor of pokes pointing /into/ the JITed image. */
1487 struct bpf_jit_poke_descriptor {
1488 void *tailcall_target;
1489 void *tailcall_bypass;
1490 void *bypass_addr;
1491 void *aux;
1492 union {
1493 struct {
1494 struct bpf_map *map;
1495 u32 key;
1496 } tail_call;
1497 };
1498 bool tailcall_target_stable;
1499 u8 adj_off;
1500 u16 reason;
1501 u32 insn_idx;
1502 };
1503
1504 /* reg_type info for ctx arguments */
1505 struct bpf_ctx_arg_aux {
1506 u32 offset;
1507 enum bpf_reg_type reg_type;
1508 struct btf *btf;
1509 u32 btf_id;
1510 u32 ref_obj_id;
1511 bool refcounted;
1512 };
1513
1514 struct btf_mod_pair {
1515 struct btf *btf;
1516 struct module *module;
1517 };
1518
1519 struct bpf_kfunc_desc_tab;
1520
1521 struct bpf_prog_aux {
1522 atomic64_t refcnt;
1523 u32 used_map_cnt;
1524 u32 used_btf_cnt;
1525 u32 max_ctx_offset;
1526 u32 max_pkt_offset;
1527 u32 max_tp_access;
1528 u32 stack_depth;
1529 u32 id;
1530 u32 func_cnt; /* used by non-func prog as the number of func progs */
1531 u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1532 u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1533 u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1534 u32 attach_st_ops_member_off;
1535 u32 ctx_arg_info_size;
1536 u32 max_rdonly_access;
1537 u32 max_rdwr_access;
1538 struct btf *attach_btf;
1539 struct bpf_ctx_arg_aux *ctx_arg_info;
1540 void __percpu *priv_stack_ptr;
1541 struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1542 struct bpf_prog *dst_prog;
1543 struct bpf_trampoline *dst_trampoline;
1544 enum bpf_prog_type saved_dst_prog_type;
1545 enum bpf_attach_type saved_dst_attach_type;
1546 bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1547 bool dev_bound; /* Program is bound to the netdev. */
1548 bool offload_requested; /* Program is bound and offloaded to the netdev. */
1549 bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1550 bool attach_tracing_prog; /* true if tracing another tracing program */
1551 bool func_proto_unreliable;
1552 bool tail_call_reachable;
1553 bool xdp_has_frags;
1554 bool exception_cb;
1555 bool exception_boundary;
1556 bool is_extended; /* true if extended by freplace program */
1557 bool jits_use_priv_stack;
1558 bool priv_stack_requested;
1559 bool changes_pkt_data;
1560 bool might_sleep;
1561 u64 prog_array_member_cnt; /* counts how many times as member of prog_array */
1562 struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */
1563 struct bpf_arena *arena;
1564 void (*recursion_detected)(struct bpf_prog *prog); /* callback if recursion is detected */
1565 /* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1566 const struct btf_type *attach_func_proto;
1567 /* function name for valid attach_btf_id */
1568 const char *attach_func_name;
1569 struct bpf_prog **func;
1570 void *jit_data; /* JIT specific data. arch dependent */
1571 struct bpf_jit_poke_descriptor *poke_tab;
1572 struct bpf_kfunc_desc_tab *kfunc_tab;
1573 struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1574 u32 size_poke_tab;
1575 #ifdef CONFIG_FINEIBT
1576 struct bpf_ksym ksym_prefix;
1577 #endif
1578 struct bpf_ksym ksym;
1579 const struct bpf_prog_ops *ops;
1580 const struct bpf_struct_ops *st_ops;
1581 struct bpf_map **used_maps;
1582 struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1583 struct btf_mod_pair *used_btfs;
1584 struct bpf_prog *prog;
1585 struct user_struct *user;
1586 u64 load_time; /* ns since boottime */
1587 u32 verified_insns;
1588 int cgroup_atype; /* enum cgroup_bpf_attach_type */
1589 struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1590 char name[BPF_OBJ_NAME_LEN];
1591 u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
1592 #ifdef CONFIG_SECURITY
1593 void *security;
1594 #endif
1595 struct bpf_token *token;
1596 struct bpf_prog_offload *offload;
1597 struct btf *btf;
1598 struct bpf_func_info *func_info;
1599 struct bpf_func_info_aux *func_info_aux;
1600 /* bpf_line_info loaded from userspace. linfo->insn_off
1601 * has the xlated insn offset.
1602 * Both the main and sub prog share the same linfo.
1603 * The subprog can access its first linfo by
1604 * using the linfo_idx.
1605 */
1606 struct bpf_line_info *linfo;
1607 /* jited_linfo is the jited addr of the linfo. It has a
1608 * one to one mapping to linfo:
1609 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1610 * Both the main and sub prog share the same jited_linfo.
1611 * The subprog can access its first jited_linfo by
1612 * using the linfo_idx.
1613 */
1614 void **jited_linfo;
1615 u32 func_info_cnt;
1616 u32 nr_linfo;
1617 /* subprog can use linfo_idx to access its first linfo and
1618 * jited_linfo.
1619 * main prog always has linfo_idx == 0
1620 */
1621 u32 linfo_idx;
1622 struct module *mod;
1623 u32 num_exentries;
1624 struct exception_table_entry *extable;
1625 union {
1626 struct work_struct work;
1627 struct rcu_head rcu;
1628 };
1629 };
1630
1631 struct bpf_prog {
1632 u16 pages; /* Number of allocated pages */
1633 u16 jited:1, /* Is our filter JIT'ed? */
1634 jit_requested:1,/* archs need to JIT the prog */
1635 gpl_compatible:1, /* Is filter GPL compatible? */
1636 cb_access:1, /* Is control block accessed? */
1637 dst_needed:1, /* Do we need dst entry? */
1638 blinding_requested:1, /* needs constant blinding */
1639 blinded:1, /* Was blinded */
1640 is_func:1, /* program is a bpf function */
1641 kprobe_override:1, /* Do we override a kprobe? */
1642 has_callchain_buf:1, /* callchain buffer allocated? */
1643 enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1644 call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1645 call_get_func_ip:1, /* Do we call get_func_ip() */
1646 tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */
1647 sleepable:1; /* BPF program is sleepable */
1648 enum bpf_prog_type type; /* Type of BPF program */
1649 enum bpf_attach_type expected_attach_type; /* For some prog types */
1650 u32 len; /* Number of filter blocks */
1651 u32 jited_len; /* Size of jited insns in bytes */
1652 u8 tag[BPF_TAG_SIZE];
1653 struct bpf_prog_stats __percpu *stats;
1654 int __percpu *active;
1655 unsigned int (*bpf_func)(const void *ctx,
1656 const struct bpf_insn *insn);
1657 struct bpf_prog_aux *aux; /* Auxiliary fields */
1658 struct sock_fprog_kern *orig_prog; /* Original BPF program */
1659 /* Instructions for interpreter */
1660 union {
1661 DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1662 DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1663 };
1664 };
1665
1666 struct bpf_array_aux {
1667 /* Programs with direct jumps into programs part of this array. */
1668 struct list_head poke_progs;
1669 struct bpf_map *map;
1670 struct mutex poke_mutex;
1671 struct work_struct work;
1672 };
1673
1674 struct bpf_link {
1675 atomic64_t refcnt;
1676 u32 id;
1677 enum bpf_link_type type;
1678 const struct bpf_link_ops *ops;
1679 struct bpf_prog *prog;
1680 /* whether BPF link itself has "sleepable" semantics, which can differ
1681 * from underlying BPF program having a "sleepable" semantics, as BPF
1682 * link's semantics is determined by target attach hook
1683 */
1684 bool sleepable;
1685 /* rcu is used before freeing, work can be used to schedule that
1686 * RCU-based freeing before that, so they never overlap
1687 */
1688 union {
1689 struct rcu_head rcu;
1690 struct work_struct work;
1691 };
1692 };
1693
1694 struct bpf_link_ops {
1695 void (*release)(struct bpf_link *link);
1696 /* deallocate link resources callback, called without RCU grace period
1697 * waiting
1698 */
1699 void (*dealloc)(struct bpf_link *link);
1700 /* deallocate link resources callback, called after RCU grace period;
1701 * if either the underlying BPF program is sleepable or BPF link's
1702 * target hook is sleepable, we'll go through tasks trace RCU GP and
1703 * then "classic" RCU GP; this need for chaining tasks trace and
1704 * classic RCU GPs is designated by setting bpf_link->sleepable flag
1705 */
1706 void (*dealloc_deferred)(struct bpf_link *link);
1707 int (*detach)(struct bpf_link *link);
1708 int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1709 struct bpf_prog *old_prog);
1710 void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1711 int (*fill_link_info)(const struct bpf_link *link,
1712 struct bpf_link_info *info);
1713 int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1714 struct bpf_map *old_map);
1715 __poll_t (*poll)(struct file *file, struct poll_table_struct *pts);
1716 };
1717
1718 struct bpf_tramp_link {
1719 struct bpf_link link;
1720 struct hlist_node tramp_hlist;
1721 u64 cookie;
1722 };
1723
1724 struct bpf_shim_tramp_link {
1725 struct bpf_tramp_link link;
1726 struct bpf_trampoline *trampoline;
1727 };
1728
1729 struct bpf_tracing_link {
1730 struct bpf_tramp_link link;
1731 enum bpf_attach_type attach_type;
1732 struct bpf_trampoline *trampoline;
1733 struct bpf_prog *tgt_prog;
1734 };
1735
1736 struct bpf_raw_tp_link {
1737 struct bpf_link link;
1738 struct bpf_raw_event_map *btp;
1739 u64 cookie;
1740 };
1741
1742 struct bpf_link_primer {
1743 struct bpf_link *link;
1744 struct file *file;
1745 int fd;
1746 u32 id;
1747 };
1748
1749 struct bpf_mount_opts {
1750 kuid_t uid;
1751 kgid_t gid;
1752 umode_t mode;
1753
1754 /* BPF token-related delegation options */
1755 u64 delegate_cmds;
1756 u64 delegate_maps;
1757 u64 delegate_progs;
1758 u64 delegate_attachs;
1759 };
1760
1761 struct bpf_token {
1762 struct work_struct work;
1763 atomic64_t refcnt;
1764 struct user_namespace *userns;
1765 u64 allowed_cmds;
1766 u64 allowed_maps;
1767 u64 allowed_progs;
1768 u64 allowed_attachs;
1769 #ifdef CONFIG_SECURITY
1770 void *security;
1771 #endif
1772 };
1773
1774 struct bpf_struct_ops_value;
1775 struct btf_member;
1776
1777 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1778 /**
1779 * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1780 * define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1781 * of BPF_PROG_TYPE_STRUCT_OPS progs.
