1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
3  */
4 #ifndef _LINUX_BPF_H
5 #define _LINUX_BPF_H 1
6 
7 #include <uapi/linux/bpf.h>
8 #include <uapi/linux/filter.h>
9 
10 #include <linux/workqueue.h>
11 #include <linux/file.h>
12 #include <linux/percpu.h>
13 #include <linux/err.h>
14 #include <linux/rbtree_latch.h>
15 #include <linux/numa.h>
16 #include <linux/mm_types.h>
17 #include <linux/wait.h>
18 #include <linux/refcount.h>
19 #include <linux/mutex.h>
20 #include <linux/module.h>
21 #include <linux/kallsyms.h>
22 #include <linux/capability.h>
23 #include <linux/sched/mm.h>
24 #include <linux/slab.h>
25 #include <linux/percpu-refcount.h>
26 #include <linux/stddef.h>
27 #include <linux/bpfptr.h>
28 #include <linux/btf.h>
29 #include <linux/rcupdate_trace.h>
30 #include <linux/static_call.h>
31 #include <linux/memcontrol.h>
32 #include <linux/cfi.h>
33 #include <asm/rqspinlock.h>
34 
35 struct bpf_verifier_env;
36 struct bpf_verifier_log;
37 struct perf_event;
38 struct bpf_prog;
39 struct bpf_prog_aux;
40 struct bpf_map;
41 struct bpf_arena;
42 struct sock;
43 struct seq_file;
44 struct btf;
45 struct btf_type;
46 struct exception_table_entry;
47 struct seq_operations;
48 struct bpf_iter_aux_info;
49 struct bpf_local_storage;
50 struct bpf_local_storage_map;
51 struct kobject;
52 struct mem_cgroup;
53 struct module;
54 struct bpf_func_state;
55 struct ftrace_ops;
56 struct cgroup;
57 struct bpf_token;
58 struct user_namespace;
59 struct super_block;
60 struct inode;
61 
62 extern struct idr btf_idr;
63 extern spinlock_t btf_idr_lock;
64 extern struct kobject *btf_kobj;
65 extern struct bpf_mem_alloc bpf_global_ma, bpf_global_percpu_ma;
66 extern bool bpf_global_ma_set;
67 
68 typedef u64 (*bpf_callback_t)(u64, u64, u64, u64, u64);
69 typedef int (*bpf_iter_init_seq_priv_t)(void *private_data,
70 					struct bpf_iter_aux_info *aux);
71 typedef void (*bpf_iter_fini_seq_priv_t)(void *private_data);
72 typedef unsigned int (*bpf_func_t)(const void *,
73 				   const struct bpf_insn *);
74 struct bpf_iter_seq_info {
75 	const struct seq_operations *seq_ops;
76 	bpf_iter_init_seq_priv_t init_seq_private;
77 	bpf_iter_fini_seq_priv_t fini_seq_private;
78 	u32 seq_priv_size;
79 };
80 
81 /* map is generic key/value storage optionally accessible by eBPF programs */
82 struct bpf_map_ops {
83 	/* funcs callable from userspace (via syscall) */
84 	int (*map_alloc_check)(union bpf_attr *attr);
85 	struct bpf_map *(*map_alloc)(union bpf_attr *attr);
86 	void (*map_release)(struct bpf_map *map, struct file *map_file);
87 	void (*map_free)(struct bpf_map *map);
88 	int (*map_get_next_key)(struct bpf_map *map, void *key, void *next_key);
89 	void (*map_release_uref)(struct bpf_map *map);
90 	void *(*map_lookup_elem_sys_only)(struct bpf_map *map, void *key);
91 	int (*map_lookup_batch)(struct bpf_map *map, const union bpf_attr *attr,
92 				union bpf_attr __user *uattr);
93 	int (*map_lookup_and_delete_elem)(struct bpf_map *map, void *key,
94 					  void *value, u64 flags);
95 	int (*map_lookup_and_delete_batch)(struct bpf_map *map,
96 					   const union bpf_attr *attr,
97 					   union bpf_attr __user *uattr);
98 	int (*map_update_batch)(struct bpf_map *map, struct file *map_file,
99 				const union bpf_attr *attr,
100 				union bpf_attr __user *uattr);
101 	int (*map_delete_batch)(struct bpf_map *map, const union bpf_attr *attr,
102 				union bpf_attr __user *uattr);
103 
104 	/* funcs callable from userspace and from eBPF programs */
105 	void *(*map_lookup_elem)(struct bpf_map *map, void *key);
106 	long (*map_update_elem)(struct bpf_map *map, void *key, void *value, u64 flags);
107 	long (*map_delete_elem)(struct bpf_map *map, void *key);
108 	long (*map_push_elem)(struct bpf_map *map, void *value, u64 flags);
109 	long (*map_pop_elem)(struct bpf_map *map, void *value);
110 	long (*map_peek_elem)(struct bpf_map *map, void *value);
111 	void *(*map_lookup_percpu_elem)(struct bpf_map *map, void *key, u32 cpu);
112 
113 	/* funcs called by prog_array and perf_event_array map */
114 	void *(*map_fd_get_ptr)(struct bpf_map *map, struct file *map_file,
115 				int fd);
116 	/* If need_defer is true, the implementation should guarantee that
117 	 * the to-be-put element is still alive before the bpf program, which
118 	 * may manipulate it, exists.
119 	 */
120 	void (*map_fd_put_ptr)(struct bpf_map *map, void *ptr, bool need_defer);
121 	int (*map_gen_lookup)(struct bpf_map *map, struct bpf_insn *insn_buf);
122 	u32 (*map_fd_sys_lookup_elem)(void *ptr);
123 	void (*map_seq_show_elem)(struct bpf_map *map, void *key,
124 				  struct seq_file *m);
125 	int (*map_check_btf)(const struct bpf_map *map,
126 			     const struct btf *btf,
127 			     const struct btf_type *key_type,
128 			     const struct btf_type *value_type);
129 
130 	/* Prog poke tracking helpers. */
131 	int (*map_poke_track)(struct bpf_map *map, struct bpf_prog_aux *aux);
132 	void (*map_poke_untrack)(struct bpf_map *map, struct bpf_prog_aux *aux);
133 	void (*map_poke_run)(struct bpf_map *map, u32 key, struct bpf_prog *old,
134 			     struct bpf_prog *new);
135 
136 	/* Direct value access helpers. */
137 	int (*map_direct_value_addr)(const struct bpf_map *map,
138 				     u64 *imm, u32 off);
139 	int (*map_direct_value_meta)(const struct bpf_map *map,
140 				     u64 imm, u32 *off);
141 	int (*map_mmap)(struct bpf_map *map, struct vm_area_struct *vma);
142 	__poll_t (*map_poll)(struct bpf_map *map, struct file *filp,
143 			     struct poll_table_struct *pts);
144 	unsigned long (*map_get_unmapped_area)(struct file *filep, unsigned long addr,
145 					       unsigned long len, unsigned long pgoff,
146 					       unsigned long flags);
147 
148 	/* Functions called by bpf_local_storage maps */
149 	int (*map_local_storage_charge)(struct bpf_local_storage_map *smap,
150 					void *owner, u32 size);
151 	void (*map_local_storage_uncharge)(struct bpf_local_storage_map *smap,
152 					   void *owner, u32 size);
153 	struct bpf_local_storage __rcu ** (*map_owner_storage_ptr)(void *owner);
154 
155 	/* Misc helpers.*/
156 	long (*map_redirect)(struct bpf_map *map, u64 key, u64 flags);
157 
158 	/* map_meta_equal must be implemented for maps that can be
159 	 * used as an inner map.  It is a runtime check to ensure
160 	 * an inner map can be inserted to an outer map.
161 	 *
162 	 * Some properties of the inner map has been used during the
163 	 * verification time.  When inserting an inner map at the runtime,
164 	 * map_meta_equal has to ensure the inserting map has the same
165 	 * properties that the verifier has used earlier.
166 	 */
167 	bool (*map_meta_equal)(const struct bpf_map *meta0,
168 			       const struct bpf_map *meta1);
169 
170 
171 	int (*map_set_for_each_callback_args)(struct bpf_verifier_env *env,
172 					      struct bpf_func_state *caller,
173 					      struct bpf_func_state *callee);
174 	long (*map_for_each_callback)(struct bpf_map *map,
175 				     bpf_callback_t callback_fn,
176 				     void *callback_ctx, u64 flags);
177 
178 	u64 (*map_mem_usage)(const struct bpf_map *map);
179 
180 	/* BTF id of struct allocated by map_alloc */
181 	int *map_btf_id;
182 
183 	/* bpf_iter info used to open a seq_file */
184 	const struct bpf_iter_seq_info *iter_seq_info;
185 };
186 
187 enum {
188 	/* Support at most 11 fields in a BTF type */
189 	BTF_FIELDS_MAX	   = 11,
190 };
191 
192 enum btf_field_type {
193 	BPF_SPIN_LOCK  = (1 << 0),
194 	BPF_TIMER      = (1 << 1),
195 	BPF_KPTR_UNREF = (1 << 2),
196 	BPF_KPTR_REF   = (1 << 3),
197 	BPF_KPTR_PERCPU = (1 << 4),
198 	BPF_KPTR       = BPF_KPTR_UNREF | BPF_KPTR_REF | BPF_KPTR_PERCPU,
199 	BPF_LIST_HEAD  = (1 << 5),
200 	BPF_LIST_NODE  = (1 << 6),
201 	BPF_RB_ROOT    = (1 << 7),
202 	BPF_RB_NODE    = (1 << 8),
203 	BPF_GRAPH_NODE = BPF_RB_NODE | BPF_LIST_NODE,
204 	BPF_GRAPH_ROOT = BPF_RB_ROOT | BPF_LIST_HEAD,
205 	BPF_REFCOUNT   = (1 << 9),
206 	BPF_WORKQUEUE  = (1 << 10),
207 	BPF_UPTR       = (1 << 11),
208 	BPF_RES_SPIN_LOCK = (1 << 12),
209 };
210 
211 typedef void (*btf_dtor_kfunc_t)(void *);
212 
213 struct btf_field_kptr {
214 	struct btf *btf;
215 	struct module *module;
216 	/* dtor used if btf_is_kernel(btf), otherwise the type is
217 	 * program-allocated, dtor is NULL,  and __bpf_obj_drop_impl is used
218 	 */
219 	btf_dtor_kfunc_t dtor;
220 	u32 btf_id;
221 };
222 
223 struct btf_field_graph_root {
224 	struct btf *btf;
225 	u32 value_btf_id;
226 	u32 node_offset;
227 	struct btf_record *value_rec;
228 };
229 
230 struct btf_field {
231 	u32 offset;
232 	u32 size;
233 	enum btf_field_type type;
234 	union {
235 		struct btf_field_kptr kptr;
236 		struct btf_field_graph_root graph_root;
237 	};
238 };
239 
240 struct btf_record {
241 	u32 cnt;
242 	u32 field_mask;
243 	int spin_lock_off;
244 	int res_spin_lock_off;
245 	int timer_off;
246 	int wq_off;
247 	int refcount_off;
248 	struct btf_field fields[];
249 };
250 
251 /* Non-opaque version of bpf_rb_node in uapi/linux/bpf.h */
252 struct bpf_rb_node_kern {
253 	struct rb_node rb_node;
254 	void *owner;
255 } __attribute__((aligned(8)));
256 
257 /* Non-opaque version of bpf_list_node in uapi/linux/bpf.h */
258 struct bpf_list_node_kern {
259 	struct list_head list_head;
260 	void *owner;
261 } __attribute__((aligned(8)));
262 
263 struct bpf_map {
264 	const struct bpf_map_ops *ops;
265 	struct bpf_map *inner_map_meta;
266 #ifdef CONFIG_SECURITY
267 	void *security;
268 #endif
269 	enum bpf_map_type map_type;
270 	u32 key_size;
271 	u32 value_size;
272 	u32 max_entries;
273 	u64 map_extra; /* any per-map-type extra fields */
274 	u32 map_flags;
275 	u32 id;
276 	struct btf_record *record;
277 	int numa_node;
278 	u32 btf_key_type_id;
279 	u32 btf_value_type_id;
280 	u32 btf_vmlinux_value_type_id;
281 	struct btf *btf;
282 #ifdef CONFIG_MEMCG
283 	struct obj_cgroup *objcg;
284 #endif
285 	char name[BPF_OBJ_NAME_LEN];
286 	struct mutex freeze_mutex;
287 	atomic64_t refcnt;
288 	atomic64_t usercnt;
289 	/* rcu is used before freeing and work is only used during freeing */
290 	union {
291 		struct work_struct work;
292 		struct rcu_head rcu;
293 	};
294 	atomic64_t writecnt;
295 	/* 'Ownership' of program-containing map is claimed by the first program
296 	 * that is going to use this map or by the first program which FD is
297 	 * stored in the map to make sure that all callers and callees have the
298 	 * same prog type, JITed flag and xdp_has_frags flag.
299 	 */
300 	struct {
301 		const struct btf_type *attach_func_proto;
302 		spinlock_t lock;
303 		enum bpf_prog_type type;
304 		bool jited;
305 		bool xdp_has_frags;
306 	} owner;
307 	bool bypass_spec_v1;
308 	bool frozen; /* write-once; write-protected by freeze_mutex */
309 	bool free_after_mult_rcu_gp;
310 	bool free_after_rcu_gp;
311 	atomic64_t sleepable_refcnt;
312 	s64 __percpu *elem_count;
313 };
314 
btf_field_type_name(enum btf_field_type type)315 static inline const char *btf_field_type_name(enum btf_field_type type)
316 {
317 	switch (type) {
318 	case BPF_SPIN_LOCK:
319 		return "bpf_spin_lock";
320 	case BPF_RES_SPIN_LOCK:
321 		return "bpf_res_spin_lock";
322 	case BPF_TIMER:
323 		return "bpf_timer";
324 	case BPF_WORKQUEUE:
325 		return "bpf_wq";
326 	case BPF_KPTR_UNREF:
327 	case BPF_KPTR_REF:
328 		return "kptr";
329 	case BPF_KPTR_PERCPU:
330 		return "percpu_kptr";
331 	case BPF_UPTR:
332 		return "uptr";
333 	case BPF_LIST_HEAD:
334 		return "bpf_list_head";
335 	case BPF_LIST_NODE:
336 		return "bpf_list_node";
337 	case BPF_RB_ROOT:
338 		return "bpf_rb_root";
339 	case BPF_RB_NODE:
340 		return "bpf_rb_node";
341 	case BPF_REFCOUNT:
342 		return "bpf_refcount";
343 	default:
344 		WARN_ON_ONCE(1);
345 		return "unknown";
346 	}
347 }
348 
btf_field_type_size(enum btf_field_type type)349 static inline u32 btf_field_type_size(enum btf_field_type type)
350 {
351 	switch (type) {
352 	case BPF_SPIN_LOCK:
353 		return sizeof(struct bpf_spin_lock);
354 	case BPF_RES_SPIN_LOCK:
355 		return sizeof(struct bpf_res_spin_lock);
356 	case BPF_TIMER:
357 		return sizeof(struct bpf_timer);
358 	case BPF_WORKQUEUE:
359 		return sizeof(struct bpf_wq);
360 	case BPF_KPTR_UNREF:
361 	case BPF_KPTR_REF:
362 	case BPF_KPTR_PERCPU:
363 	case BPF_UPTR:
364 		return sizeof(u64);
365 	case BPF_LIST_HEAD:
366 		return sizeof(struct bpf_list_head);
367 	case BPF_LIST_NODE:
368 		return sizeof(struct bpf_list_node);
369 	case BPF_RB_ROOT:
370 		return sizeof(struct bpf_rb_root);
371 	case BPF_RB_NODE:
372 		return sizeof(struct bpf_rb_node);
373 	case BPF_REFCOUNT:
374 		return sizeof(struct bpf_refcount);
375 	default:
376 		WARN_ON_ONCE(1);
377 		return 0;
378 	}
379 }
380 
btf_field_type_align(enum btf_field_type type)381 static inline u32 btf_field_type_align(enum btf_field_type type)
382 {
383 	switch (type) {
384 	case BPF_SPIN_LOCK:
385 		return __alignof__(struct bpf_spin_lock);
386 	case BPF_RES_SPIN_LOCK:
387 		return __alignof__(struct bpf_res_spin_lock);
388 	case BPF_TIMER:
389 		return __alignof__(struct bpf_timer);
390 	case BPF_WORKQUEUE:
391 		return __alignof__(struct bpf_wq);
392 	case BPF_KPTR_UNREF:
393 	case BPF_KPTR_REF:
394 	case BPF_KPTR_PERCPU:
395 	case BPF_UPTR:
396 		return __alignof__(u64);
397 	case BPF_LIST_HEAD:
398 		return __alignof__(struct bpf_list_head);
399 	case BPF_LIST_NODE:
400 		return __alignof__(struct bpf_list_node);
401 	case BPF_RB_ROOT:
402 		return __alignof__(struct bpf_rb_root);
403 	case BPF_RB_NODE:
404 		return __alignof__(struct bpf_rb_node);
405 	case BPF_REFCOUNT:
406 		return __alignof__(struct bpf_refcount);
407 	default:
408 		WARN_ON_ONCE(1);
409 		return 0;
410 	}
411 }
412 
bpf_obj_init_field(const struct btf_field * field,void * addr)413 static inline void bpf_obj_init_field(const struct btf_field *field, void *addr)
414 {
415 	memset(addr, 0, field->size);
416 
417 	switch (field->type) {
418 	case BPF_REFCOUNT:
419 		refcount_set((refcount_t *)addr, 1);
420 		break;
421 	case BPF_RB_NODE:
422 		RB_CLEAR_NODE((struct rb_node *)addr);
423 		break;
424 	case BPF_LIST_HEAD:
425 	case BPF_LIST_NODE:
426 		INIT_LIST_HEAD((struct list_head *)addr);
427 		break;
428 	case BPF_RB_ROOT:
429 		/* RB_ROOT_CACHED 0-inits, no need to do anything after memset */
430 	case BPF_SPIN_LOCK:
431 	case BPF_RES_SPIN_LOCK:
432 	case BPF_TIMER:
433 	case BPF_WORKQUEUE:
434 	case BPF_KPTR_UNREF:
435 	case BPF_KPTR_REF:
436 	case BPF_KPTR_PERCPU:
437 	case BPF_UPTR:
438 		break;
439 	default:
440 		WARN_ON_ONCE(1);
441 		return;
442 	}
443 }
444 
btf_record_has_field(const struct btf_record * rec,enum btf_field_type type)445 static inline bool btf_record_has_field(const struct btf_record *rec, enum btf_field_type type)
446 {
447 	if (IS_ERR_OR_NULL(rec))
448 		return false;
449 	return rec->field_mask & type;
450 }
451 
bpf_obj_init(const struct btf_record * rec,void * obj)452 static inline void bpf_obj_init(const struct btf_record *rec, void *obj)
453 {
454 	int i;
455 
456 	if (IS_ERR_OR_NULL(rec))
457 		return;
458 	for (i = 0; i < rec->cnt; i++)
459 		bpf_obj_init_field(&rec->fields[i], obj + rec->fields[i].offset);
460 }
461 
462 /* 'dst' must be a temporary buffer and should not point to memory that is being
463  * used in parallel by a bpf program or bpf syscall, otherwise the access from
464  * the bpf program or bpf syscall may be corrupted by the reinitialization,
465  * leading to weird problems. Even 'dst' is newly-allocated from bpf memory
466  * allocator, it is still possible for 'dst' to be used in parallel by a bpf
467  * program or bpf syscall.
468  */
check_and_init_map_value(struct bpf_map * map,void * dst)469 static inline void check_and_init_map_value(struct bpf_map *map, void *dst)
470 {
471 	bpf_obj_init(map->record, dst);
472 }
473 
474 /* memcpy that is used with 8-byte aligned pointers, power-of-8 size and
475  * forced to use 'long' read/writes to try to atomically copy long counters.
476  * Best-effort only.  No barriers here, since it _will_ race with concurrent
477  * updates from BPF programs. Called from bpf syscall and mostly used with
478  * size 8 or 16 bytes, so ask compiler to inline it.
