1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Artem Bityutskiy (Битюцкий Артём)
8 * Adrian Hunter
9 */
10
11 /*
12 * This file implements VFS file and inode operations for regular files, device
13 * nodes and symlinks as well as address space operations.
14 *
15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
16 * the page is dirty and is used for optimization purposes - dirty pages are
17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
18 * the budget for this page. The @PG_checked flag is set if full budgeting is
19 * required for the page e.g., when it corresponds to a file hole or it is
20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
21 * it is OK to fail in this function, and the budget is released in
22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
23 * information about how the page was budgeted, to make it possible to release
24 * the budget properly.
25 *
26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
27 * implement. However, this is not true for 'ubifs_writepage()', which may be
28 * called with @i_mutex unlocked. For example, when flusher thread is doing
29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
32 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
33 *
34 * Similarly, @i_mutex is not always locked in 'ubifs_read_folio()', e.g., the
35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
36 * ondemand_readahead -> read_folio"). In case of readahead, @I_SYNC flag is not
37 * set as well. However, UBIFS disables readahead.
38 */
39
40 #include "ubifs.h"
41 #include <linux/mount.h>
42 #include <linux/slab.h>
43 #include <linux/migrate.h>
44
read_block(struct inode * inode,struct folio * folio,size_t offset,unsigned int block,struct ubifs_data_node * dn)45 static int read_block(struct inode *inode, struct folio *folio, size_t offset,
46 unsigned int block, struct ubifs_data_node *dn)
47 {
48 struct ubifs_info *c = inode->i_sb->s_fs_info;
49 int err, len, out_len;
50 union ubifs_key key;
51 unsigned int dlen;
52
53 data_key_init(c, &key, inode->i_ino, block);
54 err = ubifs_tnc_lookup(c, &key, dn);
55 if (err) {
56 if (err == -ENOENT)
57 /* Not found, so it must be a hole */
58 folio_zero_range(folio, offset, UBIFS_BLOCK_SIZE);
59 return err;
60 }
61
62 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
63 ubifs_inode(inode)->creat_sqnum);
64 len = le32_to_cpu(dn->size);
65 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
66 goto dump;
67
68 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
69
70 if (IS_ENCRYPTED(inode)) {
71 err = ubifs_decrypt(inode, dn, &dlen, block);
72 if (err)
73 goto dump;
74 }
75
76 out_len = UBIFS_BLOCK_SIZE;
77 err = ubifs_decompress_folio(c, &dn->data, dlen, folio, offset,
78 &out_len, le16_to_cpu(dn->compr_type));
79 if (err || len != out_len)
80 goto dump;
81
82 /*
83 * Data length can be less than a full block, even for blocks that are
84 * not the last in the file (e.g., as a result of making a hole and
85 * appending data). Ensure that the remainder is zeroed out.
86 */
87 if (len < UBIFS_BLOCK_SIZE)
88 folio_zero_range(folio, offset + len, UBIFS_BLOCK_SIZE - len);
89
90 return 0;
91
92 dump:
93 ubifs_err(c, "bad data node (block %u, inode %lu)",
94 block, inode->i_ino);
95 ubifs_dump_node(c, dn, UBIFS_MAX_DATA_NODE_SZ);
96 return -EINVAL;
97 }
98
do_readpage(struct folio * folio)99 static int do_readpage(struct folio *folio)
100 {
101 int err = 0, i;
102 unsigned int block, beyond;
103 struct ubifs_data_node *dn = NULL;
104 struct inode *inode = folio->mapping->host;
105 struct ubifs_info *c = inode->i_sb->s_fs_info;
106 loff_t i_size = i_size_read(inode);
107 size_t offset = 0;
108
109 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
110 inode->i_ino, folio->index, i_size, folio->flags);
111 ubifs_assert(c, !folio_test_checked(folio));
112 ubifs_assert(c, !folio->private);
113
114 block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
115 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
116 if (block >= beyond) {
117 /* Reading beyond inode */
118 folio_set_checked(folio);
119 folio_zero_range(folio, 0, folio_size(folio));
120 goto out;
121 }
122
123 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
124 if (!dn) {
125 err = -ENOMEM;
126 goto out;
127 }
128
129 i = 0;
130 while (1) {
131 int ret;
132
133 if (block >= beyond) {
134 /* Reading beyond inode */
135 err = -ENOENT;
136 folio_zero_range(folio, offset, UBIFS_BLOCK_SIZE);
137 } else {
138 ret = read_block(inode, folio, offset, block, dn);
139 if (ret) {
140 err = ret;
141 if (err != -ENOENT)
142 break;
143 } else if (block + 1 == beyond) {
144 int dlen = le32_to_cpu(dn->size);
145 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
146
147 if (ilen && ilen < dlen)
148 folio_zero_range(folio, offset + ilen, dlen - ilen);
149 }
150 }
151 if (++i >= (UBIFS_BLOCKS_PER_PAGE << folio_order(folio)))
152 break;
153 block += 1;
154 offset += UBIFS_BLOCK_SIZE;
155 }
156
157 if (err) {
158 struct ubifs_info *c = inode->i_sb->s_fs_info;
159 if (err == -ENOENT) {
160 /* Not found, so it must be a hole */
161 folio_set_checked(folio);
162 dbg_gen("hole");
163 err = 0;
164 } else {
165 ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
166 folio->index, inode->i_ino, err);
167 }
168 }
169
170 out:
171 kfree(dn);
172 if (!err)
173 folio_mark_uptodate(folio);
174 return err;
175 }
176
177 /**
178 * release_new_page_budget - release budget of a new page.
179 * @c: UBIFS file-system description object
180 *
181 * This is a helper function which releases budget corresponding to the budget
182 * of one new page of data.
183 */
release_new_page_budget(struct ubifs_info * c)184 static void release_new_page_budget(struct ubifs_info *c)
185 {
186 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
187
188 ubifs_release_budget(c, &req);
189 }
190
191 /**
192 * release_existing_page_budget - release budget of an existing page.
193 * @c: UBIFS file-system description object
194 *
195 * This is a helper function which releases budget corresponding to the budget
196 * of changing one page of data which already exists on the flash media.
197 */
release_existing_page_budget(struct ubifs_info * c)198 static void release_existing_page_budget(struct ubifs_info *c)
199 {
200 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
201
202 ubifs_release_budget(c, &req);
203 }
204
write_begin_slow(struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop)205 static int write_begin_slow(struct address_space *mapping,
206 loff_t pos, unsigned len, struct folio **foliop)
207 {
208 struct inode *inode = mapping->host;
209 struct ubifs_info *c = inode->i_sb->s_fs_info;
210 pgoff_t index = pos >> PAGE_SHIFT;
211 struct ubifs_budget_req req = { .new_page = 1 };
212 int err, appending = !!(pos + len > inode->i_size);
213 struct folio *folio;
214
215 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
216 inode->i_ino, pos, len, inode->i_size);
217
218 /*
219 * At the slow path we have to budget before locking the folio, because
220 * budgeting may force write-back, which would wait on locked folios and
221 * deadlock if we had the folio locked. At this point we do not know
222 * anything about the folio, so assume that this is a new folio which is
223 * written to a hole. This corresponds to largest budget. Later the
224 * budget will be amended if this is not true.
