1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/fiemap.h>
9 #include <linux/fs.h>
10 #include <linux/minmax.h>
11 #include <linux/vmalloc.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 #ifdef CONFIG_NTFS3_LZX_XPRESS
17 #include "lib/lib.h"
18 #endif
19 
ni_ins_mi(struct ntfs_inode * ni,struct rb_root * tree,CLST ino,struct rb_node * ins)20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
21 				   CLST ino, struct rb_node *ins)
22 {
23 	struct rb_node **p = &tree->rb_node;
24 	struct rb_node *pr = NULL;
25 
26 	while (*p) {
27 		struct mft_inode *mi;
28 
29 		pr = *p;
30 		mi = rb_entry(pr, struct mft_inode, node);
31 		if (mi->rno > ino)
32 			p = &pr->rb_left;
33 		else if (mi->rno < ino)
34 			p = &pr->rb_right;
35 		else
36 			return mi;
37 	}
38 
39 	if (!ins)
40 		return NULL;
41 
42 	rb_link_node(ins, pr, p);
43 	rb_insert_color(ins, tree);
44 	return rb_entry(ins, struct mft_inode, node);
45 }
46 
47 /*
48  * ni_find_mi - Find mft_inode by record number.
49  */
ni_find_mi(struct ntfs_inode * ni,CLST rno)50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
51 {
52 	return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
53 }
54 
55 /*
56  * ni_add_mi - Add new mft_inode into ntfs_inode.
57  */
ni_add_mi(struct ntfs_inode * ni,struct mft_inode * mi)58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
59 {
60 	ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
61 }
62 
63 /*
64  * ni_remove_mi - Remove mft_inode from ntfs_inode.
65  */
ni_remove_mi(struct ntfs_inode * ni,struct mft_inode * mi)66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
67 {
68 	rb_erase(&mi->node, &ni->mi_tree);
69 }
70 
71 /*
72  * ni_std - Return: Pointer into std_info from primary record.
73  */
ni_std(struct ntfs_inode * ni)74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
75 {
76 	const struct ATTRIB *attr;
77 
78 	attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
79 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) :
80 		      NULL;
81 }
82 
83 /*
84  * ni_std5
85  *
86  * Return: Pointer into std_info from primary record.
87  */
ni_std5(struct ntfs_inode * ni)88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
89 {
90 	const struct ATTRIB *attr;
91 
92 	attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
93 
94 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) :
95 		      NULL;
96 }
97 
98 /*
99  * ni_clear - Clear resources allocated by ntfs_inode.
100  */
ni_clear(struct ntfs_inode * ni)101 void ni_clear(struct ntfs_inode *ni)
102 {
103 	struct rb_node *node;
104 
105 	if (!ni->vfs_inode.i_nlink && ni->mi.mrec &&
106 	    is_rec_inuse(ni->mi.mrec) &&
107 	    !(ni->mi.sbi->flags & NTFS_FLAGS_LOG_REPLAYING))
108 		ni_delete_all(ni);
109 
110 	al_destroy(ni);
111 
112 	for (node = rb_first(&ni->mi_tree); node;) {
113 		struct rb_node *next = rb_next(node);
114 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
115 
116 		rb_erase(node, &ni->mi_tree);
117 		mi_put(mi);
118 		node = next;
119 	}
120 
121 	/* Bad inode always has mode == S_IFREG. */
122 	if (ni->ni_flags & NI_FLAG_DIR)
123 		indx_clear(&ni->dir);
124 	else {
125 		run_close(&ni->file.run);
126 #ifdef CONFIG_NTFS3_LZX_XPRESS
127 		if (ni->file.offs_folio) {
128 			/* On-demand allocated page for offsets. */
129 			folio_put(ni->file.offs_folio);
130 			ni->file.offs_folio = NULL;
131 		}
132 #endif
133 	}
134 
135 	mi_clear(&ni->mi);
136 }
137 
138 /*
139  * ni_load_mi_ex - Find mft_inode by record number.