479  */
bpf_long_memcpy(void * dst,const void * src,u32 size)480 static inline void bpf_long_memcpy(void *dst, const void *src, u32 size)
481 {
482 	const long *lsrc = src;
483 	long *ldst = dst;
484 
485 	size /= sizeof(long);
486 	while (size--)
487 		data_race(*ldst++ = *lsrc++);
488 }
489 
490 /* copy everything but bpf_spin_lock, bpf_timer, and kptrs. There could be one of each. */
bpf_obj_memcpy(struct btf_record * rec,void * dst,void * src,u32 size,bool long_memcpy)491 static inline void bpf_obj_memcpy(struct btf_record *rec,
492 				  void *dst, void *src, u32 size,
493 				  bool long_memcpy)
494 {
495 	u32 curr_off = 0;
496 	int i;
497 
498 	if (IS_ERR_OR_NULL(rec)) {
499 		if (long_memcpy)
500 			bpf_long_memcpy(dst, src, round_up(size, 8));
501 		else
502 			memcpy(dst, src, size);
503 		return;
504 	}
505 
506 	for (i = 0; i < rec->cnt; i++) {
507 		u32 next_off = rec->fields[i].offset;
508 		u32 sz = next_off - curr_off;
509 
510 		memcpy(dst + curr_off, src + curr_off, sz);
511 		curr_off += rec->fields[i].size + sz;
512 	}
513 	memcpy(dst + curr_off, src + curr_off, size - curr_off);
514 }
515 
copy_map_value(struct bpf_map * map,void * dst,void * src)516 static inline void copy_map_value(struct bpf_map *map, void *dst, void *src)
517 {
518 	bpf_obj_memcpy(map->record, dst, src, map->value_size, false);
519 }
520 
copy_map_value_long(struct bpf_map * map,void * dst,void * src)521 static inline void copy_map_value_long(struct bpf_map *map, void *dst, void *src)
522 {
523 	bpf_obj_memcpy(map->record, dst, src, map->value_size, true);
524 }
525 
bpf_obj_swap_uptrs(const struct btf_record * rec,void * dst,void * src)526 static inline void bpf_obj_swap_uptrs(const struct btf_record *rec, void *dst, void *src)
527 {
528 	unsigned long *src_uptr, *dst_uptr;
529 	const struct btf_field *field;
530 	int i;
531 
532 	if (!btf_record_has_field(rec, BPF_UPTR))
533 		return;
534 
535 	for (i = 0, field = rec->fields; i < rec->cnt; i++, field++) {
536 		if (field->type != BPF_UPTR)
537 			continue;
538 
539 		src_uptr = src + field->offset;
540 		dst_uptr = dst + field->offset;
541 		swap(*src_uptr, *dst_uptr);
542 	}
543 }
544 
bpf_obj_memzero(struct btf_record * rec,void * dst,u32 size)545 static inline void bpf_obj_memzero(struct btf_record *rec, void *dst, u32 size)
546 {
547 	u32 curr_off = 0;
548 	int i;
549 
550 	if (IS_ERR_OR_NULL(rec)) {
551 		memset(dst, 0, size);
552 		return;
553 	}
554 
555 	for (i = 0; i < rec->cnt; i++) {
556 		u32 next_off = rec->fields[i].offset;
557 		u32 sz = next_off - curr_off;
558 
559 		memset(dst + curr_off, 0, sz);
560 		curr_off += rec->fields[i].size + sz;
561 	}
562 	memset(dst + curr_off, 0, size - curr_off);
563 }
564 
zero_map_value(struct bpf_map * map,void * dst)565 static inline void zero_map_value(struct bpf_map *map, void *dst)
566 {
567 	bpf_obj_memzero(map->record, dst, map->value_size);
568 }
569 
570 void copy_map_value_locked(struct bpf_map *map, void *dst, void *src,
571 			   bool lock_src);
572 void bpf_timer_cancel_and_free(void *timer);
573 void bpf_wq_cancel_and_free(void *timer);
574 void bpf_list_head_free(const struct btf_field *field, void *list_head,
575 			struct bpf_spin_lock *spin_lock);
576 void bpf_rb_root_free(const struct btf_field *field, void *rb_root,
577 		      struct bpf_spin_lock *spin_lock);
578 u64 bpf_arena_get_kern_vm_start(struct bpf_arena *arena);
579 u64 bpf_arena_get_user_vm_start(struct bpf_arena *arena);
580 int bpf_obj_name_cpy(char *dst, const char *src, unsigned int size);
581 
582 struct bpf_offload_dev;
583 struct bpf_offloaded_map;
584 
585 struct bpf_map_dev_ops {
586 	int (*map_get_next_key)(struct bpf_offloaded_map *map,
587 				void *key, void *next_key);
588 	int (*map_lookup_elem)(struct bpf_offloaded_map *map,
589 			       void *key, void *value);
590 	int (*map_update_elem)(struct bpf_offloaded_map *map,
591 			       void *key, void *value, u64 flags);
592 	int (*map_delete_elem)(struct bpf_offloaded_map *map, void *key);
593 };
594 
595 struct bpf_offloaded_map {
596 	struct bpf_map map;
597 	struct net_device *netdev;
598 	const struct bpf_map_dev_ops *dev_ops;
599 	void *dev_priv;
600 	struct list_head offloads;
601 };
602 
map_to_offmap(struct bpf_map * map)603 static inline struct bpf_offloaded_map *map_to_offmap(struct bpf_map *map)
604 {
605 	return container_of(map, struct bpf_offloaded_map, map);
606 }
607 
bpf_map_offload_neutral(const struct bpf_map * map)608 static inline bool bpf_map_offload_neutral(const struct bpf_map *map)
609 {
610 	return map->map_type == BPF_MAP_TYPE_PERF_EVENT_ARRAY;
611 }
612 
bpf_map_support_seq_show(const struct bpf_map * map)613 static inline bool bpf_map_support_seq_show(const struct bpf_map *map)
614 {
615 	return (map->btf_value_type_id || map->btf_vmlinux_value_type_id) &&
616 		map->ops->map_seq_show_elem;
617 }
618 
619 int map_check_no_btf(const struct bpf_map *map,
620 		     const struct btf *btf,
621 		     const struct btf_type *key_type,
622 		     const struct btf_type *value_type);
623 
624 bool bpf_map_meta_equal(const struct bpf_map *meta0,
625 			const struct bpf_map *meta1);
626 
627 extern const struct bpf_map_ops bpf_map_offload_ops;
628 
629 /* bpf_type_flag contains a set of flags that are applicable to the values of
630  * arg_type, ret_type and reg_type. For example, a pointer value may be null,
631  * or a memory is read-only. We classify types into two categories: base types
632  * and extended types. Extended types are base types combined with a type flag.
633  *
634  * Currently there are no more than 32 base types in arg_type, ret_type and
635  * reg_types.
636  */
637 #define BPF_BASE_TYPE_BITS	8
638 
639 enum bpf_type_flag {
640 	/* PTR may be NULL. */
641 	PTR_MAYBE_NULL		= BIT(0 + BPF_BASE_TYPE_BITS),
642 
643 	/* MEM is read-only. When applied on bpf_arg, it indicates the arg is
644 	 * compatible with both mutable and immutable memory.
645 	 */
646 	MEM_RDONLY		= BIT(1 + BPF_BASE_TYPE_BITS),
647 
648 	/* MEM points to BPF ring buffer reservation. */
649 	MEM_RINGBUF		= BIT(2 + BPF_BASE_TYPE_BITS),
650 
651 	/* MEM is in user address space. */
652 	MEM_USER		= BIT(3 + BPF_BASE_TYPE_BITS),
653 
654 	/* MEM is a percpu memory. MEM_PERCPU tags PTR_TO_BTF_ID. When tagged
655 	 * with MEM_PERCPU, PTR_TO_BTF_ID _cannot_ be directly accessed. In
656 	 * order to drop this tag, it must be passed into bpf_per_cpu_ptr()
657 	 * or bpf_this_cpu_ptr(), which will return the pointer corresponding
658 	 * to the specified cpu.
659 	 */
660 	MEM_PERCPU		= BIT(4 + BPF_BASE_TYPE_BITS),
661 
662 	/* Indicates that the argument will be released. */
663 	OBJ_RELEASE		= BIT(5 + BPF_BASE_TYPE_BITS),
664 
665 	/* PTR is not trusted. This is only used with PTR_TO_BTF_ID, to mark
666 	 * unreferenced and referenced kptr loaded from map value using a load
667 	 * instruction, so that they can only be dereferenced but not escape the
668 	 * BPF program into the kernel (i.e. cannot be passed as arguments to
669 	 * kfunc or bpf helpers).
670 	 */
671 	PTR_UNTRUSTED		= BIT(6 + BPF_BASE_TYPE_BITS),
672 
673 	/* MEM can be uninitialized. */
674 	MEM_UNINIT		= BIT(7 + BPF_BASE_TYPE_BITS),
675 
676 	/* DYNPTR points to memory local to the bpf program. */
677 	DYNPTR_TYPE_LOCAL	= BIT(8 + BPF_BASE_TYPE_BITS),
678 
679 	/* DYNPTR points to a kernel-produced ringbuf record. */
680 	DYNPTR_TYPE_RINGBUF	= BIT(9 + BPF_BASE_TYPE_BITS),
681 
682 	/* Size is known at compile time. */
683 	MEM_FIXED_SIZE		= BIT(10 + BPF_BASE_TYPE_BITS),
684 
685 	/* MEM is of an allocated object of type in program BTF. This is used to
686 	 * tag PTR_TO_BTF_ID allocated using bpf_obj_new.
687 	 */
688 	MEM_ALLOC		= BIT(11 + BPF_BASE_TYPE_BITS),
689 
690 	/* PTR was passed from the kernel in a trusted context, and may be
691 	 * passed to KF_TRUSTED_ARGS kfuncs or BPF helper functions.
692 	 * Confusingly, this is _not_ the opposite of PTR_UNTRUSTED above.
693 	 * PTR_UNTRUSTED refers to a kptr that was read directly from a map
694 	 * without invoking bpf_kptr_xchg(). What we really need to know is
695 	 * whether a pointer is safe to pass to a kfunc or BPF helper function.
696 	 * While PTR_UNTRUSTED pointers are unsafe to pass to kfuncs and BPF
697 	 * helpers, they do not cover all possible instances of unsafe
698 	 * pointers. For example, a pointer that was obtained from walking a
699 	 * struct will _not_ get the PTR_UNTRUSTED type modifier, despite the
700 	 * fact that it may be NULL, invalid, etc. This is due to backwards
701 	 * compatibility requirements, as this was the behavior that was first
702 	 * introduced when kptrs were added. The behavior is now considered
703 	 * deprecated, and PTR_UNTRUSTED will eventually be removed.
704 	 *
705 	 * PTR_TRUSTED, on the other hand, is a pointer that the kernel
706 	 * guarantees to be valid and safe to pass to kfuncs and BPF helpers.
707 	 * For example, pointers passed to tracepoint arguments are considered
708 	 * PTR_TRUSTED, as are pointers that are passed to struct_ops
709 	 * callbacks. As alluded to above, pointers that are obtained from
710 	 * walking PTR_TRUSTED pointers are _not_ trusted. For example, if a
711 	 * struct task_struct *task is PTR_TRUSTED, then accessing
712 	 * task->last_wakee will lose the PTR_TRUSTED modifier when it's stored
713 	 * in a BPF register. Similarly, pointers passed to certain programs
714 	 * types such as kretprobes are not guaranteed to be valid, as they may
715 	 * for example contain an object that was recently freed.
716 	 */
717 	PTR_TRUSTED		= BIT(12 + BPF_BASE_TYPE_BITS),
718 
719 	/* MEM is tagged with rcu and memory access needs rcu_read_lock protection. */
720 	MEM_RCU			= BIT(13 + BPF_BASE_TYPE_BITS),
721 
722 	/* Used to tag PTR_TO_BTF_ID | MEM_ALLOC references which are non-owning.
723 	 * Currently only valid for linked-list and rbtree nodes. If the nodes
724 	 * have a bpf_refcount_field, they must be tagged MEM_RCU as well.
725 	 */
726 	NON_OWN_REF		= BIT(14 + BPF_BASE_TYPE_BITS),
727 
728 	/* DYNPTR points to sk_buff */
729 	DYNPTR_TYPE_SKB		= BIT(15 + BPF_BASE_TYPE_BITS),
730 
731 	/* DYNPTR points to xdp_buff */
732 	DYNPTR_TYPE_XDP		= BIT(16 + BPF_BASE_TYPE_BITS),
733 
734 	/* Memory must be aligned on some architectures, used in combination with
735 	 * MEM_FIXED_SIZE.
736 	 */
737 	MEM_ALIGNED		= BIT(17 + BPF_BASE_TYPE_BITS),
738 
739 	/* MEM is being written to, often combined with MEM_UNINIT. Non-presence
740 	 * of MEM_WRITE means that MEM is only being read. MEM_WRITE without the
741 	 * MEM_UNINIT means that memory needs to be initialized since it is also
742 	 * read.
743 	 */
744 	MEM_WRITE		= BIT(18 + BPF_BASE_TYPE_BITS),
745 
746 	__BPF_TYPE_FLAG_MAX,
747 	__BPF_TYPE_LAST_FLAG	= __BPF_TYPE_FLAG_MAX - 1,
748 };
749 
750 #define DYNPTR_TYPE_FLAG_MASK	(DYNPTR_TYPE_LOCAL | DYNPTR_TYPE_RINGBUF | DYNPTR_TYPE_SKB \
751 				 | DYNPTR_TYPE_XDP)
752 
753 /* Max number of base types. */
754 #define BPF_BASE_TYPE_LIMIT	(1UL << BPF_BASE_TYPE_BITS)
755 
756 /* Max number of all types. */
757 #define BPF_TYPE_LIMIT		(__BPF_TYPE_LAST_FLAG | (__BPF_TYPE_LAST_FLAG - 1))
758 
759 /* function argument constraints */
760 enum bpf_arg_type {
761 	ARG_DONTCARE = 0,	/* unused argument in helper function */
762 
763 	/* the following constraints used to prototype
764 	 * bpf_map_lookup/update/delete_elem() functions
765 	 */
766 	ARG_CONST_MAP_PTR,	/* const argument used as pointer to bpf_map */
767 	ARG_PTR_TO_MAP_KEY,	/* pointer to stack used as map key */
768 	ARG_PTR_TO_MAP_VALUE,	/* pointer to stack used as map value */
769 
770 	/* Used to prototype bpf_memcmp() and other functions that access data
771 	 * on eBPF program stack
772 	 */
773 	ARG_PTR_TO_MEM,		/* pointer to valid memory (stack, packet, map value) */
774 	ARG_PTR_TO_ARENA,
775 
776 	ARG_CONST_SIZE,		/* number of bytes accessed from memory */
777 	ARG_CONST_SIZE_OR_ZERO,	/* number of bytes accessed from memory or 0 */
778 
779 	ARG_PTR_TO_CTX,		/* pointer to context */
780 	ARG_ANYTHING,		/* any (initialized) argument is ok */
781 	ARG_PTR_TO_SPIN_LOCK,	/* pointer to bpf_spin_lock */
782 	ARG_PTR_TO_SOCK_COMMON,	/* pointer to sock_common */
783 	ARG_PTR_TO_SOCKET,	/* pointer to bpf_sock (fullsock) */
784 	ARG_PTR_TO_BTF_ID,	/* pointer to in-kernel struct */
785 	ARG_PTR_TO_RINGBUF_MEM,	/* pointer to dynamically reserved ringbuf memory */
786 	ARG_CONST_ALLOC_SIZE_OR_ZERO,	/* number of allocated bytes requested */
787 	ARG_PTR_TO_BTF_ID_SOCK_COMMON,	/* pointer to in-kernel sock_common or bpf-mirrored bpf_sock */
788 	ARG_PTR_TO_PERCPU_BTF_ID,	/* pointer to in-kernel percpu type */
789 	ARG_PTR_TO_FUNC,	/* pointer to a bpf program function */
790 	ARG_PTR_TO_STACK,	/* pointer to stack */
791 	ARG_PTR_TO_CONST_STR,	/* pointer to a null terminated read-only string */
792 	ARG_PTR_TO_TIMER,	/* pointer to bpf_timer */
793 	ARG_KPTR_XCHG_DEST,	/* pointer to destination that kptrs are bpf_kptr_xchg'd into */
794 	ARG_PTR_TO_DYNPTR,      /* pointer to bpf_dynptr. See bpf_type_flag for dynptr type */
795 	__BPF_ARG_TYPE_MAX,
796 
797 	/* Extended arg_types. */
798 	ARG_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_MAP_VALUE,
799 	ARG_PTR_TO_MEM_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_MEM,
800 	ARG_PTR_TO_CTX_OR_NULL		= PTR_MAYBE_NULL | ARG_PTR_TO_CTX,
801 	ARG_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_SOCKET,
802 	ARG_PTR_TO_STACK_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_STACK,
803 	ARG_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | ARG_PTR_TO_BTF_ID,
804 	/* Pointer to memory does not need to be initialized, since helper function
805 	 * fills all bytes or clears them in error case.
806 	 */
807 	ARG_PTR_TO_UNINIT_MEM		= MEM_UNINIT | MEM_WRITE | ARG_PTR_TO_MEM,
808 	/* Pointer to valid memory of size known at compile time. */
809 	ARG_PTR_TO_FIXED_SIZE_MEM	= MEM_FIXED_SIZE | ARG_PTR_TO_MEM,
810 
811 	/* This must be the last entry. Its purpose is to ensure the enum is
812 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
813 	 */
814 	__BPF_ARG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
815 };
816 static_assert(__BPF_ARG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
817 
818 /* type of values returned from helper functions */
819 enum bpf_return_type {
820 	RET_INTEGER,			/* function returns integer */
821 	RET_VOID,			/* function doesn't return anything */
822 	RET_PTR_TO_MAP_VALUE,		/* returns a pointer to map elem value */
823 	RET_PTR_TO_SOCKET,		/* returns a pointer to a socket */
824 	RET_PTR_TO_TCP_SOCK,		/* returns a pointer to a tcp_sock */
825 	RET_PTR_TO_SOCK_COMMON,		/* returns a pointer to a sock_common */
826 	RET_PTR_TO_MEM,			/* returns a pointer to memory */
827 	RET_PTR_TO_MEM_OR_BTF_ID,	/* returns a pointer to a valid memory or a btf_id */
828 	RET_PTR_TO_BTF_ID,		/* returns a pointer to a btf_id */
829 	__BPF_RET_TYPE_MAX,
830 
831 	/* Extended ret_types. */
832 	RET_PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MAP_VALUE,
833 	RET_PTR_TO_SOCKET_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCKET,
834 	RET_PTR_TO_TCP_SOCK_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_TCP_SOCK,
835 	RET_PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_SOCK_COMMON,
836 	RET_PTR_TO_RINGBUF_MEM_OR_NULL	= PTR_MAYBE_NULL | MEM_RINGBUF | RET_PTR_TO_MEM,
837 	RET_PTR_TO_DYNPTR_MEM_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_MEM,
838 	RET_PTR_TO_BTF_ID_OR_NULL	= PTR_MAYBE_NULL | RET_PTR_TO_BTF_ID,
839 	RET_PTR_TO_BTF_ID_TRUSTED	= PTR_TRUSTED	 | RET_PTR_TO_BTF_ID,
840 
841 	/* This must be the last entry. Its purpose is to ensure the enum is
842 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
843 	 */
844 	__BPF_RET_TYPE_LIMIT	= BPF_TYPE_LIMIT,
845 };
846 static_assert(__BPF_RET_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
847 
848 /* eBPF function prototype used by verifier to allow BPF_CALLs from eBPF programs
849  * to in-kernel helper functions and for adjusting imm32 field in BPF_CALL
850  * instructions after verifying
851  */
852 struct bpf_func_proto {
853 	u64 (*func)(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
854 	bool gpl_only;
855 	bool pkt_access;
856 	bool might_sleep;
857 	/* set to true if helper follows contract for llvm
858 	 * attribute bpf_fastcall:
859 	 * - void functions do not scratch r0
860 	 * - functions taking N arguments scratch only registers r1-rN
861 	 */
862 	bool allow_fastcall;
863 	enum bpf_return_type ret_type;
864 	union {
865 		struct {
866 			enum bpf_arg_type arg1_type;
867 			enum bpf_arg_type arg2_type;
868 			enum bpf_arg_type arg3_type;
869 			enum bpf_arg_type arg4_type;
870 			enum bpf_arg_type arg5_type;
871 		};
872 		enum bpf_arg_type arg_type[5];
873 	};
874 	union {
875 		struct {
876 			u32 *arg1_btf_id;
877 			u32 *arg2_btf_id;
878 			u32 *arg3_btf_id;
879 			u32 *arg4_btf_id;
880 			u32 *arg5_btf_id;
881 		};
882 		u32 *arg_btf_id[5];
883 		struct {
884 			size_t arg1_size;
885 			size_t arg2_size;
886 			size_t arg3_size;
887 			size_t arg4_size;
888 			size_t arg5_size;
889 		};
890 		size_t arg_size[5];
891 	};
892 	int *ret_btf_id; /* return value btf_id */
893 	bool (*allowed)(const struct bpf_prog *prog);
894 };
895 
896 /* bpf_context is intentionally undefined structure. Pointer to bpf_context is
897  * the first argument to eBPF programs.