225 */
226 if (appending)
227 /* We are appending data, budget for inode change */
228 req.dirtied_ino = 1;
229
230 err = ubifs_budget_space(c, &req);
231 if (unlikely(err))
232 return err;
233
234 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
235 mapping_gfp_mask(mapping));
236 if (IS_ERR(folio)) {
237 ubifs_release_budget(c, &req);
238 return PTR_ERR(folio);
239 }
240
241 if (!folio_test_uptodate(folio)) {
242 if (pos == folio_pos(folio) && len >= folio_size(folio))
243 folio_set_checked(folio);
244 else {
245 err = do_readpage(folio);
246 if (err) {
247 folio_unlock(folio);
248 folio_put(folio);
249 ubifs_release_budget(c, &req);
250 return err;
251 }
252 }
253 }
254
255 if (folio->private)
256 /*
257 * The folio is dirty, which means it was budgeted twice:
258 * o first time the budget was allocated by the task which
259 * made the folio dirty and set the private field;
260 * o and then we budgeted for it for the second time at the
261 * very beginning of this function.
262 *
263 * So what we have to do is to release the folio budget we
264 * allocated.
265 */
266 release_new_page_budget(c);
267 else if (!folio_test_checked(folio))
268 /*
269 * We are changing a folio which already exists on the media.
270 * This means that changing the folio does not make the amount
271 * of indexing information larger, and this part of the budget
272 * which we have already acquired may be released.
273 */
274 ubifs_convert_page_budget(c);
275
276 if (appending) {
277 struct ubifs_inode *ui = ubifs_inode(inode);
278
279 /*
280 * 'ubifs_write_end()' is optimized from the fast-path part of
281 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
282 * if data is appended.
283 */
284 mutex_lock(&ui->ui_mutex);
285 if (ui->dirty)
286 /*
287 * The inode is dirty already, so we may free the
288 * budget we allocated.
289 */
290 ubifs_release_dirty_inode_budget(c, ui);
291 }
292
293 *foliop = folio;
294 return 0;
295 }
296
297 /**
298 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
299 * @c: UBIFS file-system description object
300 * @folio: folio to allocate budget for
301 * @ui: UBIFS inode object the page belongs to
302 * @appending: non-zero if the page is appended
303 *
304 * This is a helper function for 'ubifs_write_begin()' which allocates budget
305 * for the operation. The budget is allocated differently depending on whether
306 * this is appending, whether the page is dirty or not, and so on. This
307 * function leaves the @ui->ui_mutex locked in case of appending.
308 *
309 * Returns: %0 in case of success and %-ENOSPC in case of failure.
310 */
allocate_budget(struct ubifs_info * c,struct folio * folio,struct ubifs_inode * ui,int appending)311 static int allocate_budget(struct ubifs_info *c, struct folio *folio,
312 struct ubifs_inode *ui, int appending)
313 {
314 struct ubifs_budget_req req = { .fast = 1 };
315
316 if (folio->private) {
317 if (!appending)
318 /*
319 * The folio is dirty and we are not appending, which
320 * means no budget is needed at all.
321 */
322 return 0;
323
324 mutex_lock(&ui->ui_mutex);
325 if (ui->dirty)
326 /*
327 * The page is dirty and we are appending, so the inode
328 * has to be marked as dirty. However, it is already
329 * dirty, so we do not need any budget. We may return,
330 * but @ui->ui_mutex hast to be left locked because we
331 * should prevent write-back from flushing the inode
332 * and freeing the budget. The lock will be released in
333 * 'ubifs_write_end()'.
334 */
335 return 0;
336
337 /*
338 * The page is dirty, we are appending, the inode is clean, so
339 * we need to budget the inode change.
340 */
341 req.dirtied_ino = 1;
342 } else {
343 if (folio_test_checked(folio))
344 /*
345 * The page corresponds to a hole and does not
346 * exist on the media. So changing it makes
347 * the amount of indexing information
348 * larger, and we have to budget for a new
349 * page.
350 */
351 req.new_page = 1;
352 else
353 /*
354 * Not a hole, the change will not add any new
355 * indexing information, budget for page
356 * change.
357 */
358 req.dirtied_page = 1;
359
360 if (appending) {
361 mutex_lock(&ui->ui_mutex);
362 if (!ui->dirty)
363 /*
364 * The inode is clean but we will have to mark
365 * it as dirty because we are appending. This
366 * needs a budget.
367 */
368 req.dirtied_ino = 1;
369 }
370 }
371
372 return ubifs_budget_space(c, &req);
373 }
374
375 /*
376 * This function is called when a page of data is going to be written. Since
377 * the page of data will not necessarily go to the flash straight away, UBIFS
378 * has to reserve space on the media for it, which is done by means of
379 * budgeting.
380 *
381 * This is the hot-path of the file-system and we are trying to optimize it as
382 * much as possible. For this reasons it is split on 2 parts - slow and fast.
383 *
384 * There many budgeting cases:
385 * o a new page is appended - we have to budget for a new page and for
386 * changing the inode; however, if the inode is already dirty, there is
387 * no need to budget for it;
388 * o an existing clean page is changed - we have budget for it; if the page
389 * does not exist on the media (a hole), we have to budget for a new
390 * page; otherwise, we may budget for changing an existing page; the
391 * difference between these cases is that changing an existing page does
392 * not introduce anything new to the FS indexing information, so it does
393 * not grow, and smaller budget is acquired in this case;
394 * o an existing dirty page is changed - no need to budget at all, because
395 * the page budget has been acquired by earlier, when the page has been
396 * marked dirty.
397 *
398 * UBIFS budgeting sub-system may force write-back if it thinks there is no
399 * space to reserve. This imposes some locking restrictions and makes it
400 * impossible to take into account the above cases, and makes it impossible to
401 * optimize budgeting.
402 *
403 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
404 * there is a plenty of flash space and the budget will be acquired quickly,
405 * without forcing write-back. The slow path does not make this assumption.
406 */
ubifs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)407 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
408 loff_t pos, unsigned len,
409 struct folio **foliop, void **fsdata)
410 {
411 struct inode *inode = mapping->host;
412 struct ubifs_info *c = inode->i_sb->s_fs_info;
413 struct ubifs_inode *ui = ubifs_inode(inode);
414 pgoff_t index = pos >> PAGE_SHIFT;
415 int err, appending = !!(pos + len > inode->i_size);
416 int skipped_read = 0;
417 struct folio *folio;
418
419 ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
420 ubifs_assert(c, !c->ro_media && !c->ro_mount);
421
422 if (unlikely(c->ro_error))
423 return -EROFS;
424
425 /* Try out the fast-path part first */
426 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
427 mapping_gfp_mask(mapping));
428 if (IS_ERR(folio))
429 return PTR_ERR(folio);
430
431 if (!folio_test_uptodate(folio)) {
432 /* The page is not loaded from the flash */
433 if (pos == folio_pos(folio) && len >= folio_size(folio)) {
434 /*
435 * We change whole page so no need to load it. But we
436 * do not know whether this page exists on the media or
437 * not, so we assume the latter because it requires
438 * larger budget. The assumption is that it is better
439 * to budget a bit more than to read the page from the
440 * media. Thus, we are setting the @PG_checked flag
441 * here.
