1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * Portions Copyright (C) 1992 Drew Eckhardt
4 */
5 #ifndef _LINUX_BLKDEV_H
6 #define _LINUX_BLKDEV_H
7
8 #include <linux/types.h>
9 #include <linux/blk_types.h>
10 #include <linux/device.h>
11 #include <linux/list.h>
12 #include <linux/llist.h>
13 #include <linux/minmax.h>
14 #include <linux/timer.h>
15 #include <linux/workqueue.h>
16 #include <linux/wait.h>
17 #include <linux/bio.h>
18 #include <linux/gfp.h>
19 #include <linux/kdev_t.h>
20 #include <linux/rcupdate.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/blkzoned.h>
23 #include <linux/sched.h>
24 #include <linux/sbitmap.h>
25 #include <linux/uuid.h>
26 #include <linux/xarray.h>
27 #include <linux/file.h>
28 #include <linux/lockdep.h>
29
30 struct module;
31 struct request_queue;
32 struct elevator_queue;
33 struct blk_trace;
34 struct request;
35 struct sg_io_hdr;
36 struct blkcg_gq;
37 struct blk_flush_queue;
38 struct kiocb;
39 struct pr_ops;
40 struct rq_qos;
41 struct blk_queue_stats;
42 struct blk_stat_callback;
43 struct blk_crypto_profile;
44
45 extern const struct device_type disk_type;
46 extern const struct device_type part_type;
47 extern const struct class block_class;
48
49 /*
50 * Maximum number of blkcg policies allowed to be registered concurrently.
51 * Defined here to simplify include dependency.
52 */
53 #define BLKCG_MAX_POLS 6
54
55 #define DISK_MAX_PARTS 256
56 #define DISK_NAME_LEN 32
57
58 #define PARTITION_META_INFO_VOLNAMELTH 64
59 /*
60 * Enough for the string representation of any kind of UUID plus NULL.
61 * EFI UUID is 36 characters. MSDOS UUID is 11 characters.
62 */
63 #define PARTITION_META_INFO_UUIDLTH (UUID_STRING_LEN + 1)
64
65 struct partition_meta_info {
66 char uuid[PARTITION_META_INFO_UUIDLTH];
67 u8 volname[PARTITION_META_INFO_VOLNAMELTH];
68 };
69
70 /**
71 * DOC: genhd capability flags
72 *
73 * ``GENHD_FL_REMOVABLE``: indicates that the block device gives access to
74 * removable media. When set, the device remains present even when media is not
75 * inserted. Shall not be set for devices which are removed entirely when the
76 * media is removed.
77 *
78 * ``GENHD_FL_HIDDEN``: the block device is hidden; it doesn't produce events,
79 * doesn't appear in sysfs, and can't be opened from userspace or using
80 * blkdev_get*. Used for the underlying components of multipath devices.
81 *
82 * ``GENHD_FL_NO_PART``: partition support is disabled. The kernel will not
83 * scan for partitions from add_disk, and users can't add partitions manually.
84 *
85 */
86 enum {
87 GENHD_FL_REMOVABLE = 1 << 0,
88 GENHD_FL_HIDDEN = 1 << 1,
89 GENHD_FL_NO_PART = 1 << 2,
90 };
91
92 enum {
93 DISK_EVENT_MEDIA_CHANGE = 1 << 0, /* media changed */
94 DISK_EVENT_EJECT_REQUEST = 1 << 1, /* eject requested */
95 };
96
97 enum {
98 /* Poll even if events_poll_msecs is unset */
99 DISK_EVENT_FLAG_POLL = 1 << 0,
100 /* Forward events to udev */
101 DISK_EVENT_FLAG_UEVENT = 1 << 1,
102 /* Block event polling when open for exclusive write */
103 DISK_EVENT_FLAG_BLOCK_ON_EXCL_WRITE = 1 << 2,
104 };
105
106 struct disk_events;
107 struct badblocks;
108
109 enum blk_integrity_checksum {
110 BLK_INTEGRITY_CSUM_NONE = 0,
111 BLK_INTEGRITY_CSUM_IP = 1,
112 BLK_INTEGRITY_CSUM_CRC = 2,
113 BLK_INTEGRITY_CSUM_CRC64 = 3,
114 } __packed ;
115
116 struct blk_integrity {
117 unsigned char flags;
118 enum blk_integrity_checksum csum_type;
119 unsigned char tuple_size;
120 unsigned char pi_offset;
121 unsigned char interval_exp;
122 unsigned char tag_size;
123 };
124
125 typedef unsigned int __bitwise blk_mode_t;
126
127 /* open for reading */
128 #define BLK_OPEN_READ ((__force blk_mode_t)(1 << 0))
129 /* open for writing */
130 #define BLK_OPEN_WRITE ((__force blk_mode_t)(1 << 1))
131 /* open exclusively (vs other exclusive openers */
132 #define BLK_OPEN_EXCL ((__force blk_mode_t)(1 << 2))
133 /* opened with O_NDELAY */
134 #define BLK_OPEN_NDELAY ((__force blk_mode_t)(1 << 3))
135 /* open for "writes" only for ioctls (specialy hack for floppy.c) */
136 #define BLK_OPEN_WRITE_IOCTL ((__force blk_mode_t)(1 << 4))
137 /* open is exclusive wrt all other BLK_OPEN_WRITE opens to the device */
138 #define BLK_OPEN_RESTRICT_WRITES ((__force blk_mode_t)(1 << 5))
139 /* return partition scanning errors */
140 #define BLK_OPEN_STRICT_SCAN ((__force blk_mode_t)(1 << 6))
141
142 struct gendisk {
143 /*
144 * major/first_minor/minors should not be set by any new driver, the
145 * block core will take care of allocating them automatically.
146 */
147 int major;
148 int first_minor;
149 int minors;
150
151 char disk_name[DISK_NAME_LEN]; /* name of major driver */
152
153 unsigned short events; /* supported events */
154 unsigned short event_flags; /* flags related to event processing */
155
156 struct xarray part_tbl;
157 struct block_device *part0;
158
159 const struct block_device_operations *fops;
160 struct request_queue *queue;
161 void *private_data;
162
163 struct bio_set bio_split;
164
165 int flags;
166 unsigned long state;
167 #define GD_NEED_PART_SCAN 0
168 #define GD_READ_ONLY 1
169 #define GD_DEAD 2
170 #define GD_NATIVE_CAPACITY 3
171 #define GD_ADDED 4
172 #define GD_SUPPRESS_PART_SCAN 5
173 #define GD_OWNS_QUEUE 6
174
175 struct mutex open_mutex; /* open/close mutex */
176 unsigned open_partitions; /* number of open partitions */
177
178 struct backing_dev_info *bdi;
179 struct kobject queue_kobj; /* the queue/ directory */
180 struct kobject *slave_dir;
181 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
182 struct list_head slave_bdevs;
183 #endif
184 struct timer_rand_state *random;
185 atomic_t sync_io; /* RAID */
186 struct disk_events *ev;
187
188 #ifdef CONFIG_BLK_DEV_ZONED
189 /*
190 * Zoned block device information. Reads of this information must be
191 * protected with blk_queue_enter() / blk_queue_exit(). Modifying this
192 * information is only allowed while no requests are being processed.
193 * See also blk_mq_freeze_queue() and blk_mq_unfreeze_queue().
194 */
195 unsigned int nr_zones;
196 unsigned int zone_capacity;
197 unsigned int last_zone_capacity;
198 unsigned long __rcu *conv_zones_bitmap;
199 unsigned int zone_wplugs_hash_bits;
200 atomic_t nr_zone_wplugs;
201 spinlock_t zone_wplugs_lock;
202 struct mempool_s *zone_wplugs_pool;
203 struct hlist_head *zone_wplugs_hash;
204 struct workqueue_struct *zone_wplugs_wq;
205 #endif /* CONFIG_BLK_DEV_ZONED */
206
207 #if IS_ENABLED(CONFIG_CDROM)
208 struct cdrom_device_info *cdi;
209 #endif
210 int node_id;
211 struct badblocks *bb;
212 struct lockdep_map lockdep_map;
213 u64 diskseq;
214 blk_mode_t open_mode;
215
216 /*
217 * Independent sector access ranges. This is always NULL for
218 * devices that do not have multiple independent access ranges.
219 */
220 struct blk_independent_access_ranges *ia_ranges;
221 };
222
223 /**
224 * disk_openers - returns how many openers are there for a disk
225 * @disk: disk to check
226 *
227 * This returns the number of openers for a disk. Note that this value is only
228 * stable if disk->open_mutex is held.
229 *
230 * Note: Due to a quirk in the block layer open code, each open partition is
231 * only counted once even if there are multiple openers.
232 */
disk_openers(struct gendisk * disk)233 static inline unsigned int disk_openers(struct gendisk *disk)
234 {
235 return atomic_read(&disk->part0->bd_openers);
236 }
237
238 /**
239 * disk_has_partscan - return %true if partition scanning is enabled on a disk
240 * @disk: disk to check
241 *
242 * Returns %true if partitions scanning is enabled for @disk, or %false if
243 * partition scanning is disabled either permanently or temporarily.
244 */
disk_has_partscan(struct gendisk * disk)245 static inline bool disk_has_partscan(struct gendisk *disk)
246 {
247 return !(disk->flags & (GENHD_FL_NO_PART | GENHD_FL_HIDDEN)) &&
248 !test_bit(GD_SUPPRESS_PART_SCAN, &disk->state);
249 }
250
251 /*
252 * The gendisk is refcounted by the part0 block_device, and the bd_device
253 * therein is also used for device model presentation in sysfs.