898  * For socket filters: 'struct bpf_context *' == 'struct sk_buff *'
899  */
900 struct bpf_context;
901 
902 enum bpf_access_type {
903 	BPF_READ = 1,
904 	BPF_WRITE = 2
905 };
906 
907 /* types of values stored in eBPF registers */
908 /* Pointer types represent:
909  * pointer
910  * pointer + imm
911  * pointer + (u16) var
912  * pointer + (u16) var + imm
913  * if (range > 0) then [ptr, ptr + range - off) is safe to access
914  * if (id > 0) means that some 'var' was added
915  * if (off > 0) means that 'imm' was added
916  */
917 enum bpf_reg_type {
918 	NOT_INIT = 0,		 /* nothing was written into register */
919 	SCALAR_VALUE,		 /* reg doesn't contain a valid pointer */
920 	PTR_TO_CTX,		 /* reg points to bpf_context */
921 	CONST_PTR_TO_MAP,	 /* reg points to struct bpf_map */
922 	PTR_TO_MAP_VALUE,	 /* reg points to map element value */
923 	PTR_TO_MAP_KEY,		 /* reg points to a map element key */
924 	PTR_TO_STACK,		 /* reg == frame_pointer + offset */
925 	PTR_TO_PACKET_META,	 /* skb->data - meta_len */
926 	PTR_TO_PACKET,		 /* reg points to skb->data */
927 	PTR_TO_PACKET_END,	 /* skb->data + headlen */
928 	PTR_TO_FLOW_KEYS,	 /* reg points to bpf_flow_keys */
929 	PTR_TO_SOCKET,		 /* reg points to struct bpf_sock */
930 	PTR_TO_SOCK_COMMON,	 /* reg points to sock_common */
931 	PTR_TO_TCP_SOCK,	 /* reg points to struct tcp_sock */
932 	PTR_TO_TP_BUFFER,	 /* reg points to a writable raw tp's buffer */
933 	PTR_TO_XDP_SOCK,	 /* reg points to struct xdp_sock */
934 	/* PTR_TO_BTF_ID points to a kernel struct that does not need
935 	 * to be null checked by the BPF program. This does not imply the
936 	 * pointer is _not_ null and in practice this can easily be a null
937 	 * pointer when reading pointer chains. The assumption is program
938 	 * context will handle null pointer dereference typically via fault
939 	 * handling. The verifier must keep this in mind and can make no
940 	 * assumptions about null or non-null when doing branch analysis.
941 	 * Further, when passed into helpers the helpers can not, without
942 	 * additional context, assume the value is non-null.
943 	 */
944 	PTR_TO_BTF_ID,
945 	PTR_TO_MEM,		 /* reg points to valid memory region */
946 	PTR_TO_ARENA,
947 	PTR_TO_BUF,		 /* reg points to a read/write buffer */
948 	PTR_TO_FUNC,		 /* reg points to a bpf program function */
949 	CONST_PTR_TO_DYNPTR,	 /* reg points to a const struct bpf_dynptr */
950 	__BPF_REG_TYPE_MAX,
951 
952 	/* Extended reg_types. */
953 	PTR_TO_MAP_VALUE_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_MAP_VALUE,
954 	PTR_TO_SOCKET_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_SOCKET,
955 	PTR_TO_SOCK_COMMON_OR_NULL	= PTR_MAYBE_NULL | PTR_TO_SOCK_COMMON,
956 	PTR_TO_TCP_SOCK_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_TCP_SOCK,
957 	/* PTR_TO_BTF_ID_OR_NULL points to a kernel struct that has not
958 	 * been checked for null. Used primarily to inform the verifier
959 	 * an explicit null check is required for this struct.
960 	 */
961 	PTR_TO_BTF_ID_OR_NULL		= PTR_MAYBE_NULL | PTR_TO_BTF_ID,
962 
963 	/* This must be the last entry. Its purpose is to ensure the enum is
964 	 * wide enough to hold the higher bits reserved for bpf_type_flag.
965 	 */
966 	__BPF_REG_TYPE_LIMIT	= BPF_TYPE_LIMIT,
967 };
968 static_assert(__BPF_REG_TYPE_MAX <= BPF_BASE_TYPE_LIMIT);
969 
970 /* The information passed from prog-specific *_is_valid_access
971  * back to the verifier.
972  */
973 struct bpf_insn_access_aux {
974 	enum bpf_reg_type reg_type;
975 	bool is_ldsx;
976 	union {
977 		int ctx_field_size;
978 		struct {
979 			struct btf *btf;
980 			u32 btf_id;
981 			u32 ref_obj_id;
982 		};
983 	};
984 	struct bpf_verifier_log *log; /* for verbose logs */
985 	bool is_retval; /* is accessing function return value ? */
986 };
987 
988 static inline void
bpf_ctx_record_field_size(struct bpf_insn_access_aux * aux,u32 size)989 bpf_ctx_record_field_size(struct bpf_insn_access_aux *aux, u32 size)
990 {
991 	aux->ctx_field_size = size;
992 }
993 
bpf_is_ldimm64(const struct bpf_insn * insn)994 static bool bpf_is_ldimm64(const struct bpf_insn *insn)
995 {
996 	return insn->code == (BPF_LD | BPF_IMM | BPF_DW);
997 }
998 
bpf_pseudo_func(const struct bpf_insn * insn)999 static inline bool bpf_pseudo_func(const struct bpf_insn *insn)
1000 {
1001 	return bpf_is_ldimm64(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
1002 }
1003 
1004 /* Given a BPF_ATOMIC instruction @atomic_insn, return true if it is an
1005  * atomic load or store, and false if it is a read-modify-write instruction.
1006  */
1007 static inline bool
bpf_atomic_is_load_store(const struct bpf_insn * atomic_insn)1008 bpf_atomic_is_load_store(const struct bpf_insn *atomic_insn)
1009 {
1010 	switch (atomic_insn->imm) {
1011 	case BPF_LOAD_ACQ:
1012 	case BPF_STORE_REL:
1013 		return true;
1014 	default:
1015 		return false;
1016 	}
1017 }
1018 
1019 struct bpf_prog_ops {
1020 	int (*test_run)(struct bpf_prog *prog, const union bpf_attr *kattr,
1021 			union bpf_attr __user *uattr);
1022 };
1023 
1024 struct bpf_reg_state;
1025 struct bpf_verifier_ops {
1026 	/* return eBPF function prototype for verification */
1027 	const struct bpf_func_proto *
1028 	(*get_func_proto)(enum bpf_func_id func_id,
1029 			  const struct bpf_prog *prog);
1030 
1031 	/* return true if 'size' wide access at offset 'off' within bpf_context
1032 	 * with 'type' (read or write) is allowed
1033 	 */
1034 	bool (*is_valid_access)(int off, int size, enum bpf_access_type type,
1035 				const struct bpf_prog *prog,
1036 				struct bpf_insn_access_aux *info);
1037 	int (*gen_prologue)(struct bpf_insn *insn, bool direct_write,
1038 			    const struct bpf_prog *prog);
1039 	int (*gen_epilogue)(struct bpf_insn *insn, const struct bpf_prog *prog,
1040 			    s16 ctx_stack_off);
1041 	int (*gen_ld_abs)(const struct bpf_insn *orig,
1042 			  struct bpf_insn *insn_buf);
1043 	u32 (*convert_ctx_access)(enum bpf_access_type type,
1044 				  const struct bpf_insn *src,
1045 				  struct bpf_insn *dst,
1046 				  struct bpf_prog *prog, u32 *target_size);
1047 	int (*btf_struct_access)(struct bpf_verifier_log *log,
1048 				 const struct bpf_reg_state *reg,
1049 				 int off, int size);
1050 };
1051 
1052 struct bpf_prog_offload_ops {
1053 	/* verifier basic callbacks */
1054 	int (*insn_hook)(struct bpf_verifier_env *env,
1055 			 int insn_idx, int prev_insn_idx);
1056 	int (*finalize)(struct bpf_verifier_env *env);
1057 	/* verifier optimization callbacks (called after .finalize) */
1058 	int (*replace_insn)(struct bpf_verifier_env *env, u32 off,
1059 			    struct bpf_insn *insn);
1060 	int (*remove_insns)(struct bpf_verifier_env *env, u32 off, u32 cnt);
1061 	/* program management callbacks */
1062 	int (*prepare)(struct bpf_prog *prog);
1063 	int (*translate)(struct bpf_prog *prog);
1064 	void (*destroy)(struct bpf_prog *prog);
1065 };
1066 
1067 struct bpf_prog_offload {
1068 	struct bpf_prog		*prog;
1069 	struct net_device	*netdev;
1070 	struct bpf_offload_dev	*offdev;
1071 	void			*dev_priv;
1072 	struct list_head	offloads;
1073 	bool			dev_state;
1074 	bool			opt_failed;
1075 	void			*jited_image;
1076 	u32			jited_len;
1077 };
1078 
1079 enum bpf_cgroup_storage_type {
1080 	BPF_CGROUP_STORAGE_SHARED,
1081 	BPF_CGROUP_STORAGE_PERCPU,
1082 	__BPF_CGROUP_STORAGE_MAX
1083 };
1084 
1085 #define MAX_BPF_CGROUP_STORAGE_TYPE __BPF_CGROUP_STORAGE_MAX
1086 
1087 /* The longest tracepoint has 12 args.
1088  * See include/trace/bpf_probe.h
1089  */
1090 #define MAX_BPF_FUNC_ARGS 12
1091 
1092 /* The maximum number of arguments passed through registers
1093  * a single function may have.
1094  */
1095 #define MAX_BPF_FUNC_REG_ARGS 5
1096 
1097 /* The argument is a structure. */
1098 #define BTF_FMODEL_STRUCT_ARG		BIT(0)
1099 
1100 /* The argument is signed. */
1101 #define BTF_FMODEL_SIGNED_ARG		BIT(1)
1102 
1103 struct btf_func_model {
1104 	u8 ret_size;
1105 	u8 ret_flags;
1106 	u8 nr_args;
1107 	u8 arg_size[MAX_BPF_FUNC_ARGS];
1108 	u8 arg_flags[MAX_BPF_FUNC_ARGS];
1109 };
1110 
1111 /* Restore arguments before returning from trampoline to let original function
1112  * continue executing. This flag is used for fentry progs when there are no
1113  * fexit progs.
1114  */
1115 #define BPF_TRAMP_F_RESTORE_REGS	BIT(0)
1116 /* Call original function after fentry progs, but before fexit progs.
1117  * Makes sense for fentry/fexit, normal calls and indirect calls.
1118  */
1119 #define BPF_TRAMP_F_CALL_ORIG		BIT(1)
1120 /* Skip current frame and return to parent.  Makes sense for fentry/fexit
1121  * programs only. Should not be used with normal calls and indirect calls.
1122  */
1123 #define BPF_TRAMP_F_SKIP_FRAME		BIT(2)
1124 /* Store IP address of the caller on the trampoline stack,
1125  * so it's available for trampoline's programs.
1126  */
1127 #define BPF_TRAMP_F_IP_ARG		BIT(3)
1128 /* Return the return value of fentry prog. Only used by bpf_struct_ops. */
1129 #define BPF_TRAMP_F_RET_FENTRY_RET	BIT(4)
1130 
1131 /* Get original function from stack instead of from provided direct address.
1132  * Makes sense for trampolines with fexit or fmod_ret programs.
1133  */
1134 #define BPF_TRAMP_F_ORIG_STACK		BIT(5)
1135 
1136 /* This trampoline is on a function with another ftrace_ops with IPMODIFY,
1137  * e.g., a live patch. This flag is set and cleared by ftrace call backs,
1138  */
1139 #define BPF_TRAMP_F_SHARE_IPMODIFY	BIT(6)
1140 
1141 /* Indicate that current trampoline is in a tail call context. Then, it has to
1142  * cache and restore tail_call_cnt to avoid infinite tail call loop.
1143  */
1144 #define BPF_TRAMP_F_TAIL_CALL_CTX	BIT(7)
1145 
1146 /*
1147  * Indicate the trampoline should be suitable to receive indirect calls;
1148  * without this indirectly calling the generated code can result in #UD/#CP,
1149  * depending on the CFI options.
1150  *
1151  * Used by bpf_struct_ops.
1152  *
1153  * Incompatible with FENTRY usage, overloads @func_addr argument.
1154  */
1155 #define BPF_TRAMP_F_INDIRECT		BIT(8)
1156 
1157 /* Each call __bpf_prog_enter + call bpf_func + call __bpf_prog_exit is ~50
1158  * bytes on x86.
1159  */
1160 enum {
1161 #if defined(__s390x__)
1162 	BPF_MAX_TRAMP_LINKS = 27,
1163 #else
1164 	BPF_MAX_TRAMP_LINKS = 38,
1165 #endif
1166 };
1167 
1168 struct bpf_tramp_links {
1169 	struct bpf_tramp_link *links[BPF_MAX_TRAMP_LINKS];
1170 	int nr_links;
1171 };
1172 
1173 struct bpf_tramp_run_ctx;
1174 
1175 /* Different use cases for BPF trampoline:
1176  * 1. replace nop at the function entry (kprobe equivalent)
1177  *    flags = BPF_TRAMP_F_RESTORE_REGS
1178  *    fentry = a set of programs to run before returning from trampoline
1179  *
1180  * 2. replace nop at the function entry (kprobe + kretprobe equivalent)
1181  *    flags = BPF_TRAMP_F_CALL_ORIG | BPF_TRAMP_F_SKIP_FRAME
1182  *    orig_call = fentry_ip + MCOUNT_INSN_SIZE
1183  *    fentry = a set of program to run before calling original function
1184  *    fexit = a set of program to run after original function
1185  *
1186  * 3. replace direct call instruction anywhere in the function body
1187  *    or assign a function pointer for indirect call (like tcp_congestion_ops->cong_avoid)
1188  *    With flags = 0
1189  *      fentry = a set of programs to run before returning from trampoline
1190  *    With flags = BPF_TRAMP_F_CALL_ORIG
1191  *      orig_call = original callback addr or direct function addr
1192  *      fentry = a set of program to run before calling original function
1193  *      fexit = a set of program to run after original function
1194  */
1195 struct bpf_tramp_image;
1196 int arch_prepare_bpf_trampoline(struct bpf_tramp_image *im, void *image, void *image_end,
1197 				const struct btf_func_model *m, u32 flags,
1198 				struct bpf_tramp_links *tlinks,
1199 				void *func_addr);
1200 void *arch_alloc_bpf_trampoline(unsigned int size);
1201 void arch_free_bpf_trampoline(void *image, unsigned int size);
1202 int __must_check arch_protect_bpf_trampoline(void *image, unsigned int size);
1203 int arch_bpf_trampoline_size(const struct btf_func_model *m, u32 flags,
1204 			     struct bpf_tramp_links *tlinks, void *func_addr);
1205 
1206 u64 notrace __bpf_prog_enter_sleepable_recur(struct bpf_prog *prog,
1207 					     struct bpf_tramp_run_ctx *run_ctx);
1208 void notrace __bpf_prog_exit_sleepable_recur(struct bpf_prog *prog, u64 start,
1209 					     struct bpf_tramp_run_ctx *run_ctx);
1210 void notrace __bpf_tramp_enter(struct bpf_tramp_image *tr);
1211 void notrace __bpf_tramp_exit(struct bpf_tramp_image *tr);
1212 typedef u64 (*bpf_trampoline_enter_t)(struct bpf_prog *prog,
1213 				      struct bpf_tramp_run_ctx *run_ctx);
1214 typedef void (*bpf_trampoline_exit_t)(struct bpf_prog *prog, u64 start,
1215 				      struct bpf_tramp_run_ctx *run_ctx);
1216 bpf_trampoline_enter_t bpf_trampoline_enter(const struct bpf_prog *prog);
1217 bpf_trampoline_exit_t bpf_trampoline_exit(const struct bpf_prog *prog);
1218 
1219 struct bpf_ksym {
1220 	unsigned long		 start;
1221 	unsigned long		 end;
1222 	char			 name[KSYM_NAME_LEN];
1223 	struct list_head	 lnode;
1224 	struct latch_tree_node	 tnode;
1225 	bool			 prog;
1226 };
1227 
1228 enum bpf_tramp_prog_type {
1229 	BPF_TRAMP_FENTRY,
1230 	BPF_TRAMP_FEXIT,
1231 	BPF_TRAMP_MODIFY_RETURN,
1232 	BPF_TRAMP_MAX,
1233 	BPF_TRAMP_REPLACE, /* more than MAX */
1234 };
1235 
1236 struct bpf_tramp_image {
1237 	void *image;
1238 	int size;
1239 	struct bpf_ksym ksym;
1240 	struct percpu_ref pcref;
1241 	void *ip_after_call;
1242 	void *ip_epilogue;
1243 	union {
1244 		struct rcu_head rcu;
1245 		struct work_struct work;
1246 	};
1247 };
1248 
1249 struct bpf_trampoline {
1250 	/* hlist for trampoline_table */
1251 	struct hlist_node hlist;
1252 	struct ftrace_ops *fops;
1253 	/* serializes access to fields of this trampoline */
1254 	struct mutex mutex;
1255 	refcount_t refcnt;
1256 	u32 flags;
1257 	u64 key;
1258 	struct {
1259 		struct btf_func_model model;
1260 		void *addr;
1261 		bool ftrace_managed;
1262 	} func;
1263 	/* if !NULL this is BPF_PROG_TYPE_EXT program that extends another BPF
1264 	 * program by replacing one of its functions. func.addr is the address
1265 	 * of the function it replaced.
1266 	 */
1267 	struct bpf_prog *extension_prog;
1268 	/* list of BPF programs using this trampoline */
1269 	struct hlist_head progs_hlist[BPF_TRAMP_MAX];
1270 	/* Number of attached programs. A counter per kind. */
1271 	int progs_cnt[BPF_TRAMP_MAX];
1272 	/* Executable image of trampoline */
1273 	struct bpf_tramp_image *cur_image;
1274 };
1275 
1276 struct bpf_attach_target_info {
1277 	struct btf_func_model fmodel;
1278 	long tgt_addr;
1279 	struct module *tgt_mod;
1280 	const char *tgt_name;
1281 	const struct btf_type *tgt_type;
1282 };
1283 
1284 #define BPF_DISPATCHER_MAX 48 /* Fits in 2048B */
1285 
1286 struct bpf_dispatcher_prog {
1287 	struct bpf_prog *prog;
1288 	refcount_t users;
1289 };
1290 
1291 struct bpf_dispatcher {
1292 	/* dispatcher mutex */
1293 	struct mutex mutex;
1294 	void *func;
1295 	struct bpf_dispatcher_prog progs[BPF_DISPATCHER_MAX];
1296 	int num_progs;
1297 	void *image;
1298 	void *rw_image;
1299 	u32 image_off;
1300 	struct bpf_ksym ksym;
1301 #ifdef CONFIG_HAVE_STATIC_CALL
1302 	struct static_call_key *sc_key;
1303 	void *sc_tramp;
1304 #endif
1305 };
1306 
1307 #ifndef __bpfcall
1308 #define __bpfcall __nocfi
1309 #endif
1310 
bpf_dispatcher_nop_func(const void * ctx,const struct bpf_insn * insnsi,bpf_func_t bpf_func)1311 static __always_inline __bpfcall unsigned int bpf_dispatcher_nop_func(
1312 	const void *ctx,
1313 	const struct bpf_insn *insnsi,
1314 	bpf_func_t bpf_func)
1315 {
1316 	return bpf_func(ctx, insnsi);
1317 }
1318 
1319 /* the implementation of the opaque uapi struct bpf_dynptr */
1320 struct bpf_dynptr_kern {
1321 	void *data;
1322 	/* Size represents the number of usable bytes of dynptr data.
1323 	 * If for example the offset is at 4 for a local dynptr whose data is
1324 	 * of type u64, the number of usable bytes is 4.
1325 	 *
1326 	 * The upper 8 bits are reserved. It is as follows:
1327 	 * Bits 0 - 23 = size
1328 	 * Bits 24 - 30 = dynptr type
1329 	 * Bit 31 = whether dynptr is read-only
1330 	 */
1331 	u32 size;
1332 	u32 offset;
1333 } __aligned(8);
1334 
1335 enum bpf_dynptr_type {
1336 	BPF_DYNPTR_TYPE_INVALID,
1337 	/* Points to memory that is local to the bpf program */
1338 	BPF_DYNPTR_TYPE_LOCAL,
1339 	/* Underlying data is a ringbuf record */
1340 	BPF_DYNPTR_TYPE_RINGBUF,
1341 	/* Underlying data is a sk_buff */
1342 	BPF_DYNPTR_TYPE_SKB,
1343 	/* Underlying data is a xdp_buff */
1344 	BPF_DYNPTR_TYPE_XDP,
1345 };
1346 
1347 int bpf_dynptr_check_size(u32 size);
1348 u32 __bpf_dynptr_size(const struct bpf_dynptr_kern *ptr);
1349 const void *__bpf_dynptr_data(const struct bpf_dynptr_kern *ptr, u32 len);
1350 void *__bpf_dynptr_data_rw(const struct bpf_dynptr_kern *ptr, u32 len);
1351 bool __bpf_dynptr_is_rdonly(const struct bpf_dynptr_kern *ptr);
1352 
1353 #ifdef CONFIG_BPF_JIT
1354 int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1355 			     struct bpf_trampoline *tr,
1356 			     struct bpf_prog *tgt_prog);
1357 int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1358 			       struct bpf_trampoline *tr,
1359 			       struct bpf_prog *tgt_prog);
1360 struct bpf_trampoline *bpf_trampoline_get(u64 key,
1361 					  struct bpf_attach_target_info *tgt_info);
1362 void bpf_trampoline_put(struct bpf_trampoline *tr);
1363 int arch_prepare_bpf_dispatcher(void *image, void *buf, s64 *funcs, int num_funcs);
1364 
1365 /*
1366  * When the architecture supports STATIC_CALL replace the bpf_dispatcher_fn
1367  * indirection with a direct call to the bpf program. If the architecture does
1368  * not have STATIC_CALL, avoid a double-indirection.