140  */
ni_load_mi_ex(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)141 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
142 {
143 	int err;
144 	struct mft_inode *r;
145 
146 	r = ni_find_mi(ni, rno);
147 	if (r)
148 		goto out;
149 
150 	err = mi_get(ni->mi.sbi, rno, &r);
151 	if (err) {
152 		_ntfs_bad_inode(&ni->vfs_inode);
153 		return err;
154 	}
155 
156 	ni_add_mi(ni, r);
157 
158 out:
159 	if (mi)
160 		*mi = r;
161 	return 0;
162 }
163 
164 /*
165  * ni_load_mi - Load mft_inode corresponded list_entry.
166  */
ni_load_mi(struct ntfs_inode * ni,const struct ATTR_LIST_ENTRY * le,struct mft_inode ** mi)167 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
168 	       struct mft_inode **mi)
169 {
170 	CLST rno;
171 
172 	if (!le) {
173 		*mi = &ni->mi;
174 		return 0;
175 	}
176 
177 	rno = ino_get(&le->ref);
178 	if (rno == ni->mi.rno) {
179 		*mi = &ni->mi;
180 		return 0;
181 	}
182 	return ni_load_mi_ex(ni, rno, mi);
183 }
184 
185 /*
186  * ni_find_attr
187  *
188  * Return: Attribute and record this attribute belongs to.
189  */
ni_find_attr(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le_o,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const CLST * vcn,struct mft_inode ** mi)190 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
191 			    struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
192 			    const __le16 *name, u8 name_len, const CLST *vcn,
193 			    struct mft_inode **mi)
194 {
195 	struct ATTR_LIST_ENTRY *le;
196 	struct mft_inode *m;
197 
198 	if (!ni->attr_list.size ||
199 	    (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
200 		if (le_o)
201 			*le_o = NULL;
202 		if (mi)
203 			*mi = &ni->mi;
204 
205 		/* Look for required attribute in primary record. */
206 		return mi_find_attr(ni, &ni->mi, attr, type, name, name_len,
207 				    NULL);
208 	}
209 
210 	/* First look for list entry of required type. */
211 	le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
212 	if (!le)
213 		return NULL;
214 
215 	if (le_o)
216 		*le_o = le;
217 
218 	/* Load record that contains this attribute. */
219 	if (ni_load_mi(ni, le, &m))
220 		return NULL;
221 
222 	/* Look for required attribute. */
223 	attr = mi_find_attr(ni, m, NULL, type, name, name_len, &le->id);
224 
225 	if (!attr)
226 		goto out;
227 
228 	if (!attr->non_res) {
229 		if (vcn && *vcn)
230 			goto out;
231 	} else if (!vcn) {
232 		if (attr->nres.svcn)
233 			goto out;
234 	} else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
235 		   *vcn > le64_to_cpu(attr->nres.evcn)) {
236 		goto out;
237 	}
238 
239 	if (mi)
240 		*mi = m;
241 	return attr;
242 
243 out:
244 	_ntfs_bad_inode(&ni->vfs_inode);
245 	return NULL;
246 }
247 
248 /*
249  * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
250  */
ni_enum_attr_ex(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le,struct mft_inode ** mi)251 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
252 			       struct ATTR_LIST_ENTRY **le,
253 			       struct mft_inode **mi)
254 {
255 	struct mft_inode *mi2;
256 	struct ATTR_LIST_ENTRY *le2;
257 
258 	/* Do we have an attribute list? */
259 	if (!ni->attr_list.size) {
260 		*le = NULL;
261 		if (mi)
262 			*mi = &ni->mi;
263 		/* Enum attributes in primary record. */
264 		return mi_enum_attr(ni, &ni->mi, attr);
265 	}
266 
267 	/* Get next list entry. */
268 	le2 = *le = al_enumerate(ni, attr ? *le : NULL);
269 	if (!le2)
270 		return NULL;
271 
272 	/* Load record that contains the required attribute. */
273 	if (ni_load_mi(ni, le2, &mi2))
274 		return NULL;
275 
276 	if (mi)
277 		*mi = mi2;
278 
279 	/* Find attribute in loaded record. */
280 	return rec_find_attr_le(ni, mi2, le2);
281 }
282 
283 /*
284  * ni_load_all_mi - Load all subrecords.