1782 * @verifier_ops: A structure of callbacks that are invoked by the verifier
1783 * when determining whether the struct_ops progs in the
1784 * struct_ops map are valid.
1785 * @init: A callback that is invoked a single time, and before any other
1786 * callback, to initialize the structure. A nonzero return value means
1787 * the subsystem could not be initialized.
1788 * @check_member: When defined, a callback invoked by the verifier to allow
1789 * the subsystem to determine if an entry in the struct_ops map
1790 * is valid. A nonzero return value means that the map is
1791 * invalid and should be rejected by the verifier.
1792 * @init_member: A callback that is invoked for each member of the struct_ops
1793 * map to allow the subsystem to initialize the member. A nonzero
1794 * value means the member could not be initialized. This callback
1795 * is exclusive with the @type, @type_id, @value_type, and
1796 * @value_id fields.
1797 * @reg: A callback that is invoked when the struct_ops map has been
1798 * initialized and is being attached to. Zero means the struct_ops map
1799 * has been successfully registered and is live. A nonzero return value
1800 * means the struct_ops map could not be registered.
1801 * @unreg: A callback that is invoked when the struct_ops map should be
1802 * unregistered.
1803 * @update: A callback that is invoked when the live struct_ops map is being
1804 * updated to contain new values. This callback is only invoked when
1805 * the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1806 * it is assumed that the struct_ops map cannot be updated.
1807 * @validate: A callback that is invoked after all of the members have been
1808 * initialized. This callback should perform static checks on the
1809 * map, meaning that it should either fail or succeed
1810 * deterministically. A struct_ops map that has been validated may
1811 * not necessarily succeed in being registered if the call to @reg
1812 * fails. For example, a valid struct_ops map may be loaded, but
1813 * then fail to be registered due to there being another active
1814 * struct_ops map on the system in the subsystem already. For this
1815 * reason, if this callback is not defined, the check is skipped as
1816 * the struct_ops map will have final verification performed in
1817 * @reg.
1818 * @type: BTF type.
1819 * @value_type: Value type.
1820 * @name: The name of the struct bpf_struct_ops object.
1821 * @func_models: Func models
1822 * @type_id: BTF type id.
1823 * @value_id: BTF value id.
1824 */
1825 struct bpf_struct_ops {
1826 const struct bpf_verifier_ops *verifier_ops;
1827 int (*init)(struct btf *btf);
1828 int (*check_member)(const struct btf_type *t,
1829 const struct btf_member *member,
1830 const struct bpf_prog *prog);
1831 int (*init_member)(const struct btf_type *t,
1832 const struct btf_member *member,
1833 void *kdata, const void *udata);
1834 int (*reg)(void *kdata, struct bpf_link *link);
1835 void (*unreg)(void *kdata, struct bpf_link *link);
1836 int (*update)(void *kdata, void *old_kdata, struct bpf_link *link);
1837 int (*validate)(void *kdata);
1838 void *cfi_stubs;
1839 struct module *owner;
1840 const char *name;
1841 struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1842 };
1843
1844 /* Every member of a struct_ops type has an instance even a member is not
1845 * an operator (function pointer). The "info" field will be assigned to
1846 * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the
1847 * argument information required by the verifier to verify the program.
1848 *
1849 * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the
1850 * corresponding entry for an given argument.
1851 */
1852 struct bpf_struct_ops_arg_info {
1853 struct bpf_ctx_arg_aux *info;
1854 u32 cnt;
1855 };
1856
1857 struct bpf_struct_ops_desc {
1858 struct bpf_struct_ops *st_ops;
1859
1860 const struct btf_type *type;
1861 const struct btf_type *value_type;
1862 u32 type_id;
1863 u32 value_id;
1864
1865 /* Collection of argument information for each member */
1866 struct bpf_struct_ops_arg_info *arg_info;
1867 };
1868
1869 enum bpf_struct_ops_state {
1870 BPF_STRUCT_OPS_STATE_INIT,
1871 BPF_STRUCT_OPS_STATE_INUSE,
1872 BPF_STRUCT_OPS_STATE_TOBEFREE,
1873 BPF_STRUCT_OPS_STATE_READY,
1874 };
1875
1876 struct bpf_struct_ops_common_value {
1877 refcount_t refcnt;
1878 enum bpf_struct_ops_state state;
1879 };
1880
1881 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1882 /* This macro helps developer to register a struct_ops type and generate
1883 * type information correctly. Developers should use this macro to register
1884 * a struct_ops type instead of calling __register_bpf_struct_ops() directly.
1885 */
1886 #define register_bpf_struct_ops(st_ops, type) \
1887 ({ \
1888 struct bpf_struct_ops_##type { \
1889 struct bpf_struct_ops_common_value common; \
1890 struct type data ____cacheline_aligned_in_smp; \
1891 }; \
1892 BTF_TYPE_EMIT(struct bpf_struct_ops_##type); \
1893 __register_bpf_struct_ops(st_ops); \
1894 })
1895 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1896 bool bpf_struct_ops_get(const void *kdata);
1897 void bpf_struct_ops_put(const void *kdata);
1898 int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff);
1899 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1900 void *value);
1901 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1902 struct bpf_tramp_link *link,
1903 const struct btf_func_model *model,
1904 void *stub_func,
1905 void **image, u32 *image_off,
1906 bool allow_alloc);
1907 void bpf_struct_ops_image_free(void *image);
bpf_try_module_get(const void * data,struct module * owner)1908 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1909 {
1910 if (owner == BPF_MODULE_OWNER)
1911 return bpf_struct_ops_get(data);
1912 else
1913 return try_module_get(owner);
1914 }
bpf_module_put(const void * data,struct module * owner)1915 static inline void bpf_module_put(const void *data, struct module *owner)
1916 {
1917 if (owner == BPF_MODULE_OWNER)
1918 bpf_struct_ops_put(data);
1919 else
1920 module_put(owner);
1921 }
1922 int bpf_struct_ops_link_create(union bpf_attr *attr);
1923
1924 #ifdef CONFIG_NET
1925 /* Define it here to avoid the use of forward declaration */
1926 struct bpf_dummy_ops_state {
1927 int val;
1928 };
1929
1930 struct bpf_dummy_ops {
1931 int (*test_1)(struct bpf_dummy_ops_state *cb);
1932 int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1933 char a3, unsigned long a4);
1934 int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1935 };
1936
1937 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1938 union bpf_attr __user *uattr);
1939 #endif
1940 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc,
1941 struct btf *btf,
1942 struct bpf_verifier_log *log);
1943 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map);
1944 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc);
1945 #else
1946 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; })
bpf_try_module_get(const void * data,struct module * owner)1947 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1948 {
1949 return try_module_get(owner);
1950 }
bpf_module_put(const void * data,struct module * owner)1951 static inline void bpf_module_put(const void *data, struct module *owner)
1952 {
1953 module_put(owner);
1954 }
bpf_struct_ops_supported(const struct bpf_struct_ops * st_ops,u32 moff)1955 static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff)
1956 {
1957 return -ENOTSUPP;
1958 }
bpf_struct_ops_map_sys_lookup_elem(struct bpf_map * map,void * key,void * value)1959 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1960 void *key,
1961 void *value)
1962 {
1963 return -EINVAL;
1964 }
bpf_struct_ops_link_create(union bpf_attr * attr)1965 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1966 {
1967 return -EOPNOTSUPP;
1968 }
bpf_map_struct_ops_info_fill(struct bpf_map_info * info,struct bpf_map * map)1969 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map)
1970 {
1971 }
1972
bpf_struct_ops_desc_release(struct bpf_struct_ops_desc * st_ops_desc)1973 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc)
1974 {
1975 }
1976
1977 #endif
1978
1979 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog,
1980 const struct bpf_ctx_arg_aux *info, u32 cnt);
1981
1982 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1983 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1984 int cgroup_atype);
1985 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1986 #else
bpf_trampoline_link_cgroup_shim(struct bpf_prog * prog,int cgroup_atype)1987 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1988 int cgroup_atype)
1989 {
1990 return -EOPNOTSUPP;
1991 }
bpf_trampoline_unlink_cgroup_shim(struct bpf_prog * prog)1992 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1993 {
1994 }
1995 #endif
1996
1997 struct bpf_array {
1998 struct bpf_map map;
1999 u32 elem_size;
2000 u32 index_mask;
2001 struct bpf_array_aux *aux;
2002 union {
2003 DECLARE_FLEX_ARRAY(char, value) __aligned(8);
2004 DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
2005 DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
2006 };
2007 };
2008
2009 #define BPF_COMPLEXITY_LIMIT_INSNS 1000000 /* yes. 1M insns */
2010 #define MAX_TAIL_CALL_CNT 33
2011
2012 /* Maximum number of loops for bpf_loop and bpf_iter_num.