1369  */
1370 #ifdef CONFIG_HAVE_STATIC_CALL
1371 
1372 #define __BPF_DISPATCHER_SC_INIT(_name)				\
1373 	.sc_key = &STATIC_CALL_KEY(_name),			\
1374 	.sc_tramp = STATIC_CALL_TRAMP_ADDR(_name),
1375 
1376 #define __BPF_DISPATCHER_SC(name)				\
1377 	DEFINE_STATIC_CALL(bpf_dispatcher_##name##_call, bpf_dispatcher_nop_func)
1378 
1379 #define __BPF_DISPATCHER_CALL(name)				\
1380 	static_call(bpf_dispatcher_##name##_call)(ctx, insnsi, bpf_func)
1381 
1382 #define __BPF_DISPATCHER_UPDATE(_d, _new)			\
1383 	__static_call_update((_d)->sc_key, (_d)->sc_tramp, (_new))
1384 
1385 #else
1386 #define __BPF_DISPATCHER_SC_INIT(name)
1387 #define __BPF_DISPATCHER_SC(name)
1388 #define __BPF_DISPATCHER_CALL(name)		bpf_func(ctx, insnsi)
1389 #define __BPF_DISPATCHER_UPDATE(_d, _new)
1390 #endif
1391 
1392 #define BPF_DISPATCHER_INIT(_name) {				\
1393 	.mutex = __MUTEX_INITIALIZER(_name.mutex),		\
1394 	.func = &_name##_func,					\
1395 	.progs = {},						\
1396 	.num_progs = 0,						\
1397 	.image = NULL,						\
1398 	.image_off = 0,						\
1399 	.ksym = {						\
1400 		.name  = #_name,				\
1401 		.lnode = LIST_HEAD_INIT(_name.ksym.lnode),	\
1402 	},							\
1403 	__BPF_DISPATCHER_SC_INIT(_name##_call)			\
1404 }
1405 
1406 #define DEFINE_BPF_DISPATCHER(name)					\
1407 	__BPF_DISPATCHER_SC(name);					\
1408 	noinline __bpfcall unsigned int bpf_dispatcher_##name##_func(	\
1409 		const void *ctx,					\
1410 		const struct bpf_insn *insnsi,				\
1411 		bpf_func_t bpf_func)					\
1412 	{								\
1413 		return __BPF_DISPATCHER_CALL(name);			\
1414 	}								\
1415 	EXPORT_SYMBOL(bpf_dispatcher_##name##_func);			\
1416 	struct bpf_dispatcher bpf_dispatcher_##name =			\
1417 		BPF_DISPATCHER_INIT(bpf_dispatcher_##name);
1418 
1419 #define DECLARE_BPF_DISPATCHER(name)					\
1420 	unsigned int bpf_dispatcher_##name##_func(			\
1421 		const void *ctx,					\
1422 		const struct bpf_insn *insnsi,				\
1423 		bpf_func_t bpf_func);					\
1424 	extern struct bpf_dispatcher bpf_dispatcher_##name;
1425 
1426 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_##name##_func
1427 #define BPF_DISPATCHER_PTR(name) (&bpf_dispatcher_##name)
1428 void bpf_dispatcher_change_prog(struct bpf_dispatcher *d, struct bpf_prog *from,
1429 				struct bpf_prog *to);
1430 /* Called only from JIT-enabled code, so there's no need for stubs. */
1431 void bpf_image_ksym_init(void *data, unsigned int size, struct bpf_ksym *ksym);
1432 void bpf_image_ksym_add(struct bpf_ksym *ksym);
1433 void bpf_image_ksym_del(struct bpf_ksym *ksym);
1434 void bpf_ksym_add(struct bpf_ksym *ksym);
1435 void bpf_ksym_del(struct bpf_ksym *ksym);
1436 int bpf_jit_charge_modmem(u32 size);
1437 void bpf_jit_uncharge_modmem(u32 size);
1438 bool bpf_prog_has_trampoline(const struct bpf_prog *prog);
1439 #else
bpf_trampoline_link_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr,struct bpf_prog * tgt_prog)1440 static inline int bpf_trampoline_link_prog(struct bpf_tramp_link *link,
1441 					   struct bpf_trampoline *tr,
1442 					   struct bpf_prog *tgt_prog)
1443 {
1444 	return -ENOTSUPP;
1445 }
bpf_trampoline_unlink_prog(struct bpf_tramp_link * link,struct bpf_trampoline * tr,struct bpf_prog * tgt_prog)1446 static inline int bpf_trampoline_unlink_prog(struct bpf_tramp_link *link,
1447 					     struct bpf_trampoline *tr,
1448 					     struct bpf_prog *tgt_prog)
1449 {
1450 	return -ENOTSUPP;
1451 }
bpf_trampoline_get(u64 key,struct bpf_attach_target_info * tgt_info)1452 static inline struct bpf_trampoline *bpf_trampoline_get(u64 key,
1453 							struct bpf_attach_target_info *tgt_info)
1454 {
1455 	return NULL;
1456 }
bpf_trampoline_put(struct bpf_trampoline * tr)1457 static inline void bpf_trampoline_put(struct bpf_trampoline *tr) {}
1458 #define DEFINE_BPF_DISPATCHER(name)
1459 #define DECLARE_BPF_DISPATCHER(name)
1460 #define BPF_DISPATCHER_FUNC(name) bpf_dispatcher_nop_func
1461 #define BPF_DISPATCHER_PTR(name) NULL
bpf_dispatcher_change_prog(struct bpf_dispatcher * d,struct bpf_prog * from,struct bpf_prog * to)1462 static inline void bpf_dispatcher_change_prog(struct bpf_dispatcher *d,
1463 					      struct bpf_prog *from,
1464 					      struct bpf_prog *to) {}
is_bpf_image_address(unsigned long address)1465 static inline bool is_bpf_image_address(unsigned long address)
1466 {
1467 	return false;
1468 }
bpf_prog_has_trampoline(const struct bpf_prog * prog)1469 static inline bool bpf_prog_has_trampoline(const struct bpf_prog *prog)
1470 {
1471 	return false;
1472 }
1473 #endif
1474 
1475 struct bpf_func_info_aux {
1476 	u16 linkage;
1477 	bool unreliable;
1478 	bool called : 1;
1479 	bool verified : 1;
1480 };
1481 
1482 enum bpf_jit_poke_reason {
1483 	BPF_POKE_REASON_TAIL_CALL,
1484 };
1485 
1486 /* Descriptor of pokes pointing /into/ the JITed image. */
1487 struct bpf_jit_poke_descriptor {
1488 	void *tailcall_target;
1489 	void *tailcall_bypass;
1490 	void *bypass_addr;
1491 	void *aux;
1492 	union {
1493 		struct {
1494 			struct bpf_map *map;
1495 			u32 key;
1496 		} tail_call;
1497 	};
1498 	bool tailcall_target_stable;
1499 	u8 adj_off;
1500 	u16 reason;
1501 	u32 insn_idx;
1502 };
1503 
1504 /* reg_type info for ctx arguments */
1505 struct bpf_ctx_arg_aux {
1506 	u32 offset;
1507 	enum bpf_reg_type reg_type;
1508 	struct btf *btf;
1509 	u32 btf_id;
1510 	u32 ref_obj_id;
1511 	bool refcounted;
1512 };
1513 
1514 struct btf_mod_pair {
1515 	struct btf *btf;
1516 	struct module *module;
1517 };
1518 
1519 struct bpf_kfunc_desc_tab;
1520 
1521 struct bpf_prog_aux {
1522 	atomic64_t refcnt;
1523 	u32 used_map_cnt;
1524 	u32 used_btf_cnt;
1525 	u32 max_ctx_offset;
1526 	u32 max_pkt_offset;
1527 	u32 max_tp_access;
1528 	u32 stack_depth;
1529 	u32 id;
1530 	u32 func_cnt; /* used by non-func prog as the number of func progs */
1531 	u32 real_func_cnt; /* includes hidden progs, only used for JIT and freeing progs */
1532 	u32 func_idx; /* 0 for non-func prog, the index in func array for func prog */
1533 	u32 attach_btf_id; /* in-kernel BTF type id to attach to */
1534 	u32 attach_st_ops_member_off;
1535 	u32 ctx_arg_info_size;
1536 	u32 max_rdonly_access;
1537 	u32 max_rdwr_access;
1538 	struct btf *attach_btf;
1539 	struct bpf_ctx_arg_aux *ctx_arg_info;
1540 	void __percpu *priv_stack_ptr;
1541 	struct mutex dst_mutex; /* protects dst_* pointers below, *after* prog becomes visible */
1542 	struct bpf_prog *dst_prog;
1543 	struct bpf_trampoline *dst_trampoline;
1544 	enum bpf_prog_type saved_dst_prog_type;
1545 	enum bpf_attach_type saved_dst_attach_type;
1546 	bool verifier_zext; /* Zero extensions has been inserted by verifier. */
1547 	bool dev_bound; /* Program is bound to the netdev. */
1548 	bool offload_requested; /* Program is bound and offloaded to the netdev. */
1549 	bool attach_btf_trace; /* true if attaching to BTF-enabled raw tp */
1550 	bool attach_tracing_prog; /* true if tracing another tracing program */
1551 	bool func_proto_unreliable;
1552 	bool tail_call_reachable;
1553 	bool xdp_has_frags;
1554 	bool exception_cb;
1555 	bool exception_boundary;
1556 	bool is_extended; /* true if extended by freplace program */
1557 	bool jits_use_priv_stack;
1558 	bool priv_stack_requested;
1559 	bool changes_pkt_data;
1560 	bool might_sleep;
1561 	u64 prog_array_member_cnt; /* counts how many times as member of prog_array */
1562 	struct mutex ext_mutex; /* mutex for is_extended and prog_array_member_cnt */
1563 	struct bpf_arena *arena;
1564 	void (*recursion_detected)(struct bpf_prog *prog); /* callback if recursion is detected */
1565 	/* BTF_KIND_FUNC_PROTO for valid attach_btf_id */
1566 	const struct btf_type *attach_func_proto;
1567 	/* function name for valid attach_btf_id */
1568 	const char *attach_func_name;
1569 	struct bpf_prog **func;
1570 	void *jit_data; /* JIT specific data. arch dependent */
1571 	struct bpf_jit_poke_descriptor *poke_tab;
1572 	struct bpf_kfunc_desc_tab *kfunc_tab;
1573 	struct bpf_kfunc_btf_tab *kfunc_btf_tab;
1574 	u32 size_poke_tab;
1575 #ifdef CONFIG_FINEIBT
1576 	struct bpf_ksym ksym_prefix;
1577 #endif
1578 	struct bpf_ksym ksym;
1579 	const struct bpf_prog_ops *ops;
1580 	const struct bpf_struct_ops *st_ops;
1581 	struct bpf_map **used_maps;
1582 	struct mutex used_maps_mutex; /* mutex for used_maps and used_map_cnt */
1583 	struct btf_mod_pair *used_btfs;
1584 	struct bpf_prog *prog;
1585 	struct user_struct *user;
1586 	u64 load_time; /* ns since boottime */
1587 	u32 verified_insns;
1588 	int cgroup_atype; /* enum cgroup_bpf_attach_type */
1589 	struct bpf_map *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
1590 	char name[BPF_OBJ_NAME_LEN];
1591 	u64 (*bpf_exception_cb)(u64 cookie, u64 sp, u64 bp, u64, u64);
1592 #ifdef CONFIG_SECURITY
1593 	void *security;
1594 #endif
1595 	struct bpf_token *token;
1596 	struct bpf_prog_offload *offload;
1597 	struct btf *btf;
1598 	struct bpf_func_info *func_info;
1599 	struct bpf_func_info_aux *func_info_aux;
1600 	/* bpf_line_info loaded from userspace.  linfo->insn_off
1601 	 * has the xlated insn offset.
1602 	 * Both the main and sub prog share the same linfo.
1603 	 * The subprog can access its first linfo by
1604 	 * using the linfo_idx.
1605 	 */
1606 	struct bpf_line_info *linfo;
1607 	/* jited_linfo is the jited addr of the linfo.  It has a
1608 	 * one to one mapping to linfo:
1609 	 * jited_linfo[i] is the jited addr for the linfo[i]->insn_off.
1610 	 * Both the main and sub prog share the same jited_linfo.
1611 	 * The subprog can access its first jited_linfo by
1612 	 * using the linfo_idx.
1613 	 */
1614 	void **jited_linfo;
1615 	u32 func_info_cnt;
1616 	u32 nr_linfo;
1617 	/* subprog can use linfo_idx to access its first linfo and
1618 	 * jited_linfo.
1619 	 * main prog always has linfo_idx == 0
1620 	 */
1621 	u32 linfo_idx;
1622 	struct module *mod;
1623 	u32 num_exentries;
1624 	struct exception_table_entry *extable;
1625 	union {
1626 		struct work_struct work;
1627 		struct rcu_head	rcu;
1628 	};
1629 };
1630 
1631 struct bpf_prog {
1632 	u16			pages;		/* Number of allocated pages */
1633 	u16			jited:1,	/* Is our filter JIT'ed? */
1634 				jit_requested:1,/* archs need to JIT the prog */
1635 				gpl_compatible:1, /* Is filter GPL compatible? */
1636 				cb_access:1,	/* Is control block accessed? */
1637 				dst_needed:1,	/* Do we need dst entry? */
1638 				blinding_requested:1, /* needs constant blinding */
1639 				blinded:1,	/* Was blinded */
1640 				is_func:1,	/* program is a bpf function */
1641 				kprobe_override:1, /* Do we override a kprobe? */
1642 				has_callchain_buf:1, /* callchain buffer allocated? */
1643 				enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
1644 				call_get_stack:1, /* Do we call bpf_get_stack() or bpf_get_stackid() */
1645 				call_get_func_ip:1, /* Do we call get_func_ip() */
1646 				tstamp_type_access:1, /* Accessed __sk_buff->tstamp_type */
1647 				sleepable:1;	/* BPF program is sleepable */
1648 	enum bpf_prog_type	type;		/* Type of BPF program */
1649 	enum bpf_attach_type	expected_attach_type; /* For some prog types */
1650 	u32			len;		/* Number of filter blocks */
1651 	u32			jited_len;	/* Size of jited insns in bytes */
1652 	u8			tag[BPF_TAG_SIZE];
1653 	struct bpf_prog_stats __percpu *stats;
1654 	int __percpu		*active;
1655 	unsigned int		(*bpf_func)(const void *ctx,
1656 					    const struct bpf_insn *insn);
1657 	struct bpf_prog_aux	*aux;		/* Auxiliary fields */
1658 	struct sock_fprog_kern	*orig_prog;	/* Original BPF program */
1659 	/* Instructions for interpreter */
1660 	union {
1661 		DECLARE_FLEX_ARRAY(struct sock_filter, insns);
1662 		DECLARE_FLEX_ARRAY(struct bpf_insn, insnsi);
1663 	};
1664 };
1665 
1666 struct bpf_array_aux {
1667 	/* Programs with direct jumps into programs part of this array. */
1668 	struct list_head poke_progs;
1669 	struct bpf_map *map;
1670 	struct mutex poke_mutex;
1671 	struct work_struct work;
1672 };
1673 
1674 struct bpf_link {
1675 	atomic64_t refcnt;
1676 	u32 id;
1677 	enum bpf_link_type type;
1678 	const struct bpf_link_ops *ops;
1679 	struct bpf_prog *prog;
1680 	/* whether BPF link itself has "sleepable" semantics, which can differ
1681 	 * from underlying BPF program having a "sleepable" semantics, as BPF
1682 	 * link's semantics is determined by target attach hook
1683 	 */
1684 	bool sleepable;
1685 	/* rcu is used before freeing, work can be used to schedule that
1686 	 * RCU-based freeing before that, so they never overlap
1687 	 */
1688 	union {
1689 		struct rcu_head rcu;
1690 		struct work_struct work;
1691 	};
1692 };
1693 
1694 struct bpf_link_ops {
1695 	void (*release)(struct bpf_link *link);
1696 	/* deallocate link resources callback, called without RCU grace period
1697 	 * waiting
1698 	 */
1699 	void (*dealloc)(struct bpf_link *link);
1700 	/* deallocate link resources callback, called after RCU grace period;
1701 	 * if either the underlying BPF program is sleepable or BPF link's
1702 	 * target hook is sleepable, we'll go through tasks trace RCU GP and
1703 	 * then "classic" RCU GP; this need for chaining tasks trace and
1704 	 * classic RCU GPs is designated by setting bpf_link->sleepable flag
1705 	 */
1706 	void (*dealloc_deferred)(struct bpf_link *link);
1707 	int (*detach)(struct bpf_link *link);
1708 	int (*update_prog)(struct bpf_link *link, struct bpf_prog *new_prog,
1709 			   struct bpf_prog *old_prog);
1710 	void (*show_fdinfo)(const struct bpf_link *link, struct seq_file *seq);
1711 	int (*fill_link_info)(const struct bpf_link *link,
1712 			      struct bpf_link_info *info);
1713 	int (*update_map)(struct bpf_link *link, struct bpf_map *new_map,
1714 			  struct bpf_map *old_map);
1715 	__poll_t (*poll)(struct file *file, struct poll_table_struct *pts);
1716 };
1717 
1718 struct bpf_tramp_link {
1719 	struct bpf_link link;
1720 	struct hlist_node tramp_hlist;
1721 	u64 cookie;
1722 };
1723 
1724 struct bpf_shim_tramp_link {
1725 	struct bpf_tramp_link link;
1726 	struct bpf_trampoline *trampoline;
1727 };
1728 
1729 struct bpf_tracing_link {
1730 	struct bpf_tramp_link link;
1731 	enum bpf_attach_type attach_type;
1732 	struct bpf_trampoline *trampoline;
1733 	struct bpf_prog *tgt_prog;
1734 };
1735 
1736 struct bpf_raw_tp_link {
1737 	struct bpf_link link;
1738 	struct bpf_raw_event_map *btp;
1739 	u64 cookie;
1740 };
1741 
1742 struct bpf_link_primer {
1743 	struct bpf_link *link;
1744 	struct file *file;
1745 	int fd;
1746 	u32 id;
1747 };
1748 
1749 struct bpf_mount_opts {
1750 	kuid_t uid;
1751 	kgid_t gid;
1752 	umode_t mode;
1753 
1754 	/* BPF token-related delegation options */
1755 	u64 delegate_cmds;
1756 	u64 delegate_maps;
1757 	u64 delegate_progs;
1758 	u64 delegate_attachs;
1759 };
1760 
1761 struct bpf_token {
1762 	struct work_struct work;
1763 	atomic64_t refcnt;
1764 	struct user_namespace *userns;
1765 	u64 allowed_cmds;
1766 	u64 allowed_maps;
1767 	u64 allowed_progs;
1768 	u64 allowed_attachs;
1769 #ifdef CONFIG_SECURITY
1770 	void *security;
1771 #endif
1772 };
1773 
1774 struct bpf_struct_ops_value;
1775 struct btf_member;
1776 
1777 #define BPF_STRUCT_OPS_MAX_NR_MEMBERS 64
1778 /**
1779  * struct bpf_struct_ops - A structure of callbacks allowing a subsystem to
1780  *			   define a BPF_MAP_TYPE_STRUCT_OPS map type composed
1781  *			   of BPF_PROG_TYPE_STRUCT_OPS progs.
1782  * @verifier_ops: A structure of callbacks that are invoked by the verifier
1783  *		  when determining whether the struct_ops progs in the
1784  *		  struct_ops map are valid.
1785  * @init: A callback that is invoked a single time, and before any other
1786  *	  callback, to initialize the structure. A nonzero return value means
1787  *	  the subsystem could not be initialized.
1788  * @check_member: When defined, a callback invoked by the verifier to allow
1789  *		  the subsystem to determine if an entry in the struct_ops map
1790  *		  is valid. A nonzero return value means that the map is
1791  *		  invalid and should be rejected by the verifier.
1792  * @init_member: A callback that is invoked for each member of the struct_ops
1793  *		 map to allow the subsystem to initialize the member. A nonzero
1794  *		 value means the member could not be initialized. This callback
1795  *		 is exclusive with the @type, @type_id, @value_type, and
1796  *		 @value_id fields.
1797  * @reg: A callback that is invoked when the struct_ops map has been
1798  *	 initialized and is being attached to. Zero means the struct_ops map
1799  *	 has been successfully registered and is live. A nonzero return value
1800  *	 means the struct_ops map could not be registered.
1801  * @unreg: A callback that is invoked when the struct_ops map should be
1802  *	   unregistered.
1803  * @update: A callback that is invoked when the live struct_ops map is being
1804  *	    updated to contain new values. This callback is only invoked when
1805  *	    the struct_ops map is loaded with BPF_F_LINK. If not defined, the
1806  *	    it is assumed that the struct_ops map cannot be updated.