285  */
ni_load_all_mi(struct ntfs_inode * ni)286 int ni_load_all_mi(struct ntfs_inode *ni)
287 {
288 	int err;
289 	struct ATTR_LIST_ENTRY *le;
290 
291 	if (!ni->attr_list.size)
292 		return 0;
293 
294 	le = NULL;
295 
296 	while ((le = al_enumerate(ni, le))) {
297 		CLST rno = ino_get(&le->ref);
298 
299 		if (rno == ni->mi.rno)
300 			continue;
301 
302 		err = ni_load_mi_ex(ni, rno, NULL);
303 		if (err)
304 			return err;
305 	}
306 
307 	return 0;
308 }
309 
310 /*
311  * ni_add_subrecord - Allocate + format + attach a new subrecord.
312  */
ni_add_subrecord(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)313 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
314 {
315 	struct mft_inode *m;
316 
317 	m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
318 	if (!m)
319 		return false;
320 
321 	if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
322 		mi_put(m);
323 		return false;
324 	}
325 
326 	mi_get_ref(&ni->mi, &m->mrec->parent_ref);
327 
328 	ni_add_mi(ni, m);
329 	*mi = m;
330 	return true;
331 }
332 
333 /*
334  * ni_remove_attr - Remove all attributes for the given type/name/id.
335  */
ni_remove_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,bool base_only,const __le16 * id)336 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
337 		   const __le16 *name, u8 name_len, bool base_only,
338 		   const __le16 *id)
339 {
340 	int err;
341 	struct ATTRIB *attr;
342 	struct ATTR_LIST_ENTRY *le;
343 	struct mft_inode *mi;
344 	u32 type_in;
345 	int diff;
346 
347 	if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
348 		attr = mi_find_attr(ni, &ni->mi, NULL, type, name, name_len,
349 				    id);
350 		if (!attr)
351 			return -ENOENT;
352 
353 		mi_remove_attr(ni, &ni->mi, attr);
354 		return 0;
355 	}
356 
357 	type_in = le32_to_cpu(type);
358 	le = NULL;
359 
360 	for (;;) {
361 		le = al_enumerate(ni, le);
362 		if (!le)
363 			return 0;
364 
365 next_le2:
366 		diff = le32_to_cpu(le->type) - type_in;
367 		if (diff < 0)
368 			continue;
369 
370 		if (diff > 0)
371 			return 0;
372 
373 		if (le->name_len != name_len)
374 			continue;
375 
376 		if (name_len &&
377 		    memcmp(le_name(le), name, name_len * sizeof(short)))
378 			continue;
379 
380 		if (id && le->id != *id)
381 			continue;
382 		err = ni_load_mi(ni, le, &mi);
383 		if (err)
384 			return err;
385 
386 		al_remove_le(ni, le);
387 
388 		attr = mi_find_attr(ni, mi, NULL, type, name, name_len, id);
389 		if (!attr)
390 			return -ENOENT;
391 
392 		mi_remove_attr(ni, mi, attr);
393 
394 		if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
395 			return 0;
396 		goto next_le2;
397 	}
398 }
399 
400 /*
401  * ni_ins_new_attr - Insert the attribute into record.
402  *
403  * Return: Not full constructed attribute or NULL if not possible to create.