442 */
443 folio_set_checked(folio);
444 skipped_read = 1;
445 } else {
446 err = do_readpage(folio);
447 if (err) {
448 folio_unlock(folio);
449 folio_put(folio);
450 return err;
451 }
452 }
453 }
454
455 err = allocate_budget(c, folio, ui, appending);
456 if (unlikely(err)) {
457 ubifs_assert(c, err == -ENOSPC);
458 /*
459 * If we skipped reading the page because we were going to
460 * write all of it, then it is not up to date.
461 */
462 if (skipped_read)
463 folio_clear_checked(folio);
464 /*
465 * Budgeting failed which means it would have to force
466 * write-back but didn't, because we set the @fast flag in the
467 * request. Write-back cannot be done now, while we have the
468 * page locked, because it would deadlock. Unlock and free
469 * everything and fall-back to slow-path.
470 */
471 if (appending) {
472 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
473 mutex_unlock(&ui->ui_mutex);
474 }
475 folio_unlock(folio);
476 folio_put(folio);
477
478 return write_begin_slow(mapping, pos, len, foliop);
479 }
480
481 /*
482 * Whee, we acquired budgeting quickly - without involving
483 * garbage-collection, committing or forcing write-back. We return
484 * with @ui->ui_mutex locked if we are appending pages, and unlocked
485 * otherwise. This is an optimization (slightly hacky though).
486 */
487 *foliop = folio;
488 return 0;
489 }
490
491 /**
492 * cancel_budget - cancel budget.
493 * @c: UBIFS file-system description object
494 * @folio: folio to cancel budget for
495 * @ui: UBIFS inode object the page belongs to
496 * @appending: non-zero if the page is appended
497 *
498 * This is a helper function for a page write operation. It unlocks the
499 * @ui->ui_mutex in case of appending.
500 */
cancel_budget(struct ubifs_info * c,struct folio * folio,struct ubifs_inode * ui,int appending)501 static void cancel_budget(struct ubifs_info *c, struct folio *folio,
502 struct ubifs_inode *ui, int appending)
503 {
504 if (appending) {
505 if (!ui->dirty)
506 ubifs_release_dirty_inode_budget(c, ui);
507 mutex_unlock(&ui->ui_mutex);
508 }
509 if (!folio->private) {
510 if (folio_test_checked(folio))
511 release_new_page_budget(c);
512 else
513 release_existing_page_budget(c);
514 }
515 }
516
ubifs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)517 static int ubifs_write_end(struct file *file, struct address_space *mapping,
518 loff_t pos, unsigned len, unsigned copied,
519 struct folio *folio, void *fsdata)
520 {
521 struct inode *inode = mapping->host;
522 struct ubifs_inode *ui = ubifs_inode(inode);
523 struct ubifs_info *c = inode->i_sb->s_fs_info;
524 loff_t end_pos = pos + len;
525 int appending = !!(end_pos > inode->i_size);
526
527 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
528 inode->i_ino, pos, folio->index, len, copied, inode->i_size);
529
530 if (unlikely(copied < len && !folio_test_uptodate(folio))) {
531 /*
532 * VFS copied less data to the folio than it intended and
533 * declared in its '->write_begin()' call via the @len
534 * argument. If the folio was not up-to-date,
535 * the 'ubifs_write_begin()' function did
536 * not load it from the media (for optimization reasons). This
537 * means that part of the folio contains garbage. So read the
538 * folio now.
539 */
540 dbg_gen("copied %d instead of %d, read page and repeat",
541 copied, len);
542 cancel_budget(c, folio, ui, appending);
543 folio_clear_checked(folio);
544
545 /*
546 * Return 0 to force VFS to repeat the whole operation, or the
547 * error code if 'do_readpage()' fails.
548 */
549 copied = do_readpage(folio);
550 goto out;
551 }
552
553 if (len == folio_size(folio))
554 folio_mark_uptodate(folio);
555
556 if (!folio->private) {
557 folio_attach_private(folio, (void *)1);
558 atomic_long_inc(&c->dirty_pg_cnt);
559 filemap_dirty_folio(mapping, folio);
560 }
561
562 if (appending) {
563 i_size_write(inode, end_pos);
564 ui->ui_size = end_pos;
565 /*
566 * We do not set @I_DIRTY_PAGES (which means that
567 * the inode has dirty pages), this was done in
568 * filemap_dirty_folio().
569 */
570 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
571 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
572 mutex_unlock(&ui->ui_mutex);
573 }
574
575 out:
576 folio_unlock(folio);
577 folio_put(folio);
578 return copied;
579 }
580
581 /**
582 * populate_page - copy data nodes into a page for bulk-read.
583 * @c: UBIFS file-system description object
584 * @folio: folio
585 * @bu: bulk-read information
586 * @n: next zbranch slot
587 *
588 * Returns: %0 on success and a negative error code on failure.
589 */
populate_page(struct ubifs_info * c,struct folio * folio,struct bu_info * bu,int * n)590 static int populate_page(struct ubifs_info *c, struct folio *folio,
591 struct bu_info *bu, int *n)
592 {
593 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
594 struct inode *inode = folio->mapping->host;
595 loff_t i_size = i_size_read(inode);
596 unsigned int page_block;
597 size_t offset = 0;
598 pgoff_t end_index;
599
600 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
601 inode->i_ino, folio->index, i_size, folio->flags);
602
603 end_index = (i_size - 1) >> PAGE_SHIFT;
604 if (!i_size || folio->index > end_index) {
605 hole = 1;
606 folio_zero_range(folio, 0, folio_size(folio));
607 goto out_hole;
608 }
609
610 page_block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
611 while (1) {
612 int err, len, out_len, dlen;
613
614 if (nn >= bu->cnt) {
615 hole = 1;
616 folio_zero_range(folio, offset, UBIFS_BLOCK_SIZE);
617 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
618 struct ubifs_data_node *dn;
619
620 dn = bu->buf + (bu->zbranch[nn].offs - offs);
621
622 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
623 ubifs_inode(inode)->creat_sqnum);
624
625 len = le32_to_cpu(dn->size);
626 if (len <= 0 || len > UBIFS_BLOCK_SIZE)
627 goto out_err;
628
629 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
630 out_len = UBIFS_BLOCK_SIZE;
631
632 if (IS_ENCRYPTED(inode)) {
633 err = ubifs_decrypt(inode, dn, &dlen, page_block);
634 if (err)
635 goto out_err;
636 }
637
638 err = ubifs_decompress_folio(
639 c, &dn->data, dlen, folio, offset, &out_len,
640 le16_to_cpu(dn->compr_type));
641 if (err || len != out_len)
642 goto out_err;
643
644 if (len < UBIFS_BLOCK_SIZE)
645 folio_zero_range(folio, offset + len,
646 UBIFS_BLOCK_SIZE - len);
647
648 nn += 1;
649 read = (i << UBIFS_BLOCK_SHIFT) + len;
650 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
651 nn += 1;
652 continue;
653 } else {
654 hole = 1;
655 folio_zero_range(folio, offset, UBIFS_BLOCK_SIZE);
656 }
657 if (++i >= UBIFS_BLOCKS_PER_PAGE)
658 break;
659 offset += UBIFS_BLOCK_SIZE;
660 page_block += 1;
661 }
662
663 if (end_index == folio->index) {
664 int len = i_size & (PAGE_SIZE - 1);
665
666 if (len && len < read)
667 folio_zero_range(folio, len, read - len);
668 }
669
670 out_hole:
671 if (hole) {
672 folio_set_checked(folio);
673 dbg_gen("hole");
674 }
675
676 folio_mark_uptodate(folio);
677 *n = nn;
678 return 0;
679
680 out_err:
681 ubifs_err(c, "bad data node (block %u, inode %lu)",
682 page_block, inode->i_ino);
683 return -EINVAL;
684 }
685
686 /**
687 * ubifs_do_bulk_read - do bulk-read.
