1 /* SPDX-License-Identifier: GPL-2.0 */
2 
3 /*
4  * Linux-specific definitions for managing interactions with Microsoft's
5  * Hyper-V hypervisor. The definitions in this file are architecture
6  * independent. See arch/<arch>/include/asm/mshyperv.h for definitions
7  * that are specific to architecture <arch>.
8  *
9  * Definitions that are derived from Hyper-V code or headers should not go in
10  * this file, but should instead go in the relevant files in include/hyperv.
11  *
12  * Copyright (C) 2019, Microsoft, Inc.
13  *
14  * Author : Michael Kelley <mikelley@microsoft.com>
15  */
16 
17 #ifndef _ASM_GENERIC_MSHYPERV_H
18 #define _ASM_GENERIC_MSHYPERV_H
19 
20 #include <linux/types.h>
21 #include <linux/atomic.h>
22 #include <linux/bitops.h>
23 #include <acpi/acpi_numa.h>
24 #include <linux/cpumask.h>
25 #include <linux/nmi.h>
26 #include <asm/ptrace.h>
27 #include <hyperv/hvhdk.h>
28 
29 #define VTPM_BASE_ADDRESS 0xfed40000
30 
31 enum hv_partition_type {
32 	HV_PARTITION_TYPE_GUEST,
33 	HV_PARTITION_TYPE_ROOT,
34 };
35 
36 struct ms_hyperv_info {
37 	u32 features;
38 	u32 priv_high;
39 	u32 ext_features;
40 	u32 misc_features;
41 	u32 hints;
42 	u32 nested_features;
43 	u32 max_vp_index;
44 	u32 max_lp_index;
45 	u8 vtl;
46 	union {
47 		u32 isolation_config_a;
48 		struct {
49 			u32 paravisor_present : 1;
50 			u32 reserved_a1 : 31;
51 		};
52 	};
53 	union {
54 		u32 isolation_config_b;
55 		struct {
56 			u32 cvm_type : 4;
57 			u32 reserved_b1 : 1;
58 			u32 shared_gpa_boundary_active : 1;
59 			u32 shared_gpa_boundary_bits : 6;
60 			u32 reserved_b2 : 20;
61 		};
62 	};
63 	u64 shared_gpa_boundary;
64 };
65 extern struct ms_hyperv_info ms_hyperv;
66 extern bool hv_nested;
67 extern u64 hv_current_partition_id;
68 extern enum hv_partition_type hv_curr_partition_type;
69 
70 extern void * __percpu *hyperv_pcpu_input_arg;
71 extern void * __percpu *hyperv_pcpu_output_arg;
72 
73 u64 hv_do_hypercall(u64 control, void *inputaddr, void *outputaddr);
74 u64 hv_do_fast_hypercall8(u16 control, u64 input8);
75 u64 hv_do_fast_hypercall16(u16 control, u64 input1, u64 input2);
76 
77 bool hv_isolation_type_snp(void);
78 bool hv_isolation_type_tdx(void);
79 
80 /*
81  * On architectures where Hyper-V doesn't support AEOI (e.g., ARM64),
82  * it doesn't provide a recommendation flag and AEOI must be disabled.
83  */
hv_recommend_using_aeoi(void)84 static inline bool hv_recommend_using_aeoi(void)
85 {
86 #ifdef HV_DEPRECATING_AEOI_RECOMMENDED
87 	return !(ms_hyperv.hints & HV_DEPRECATING_AEOI_RECOMMENDED);
88 #else
89 	return false;
90 #endif
91 }
92 
hv_numa_node_to_pxm_info(int node)93 static inline struct hv_proximity_domain_info hv_numa_node_to_pxm_info(int node)
94 {
95 	struct hv_proximity_domain_info pxm_info = {};
96 
97 	if (node != NUMA_NO_NODE) {
98 		pxm_info.domain_id = node_to_pxm(node);
99 		pxm_info.flags.proximity_info_valid = 1;
100 		pxm_info.flags.proximity_preferred = 1;
101 	}
102 
103 	return pxm_info;
104 }
105 
106 /* Helper functions that provide a consistent pattern for checking Hyper-V hypercall status. */
hv_result(u64 status)107 static inline int hv_result(u64 status)
108 {
109 	return status & HV_HYPERCALL_RESULT_MASK;
110 }
111 
hv_result_success(u64 status)112 static inline bool hv_result_success(u64 status)
113 {
114 	return hv_result(status) == HV_STATUS_SUCCESS;
115 }
116 
hv_repcomp(u64 status)117 static inline unsigned int hv_repcomp(u64 status)
118 {
119 	/* Bits [43:32] of status have 'Reps completed' data. */
120 	return (status & HV_HYPERCALL_REP_COMP_MASK) >>
121 			 HV_HYPERCALL_REP_COMP_OFFSET;
122 }
123 
124 /*
125  * Rep hypercalls. Callers of this functions are supposed to ensure that
126  * rep_count and varhead_size comply with Hyper-V hypercall definition.