404  */
405 static struct ATTRIB *
ni_ins_new_attr(struct ntfs_inode * ni,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTR_LIST_ENTRY ** ins_le)406 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
407 		struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
408 		const __le16 *name, u8 name_len, u32 asize, u16 name_off,
409 		CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
410 {
411 	int err;
412 	struct ATTRIB *attr;
413 	bool le_added = false;
414 	struct MFT_REF ref;
415 
416 	mi_get_ref(mi, &ref);
417 
418 	if (type != ATTR_LIST && !le && ni->attr_list.size) {
419 		err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
420 				&ref, &le);
421 		if (err) {
422 			/* No memory or no space. */
423 			return ERR_PTR(err);
424 		}
425 		le_added = true;
426 
427 		/*
428 		 * al_add_le -> attr_set_size (list) -> ni_expand_list
429 		 * which moves some attributes out of primary record
430 		 * this means that name may point into moved memory
431 		 * reinit 'name' from le.
432 		 */
433 		name = le->name;
434 	}
435 
436 	attr = mi_insert_attr(ni, mi, type, name, name_len, asize, name_off);
437 	if (!attr) {
438 		if (le_added)
439 			al_remove_le(ni, le);
440 		return NULL;
441 	}
442 
443 	if (type == ATTR_LIST) {
444 		/* Attr list is not in list entry array. */
445 		goto out;
446 	}
447 
448 	if (!le)
449 		goto out;
450 
451 	/* Update ATTRIB Id and record reference. */
452 	le->id = attr->id;
453 	ni->attr_list.dirty = true;
454 	le->ref = ref;
455 
456 out:
457 	if (ins_le)
458 		*ins_le = le;
459 	return attr;
460 }
461 
462 /*
463  * ni_repack
464  *
465  * Random write access to sparsed or compressed file may result to
466  * not optimized packed runs.
467  * Here is the place to optimize it.
468  */
ni_repack(struct ntfs_inode * ni)469 static int ni_repack(struct ntfs_inode *ni)
470 {
471 #if 1
472 	return 0;
473 #else
474 	int err = 0;
475 	struct ntfs_sb_info *sbi = ni->mi.sbi;
476 	struct mft_inode *mi, *mi_p = NULL;
477 	struct ATTRIB *attr = NULL, *attr_p;
478 	struct ATTR_LIST_ENTRY *le = NULL, *le_p;
479 	CLST alloc = 0;
480 	u8 cluster_bits = sbi->cluster_bits;
481 	CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
482 	u32 roff, rs = sbi->record_size;
483 	struct runs_tree run;
484 
485 	run_init(&run);
486 
487 	while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
488 		if (!attr->non_res)
489 			continue;
490 
491 		svcn = le64_to_cpu(attr->nres.svcn);
492 		if (svcn != le64_to_cpu(le->vcn)) {
493 			err = -EINVAL;
494 			break;
495 		}
496 
497 		if (!svcn) {
498 			alloc = le64_to_cpu(attr->nres.alloc_size) >>
499 				cluster_bits;
500 			mi_p = NULL;
501 		} else if (svcn != evcn + 1) {
502 			err = -EINVAL;
503 			break;
504 		}
505 
506 		evcn = le64_to_cpu(attr->nres.evcn);
507 
508 		if (svcn > evcn + 1) {
509 			err = -EINVAL;
510 			break;
511 		}
512 
513 		if (!mi_p) {
514 			/* Do not try if not enough free space. */
515 			if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
516 				continue;
517 
518 			/* Do not try if last attribute segment. */
519 			if (evcn + 1 == alloc)
520 				continue;
521 			run_close(&run);
522 		}
523 
524 		roff = le16_to_cpu(attr->nres.run_off);
525 
526 		if (roff > le32_to_cpu(attr->size)) {
527 			err = -EINVAL;
528 			break;
529 		}
530 
531 		err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
532 				 Add2Ptr(attr, roff),
533 				 le32_to_cpu(attr->size) - roff);
534 		if (err < 0)
535 			break;
536 
537 		if (!mi_p) {
538 			mi_p = mi;
539 			attr_p = attr;
540 			svcn_p = svcn;
541 			evcn_p = evcn;
542 			le_p = le;
543 			err = 0;
544 			continue;
545 		}
546 
547 		/*
548 		 * Run contains data from two records: mi_p and mi
549 		 * Try to pack in one.