688 * @c: UBIFS file-system description object
689 * @bu: bulk-read information
690 * @folio1: first folio to read
691 *
692 * Returns: %1 if the bulk-read is done, otherwise %0 is returned.
693 */
ubifs_do_bulk_read(struct ubifs_info * c,struct bu_info * bu,struct folio * folio1)694 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
695 struct folio *folio1)
696 {
697 pgoff_t offset = folio1->index, end_index;
698 struct address_space *mapping = folio1->mapping;
699 struct inode *inode = mapping->host;
700 struct ubifs_inode *ui = ubifs_inode(inode);
701 int err, page_idx, page_cnt, ret = 0, n = 0;
702 int allocate = bu->buf ? 0 : 1;
703 loff_t isize;
704 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
705
706 err = ubifs_tnc_get_bu_keys(c, bu);
707 if (err)
708 goto out_warn;
709
710 if (bu->eof) {
711 /* Turn off bulk-read at the end of the file */
712 ui->read_in_a_row = 1;
713 ui->bulk_read = 0;
714 }
715
716 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
717 if (!page_cnt) {
718 /*
719 * This happens when there are multiple blocks per page and the
720 * blocks for the first page we are looking for, are not
721 * together. If all the pages were like this, bulk-read would
722 * reduce performance, so we turn it off for a while.
723 */
724 goto out_bu_off;
725 }
726
727 if (bu->cnt) {
728 if (allocate) {
729 /*
730 * Allocate bulk-read buffer depending on how many data
731 * nodes we are going to read.
732 */
733 bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
734 bu->zbranch[bu->cnt - 1].len -
735 bu->zbranch[0].offs;
736 ubifs_assert(c, bu->buf_len > 0);
737 ubifs_assert(c, bu->buf_len <= c->leb_size);
738 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
739 if (!bu->buf)
740 goto out_bu_off;
741 }
742
743 err = ubifs_tnc_bulk_read(c, bu);
744 if (err)
745 goto out_warn;
746 }
747
748 err = populate_page(c, folio1, bu, &n);
749 if (err)
750 goto out_warn;
751
752 folio_unlock(folio1);
753 ret = 1;
754
755 isize = i_size_read(inode);
756 if (isize == 0)
757 goto out_free;
758 end_index = ((isize - 1) >> PAGE_SHIFT);
759
760 for (page_idx = 1; page_idx < page_cnt; page_idx++) {
761 pgoff_t page_offset = offset + page_idx;
762 struct folio *folio;
763
764 if (page_offset > end_index)
765 break;
766 folio = __filemap_get_folio(mapping, page_offset,
767 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT,
768 ra_gfp_mask);
769 if (IS_ERR(folio))
770 break;
771 if (!folio_test_uptodate(folio))
772 err = populate_page(c, folio, bu, &n);
773 folio_unlock(folio);
774 folio_put(folio);
775 if (err)
776 break;
777 }
778
779 ui->last_page_read = offset + page_idx - 1;
780
781 out_free:
782 if (allocate)
783 kfree(bu->buf);
784 return ret;
785
786 out_warn:
787 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
788 goto out_free;
789
790 out_bu_off:
791 ui->read_in_a_row = ui->bulk_read = 0;
792 goto out_free;
793 }
794
795 /**
796 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
797 * @folio: folio from which to start bulk-read.
798 *
799 * Some flash media are capable of reading sequentially at faster rates. UBIFS
800 * bulk-read facility is designed to take advantage of that, by reading in one
801 * go consecutive data nodes that are also located consecutively in the same
802 * LEB.
803 *
804 * Returns: %1 if a bulk-read is done and %0 otherwise.
805 */
ubifs_bulk_read(struct folio * folio)806 static int ubifs_bulk_read(struct folio *folio)
807 {
808 struct inode *inode = folio->mapping->host;
809 struct ubifs_info *c = inode->i_sb->s_fs_info;
810 struct ubifs_inode *ui = ubifs_inode(inode);
811 pgoff_t index = folio->index, last_page_read = ui->last_page_read;
812 struct bu_info *bu;
813 int err = 0, allocated = 0;
814
815 ui->last_page_read = index;
816 if (!c->bulk_read)
817 return 0;
818
819 /*
820 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
821 * so don't bother if we cannot lock the mutex.
822 */
823 if (!mutex_trylock(&ui->ui_mutex))
824 return 0;
825
826 if (index != last_page_read + 1) {
827 /* Turn off bulk-read if we stop reading sequentially */
828 ui->read_in_a_row = 1;
829 if (ui->bulk_read)
830 ui->bulk_read = 0;
831 goto out_unlock;
832 }
833
834 if (!ui->bulk_read) {
835 ui->read_in_a_row += 1;
836 if (ui->read_in_a_row < 3)
837 goto out_unlock;
838 /* Three reads in a row, so switch on bulk-read */
839 ui->bulk_read = 1;
840 }
841
842 /*
843 * If possible, try to use pre-allocated bulk-read information, which
844 * is protected by @c->bu_mutex.