254 */
255 #define dev_to_disk(device) \
256 (dev_to_bdev(device)->bd_disk)
257 #define disk_to_dev(disk) \
258 (&((disk)->part0->bd_device))
259
260 #if IS_REACHABLE(CONFIG_CDROM)
261 #define disk_to_cdi(disk) ((disk)->cdi)
262 #else
263 #define disk_to_cdi(disk) NULL
264 #endif
265
disk_devt(struct gendisk * disk)266 static inline dev_t disk_devt(struct gendisk *disk)
267 {
268 return MKDEV(disk->major, disk->first_minor);
269 }
270
271 /*
272 * We should strive for 1 << (PAGE_SHIFT + MAX_PAGECACHE_ORDER)
273 * however we constrain this to what we can validate and test.
274 */
275 #define BLK_MAX_BLOCK_SIZE SZ_64K
276
277 /* blk_validate_limits() validates bsize, so drivers don't usually need to */
blk_validate_block_size(unsigned long bsize)278 static inline int blk_validate_block_size(unsigned long bsize)
279 {
280 if (bsize < 512 || bsize > BLK_MAX_BLOCK_SIZE || !is_power_of_2(bsize))
281 return -EINVAL;
282
283 return 0;
284 }
285
blk_op_is_passthrough(blk_opf_t op)286 static inline bool blk_op_is_passthrough(blk_opf_t op)
287 {
288 op &= REQ_OP_MASK;
289 return op == REQ_OP_DRV_IN || op == REQ_OP_DRV_OUT;
290 }
291
292 /* flags set by the driver in queue_limits.features */
293 typedef unsigned int __bitwise blk_features_t;
294
295 /* supports a volatile write cache */
296 #define BLK_FEAT_WRITE_CACHE ((__force blk_features_t)(1u << 0))
297
298 /* supports passing on the FUA bit */
299 #define BLK_FEAT_FUA ((__force blk_features_t)(1u << 1))
300
301 /* rotational device (hard drive or floppy) */
302 #define BLK_FEAT_ROTATIONAL ((__force blk_features_t)(1u << 2))
303
304 /* contributes to the random number pool */
305 #define BLK_FEAT_ADD_RANDOM ((__force blk_features_t)(1u << 3))
306
307 /* do disk/partitions IO accounting */
308 #define BLK_FEAT_IO_STAT ((__force blk_features_t)(1u << 4))
309
310 /* don't modify data until writeback is done */
311 #define BLK_FEAT_STABLE_WRITES ((__force blk_features_t)(1u << 5))
312
313 /* always completes in submit context */
314 #define BLK_FEAT_SYNCHRONOUS ((__force blk_features_t)(1u << 6))
315
316 /* supports REQ_NOWAIT */
317 #define BLK_FEAT_NOWAIT ((__force blk_features_t)(1u << 7))
318
319 /* supports DAX */
320 #define BLK_FEAT_DAX ((__force blk_features_t)(1u << 8))
321
322 /* supports I/O polling */
323 #define BLK_FEAT_POLL ((__force blk_features_t)(1u << 9))
324
325 /* is a zoned device */
326 #define BLK_FEAT_ZONED ((__force blk_features_t)(1u << 10))
327
328 /* supports PCI(e) p2p requests */
329 #define BLK_FEAT_PCI_P2PDMA ((__force blk_features_t)(1u << 12))
330
331 /* skip this queue in blk_mq_(un)quiesce_tagset */
332 #define BLK_FEAT_SKIP_TAGSET_QUIESCE ((__force blk_features_t)(1u << 13))
333
334 /* bounce all highmem pages */
335 #define BLK_FEAT_BOUNCE_HIGH ((__force blk_features_t)(1u << 14))
336
337 /* undocumented magic for bcache */
338 #define BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE \
339 ((__force blk_features_t)(1u << 15))
340
341 /* atomic writes enabled */
342 #define BLK_FEAT_ATOMIC_WRITES \
343 ((__force blk_features_t)(1u << 16))
344
345 /*
346 * Flags automatically inherited when stacking limits.
347 */
348 #define BLK_FEAT_INHERIT_MASK \
349 (BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_ROTATIONAL | \
350 BLK_FEAT_STABLE_WRITES | BLK_FEAT_ZONED | BLK_FEAT_BOUNCE_HIGH | \
351 BLK_FEAT_RAID_PARTIAL_STRIPES_EXPENSIVE)
352
353 /* internal flags in queue_limits.flags */
354 typedef unsigned int __bitwise blk_flags_t;
355
356 /* do not send FLUSH/FUA commands despite advertising a write cache */
357 #define BLK_FLAG_WRITE_CACHE_DISABLED ((__force blk_flags_t)(1u << 0))
358
359 /* I/O topology is misaligned */
360 #define BLK_FLAG_MISALIGNED ((__force blk_flags_t)(1u << 1))
361
362 /* passthrough command IO accounting */
363 #define BLK_FLAG_IOSTATS_PASSTHROUGH ((__force blk_flags_t)(1u << 2))
364
365 struct queue_limits {
366 blk_features_t features;
367 blk_flags_t flags;
368 unsigned long seg_boundary_mask;
369 unsigned long virt_boundary_mask;
370
371 unsigned int max_hw_sectors;
372 unsigned int max_dev_sectors;
373 unsigned int chunk_sectors;
374 unsigned int max_sectors;
375 unsigned int max_user_sectors;
376 unsigned int max_segment_size;
377 unsigned int min_segment_size;
378 unsigned int physical_block_size;
379 unsigned int logical_block_size;
380 unsigned int alignment_offset;
381 unsigned int io_min;
382 unsigned int io_opt;
383 unsigned int max_discard_sectors;
384 unsigned int max_hw_discard_sectors;
385 unsigned int max_user_discard_sectors;
386 unsigned int max_secure_erase_sectors;
387 unsigned int max_write_zeroes_sectors;
388 unsigned int max_hw_zone_append_sectors;
389 unsigned int max_zone_append_sectors;
390 unsigned int discard_granularity;
391 unsigned int discard_alignment;
392 unsigned int zone_write_granularity;
393
394 /* atomic write limits */
395 unsigned int atomic_write_hw_max;
396 unsigned int atomic_write_max_sectors;
397 unsigned int atomic_write_hw_boundary;
398 unsigned int atomic_write_boundary_sectors;
399 unsigned int atomic_write_hw_unit_min;
400 unsigned int atomic_write_unit_min;
401 unsigned int atomic_write_hw_unit_max;
402 unsigned int atomic_write_unit_max;
403
404 unsigned short max_segments;
405 unsigned short max_integrity_segments;
406 unsigned short max_discard_segments;
407
408 unsigned int max_open_zones;
409 unsigned int max_active_zones;
410
411 /*
412 * Drivers that set dma_alignment to less than 511 must be prepared to
413 * handle individual bvec's that are not a multiple of a SECTOR_SIZE
414 * due to possible offsets.
415 */
416 unsigned int dma_alignment;
417 unsigned int dma_pad_mask;
418
419 struct blk_integrity integrity;
420 };
421
422 typedef int (*report_zones_cb)(struct blk_zone *zone, unsigned int idx,
423 void *data);
424
425 #define BLK_ALL_ZONES ((unsigned int)-1)
426 int blkdev_report_zones(struct block_device *bdev, sector_t sector,
427 unsigned int nr_zones, report_zones_cb cb, void *data);
428 int blkdev_zone_mgmt(struct block_device *bdev, enum req_op op,
429 sector_t sectors, sector_t nr_sectors);
430 int blk_revalidate_disk_zones(struct gendisk *disk);
431
432 /*
433 * Independent access ranges: struct blk_independent_access_range describes
434 * a range of contiguous sectors that can be accessed using device command
435 * execution resources that are independent from the resources used for
436 * other access ranges. This is typically found with single-LUN multi-actuator
437 * HDDs where each access range is served by a different set of heads.
438 * The set of independent ranges supported by the device is defined using
439 * struct blk_independent_access_ranges. The independent ranges must not overlap
440 * and must include all sectors within the disk capacity (no sector holes
441 * allowed).
442 * For a device with multiple ranges, requests targeting sectors in different
443 * ranges can be executed in parallel. A request can straddle an access range
444 * boundary.
445 */
446 struct blk_independent_access_range {
447 struct kobject kobj;
448 sector_t sector;
449 sector_t nr_sectors;
450 };
451
452 struct blk_independent_access_ranges {
453 struct kobject kobj;
454 bool sysfs_registered;
455 unsigned int nr_ia_ranges;
456 struct blk_independent_access_range ia_range[];
457 };
458
459 struct request_queue {
460 /*
461 * The queue owner gets to use this for whatever they like.
462 * ll_rw_blk doesn't touch it.