550 		 */
551 		err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
552 		if (err)
553 			break;
554 
555 		next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
556 
557 		if (next_svcn >= evcn + 1) {
558 			/* We can remove this attribute segment. */
559 			al_remove_le(ni, le);
560 			mi_remove_attr(NULL, mi, attr);
561 			le = le_p;
562 			continue;
563 		}
564 
565 		attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
566 		mi->dirty = true;
567 		ni->attr_list.dirty = true;
568 
569 		if (evcn + 1 == alloc) {
570 			err = mi_pack_runs(mi, attr, &run,
571 					   evcn + 1 - next_svcn);
572 			if (err)
573 				break;
574 			mi_p = NULL;
575 		} else {
576 			mi_p = mi;
577 			attr_p = attr;
578 			svcn_p = next_svcn;
579 			evcn_p = evcn;
580 			le_p = le;
581 			run_truncate_head(&run, next_svcn);
582 		}
583 	}
584 
585 	if (err) {
586 		ntfs_inode_warn(&ni->vfs_inode, "repack problem");
587 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
588 
589 		/* Pack loaded but not packed runs. */
590 		if (mi_p)
591 			mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
592 	}
593 
594 	run_close(&run);
595 	return err;
596 #endif
597 }
598 
599 /*
600  * ni_try_remove_attr_list
601  *
602  * Can we remove attribute list?
603  * Check the case when primary record contains enough space for all attributes.
604  */
ni_try_remove_attr_list(struct ntfs_inode * ni)605 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
606 {
607 	int err = 0;
608 	struct ntfs_sb_info *sbi = ni->mi.sbi;
609 	struct ATTRIB *attr, *attr_list, *attr_ins;
610 	struct ATTR_LIST_ENTRY *le;
611 	struct mft_inode *mi;
612 	u32 asize, free;
613 	struct MFT_REF ref;
614 	struct MFT_REC *mrec;
615 	__le16 id;
616 
617 	if (!ni->attr_list.dirty)
618 		return 0;
619 
620 	err = ni_repack(ni);
621 	if (err)
622 		return err;
623 
624 	attr_list = mi_find_attr(ni, &ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
625 	if (!attr_list)
626 		return 0;
627 
628 	asize = le32_to_cpu(attr_list->size);
629 
630 	/* Free space in primary record without attribute list. */
631 	free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
632 	mi_get_ref(&ni->mi, &ref);
633 
634 	le = NULL;
635 	while ((le = al_enumerate(ni, le))) {
636 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
637 			continue;
638 
639 		if (le->vcn)
640 			return 0;
641 
642 		mi = ni_find_mi(ni, ino_get(&le->ref));
643 		if (!mi)
644 			return 0;
645 
646 		attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le),
647 				    le->name_len, &le->id);
648 		if (!attr)
649 			return 0;
650 
651 		asize = le32_to_cpu(attr->size);
652 		if (asize > free)
653 			return 0;
654 
655 		free -= asize;
656 	}
657 
658 	/* Make a copy of primary record to restore if error. */
659 	mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
660 	if (!mrec)
661 		return 0; /* Not critical. */
662 
663 	/* It seems that attribute list can be removed from primary record. */
664 	mi_remove_attr(NULL, &ni->mi, attr_list);
665 
666 	/*
667 	 * Repeat the cycle above and copy all attributes to primary record.
668 	 * Do not remove original attributes from subrecords!
669 	 * It should be success!
670 	 */
671 	le = NULL;
672 	while ((le = al_enumerate(ni, le))) {
673 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
674 			continue;
675 
676 		mi = ni_find_mi(ni, ino_get(&le->ref));
677 		if (!mi) {
678 			/* Should never happened, 'cause already checked. */
679 			goto out;
680 		}
681 
682 		attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le),
683 				    le->name_len, &le->id);
684 		if (!attr) {
685 			/* Should never happened, 'cause already checked. */
686 			goto out;
687 		}
688 		asize = le32_to_cpu(attr->size);
689 
690 		/* Insert into primary record. */
691 		attr_ins = mi_insert_attr(ni, &ni->mi, le->type, le_name(le),
692 					  le->name_len, asize,
693 					  le16_to_cpu(attr->name_off));
694 		if (!attr_ins) {
695 			/*
696 			 * No space in primary record (already checked).