845 */
846 if (mutex_trylock(&c->bu_mutex))
847 bu = &c->bu;
848 else {
849 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
850 if (!bu)
851 goto out_unlock;
852
853 bu->buf = NULL;
854 allocated = 1;
855 }
856
857 bu->buf_len = c->max_bu_buf_len;
858 data_key_init(c, &bu->key, inode->i_ino,
859 folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
860 err = ubifs_do_bulk_read(c, bu, folio);
861
862 if (!allocated)
863 mutex_unlock(&c->bu_mutex);
864 else
865 kfree(bu);
866
867 out_unlock:
868 mutex_unlock(&ui->ui_mutex);
869 return err;
870 }
871
ubifs_read_folio(struct file * file,struct folio * folio)872 static int ubifs_read_folio(struct file *file, struct folio *folio)
873 {
874 if (ubifs_bulk_read(folio))
875 return 0;
876 do_readpage(folio);
877 folio_unlock(folio);
878 return 0;
879 }
880
do_writepage(struct folio * folio,size_t len)881 static int do_writepage(struct folio *folio, size_t len)
882 {
883 int err = 0, blen;
884 unsigned int block;
885 size_t offset = 0;
886 union ubifs_key key;
887 struct inode *inode = folio->mapping->host;
888 struct ubifs_info *c = inode->i_sb->s_fs_info;
889
890 #ifdef UBIFS_DEBUG
891 struct ubifs_inode *ui = ubifs_inode(inode);
892 spin_lock(&ui->ui_lock);
893 ubifs_assert(c, folio->index <= ui->synced_i_size >> PAGE_SHIFT);
894 spin_unlock(&ui->ui_lock);
895 #endif
896
897 folio_start_writeback(folio);
898
899 block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
900 for (;;) {
901 blen = min_t(size_t, len, UBIFS_BLOCK_SIZE);
902 data_key_init(c, &key, inode->i_ino, block);
903 err = ubifs_jnl_write_data(c, inode, &key, folio, offset, blen);
904 if (err)
905 break;
906 len -= blen;
907 if (!len)
908 break;
909 block += 1;
910 offset += blen;
911 }
912 if (err) {
913 mapping_set_error(folio->mapping, err);
914 ubifs_err(c, "cannot write folio %lu of inode %lu, error %d",
915 folio->index, inode->i_ino, err);
916 ubifs_ro_mode(c, err);
917 }
918
919 ubifs_assert(c, folio->private != NULL);
920 if (folio_test_checked(folio))
921 release_new_page_budget(c);
922 else
923 release_existing_page_budget(c);
924
925 atomic_long_dec(&c->dirty_pg_cnt);
926 folio_detach_private(folio);
927 folio_clear_checked(folio);
928
929 folio_unlock(folio);
930 folio_end_writeback(folio);
931 return err;
932 }
933
934 /*
935 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
936 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
937 * situation when a we have an inode with size 0, then a megabyte of data is
938 * appended to the inode, then write-back starts and flushes some amount of the
939 * dirty pages, the journal becomes full, commit happens and finishes, and then
940 * an unclean reboot happens. When the file system is mounted next time, the
941 * inode size would still be 0, but there would be many pages which are beyond
942 * the inode size, they would be indexed and consume flash space. Because the
943 * journal has been committed, the replay would not be able to detect this
944 * situation and correct the inode size. This means UBIFS would have to scan
945 * whole index and correct all inode sizes, which is long an unacceptable.
946 *
947 * To prevent situations like this, UBIFS writes pages back only if they are
948 * within the last synchronized inode size, i.e. the size which has been
949 * written to the flash media last time. Otherwise, UBIFS forces inode
950 * write-back, thus making sure the on-flash inode contains current inode size,
951 * and then keeps writing pages back.
952 *
953 * Some locking issues explanation. 'ubifs_writepage()' first is called with
954 * the page locked, and it locks @ui_mutex. However, write-back does take inode
955 * @i_mutex, which means other VFS operations may be run on this inode at the
956 * same time. And the problematic one is truncation to smaller size, from where
957 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
958 * then drops the truncated pages. And while dropping the pages, it takes the
959 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
960 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
961 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
962 *
963 * XXX(truncate): with the new truncate sequence this is not true anymore,
964 * and the calls to truncate_setsize can be move around freely. They should
965 * be moved to the very end of the truncate sequence.
966 *
967 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
968 * inode size. How do we do this if @inode->i_size may became smaller while we
969 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
970 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
971 * internally and updates it under @ui_mutex.
972 *
973 * Q: why we do not worry that if we race with truncation, we may end up with a
974 * situation when the inode is truncated while we are in the middle of
975 * 'do_writepage()', so we do write beyond inode size?
976 * A: If we are in the middle of 'do_writepage()', truncation would be locked
977 * on the page lock and it would not write the truncated inode node to the
978 * journal before we have finished.
979 */
ubifs_writepage(struct folio * folio,struct writeback_control * wbc,void * data)980 static int ubifs_writepage(struct folio *folio, struct writeback_control *wbc,
981 void *data)
982 {
983 struct inode *inode = folio->mapping->host;
984 struct ubifs_info *c = inode->i_sb->s_fs_info;
985 struct ubifs_inode *ui = ubifs_inode(inode);
986 loff_t i_size = i_size_read(inode), synced_i_size;
987 int err, len = folio_size(folio);
988
989 dbg_gen("ino %lu, pg %lu, pg flags %#lx",
990 inode->i_ino, folio->index, folio->flags);
991 ubifs_assert(c, folio->private != NULL);
992
993 /* Is the folio fully outside @i_size? (truncate in progress) */
994 if (folio_pos(folio) >= i_size) {
995 err = 0;
996 goto out_unlock;
997 }
998
999 spin_lock(&ui->ui_lock);
1000 synced_i_size = ui->synced_i_size;
1001 spin_unlock(&ui->ui_lock);
1002
1003 /* Is the folio fully inside i_size? */
1004 if (folio_pos(folio) + len <= i_size) {
1005 if (folio_pos(folio) + len > synced_i_size) {
1006 err = inode->i_sb->s_op->write_inode(inode, NULL);
1007 if (err)
1008 goto out_redirty;
1009 /*
1010 * The inode has been written, but the write-buffer has
1011 * not been synchronized, so in case of an unclean
1012 * reboot we may end up with some pages beyond inode
1013 * size, but they would be in the journal (because
1014 * commit flushes write buffers) and recovery would deal
1015 * with this.
1016 */
1017 }
1018 return do_writepage(folio, len);
1019 }
1020
1021 /*
1022 * The folio straddles @i_size. It must be zeroed out on each and every
1023 * writepage invocation because it may be mmapped. "A file is mapped
1024 * in multiples of the page size. For a file that is not a multiple of
1025 * the page size, the remaining memory is zeroed when mapped, and
1026 * writes to that region are not written out to the file."
1027 */
1028 len = i_size - folio_pos(folio);
1029 folio_zero_segment(folio, len, folio_size(folio));
1030
1031 if (i_size > synced_i_size) {
1032 err = inode->i_sb->s_op->write_inode(inode, NULL);
1033 if (err)
1034 goto out_redirty;
1035 }
1036
1037 return do_writepage(folio, len);
1038 out_redirty:
1039 /*
1040 * folio_redirty_for_writepage() won't call ubifs_dirty_inode() because
1041 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so
1042 * there is no need to do space budget for dirty inode.
1043 */
1044 folio_redirty_for_writepage(wbc, folio);
1045 out_unlock:
1046 folio_unlock(folio);
1047 return err;
1048 }
1049
ubifs_writepages(struct address_space * mapping,struct writeback_control * wbc)1050 static int ubifs_writepages(struct address_space *mapping,
1051 struct writeback_control *wbc)
1052 {
1053 return write_cache_pages(mapping, wbc, ubifs_writepage, NULL);
1054 }
1055
1056 /**
1057 * do_attr_changes - change inode attributes.