463 */
464 void *queuedata;
465
466 struct elevator_queue *elevator;
467
468 const struct blk_mq_ops *mq_ops;
469
470 /* sw queues */
471 struct blk_mq_ctx __percpu *queue_ctx;
472
473 /*
474 * various queue flags, see QUEUE_* below
475 */
476 unsigned long queue_flags;
477
478 unsigned int rq_timeout;
479
480 unsigned int queue_depth;
481
482 refcount_t refs;
483
484 /* hw dispatch queues */
485 unsigned int nr_hw_queues;
486 struct xarray hctx_table;
487
488 struct percpu_ref q_usage_counter;
489 struct lock_class_key io_lock_cls_key;
490 struct lockdep_map io_lockdep_map;
491
492 struct lock_class_key q_lock_cls_key;
493 struct lockdep_map q_lockdep_map;
494
495 struct request *last_merge;
496
497 spinlock_t queue_lock;
498
499 int quiesce_depth;
500
501 struct gendisk *disk;
502
503 /*
504 * mq queue kobject
505 */
506 struct kobject *mq_kobj;
507
508 struct queue_limits limits;
509
510 #ifdef CONFIG_PM
511 struct device *dev;
512 enum rpm_status rpm_status;
513 #endif
514
515 /*
516 * Number of contexts that have called blk_set_pm_only(). If this
517 * counter is above zero then only RQF_PM requests are processed.
518 */
519 atomic_t pm_only;
520
521 struct blk_queue_stats *stats;
522 struct rq_qos *rq_qos;
523 struct mutex rq_qos_mutex;
524
525 /*
526 * ida allocated id for this queue. Used to index queues from
527 * ioctx.
528 */
529 int id;
530
531 /*
532 * queue settings
533 */
534 unsigned long nr_requests; /* Max # of requests */
535
536 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
537 struct blk_crypto_profile *crypto_profile;
538 struct kobject *crypto_kobject;
539 #endif
540
541 struct timer_list timeout;
542 struct work_struct timeout_work;
543
544 atomic_t nr_active_requests_shared_tags;
545
546 struct blk_mq_tags *sched_shared_tags;
547
548 struct list_head icq_list;
549 #ifdef CONFIG_BLK_CGROUP
550 DECLARE_BITMAP (blkcg_pols, BLKCG_MAX_POLS);
551 struct blkcg_gq *root_blkg;
552 struct list_head blkg_list;
553 struct mutex blkcg_mutex;
554 #endif
555
556 int node;
557
558 spinlock_t requeue_lock;
559 struct list_head requeue_list;
560 struct delayed_work requeue_work;
561
562 #ifdef CONFIG_BLK_DEV_IO_TRACE
563 struct blk_trace __rcu *blk_trace;
564 #endif
565 /*
566 * for flush operations
567 */
568 struct blk_flush_queue *fq;
569 struct list_head flush_list;
570
571 /*
572 * Protects against I/O scheduler switching, particularly when updating
573 * q->elevator. Since the elevator update code path may also modify q->
574 * nr_requests and wbt latency, this lock also protects the sysfs attrs
575 * nr_requests and wbt_lat_usec. Additionally the nr_hw_queues update
576 * may modify hctx tags, reserved-tags and cpumask, so this lock also
577 * helps protect the hctx sysfs/debugfs attrs. To ensure proper locking
578 * order during an elevator or nr_hw_queue update, first freeze the
579 * queue, then acquire ->elevator_lock.
580 */
581 struct mutex elevator_lock;
582
583 struct mutex sysfs_lock;
584 /*
585 * Protects queue limits and also sysfs attribute read_ahead_kb.
586 */
587 struct mutex limits_lock;
588
589 /*
590 * for reusing dead hctx instance in case of updating
591 * nr_hw_queues
592 */
593 struct list_head unused_hctx_list;
594 spinlock_t unused_hctx_lock;
595
596 int mq_freeze_depth;
597
598 #ifdef CONFIG_BLK_DEV_THROTTLING
599 /* Throttle data */
600 struct throtl_data *td;
601 #endif
602 struct rcu_head rcu_head;
603 #ifdef CONFIG_LOCKDEP
604 struct task_struct *mq_freeze_owner;
605 int mq_freeze_owner_depth;
606 /*
607 * Records disk & queue state in current context, used in unfreeze
608 * queue
609 */
610 bool mq_freeze_disk_dead;
611 bool mq_freeze_queue_dying;
612 #endif
613 wait_queue_head_t mq_freeze_wq;
614 /*
615 * Protect concurrent access to q_usage_counter by
616 * percpu_ref_kill() and percpu_ref_reinit().
617 */
618 struct mutex mq_freeze_lock;
619
620 struct blk_mq_tag_set *tag_set;
621 struct list_head tag_set_list;
622
623 struct dentry *debugfs_dir;
624 struct dentry *sched_debugfs_dir;
625 struct dentry *rqos_debugfs_dir;
626 /*
627 * Serializes all debugfs metadata operations using the above dentries.
628 */
629 struct mutex debugfs_mutex;
630 };
631
632 /* Keep blk_queue_flag_name[] in sync with the definitions below */
633 enum {
634 QUEUE_FLAG_DYING, /* queue being torn down */
635 QUEUE_FLAG_NOMERGES, /* disable merge attempts */
636 QUEUE_FLAG_SAME_COMP, /* complete on same CPU-group */
637 QUEUE_FLAG_FAIL_IO, /* fake timeout */
638 QUEUE_FLAG_NOXMERGES, /* No extended merges */
639 QUEUE_FLAG_SAME_FORCE, /* force complete on same CPU */
640 QUEUE_FLAG_INIT_DONE, /* queue is initialized */
641 QUEUE_FLAG_STATS, /* track IO start and completion times */
642 QUEUE_FLAG_REGISTERED, /* queue has been registered to a disk */
643 QUEUE_FLAG_QUIESCED, /* queue has been quiesced */
644 QUEUE_FLAG_RQ_ALLOC_TIME, /* record rq->alloc_time_ns */
645 QUEUE_FLAG_HCTX_ACTIVE, /* at least one blk-mq hctx is active */
646 QUEUE_FLAG_SQ_SCHED, /* single queue style io dispatch */
647 QUEUE_FLAG_MAX
648 };
649
650 #define QUEUE_FLAG_MQ_DEFAULT (1UL << QUEUE_FLAG_SAME_COMP)
651
652 void blk_queue_flag_set(unsigned int flag, struct request_queue *q);
653 void blk_queue_flag_clear(unsigned int flag, struct request_queue *q);
654
655 #define blk_queue_dying(q) test_bit(QUEUE_FLAG_DYING, &(q)->queue_flags)
656 #define blk_queue_init_done(q) test_bit(QUEUE_FLAG_INIT_DONE, &(q)->queue_flags)
657 #define blk_queue_nomerges(q) test_bit(QUEUE_FLAG_NOMERGES, &(q)->queue_flags)
658 #define blk_queue_noxmerges(q) \
659 test_bit(QUEUE_FLAG_NOXMERGES, &(q)->queue_flags)
660 #define blk_queue_nonrot(q) (!((q)->limits.features & BLK_FEAT_ROTATIONAL))
661 #define blk_queue_io_stat(q) ((q)->limits.features & BLK_FEAT_IO_STAT)
662 #define blk_queue_passthrough_stat(q) \
663 ((q)->limits.flags & BLK_FLAG_IOSTATS_PASSTHROUGH)
664 #define blk_queue_dax(q) ((q)->limits.features & BLK_FEAT_DAX)
665 #define blk_queue_pci_p2pdma(q) ((q)->limits.features & BLK_FEAT_PCI_P2PDMA)
666 #ifdef CONFIG_BLK_RQ_ALLOC_TIME
667 #define blk_queue_rq_alloc_time(q) \
668 test_bit(QUEUE_FLAG_RQ_ALLOC_TIME, &(q)->queue_flags)
669 #else
670 #define blk_queue_rq_alloc_time(q) false
671 #endif
672
673 #define blk_noretry_request(rq) \
674 ((rq)->cmd_flags & (REQ_FAILFAST_DEV|REQ_FAILFAST_TRANSPORT| \
675 REQ_FAILFAST_DRIVER))
676 #define blk_queue_quiesced(q) test_bit(QUEUE_FLAG_QUIESCED, &(q)->queue_flags)
677 #define blk_queue_pm_only(q) atomic_read(&(q)->pm_only)
678 #define blk_queue_registered(q) test_bit(QUEUE_FLAG_REGISTERED, &(q)->queue_flags)
679 #define blk_queue_sq_sched(q) test_bit(QUEUE_FLAG_SQ_SCHED, &(q)->queue_flags)
680 #define blk_queue_skip_tagset_quiesce(q) \
681 ((q)->limits.features & BLK_FEAT_SKIP_TAGSET_QUIESCE)
682
683 extern void blk_set_pm_only(struct request_queue *q);
684 extern void blk_clear_pm_only(struct request_queue *q);
685
686 #define list_entry_rq(ptr) list_entry((ptr), struct request, queuelist)
687
688 #define dma_map_bvec(dev, bv, dir, attrs) \
689 dma_map_page_attrs(dev, (bv)->bv_page, (bv)->bv_offset, (bv)->bv_len, \
690 (dir), (attrs))
691
queue_is_mq(struct request_queue * q)692 static inline bool queue_is_mq(struct request_queue *q)
693 {
694 return q->mq_ops;
695 }
696
697 #ifdef CONFIG_PM
queue_rpm_status(struct request_queue * q)698 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
699 {
700 return q->rpm_status;
701 }
702 #else
queue_rpm_status(struct request_queue * q)703 static inline enum rpm_status queue_rpm_status(struct request_queue *q)
704 {
705 return RPM_ACTIVE;
706 }
707 #endif
708
blk_queue_is_zoned(struct request_queue * q)709 static inline bool blk_queue_is_zoned(struct request_queue *q)
710 {
711 return IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
712 (q->limits.features & BLK_FEAT_ZONED);
713 }
714
disk_zone_no(struct gendisk * disk,sector_t sector)715 static inline unsigned int disk_zone_no(struct gendisk *disk, sector_t sector)
716 {
717 if (!blk_queue_is_zoned(disk->queue))
718 return 0;
719 return sector >> ilog2(disk->queue->limits.chunk_sectors);
720 }
721
bdev_max_open_zones(struct block_device * bdev)722 static inline unsigned int bdev_max_open_zones(struct block_device *bdev)
723 {
724 return bdev->bd_disk->queue->limits.max_open_zones;
725 }
726
bdev_max_active_zones(struct block_device * bdev)727 static inline unsigned int bdev_max_active_zones(struct block_device *bdev)
728 {
729 return bdev->bd_disk->queue->limits.max_active_zones;
730 }
731
blk_queue_depth(struct request_queue * q)732 static inline unsigned int blk_queue_depth(struct request_queue *q)
733 {
734 if (q->queue_depth)
735 return q->queue_depth;
736
737 return q->nr_requests;
738 }
739
740 /*