697 			 */
698 			goto out;
699 		}
700 
701 		/* Copy all except id. */
702 		id = attr_ins->id;
703 		memcpy(attr_ins, attr, asize);
704 		attr_ins->id = id;
705 	}
706 
707 	/*
708 	 * Repeat the cycle above and remove all attributes from subrecords.
709 	 */
710 	le = NULL;
711 	while ((le = al_enumerate(ni, le))) {
712 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
713 			continue;
714 
715 		mi = ni_find_mi(ni, ino_get(&le->ref));
716 		if (!mi)
717 			continue;
718 
719 		attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le),
720 				    le->name_len, &le->id);
721 		if (!attr)
722 			continue;
723 
724 		/* Remove from original record. */
725 		mi_remove_attr(NULL, mi, attr);
726 	}
727 
728 	run_deallocate(sbi, &ni->attr_list.run, true);
729 	run_close(&ni->attr_list.run);
730 	ni->attr_list.size = 0;
731 	kvfree(ni->attr_list.le);
732 	ni->attr_list.le = NULL;
733 	ni->attr_list.dirty = false;
734 
735 	kfree(mrec);
736 	return 0;
737 out:
738 	/* Restore primary record. */
739 	swap(mrec, ni->mi.mrec);
740 	kfree(mrec);
741 	return 0;
742 }
743 
744 /*
745  * ni_create_attr_list - Generates an attribute list for this primary record.
746  */
ni_create_attr_list(struct ntfs_inode * ni)747 int ni_create_attr_list(struct ntfs_inode *ni)
748 {
749 	struct ntfs_sb_info *sbi = ni->mi.sbi;
750 	int err;
751 	u32 lsize;
752 	struct ATTRIB *attr;
753 	struct ATTRIB *arr_move[7];
754 	struct ATTR_LIST_ENTRY *le, *le_b[7];
755 	struct MFT_REC *rec;
756 	bool is_mft;
757 	CLST rno = 0;
758 	struct mft_inode *mi;
759 	u32 free_b, nb, to_free, rs;
760 	u16 sz;
761 
762 	is_mft = ni->mi.rno == MFT_REC_MFT;
763 	rec = ni->mi.mrec;
764 	rs = sbi->record_size;
765 
766 	/*
767 	 * Skip estimating exact memory requirement.
768 	 * Looks like one record_size is always enough.
769 	 */
770 	le = kmalloc(al_aligned(rs), GFP_NOFS);
771 	if (!le)
772 		return -ENOMEM;
773 
774 	mi_get_ref(&ni->mi, &le->ref);
775 	ni->attr_list.le = le;
776 
777 	attr = NULL;
778 	nb = 0;
779 	free_b = 0;
780 	attr = NULL;
781 
782 	for (; (attr = mi_enum_attr(ni, &ni->mi, attr)); le = Add2Ptr(le, sz)) {
783 		sz = le_size(attr->name_len);
784 		le->type = attr->type;
785 		le->size = cpu_to_le16(sz);
786 		le->name_len = attr->name_len;
787 		le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
788 		le->vcn = 0;
789 		if (le != ni->attr_list.le)
790 			le->ref = ni->attr_list.le->ref;
791 		le->id = attr->id;
792 
793 		if (attr->name_len)
794 			memcpy(le->name, attr_name(attr),
795 			       sizeof(short) * attr->name_len);
796 		else if (attr->type == ATTR_STD)
797 			continue;
798 		else if (attr->type == ATTR_LIST)
799 			continue;
800 		else if (is_mft && attr->type == ATTR_DATA)
801 			continue;
802 
803 		if (!nb || nb < ARRAY_SIZE(arr_move)) {
804 			le_b[nb] = le;
805 			arr_move[nb++] = attr;
806 			free_b += le32_to_cpu(attr->size);
807 		}
808 	}
809 
810 	lsize = PtrOffset(ni->attr_list.le, le);