1058 * @inode: inode to change attributes for
1059 * @attr: describes attributes to change
1060 */
do_attr_changes(struct inode * inode,const struct iattr * attr)1061 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1062 {
1063 if (attr->ia_valid & ATTR_UID)
1064 inode->i_uid = attr->ia_uid;
1065 if (attr->ia_valid & ATTR_GID)
1066 inode->i_gid = attr->ia_gid;
1067 if (attr->ia_valid & ATTR_ATIME)
1068 inode_set_atime_to_ts(inode, attr->ia_atime);
1069 if (attr->ia_valid & ATTR_MTIME)
1070 inode_set_mtime_to_ts(inode, attr->ia_mtime);
1071 if (attr->ia_valid & ATTR_CTIME)
1072 inode_set_ctime_to_ts(inode, attr->ia_ctime);
1073 if (attr->ia_valid & ATTR_MODE) {
1074 umode_t mode = attr->ia_mode;
1075
1076 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1077 mode &= ~S_ISGID;
1078 inode->i_mode = mode;
1079 }
1080 }
1081
1082 /**
1083 * do_truncation - truncate an inode.
1084 * @c: UBIFS file-system description object
1085 * @inode: inode to truncate
1086 * @attr: inode attribute changes description
1087 *
1088 * This function implements VFS '->setattr()' call when the inode is truncated
1089 * to a smaller size.
1090 *
1091 * Returns: %0 in case of success and a negative error code
1092 * in case of failure.
1093 */
do_truncation(struct ubifs_info * c,struct inode * inode,const struct iattr * attr)1094 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1095 const struct iattr *attr)
1096 {
1097 int err;
1098 struct ubifs_budget_req req;
1099 loff_t old_size = inode->i_size, new_size = attr->ia_size;
1100 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1101 struct ubifs_inode *ui = ubifs_inode(inode);
1102
1103 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1104 memset(&req, 0, sizeof(struct ubifs_budget_req));
1105
1106 /*
1107 * If this is truncation to a smaller size, and we do not truncate on a
1108 * block boundary, budget for changing one data block, because the last
1109 * block will be re-written.
1110 */
1111 if (new_size & (UBIFS_BLOCK_SIZE - 1))
1112 req.dirtied_page = 1;
1113
1114 req.dirtied_ino = 1;
1115 /* A funny way to budget for truncation node */
1116 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1117 err = ubifs_budget_space(c, &req);
1118 if (err) {
1119 /*
1120 * Treat truncations to zero as deletion and always allow them,
1121 * just like we do for '->unlink()'.
1122 */
1123 if (new_size || err != -ENOSPC)
1124 return err;
1125 budgeted = 0;
1126 }
1127
1128 truncate_setsize(inode, new_size);
1129
1130 if (offset) {
1131 pgoff_t index = new_size >> PAGE_SHIFT;
1132 struct folio *folio;
1133
1134 folio = filemap_lock_folio(inode->i_mapping, index);
1135 if (!IS_ERR(folio)) {
1136 if (folio_test_dirty(folio)) {
1137 /*
1138 * 'ubifs_jnl_truncate()' will try to truncate
1139 * the last data node, but it contains
1140 * out-of-date data because the page is dirty.
1141 * Write the page now, so that
1142 * 'ubifs_jnl_truncate()' will see an already
1143 * truncated (and up to date) data node.
1144 */
1145 ubifs_assert(c, folio->private != NULL);
1146
1147 folio_clear_dirty_for_io(folio);
1148 if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1149 offset = offset_in_folio(folio,
1150 new_size);
1151 err = do_writepage(folio, offset);
1152 folio_put(folio);
1153 if (err)
1154 goto out_budg;
1155 /*
1156 * We could now tell 'ubifs_jnl_truncate()' not
1157 * to read the last block.
1158 */
1159 } else {
1160 /*
1161 * We could 'kmap()' the page and pass the data
1162 * to 'ubifs_jnl_truncate()' to save it from
1163 * having to read it.
1164 */
1165 folio_unlock(folio);
1166 folio_put(folio);
1167 }
1168 }
1169 }
1170
1171 mutex_lock(&ui->ui_mutex);
1172 ui->ui_size = inode->i_size;
1173 /* Truncation changes inode [mc]time */
1174 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1175 /* Other attributes may be changed at the same time as well */
1176 do_attr_changes(inode, attr);
1177 err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1178 mutex_unlock(&ui->ui_mutex);
1179
1180 out_budg:
1181 if (budgeted)
1182 ubifs_release_budget(c, &req);
1183 else {
1184 c->bi.nospace = c->bi.nospace_rp = 0;
1185 smp_wmb();
1186 }
1187 return err;
1188 }
1189
1190 /**
1191 * do_setattr - change inode attributes.
1192 * @c: UBIFS file-system description object
1193 * @inode: inode to change attributes for
1194 * @attr: inode attribute changes description
1195 *
1196 * This function implements VFS '->setattr()' call for all cases except
1197 * truncations to smaller size.
1198 *
1199 * Returns: %0 in case of success and a negative
1200 * error code in case of failure.
1201 */
do_setattr(struct ubifs_info * c,struct inode * inode,const struct iattr * attr)1202 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1203 const struct iattr *attr)
1204 {
1205 int err, release;
1206 loff_t new_size = attr->ia_size;
1207 struct ubifs_inode *ui = ubifs_inode(inode);
1208 struct ubifs_budget_req req = { .dirtied_ino = 1,
1209 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1210
1211 err = ubifs_budget_space(c, &req);
1212 if (err)
1213 return err;
1214
1215 if (attr->ia_valid & ATTR_SIZE) {
1216 dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1217 truncate_setsize(inode, new_size);
1218 }
1219
1220 mutex_lock(&ui->ui_mutex);
1221 if (attr->ia_valid & ATTR_SIZE) {
1222 /* Truncation changes inode [mc]time */
1223 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1224 /* 'truncate_setsize()' changed @i_size, update @ui_size */
1225 ui->ui_size = inode->i_size;
1226 }
1227
1228 do_attr_changes(inode, attr);
1229
1230 release = ui->dirty;
1231 if (attr->ia_valid & ATTR_SIZE)
1232 /*
1233 * Inode length changed, so we have to make sure
1234 * @I_DIRTY_DATASYNC is set.