2013 * It's enum to expose it (and thus make it discoverable) through BTF.
2014 */
2015 enum {
2016 BPF_MAX_LOOPS = 8 * 1024 * 1024,
2017 BPF_MAX_TIMED_LOOPS = 0xffff,
2018 };
2019
2020 #define BPF_F_ACCESS_MASK (BPF_F_RDONLY | \
2021 BPF_F_RDONLY_PROG | \
2022 BPF_F_WRONLY | \
2023 BPF_F_WRONLY_PROG)
2024
2025 #define BPF_MAP_CAN_READ BIT(0)
2026 #define BPF_MAP_CAN_WRITE BIT(1)
2027
2028 /* Maximum number of user-producer ring buffer samples that can be drained in
2029 * a call to bpf_user_ringbuf_drain().
2030 */
2031 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
2032
bpf_map_flags_to_cap(struct bpf_map * map)2033 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
2034 {
2035 u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
2036
2037 /* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
2038 * not possible.
2039 */
2040 if (access_flags & BPF_F_RDONLY_PROG)
2041 return BPF_MAP_CAN_READ;
2042 else if (access_flags & BPF_F_WRONLY_PROG)
2043 return BPF_MAP_CAN_WRITE;
2044 else
2045 return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
2046 }
2047
bpf_map_flags_access_ok(u32 access_flags)2048 static inline bool bpf_map_flags_access_ok(u32 access_flags)
2049 {
2050 return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
2051 (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
2052 }
2053
2054 struct bpf_event_entry {
2055 struct perf_event *event;
2056 struct file *perf_file;
2057 struct file *map_file;
2058 struct rcu_head rcu;
2059 };
2060
map_type_contains_progs(struct bpf_map * map)2061 static inline bool map_type_contains_progs(struct bpf_map *map)
2062 {
2063 return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
2064 map->map_type == BPF_MAP_TYPE_DEVMAP ||
2065 map->map_type == BPF_MAP_TYPE_CPUMAP;
2066 }
2067
2068 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
2069 int bpf_prog_calc_tag(struct bpf_prog *fp);
2070
2071 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
2072 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
2073
2074 const struct bpf_func_proto *bpf_get_perf_event_read_value_proto(void);
2075
2076 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
2077 unsigned long off, unsigned long len);
2078 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
2079 const struct bpf_insn *src,
2080 struct bpf_insn *dst,
2081 struct bpf_prog *prog,
2082 u32 *target_size);
2083
2084 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2085 void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
2086
2087 /* an array of programs to be executed under rcu_lock.
2088 *
2089 * Typical usage:
2090 * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
2091 *
2092 * the structure returned by bpf_prog_array_alloc() should be populated
2093 * with program pointers and the last pointer must be NULL.
2094 * The user has to keep refcnt on the program and make sure the program
2095 * is removed from the array before bpf_prog_put().
2096 * The 'struct bpf_prog_array *' should only be replaced with xchg()
2097 * since other cpus are walking the array of pointers in parallel.
2098 */
2099 struct bpf_prog_array_item {
2100 struct bpf_prog *prog;
2101 union {
2102 struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
2103 u64 bpf_cookie;
2104 };
2105 };
2106
2107 struct bpf_prog_array {
2108 struct rcu_head rcu;
2109 struct bpf_prog_array_item items[];
2110 };
2111
2112 struct bpf_empty_prog_array {
2113 struct bpf_prog_array hdr;
2114 struct bpf_prog *null_prog;
2115 };
2116
2117 /* to avoid allocating empty bpf_prog_array for cgroups that
2118 * don't have bpf program attached use one global 'bpf_empty_prog_array'
2119 * It will not be modified the caller of bpf_prog_array_alloc()
2120 * (since caller requested prog_cnt == 0)
2121 * that pointer should be 'freed' by bpf_prog_array_free()
2122 */
2123 extern struct bpf_empty_prog_array bpf_empty_prog_array;
2124
2125 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
2126 void bpf_prog_array_free(struct bpf_prog_array *progs);
2127 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
2128 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
2129 int bpf_prog_array_length(struct bpf_prog_array *progs);
2130 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
2131 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
2132 __u32 __user *prog_ids, u32 cnt);
2133
2134 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
2135 struct bpf_prog *old_prog);
2136 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
2137 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2138 struct bpf_prog *prog);
2139 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2140 u32 *prog_ids, u32 request_cnt,
2141 u32 *prog_cnt);
2142 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2143 struct bpf_prog *exclude_prog,
2144 struct bpf_prog *include_prog,
2145 u64 bpf_cookie,
2146 struct bpf_prog_array **new_array);
2147
2148 struct bpf_run_ctx {};
2149
2150 struct bpf_cg_run_ctx {
2151 struct bpf_run_ctx run_ctx;
2152 const struct bpf_prog_array_item *prog_item;
2153 int retval;
2154 };
2155
2156 struct bpf_trace_run_ctx {
2157 struct bpf_run_ctx run_ctx;
2158 u64 bpf_cookie;
2159 bool is_uprobe;
2160 };
2161
2162 struct bpf_tramp_run_ctx {
2163 struct bpf_run_ctx run_ctx;
2164 u64 bpf_cookie;
2165 struct bpf_run_ctx *saved_run_ctx;
2166 };
2167
bpf_set_run_ctx(struct bpf_run_ctx * new_ctx)2168 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
2169 {
2170 struct bpf_run_ctx *old_ctx = NULL;
2171
2172 #ifdef CONFIG_BPF_SYSCALL
2173 old_ctx = current->bpf_ctx;
2174 current->bpf_ctx = new_ctx;
2175 #endif
2176 return old_ctx;
2177 }
2178
bpf_reset_run_ctx(struct bpf_run_ctx * old_ctx)2179 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
2180 {
2181 #ifdef CONFIG_BPF_SYSCALL
2182 current->bpf_ctx = old_ctx;
2183 #endif
2184 }
2185
2186 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
2187 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE (1 << 0)
2188 /* BPF program asks to set CN on the packet. */
2189 #define BPF_RET_SET_CN (1 << 0)
2190
2191 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
2192
2193 static __always_inline u32
bpf_prog_run_array(const struct bpf_prog_array * array,const void * ctx,bpf_prog_run_fn run_prog)2194 bpf_prog_run_array(const struct bpf_prog_array *array,
2195 const void *ctx, bpf_prog_run_fn run_prog)
2196 {
2197 const struct bpf_prog_array_item *item;
2198 const struct bpf_prog *prog;
2199 struct bpf_run_ctx *old_run_ctx;
2200 struct bpf_trace_run_ctx run_ctx;
2201 u32 ret = 1;
2202
2203 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
2204
2205 if (unlikely(!array))
2206 return ret;
2207
2208 run_ctx.is_uprobe = false;
2209
2210 migrate_disable();
2211 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2212 item = &array->items[0];
2213 while ((prog = READ_ONCE(item->prog))) {
2214 run_ctx.bpf_cookie = item->bpf_cookie;
2215 ret &= run_prog(prog, ctx);
2216 item++;
2217 }
2218 bpf_reset_run_ctx(old_run_ctx);
2219 migrate_enable();
2220 return ret;
2221 }
2222
2223 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
2224 *
2225 * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
2226 * overall. As a result, we must use the bpf_prog_array_free_sleepable
2227 * in order to use the tasks_trace rcu grace period.