811 	ni->attr_list.size = lsize;
812 
813 	to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
814 	if (to_free <= rs) {
815 		to_free = 0;
816 	} else {
817 		to_free -= rs;
818 
819 		if (to_free > free_b) {
820 			err = -EINVAL;
821 			goto out;
822 		}
823 	}
824 
825 	/* Allocate child MFT. */
826 	err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
827 	if (err)
828 		goto out;
829 
830 	err = -EINVAL;
831 	/* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
832 	while (to_free > 0) {
833 		struct ATTRIB *b = arr_move[--nb];
834 		u32 asize = le32_to_cpu(b->size);
835 		u16 name_off = le16_to_cpu(b->name_off);
836 
837 		attr = mi_insert_attr(ni, mi, b->type, Add2Ptr(b, name_off),
838 				      b->name_len, asize, name_off);
839 		if (!attr)
840 			goto out;
841 
842 		mi_get_ref(mi, &le_b[nb]->ref);
843 		le_b[nb]->id = attr->id;
844 
845 		/* Copy all except id. */
846 		memcpy(attr, b, asize);
847 		attr->id = le_b[nb]->id;
848 
849 		/* Remove from primary record. */
850 		if (!mi_remove_attr(NULL, &ni->mi, b))
851 			goto out;
852 
853 		if (to_free <= asize)
854 			break;
855 		to_free -= asize;
856 		if (!nb)
857 			goto out;
858 	}
859 
860 	attr = mi_insert_attr(ni, &ni->mi, ATTR_LIST, NULL, 0,
861 			      lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
862 	if (!attr)
863 		goto out;
864 
865 	attr->non_res = 0;
866 	attr->flags = 0;
867 	attr->res.data_size = cpu_to_le32(lsize);
868 	attr->res.data_off = SIZEOF_RESIDENT_LE;
869 	attr->res.flags = 0;
870 	attr->res.res = 0;
871 
872 	memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
873 
874 	ni->attr_list.dirty = false;
875 
876 	mark_inode_dirty(&ni->vfs_inode);
877 	return 0;
878 
879 out:
880 	kvfree(ni->attr_list.le);
881 	ni->attr_list.le = NULL;
882 	ni->attr_list.size = 0;
883 	return err;
884 }
885 
886 /*
887  * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
888  */
ni_ins_attr_ext(struct ntfs_inode * ni,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,CLST svcn,u16 name_off,bool force_ext,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)889 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
890 			   enum ATTR_TYPE type, const __le16 *name, u8 name_len,
891 			   u32 asize, CLST svcn, u16 name_off, bool force_ext,
892 			   struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
893 			   struct ATTR_LIST_ENTRY **ins_le)
894 {
895 	struct ATTRIB *attr;
896 	struct mft_inode *mi;
897 	CLST rno;
898 	u64 vbo;
899 	struct rb_node *node;
900 	int err;
901 	bool is_mft, is_mft_data;
902 	struct ntfs_sb_info *sbi = ni->mi.sbi;
903 
904 	is_mft = ni->mi.rno == MFT_REC_MFT;
905 	is_mft_data = is_mft && type == ATTR_DATA && !name_len;
906 
907 	if (asize > sbi->max_bytes_per_attr) {
908 		err = -EINVAL;
909 		goto out;
910 	}
911 
912 	/*
913 	 * Standard information and attr_list cannot be made external.
914 	 * The Log File cannot have any external attributes.