741 * default timeout for SG_IO if none specified
742 */
743 #define BLK_DEFAULT_SG_TIMEOUT (60 * HZ)
744 #define BLK_MIN_SG_TIMEOUT (7 * HZ)
745
746 /* This should not be used directly - use rq_for_each_segment */
747 #define for_each_bio(_bio) \
748 for (; _bio; _bio = _bio->bi_next)
749
750 int __must_check add_disk_fwnode(struct device *parent, struct gendisk *disk,
751 const struct attribute_group **groups,
752 struct fwnode_handle *fwnode);
753 int __must_check device_add_disk(struct device *parent, struct gendisk *disk,
754 const struct attribute_group **groups);
add_disk(struct gendisk * disk)755 static inline int __must_check add_disk(struct gendisk *disk)
756 {
757 return device_add_disk(NULL, disk, NULL);
758 }
759 void del_gendisk(struct gendisk *gp);
760 void invalidate_disk(struct gendisk *disk);
761 void set_disk_ro(struct gendisk *disk, bool read_only);
762 void disk_uevent(struct gendisk *disk, enum kobject_action action);
763
bdev_partno(const struct block_device * bdev)764 static inline u8 bdev_partno(const struct block_device *bdev)
765 {
766 return atomic_read(&bdev->__bd_flags) & BD_PARTNO;
767 }
768
bdev_test_flag(const struct block_device * bdev,unsigned flag)769 static inline bool bdev_test_flag(const struct block_device *bdev, unsigned flag)
770 {
771 return atomic_read(&bdev->__bd_flags) & flag;
772 }
773
bdev_set_flag(struct block_device * bdev,unsigned flag)774 static inline void bdev_set_flag(struct block_device *bdev, unsigned flag)
775 {
776 atomic_or(flag, &bdev->__bd_flags);
777 }
778
bdev_clear_flag(struct block_device * bdev,unsigned flag)779 static inline void bdev_clear_flag(struct block_device *bdev, unsigned flag)
780 {
781 atomic_andnot(flag, &bdev->__bd_flags);
782 }
783
get_disk_ro(struct gendisk * disk)784 static inline bool get_disk_ro(struct gendisk *disk)
785 {
786 return bdev_test_flag(disk->part0, BD_READ_ONLY) ||
787 test_bit(GD_READ_ONLY, &disk->state);
788 }
789
bdev_read_only(struct block_device * bdev)790 static inline bool bdev_read_only(struct block_device *bdev)
791 {
792 return bdev_test_flag(bdev, BD_READ_ONLY) || get_disk_ro(bdev->bd_disk);
793 }
794
795 bool set_capacity_and_notify(struct gendisk *disk, sector_t size);
796 void disk_force_media_change(struct gendisk *disk);
797 void bdev_mark_dead(struct block_device *bdev, bool surprise);
798
799 void add_disk_randomness(struct gendisk *disk) __latent_entropy;
800 void rand_initialize_disk(struct gendisk *disk);
801
get_start_sect(struct block_device * bdev)802 static inline sector_t get_start_sect(struct block_device *bdev)
803 {
804 return bdev->bd_start_sect;
805 }
806
bdev_nr_sectors(struct block_device * bdev)807 static inline sector_t bdev_nr_sectors(struct block_device *bdev)
808 {
809 return bdev->bd_nr_sectors;
810 }
811
bdev_nr_bytes(struct block_device * bdev)812 static inline loff_t bdev_nr_bytes(struct block_device *bdev)
813 {
814 return (loff_t)bdev_nr_sectors(bdev) << SECTOR_SHIFT;
815 }
816
get_capacity(struct gendisk * disk)817 static inline sector_t get_capacity(struct gendisk *disk)
818 {
819 return bdev_nr_sectors(disk->part0);
820 }
821
sb_bdev_nr_blocks(struct super_block * sb)822 static inline u64 sb_bdev_nr_blocks(struct super_block *sb)
823 {
824 return bdev_nr_sectors(sb->s_bdev) >>
825 (sb->s_blocksize_bits - SECTOR_SHIFT);
826 }
827
828 #ifdef CONFIG_BLK_DEV_ZONED
disk_nr_zones(struct gendisk * disk)829 static inline unsigned int disk_nr_zones(struct gendisk *disk)
830 {
831 return disk->nr_zones;
832 }
833 bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs);
834
835 /**
836 * disk_zone_capacity - returns the zone capacity of zone containing @sector
837 * @disk: disk to work with
838 * @sector: sector number within the querying zone
839 *
840 * Returns the zone capacity of a zone containing @sector. @sector can be any
841 * sector in the zone.
842 */
disk_zone_capacity(struct gendisk * disk,sector_t sector)843 static inline unsigned int disk_zone_capacity(struct gendisk *disk,
844 sector_t sector)
845 {
846 sector_t zone_sectors = disk->queue->limits.chunk_sectors;
847
848 if (sector + zone_sectors >= get_capacity(disk))
849 return disk->last_zone_capacity;
850 return disk->zone_capacity;
851 }
bdev_zone_capacity(struct block_device * bdev,sector_t pos)852 static inline unsigned int bdev_zone_capacity(struct block_device *bdev,
853 sector_t pos)
854 {
855 return disk_zone_capacity(bdev->bd_disk, pos);
856 }
857 #else /* CONFIG_BLK_DEV_ZONED */
disk_nr_zones(struct gendisk * disk)858 static inline unsigned int disk_nr_zones(struct gendisk *disk)
859 {
860 return 0;
861 }
blk_zone_plug_bio(struct bio * bio,unsigned int nr_segs)862 static inline bool blk_zone_plug_bio(struct bio *bio, unsigned int nr_segs)
863 {
864 return false;
865 }
866 #endif /* CONFIG_BLK_DEV_ZONED */
867
bdev_nr_zones(struct block_device * bdev)868 static inline unsigned int bdev_nr_zones(struct block_device *bdev)
869 {
870 return disk_nr_zones(bdev->bd_disk);
871 }
872
873 int bdev_disk_changed(struct gendisk *disk, bool invalidate);
874
875 void put_disk(struct gendisk *disk);
876 struct gendisk *__blk_alloc_disk(struct queue_limits *lim, int node,
877 struct lock_class_key *lkclass);
878
879 /**
880 * blk_alloc_disk - allocate a gendisk structure
881 * @lim: queue limits to be used for this disk.
882 * @node_id: numa node to allocate on
883 *
884 * Allocate and pre-initialize a gendisk structure for use with BIO based
885 * drivers.
886 *
887 * Returns an ERR_PTR on error, else the allocated disk.
888 *
889 * Context: can sleep
890 */
891 #define blk_alloc_disk(lim, node_id) \
892 ({ \
893 static struct lock_class_key __key; \
894 \
895 __blk_alloc_disk(lim, node_id, &__key); \
896 })
897
898 int __register_blkdev(unsigned int major, const char *name,
899 void (*probe)(dev_t devt));
900 #define register_blkdev(major, name) \
901 __register_blkdev(major, name, NULL)
902 void unregister_blkdev(unsigned int major, const char *name);
903
904 bool disk_check_media_change(struct gendisk *disk);
905 void set_capacity(struct gendisk *disk, sector_t size);
906
907 #ifdef CONFIG_BLOCK_HOLDER_DEPRECATED
908 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk);
909 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk);
910 #else
bd_link_disk_holder(struct block_device * bdev,struct gendisk * disk)911 static inline int bd_link_disk_holder(struct block_device *bdev,
912 struct gendisk *disk)
913 {
914 return 0;
915 }
bd_unlink_disk_holder(struct block_device * bdev,struct gendisk * disk)916 static inline void bd_unlink_disk_holder(struct block_device *bdev,
917 struct gendisk *disk)
918 {
919 }
920 #endif /* CONFIG_BLOCK_HOLDER_DEPRECATED */
921
922 dev_t part_devt(struct gendisk *disk, u8 partno);
923 void inc_diskseq(struct gendisk *disk);
924 void blk_request_module(dev_t devt);
925
926 extern int blk_register_queue(struct gendisk *disk);
927 extern void blk_unregister_queue(struct gendisk *disk);
928 void submit_bio_noacct(struct bio *bio);
929 struct bio *bio_split_to_limits(struct bio *bio);
930
931 extern int blk_lld_busy(struct request_queue *q);
932 extern int blk_queue_enter(struct request_queue *q, blk_mq_req_flags_t flags);
933 extern void blk_queue_exit(struct request_queue *q);
934 extern void blk_sync_queue(struct request_queue *q);
935
936 /* Helper to convert REQ_OP_XXX to its string format XXX */
937 extern const char *blk_op_str(enum req_op op);
938
939 int blk_status_to_errno(blk_status_t status);
940 blk_status_t errno_to_blk_status(int errno);
941 const char *blk_status_to_str(blk_status_t status);
942
943 /* only poll the hardware once, don't continue until a completion was found */
944 #define BLK_POLL_ONESHOT (1 << 0)
945 int bio_poll(struct bio *bio, struct io_comp_batch *iob, unsigned int flags);
946 int iocb_bio_iopoll(struct kiocb *kiocb, struct io_comp_batch *iob,
947 unsigned int flags);
948
bdev_get_queue(struct block_device * bdev)949 static inline struct request_queue *bdev_get_queue(struct block_device *bdev)
950 {
951 return bdev->bd_queue; /* this is never NULL */
952 }
953
954 /* Helper to convert BLK_ZONE_ZONE_XXX to its string format XXX */
955 const char *blk_zone_cond_str(enum blk_zone_cond zone_cond);
956
bio_zone_no(struct bio * bio)957 static inline unsigned int bio_zone_no(struct bio *bio)
958 {
959 return disk_zone_no(bio->bi_bdev->bd_disk, bio->bi_iter.bi_sector);
960 }
961
bio_straddles_zones(struct bio * bio)962 static inline bool bio_straddles_zones(struct bio *bio)
963 {
964 return bio_sectors(bio) &&
965 bio_zone_no(bio) !=
966 disk_zone_no(bio->bi_bdev->bd_disk, bio_end_sector(bio) - 1);
967 }
968
969 /*
970 * Return how much within the boundary is left to be used for I/O at a given
971 * offset.