1807  * @validate: A callback that is invoked after all of the members have been
1808  *	      initialized. This callback should perform static checks on the
1809  *	      map, meaning that it should either fail or succeed
1810  *	      deterministically. A struct_ops map that has been validated may
1811  *	      not necessarily succeed in being registered if the call to @reg
1812  *	      fails. For example, a valid struct_ops map may be loaded, but
1813  *	      then fail to be registered due to there being another active
1814  *	      struct_ops map on the system in the subsystem already. For this
1815  *	      reason, if this callback is not defined, the check is skipped as
1816  *	      the struct_ops map will have final verification performed in
1817  *	      @reg.
1818  * @type: BTF type.
1819  * @value_type: Value type.
1820  * @name: The name of the struct bpf_struct_ops object.
1821  * @func_models: Func models
1822  * @type_id: BTF type id.
1823  * @value_id: BTF value id.
1824  */
1825 struct bpf_struct_ops {
1826 	const struct bpf_verifier_ops *verifier_ops;
1827 	int (*init)(struct btf *btf);
1828 	int (*check_member)(const struct btf_type *t,
1829 			    const struct btf_member *member,
1830 			    const struct bpf_prog *prog);
1831 	int (*init_member)(const struct btf_type *t,
1832 			   const struct btf_member *member,
1833 			   void *kdata, const void *udata);
1834 	int (*reg)(void *kdata, struct bpf_link *link);
1835 	void (*unreg)(void *kdata, struct bpf_link *link);
1836 	int (*update)(void *kdata, void *old_kdata, struct bpf_link *link);
1837 	int (*validate)(void *kdata);
1838 	void *cfi_stubs;
1839 	struct module *owner;
1840 	const char *name;
1841 	struct btf_func_model func_models[BPF_STRUCT_OPS_MAX_NR_MEMBERS];
1842 };
1843 
1844 /* Every member of a struct_ops type has an instance even a member is not
1845  * an operator (function pointer). The "info" field will be assigned to
1846  * prog->aux->ctx_arg_info of BPF struct_ops programs to provide the
1847  * argument information required by the verifier to verify the program.
1848  *
1849  * btf_ctx_access() will lookup prog->aux->ctx_arg_info to find the
1850  * corresponding entry for an given argument.
1851  */
1852 struct bpf_struct_ops_arg_info {
1853 	struct bpf_ctx_arg_aux *info;
1854 	u32 cnt;
1855 };
1856 
1857 struct bpf_struct_ops_desc {
1858 	struct bpf_struct_ops *st_ops;
1859 
1860 	const struct btf_type *type;
1861 	const struct btf_type *value_type;
1862 	u32 type_id;
1863 	u32 value_id;
1864 
1865 	/* Collection of argument information for each member */
1866 	struct bpf_struct_ops_arg_info *arg_info;
1867 };
1868 
1869 enum bpf_struct_ops_state {
1870 	BPF_STRUCT_OPS_STATE_INIT,
1871 	BPF_STRUCT_OPS_STATE_INUSE,
1872 	BPF_STRUCT_OPS_STATE_TOBEFREE,
1873 	BPF_STRUCT_OPS_STATE_READY,
1874 };
1875 
1876 struct bpf_struct_ops_common_value {
1877 	refcount_t refcnt;
1878 	enum bpf_struct_ops_state state;
1879 };
1880 
1881 #if defined(CONFIG_BPF_JIT) && defined(CONFIG_BPF_SYSCALL)
1882 /* This macro helps developer to register a struct_ops type and generate
1883  * type information correctly. Developers should use this macro to register
1884  * a struct_ops type instead of calling __register_bpf_struct_ops() directly.
1885  */
1886 #define register_bpf_struct_ops(st_ops, type)				\
1887 	({								\
1888 		struct bpf_struct_ops_##type {				\
1889 			struct bpf_struct_ops_common_value common;	\
1890 			struct type data ____cacheline_aligned_in_smp;	\
1891 		};							\
1892 		BTF_TYPE_EMIT(struct bpf_struct_ops_##type);		\
1893 		__register_bpf_struct_ops(st_ops);			\
1894 	})
1895 #define BPF_MODULE_OWNER ((void *)((0xeB9FUL << 2) + POISON_POINTER_DELTA))
1896 bool bpf_struct_ops_get(const void *kdata);
1897 void bpf_struct_ops_put(const void *kdata);
1898 int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff);
1899 int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map, void *key,
1900 				       void *value);
1901 int bpf_struct_ops_prepare_trampoline(struct bpf_tramp_links *tlinks,
1902 				      struct bpf_tramp_link *link,
1903 				      const struct btf_func_model *model,
1904 				      void *stub_func,
1905 				      void **image, u32 *image_off,
1906 				      bool allow_alloc);
1907 void bpf_struct_ops_image_free(void *image);
bpf_try_module_get(const void * data,struct module * owner)1908 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1909 {
1910 	if (owner == BPF_MODULE_OWNER)
1911 		return bpf_struct_ops_get(data);
1912 	else
1913 		return try_module_get(owner);
1914 }
bpf_module_put(const void * data,struct module * owner)1915 static inline void bpf_module_put(const void *data, struct module *owner)
1916 {
1917 	if (owner == BPF_MODULE_OWNER)
1918 		bpf_struct_ops_put(data);
1919 	else
1920 		module_put(owner);
1921 }
1922 int bpf_struct_ops_link_create(union bpf_attr *attr);
1923 
1924 #ifdef CONFIG_NET
1925 /* Define it here to avoid the use of forward declaration */
1926 struct bpf_dummy_ops_state {
1927 	int val;
1928 };
1929 
1930 struct bpf_dummy_ops {
1931 	int (*test_1)(struct bpf_dummy_ops_state *cb);
1932 	int (*test_2)(struct bpf_dummy_ops_state *cb, int a1, unsigned short a2,
1933 		      char a3, unsigned long a4);
1934 	int (*test_sleepable)(struct bpf_dummy_ops_state *cb);
1935 };
1936 
1937 int bpf_struct_ops_test_run(struct bpf_prog *prog, const union bpf_attr *kattr,
1938 			    union bpf_attr __user *uattr);
1939 #endif
1940 int bpf_struct_ops_desc_init(struct bpf_struct_ops_desc *st_ops_desc,
1941 			     struct btf *btf,
1942 			     struct bpf_verifier_log *log);
1943 void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map);
1944 void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc);
1945 #else
1946 #define register_bpf_struct_ops(st_ops, type) ({ (void *)(st_ops); 0; })
bpf_try_module_get(const void * data,struct module * owner)1947 static inline bool bpf_try_module_get(const void *data, struct module *owner)
1948 {
1949 	return try_module_get(owner);
1950 }
bpf_module_put(const void * data,struct module * owner)1951 static inline void bpf_module_put(const void *data, struct module *owner)
1952 {
1953 	module_put(owner);
1954 }
bpf_struct_ops_supported(const struct bpf_struct_ops * st_ops,u32 moff)1955 static inline int bpf_struct_ops_supported(const struct bpf_struct_ops *st_ops, u32 moff)
1956 {
1957 	return -ENOTSUPP;
1958 }
bpf_struct_ops_map_sys_lookup_elem(struct bpf_map * map,void * key,void * value)1959 static inline int bpf_struct_ops_map_sys_lookup_elem(struct bpf_map *map,
1960 						     void *key,
1961 						     void *value)
1962 {
1963 	return -EINVAL;
1964 }
bpf_struct_ops_link_create(union bpf_attr * attr)1965 static inline int bpf_struct_ops_link_create(union bpf_attr *attr)
1966 {
1967 	return -EOPNOTSUPP;
1968 }
bpf_map_struct_ops_info_fill(struct bpf_map_info * info,struct bpf_map * map)1969 static inline void bpf_map_struct_ops_info_fill(struct bpf_map_info *info, struct bpf_map *map)
1970 {
1971 }
1972 
bpf_struct_ops_desc_release(struct bpf_struct_ops_desc * st_ops_desc)1973 static inline void bpf_struct_ops_desc_release(struct bpf_struct_ops_desc *st_ops_desc)
1974 {
1975 }
1976 
1977 #endif
1978 
1979 int bpf_prog_ctx_arg_info_init(struct bpf_prog *prog,
1980 			       const struct bpf_ctx_arg_aux *info, u32 cnt);
1981 
1982 #if defined(CONFIG_CGROUP_BPF) && defined(CONFIG_BPF_LSM)
1983 int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1984 				    int cgroup_atype);
1985 void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog);
1986 #else
bpf_trampoline_link_cgroup_shim(struct bpf_prog * prog,int cgroup_atype)1987 static inline int bpf_trampoline_link_cgroup_shim(struct bpf_prog *prog,
1988 						  int cgroup_atype)
1989 {
1990 	return -EOPNOTSUPP;
1991 }
bpf_trampoline_unlink_cgroup_shim(struct bpf_prog * prog)1992 static inline void bpf_trampoline_unlink_cgroup_shim(struct bpf_prog *prog)
1993 {
1994 }
1995 #endif
1996 
1997 struct bpf_array {
1998 	struct bpf_map map;
1999 	u32 elem_size;
2000 	u32 index_mask;
2001 	struct bpf_array_aux *aux;
2002 	union {
2003 		DECLARE_FLEX_ARRAY(char, value) __aligned(8);
2004 		DECLARE_FLEX_ARRAY(void *, ptrs) __aligned(8);
2005 		DECLARE_FLEX_ARRAY(void __percpu *, pptrs) __aligned(8);
2006 	};
2007 };
2008 
2009 #define BPF_COMPLEXITY_LIMIT_INSNS      1000000 /* yes. 1M insns */
2010 #define MAX_TAIL_CALL_CNT 33
2011 
2012 /* Maximum number of loops for bpf_loop and bpf_iter_num.
2013  * It's enum to expose it (and thus make it discoverable) through BTF.
2014  */
2015 enum {
2016 	BPF_MAX_LOOPS = 8 * 1024 * 1024,
2017 	BPF_MAX_TIMED_LOOPS = 0xffff,
2018 };
2019 
2020 #define BPF_F_ACCESS_MASK	(BPF_F_RDONLY |		\
2021 				 BPF_F_RDONLY_PROG |	\
2022 				 BPF_F_WRONLY |		\
2023 				 BPF_F_WRONLY_PROG)
2024 
2025 #define BPF_MAP_CAN_READ	BIT(0)
2026 #define BPF_MAP_CAN_WRITE	BIT(1)
2027 
2028 /* Maximum number of user-producer ring buffer samples that can be drained in
2029  * a call to bpf_user_ringbuf_drain().
2030  */
2031 #define BPF_MAX_USER_RINGBUF_SAMPLES (128 * 1024)
2032 
bpf_map_flags_to_cap(struct bpf_map * map)2033 static inline u32 bpf_map_flags_to_cap(struct bpf_map *map)
2034 {
2035 	u32 access_flags = map->map_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
2036 
2037 	/* Combination of BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG is
2038 	 * not possible.
2039 	 */
2040 	if (access_flags & BPF_F_RDONLY_PROG)
2041 		return BPF_MAP_CAN_READ;
2042 	else if (access_flags & BPF_F_WRONLY_PROG)
2043 		return BPF_MAP_CAN_WRITE;
2044 	else
2045 		return BPF_MAP_CAN_READ | BPF_MAP_CAN_WRITE;
2046 }
2047 
bpf_map_flags_access_ok(u32 access_flags)2048 static inline bool bpf_map_flags_access_ok(u32 access_flags)
2049 {
2050 	return (access_flags & (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG)) !=
2051 	       (BPF_F_RDONLY_PROG | BPF_F_WRONLY_PROG);
2052 }
2053 
2054 struct bpf_event_entry {
2055 	struct perf_event *event;
2056 	struct file *perf_file;
2057 	struct file *map_file;
2058 	struct rcu_head rcu;
2059 };
2060 
map_type_contains_progs(struct bpf_map * map)2061 static inline bool map_type_contains_progs(struct bpf_map *map)
2062 {
2063 	return map->map_type == BPF_MAP_TYPE_PROG_ARRAY ||
2064 	       map->map_type == BPF_MAP_TYPE_DEVMAP ||
2065 	       map->map_type == BPF_MAP_TYPE_CPUMAP;
2066 }
2067 
2068 bool bpf_prog_map_compatible(struct bpf_map *map, const struct bpf_prog *fp);
2069 int bpf_prog_calc_tag(struct bpf_prog *fp);
2070 
2071 const struct bpf_func_proto *bpf_get_trace_printk_proto(void);
2072 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void);
2073 
2074 const struct bpf_func_proto *bpf_get_perf_event_read_value_proto(void);
2075 
2076 typedef unsigned long (*bpf_ctx_copy_t)(void *dst, const void *src,
2077 					unsigned long off, unsigned long len);
2078 typedef u32 (*bpf_convert_ctx_access_t)(enum bpf_access_type type,
2079 					const struct bpf_insn *src,
2080 					struct bpf_insn *dst,
2081 					struct bpf_prog *prog,
2082 					u32 *target_size);
2083 
2084 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
2085 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy);
2086 
2087 /* an array of programs to be executed under rcu_lock.
2088  *
2089  * Typical usage:
2090  * ret = bpf_prog_run_array(rcu_dereference(&bpf_prog_array), ctx, bpf_prog_run);
2091  *
2092  * the structure returned by bpf_prog_array_alloc() should be populated
2093  * with program pointers and the last pointer must be NULL.
2094  * The user has to keep refcnt on the program and make sure the program
2095  * is removed from the array before bpf_prog_put().
2096  * The 'struct bpf_prog_array *' should only be replaced with xchg()
2097  * since other cpus are walking the array of pointers in parallel.
2098  */
2099 struct bpf_prog_array_item {
2100 	struct bpf_prog *prog;
2101 	union {
2102 		struct bpf_cgroup_storage *cgroup_storage[MAX_BPF_CGROUP_STORAGE_TYPE];
2103 		u64 bpf_cookie;
2104 	};
2105 };
2106 
2107 struct bpf_prog_array {
2108 	struct rcu_head rcu;
2109 	struct bpf_prog_array_item items[];
2110 };
2111 
2112 struct bpf_empty_prog_array {
2113 	struct bpf_prog_array hdr;
2114 	struct bpf_prog *null_prog;
2115 };
2116 
2117 /* to avoid allocating empty bpf_prog_array for cgroups that
2118  * don't have bpf program attached use one global 'bpf_empty_prog_array'
2119  * It will not be modified the caller of bpf_prog_array_alloc()
2120  * (since caller requested prog_cnt == 0)
2121  * that pointer should be 'freed' by bpf_prog_array_free()
2122  */
2123 extern struct bpf_empty_prog_array bpf_empty_prog_array;
2124 
2125 struct bpf_prog_array *bpf_prog_array_alloc(u32 prog_cnt, gfp_t flags);
2126 void bpf_prog_array_free(struct bpf_prog_array *progs);
2127 /* Use when traversal over the bpf_prog_array uses tasks_trace rcu */
2128 void bpf_prog_array_free_sleepable(struct bpf_prog_array *progs);
2129 int bpf_prog_array_length(struct bpf_prog_array *progs);
2130 bool bpf_prog_array_is_empty(struct bpf_prog_array *array);
2131 int bpf_prog_array_copy_to_user(struct bpf_prog_array *progs,
2132 				__u32 __user *prog_ids, u32 cnt);
2133 
2134 void bpf_prog_array_delete_safe(struct bpf_prog_array *progs,
2135 				struct bpf_prog *old_prog);
2136 int bpf_prog_array_delete_safe_at(struct bpf_prog_array *array, int index);
2137 int bpf_prog_array_update_at(struct bpf_prog_array *array, int index,
2138 			     struct bpf_prog *prog);
2139 int bpf_prog_array_copy_info(struct bpf_prog_array *array,
2140 			     u32 *prog_ids, u32 request_cnt,
2141 			     u32 *prog_cnt);
2142 int bpf_prog_array_copy(struct bpf_prog_array *old_array,
2143 			struct bpf_prog *exclude_prog,
2144 			struct bpf_prog *include_prog,
2145 			u64 bpf_cookie,
2146 			struct bpf_prog_array **new_array);
2147 
2148 struct bpf_run_ctx {};
2149 
2150 struct bpf_cg_run_ctx {
2151 	struct bpf_run_ctx run_ctx;
2152 	const struct bpf_prog_array_item *prog_item;
2153 	int retval;
2154 };
2155 
2156 struct bpf_trace_run_ctx {
2157 	struct bpf_run_ctx run_ctx;
2158 	u64 bpf_cookie;
2159 	bool is_uprobe;
2160 };
2161 
2162 struct bpf_tramp_run_ctx {
2163 	struct bpf_run_ctx run_ctx;
2164 	u64 bpf_cookie;
2165 	struct bpf_run_ctx *saved_run_ctx;
2166 };
2167 
bpf_set_run_ctx(struct bpf_run_ctx * new_ctx)2168 static inline struct bpf_run_ctx *bpf_set_run_ctx(struct bpf_run_ctx *new_ctx)
2169 {
2170 	struct bpf_run_ctx *old_ctx = NULL;
2171 
2172 #ifdef CONFIG_BPF_SYSCALL
2173 	old_ctx = current->bpf_ctx;
2174 	current->bpf_ctx = new_ctx;
2175 #endif
2176 	return old_ctx;
2177 }
2178 
bpf_reset_run_ctx(struct bpf_run_ctx * old_ctx)2179 static inline void bpf_reset_run_ctx(struct bpf_run_ctx *old_ctx)
2180 {
2181 #ifdef CONFIG_BPF_SYSCALL
2182 	current->bpf_ctx = old_ctx;
2183 #endif
2184 }
2185 
2186 /* BPF program asks to bypass CAP_NET_BIND_SERVICE in bind. */
2187 #define BPF_RET_BIND_NO_CAP_NET_BIND_SERVICE			(1 << 0)
2188 /* BPF program asks to set CN on the packet. */
2189 #define BPF_RET_SET_CN						(1 << 0)
2190 
2191 typedef u32 (*bpf_prog_run_fn)(const struct bpf_prog *prog, const void *ctx);
2192 
2193 static __always_inline u32
bpf_prog_run_array(const struct bpf_prog_array * array,const void * ctx,bpf_prog_run_fn run_prog)2194 bpf_prog_run_array(const struct bpf_prog_array *array,
2195 		   const void *ctx, bpf_prog_run_fn run_prog)
2196 {
2197 	const struct bpf_prog_array_item *item;
2198 	const struct bpf_prog *prog;
2199 	struct bpf_run_ctx *old_run_ctx;
2200 	struct bpf_trace_run_ctx run_ctx;
2201 	u32 ret = 1;
2202 
2203 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(), "no rcu lock held");
2204 
2205 	if (unlikely(!array))
2206 		return ret;
2207 
2208 	run_ctx.is_uprobe = false;
2209 
2210 	migrate_disable();
2211 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2212 	item = &array->items[0];
2213 	while ((prog = READ_ONCE(item->prog))) {
2214 		run_ctx.bpf_cookie = item->bpf_cookie;
2215 		ret &= run_prog(prog, ctx);
2216 		item++;
2217 	}
2218 	bpf_reset_run_ctx(old_run_ctx);
2219 	migrate_enable();
2220 	return ret;
2221 }
2222 
2223 /* Notes on RCU design for bpf_prog_arrays containing sleepable programs:
2224  *
2225  * We use the tasks_trace rcu flavor read section to protect the bpf_prog_array
2226  * overall. As a result, we must use the bpf_prog_array_free_sleepable
2227  * in order to use the tasks_trace rcu grace period.
2228  *
2229  * When a non-sleepable program is inside the array, we take the rcu read
2230  * section and disable preemption for that program alone, so it can access
2231  * rcu-protected dynamically sized maps.
2232  */
2233 static __always_inline u32
bpf_prog_run_array_uprobe(const struct bpf_prog_array * array,const void * ctx,bpf_prog_run_fn run_prog)2234 bpf_prog_run_array_uprobe(const struct bpf_prog_array *array,
2235 			  const void *ctx, bpf_prog_run_fn run_prog)
2236 {
2237 	const struct bpf_prog_array_item *item;
2238 	const struct bpf_prog *prog;
2239 	struct bpf_run_ctx *old_run_ctx;
2240 	struct bpf_trace_run_ctx run_ctx;
2241 	u32 ret = 1;
2242 
2243 	might_fault();
2244 	RCU_LOCKDEP_WARN(!rcu_read_lock_trace_held(), "no rcu lock held");
2245 
2246 	if (unlikely(!array))
2247 		return ret;
2248 
2249 	migrate_disable();
2250 
2251 	run_ctx.is_uprobe = true;
2252 
2253 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2254 	item = &array->items[0];
2255 	while ((prog = READ_ONCE(item->prog))) {
2256 		if (!prog->sleepable)
2257 			rcu_read_lock();
2258 
2259 		run_ctx.bpf_cookie = item->bpf_cookie;
2260 		ret &= run_prog(prog, ctx);
2261 		item++;
2262 
2263 		if (!prog->sleepable)
2264 			rcu_read_unlock();
2265 	}
2266 	bpf_reset_run_ctx(old_run_ctx);
2267 	migrate_enable();
2268 	return ret;
2269 }
2270 
2271 #ifdef CONFIG_BPF_SYSCALL
2272 DECLARE_PER_CPU(int, bpf_prog_active);
2273 extern struct mutex bpf_stats_enabled_mutex;
2274 
2275 /*
2276  * Block execution of BPF programs attached to instrumentation (perf,
2277  * kprobes, tracepoints) to prevent deadlocks on map operations as any of
2278  * these events can happen inside a region which holds a map bucket lock
2279  * and can deadlock on it.