2228 *
2229 * When a non-sleepable program is inside the array, we take the rcu read
2230 * section and disable preemption for that program alone, so it can access
2231 * rcu-protected dynamically sized maps.
2232 */
2233 static __always_inline u32
bpf_prog_run_array_uprobe(const struct bpf_prog_array * array,const void * ctx,bpf_prog_run_fn run_prog)2234 bpf_prog_run_array_uprobe(const struct bpf_prog_array *array,
2235 const void *ctx, bpf_prog_run_fn run_prog)
2236 {
2237 const struct bpf_prog_array_item *item;
2238 const struct bpf_prog *prog;
2239 struct bpf_run_ctx *old_run_ctx;
2240 struct bpf_trace_run_ctx run_ctx;
2241 u32 ret = 1;
2242
2243 might_fault();
2244 RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held");
2245
2246 if (unlikely(!array))
2247 return ret;
2248
2249 migrate_disable();
2250
2251 run_ctx.is_uprobe = true;
2252
2253 old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2254 item = &array->items[0];
2255 while ((prog = READ_ONCE(item->prog))) {
2256 if (!prog->sleepable)
2257 rcu_read_lock();
2258
2259 run_ctx.bpf_cookie = item->bpf_cookie;
2260 ret &= run_prog(prog, ctx);
2261 item++;
2262
2263 if (!prog->sleepable)
2264 rcu_read_unlock();
2265 }
2266 bpf_reset_run_ctx(old_run_ctx);
2267 migrate_enable();
2268 return ret;
2269 }
2270
2271 #ifdef CONFIG_BPF_SYSCALL
2272 DECLARE_PER_CPU(int, bpf_prog_active);
2273 extern struct mutex bpf_stats_enabled_mutex;
2274
2275 /*
2276 * Block execution of BPF programs attached to instrumentation (perf,
2277 * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2278 * these events can happen inside a region which holds a map bucket lock
2279 * and can deadlock on it.
2280 */
bpf_disable_instrumentation(void)2281 static inline void bpf_disable_instrumentation(void)
2282 {
2283 migrate_disable();
2284 this_cpu_inc(bpf_prog_active);
2285 }
2286
bpf_enable_instrumentation(void)2287 static inline void bpf_enable_instrumentation(void)
2288 {
2289 this_cpu_dec(bpf_prog_active);
2290 migrate_enable();
2291 }
2292
2293 extern const struct super_operations bpf_super_ops;
2294 extern const struct file_operations bpf_map_fops;
2295 extern const struct file_operations bpf_prog_fops;
2296 extern const struct file_operations bpf_iter_fops;
2297
2298 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2299 extern const struct bpf_prog_ops _name ## _prog_ops; \
2300 extern const struct bpf_verifier_ops _name ## _verifier_ops;
2301 #define BPF_MAP_TYPE(_id, _ops) \
2302 extern const struct bpf_map_ops _ops;
2303 #define BPF_LINK_TYPE(_id, _name)
2304 #include <linux/bpf_types.h>
2305 #undef BPF_PROG_TYPE
2306 #undef BPF_MAP_TYPE
2307 #undef BPF_LINK_TYPE
2308
2309 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2310 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2311 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2312
2313 struct bpf_prog *bpf_prog_get(u32 ufd);
2314 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2315 bool attach_drv);
2316 void bpf_prog_add(struct bpf_prog *prog, int i);
2317 void bpf_prog_sub(struct bpf_prog *prog, int i);
2318 void bpf_prog_inc(struct bpf_prog *prog);
2319 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2320 void bpf_prog_put(struct bpf_prog *prog);
2321
2322 void bpf_prog_free_id(struct bpf_prog *prog);
2323 void bpf_map_free_id(struct bpf_map *map);
2324
2325 struct btf_field *btf_record_find(const struct btf_record *rec,
2326 u32 offset, u32 field_mask);
2327 void btf_record_free(struct btf_record *rec);
2328 void bpf_map_free_record(struct bpf_map *map);
2329 struct btf_record *btf_record_dup(const struct btf_record *rec);
2330 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2331 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2332 void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj);
2333 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2334 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2335
2336 struct bpf_map *bpf_map_get(u32 ufd);
2337 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2338
2339 /*
2340 * The __bpf_map_get() and __btf_get_by_fd() functions parse a file
2341 * descriptor and return a corresponding map or btf object.
2342 * Their names are double underscored to emphasize the fact that they
2343 * do not increase refcnt. To also increase refcnt use corresponding
2344 * bpf_map_get() and btf_get_by_fd() functions.
2345 */
2346
__bpf_map_get(struct fd f)2347 static inline struct bpf_map *__bpf_map_get(struct fd f)
2348 {
2349 if (fd_empty(f))
2350 return ERR_PTR(-EBADF);
2351 if (unlikely(fd_file(f)->f_op != &bpf_map_fops))
2352 return ERR_PTR(-EINVAL);
2353 return fd_file(f)->private_data;
2354 }
2355
__btf_get_by_fd(struct fd f)2356 static inline struct btf *__btf_get_by_fd(struct fd f)
2357 {
2358 if (fd_empty(f))
2359 return ERR_PTR(-EBADF);
2360 if (unlikely(fd_file(f)->f_op != &btf_fops))
2361 return ERR_PTR(-EINVAL);
2362 return fd_file(f)->private_data;
2363 }
2364
2365 void bpf_map_inc(struct bpf_map *map);
2366 void bpf_map_inc_with_uref(struct bpf_map *map);
2367 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2368 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2369 void bpf_map_put_with_uref(struct bpf_map *map);
2370 void bpf_map_put(struct bpf_map *map);
2371 void *bpf_map_area_alloc(u64 size, int numa_node);
2372 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2373 void bpf_map_area_free(void *base);
2374 bool bpf_map_write_active(const struct bpf_map *map);
2375 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2376 int generic_map_lookup_batch(struct bpf_map *map,
2377 const union bpf_attr *attr,
2378 union bpf_attr __user *uattr);
2379 int generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2380 const union bpf_attr *attr,
2381 union bpf_attr __user *uattr);
2382 int generic_map_delete_batch(struct bpf_map *map,
2383 const union bpf_attr *attr,
2384 union bpf_attr __user *uattr);
2385 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2386 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2387
2388 int bpf_map_alloc_pages(const struct bpf_map *map, int nid,
2389 unsigned long nr_pages, struct page **page_array);
2390 #ifdef CONFIG_MEMCG
2391 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2392 int node);
2393 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2394 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2395 gfp_t flags);
2396 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2397 size_t align, gfp_t flags);
2398 #else
2399 /*
2400 * These specialized allocators have to be macros for their allocations to be
2401 * accounted separately (to have separate alloc_tag).