972 */
blk_boundary_sectors_left(sector_t offset,unsigned int boundary_sectors)973 static inline unsigned int blk_boundary_sectors_left(sector_t offset,
974 unsigned int boundary_sectors)
975 {
976 if (unlikely(!is_power_of_2(boundary_sectors)))
977 return boundary_sectors - sector_div(offset, boundary_sectors);
978 return boundary_sectors - (offset & (boundary_sectors - 1));
979 }
980
981 /**
982 * queue_limits_start_update - start an atomic update of queue limits
983 * @q: queue to update
984 *
985 * This functions starts an atomic update of the queue limits. It takes a lock
986 * to prevent other updates and returns a snapshot of the current limits that
987 * the caller can modify. The caller must call queue_limits_commit_update()
988 * to finish the update.
989 *
990 * Context: process context.
991 */
992 static inline struct queue_limits
queue_limits_start_update(struct request_queue * q)993 queue_limits_start_update(struct request_queue *q)
994 {
995 mutex_lock(&q->limits_lock);
996 return q->limits;
997 }
998 int queue_limits_commit_update_frozen(struct request_queue *q,
999 struct queue_limits *lim);
1000 int queue_limits_commit_update(struct request_queue *q,
1001 struct queue_limits *lim);
1002 int queue_limits_set(struct request_queue *q, struct queue_limits *lim);
1003 int blk_validate_limits(struct queue_limits *lim);
1004
1005 /**
1006 * queue_limits_cancel_update - cancel an atomic update of queue limits
1007 * @q: queue to update
1008 *
1009 * This functions cancels an atomic update of the queue limits started by
1010 * queue_limits_start_update() and should be used when an error occurs after
1011 * starting update.
1012 */
queue_limits_cancel_update(struct request_queue * q)1013 static inline void queue_limits_cancel_update(struct request_queue *q)
1014 {
1015 mutex_unlock(&q->limits_lock);
1016 }
1017
1018 /*
1019 * These helpers are for drivers that have sloppy feature negotiation and might
1020 * have to disable DISCARD, WRITE_ZEROES or SECURE_DISCARD from the I/O
1021 * completion handler when the device returned an indicator that the respective
1022 * feature is not actually supported. They are racy and the driver needs to
1023 * cope with that. Try to avoid this scheme if you can.
1024 */
blk_queue_disable_discard(struct request_queue * q)1025 static inline void blk_queue_disable_discard(struct request_queue *q)
1026 {
1027 q->limits.max_discard_sectors = 0;
1028 }
1029
blk_queue_disable_secure_erase(struct request_queue * q)1030 static inline void blk_queue_disable_secure_erase(struct request_queue *q)
1031 {
1032 q->limits.max_secure_erase_sectors = 0;
1033 }
1034
blk_queue_disable_write_zeroes(struct request_queue * q)1035 static inline void blk_queue_disable_write_zeroes(struct request_queue *q)
1036 {
1037 q->limits.max_write_zeroes_sectors = 0;
1038 }
1039
1040 /*
1041 * Access functions for manipulating queue properties
1042 */
1043 extern void blk_set_queue_depth(struct request_queue *q, unsigned int depth);
1044 extern void blk_set_stacking_limits(struct queue_limits *lim);
1045 extern int blk_stack_limits(struct queue_limits *t, struct queue_limits *b,
1046 sector_t offset);
1047 void queue_limits_stack_bdev(struct queue_limits *t, struct block_device *bdev,
1048 sector_t offset, const char *pfx);
1049 extern void blk_queue_rq_timeout(struct request_queue *, unsigned int);
1050
1051 struct blk_independent_access_ranges *
1052 disk_alloc_independent_access_ranges(struct gendisk *disk, int nr_ia_ranges);
1053 void disk_set_independent_access_ranges(struct gendisk *disk,
1054 struct blk_independent_access_ranges *iars);
1055
1056 bool __must_check blk_get_queue(struct request_queue *);
1057 extern void blk_put_queue(struct request_queue *);
1058
1059 void blk_mark_disk_dead(struct gendisk *disk);
1060
1061 struct rq_list {
1062 struct request *head;
1063 struct request *tail;
1064 };
1065
1066 #ifdef CONFIG_BLOCK
1067 /*
1068 * blk_plug permits building a queue of related requests by holding the I/O
1069 * fragments for a short period. This allows merging of sequential requests
1070 * into single larger request. As the requests are moved from a per-task list to
1071 * the device's request_queue in a batch, this results in improved scalability
1072 * as the lock contention for request_queue lock is reduced.
1073 *
1074 * It is ok not to disable preemption when adding the request to the plug list
1075 * or when attempting a merge. For details, please see schedule() where
1076 * blk_flush_plug() is called.
1077 */
1078 struct blk_plug {
1079 struct rq_list mq_list; /* blk-mq requests */
1080
1081 /* if ios_left is > 1, we can batch tag/rq allocations */
1082 struct rq_list cached_rqs;
1083 u64 cur_ktime;
1084 unsigned short nr_ios;
1085
1086 unsigned short rq_count;
1087
1088 bool multiple_queues;
1089 bool has_elevator;
1090
1091 struct list_head cb_list; /* md requires an unplug callback */
1092 };
1093
1094 struct blk_plug_cb;
1095 typedef void (*blk_plug_cb_fn)(struct blk_plug_cb *, bool);
1096 struct blk_plug_cb {
1097 struct list_head list;
1098 blk_plug_cb_fn callback;
1099 void *data;
1100 };
1101 extern struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug,
1102 void *data, int size);
1103 extern void blk_start_plug(struct blk_plug *);
1104 extern void blk_start_plug_nr_ios(struct blk_plug *, unsigned short);
1105 extern void blk_finish_plug(struct blk_plug *);
1106
1107 void __blk_flush_plug(struct blk_plug *plug, bool from_schedule);
blk_flush_plug(struct blk_plug * plug,bool async)1108 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1109 {
1110 if (plug)
1111 __blk_flush_plug(plug, async);
1112 }
1113
1114 /*
1115 * tsk == current here
1116 */
blk_plug_invalidate_ts(struct task_struct * tsk)1117 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1118 {
1119 struct blk_plug *plug = tsk->plug;
1120
1121 if (plug)
1122 plug->cur_ktime = 0;
1123 current->flags &= ~PF_BLOCK_TS;
1124 }
1125
1126 int blkdev_issue_flush(struct block_device *bdev);
1127 long nr_blockdev_pages(void);
1128 #else /* CONFIG_BLOCK */
1129 struct blk_plug {
1130 };
1131
blk_start_plug_nr_ios(struct blk_plug * plug,unsigned short nr_ios)1132 static inline void blk_start_plug_nr_ios(struct blk_plug *plug,
1133 unsigned short nr_ios)
1134 {
1135 }
1136
blk_start_plug(struct blk_plug * plug)1137 static inline void blk_start_plug(struct blk_plug *plug)
1138 {
1139 }
1140
blk_finish_plug(struct blk_plug * plug)1141 static inline void blk_finish_plug(struct blk_plug *plug)
1142 {
1143 }
1144
blk_flush_plug(struct blk_plug * plug,bool async)1145 static inline void blk_flush_plug(struct blk_plug *plug, bool async)
1146 {
1147 }
1148
blk_plug_invalidate_ts(struct task_struct * tsk)1149 static inline void blk_plug_invalidate_ts(struct task_struct *tsk)
1150 {
1151 }
1152
blkdev_issue_flush(struct block_device * bdev)1153 static inline int blkdev_issue_flush(struct block_device *bdev)
1154 {
1155 return 0;
1156 }
1157
nr_blockdev_pages(void)1158 static inline long nr_blockdev_pages(void)
1159 {
1160 return 0;
1161 }
1162 #endif /* CONFIG_BLOCK */
1163
1164 extern void blk_io_schedule(void);
1165
1166 int blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1167 sector_t nr_sects, gfp_t gfp_mask);
1168 int __blkdev_issue_discard(struct block_device *bdev, sector_t sector,
1169 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop);
1170 int blkdev_issue_secure_erase(struct block_device *bdev, sector_t sector,
1171 sector_t nr_sects, gfp_t gfp);
1172
1173 #define BLKDEV_ZERO_NOUNMAP (1 << 0) /* do not free blocks */
1174 #define BLKDEV_ZERO_NOFALLBACK (1 << 1) /* don't write explicit zeroes */
1175 #define BLKDEV_ZERO_KILLABLE (1 << 2) /* interruptible by fatal signals */
1176
1177 extern int __blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1178 sector_t nr_sects, gfp_t gfp_mask, struct bio **biop,
1179 unsigned flags);
1180 extern int blkdev_issue_zeroout(struct block_device *bdev, sector_t sector,
1181 sector_t nr_sects, gfp_t gfp_mask, unsigned flags);
1182
sb_issue_discard(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask,unsigned long flags)1183 static inline int sb_issue_discard(struct super_block *sb, sector_t block,
1184 sector_t nr_blocks, gfp_t gfp_mask, unsigned long flags)
1185 {
1186 return blkdev_issue_discard(sb->s_bdev,
1187 block << (sb->s_blocksize_bits -
1188 SECTOR_SHIFT),
1189 nr_blocks << (sb->s_blocksize_bits -
1190 SECTOR_SHIFT),
1191 gfp_mask);
1192 }
sb_issue_zeroout(struct super_block * sb,sector_t block,sector_t nr_blocks,gfp_t gfp_mask)1193 static inline int sb_issue_zeroout(struct super_block *sb, sector_t block,
1194 sector_t nr_blocks, gfp_t gfp_mask)
1195 {
1196 return blkdev_issue_zeroout(sb->s_bdev,
1197 block << (sb->s_blocksize_bits -
1198 SECTOR_SHIFT),
1199 nr_blocks << (sb->s_blocksize_bits -
1200 SECTOR_SHIFT),
1201 gfp_mask, 0);
1202 }
1203
bdev_is_partition(struct block_device * bdev)1204 static inline bool bdev_is_partition(struct block_device *bdev)
1205 {
1206 return bdev_partno(bdev) != 0;
1207 }
1208
1209 enum blk_default_limits {
1210 BLK_MAX_SEGMENTS = 128,
1211 BLK_SAFE_MAX_SECTORS = 255,
1212 BLK_MAX_SEGMENT_SIZE = 65536,
1213 BLK_SEG_BOUNDARY_MASK = 0xFFFFFFFFUL,
1214 };
1215
1216 /*
1217 * Default upper limit for the software max_sectors limit used for
1218 * regular file system I/O. This can be increased through sysfs.