2280  */
bpf_disable_instrumentation(void)2281 static inline void bpf_disable_instrumentation(void)
2282 {
2283 	migrate_disable();
2284 	this_cpu_inc(bpf_prog_active);
2285 }
2286 
bpf_enable_instrumentation(void)2287 static inline void bpf_enable_instrumentation(void)
2288 {
2289 	this_cpu_dec(bpf_prog_active);
2290 	migrate_enable();
2291 }
2292 
2293 extern const struct super_operations bpf_super_ops;
2294 extern const struct file_operations bpf_map_fops;
2295 extern const struct file_operations bpf_prog_fops;
2296 extern const struct file_operations bpf_iter_fops;
2297 
2298 #define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
2299 	extern const struct bpf_prog_ops _name ## _prog_ops; \
2300 	extern const struct bpf_verifier_ops _name ## _verifier_ops;
2301 #define BPF_MAP_TYPE(_id, _ops) \
2302 	extern const struct bpf_map_ops _ops;
2303 #define BPF_LINK_TYPE(_id, _name)
2304 #include <linux/bpf_types.h>
2305 #undef BPF_PROG_TYPE
2306 #undef BPF_MAP_TYPE
2307 #undef BPF_LINK_TYPE
2308 
2309 extern const struct bpf_prog_ops bpf_offload_prog_ops;
2310 extern const struct bpf_verifier_ops tc_cls_act_analyzer_ops;
2311 extern const struct bpf_verifier_ops xdp_analyzer_ops;
2312 
2313 struct bpf_prog *bpf_prog_get(u32 ufd);
2314 struct bpf_prog *bpf_prog_get_type_dev(u32 ufd, enum bpf_prog_type type,
2315 				       bool attach_drv);
2316 void bpf_prog_add(struct bpf_prog *prog, int i);
2317 void bpf_prog_sub(struct bpf_prog *prog, int i);
2318 void bpf_prog_inc(struct bpf_prog *prog);
2319 struct bpf_prog * __must_check bpf_prog_inc_not_zero(struct bpf_prog *prog);
2320 void bpf_prog_put(struct bpf_prog *prog);
2321 
2322 void bpf_prog_free_id(struct bpf_prog *prog);
2323 void bpf_map_free_id(struct bpf_map *map);
2324 
2325 struct btf_field *btf_record_find(const struct btf_record *rec,
2326 				  u32 offset, u32 field_mask);
2327 void btf_record_free(struct btf_record *rec);
2328 void bpf_map_free_record(struct bpf_map *map);
2329 struct btf_record *btf_record_dup(const struct btf_record *rec);
2330 bool btf_record_equal(const struct btf_record *rec_a, const struct btf_record *rec_b);
2331 void bpf_obj_free_timer(const struct btf_record *rec, void *obj);
2332 void bpf_obj_free_workqueue(const struct btf_record *rec, void *obj);
2333 void bpf_obj_free_fields(const struct btf_record *rec, void *obj);
2334 void __bpf_obj_drop_impl(void *p, const struct btf_record *rec, bool percpu);
2335 
2336 struct bpf_map *bpf_map_get(u32 ufd);
2337 struct bpf_map *bpf_map_get_with_uref(u32 ufd);
2338 
2339 /*
2340  * The __bpf_map_get() and __btf_get_by_fd() functions parse a file
2341  * descriptor and return a corresponding map or btf object.
2342  * Their names are double underscored to emphasize the fact that they
2343  * do not increase refcnt. To also increase refcnt use corresponding
2344  * bpf_map_get() and btf_get_by_fd() functions.
2345  */
2346 
__bpf_map_get(struct fd f)2347 static inline struct bpf_map *__bpf_map_get(struct fd f)
2348 {
2349 	if (fd_empty(f))
2350 		return ERR_PTR(-EBADF);
2351 	if (unlikely(fd_file(f)->f_op != &bpf_map_fops))
2352 		return ERR_PTR(-EINVAL);
2353 	return fd_file(f)->private_data;
2354 }
2355 
__btf_get_by_fd(struct fd f)2356 static inline struct btf *__btf_get_by_fd(struct fd f)
2357 {
2358 	if (fd_empty(f))
2359 		return ERR_PTR(-EBADF);
2360 	if (unlikely(fd_file(f)->f_op != &btf_fops))
2361 		return ERR_PTR(-EINVAL);
2362 	return fd_file(f)->private_data;
2363 }
2364 
2365 void bpf_map_inc(struct bpf_map *map);
2366 void bpf_map_inc_with_uref(struct bpf_map *map);
2367 struct bpf_map *__bpf_map_inc_not_zero(struct bpf_map *map, bool uref);
2368 struct bpf_map * __must_check bpf_map_inc_not_zero(struct bpf_map *map);
2369 void bpf_map_put_with_uref(struct bpf_map *map);
2370 void bpf_map_put(struct bpf_map *map);
2371 void *bpf_map_area_alloc(u64 size, int numa_node);
2372 void *bpf_map_area_mmapable_alloc(u64 size, int numa_node);
2373 void bpf_map_area_free(void *base);
2374 bool bpf_map_write_active(const struct bpf_map *map);
2375 void bpf_map_init_from_attr(struct bpf_map *map, union bpf_attr *attr);
2376 int  generic_map_lookup_batch(struct bpf_map *map,
2377 			      const union bpf_attr *attr,
2378 			      union bpf_attr __user *uattr);
2379 int  generic_map_update_batch(struct bpf_map *map, struct file *map_file,
2380 			      const union bpf_attr *attr,
2381 			      union bpf_attr __user *uattr);
2382 int  generic_map_delete_batch(struct bpf_map *map,
2383 			      const union bpf_attr *attr,
2384 			      union bpf_attr __user *uattr);
2385 struct bpf_map *bpf_map_get_curr_or_next(u32 *id);
2386 struct bpf_prog *bpf_prog_get_curr_or_next(u32 *id);
2387 
2388 int bpf_map_alloc_pages(const struct bpf_map *map, int nid,
2389 			unsigned long nr_pages, struct page **page_array);
2390 #ifdef CONFIG_MEMCG
2391 void *bpf_map_kmalloc_node(const struct bpf_map *map, size_t size, gfp_t flags,
2392 			   int node);
2393 void *bpf_map_kzalloc(const struct bpf_map *map, size_t size, gfp_t flags);
2394 void *bpf_map_kvcalloc(struct bpf_map *map, size_t n, size_t size,
2395 		       gfp_t flags);
2396 void __percpu *bpf_map_alloc_percpu(const struct bpf_map *map, size_t size,
2397 				    size_t align, gfp_t flags);
2398 #else
2399 /*
2400  * These specialized allocators have to be macros for their allocations to be
2401  * accounted separately (to have separate alloc_tag).
2402  */
2403 #define bpf_map_kmalloc_node(_map, _size, _flags, _node)	\
2404 		kmalloc_node(_size, _flags, _node)
2405 #define bpf_map_kzalloc(_map, _size, _flags)			\
2406 		kzalloc(_size, _flags)
2407 #define bpf_map_kvcalloc(_map, _n, _size, _flags)		\
2408 		kvcalloc(_n, _size, _flags)
2409 #define bpf_map_alloc_percpu(_map, _size, _align, _flags)	\
2410 		__alloc_percpu_gfp(_size, _align, _flags)
2411 #endif
2412 
2413 static inline int
bpf_map_init_elem_count(struct bpf_map * map)2414 bpf_map_init_elem_count(struct bpf_map *map)
2415 {
2416 	size_t size = sizeof(*map->elem_count), align = size;
2417 	gfp_t flags = GFP_USER | __GFP_NOWARN;
2418 
2419 	map->elem_count = bpf_map_alloc_percpu(map, size, align, flags);
2420 	if (!map->elem_count)
2421 		return -ENOMEM;
2422 
2423 	return 0;
2424 }
2425 
2426 static inline void
bpf_map_free_elem_count(struct bpf_map * map)2427 bpf_map_free_elem_count(struct bpf_map *map)
2428 {
2429 	free_percpu(map->elem_count);
2430 }
2431 
bpf_map_inc_elem_count(struct bpf_map * map)2432 static inline void bpf_map_inc_elem_count(struct bpf_map *map)
2433 {
2434 	this_cpu_inc(*map->elem_count);
2435 }
2436 
bpf_map_dec_elem_count(struct bpf_map * map)2437 static inline void bpf_map_dec_elem_count(struct bpf_map *map)
2438 {
2439 	this_cpu_dec(*map->elem_count);
2440 }
2441 
2442 extern int sysctl_unprivileged_bpf_disabled;
2443 
2444 bool bpf_token_capable(const struct bpf_token *token, int cap);
2445 
bpf_allow_ptr_leaks(const struct bpf_token * token)2446 static inline bool bpf_allow_ptr_leaks(const struct bpf_token *token)
2447 {
2448 	return bpf_token_capable(token, CAP_PERFMON);
2449 }
2450 
bpf_allow_uninit_stack(const struct bpf_token * token)2451 static inline bool bpf_allow_uninit_stack(const struct bpf_token *token)
2452 {
2453 	return bpf_token_capable(token, CAP_PERFMON);
2454 }
2455 
bpf_bypass_spec_v1(const struct bpf_token * token)2456 static inline bool bpf_bypass_spec_v1(const struct bpf_token *token)
2457 {
2458 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2459 }
2460 
bpf_bypass_spec_v4(const struct bpf_token * token)2461 static inline bool bpf_bypass_spec_v4(const struct bpf_token *token)
2462 {
2463 	return cpu_mitigations_off() || bpf_token_capable(token, CAP_PERFMON);
2464 }
2465 
2466 int bpf_map_new_fd(struct bpf_map *map, int flags);
2467 int bpf_prog_new_fd(struct bpf_prog *prog);
2468 
2469 void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2470 		   const struct bpf_link_ops *ops, struct bpf_prog *prog);
2471 void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type,
2472 			     const struct bpf_link_ops *ops, struct bpf_prog *prog,
2473 			     bool sleepable);
2474 int bpf_link_prime(struct bpf_link *link, struct bpf_link_primer *primer);
2475 int bpf_link_settle(struct bpf_link_primer *primer);
2476 void bpf_link_cleanup(struct bpf_link_primer *primer);
2477 void bpf_link_inc(struct bpf_link *link);
2478 struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link);
2479 void bpf_link_put(struct bpf_link *link);
2480 int bpf_link_new_fd(struct bpf_link *link);
2481 struct bpf_link *bpf_link_get_from_fd(u32 ufd);
2482 struct bpf_link *bpf_link_get_curr_or_next(u32 *id);
2483 
2484 void bpf_token_inc(struct bpf_token *token);
2485 void bpf_token_put(struct bpf_token *token);
2486 int bpf_token_create(union bpf_attr *attr);
2487 struct bpf_token *bpf_token_get_from_fd(u32 ufd);
2488 
2489 bool bpf_token_allow_cmd(const struct bpf_token *token, enum bpf_cmd cmd);
2490 bool bpf_token_allow_map_type(const struct bpf_token *token, enum bpf_map_type type);
2491 bool bpf_token_allow_prog_type(const struct bpf_token *token,
2492 			       enum bpf_prog_type prog_type,
2493 			       enum bpf_attach_type attach_type);
2494 
2495 int bpf_obj_pin_user(u32 ufd, int path_fd, const char __user *pathname);
2496 int bpf_obj_get_user(int path_fd, const char __user *pathname, int flags);
2497 struct inode *bpf_get_inode(struct super_block *sb, const struct inode *dir,
2498 			    umode_t mode);
2499 
2500 #define BPF_ITER_FUNC_PREFIX "bpf_iter_"
2501 #define DEFINE_BPF_ITER_FUNC(target, args...)			\
2502 	extern int bpf_iter_ ## target(args);			\
2503 	int __init bpf_iter_ ## target(args) { return 0; }
2504 
2505 /*
2506  * The task type of iterators.
2507  *
2508  * For BPF task iterators, they can be parameterized with various
2509  * parameters to visit only some of tasks.
2510  *
2511  * BPF_TASK_ITER_ALL (default)
2512  *	Iterate over resources of every task.
2513  *
2514  * BPF_TASK_ITER_TID
2515  *	Iterate over resources of a task/tid.
2516  *
2517  * BPF_TASK_ITER_TGID
2518  *	Iterate over resources of every task of a process / task group.
2519  */
2520 enum bpf_iter_task_type {
2521 	BPF_TASK_ITER_ALL = 0,
2522 	BPF_TASK_ITER_TID,
2523 	BPF_TASK_ITER_TGID,
2524 };
2525 
2526 struct bpf_iter_aux_info {
2527 	/* for map_elem iter */
2528 	struct bpf_map *map;
2529 
2530 	/* for cgroup iter */
2531 	struct {
2532 		struct cgroup *start; /* starting cgroup */
2533 		enum bpf_cgroup_iter_order order;
2534 	} cgroup;
2535 	struct {
2536 		enum bpf_iter_task_type	type;
2537 		u32 pid;
2538 	} task;
2539 };
2540 
2541 typedef int (*bpf_iter_attach_target_t)(struct bpf_prog *prog,
2542 					union bpf_iter_link_info *linfo,
2543 					struct bpf_iter_aux_info *aux);
2544 typedef void (*bpf_iter_detach_target_t)(struct bpf_iter_aux_info *aux);
2545 typedef void (*bpf_iter_show_fdinfo_t) (const struct bpf_iter_aux_info *aux,
2546 					struct seq_file *seq);
2547 typedef int (*bpf_iter_fill_link_info_t)(const struct bpf_iter_aux_info *aux,
2548 					 struct bpf_link_info *info);
2549 typedef const struct bpf_func_proto *
2550 (*bpf_iter_get_func_proto_t)(enum bpf_func_id func_id,
2551 			     const struct bpf_prog *prog);
2552 
2553 enum bpf_iter_feature {
2554 	BPF_ITER_RESCHED	= BIT(0),
2555 };
2556 
2557 #define BPF_ITER_CTX_ARG_MAX 2
2558 struct bpf_iter_reg {
2559 	const char *target;
2560 	bpf_iter_attach_target_t attach_target;
2561 	bpf_iter_detach_target_t detach_target;
2562 	bpf_iter_show_fdinfo_t show_fdinfo;
2563 	bpf_iter_fill_link_info_t fill_link_info;
2564 	bpf_iter_get_func_proto_t get_func_proto;
2565 	u32 ctx_arg_info_size;
2566 	u32 feature;
2567 	struct bpf_ctx_arg_aux ctx_arg_info[BPF_ITER_CTX_ARG_MAX];
2568 	const struct bpf_iter_seq_info *seq_info;
2569 };
2570 
2571 struct bpf_iter_meta {
2572 	__bpf_md_ptr(struct seq_file *, seq);
2573 	u64 session_id;
2574 	u64 seq_num;
2575 };
2576 
2577 struct bpf_iter__bpf_map_elem {
2578 	__bpf_md_ptr(struct bpf_iter_meta *, meta);
2579 	__bpf_md_ptr(struct bpf_map *, map);
2580 	__bpf_md_ptr(void *, key);
2581 	__bpf_md_ptr(void *, value);
2582 };
2583 
2584 int bpf_iter_reg_target(const struct bpf_iter_reg *reg_info);
2585 void bpf_iter_unreg_target(const struct bpf_iter_reg *reg_info);
2586 int bpf_iter_prog_supported(struct bpf_prog *prog);
2587 const struct bpf_func_proto *
2588 bpf_iter_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog);
2589 int bpf_iter_link_attach(const union bpf_attr *attr, bpfptr_t uattr, struct bpf_prog *prog);
2590 int bpf_iter_new_fd(struct bpf_link *link);
2591 bool bpf_link_is_iter(struct bpf_link *link);
2592 struct bpf_prog *bpf_iter_get_info(struct bpf_iter_meta *meta, bool in_stop);
2593 int bpf_iter_run_prog(struct bpf_prog *prog, void *ctx);
2594 void bpf_iter_map_show_fdinfo(const struct bpf_iter_aux_info *aux,
2595 			      struct seq_file *seq);
2596 int bpf_iter_map_fill_link_info(const struct bpf_iter_aux_info *aux,
2597 				struct bpf_link_info *info);
2598 
2599 int map_set_for_each_callback_args(struct bpf_verifier_env *env,
2600 				   struct bpf_func_state *caller,
2601 				   struct bpf_func_state *callee);
2602 
2603 int bpf_percpu_hash_copy(struct bpf_map *map, void *key, void *value);
2604 int bpf_percpu_array_copy(struct bpf_map *map, void *key, void *value);
2605 int bpf_percpu_hash_update(struct bpf_map *map, void *key, void *value,
2606 			   u64 flags);
2607 int bpf_percpu_array_update(struct bpf_map *map, void *key, void *value,
2608 			    u64 flags);
2609 
2610 int bpf_stackmap_copy(struct bpf_map *map, void *key, void *value);
2611 
2612 int bpf_fd_array_map_update_elem(struct bpf_map *map, struct file *map_file,
2613 				 void *key, void *value, u64 map_flags);
2614 int bpf_fd_array_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2615 int bpf_fd_htab_map_update_elem(struct bpf_map *map, struct file *map_file,
2616 				void *key, void *value, u64 map_flags);
2617 int bpf_fd_htab_map_lookup_elem(struct bpf_map *map, void *key, u32 *value);
2618 
2619 int bpf_get_file_flag(int flags);
2620 int bpf_check_uarg_tail_zero(bpfptr_t uaddr, size_t expected_size,
2621 			     size_t actual_size);
2622 
2623 /* verify correctness of eBPF program */
2624 int bpf_check(struct bpf_prog **fp, union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size);
2625 
2626 #ifndef CONFIG_BPF_JIT_ALWAYS_ON
2627 void bpf_patch_call_args(struct bpf_insn *insn, u32 stack_depth);
2628 #endif
2629 
2630 struct btf *bpf_get_btf_vmlinux(void);
2631 
2632 /* Map specifics */
2633 struct xdp_frame;
2634 struct sk_buff;
2635 struct bpf_dtab_netdev;
2636 struct bpf_cpu_map_entry;
2637 
2638 void __dev_flush(struct list_head *flush_list);
2639 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2640 		    struct net_device *dev_rx);
2641 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2642 		    struct net_device *dev_rx);
2643 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2644 			  struct bpf_map *map, bool exclude_ingress);
2645 int dev_map_generic_redirect(struct bpf_dtab_netdev *dst, struct sk_buff *skb,
2646 			     const struct bpf_prog *xdp_prog);
2647 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2648 			   const struct bpf_prog *xdp_prog,
2649 			   struct bpf_map *map, bool exclude_ingress);
2650 
2651 void __cpu_map_flush(struct list_head *flush_list);
2652 int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu, struct xdp_frame *xdpf,
2653 		    struct net_device *dev_rx);
2654 int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2655 			     struct sk_buff *skb);
2656 
2657 /* Return map's numa specified by userspace */
bpf_map_attr_numa_node(const union bpf_attr * attr)2658 static inline int bpf_map_attr_numa_node(const union bpf_attr *attr)
2659 {
2660 	return (attr->map_flags & BPF_F_NUMA_NODE) ?