1235 */
1236 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1237 else
1238 mark_inode_dirty_sync(inode);
1239 mutex_unlock(&ui->ui_mutex);
1240
1241 if (release)
1242 ubifs_release_budget(c, &req);
1243 if (IS_SYNC(inode))
1244 err = inode->i_sb->s_op->write_inode(inode, NULL);
1245 return err;
1246 }
1247
ubifs_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)1248 int ubifs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1249 struct iattr *attr)
1250 {
1251 int err;
1252 struct inode *inode = d_inode(dentry);
1253 struct ubifs_info *c = inode->i_sb->s_fs_info;
1254
1255 dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1256 inode->i_ino, inode->i_mode, attr->ia_valid);
1257 err = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1258 if (err)
1259 return err;
1260
1261 err = dbg_check_synced_i_size(c, inode);
1262 if (err)
1263 return err;
1264
1265 err = fscrypt_prepare_setattr(dentry, attr);
1266 if (err)
1267 return err;
1268
1269 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1270 /* Truncation to a smaller size */
1271 err = do_truncation(c, inode, attr);
1272 else
1273 err = do_setattr(c, inode, attr);
1274
1275 return err;
1276 }
1277
ubifs_invalidate_folio(struct folio * folio,size_t offset,size_t length)1278 static void ubifs_invalidate_folio(struct folio *folio, size_t offset,
1279 size_t length)
1280 {
1281 struct inode *inode = folio->mapping->host;
1282 struct ubifs_info *c = inode->i_sb->s_fs_info;
1283
1284 ubifs_assert(c, folio_test_private(folio));
1285 if (offset || length < folio_size(folio))
1286 /* Partial folio remains dirty */
1287 return;
1288
1289 if (folio_test_checked(folio))
1290 release_new_page_budget(c);
1291 else
1292 release_existing_page_budget(c);
1293
1294 atomic_long_dec(&c->dirty_pg_cnt);
1295 folio_detach_private(folio);
1296 folio_clear_checked(folio);
1297 }
1298
ubifs_fsync(struct file * file,loff_t start,loff_t end,int datasync)1299 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1300 {
1301 struct inode *inode = file->f_mapping->host;
1302 struct ubifs_info *c = inode->i_sb->s_fs_info;
1303 int err;
1304
1305 dbg_gen("syncing inode %lu", inode->i_ino);
1306
1307 if (c->ro_mount)
1308 /*
1309 * For some really strange reasons VFS does not filter out
1310 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1311 */
1312 return 0;
1313
1314 err = file_write_and_wait_range(file, start, end);
1315 if (err)
1316 return err;
1317 inode_lock(inode);
1318
1319 /* Synchronize the inode unless this is a 'datasync()' call. */
1320 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1321 err = inode->i_sb->s_op->write_inode(inode, NULL);
1322 if (err)
1323 goto out;
1324 }
1325
1326 /*
1327 * Nodes related to this inode may still sit in a write-buffer. Flush
1328 * them.
1329 */
1330 err = ubifs_sync_wbufs_by_inode(c, inode);
1331 out:
1332 inode_unlock(inode);
1333 return err;
1334 }
1335
1336 /**
1337 * mctime_update_needed - check if mtime or ctime update is needed.
1338 * @inode: the inode to do the check for
1339 * @now: current time
1340 *
1341 * This helper function checks if the inode mtime/ctime should be updated or
1342 * not. If current values of the time-stamps are within the UBIFS inode time
1343 * granularity, they are not updated. This is an optimization.
1344 *
1345 * Returns: %1 if time update is needed, %0 if not
1346 */
mctime_update_needed(const struct inode * inode,const struct timespec64 * now)1347 static inline int mctime_update_needed(const struct inode *inode,
1348 const struct timespec64 *now)
1349 {
1350 struct timespec64 ctime = inode_get_ctime(inode);
1351 struct timespec64 mtime = inode_get_mtime(inode);
1352
1353 if (!timespec64_equal(&mtime, now) || !timespec64_equal(&ctime, now))
1354 return 1;
1355 return 0;
1356 }
1357
1358 /**
1359 * ubifs_update_time - update time of inode.
1360 * @inode: inode to update
1361 * @flags: time updating control flag determines updating
1362 * which time fields of @inode
1363 *
1364 * This function updates time of the inode.
1365 *
1366 * Returns: %0 for success or a negative error code otherwise.
1367 */
ubifs_update_time(struct inode * inode,int flags)1368 int ubifs_update_time(struct inode *inode, int flags)
1369 {
1370 struct ubifs_inode *ui = ubifs_inode(inode);
1371 struct ubifs_info *c = inode->i_sb->s_fs_info;
1372 struct ubifs_budget_req req = { .dirtied_ino = 1,
1373 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1374 int err, release;
1375
1376 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) {
1377 generic_update_time(inode, flags);
1378 return 0;
1379 }
1380
1381 err = ubifs_budget_space(c, &req);
1382 if (err)
1383 return err;
1384
1385 mutex_lock(&ui->ui_mutex);
1386 inode_update_timestamps(inode, flags);
1387 release = ui->dirty;
1388 __mark_inode_dirty(inode, I_DIRTY_SYNC);
1389 mutex_unlock(&ui->ui_mutex);
1390 if (release)
1391 ubifs_release_budget(c, &req);
1392 return 0;
1393 }
1394
1395 /**
1396 * update_mctime - update mtime and ctime of an inode.
1397 * @inode: inode to update
1398 *
1399 * This function updates mtime and ctime of the inode if it is not equivalent to
1400 * current time.
1401 *
1402 * Returns: %0 in case of success and a negative error code in
1403 * case of failure.
1404 */
update_mctime(struct inode * inode)1405 static int update_mctime(struct inode *inode)
1406 {
1407 struct timespec64 now = current_time(inode);
1408 struct ubifs_inode *ui = ubifs_inode(inode);
1409 struct ubifs_info *c = inode->i_sb->s_fs_info;
1410
1411 if (mctime_update_needed(inode, &now)) {
1412 int err, release;
1413 struct ubifs_budget_req req = { .dirtied_ino = 1,
1414 .dirtied_ino_d = ALIGN(ui->data_len, 8) };
1415
1416 err = ubifs_budget_space(c, &req);
1417 if (err)
1418 return err;
1419
1420 mutex_lock(&ui->ui_mutex);
1421 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1422 release = ui->dirty;
1423 mark_inode_dirty_sync(inode);
1424 mutex_unlock(&ui->ui_mutex);
1425 if (release)
1426 ubifs_release_budget(c, &req);
1427 }
1428
1429 return 0;
1430 }
1431
ubifs_write_iter(struct kiocb * iocb,struct iov_iter * from)1432 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1433 {
1434 int err = update_mctime(file_inode(iocb->ki_filp));
1435 if (err)
1436 return err;
1437
1438 return generic_file_write_iter(iocb, from);
1439 }
1440
ubifs_dirty_folio(struct address_space * mapping,struct folio * folio)1441 static bool ubifs_dirty_folio(struct address_space *mapping,
1442 struct folio *folio)
1443 {
1444 bool ret;
1445 struct ubifs_info *c = mapping->host->i_sb->s_fs_info;
1446
1447 ret = filemap_dirty_folio(mapping, folio);
1448 /*
1449 * An attempt to dirty a page without budgeting for it - should not
1450 * happen.
1451 */
1452 ubifs_assert(c, ret == false);
1453 return ret;
1454 }
1455
ubifs_release_folio(struct folio * folio,gfp_t unused_gfp_flags)1456 static bool ubifs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
1457 {
1458 struct inode *inode = folio->mapping->host;
1459 struct ubifs_info *c = inode->i_sb->s_fs_info;
1460
1461 if (folio_test_writeback(folio))
1462 return false;
1463
1464 /*
1465 * Page is private but not dirty, weird? There is one condition
1466 * making it happened. ubifs_writepage skipped the page because
1467 * page index beyonds isize (for example. truncated by other
1468 * process named A), then the page is invalidated by fadvise64
1469 * syscall before being truncated by process A.