1219 *
1220 * Not to be confused with the max_hw_sector limit that is entirely
1221 * controlled by the driver, usually based on hardware limits.
1222 */
1223 #define BLK_DEF_MAX_SECTORS_CAP 2560u
1224
bdev_limits(struct block_device * bdev)1225 static inline struct queue_limits *bdev_limits(struct block_device *bdev)
1226 {
1227 return &bdev_get_queue(bdev)->limits;
1228 }
1229
queue_segment_boundary(const struct request_queue * q)1230 static inline unsigned long queue_segment_boundary(const struct request_queue *q)
1231 {
1232 return q->limits.seg_boundary_mask;
1233 }
1234
queue_virt_boundary(const struct request_queue * q)1235 static inline unsigned long queue_virt_boundary(const struct request_queue *q)
1236 {
1237 return q->limits.virt_boundary_mask;
1238 }
1239
queue_max_sectors(const struct request_queue * q)1240 static inline unsigned int queue_max_sectors(const struct request_queue *q)
1241 {
1242 return q->limits.max_sectors;
1243 }
1244
queue_max_bytes(struct request_queue * q)1245 static inline unsigned int queue_max_bytes(struct request_queue *q)
1246 {
1247 return min_t(unsigned int, queue_max_sectors(q), INT_MAX >> 9) << 9;
1248 }
1249
queue_max_hw_sectors(const struct request_queue * q)1250 static inline unsigned int queue_max_hw_sectors(const struct request_queue *q)
1251 {
1252 return q->limits.max_hw_sectors;
1253 }
1254
queue_max_segments(const struct request_queue * q)1255 static inline unsigned short queue_max_segments(const struct request_queue *q)
1256 {
1257 return q->limits.max_segments;
1258 }
1259
queue_max_discard_segments(const struct request_queue * q)1260 static inline unsigned short queue_max_discard_segments(const struct request_queue *q)
1261 {
1262 return q->limits.max_discard_segments;
1263 }
1264
queue_max_segment_size(const struct request_queue * q)1265 static inline unsigned int queue_max_segment_size(const struct request_queue *q)
1266 {
1267 return q->limits.max_segment_size;
1268 }
1269
queue_emulates_zone_append(struct request_queue * q)1270 static inline bool queue_emulates_zone_append(struct request_queue *q)
1271 {
1272 return blk_queue_is_zoned(q) && !q->limits.max_hw_zone_append_sectors;
1273 }
1274
bdev_emulates_zone_append(struct block_device * bdev)1275 static inline bool bdev_emulates_zone_append(struct block_device *bdev)
1276 {
1277 return queue_emulates_zone_append(bdev_get_queue(bdev));
1278 }
1279
1280 static inline unsigned int
bdev_max_zone_append_sectors(struct block_device * bdev)1281 bdev_max_zone_append_sectors(struct block_device *bdev)
1282 {
1283 return bdev_limits(bdev)->max_zone_append_sectors;
1284 }
1285
bdev_max_segments(struct block_device * bdev)1286 static inline unsigned int bdev_max_segments(struct block_device *bdev)
1287 {
1288 return queue_max_segments(bdev_get_queue(bdev));
1289 }
1290
queue_logical_block_size(const struct request_queue * q)1291 static inline unsigned queue_logical_block_size(const struct request_queue *q)
1292 {
1293 return q->limits.logical_block_size;
1294 }
1295
bdev_logical_block_size(struct block_device * bdev)1296 static inline unsigned int bdev_logical_block_size(struct block_device *bdev)
1297 {
1298 return queue_logical_block_size(bdev_get_queue(bdev));
1299 }
1300
queue_physical_block_size(const struct request_queue * q)1301 static inline unsigned int queue_physical_block_size(const struct request_queue *q)
1302 {
1303 return q->limits.physical_block_size;
1304 }
1305
bdev_physical_block_size(struct block_device * bdev)1306 static inline unsigned int bdev_physical_block_size(struct block_device *bdev)
1307 {
1308 return queue_physical_block_size(bdev_get_queue(bdev));
1309 }
1310
queue_io_min(const struct request_queue * q)1311 static inline unsigned int queue_io_min(const struct request_queue *q)
1312 {
1313 return q->limits.io_min;
1314 }
1315
bdev_io_min(struct block_device * bdev)1316 static inline unsigned int bdev_io_min(struct block_device *bdev)
1317 {
1318 return queue_io_min(bdev_get_queue(bdev));
1319 }
1320
queue_io_opt(const struct request_queue * q)1321 static inline unsigned int queue_io_opt(const struct request_queue *q)
1322 {
1323 return q->limits.io_opt;
1324 }
1325
bdev_io_opt(struct block_device * bdev)1326 static inline unsigned int bdev_io_opt(struct block_device *bdev)
1327 {
1328 return queue_io_opt(bdev_get_queue(bdev));
1329 }
1330
1331 static inline unsigned int
queue_zone_write_granularity(const struct request_queue * q)1332 queue_zone_write_granularity(const struct request_queue *q)
1333 {
1334 return q->limits.zone_write_granularity;
1335 }
1336
1337 static inline unsigned int
bdev_zone_write_granularity(struct block_device * bdev)1338 bdev_zone_write_granularity(struct block_device *bdev)
1339 {
1340 return queue_zone_write_granularity(bdev_get_queue(bdev));
1341 }
1342
1343 int bdev_alignment_offset(struct block_device *bdev);
1344 unsigned int bdev_discard_alignment(struct block_device *bdev);
1345
bdev_max_discard_sectors(struct block_device * bdev)1346 static inline unsigned int bdev_max_discard_sectors(struct block_device *bdev)
1347 {
1348 return bdev_limits(bdev)->max_discard_sectors;
1349 }
1350
bdev_discard_granularity(struct block_device * bdev)1351 static inline unsigned int bdev_discard_granularity(struct block_device *bdev)
1352 {
1353 return bdev_limits(bdev)->discard_granularity;
1354 }
1355
1356 static inline unsigned int
bdev_max_secure_erase_sectors(struct block_device * bdev)1357 bdev_max_secure_erase_sectors(struct block_device *bdev)
1358 {
1359 return bdev_limits(bdev)->max_secure_erase_sectors;
1360 }
1361
bdev_write_zeroes_sectors(struct block_device * bdev)1362 static inline unsigned int bdev_write_zeroes_sectors(struct block_device *bdev)
1363 {
1364 return bdev_limits(bdev)->max_write_zeroes_sectors;
1365 }
1366
bdev_nonrot(struct block_device * bdev)1367 static inline bool bdev_nonrot(struct block_device *bdev)
1368 {
1369 return blk_queue_nonrot(bdev_get_queue(bdev));
1370 }
1371
bdev_synchronous(struct block_device * bdev)1372 static inline bool bdev_synchronous(struct block_device *bdev)
1373 {
1374 return bdev->bd_disk->queue->limits.features & BLK_FEAT_SYNCHRONOUS;
1375 }
1376
bdev_stable_writes(struct block_device * bdev)1377 static inline bool bdev_stable_writes(struct block_device *bdev)
1378 {
1379 struct request_queue *q = bdev_get_queue(bdev);
1380
1381 if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1382 q->limits.integrity.csum_type != BLK_INTEGRITY_CSUM_NONE)
1383 return true;
1384 return q->limits.features & BLK_FEAT_STABLE_WRITES;
1385 }
1386
blk_queue_write_cache(struct request_queue * q)1387 static inline bool blk_queue_write_cache(struct request_queue *q)
1388 {
1389 return (q->limits.features & BLK_FEAT_WRITE_CACHE) &&
1390 !(q->limits.flags & BLK_FLAG_WRITE_CACHE_DISABLED);
1391 }
1392
bdev_write_cache(struct block_device * bdev)1393 static inline bool bdev_write_cache(struct block_device *bdev)
1394 {
1395 return blk_queue_write_cache(bdev_get_queue(bdev));
1396 }
1397
bdev_fua(struct block_device * bdev)1398 static inline bool bdev_fua(struct block_device *bdev)
1399 {
1400 return bdev_limits(bdev)->features & BLK_FEAT_FUA;
1401 }
1402
bdev_nowait(struct block_device * bdev)1403 static inline bool bdev_nowait(struct block_device *bdev)
1404 {