2402 */
2403 #define bpf_map_kmalloc_node(_map, _size, _flags, _node) \
2404 kmalloc_node(_size, _flags, _node)
2405 #define bpf_map_kzalloc(_map, _size, _flags) \
2406 kzalloc(_size, _flags)
2407 #define bpf_map_kvcalloc(_map, _n, _size, _flags) \
2408 kvcalloc(_n, _size, _flags)
2409 #define bpf_map_alloc_percpu(_map, _size, _align, _flags) \
2410 __alloc_percpu_gfp(_size, _align, _flags)
2411 #endif
2412
2413 static inline int
bpf_map_init_elem_count(struct bpf_map * map)2414 bpf_map_init_elem_count(struct bpf_map *map)
2415 {
2416 size_t size = sizeof(*map->elem_count), align = size;
2417 gfp_t flags = GFP_USER | __GFP_NOWARN;
2418
2419 map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2420 if (!map->elem_count)
2421 return -ENOMEM;
2422
2423 return 0;
2424 }
2425
2426 static inline void
bpf_map_free_elem_count(struct bpf_map * map)2427 bpf_map_free_elem_count(struct bpf_map *map)
2428 {
2429 free_percpu(map->elem_count);
2430 }
2431
bpf_map_inc_elem_count(struct bpf_map * map)2432 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2433 {
2434 this_cpu_inc(*map->elem_count);
2435 }
2436
bpf_map_dec_elem_count(struct bpf_map * map)2437 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2438 {
2439 this_cpu_dec(*map->elem_count);
2440 }
2441
2442 extern int sysctl_unprivileged_bpf_disabled;
2443
2444 bool bpf_token_capable(const struct bpf_token *token, int cap);
2445
bpf_allow_ptr_leaks(const struct bpf_token * token)2446 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
2447 {
2448 return bpf_token_capable(token, CAP_PERFMON);
2449 }
2450
bpf_allow_uninit_stack(const struct bpf_token * token)2451 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
2452 {
2453 return bpf_token_capable(token, CAP_PERFMON);
2454 }
2455
bpf_bypass_spec_v1(const struct bpf_token * token)2456 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
2457 {
2458 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2459 }
2460
bpf_bypass_spec_v4(const struct bpf_token * token)2461 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
2462 {
2463 return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2464 }
2465
2466 int bpf_map_new_fd(struct bpf_map *map, int flags);
2467 int bpf_prog_new_fd(struct bpf_prog *prog);
2468
2469 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2470 const struct bpf_link_ops *ops, struct bpf_prog *prog);
2471 void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type,
2472 const struct bpf_link_ops *ops, struct bpf_prog *prog,
2473 bool sleepable);
2474 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2475 int bpf_link_settle(struct bpf_link_primer *primer);
2476 void bpf_link_cleanup(struct bpf_link_primer *primer);
2477 void bpf_link_inc(struct bpf_link *link);
2478 struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link);
2479 void bpf_link_put(struct bpf_link *link);
2480 int bpf_link_new_fd(struct bpf_link *link);
2481 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2482 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2483
2484 void bpf_token_inc(struct bpf_token *token);
2485 void bpf_token_put(struct bpf_token *token);
2486 int bpf_token_create(union bpf_attr *attr);
2487 struct bpf_token *bpf_token_get_from_fd(u32 ufd);
2488
2489 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
2490 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
2491 bool bpf_token_allow_prog_type(const struct bpf_token *token,
2492 enum bpf_prog_type prog_type,
2493 enum bpf_attach_type attach_type);
2494
2495 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2496 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2497 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
2498 umode_t mode);
2499
2500 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2501 #define DEFINE_BPF_ITER_FUNC(target, args...) \
2502 extern int bpf_iter_ ## target(args); \
2503 int __init bpf_iter_ ## target(args) { return 0; }
2504
2505 /*
2506 * The task type of iterators.
2507 *
2508 * For BPF task iterators, they can be parameterized with various
2509 * parameters to visit only some of tasks.
2510 *
2511 * BPF_TASK_ITER_ALL (default)
2512 * Iterate over resources of every task.
2513 *
2514 * BPF_TASK_ITER_TID
2515 * Iterate over resources of a task/tid.
2516 *
2517 * BPF_TASK_ITER_TGID
2518 * Iterate over resources of every task of a process / task group.
2519 */
2520 enum bpf_iter_task_type {
2521 BPF_TASK_ITER_ALL = 0,
2522 BPF_TASK_ITER_TID,
2523 BPF_TASK_ITER_TGID,
2524 };
2525
2526 struct bpf_iter_aux_info {
2527 /* for map_elem iter */
2528 struct bpf_map *map;
2529
2530 /* for cgroup iter */
2531 struct {
2532 struct cgroup *start; /* starting cgroup */
2533 enum bpf_cgroup_iter_order order;
2534 } cgroup;
2535 struct {
2536 enum bpf_iter_task_type type;
2537 u32 pid;
2538 } task;
2539 };
2540
2541 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2542 union bpf_iter_link_info *linfo,
2543 struct bpf_iter_aux_info *aux);
2544 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2545 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2546 struct seq_file *seq);
2547 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2548 struct bpf_link_info *info);
2549 typedef const struct bpf_func_proto *
2550 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2551 const struct bpf_prog *prog);
2552
2553 enum bpf_iter_feature {
2554 BPF_ITER_RESCHED = BIT(0),
2555 };
2556
2557 #define BPF_ITER_CTX_ARG_MAX 2
2558 struct bpf_iter_reg {
2559 const char *target;
2560 bpf_iter_attach_target_t attach_target;
2561 bpf_iter_detach_target_t detach_target;
2562 bpf_iter_show_fdinfo_t show_fdinfo;
2563 bpf_iter_fill_link_info_t fill_link_info;
2564 bpf_iter_get_func_proto_t get_func_proto;
2565 u32 ctx_arg_info_size;
2566 u32 feature;
2567 struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2568 const struct bpf_iter_seq_info *seq_info;
2569 };
2570
2571 struct bpf_iter_meta {
2572 __bpf_md_ptr(struct seq_file *, seq);
2573 u64 session_id;
2574 u64 seq_num;
2575 };
2576
2577 struct bpf_iter__bpf_map_elem {
2578 __bpf_md_ptr(struct bpf_iter_meta *, meta);
2579 __bpf_md_ptr(struct bpf_map *, map);
2580 __bpf_md_ptr(void *, key);
2581 __bpf_md_ptr(void *, value);
2582 };
2583
2584 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2585 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2586 int bpf_iter_prog_supported(struct bpf_prog *prog);
2587 const struct bpf_func_proto *
2588 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2589 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2590 int bpf_iter_new_fd(struct bpf_link *link);
2591 bool bpf_link_is_iter(struct bpf_link *link);
2592 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2593 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2594 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2595 struct seq_file *seq);
2596 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2597 struct bpf_link_info *info);
2598
2599 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2600 struct bpf_func_state *caller,
2601 struct bpf_func_state *callee);
2602
2603 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2604 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2605 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2606 u64 flags);
2607 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2608 u64 flags);
2609
2610 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2611
2612 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2613 void *key, void *value, u64 map_flags);
2614 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2615 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2616 void *key, void *value, u64 map_flags);
2617 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2618
2619 int bpf_get_file_flag(int flags);
2620 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2621 size_t actual_size);
2622
2623 /* verify correctness of eBPF program */
2624 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2625
2626 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2627 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2628 #endif
2629
2630 struct btf *bpf_get_btf_vmlinux(void);
2631
2632 /* Map specifics */
2633 struct xdp_frame;
2634 struct sk_buff;
2635 struct bpf_dtab_netdev;
2636 struct bpf_cpu_map_entry;
2637
2638 void __dev_flush(struct list_head *flush_list);
2639 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2640 struct net_device *dev_rx);
2641 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2642 struct net_device *dev_rx);
2643 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2644 struct bpf_map *map, bool exclude_ingress);
2645 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2646 const struct bpf_prog *xdp_prog);
2647 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2648 const struct bpf_prog *xdp_prog,
2649 struct bpf_map *map, bool exclude_ingress);
2650
2651 void __cpu_map_flush(struct list_head *flush_list);
2652 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2653 struct net_device *dev_rx);
2654 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2655 struct sk_buff *skb);
2656
2657 /* Return map's numa specified by userspace */
bpf_map_attr_numa_node(const union bpf_attr * attr)2658 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2659 {
2660 return (attr->map_flags & BPF_F_NUMA_NODE) ?