1470 */
1471 ubifs_assert(c, folio_test_private(folio));
1472 if (folio_test_checked(folio))
1473 release_new_page_budget(c);
1474 else
1475 release_existing_page_budget(c);
1476
1477 atomic_long_dec(&c->dirty_pg_cnt);
1478 folio_detach_private(folio);
1479 folio_clear_checked(folio);
1480 return true;
1481 }
1482
1483 /*
1484 * mmap()d file has taken write protection fault and is being made writable.
1485 * UBIFS must ensure page is budgeted for.
1486 */
ubifs_vm_page_mkwrite(struct vm_fault * vmf)1487 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1488 {
1489 struct folio *folio = page_folio(vmf->page);
1490 struct inode *inode = file_inode(vmf->vma->vm_file);
1491 struct ubifs_info *c = inode->i_sb->s_fs_info;
1492 struct timespec64 now = current_time(inode);
1493 struct ubifs_budget_req req = { .new_page = 1 };
1494 int err, update_time;
1495
1496 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, folio->index,
1497 i_size_read(inode));
1498 ubifs_assert(c, !c->ro_media && !c->ro_mount);
1499
1500 if (unlikely(c->ro_error))
1501 return VM_FAULT_SIGBUS; /* -EROFS */
1502
1503 /*
1504 * We have not locked @folio so far so we may budget for changing the
1505 * folio. Note, we cannot do this after we locked the folio, because
1506 * budgeting may cause write-back which would cause deadlock.
1507 *
1508 * At the moment we do not know whether the folio is dirty or not, so we
1509 * assume that it is not and budget for a new folio. We could look at
1510 * the @PG_private flag and figure this out, but we may race with write
1511 * back and the folio state may change by the time we lock it, so this
1512 * would need additional care. We do not bother with this at the
1513 * moment, although it might be good idea to do. Instead, we allocate
1514 * budget for a new folio and amend it later on if the folio was in fact
1515 * dirty.
1516 *
1517 * The budgeting-related logic of this function is similar to what we
1518 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1519 * for more comments.
1520 */
1521 update_time = mctime_update_needed(inode, &now);
1522 if (update_time)
1523 /*
1524 * We have to change inode time stamp which requires extra
1525 * budgeting.
1526 */
1527 req.dirtied_ino = 1;
1528
1529 err = ubifs_budget_space(c, &req);
1530 if (unlikely(err)) {
1531 if (err == -ENOSPC)
1532 ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1533 inode->i_ino);
1534 return VM_FAULT_SIGBUS;
1535 }
1536
1537 folio_lock(folio);
1538 if (unlikely(folio->mapping != inode->i_mapping ||
1539 folio_pos(folio) >= i_size_read(inode))) {
1540 /* Folio got truncated out from underneath us */
1541 goto sigbus;
1542 }
1543
1544 if (folio->private)
1545 release_new_page_budget(c);
1546 else {
1547 if (!folio_test_checked(folio))
1548 ubifs_convert_page_budget(c);
1549 folio_attach_private(folio, (void *)1);
1550 atomic_long_inc(&c->dirty_pg_cnt);
1551 filemap_dirty_folio(folio->mapping, folio);
1552 }
1553
1554 if (update_time) {
1555 int release;
1556 struct ubifs_inode *ui = ubifs_inode(inode);
1557
1558 mutex_lock(&ui->ui_mutex);
1559 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1560 release = ui->dirty;
1561 mark_inode_dirty_sync(inode);
1562 mutex_unlock(&ui->ui_mutex);
1563 if (release)
1564 ubifs_release_dirty_inode_budget(c, ui);
1565 }
1566
1567 folio_wait_stable(folio);
1568 return VM_FAULT_LOCKED;
1569
1570 sigbus:
1571 folio_unlock(folio);
1572 ubifs_release_budget(c, &req);
1573 return VM_FAULT_SIGBUS;
1574 }
1575
1576 static const struct vm_operations_struct ubifs_file_vm_ops = {
1577 .fault = filemap_fault,
1578 .map_pages = filemap_map_pages,
1579 .page_mkwrite = ubifs_vm_page_mkwrite,
1580 };
1581
ubifs_file_mmap(struct file * file,struct vm_area_struct * vma)1582 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1583 {
1584 int err;
1585
1586 err = generic_file_mmap(file, vma);
1587 if (err)
1588 return err;
1589 vma->vm_ops = &ubifs_file_vm_ops;
1590
1591 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1592 file_accessed(file);
1593
1594 return 0;
1595 }
1596
ubifs_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1597 static const char *ubifs_get_link(struct dentry *dentry,
1598 struct inode *inode,
1599 struct delayed_call *done)
1600 {
1601 struct ubifs_inode *ui = ubifs_inode(inode);
1602
1603 if (!IS_ENCRYPTED(inode))
1604 return ui->data;
1605
1606 if (!dentry)
1607 return ERR_PTR(-ECHILD);
1608
1609 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1610 }
1611
ubifs_symlink_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1612 static int ubifs_symlink_getattr(struct mnt_idmap *idmap,
1613 const struct path *path, struct kstat *stat,
1614 u32 request_mask, unsigned int query_flags)
1615 {
1616 ubifs_getattr(idmap, path, stat, request_mask, query_flags);
1617
1618 if (IS_ENCRYPTED(d_inode(path->dentry)))
1619 return fscrypt_symlink_getattr(path, stat);
1620 return 0;
1621 }
1622
1623 const struct address_space_operations ubifs_file_address_operations = {
1624 .read_folio = ubifs_read_folio,
1625 .writepages = ubifs_writepages,
1626 .write_begin = ubifs_write_begin,
1627 .write_end = ubifs_write_end,
1628 .invalidate_folio = ubifs_invalidate_folio,
1629 .dirty_folio = ubifs_dirty_folio,
1630 .migrate_folio = filemap_migrate_folio,
1631 .release_folio = ubifs_release_folio,
1632 };
1633
1634 const struct inode_operations ubifs_file_inode_operations = {
1635 .setattr = ubifs_setattr,
1636 .getattr = ubifs_getattr,
1637 .listxattr = ubifs_listxattr,
1638 .update_time = ubifs_update_time,
1639 .fileattr_get = ubifs_fileattr_get,
1640 .fileattr_set = ubifs_fileattr_set,
1641 };
1642
1643 const struct inode_operations ubifs_symlink_inode_operations = {
1644 .get_link = ubifs_get_link,
1645 .setattr = ubifs_setattr,
1646 .getattr = ubifs_symlink_getattr,
1647 .listxattr = ubifs_listxattr,
1648 .update_time = ubifs_update_time,
1649 };
1650
1651 const struct file_operations ubifs_file_operations = {
1652 .llseek = generic_file_llseek,
1653 .read_iter = generic_file_read_iter,
1654 .write_iter = ubifs_write_iter,
1655 .mmap = ubifs_file_mmap,
1656 .fsync = ubifs_fsync,
1657 .unlocked_ioctl = ubifs_ioctl,
1658 .splice_read = filemap_splice_read,
1659 .splice_write = iter_file_splice_write,
1660 .open = fscrypt_file_open,
1661 #ifdef CONFIG_COMPAT
1662 .compat_ioctl = ubifs_compat_ioctl,
1663 #endif
1664 };
1665