1405 return bdev->bd_disk->queue->limits.features & BLK_FEAT_NOWAIT;
1406 }
1407
bdev_is_zoned(struct block_device * bdev)1408 static inline bool bdev_is_zoned(struct block_device *bdev)
1409 {
1410 return blk_queue_is_zoned(bdev_get_queue(bdev));
1411 }
1412
bdev_zone_no(struct block_device * bdev,sector_t sec)1413 static inline unsigned int bdev_zone_no(struct block_device *bdev, sector_t sec)
1414 {
1415 return disk_zone_no(bdev->bd_disk, sec);
1416 }
1417
bdev_zone_sectors(struct block_device * bdev)1418 static inline sector_t bdev_zone_sectors(struct block_device *bdev)
1419 {
1420 struct request_queue *q = bdev_get_queue(bdev);
1421
1422 if (!blk_queue_is_zoned(q))
1423 return 0;
1424 return q->limits.chunk_sectors;
1425 }
1426
bdev_offset_from_zone_start(struct block_device * bdev,sector_t sector)1427 static inline sector_t bdev_offset_from_zone_start(struct block_device *bdev,
1428 sector_t sector)
1429 {
1430 return sector & (bdev_zone_sectors(bdev) - 1);
1431 }
1432
bio_offset_from_zone_start(struct bio * bio)1433 static inline sector_t bio_offset_from_zone_start(struct bio *bio)
1434 {
1435 return bdev_offset_from_zone_start(bio->bi_bdev,
1436 bio->bi_iter.bi_sector);
1437 }
1438
bdev_is_zone_start(struct block_device * bdev,sector_t sector)1439 static inline bool bdev_is_zone_start(struct block_device *bdev,
1440 sector_t sector)
1441 {
1442 return bdev_offset_from_zone_start(bdev, sector) == 0;
1443 }
1444
1445 /**
1446 * bdev_zone_is_seq - check if a sector belongs to a sequential write zone
1447 * @bdev: block device to check
1448 * @sector: sector number
1449 *
1450 * Check if @sector on @bdev is contained in a sequential write required zone.
1451 */
bdev_zone_is_seq(struct block_device * bdev,sector_t sector)1452 static inline bool bdev_zone_is_seq(struct block_device *bdev, sector_t sector)
1453 {
1454 bool is_seq = false;
1455
1456 #if IS_ENABLED(CONFIG_BLK_DEV_ZONED)
1457 if (bdev_is_zoned(bdev)) {
1458 struct gendisk *disk = bdev->bd_disk;
1459 unsigned long *bitmap;
1460
1461 rcu_read_lock();
1462 bitmap = rcu_dereference(disk->conv_zones_bitmap);
1463 is_seq = !bitmap ||
1464 !test_bit(disk_zone_no(disk, sector), bitmap);
1465 rcu_read_unlock();
1466 }
1467 #endif
1468
1469 return is_seq;
1470 }
1471
1472 int blk_zone_issue_zeroout(struct block_device *bdev, sector_t sector,
1473 sector_t nr_sects, gfp_t gfp_mask);
1474
queue_dma_alignment(const struct request_queue * q)1475 static inline unsigned int queue_dma_alignment(const struct request_queue *q)
1476 {
1477 return q->limits.dma_alignment;
1478 }
1479
1480 static inline unsigned int
queue_atomic_write_unit_max_bytes(const struct request_queue * q)1481 queue_atomic_write_unit_max_bytes(const struct request_queue *q)
1482 {
1483 return q->limits.atomic_write_unit_max;
1484 }
1485
1486 static inline unsigned int
queue_atomic_write_unit_min_bytes(const struct request_queue * q)1487 queue_atomic_write_unit_min_bytes(const struct request_queue *q)
1488 {
1489 return q->limits.atomic_write_unit_min;
1490 }
1491
1492 static inline unsigned int
queue_atomic_write_boundary_bytes(const struct request_queue * q)1493 queue_atomic_write_boundary_bytes(const struct request_queue *q)
1494 {
1495 return q->limits.atomic_write_boundary_sectors << SECTOR_SHIFT;
1496 }
1497
1498 static inline unsigned int
queue_atomic_write_max_bytes(const struct request_queue * q)1499 queue_atomic_write_max_bytes(const struct request_queue *q)
1500 {
1501 return q->limits.atomic_write_max_sectors << SECTOR_SHIFT;
1502 }
1503
bdev_dma_alignment(struct block_device * bdev)1504 static inline unsigned int bdev_dma_alignment(struct block_device *bdev)
1505 {
1506 return queue_dma_alignment(bdev_get_queue(bdev));
1507 }
1508
bdev_iter_is_aligned(struct block_device * bdev,struct iov_iter * iter)1509 static inline bool bdev_iter_is_aligned(struct block_device *bdev,
1510 struct iov_iter *iter)
1511 {
1512 return iov_iter_is_aligned(iter, bdev_dma_alignment(bdev),
1513 bdev_logical_block_size(bdev) - 1);
1514 }
1515
1516 static inline unsigned int
blk_lim_dma_alignment_and_pad(struct queue_limits * lim)1517 blk_lim_dma_alignment_and_pad(struct queue_limits *lim)
1518 {
1519 return lim->dma_alignment | lim->dma_pad_mask;
1520 }
1521
blk_rq_aligned(struct request_queue * q,unsigned long addr,unsigned int len)1522 static inline bool blk_rq_aligned(struct request_queue *q, unsigned long addr,
1523 unsigned int len)
1524 {
1525 unsigned int alignment = blk_lim_dma_alignment_and_pad(&q->limits);
1526
1527 return !(addr & alignment) && !(len & alignment);
1528 }
1529
1530 /* assumes size > 256 */
blksize_bits(unsigned int size)1531 static inline unsigned int blksize_bits(unsigned int size)
1532 {
1533 return order_base_2(size >> SECTOR_SHIFT) + SECTOR_SHIFT;
1534 }
1535
1536 int kblockd_schedule_work(struct work_struct *work);
1537 int kblockd_mod_delayed_work_on(int cpu, struct delayed_work *dwork, unsigned long delay);
1538
1539 #define MODULE_ALIAS_BLOCKDEV(major,minor) \
1540 MODULE_ALIAS("block-major-" __stringify(major) "-" __stringify(minor))
1541 #define MODULE_ALIAS_BLOCKDEV_MAJOR(major) \
1542 MODULE_ALIAS("block-major-" __stringify(major) "-*")
1543
1544 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1545
1546 bool blk_crypto_register(struct blk_crypto_profile *profile,
1547 struct request_queue *q);
1548
1549 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1550
blk_crypto_register(struct blk_crypto_profile * profile,struct request_queue * q)1551 static inline bool blk_crypto_register(struct blk_crypto_profile *profile,
1552 struct request_queue *q)
1553 {
1554 return true;
1555 }
1556
1557 #endif /* CONFIG_BLK_INLINE_ENCRYPTION */
1558
1559 enum blk_unique_id {
1560 /* these match the Designator Types specified in SPC */
1561 BLK_UID_T10 = 1,
1562 BLK_UID_EUI64 = 2,
1563 BLK_UID_NAA = 3,
1564 };
1565
1566 struct block_device_operations {
1567 void (*submit_bio)(struct bio *bio);
1568 int (*poll_bio)(struct bio *bio, struct io_comp_batch *iob,
1569 unsigned int flags);
1570 int (*open)(struct gendisk *disk, blk_mode_t mode);
1571 void (*release)(struct gendisk *disk);
1572 int (*ioctl)(struct block_device *bdev, blk_mode_t mode,
1573 unsigned cmd, unsigned long arg);
1574 int (*compat_ioctl)(struct block_device *bdev, blk_mode_t mode,
1575 unsigned cmd, unsigned long arg);
1576 unsigned int (*check_events) (struct gendisk *disk,
1577 unsigned int clearing);
1578 void (*unlock_native_capacity) (struct gendisk *);
1579 int (*getgeo)(struct block_device *, struct hd_geometry *);
1580 int (*set_read_only)(struct block_device *bdev, bool ro);
1581 void (*free_disk)(struct gendisk *disk);
1582 /* this callback is with swap_lock and sometimes page table lock held */
1583 void (*swap_slot_free_notify) (struct block_device *, unsigned long);
1584 int (*report_zones)(struct gendisk *, sector_t sector,
1585 unsigned int nr_zones, report_zones_cb cb, void *data);
1586 char *(*devnode)(struct gendisk *disk, umode_t *mode);
1587 /* returns the length of the identifier or a negative errno: */
1588 int (*get_unique_id)(struct gendisk *disk, u8 id[16],
1589 enum blk_unique_id id_type);
1590 struct module *owner;
1591 const struct pr_ops *pr_ops;
1592
1593 /*
1594 * Special callback for probing GPT entry at a given sector.