127  */
hv_do_rep_hypercall(u16 code,u16 rep_count,u16 varhead_size,void * input,void * output)128 static inline u64 hv_do_rep_hypercall(u16 code, u16 rep_count, u16 varhead_size,
129 				      void *input, void *output)
130 {
131 	u64 control = code;
132 	u64 status;
133 	u16 rep_comp;
134 
135 	control |= (u64)varhead_size << HV_HYPERCALL_VARHEAD_OFFSET;
136 	control |= (u64)rep_count << HV_HYPERCALL_REP_COMP_OFFSET;
137 
138 	do {
139 		status = hv_do_hypercall(control, input, output);
140 		if (!hv_result_success(status))
141 			return status;
142 
143 		rep_comp = hv_repcomp(status);
144 
145 		control &= ~HV_HYPERCALL_REP_START_MASK;
146 		control |= (u64)rep_comp << HV_HYPERCALL_REP_START_OFFSET;
147 
148 		touch_nmi_watchdog();
149 	} while (rep_comp < rep_count);
150 
151 	return status;
152 }
153 
154 /* Generate the guest OS identifier as described in the Hyper-V TLFS */
hv_generate_guest_id(u64 kernel_version)155 static inline u64 hv_generate_guest_id(u64 kernel_version)
156 {
157 	u64 guest_id;
158 
159 	guest_id = (((u64)HV_LINUX_VENDOR_ID) << 48);
160 	guest_id |= (kernel_version << 16);
161 
162 	return guest_id;
163 }
164 
165 /* Free the message slot and signal end-of-message if required */
vmbus_signal_eom(struct hv_message * msg,u32 old_msg_type)166 static inline void vmbus_signal_eom(struct hv_message *msg, u32 old_msg_type)
167 {
168 	/*
169 	 * On crash we're reading some other CPU's message page and we need
170 	 * to be careful: this other CPU may already had cleared the header
171 	 * and the host may already had delivered some other message there.
172 	 * In case we blindly write msg->header.message_type we're going
173 	 * to lose it. We can still lose a message of the same type but
174 	 * we count on the fact that there can only be one
175 	 * CHANNELMSG_UNLOAD_RESPONSE and we don't care about other messages
176 	 * on crash.
177 	 */
178 	if (cmpxchg(&msg->header.message_type, old_msg_type,
179 		    HVMSG_NONE) != old_msg_type)
180 		return;
181 
182 	/*
183 	 * The cmxchg() above does an implicit memory barrier to
184 	 * ensure the write to MessageType (ie set to
185 	 * HVMSG_NONE) happens before we read the
186 	 * MessagePending and EOMing. Otherwise, the EOMing
187 	 * will not deliver any more messages since there is
188 	 * no empty slot
189 	 */
190 	if (msg->header.message_flags.msg_pending) {
191 		/*
192 		 * This will cause message queue rescan to
193 		 * possibly deliver another msg from the
194 		 * hypervisor
195 		 */
196 		hv_set_msr(HV_MSR_EOM, 0);
197 	}
198 }
199 
200 int hv_get_hypervisor_version(union hv_hypervisor_version_info *info);
201 
202 void hv_setup_vmbus_handler(void (*handler)(void));
203 void hv_remove_vmbus_handler(void);
204 void hv_setup_stimer0_handler(void (*handler)(void));
205 void hv_remove_stimer0_handler(void);
206 
207 void hv_setup_kexec_handler(void (*handler)(void));
208 void hv_remove_kexec_handler(void);
209 void hv_setup_crash_handler(void (*handler)(struct pt_regs *regs));
210 void hv_remove_crash_handler(void);
211 void hv_setup_mshv_handler(void (*handler)(void));
212 
213 extern int vmbus_interrupt;
214 extern int vmbus_irq;
215 
216 #if IS_ENABLED(CONFIG_HYPERV)
217 /*
218  * Hypervisor's notion of virtual processor ID is different from
219  * Linux' notion of CPU ID. This information can only be retrieved
220  * in the context of the calling CPU. Setup a map for easy access
221  * to this information.