2661 		attr->numa_node : NUMA_NO_NODE;
2662 }
2663 
2664 struct bpf_prog *bpf_prog_get_type_path(const char *name, enum bpf_prog_type type);
2665 int array_map_alloc_check(union bpf_attr *attr);
2666 
2667 int bpf_prog_test_run_xdp(struct bpf_prog *prog, const union bpf_attr *kattr,
2668 			  union bpf_attr __user *uattr);
2669 int bpf_prog_test_run_skb(struct bpf_prog *prog, const union bpf_attr *kattr,
2670 			  union bpf_attr __user *uattr);
2671 int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2672 			      const union bpf_attr *kattr,
2673 			      union bpf_attr __user *uattr);
2674 int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2675 				     const union bpf_attr *kattr,
2676 				     union bpf_attr __user *uattr);
2677 int bpf_prog_test_run_raw_tp(struct bpf_prog *prog,
2678 			     const union bpf_attr *kattr,
2679 			     union bpf_attr __user *uattr);
2680 int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2681 				const union bpf_attr *kattr,
2682 				union bpf_attr __user *uattr);
2683 int bpf_prog_test_run_nf(struct bpf_prog *prog,
2684 			 const union bpf_attr *kattr,
2685 			 union bpf_attr __user *uattr);
2686 bool btf_ctx_access(int off, int size, enum bpf_access_type type,
2687 		    const struct bpf_prog *prog,
2688 		    struct bpf_insn_access_aux *info);
2689 
bpf_tracing_ctx_access(int off,int size,enum bpf_access_type type)2690 static inline bool bpf_tracing_ctx_access(int off, int size,
2691 					  enum bpf_access_type type)
2692 {
2693 	if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS)
2694 		return false;
2695 	if (type != BPF_READ)
2696 		return false;
2697 	if (off % size != 0)
2698 		return false;
2699 	return true;
2700 }
2701 
bpf_tracing_btf_ctx_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)2702 static inline bool bpf_tracing_btf_ctx_access(int off, int size,
2703 					      enum bpf_access_type type,
2704 					      const struct bpf_prog *prog,
2705 					      struct bpf_insn_access_aux *info)
2706 {
2707 	if (!bpf_tracing_ctx_access(off, size, type))
2708 		return false;
2709 	return btf_ctx_access(off, size, type, prog, info);
2710 }
2711 
2712 int btf_struct_access(struct bpf_verifier_log *log,
2713 		      const struct bpf_reg_state *reg,
2714 		      int off, int size, enum bpf_access_type atype,
2715 		      u32 *next_btf_id, enum bpf_type_flag *flag, const char **field_name);
2716 bool btf_struct_ids_match(struct bpf_verifier_log *log,
2717 			  const struct btf *btf, u32 id, int off,
2718 			  const struct btf *need_btf, u32 need_type_id,
2719 			  bool strict);
2720 
2721 int btf_distill_func_proto(struct bpf_verifier_log *log,
2722 			   struct btf *btf,
2723 			   const struct btf_type *func_proto,
2724 			   const char *func_name,
2725 			   struct btf_func_model *m);
2726 
2727 struct bpf_reg_state;
2728 int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog);
2729 int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
2730 			 struct btf *btf, const struct btf_type *t);
2731 const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
2732 				    int comp_idx, const char *tag_key);
2733 int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
2734 			   int comp_idx, const char *tag_key, int last_id);
2735 
2736 struct bpf_prog *bpf_prog_by_id(u32 id);
2737 struct bpf_link *bpf_link_by_id(u32 id);
2738 
2739 const struct bpf_func_proto *bpf_base_func_proto(enum bpf_func_id func_id,
2740 						 const struct bpf_prog *prog);
2741 void bpf_task_storage_free(struct task_struct *task);
2742 void bpf_cgrp_storage_free(struct cgroup *cgroup);
2743 bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog);
2744 const struct btf_func_model *
2745 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
2746 			 const struct bpf_insn *insn);
2747 int bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
2748 		       u16 btf_fd_idx, u8 **func_addr);
2749 
2750 struct bpf_core_ctx {
2751 	struct bpf_verifier_log *log;
2752 	const struct btf *btf;
2753 };
2754 
2755 bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
2756 				const struct bpf_reg_state *reg,
2757 				const char *field_name, u32 btf_id, const char *suffix);
2758 
2759 bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
2760 			       const struct btf *reg_btf, u32 reg_id,
2761 			       const struct btf *arg_btf, u32 arg_id);
2762 
2763 int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
2764 		   int relo_idx, void *insn);
2765 
unprivileged_ebpf_enabled(void)2766 static inline bool unprivileged_ebpf_enabled(void)
2767 {
2768 	return !sysctl_unprivileged_bpf_disabled;
2769 }
2770 
2771 /* Not all bpf prog type has the bpf_ctx.
2772  * For the bpf prog type that has initialized the bpf_ctx,
2773  * this function can be used to decide if a kernel function
2774  * is called by a bpf program.
2775  */
has_current_bpf_ctx(void)2776 static inline bool has_current_bpf_ctx(void)
2777 {
2778 	return !!current->bpf_ctx;
2779 }
2780 
2781 void notrace bpf_prog_inc_misses_counter(struct bpf_prog *prog);
2782 
2783 void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
2784 		     enum bpf_dynptr_type type, u32 offset, u32 size);
2785 void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr);
2786 void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr);
2787 
2788 #else /* !CONFIG_BPF_SYSCALL */
bpf_prog_get(u32 ufd)2789 static inline struct bpf_prog *bpf_prog_get(u32 ufd)
2790 {
2791 	return ERR_PTR(-EOPNOTSUPP);
2792 }
2793 
bpf_prog_get_type_dev(u32 ufd,enum bpf_prog_type type,bool attach_drv)2794 static inline struct bpf_prog *bpf_prog_get_type_dev(u32 ufd,
2795 						     enum bpf_prog_type type,
2796 						     bool attach_drv)
2797 {
2798 	return ERR_PTR(-EOPNOTSUPP);
2799 }
2800 
bpf_prog_add(struct bpf_prog * prog,int i)2801 static inline void bpf_prog_add(struct bpf_prog *prog, int i)
2802 {
2803 }
2804 
bpf_prog_sub(struct bpf_prog * prog,int i)2805 static inline void bpf_prog_sub(struct bpf_prog *prog, int i)
2806 {
2807 }
2808 
bpf_prog_put(struct bpf_prog * prog)2809 static inline void bpf_prog_put(struct bpf_prog *prog)
2810 {
2811 }
2812 
bpf_prog_inc(struct bpf_prog * prog)2813 static inline void bpf_prog_inc(struct bpf_prog *prog)
2814 {
2815 }
2816 
2817 static inline struct bpf_prog *__must_check
bpf_prog_inc_not_zero(struct bpf_prog * prog)2818 bpf_prog_inc_not_zero(struct bpf_prog *prog)
2819 {
2820 	return ERR_PTR(-EOPNOTSUPP);
2821 }
2822 
bpf_link_init(struct bpf_link * link,enum bpf_link_type type,const struct bpf_link_ops * ops,struct bpf_prog * prog)2823 static inline void bpf_link_init(struct bpf_link *link, enum bpf_link_type type,
2824 				 const struct bpf_link_ops *ops,
2825 				 struct bpf_prog *prog)
2826 {
2827 }
2828 
bpf_link_init_sleepable(struct bpf_link * link,enum bpf_link_type type,const struct bpf_link_ops * ops,struct bpf_prog * prog,bool sleepable)2829 static inline void bpf_link_init_sleepable(struct bpf_link *link, enum bpf_link_type type,
2830 					   const struct bpf_link_ops *ops, struct bpf_prog *prog,
2831 					   bool sleepable)
2832 {
2833 }
2834 
bpf_link_prime(struct bpf_link * link,struct bpf_link_primer * primer)2835 static inline int bpf_link_prime(struct bpf_link *link,
2836 				 struct bpf_link_primer *primer)
2837 {
2838 	return -EOPNOTSUPP;
2839 }
2840 
bpf_link_settle(struct bpf_link_primer * primer)2841 static inline int bpf_link_settle(struct bpf_link_primer *primer)
2842 {
2843 	return -EOPNOTSUPP;
2844 }
2845 
bpf_link_cleanup(struct bpf_link_primer * primer)2846 static inline void bpf_link_cleanup(struct bpf_link_primer *primer)
2847 {
2848 }
2849 
bpf_link_inc(struct bpf_link * link)2850 static inline void bpf_link_inc(struct bpf_link *link)
2851 {
2852 }
2853 
bpf_link_inc_not_zero(struct bpf_link * link)2854 static inline struct bpf_link *bpf_link_inc_not_zero(struct bpf_link *link)
2855 {
2856 	return NULL;
2857 }
2858 
bpf_link_put(struct bpf_link * link)2859 static inline void bpf_link_put(struct bpf_link *link)
2860 {
2861 }
2862 
bpf_obj_get_user(const char __user * pathname,int flags)2863 static inline int bpf_obj_get_user(const char __user *pathname, int flags)
2864 {
2865 	return -EOPNOTSUPP;
2866 }
2867 
bpf_token_capable(const struct bpf_token * token,int cap)2868 static inline bool bpf_token_capable(const struct bpf_token *token, int cap)
2869 {
2870 	return capable(cap) || (cap != CAP_SYS_ADMIN && capable(CAP_SYS_ADMIN));
2871 }
2872 
bpf_token_inc(struct bpf_token * token)2873 static inline void bpf_token_inc(struct bpf_token *token)
2874 {
2875 }
2876 
bpf_token_put(struct bpf_token * token)2877 static inline void bpf_token_put(struct bpf_token *token)
2878 {
2879 }
2880 
bpf_token_get_from_fd(u32 ufd)2881 static inline struct bpf_token *bpf_token_get_from_fd(u32 ufd)
2882 {
2883 	return ERR_PTR(-EOPNOTSUPP);
2884 }
2885 
__dev_flush(struct list_head * flush_list)2886 static inline void __dev_flush(struct list_head *flush_list)
2887 {
2888 }
2889 
2890 struct xdp_frame;
2891 struct bpf_dtab_netdev;
2892 struct bpf_cpu_map_entry;
2893 
2894 static inline
dev_xdp_enqueue(struct net_device * dev,struct xdp_frame * xdpf,struct net_device * dev_rx)2895 int dev_xdp_enqueue(struct net_device *dev, struct xdp_frame *xdpf,
2896 		    struct net_device *dev_rx)
2897 {
2898 	return 0;
2899 }
2900 
2901 static inline
dev_map_enqueue(struct bpf_dtab_netdev * dst,struct xdp_frame * xdpf,struct net_device * dev_rx)2902 int dev_map_enqueue(struct bpf_dtab_netdev *dst, struct xdp_frame *xdpf,
2903 		    struct net_device *dev_rx)
2904 {
2905 	return 0;
2906 }
2907 
2908 static inline
dev_map_enqueue_multi(struct xdp_frame * xdpf,struct net_device * dev_rx,struct bpf_map * map,bool exclude_ingress)2909 int dev_map_enqueue_multi(struct xdp_frame *xdpf, struct net_device *dev_rx,
2910 			  struct bpf_map *map, bool exclude_ingress)
2911 {
2912 	return 0;
2913 }
2914 
2915 struct sk_buff;
2916 
dev_map_generic_redirect(struct bpf_dtab_netdev * dst,struct sk_buff * skb,const struct bpf_prog * xdp_prog)2917 static inline int dev_map_generic_redirect(struct bpf_dtab_netdev *dst,
2918 					   struct sk_buff *skb,
2919 					   const struct bpf_prog *xdp_prog)
2920 {
2921 	return 0;
2922 }
2923 
2924 static inline
dev_map_redirect_multi(struct net_device * dev,struct sk_buff * skb,const struct bpf_prog * xdp_prog,struct bpf_map * map,bool exclude_ingress)2925 int dev_map_redirect_multi(struct net_device *dev, struct sk_buff *skb,
2926 			   const struct bpf_prog *xdp_prog,
2927 			   struct bpf_map *map, bool exclude_ingress)
2928 {
2929 	return 0;
2930 }
2931 
__cpu_map_flush(struct list_head * flush_list)2932 static inline void __cpu_map_flush(struct list_head *flush_list)
2933 {
2934 }
2935 
cpu_map_enqueue(struct bpf_cpu_map_entry * rcpu,struct xdp_frame * xdpf,struct net_device * dev_rx)2936 static inline int cpu_map_enqueue(struct bpf_cpu_map_entry *rcpu,
2937 				  struct xdp_frame *xdpf,
2938 				  struct net_device *dev_rx)
2939 {
2940 	return 0;
2941 }
2942 
cpu_map_generic_redirect(struct bpf_cpu_map_entry * rcpu,struct sk_buff * skb)2943 static inline int cpu_map_generic_redirect(struct bpf_cpu_map_entry *rcpu,
2944 					   struct sk_buff *skb)
2945 {
2946 	return -EOPNOTSUPP;
2947 }
2948 
bpf_prog_get_type_path(const char * name,enum bpf_prog_type type)2949 static inline struct bpf_prog *bpf_prog_get_type_path(const char *name,
2950 				enum bpf_prog_type type)
2951 {
2952 	return ERR_PTR(-EOPNOTSUPP);
2953 }
2954 
bpf_prog_test_run_xdp(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2955 static inline int bpf_prog_test_run_xdp(struct bpf_prog *prog,
2956 					const union bpf_attr *kattr,
2957 					union bpf_attr __user *uattr)
2958 {
2959 	return -ENOTSUPP;
2960 }
2961 
bpf_prog_test_run_skb(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2962 static inline int bpf_prog_test_run_skb(struct bpf_prog *prog,
2963 					const union bpf_attr *kattr,
2964 					union bpf_attr __user *uattr)
2965 {
2966 	return -ENOTSUPP;
2967 }
2968 
bpf_prog_test_run_tracing(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2969 static inline int bpf_prog_test_run_tracing(struct bpf_prog *prog,
2970 					    const union bpf_attr *kattr,
2971 					    union bpf_attr __user *uattr)
2972 {
2973 	return -ENOTSUPP;
2974 }
2975 
bpf_prog_test_run_flow_dissector(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2976 static inline int bpf_prog_test_run_flow_dissector(struct bpf_prog *prog,
2977 						   const union bpf_attr *kattr,
2978 						   union bpf_attr __user *uattr)
2979 {
2980 	return -ENOTSUPP;
2981 }
2982 
bpf_prog_test_run_sk_lookup(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)2983 static inline int bpf_prog_test_run_sk_lookup(struct bpf_prog *prog,
2984 					      const union bpf_attr *kattr,
2985 					      union bpf_attr __user *uattr)
2986 {
2987 	return -ENOTSUPP;
2988 }
2989 
bpf_map_put(struct bpf_map * map)2990 static inline void bpf_map_put(struct bpf_map *map)
2991 {
2992 }
2993 
bpf_prog_by_id(u32 id)2994 static inline struct bpf_prog *bpf_prog_by_id(u32 id)
2995 {
2996 	return ERR_PTR(-ENOTSUPP);
2997 }
2998 
btf_struct_access(struct bpf_verifier_log * log,const struct bpf_reg_state * reg,int off,int size,enum bpf_access_type atype,u32 * next_btf_id,enum bpf_type_flag * flag,const char ** field_name)2999 static inline int btf_struct_access(struct bpf_verifier_log *log,
3000 				    const struct bpf_reg_state *reg,
3001 				    int off, int size, enum bpf_access_type atype,
3002 				    u32 *next_btf_id, enum bpf_type_flag *flag,
3003 				    const char **field_name)
3004 {
3005 	return -EACCES;
3006 }
3007 
3008 static inline const struct bpf_func_proto *
bpf_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)3009 bpf_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
3010 {
3011 	return NULL;
3012 }
3013 
bpf_task_storage_free(struct task_struct * task)3014 static inline void bpf_task_storage_free(struct task_struct *task)
3015 {
3016 }
3017 
bpf_prog_has_kfunc_call(const struct bpf_prog * prog)3018 static inline bool bpf_prog_has_kfunc_call(const struct bpf_prog *prog)
3019 {
3020 	return false;
3021 }
3022 
3023 static inline const struct btf_func_model *
bpf_jit_find_kfunc_model(const struct bpf_prog * prog,const struct bpf_insn * insn)3024 bpf_jit_find_kfunc_model(const struct bpf_prog *prog,
3025 			 const struct bpf_insn *insn)
3026 {
3027 	return NULL;
3028 }
3029 
3030 static inline int
bpf_get_kfunc_addr(const struct bpf_prog * prog,u32 func_id,u16 btf_fd_idx,u8 ** func_addr)3031 bpf_get_kfunc_addr(const struct bpf_prog *prog, u32 func_id,
3032 		   u16 btf_fd_idx, u8 **func_addr)
3033 {
3034 	return -ENOTSUPP;
3035 }
3036 
unprivileged_ebpf_enabled(void)3037 static inline bool unprivileged_ebpf_enabled(void)
3038 {
3039 	return false;
3040 }
3041 
has_current_bpf_ctx(void)3042 static inline bool has_current_bpf_ctx(void)
3043 {
3044 	return false;
3045 }
3046 
bpf_prog_inc_misses_counter(struct bpf_prog * prog)3047 static inline void bpf_prog_inc_misses_counter(struct bpf_prog *prog)
3048 {
3049 }
3050 
bpf_cgrp_storage_free(struct cgroup * cgroup)3051 static inline void bpf_cgrp_storage_free(struct cgroup *cgroup)
3052 {
3053 }
3054 
bpf_dynptr_init(struct bpf_dynptr_kern * ptr,void * data,enum bpf_dynptr_type type,u32 offset,u32 size)3055 static inline void bpf_dynptr_init(struct bpf_dynptr_kern *ptr, void *data,
3056 				   enum bpf_dynptr_type type, u32 offset, u32 size)
3057 {
3058 }
3059 
bpf_dynptr_set_null(struct bpf_dynptr_kern * ptr)3060 static inline void bpf_dynptr_set_null(struct bpf_dynptr_kern *ptr)
3061 {
3062 }
3063 
bpf_dynptr_set_rdonly(struct bpf_dynptr_kern * ptr)3064 static inline void bpf_dynptr_set_rdonly(struct bpf_dynptr_kern *ptr)
3065 {
3066 }
3067 #endif /* CONFIG_BPF_SYSCALL */
3068 
3069 static __always_inline int
bpf_probe_read_kernel_common(void * dst,u32 size,const void * unsafe_ptr)3070 bpf_probe_read_kernel_common(void *dst, u32 size, const void *unsafe_ptr)
3071 {
3072 	int ret = -EFAULT;
3073 
3074 	if (IS_ENABLED(CONFIG_BPF_EVENTS))
3075 		ret = copy_from_kernel_nofault(dst, unsafe_ptr, size);
3076 	if (unlikely(ret < 0))
3077 		memset(dst, 0, size);
3078 	return ret;
3079 }
3080 
3081 void __bpf_free_used_btfs(struct btf_mod_pair *used_btfs, u32 len);
3082 
bpf_prog_get_type(u32 ufd,enum bpf_prog_type type)3083 static inline struct bpf_prog *bpf_prog_get_type(u32 ufd,
3084 						 enum bpf_prog_type type)
3085 {
3086 	return bpf_prog_get_type_dev(ufd, type, false);
3087 }
3088 
3089 void __bpf_free_used_maps(struct bpf_prog_aux *aux,
3090 			  struct bpf_map **used_maps, u32 len);
3091 
3092 bool bpf_prog_get_ok(struct bpf_prog *, enum bpf_prog_type *, bool);
3093 
3094 int bpf_prog_offload_compile(struct bpf_prog *prog);
3095 void bpf_prog_dev_bound_destroy(struct bpf_prog *prog);
3096 int bpf_prog_offload_info_fill(struct bpf_prog_info *info,
3097 			       struct bpf_prog *prog);
3098 
3099 int bpf_map_offload_info_fill(struct bpf_map_info *info, struct bpf_map *map);
3100 
3101 int bpf_map_offload_lookup_elem(struct bpf_map *map, void *key, void *value);
3102 int bpf_map_offload_update_elem(struct bpf_map *map,
3103 				void *key, void *value, u64 flags);
3104 int bpf_map_offload_delete_elem(struct bpf_map *map, void *key);
3105 int bpf_map_offload_get_next_key(struct bpf_map *map,
3106 				 void *key, void *next_key);
3107 
3108 bool bpf_offload_prog_map_match(struct bpf_prog *prog, struct bpf_map *map);
3109 
3110 struct bpf_offload_dev *
3111 bpf_offload_dev_create(const struct bpf_prog_offload_ops *ops, void *priv);
3112 void bpf_offload_dev_destroy(struct bpf_offload_dev *offdev);
3113 void *bpf_offload_dev_priv(struct bpf_offload_dev *offdev);
3114 int bpf_offload_dev_netdev_register(struct bpf_offload_dev *offdev,
3115 				    struct net_device *netdev);
3116 void bpf_offload_dev_netdev_unregister(struct bpf_offload_dev *offdev,
3117 				       struct net_device *netdev);
3118 bool bpf_offload_dev_match(struct bpf_prog *prog, struct net_device *netdev);
3119 
3120 void unpriv_ebpf_notify(int new_state);
3121 
3122 #if defined(CONFIG_NET) && defined(CONFIG_BPF_SYSCALL)
3123 int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3124 			      struct bpf_prog_aux *prog_aux);
3125 void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog, u32 func_id);
3126 int bpf_prog_dev_bound_init(struct bpf_prog *prog, union bpf_attr *attr);
3127 int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog, struct bpf_prog *old_prog);
3128 void bpf_dev_bound_netdev_unregister(struct net_device *dev);
3129 
bpf_prog_is_dev_bound(const struct bpf_prog_aux * aux)3130 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3131 {
3132 	return aux->dev_bound;
3133 }
3134 
bpf_prog_is_offloaded(const struct bpf_prog_aux * aux)3135 static inline bool bpf_prog_is_offloaded(const struct bpf_prog_aux *aux)