1595 * Needed by Android devices, used by GPT scanner and MMC blk
1596 * driver.
1597 */
1598 int (*alternative_gpt_sector)(struct gendisk *disk, sector_t *sector);
1599 };
1600
1601 #ifdef CONFIG_COMPAT
1602 extern int blkdev_compat_ptr_ioctl(struct block_device *, blk_mode_t,
1603 unsigned int, unsigned long);
1604 #else
1605 #define blkdev_compat_ptr_ioctl NULL
1606 #endif
1607
blk_wake_io_task(struct task_struct * waiter)1608 static inline void blk_wake_io_task(struct task_struct *waiter)
1609 {
1610 /*
1611 * If we're polling, the task itself is doing the completions. For
1612 * that case, we don't need to signal a wakeup, it's enough to just
1613 * mark us as RUNNING.
1614 */
1615 if (waiter == current)
1616 __set_current_state(TASK_RUNNING);
1617 else
1618 wake_up_process(waiter);
1619 }
1620
1621 unsigned long bdev_start_io_acct(struct block_device *bdev, enum req_op op,
1622 unsigned long start_time);
1623 void bdev_end_io_acct(struct block_device *bdev, enum req_op op,
1624 unsigned int sectors, unsigned long start_time);
1625
1626 unsigned long bio_start_io_acct(struct bio *bio);
1627 void bio_end_io_acct_remapped(struct bio *bio, unsigned long start_time,
1628 struct block_device *orig_bdev);
1629
1630 /**
1631 * bio_end_io_acct - end I/O accounting for bio based drivers
1632 * @bio: bio to end account for
1633 * @start_time: start time returned by bio_start_io_acct()
1634 */
bio_end_io_acct(struct bio * bio,unsigned long start_time)1635 static inline void bio_end_io_acct(struct bio *bio, unsigned long start_time)
1636 {
1637 return bio_end_io_acct_remapped(bio, start_time, bio->bi_bdev);
1638 }
1639
1640 int bdev_validate_blocksize(struct block_device *bdev, int block_size);
1641 int set_blocksize(struct file *file, int size);
1642
1643 int lookup_bdev(const char *pathname, dev_t *dev);
1644
1645 void blkdev_show(struct seq_file *seqf, off_t offset);
1646
1647 #define BDEVNAME_SIZE 32 /* Largest string for a blockdev identifier */
1648 #define BDEVT_SIZE 10 /* Largest string for MAJ:MIN for blkdev */
1649 #ifdef CONFIG_BLOCK
1650 #define BLKDEV_MAJOR_MAX 512
1651 #else
1652 #define BLKDEV_MAJOR_MAX 0
1653 #endif
1654
1655 struct blk_holder_ops {
1656 void (*mark_dead)(struct block_device *bdev, bool surprise);
1657
1658 /*
1659 * Sync the file system mounted on the block device.
1660 */
1661 void (*sync)(struct block_device *bdev);
1662
1663 /*
1664 * Freeze the file system mounted on the block device.
1665 */
1666 int (*freeze)(struct block_device *bdev);
1667
1668 /*
1669 * Thaw the file system mounted on the block device.
1670 */
1671 int (*thaw)(struct block_device *bdev);
1672 };
1673
1674 /*
1675 * For filesystems using @fs_holder_ops, the @holder argument passed to
1676 * helpers used to open and claim block devices via
1677 * bd_prepare_to_claim() must point to a superblock.
1678 */
1679 extern const struct blk_holder_ops fs_holder_ops;
1680
1681 /*
1682 * Return the correct open flags for blkdev_get_by_* for super block flags
1683 * as stored in sb->s_flags.
1684 */
1685 #define sb_open_mode(flags) \
1686 (BLK_OPEN_READ | BLK_OPEN_RESTRICT_WRITES | \
1687 (((flags) & SB_RDONLY) ? 0 : BLK_OPEN_WRITE))
1688
1689 struct file *bdev_file_open_by_dev(dev_t dev, blk_mode_t mode, void *holder,
1690 const struct blk_holder_ops *hops);
1691 struct file *bdev_file_open_by_path(const char *path, blk_mode_t mode,
1692 void *holder, const struct blk_holder_ops *hops);
1693 int bd_prepare_to_claim(struct block_device *bdev, void *holder,
1694 const struct blk_holder_ops *hops);
1695 void bd_abort_claiming(struct block_device *bdev, void *holder);
1696
1697 struct block_device *I_BDEV(struct inode *inode);
1698 struct block_device *file_bdev(struct file *bdev_file);
1699 bool disk_live(struct gendisk *disk);
1700 unsigned int block_size(struct block_device *bdev);
1701
1702 #ifdef CONFIG_BLOCK
1703 void invalidate_bdev(struct block_device *bdev);
1704 int sync_blockdev(struct block_device *bdev);
1705 int sync_blockdev_range(struct block_device *bdev, loff_t lstart, loff_t lend);
1706 int sync_blockdev_nowait(struct block_device *bdev);
1707 void sync_bdevs(bool wait);
1708 void bdev_statx(const struct path *path, struct kstat *stat, u32 request_mask);
1709 void printk_all_partitions(void);
1710 int __init early_lookup_bdev(const char *pathname, dev_t *dev);
1711 #else
invalidate_bdev(struct block_device * bdev)1712 static inline void invalidate_bdev(struct block_device *bdev)
1713 {
1714 }
sync_blockdev(struct block_device * bdev)1715 static inline int sync_blockdev(struct block_device *bdev)
1716 {
1717 return 0;
1718 }
sync_blockdev_nowait(struct block_device * bdev)1719 static inline int sync_blockdev_nowait(struct block_device *bdev)
1720 {
1721 return 0;
1722 }
sync_bdevs(bool wait)1723 static inline void sync_bdevs(bool wait)
1724 {
1725 }
bdev_statx(const struct path * path,struct kstat * stat,u32 request_mask)1726 static inline void bdev_statx(const struct path *path, struct kstat *stat,
1727 u32 request_mask)
1728 {
1729 }
printk_all_partitions(void)1730 static inline void printk_all_partitions(void)
1731 {
1732 }
early_lookup_bdev(const char * pathname,dev_t * dev)1733 static inline int early_lookup_bdev(const char *pathname, dev_t *dev)
1734 {
1735 return -EINVAL;
1736 }
1737 #endif /* CONFIG_BLOCK */
1738
1739 int bdev_freeze(struct block_device *bdev);
1740 int bdev_thaw(struct block_device *bdev);
1741 void bdev_fput(struct file *bdev_file);
1742
1743 struct io_comp_batch {
1744 struct rq_list req_list;
1745 bool need_ts;
1746 void (*complete)(struct io_comp_batch *);
1747 };
1748
blk_atomic_write_start_sect_aligned(sector_t sector,struct queue_limits * limits)1749 static inline bool blk_atomic_write_start_sect_aligned(sector_t sector,
1750 struct queue_limits *limits)
1751 {
1752 unsigned int alignment = max(limits->atomic_write_hw_unit_min,
1753 limits->atomic_write_hw_boundary);
1754
1755 return IS_ALIGNED(sector, alignment >> SECTOR_SHIFT);
1756 }
1757
bdev_can_atomic_write(struct block_device * bdev)1758 static inline bool bdev_can_atomic_write(struct block_device *bdev)
1759 {
1760 struct request_queue *bd_queue = bdev->bd_queue;
1761 struct queue_limits *limits = &bd_queue->limits;
1762
1763 if (!limits->atomic_write_unit_min)
1764 return false;
1765
1766 if (bdev_is_partition(bdev))
1767 return blk_atomic_write_start_sect_aligned(bdev->bd_start_sect,
1768 limits);
1769
1770 return true;
1771 }
1772
1773 static inline unsigned int
bdev_atomic_write_unit_min_bytes(struct block_device * bdev)1774 bdev_atomic_write_unit_min_bytes(struct block_device *bdev)
1775 {
1776 if (!bdev_can_atomic_write(bdev))
1777 return 0;
1778 return queue_atomic_write_unit_min_bytes(bdev_get_queue(bdev));
1779 }
1780
1781 static inline unsigned int
bdev_atomic_write_unit_max_bytes(struct block_device * bdev)1782 bdev_atomic_write_unit_max_bytes(struct block_device *bdev)
1783 {
1784 if (!bdev_can_atomic_write(bdev))
1785 return 0;
1786 return queue_atomic_write_unit_max_bytes(bdev_get_queue(bdev));
1787 }
1788
1789 #define DEFINE_IO_COMP_BATCH(name) struct io_comp_batch name = { }
1790
1791 #endif /* _LINUX_BLKDEV_H */
1792