222  */
223 extern u32 *hv_vp_index;
224 extern u32 hv_max_vp_index;
225 
226 extern u64 (*hv_read_reference_counter)(void);
227 
228 /* Sentinel value for an uninitialized entry in hv_vp_index array */
229 #define VP_INVAL	U32_MAX
230 
231 int __init hv_common_init(void);
232 void __init hv_get_partition_id(void);
233 void __init hv_common_free(void);
234 void __init ms_hyperv_late_init(void);
235 int hv_common_cpu_init(unsigned int cpu);
236 int hv_common_cpu_die(unsigned int cpu);
237 void hv_identify_partition_type(void);
238 
239 void *hv_alloc_hyperv_page(void);
240 void *hv_alloc_hyperv_zeroed_page(void);
241 void hv_free_hyperv_page(void *addr);
242 
243 /**
244  * hv_cpu_number_to_vp_number() - Map CPU to VP.
245  * @cpu_number: CPU number in Linux terms
246  *
247  * This function returns the mapping between the Linux processor
248  * number and the hypervisor's virtual processor number, useful
249  * in making hypercalls and such that talk about specific
250  * processors.
251  *
252  * Return: Virtual processor number in Hyper-V terms
253  */
hv_cpu_number_to_vp_number(int cpu_number)254 static inline int hv_cpu_number_to_vp_number(int cpu_number)
255 {
256 	return hv_vp_index[cpu_number];
257 }
258 
__cpumask_to_vpset(struct hv_vpset * vpset,const struct cpumask * cpus,bool (* func)(int cpu))259 static inline int __cpumask_to_vpset(struct hv_vpset *vpset,
260 				    const struct cpumask *cpus,
261 				    bool (*func)(int cpu))
262 {
263 	int cpu, vcpu, vcpu_bank, vcpu_offset, nr_bank = 1;
264 	int max_vcpu_bank = hv_max_vp_index / HV_VCPUS_PER_SPARSE_BANK;
265 
266 	/* vpset.valid_bank_mask can represent up to HV_MAX_SPARSE_VCPU_BANKS banks */
267 	if (max_vcpu_bank >= HV_MAX_SPARSE_VCPU_BANKS)
268 		return 0;
269 
270 	/*
271 	 * Clear all banks up to the maximum possible bank as hv_tlb_flush_ex
272 	 * structs are not cleared between calls, we risk flushing unneeded
273 	 * vCPUs otherwise.
274 	 */
275 	for (vcpu_bank = 0; vcpu_bank <= max_vcpu_bank; vcpu_bank++)
276 		vpset->bank_contents[vcpu_bank] = 0;
277 
278 	/*
279 	 * Some banks may end up being empty but this is acceptable.
280 	 */
281 	for_each_cpu(cpu, cpus) {
282 		if (func && func(cpu))
283 			continue;
284 		vcpu = hv_cpu_number_to_vp_number(cpu);
285 		if (vcpu == VP_INVAL)
286 			return -1;
287 		vcpu_bank = vcpu / HV_VCPUS_PER_SPARSE_BANK;
288 		vcpu_offset = vcpu % HV_VCPUS_PER_SPARSE_BANK;
289 		__set_bit(vcpu_offset, (unsigned long *)
290 			  &vpset->bank_contents[vcpu_bank]);
291 		if (vcpu_bank >= nr_bank)
292 			nr_bank = vcpu_bank + 1;
293 	}
294 	vpset->valid_bank_mask = GENMASK_ULL(nr_bank - 1, 0);
295 	return nr_bank;
296 }
297 
298 /*
299  * Convert a Linux cpumask into a Hyper-V VPset. In the _skip variant,
300  * 'func' is called for each CPU present in cpumask.  If 'func' returns
301  * true, that CPU is skipped -- i.e., that CPU from cpumask is *not*
302  * added to the Hyper-V VPset. If 'func' is NULL, no CPUs are
303  * skipped.