3136 {
3137 	return aux->offload_requested;
3138 }
3139 
3140 bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs);
3141 
bpf_map_is_offloaded(struct bpf_map * map)3142 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3143 {
3144 	return unlikely(map->ops == &bpf_map_offload_ops);
3145 }
3146 
3147 struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr);
3148 void bpf_map_offload_map_free(struct bpf_map *map);
3149 u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map);
3150 int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3151 			      const union bpf_attr *kattr,
3152 			      union bpf_attr __user *uattr);
3153 
3154 int sock_map_get_from_fd(const union bpf_attr *attr, struct bpf_prog *prog);
3155 int sock_map_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype);
3156 int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value, u64 flags);
3157 int sock_map_bpf_prog_query(const union bpf_attr *attr,
3158 			    union bpf_attr __user *uattr);
3159 int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog);
3160 
3161 void sock_map_unhash(struct sock *sk);
3162 void sock_map_destroy(struct sock *sk);
3163 void sock_map_close(struct sock *sk, long timeout);
3164 #else
bpf_dev_bound_kfunc_check(struct bpf_verifier_log * log,struct bpf_prog_aux * prog_aux)3165 static inline int bpf_dev_bound_kfunc_check(struct bpf_verifier_log *log,
3166 					    struct bpf_prog_aux *prog_aux)
3167 {
3168 	return -EOPNOTSUPP;
3169 }
3170 
bpf_dev_bound_resolve_kfunc(struct bpf_prog * prog,u32 func_id)3171 static inline void *bpf_dev_bound_resolve_kfunc(struct bpf_prog *prog,
3172 						u32 func_id)
3173 {
3174 	return NULL;
3175 }
3176 
bpf_prog_dev_bound_init(struct bpf_prog * prog,union bpf_attr * attr)3177 static inline int bpf_prog_dev_bound_init(struct bpf_prog *prog,
3178 					  union bpf_attr *attr)
3179 {
3180 	return -EOPNOTSUPP;
3181 }
3182 
bpf_prog_dev_bound_inherit(struct bpf_prog * new_prog,struct bpf_prog * old_prog)3183 static inline int bpf_prog_dev_bound_inherit(struct bpf_prog *new_prog,
3184 					     struct bpf_prog *old_prog)
3185 {
3186 	return -EOPNOTSUPP;
3187 }
3188 
bpf_dev_bound_netdev_unregister(struct net_device * dev)3189 static inline void bpf_dev_bound_netdev_unregister(struct net_device *dev)
3190 {
3191 }
3192 
bpf_prog_is_dev_bound(const struct bpf_prog_aux * aux)3193 static inline bool bpf_prog_is_dev_bound(const struct bpf_prog_aux *aux)
3194 {
3195 	return false;
3196 }
3197 
bpf_prog_is_offloaded(struct bpf_prog_aux * aux)3198 static inline bool bpf_prog_is_offloaded(struct bpf_prog_aux *aux)
3199 {
3200 	return false;
3201 }
3202 
bpf_prog_dev_bound_match(const struct bpf_prog * lhs,const struct bpf_prog * rhs)3203 static inline bool bpf_prog_dev_bound_match(const struct bpf_prog *lhs, const struct bpf_prog *rhs)
3204 {
3205 	return false;
3206 }
3207 
bpf_map_is_offloaded(struct bpf_map * map)3208 static inline bool bpf_map_is_offloaded(struct bpf_map *map)
3209 {
3210 	return false;
3211 }
3212 
bpf_map_offload_map_alloc(union bpf_attr * attr)3213 static inline struct bpf_map *bpf_map_offload_map_alloc(union bpf_attr *attr)
3214 {
3215 	return ERR_PTR(-EOPNOTSUPP);
3216 }
3217 
bpf_map_offload_map_free(struct bpf_map * map)3218 static inline void bpf_map_offload_map_free(struct bpf_map *map)
3219 {
3220 }
3221 
bpf_map_offload_map_mem_usage(const struct bpf_map * map)3222 static inline u64 bpf_map_offload_map_mem_usage(const struct bpf_map *map)
3223 {
3224 	return 0;
3225 }
3226 
bpf_prog_test_run_syscall(struct bpf_prog * prog,const union bpf_attr * kattr,union bpf_attr __user * uattr)3227 static inline int bpf_prog_test_run_syscall(struct bpf_prog *prog,
3228 					    const union bpf_attr *kattr,
3229 					    union bpf_attr __user *uattr)
3230 {
3231 	return -ENOTSUPP;
3232 }
3233 
3234 #ifdef CONFIG_BPF_SYSCALL
sock_map_get_from_fd(const union bpf_attr * attr,struct bpf_prog * prog)3235 static inline int sock_map_get_from_fd(const union bpf_attr *attr,
3236 				       struct bpf_prog *prog)
3237 {
3238 	return -EINVAL;
3239 }
3240 
sock_map_prog_detach(const union bpf_attr * attr,enum bpf_prog_type ptype)3241 static inline int sock_map_prog_detach(const union bpf_attr *attr,
3242 				       enum bpf_prog_type ptype)
3243 {
3244 	return -EOPNOTSUPP;
3245 }
3246 
sock_map_update_elem_sys(struct bpf_map * map,void * key,void * value,u64 flags)3247 static inline int sock_map_update_elem_sys(struct bpf_map *map, void *key, void *value,
3248 					   u64 flags)
3249 {
3250 	return -EOPNOTSUPP;
3251 }
3252 
sock_map_bpf_prog_query(const union bpf_attr * attr,union bpf_attr __user * uattr)3253 static inline int sock_map_bpf_prog_query(const union bpf_attr *attr,
3254 					  union bpf_attr __user *uattr)
3255 {
3256 	return -EINVAL;
3257 }
3258 
sock_map_link_create(const union bpf_attr * attr,struct bpf_prog * prog)3259 static inline int sock_map_link_create(const union bpf_attr *attr, struct bpf_prog *prog)
3260 {
3261 	return -EOPNOTSUPP;
3262 }
3263 #endif /* CONFIG_BPF_SYSCALL */
3264 #endif /* CONFIG_NET && CONFIG_BPF_SYSCALL */
3265 
3266 static __always_inline void
bpf_prog_inc_misses_counters(const struct bpf_prog_array * array)3267 bpf_prog_inc_misses_counters(const struct bpf_prog_array *array)
3268 {
3269 	const struct bpf_prog_array_item *item;
3270 	struct bpf_prog *prog;
3271 
3272 	if (unlikely(!array))
3273 		return;
3274 
3275 	item = &array->items[0];
3276 	while ((prog = READ_ONCE(item->prog))) {
3277 		bpf_prog_inc_misses_counter(prog);
3278 		item++;
3279 	}
3280 }
3281 
3282 #if defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL)
3283 void bpf_sk_reuseport_detach(struct sock *sk);
3284 int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map, void *key,
3285 				       void *value);
3286 int bpf_fd_reuseport_array_update_elem(struct bpf_map *map, void *key,
3287 				       void *value, u64 map_flags);
3288 #else
bpf_sk_reuseport_detach(struct sock * sk)3289 static inline void bpf_sk_reuseport_detach(struct sock *sk)
3290 {
3291 }
3292 
3293 #ifdef CONFIG_BPF_SYSCALL
bpf_fd_reuseport_array_lookup_elem(struct bpf_map * map,void * key,void * value)3294 static inline int bpf_fd_reuseport_array_lookup_elem(struct bpf_map *map,
3295 						     void *key, void *value)
3296 {
3297 	return -EOPNOTSUPP;
3298 }
3299 
bpf_fd_reuseport_array_update_elem(struct bpf_map * map,void * key,void * value,u64 map_flags)3300 static inline int bpf_fd_reuseport_array_update_elem(struct bpf_map *map,
3301 						     void *key, void *value,
3302 						     u64 map_flags)
3303 {
3304 	return -EOPNOTSUPP;
3305 }
3306 #endif /* CONFIG_BPF_SYSCALL */
3307 #endif /* defined(CONFIG_INET) && defined(CONFIG_BPF_SYSCALL) */
3308 
3309 /* verifier prototypes for helper functions called from eBPF programs */
3310 extern const struct bpf_func_proto bpf_map_lookup_elem_proto;
3311 extern const struct bpf_func_proto bpf_map_update_elem_proto;
3312 extern const struct bpf_func_proto bpf_map_delete_elem_proto;
3313 extern const struct bpf_func_proto bpf_map_push_elem_proto;
3314 extern const struct bpf_func_proto bpf_map_pop_elem_proto;
3315 extern const struct bpf_func_proto bpf_map_peek_elem_proto;
3316 extern const struct bpf_func_proto bpf_map_lookup_percpu_elem_proto;
3317 
3318 extern const struct bpf_func_proto bpf_get_prandom_u32_proto;
3319 extern const struct bpf_func_proto bpf_get_smp_processor_id_proto;
3320 extern const struct bpf_func_proto bpf_get_numa_node_id_proto;
3321 extern const struct bpf_func_proto bpf_tail_call_proto;
3322 extern const struct bpf_func_proto bpf_ktime_get_ns_proto;
3323 extern const struct bpf_func_proto bpf_ktime_get_boot_ns_proto;
3324 extern const struct bpf_func_proto bpf_ktime_get_tai_ns_proto;
3325 extern const struct bpf_func_proto bpf_get_current_pid_tgid_proto;
3326 extern const struct bpf_func_proto bpf_get_current_uid_gid_proto;
3327 extern const struct bpf_func_proto bpf_get_current_comm_proto;
3328 extern const struct bpf_func_proto bpf_get_stackid_proto;
3329 extern const struct bpf_func_proto bpf_get_stack_proto;
3330 extern const struct bpf_func_proto bpf_get_stack_sleepable_proto;
3331 extern const struct bpf_func_proto bpf_get_task_stack_proto;
3332 extern const struct bpf_func_proto bpf_get_task_stack_sleepable_proto;
3333 extern const struct bpf_func_proto bpf_get_stackid_proto_pe;
3334 extern const struct bpf_func_proto bpf_get_stack_proto_pe;
3335 extern const struct bpf_func_proto bpf_sock_map_update_proto;
3336 extern const struct bpf_func_proto bpf_sock_hash_update_proto;
3337 extern const struct bpf_func_proto bpf_get_current_cgroup_id_proto;
3338 extern const struct bpf_func_proto bpf_get_current_ancestor_cgroup_id_proto;
3339 extern const struct bpf_func_proto bpf_get_cgroup_classid_curr_proto;
3340 extern const struct bpf_func_proto bpf_current_task_under_cgroup_proto;
3341 extern const struct bpf_func_proto bpf_msg_redirect_hash_proto;
3342 extern const struct bpf_func_proto bpf_msg_redirect_map_proto;
3343 extern const struct bpf_func_proto bpf_sk_redirect_hash_proto;
3344 extern const struct bpf_func_proto bpf_sk_redirect_map_proto;
3345 extern const struct bpf_func_proto bpf_spin_lock_proto;
3346 extern const struct bpf_func_proto bpf_spin_unlock_proto;
3347 extern const struct bpf_func_proto bpf_get_local_storage_proto;
3348 extern const struct bpf_func_proto bpf_strtol_proto;
3349 extern const struct bpf_func_proto bpf_strtoul_proto;
3350 extern const struct bpf_func_proto bpf_tcp_sock_proto;
3351 extern const struct bpf_func_proto bpf_jiffies64_proto;
3352 extern const struct bpf_func_proto bpf_get_ns_current_pid_tgid_proto;
3353 extern const struct bpf_func_proto bpf_event_output_data_proto;
3354 extern const struct bpf_func_proto bpf_ringbuf_output_proto;
3355 extern const struct bpf_func_proto bpf_ringbuf_reserve_proto;
3356 extern const struct bpf_func_proto bpf_ringbuf_submit_proto;
3357 extern const struct bpf_func_proto bpf_ringbuf_discard_proto;
3358 extern const struct bpf_func_proto bpf_ringbuf_query_proto;
3359 extern const struct bpf_func_proto bpf_ringbuf_reserve_dynptr_proto;
3360 extern const struct bpf_func_proto bpf_ringbuf_submit_dynptr_proto;
3361 extern const struct bpf_func_proto bpf_ringbuf_discard_dynptr_proto;
3362 extern const struct bpf_func_proto bpf_skc_to_tcp6_sock_proto;
3363 extern const struct bpf_func_proto bpf_skc_to_tcp_sock_proto;
3364 extern const struct bpf_func_proto bpf_skc_to_tcp_timewait_sock_proto;
3365 extern const struct bpf_func_proto bpf_skc_to_tcp_request_sock_proto;
3366 extern const struct bpf_func_proto bpf_skc_to_udp6_sock_proto;
3367 extern const struct bpf_func_proto bpf_skc_to_unix_sock_proto;
3368 extern const struct bpf_func_proto bpf_skc_to_mptcp_sock_proto;
3369 extern const struct bpf_func_proto bpf_copy_from_user_proto;
3370 extern const struct bpf_func_proto bpf_snprintf_btf_proto;
3371 extern const struct bpf_func_proto bpf_snprintf_proto;
3372 extern const struct bpf_func_proto bpf_per_cpu_ptr_proto;
3373 extern const struct bpf_func_proto bpf_this_cpu_ptr_proto;
3374 extern const struct bpf_func_proto bpf_ktime_get_coarse_ns_proto;
3375 extern const struct bpf_func_proto bpf_sock_from_file_proto;
3376 extern const struct bpf_func_proto bpf_get_socket_ptr_cookie_proto;
3377 extern const struct bpf_func_proto bpf_task_storage_get_recur_proto;
3378 extern const struct bpf_func_proto bpf_task_storage_get_proto;
3379 extern const struct bpf_func_proto bpf_task_storage_delete_recur_proto;
3380 extern const struct bpf_func_proto bpf_task_storage_delete_proto;
3381 extern const struct bpf_func_proto bpf_for_each_map_elem_proto;
3382 extern const struct bpf_func_proto bpf_btf_find_by_name_kind_proto;
3383 extern const struct bpf_func_proto bpf_sk_setsockopt_proto;
3384 extern const struct bpf_func_proto bpf_sk_getsockopt_proto;
3385 extern const struct bpf_func_proto bpf_unlocked_sk_setsockopt_proto;
3386 extern const struct bpf_func_proto bpf_unlocked_sk_getsockopt_proto;
3387 extern const struct bpf_func_proto bpf_find_vma_proto;
3388 extern const struct bpf_func_proto bpf_loop_proto;
3389 extern const struct bpf_func_proto bpf_copy_from_user_task_proto;
3390 extern const struct bpf_func_proto bpf_set_retval_proto;
3391 extern const struct bpf_func_proto bpf_get_retval_proto;
3392 extern const struct bpf_func_proto bpf_user_ringbuf_drain_proto;
3393 extern const struct bpf_func_proto bpf_cgrp_storage_get_proto;
3394 extern const struct bpf_func_proto bpf_cgrp_storage_delete_proto;
3395 
3396 const struct bpf_func_proto *tracing_prog_func_proto(
3397   enum bpf_func_id func_id, const struct bpf_prog *prog);
3398 
3399 /* Shared helpers among cBPF and eBPF. */
3400 void bpf_user_rnd_init_once(void);
3401 u64 bpf_user_rnd_u32(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3402 u64 bpf_get_raw_cpu_id(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
3403 
3404 #if defined(CONFIG_NET)
3405 bool bpf_sock_common_is_valid_access(int off, int size,
3406 				     enum bpf_access_type type,
3407 				     struct bpf_insn_access_aux *info);
3408 bool bpf_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3409 			      struct bpf_insn_access_aux *info);
3410 u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3411 				const struct bpf_insn *si,
3412 				struct bpf_insn *insn_buf,
3413 				struct bpf_prog *prog,
3414 				u32 *target_size);
3415 int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3416 			       struct bpf_dynptr *ptr);
3417 #else
bpf_sock_common_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3418 static inline bool bpf_sock_common_is_valid_access(int off, int size,
3419 						   enum bpf_access_type type,
3420 						   struct bpf_insn_access_aux *info)
3421 {
3422 	return false;
3423 }
bpf_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3424 static inline bool bpf_sock_is_valid_access(int off, int size,
3425 					    enum bpf_access_type type,
3426 					    struct bpf_insn_access_aux *info)
3427 {
3428 	return false;
3429 }
bpf_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3430 static inline u32 bpf_sock_convert_ctx_access(enum bpf_access_type type,
3431 					      const struct bpf_insn *si,
3432 					      struct bpf_insn *insn_buf,
3433 					      struct bpf_prog *prog,
3434 					      u32 *target_size)
3435 {
3436 	return 0;
3437 }
bpf_dynptr_from_skb_rdonly(struct __sk_buff * skb,u64 flags,struct bpf_dynptr * ptr)3438 static inline int bpf_dynptr_from_skb_rdonly(struct __sk_buff *skb, u64 flags,
3439 					     struct bpf_dynptr *ptr)
3440 {
3441 	return -EOPNOTSUPP;
3442 }
3443 #endif
3444 
3445 #ifdef CONFIG_INET
3446 struct sk_reuseport_kern {
3447 	struct sk_buff *skb;
3448 	struct sock *sk;
3449 	struct sock *selected_sk;
3450 	struct sock *migrating_sk;
3451 	void *data_end;
3452 	u32 hash;
3453 	u32 reuseport_id;
3454 	bool bind_inany;
3455 };
3456 bool bpf_tcp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3457 				  struct bpf_insn_access_aux *info);
3458 
3459 u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3460 				    const struct bpf_insn *si,
3461 				    struct bpf_insn *insn_buf,
3462 				    struct bpf_prog *prog,
3463 				    u32 *target_size);
3464 
3465 bool bpf_xdp_sock_is_valid_access(int off, int size, enum bpf_access_type type,
3466 				  struct bpf_insn_access_aux *info);
3467 
3468 u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3469 				    const struct bpf_insn *si,
3470 				    struct bpf_insn *insn_buf,
3471 				    struct bpf_prog *prog,
3472 				    u32 *target_size);
3473 #else
bpf_tcp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3474 static inline bool bpf_tcp_sock_is_valid_access(int off, int size,
3475 						enum bpf_access_type type,
3476 						struct bpf_insn_access_aux *info)
3477 {
3478 	return false;
3479 }
3480 
bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3481 static inline u32 bpf_tcp_sock_convert_ctx_access(enum bpf_access_type type,
3482 						  const struct bpf_insn *si,
3483 						  struct bpf_insn *insn_buf,
3484 						  struct bpf_prog *prog,
3485 						  u32 *target_size)
3486 {
3487 	return 0;
3488 }
bpf_xdp_sock_is_valid_access(int off,int size,enum bpf_access_type type,struct bpf_insn_access_aux * info)3489 static inline bool bpf_xdp_sock_is_valid_access(int off, int size,
3490 						enum bpf_access_type type,
3491 						struct bpf_insn_access_aux *info)
3492 {
3493 	return false;
3494 }
3495 
bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)3496 static inline u32 bpf_xdp_sock_convert_ctx_access(enum bpf_access_type type,
3497 						  const struct bpf_insn *si,
3498 						  struct bpf_insn *insn_buf,
3499 						  struct bpf_prog *prog,
3500 						  u32 *target_size)
3501 {
3502 	return 0;
3503 }
3504 #endif /* CONFIG_INET */
3505 
3506 enum bpf_text_poke_type {
3507 	BPF_MOD_CALL,
3508 	BPF_MOD_JUMP,
3509 };
3510 
3511 int bpf_arch_text_poke(void *ip, enum bpf_text_poke_type t,
3512 		       void *addr1, void *addr2);
3513 
3514 void bpf_arch_poke_desc_update(struct bpf_jit_poke_descriptor *poke,
3515 			       struct bpf_prog *new, struct bpf_prog *old);
3516 
3517 void *bpf_arch_text_copy(void *dst, void *src, size_t len);
3518 int bpf_arch_text_invalidate(void *dst, size_t len);
3519 
3520 struct btf_id_set;
3521 bool btf_id_set_contains(const struct btf_id_set *set, u32 id);
3522 
3523 #define MAX_BPRINTF_VARARGS		12
3524 #define MAX_BPRINTF_BUF			1024
3525 
3526 struct bpf_bprintf_data {
3527 	u32 *bin_args;
3528 	char *buf;
3529 	bool get_bin_args;
3530 	bool get_buf;
3531 };
3532 
3533 int bpf_bprintf_prepare(char *fmt, u32 fmt_size, const u64 *raw_args,
3534 			u32 num_args, struct bpf_bprintf_data *data);
3535 void bpf_bprintf_cleanup(struct bpf_bprintf_data *data);
3536 
3537 #ifdef CONFIG_BPF_LSM
3538 void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype);
3539 void bpf_cgroup_atype_put(int cgroup_atype);
3540 #else
bpf_cgroup_atype_get(u32 attach_btf_id,int cgroup_atype)3541 static inline void bpf_cgroup_atype_get(u32 attach_btf_id, int cgroup_atype) {}
bpf_cgroup_atype_put(int cgroup_atype)3542 static inline void bpf_cgroup_atype_put(int cgroup_atype) {}
3543 #endif /* CONFIG_BPF_LSM */
3544 
3545 struct key;
3546 
3547 #ifdef CONFIG_KEYS
3548 struct bpf_key {
3549 	struct key *key;
3550 	bool has_ref;
3551 };
3552 #endif /* CONFIG_KEYS */
3553 
type_is_alloc(u32 type)3554 static inline bool type_is_alloc(u32 type)
3555 {
3556 	return type & MEM_ALLOC;
3557 }
3558 
bpf_memcg_flags(gfp_t flags)3559 static inline gfp_t bpf_memcg_flags(gfp_t flags)
3560 {
3561 	if (memcg_bpf_enabled())
3562 		return flags | __GFP_ACCOUNT;
3563 	return flags;
3564 }
3565 
bpf_is_subprog(const struct bpf_prog * prog)3566 static inline bool bpf_is_subprog(const struct bpf_prog *prog)
3567 {
3568 	return prog->aux->func_idx != 0;
3569 }
3570 
3571 #endif /* _LINUX_BPF_H */
3572