2661 attr->numa_node : NUMA_NO_NODE;
2662 }
2663
2664 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2665 int array_map_alloc_check(union bpf_attr *attr);
2666
2667 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2668 union bpf_attr __user *uattr);
2669 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2670 union bpf_attr __user *uattr);
2671 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2672 const union bpf_attr *kattr,
2673 union bpf_attr __user *uattr);
2674 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2675 const union bpf_attr *kattr,
2676 union bpf_attr __user *uattr);
2677 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2678 const union bpf_attr *kattr,
2679 union bpf_attr __user *uattr);
2680 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2681 const union bpf_attr *kattr,
2682 union bpf_attr __user *uattr);
2683 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2684 const union bpf_attr *kattr,
2685 union bpf_attr __user *uattr);
2686 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2687 const struct bpf_prog *prog,
2688 struct bpf_insn_access_aux *info);
2689
bpf_tracing_ctx_access(int off,int size,enum bpf_access_type type)2690 static inline bool bpf_tracing_ctx_access(int off, int size,
2691 enum bpf_access_type type)
2692 {
2693 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2694 return false;
2695 if (type != BPF_READ)
2696 return false;
2697 if (off % size != 0)
2698 return false;
2699 return true;
2700 }
2701
bpf_tracing_btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2702 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2703 enum bpf_access_type type,
2704 const struct bpf_prog *prog,
2705 struct bpf_insn_access_aux *info)
2706 {
2707 if (!bpf_tracing_ctx_access(off, size, type))
2708 return false;
2709 return btf_ctx_access(off, size, type, prog, info);
2710 }
2711
2712 int btf_struct_access(struct bpf_verifier_log *log,
2713 const struct bpf_reg_state *reg,
2714 int off, int size, enum bpf_access_type atype,
2715 u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2716 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2717 const struct btf *btf, u32 id, int off,
2718 const struct btf *need_btf, u32 need_type_id,
2719 bool strict);
2720
2721 int btf_distill_func_proto(struct bpf_verifier_log *log,
2722 struct btf *btf,
2723 const struct btf_type *func_proto,
2724 const char *func_name,
2725 struct btf_func_model *m);
2726
2727 struct bpf_reg_state;
2728 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
2729 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2730 struct btf *btf, const struct btf_type *t);
2731 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2732 int comp_idx, const char *tag_key);
2733 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
2734 int comp_idx, const char *tag_key, int last_id);
2735
2736 struct bpf_prog *bpf_prog_by_id(u32 id);
2737 struct bpf_link *bpf_link_by_id(u32 id);
2738
2739 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
2740 const struct bpf_prog *prog);
2741 void bpf_task_storage_free(struct task_struct *task);
2742 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2743 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2744 const struct btf_func_model *
2745 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2746 const struct bpf_insn *insn);
2747 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2748 u16 btf_fd_idx, u8 **func_addr);
2749
2750 struct bpf_core_ctx {
2751 struct bpf_verifier_log *log;
2752 const struct btf *btf;
2753 };
2754
2755 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2756 const struct bpf_reg_state *reg,
2757 const char *field_name, u32 btf_id, const char *suffix);
2758
2759 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2760 const struct btf *reg_btf, u32 reg_id,
2761 const struct btf *arg_btf, u32 arg_id);
2762
2763 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2764 int relo_idx, void *insn);
2765
unprivileged_ebpf_enabled(void)2766 static inline bool unprivileged_ebpf_enabled(void)
2767 {
2768 return !sysctl_unprivileged_bpf_disabled;
2769 }
2770
2771 /* Not all bpf prog type has the bpf_ctx.
2772 * For the bpf prog type that has initialized the bpf_ctx,
2773 * this function can be used to decide if a kernel function
2774 * is called by a bpf program.
2775 */
has_current_bpf_ctx(void)2776 static inline bool has_current_bpf_ctx(void)
2777 {
2778 return !!current->bpf_ctx;
2779 }
2780
2781 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2782
2783 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2784 enum bpf_dynptr_type type, u32 offset, u32 size);
2785 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2786 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2787
2788 #else /* !CONFIG_BPF_SYSCALL */
bpf_prog_get(u32 ufd)2789 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2790 {
2791 return ERR_PTR(-EOPNOTSUPP);
2792 }
2793
bpf_prog_get_type_dev(u32 ufd,enum bpf_prog_type type,bool attach_drv)2794 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2795 enum bpf_prog_type type,
2796 bool attach_drv)
2797 {
2798 return ERR_PTR(-EOPNOTSUPP);
2799 }
2800
bpf_prog_add(struct bpf_prog * prog,int i)2801 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2802 {
2803 }
2804
bpf_prog_sub(struct bpf_prog * prog,int i)2805 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2806 {
2807 }
2808
bpf_prog_put(struct bpf_prog * prog)2809 static inline void bpf_prog_put(struct bpf_prog *prog)
2810 {
2811 }
2812
bpf_prog_inc(struct bpf_prog * prog)2813 static inline void bpf_prog_inc(struct bpf_prog *prog)
2814 {
2815 }
2816
2817 static inline struct bpf_prog *__must_check
bpf_prog_inc_not_zero(struct bpf_prog * prog)2818 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2819 {
2820 return ERR_PTR(-EOPNOTSUPP);
2821 }
2822
bpf_link_init(struct bpf_link * link,enum bpf_link_type type,const struct bpf_link_ops * ops,struct bpf_prog * prog)2823 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2824 const struct bpf_link_ops *ops,
2825 struct bpf_prog *prog)
2826 {
2827 }
2828
bpf_link_init_sleepable(struct bpf_link * link,enum bpf_link_type type,const struct bpf_link_ops * ops,struct bpf_prog * prog,bool sleepable)2829 static inline void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type,
2830 const struct bpf_link_ops *ops, struct bpf_prog *prog,
2831 bool sleepable)
2832 {
2833 }
2834
bpf_link_prime(struct bpf_link * link,struct bpf_link_primer * primer)2835 static inline int bpf_link_prime(struct bpf_link *link,
2836 struct bpf_link_primer *primer)
2837 {
2838 return -EOPNOTSUPP;
2839 }
2840
bpf_link_settle(struct bpf_link_primer * primer)2841 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2842 {
2843 return -EOPNOTSUPP;
2844 }
2845
bpf_link_cleanup(struct bpf_link_primer * primer)2846 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2847 {
2848 }
2849
bpf_link_inc(struct bpf_link * link)2850 static inline void bpf_link_inc(struct bpf_link *link)
2851 {
2852 }
2853
bpf_link_inc_not_zero(struct bpf_link * link)2854 static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link)
2855 {
2856 return NULL;
2857 }
2858
bpf_link_put(struct bpf_link * link)2859 static inline void bpf_link_put(struct bpf_link *link)
2860 {
2861 }
2862
bpf_obj_get_user(const char __user * pathname,int flags)2863 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2864 {
2865 return -EOPNOTSUPP;
2866 }
2867
bpf_token_capable(const struct bpf_token * token,int cap)2868 static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
2869 {
2870 return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
2871 }
2872
bpf_token_inc(struct bpf_token * token)2873 static inline void bpf_token_inc(struct bpf_token *token)
2874 {
2875 }
2876
bpf_token_put(struct bpf_token * token)2877 static inline void bpf_token_put(struct bpf_token *token)
2878 {
2879 }
2880
bpf_token_get_from_fd(u32 ufd)2881 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
2882 {
2883 return ERR_PTR(-EOPNOTSUPP);
2884 }
2885
__dev_flush(struct list_head * flush_list)2886 static inline void __dev_flush(struct list_head *flush_list)
2887 {
2888 }
2889
2890 struct xdp_frame;
2891 struct bpf_dtab_netdev;
2892 struct bpf_cpu_map_entry;
2893
2894 static inline
dev_xdp_enqueue(struct net_device * dev,struct xdp_frame * xdpf,struct net_device * dev_rx)2895 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2896 struct net_device *dev_rx)
2897 {
2898 return 0;
2899 }
2900
2901 static inline
dev_map_enqueue(struct bpf_dtab_netdev * dst,struct xdp_frame * xdpf,struct net_device * dev_rx)2902 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2903 struct net_device *dev_rx)
2904 {
2905 return 0;
2906 }
2907
2908 static inline
dev_map_enqueue_multi(struct xdp_frame * xdpf,struct net_device * dev_rx,struct bpf_map * map,bool exclude_ingress)2909 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2910 struct bpf_map *map, bool exclude_ingress)
2911 {
2912 return 0;
2913 }
2914
2915 struct sk_buff;
2916
dev_map_generic_redirect(struct bpf_dtab_netdev * dst,struct sk_buff * skb,const struct bpf_prog * xdp_prog)2917 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2918 struct sk_buff *skb,
2919 const struct bpf_prog *xdp_prog)
2920 {
2921 return 0;
2922 }
2923
2924 static inline
dev_map_redirect_multi(struct net_device * dev,struct sk_buff * skb,const struct bpf_prog * xdp_prog,struct bpf_map * map,bool exclude_ingress)2925 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2926 const struct bpf_prog *xdp_prog,
2927 struct bpf_map *map, bool exclude_ingress)
2928 {
2929 return 0;
2930 }
2931
__cpu_map_flush(struct list_head * flush_list)2932 static inline void __cpu_map_flush(struct list_head *flush_list)
2933 {
2934 }
2935
cpu_map_enqueue(struct bpf_cpu_map_entry * rcpu,struct xdp_frame * xdpf,struct net_device * dev_rx)2936 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2937 struct xdp_frame *xdpf,
2938 struct net_device *dev_rx)
2939 {
2940 return 0;
2941 }
2942
cpu_map_generic_redirect(struct bpf_cpu_map_entry * rcpu,struct sk_buff * skb)2943 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2944 struct sk_buff *skb)
2945 {
2946 return -EOPNOTSUPP;
2947 }
2948
bpf_prog_get_type_path(const char * name,enum bpf_prog_type type)2949 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2950 enum bpf_prog_type type)
2951 {
2952 return ERR_PTR(-EOPNOTSUPP);
2953 }
2954
bpf_prog_test_run_xdp(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2955 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2956 const union bpf_attr *kattr,
2957 union bpf_attr __user *uattr)
2958 {
2959 return -ENOTSUPP;
2960 }
2961
bpf_prog_test_run_skb(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2962 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2963 const union bpf_attr *kattr,
2964 union bpf_attr __user *uattr)
2965 {
2966 return -ENOTSUPP;
2967 }
2968
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2969 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2970 const union bpf_attr *kattr,
2971 union bpf_attr __user *uattr)
2972 {