304  */
cpumask_to_vpset(struct hv_vpset * vpset,const struct cpumask * cpus)305 static inline int cpumask_to_vpset(struct hv_vpset *vpset,
306 				    const struct cpumask *cpus)
307 {
308 	return __cpumask_to_vpset(vpset, cpus, NULL);
309 }
310 
cpumask_to_vpset_skip(struct hv_vpset * vpset,const struct cpumask * cpus,bool (* func)(int cpu))311 static inline int cpumask_to_vpset_skip(struct hv_vpset *vpset,
312 				    const struct cpumask *cpus,
313 				    bool (*func)(int cpu))
314 {
315 	return __cpumask_to_vpset(vpset, cpus, func);
316 }
317 
318 #define _hv_status_fmt(fmt) "%s: Hyper-V status: %#x = %s: " fmt
319 #define hv_status_printk(level, status, fmt, ...) \
320 do { \
321 	u64 __status = (status); \
322 	pr_##level(_hv_status_fmt(fmt), __func__, hv_result(__status), \
323 		   hv_result_to_string(__status), ##__VA_ARGS__); \
324 } while (0)
325 #define hv_status_err(status, fmt, ...) \
326 	hv_status_printk(err, status, fmt, ##__VA_ARGS__)
327 #define hv_status_debug(status, fmt, ...) \
328 	hv_status_printk(debug, status, fmt, ##__VA_ARGS__)
329 
330 const char *hv_result_to_string(u64 hv_status);
331 int hv_result_to_errno(u64 status);
332 void hyperv_report_panic(struct pt_regs *regs, long err, bool in_die);
333 bool hv_is_hyperv_initialized(void);
334 bool hv_is_hibernation_supported(void);
335 enum hv_isolation_type hv_get_isolation_type(void);
336 bool hv_is_isolation_supported(void);
337 bool hv_isolation_type_snp(void);
338 u64 hv_ghcb_hypercall(u64 control, void *input, void *output, u32 input_size);
339 u64 hv_tdx_hypercall(u64 control, u64 param1, u64 param2);
340 void hyperv_cleanup(void);
341 bool hv_query_ext_cap(u64 cap_query);
342 void hv_setup_dma_ops(struct device *dev, bool coherent);
343 #else /* CONFIG_HYPERV */
hv_identify_partition_type(void)344 static inline void hv_identify_partition_type(void) {}
hv_is_hyperv_initialized(void)345 static inline bool hv_is_hyperv_initialized(void) { return false; }
hv_is_hibernation_supported(void)346 static inline bool hv_is_hibernation_supported(void) { return false; }
hyperv_cleanup(void)347 static inline void hyperv_cleanup(void) {}
ms_hyperv_late_init(void)348 static inline void ms_hyperv_late_init(void) {}
hv_is_isolation_supported(void)349 static inline bool hv_is_isolation_supported(void) { return false; }
hv_get_isolation_type(void)350 static inline enum hv_isolation_type hv_get_isolation_type(void)
351 {
352 	return HV_ISOLATION_TYPE_NONE;
353 }
354 #endif /* CONFIG_HYPERV */
355 
356 #if IS_ENABLED(CONFIG_MSHV_ROOT)
hv_root_partition(void)357 static inline bool hv_root_partition(void)
358 {
359 	return hv_curr_partition_type == HV_PARTITION_TYPE_ROOT;
360 }
361 int hv_call_deposit_pages(int node, u64 partition_id, u32 num_pages);
362 int hv_call_add_logical_proc(int node, u32 lp_index, u32 acpi_id);
363 int hv_call_create_vp(int node, u64 partition_id, u32 vp_index, u32 flags);
364 
365 #else /* CONFIG_MSHV_ROOT */
hv_root_partition(void)366 static inline bool hv_root_partition(void) { return false; }
hv_call_deposit_pages(int node,u64 partition_id,u32 num_pages)367 static inline int hv_call_deposit_pages(int node, u64 partition_id, u32 num_pages)
368 {
369 	return -EOPNOTSUPP;
370 }
hv_call_add_logical_proc(int node,u32 lp_index,u32 acpi_id)371 static inline int hv_call_add_logical_proc(int node, u32 lp_index, u32 acpi_id)
372 {
373 	return -EOPNOTSUPP;
374 }
hv_call_create_vp(int node,u64 partition_id,u32 vp_index,u32 flags)375 static inline int hv_call_create_vp(int node, u64 partition_id, u32 vp_index, u32 flags)
376 {
377 	return -EOPNOTSUPP;
378 }
379 #endif /* CONFIG_MSHV_ROOT */
380 
381 #endif
382