2973 return -ENOTSUPP;
2974 }
2975
bpf_prog_test_run_flow_dissector(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2976 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2977 const union bpf_attr *kattr,
2978 union bpf_attr __user *uattr)
2979 {
2980 return -ENOTSUPP;
2981 }
2982
bpf_prog_test_run_sk_lookup(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2983 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2984 const union bpf_attr *kattr,
2985 union bpf_attr __user *uattr)
2986 {
2987 return -ENOTSUPP;
2988 }
2989
bpf_map_put(struct bpf_map * map)2990 static inline void bpf_map_put(struct bpf_map *map)
2991 {
2992 }
2993
bpf_prog_by_id(u32 id)2994 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2995 {
2996 return ERR_PTR(-ENOTSUPP);
2997 }
2998
btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size,enum bpf_access_type atype,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)2999 static inline int btf_struct_access(struct bpf_verifier_log *log,
3000 const struct bpf_reg_state *reg,
3001 int off, int size, enum bpf_access_type atype,
3002 u32 *next_btf_id, enum bpf_type_flag *flag,
3003 const char **field_name)
3004 {
3005 return -EACCES;
3006 }
3007
3008 static inline const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)3009 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3010 {
3011 return NULL;
3012 }
3013
bpf_task_storage_free(struct task_struct * task)3014 static inline void bpf_task_storage_free(struct task_struct *task)
3015 {
3016 }
3017
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)3018 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3019 {
3020 return false;
3021 }
3022
3023 static inline const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)3024 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3025 const struct bpf_insn *insn)
3026 {
3027 return NULL;
3028 }
3029
3030 static inline int
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)3031 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
3032 u16 btf_fd_idx, u8 **func_addr)
3033 {
3034 return -ENOTSUPP;
3035 }
3036
unprivileged_ebpf_enabled(void)3037 static inline bool unprivileged_ebpf_enabled(void)
3038 {
3039 return false;
3040 }
3041
has_current_bpf_ctx(void)3042 static inline bool has_current_bpf_ctx(void)
3043 {
3044 return false;
3045 }
3046
bpf_prog_inc_misses_counter(struct bpf_prog * prog)3047 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
3048 {
3049 }
3050
bpf_cgrp_storage_free(struct cgroup * cgroup)3051 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
3052 {
3053 }
3054
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)3055 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
3056 enum bpf_dynptr_type type, u32 offset, u32 size)
3057 {
3058 }
3059
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)3060 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
3061 {
3062 }
3063
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)3064 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
3065 {
3066 }
3067 #endif /* CONFIG_BPF_SYSCALL */
3068
3069 static __always_inline int
bpf_probe_read_kernel_common(void * dst,u32 size,const void * unsafe_ptr)3070 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
3071 {
3072 int ret = -EFAULT;
3073
3074 if (IS_ENABLED(CONFIG_BPF_EVENTS))
3075 ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
3076 if (unlikely(ret < 0))
3077 memset(dst, 0, size);
3078 return ret;
3079 }
3080
3081 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len);
3082
bpf_prog_get_type(u32 ufd,enum bpf_prog_type type)3083 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
3084 enum bpf_prog_type type)
3085 {
3086 return bpf_prog_get_type_dev(ufd, type, false);
3087 }
3088
3089 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
3090 struct bpf_map **used_maps, u32 len);
3091
3092 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
3093
3094 int bpf_prog_offload_compile(struct bpf_prog *prog);
3095 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
3096 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
3097 struct bpf_prog *prog);
3098
3099 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
3100
3101 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
3102 int bpf_map_offload_update_elem(struct bpf_map *map,
3103 void *key, void *value, u64 flags);
3104 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
3105 int bpf_map_offload_get_next_key(struct bpf_map *map,
3106 void *key, void *next_key);
3107
3108 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
3109
3110 struct bpf_offload_dev *
3111 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
3112 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
3113 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
3114 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
3115 struct net_device *netdev);
3116 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
3117 struct net_device *netdev);
3118 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
3119
3120 void unpriv_ebpf_notify(int new_state);
3121
3122 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
3123 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3124 struct bpf_prog_aux *prog_aux);
3125 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
3126 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
3127 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
3128 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
3129
bpf_prog_is_dev_bound(const struct bpf_prog_aux * aux)3130 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3131 {
3132 return aux->dev_bound;
3133 }
3134
bpf_prog_is_offloaded(const struct bpf_prog_aux * aux)3135 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
3136 {
3137 return aux->offload_requested;
3138 }
3139
3140 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
3141
bpf_map_is_offloaded(struct bpf_map * map)3142 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3143 {
3144 return unlikely(map->ops == &bpf_map_offload_ops);
3145 }
3146
3147 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
3148 void bpf_map_offload_map_free(struct bpf_map *map);
3149 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
3150 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3151 const union bpf_attr *kattr,
3152 union bpf_attr __user *uattr);
3153
3154 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
3155 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
3156 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
3157 int sock_map_bpf_prog_query(const union bpf_attr *attr,
3158 union bpf_attr __user *uattr);
3159 int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog);
3160
3161 void sock_map_unhash(struct sock *sk);
3162 void sock_map_destroy(struct sock *sk);
3163 void sock_map_close(struct sock *sk, long timeout);
3164 #else
bpf_dev_bound_kfunc_check(struct bpf_verifier_log * log,struct bpf_prog_aux * prog_aux)3165 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3166 struct bpf_prog_aux *prog_aux)
3167 {
3168 return -EOPNOTSUPP;
3169 }
3170
bpf_dev_bound_resolve_kfunc(struct bpf_prog * prog,u32 func_id)3171 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
3172 u32 func_id)
3173 {
3174 return NULL;
3175 }
3176
bpf_prog_dev_bound_init(struct bpf_prog * prog,union bpf_attr * attr)3177 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
3178 union bpf_attr *attr)
3179 {
3180 return -EOPNOTSUPP;
3181 }
3182
bpf_prog_dev_bound_inherit(struct bpf_prog * new_prog,struct bpf_prog * old_prog)3183 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
3184 struct bpf_prog *old_prog)
3185 {
3186 return -EOPNOTSUPP;
3187 }
3188
bpf_dev_bound_netdev_unregister(struct net_device * dev)3189 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
3190 {
3191 }
3192
bpf_prog_is_dev_bound(const struct bpf_prog_aux * aux)3193 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3194 {
3195 return false;
3196 }
3197
bpf_prog_is_offloaded(struct bpf_prog_aux * aux)3198 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
3199 {
3200 return false;
3201 }
3202
bpf_prog_dev_bound_match(const struct bpf_prog * lhs,const struct bpf_prog * rhs)3203 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
3204 {
3205 return false;
3206 }
3207
bpf_map_is_offloaded(struct bpf_map * map)3208 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3209 {
3210 return false;
3211 }
3212
bpf_map_offload_map_alloc(union bpf_attr * attr)3213 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
3214 {
3215 return ERR_PTR(-EOPNOTSUPP);
3216 }
3217
bpf_map_offload_map_free(struct bpf_map * map)3218 static inline void bpf_map_offload_map_free(struct bpf_map *map)
3219 {
3220 }
3221
bpf_map_offload_map_mem_usage(const struct bpf_map * map)3222 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
3223 {
3224 return 0;
3225 }
3226
bpf_prog_test_run_syscall(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)3227 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3228 const union bpf_attr *kattr,
3229 union bpf_attr __user *uattr)
3230 {
3231 return -ENOTSUPP;
3232 }
3233
3234 #ifdef CONFIG_BPF_SYSCALL
sock_map_get_from_fd(const union bpf_attr * attr,struct bpf_prog * prog)3235 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
3236 struct bpf_prog *prog)
3237 {
3238 return -EINVAL;
3239 }
3240
sock_map_prog_detach(const union bpf_attr * attr,enum bpf_prog_type ptype)3241 static inline int sock_map_prog_detach(const union bpf_attr *attr,
3242 enum bpf_prog_type ptype)
3243 {
3244 return -EOPNOTSUPP;
3245 }
3246
sock_map_update_elem_sys(struct bpf_map * map,void * key,void * value,u64 flags)3247 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
3248 u64 flags)
3249 {
3250 return -EOPNOTSUPP;
3251 }
3252
sock_map_bpf_prog_query(const union bpf_attr * attr,union bpf_attr __user * uattr)3253 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
3254 union bpf_attr __user *uattr)
3255 {
3256 return -EINVAL;
3257 }
3258
sock_map_link_create(const union bpf_attr * attr,struct bpf_prog * prog)3259 static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog)
3260 {
3261 return -EOPNOTSUPP;
3262 }
3263 #endif /* CONFIG_BPF_SYSCALL */
3264 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
3265
3266 static __always_inline void
bpf_prog_inc_misses_counters(const struct bpf_prog_array * array)3267 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
3268 {
3269 const struct bpf_prog_array_item *item;
3270 struct bpf_prog *prog;
3271
3272 if (unlikely(!array))
3273 return;
3274
3275 item = &array->items[0];
3276 while ((prog = READ_ONCE(item->prog))) {
3277 bpf_prog_inc_misses_counter(prog);
3278 item++;
3279 }
3280 }
3281
3282 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
3283 void bpf_sk_reuseport_detach(struct sock *sk);
3284 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
3285 void *value);
3286 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
3287 void *value, u64 map_flags);
3288 #else
bpf_sk_reuseport_detach(struct sock * sk)3289 static inline void bpf_sk_reuseport_detach(struct sock *sk)
3290 {
3291 }
3292
3293 #ifdef CONFIG_BPF_SYSCALL
bpf_fd_reuseport_array_lookup_elem(struct bpf_map * map,void * key,void * value)3294 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
3295 void *key, void *value)
3296 {
3297 return -EOPNOTSUPP;
3298 }
3299
bpf_fd_reuseport_array_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)3300 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
3301 void *key, void *value,
3302 u64 map_flags)
3303 {
3304 return -EOPNOTSUPP;
3305 }
3306 #endif /* CONFIG_BPF_SYSCALL */
3307 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
3308
3309 /* verifier prototypes for helper functions called from eBPF programs */
3310 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
3311 extern const struct bpf_func_proto bpf_map_update_elem_proto;
3312 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
3313 extern const struct bpf_func_proto bpf_map_push_elem_proto;
3314 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
3315 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
3316 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
3317
3318 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
3319 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
3320 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
3321 extern const struct bpf_func_proto bpf_tail_call_proto;
3322 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3323 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3324 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3325 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3326 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3327 extern const struct bpf_func_proto bpf_get_current_comm_proto;
3328 extern const struct bpf_func_proto bpf_get_stackid_proto;
3329 extern const struct bpf_func_proto bpf_get_stack_proto;
3330 extern const struct bpf_func_proto bpf_get_stack_sleepable_proto;
3331 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3332 extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto;
3333 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3334 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3335 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3336 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3337 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3338 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3339 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3340 extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto;
3341 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3342 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3343 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3344 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3345 extern const struct bpf_func_proto bpf_spin_lock_proto;
3346 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3347 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3348 extern const struct bpf_func_proto bpf_strtol_proto;
3349 extern const struct bpf_func_proto bpf_strtoul_proto;
3350 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3351 extern const struct bpf_func_proto bpf_jiffies64_proto;
3352 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3353 extern const struct bpf_func_proto bpf_event_output_data_proto;
3354 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3355 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3356 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3357 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3358 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3359 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3360 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3361 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3362 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3363 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3364 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3365 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3366 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3367 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3368 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3369 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3370 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3371 extern const struct bpf_func_proto bpf_snprintf_proto;
3372 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3373 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3374 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3375 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3376 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3377 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3378 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3379 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3380 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3381 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3382 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3383 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3384 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3385 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3386 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3387 extern const struct bpf_func_proto bpf_find_vma_proto;
3388 extern const struct bpf_func_proto bpf_loop_proto;
3389 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3390 extern const struct bpf_func_proto bpf_set_retval_proto;
3391 extern const struct bpf_func_proto bpf_get_retval_proto;
3392 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3393 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3394 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3395
3396 const struct bpf_func_proto *tracing_prog_func_proto(
3397 enum bpf_func_id func_id, const struct bpf_prog *prog);
3398
3399 /* Shared helpers among cBPF and eBPF. */
3400 void bpf_user_rnd_init_once(void);
3401 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3402 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3403
3404 #if defined(CONFIG_NET)
3405 bool bpf_sock_common_is_valid_access(int off, int size,
3406 enum bpf_access_type type,
3407 struct bpf_insn_access_aux *info);
3408 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3409 struct bpf_insn_access_aux *info);
3410 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3411 const struct bpf_insn *si,
3412 struct bpf_insn *insn_buf,
3413 struct bpf_prog *prog,
3414 u32 *target_size);
3415 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3416 struct bpf_dynptr *ptr);
3417 #else
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3418 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3419 enum bpf_access_type type,
3420 struct bpf_insn_access_aux *info)
3421 {
3422 return false;
3423 }
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3424 static inline bool bpf_sock_is_valid_access(int off, int size,
3425 enum bpf_access_type type,
3426 struct bpf_insn_access_aux *info)
3427 {
3428 return false;
3429 }
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3430 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3431 const struct bpf_insn *si,
3432 struct bpf_insn *insn_buf,
3433 struct bpf_prog *prog,
3434 u32 *target_size)
3435 {
3436 return 0;
3437 }
bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr)3438 static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3439 struct bpf_dynptr *ptr)
3440 {
3441 return -EOPNOTSUPP;
3442 }
3443 #endif
3444
3445 #ifdef CONFIG_INET
3446 struct sk_reuseport_kern {
3447 struct sk_buff *skb;
3448 struct sock *sk;
3449 struct sock *selected_sk;
3450 struct sock *migrating_sk;
3451 void *data_end;
3452 u32 hash;
3453 u32 reuseport_id;
3454 bool bind_inany;
3455 };
3456 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3457 struct bpf_insn_access_aux *info);
3458
3459 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3460 const struct bpf_insn *si,
3461 struct bpf_insn *insn_buf,
3462 struct bpf_prog *prog,
3463 u32 *target_size);
3464
3465 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3466 struct bpf_insn_access_aux *info);
3467
3468 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3469 const struct bpf_insn *si,
3470 struct bpf_insn *insn_buf,
3471 struct bpf_prog *prog,
3472 u32 *target_size);
3473 #else
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3474 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3475 enum bpf_access_type type,
3476 struct bpf_insn_access_aux *info)
3477 {
3478 return false;
3479 }
3480
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3481 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3482 const struct bpf_insn *si,
3483 struct bpf_insn *insn_buf,
3484 struct bpf_prog *prog,
3485 u32 *target_size)
3486 {
3487 return 0;
3488 }
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3489 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3490 enum bpf_access_type type,
3491 struct bpf_insn_access_aux *info)
3492 {
3493 return false;
3494 }
3495
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3496 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3497 const struct bpf_insn *si,
3498 struct bpf_insn *insn_buf,
3499 struct bpf_prog *prog,
3500 u32 *target_size)
3501 {
3502 return 0;
3503 }
3504 #endif /* CONFIG_INET */
3505
3506 enum bpf_text_poke_type {
3507 BPF_MOD_CALL,
3508 BPF_MOD_JUMP,
3509 };
3510
3511 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3512 void *addr1, void *addr2);
3513
3514 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3515 struct bpf_prog *new, struct bpf_prog *old);
3516
3517 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3518 int bpf_arch_text_invalidate(void *dst, size_t len);
3519
3520 struct btf_id_set;
3521 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3522
3523 #define MAX_BPRINTF_VARARGS 12
3524 #define MAX_BPRINTF_BUF 1024
3525
3526 struct bpf_bprintf_data {
3527 u32 *bin_args;
3528 char *buf;
3529 bool get_bin_args;
3530 bool get_buf;
3531 };
3532
3533 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3534 u32 num_args, struct bpf_bprintf_data *data);
3535 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3536
3537 #ifdef CONFIG_BPF_LSM
3538 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3539 void bpf_cgroup_atype_put(int cgroup_atype);
3540 #else
bpf_cgroup_atype_get(u32 attach_btf_id,int cgroup_atype)3541 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
bpf_cgroup_atype_put(int cgroup_atype)3542 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3543 #endif /* CONFIG_BPF_LSM */
3544
3545 struct key;
3546
3547 #ifdef CONFIG_KEYS
3548 struct bpf_key {
3549 struct key *key;
3550 bool has_ref;
3551 };
3552 #endif /* CONFIG_KEYS */
3553
type_is_alloc(u32 type)3554 static inline bool type_is_alloc(u32 type)
3555 {
3556 return type & MEM_ALLOC;
3557 }
3558
bpf_memcg_flags(gfp_t flags)3559 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3560 {
3561 if (memcg_bpf_enabled())
3562 return flags | __GFP_ACCOUNT;
3563 return flags;
3564 }
3565
bpf_is_subprog(const struct bpf_prog * prog)3566 static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3567 {
3568 return prog->aux->func_idx != 0;
3569 }
3570
3571 #endif /* _LINUX_BPF_H */
3572