915 	 */
916 	if (type == ATTR_STD || type == ATTR_LIST ||
917 	    ni->mi.rno == MFT_REC_LOG) {
918 		err = -EINVAL;
919 		goto out;
920 	}
921 
922 	/* Create attribute list if it is not already existed. */
923 	if (!ni->attr_list.size) {
924 		err = ni_create_attr_list(ni);
925 		if (err)
926 			goto out;
927 	}
928 
929 	vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
930 
931 	if (force_ext)
932 		goto insert_ext;
933 
934 	/* Load all subrecords into memory. */
935 	err = ni_load_all_mi(ni);
936 	if (err)
937 		goto out;
938 
939 	/* Check each of loaded subrecord. */
940 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
941 		mi = rb_entry(node, struct mft_inode, node);
942 
943 		if (is_mft_data &&
944 		    (mi_enum_attr(ni, mi, NULL) ||
945 		     vbo <= ((u64)mi->rno << sbi->record_bits))) {
946 			/* We can't accept this record 'cause MFT's bootstrapping. */
947 			continue;
948 		}
949 		if (is_mft &&
950 		    mi_find_attr(ni, mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
951 			/*
952 			 * This child record already has a ATTR_DATA.
953 			 * So it can't accept any other records.
954 			 */
955 			continue;
956 		}
957 
958 		if ((type != ATTR_NAME || name_len) &&
959 		    mi_find_attr(ni, mi, NULL, type, name, name_len, NULL)) {
960 			/* Only indexed attributes can share same record. */
961 			continue;
962 		}
963 
964 		/*
965 		 * Do not try to insert this attribute
966 		 * if there is no room in record.
967 		 */
968 		if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
969 			continue;
970 
971 		/* Try to insert attribute into this subrecord. */
972 		attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
973 				       name_off, svcn, ins_le);
974 		if (!attr)
975 			continue;
976 		if (IS_ERR(attr))
977 			return PTR_ERR(attr);
978 
979 		if (ins_attr)
980 			*ins_attr = attr;
981 		if (ins_mi)
982 			*ins_mi = mi;
983 		return 0;
984 	}
985 
986 insert_ext:
987 	/* We have to allocate a new child subrecord. */
988 	err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
989 	if (err)
990 		goto out;
991 
992 	if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
993 		err = -EINVAL;
994 		goto out1;
995 	}
996 
997 	attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
998 			       name_off, svcn, ins_le);
999 	if (!attr) {
1000 		err = -EINVAL;
1001 		goto out2;
1002 	}
1003 
1004 	if (IS_ERR(attr)) {
1005 		err = PTR_ERR(attr);
1006 		goto out2;
1007 	}
1008 
1009 	if (ins_attr)
1010 		*ins_attr = attr;
1011 	if (ins_mi)
1012 		*ins_mi = mi;
1013 
1014 	return 0;
1015 
1016 out2:
1017 	ni_remove_mi(ni, mi);
1018 	mi_put(mi);
1019 
1020 out1:
1021 	ntfs_mark_rec_free(sbi, rno, is_mft);
1022 
1023 out:
1024 	return err;
1025 }
1026 
1027 /*
1028  * ni_insert_attr - Insert an attribute into the file.
1029  *
1030  * If the primary record has room, it will just insert the attribute.
1031  * If not, it may make the attribute external.
1032  * For $MFT::Data it may make room for the attribute by
1033  * making other attributes external.
1034  *
1035  * NOTE:
1036  * The ATTR_LIST and ATTR_STD cannot be made external.
1037  * This function does not fill new attribute full.
1038  * It only fills 'size'/'type'/'id'/'name_len' fields.
1039  */
ni_insert_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)1040 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1041 			  const __le16 *name, u8 name_len, u32 asize,
1042 			  u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1043 			  struct mft_inode **ins_mi,
1044 			  struct ATTR_LIST_ENTRY **ins_le)
1045 {
1046 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1047 	int err;
1048 	struct ATTRIB *attr, *eattr;
1049 	struct MFT_REC *rec;
1050 	bool is_mft;
1051 	struct ATTR_LIST_ENTRY *le;
1052 	u32 list_reserve, max_free, free, used, t32;
1053 	__le16 id;
1054 	u16 t16;
1055 
1056 	is_mft = ni->mi.rno == MFT_REC_MFT;
1057 	rec = ni->mi.mrec;
1058 
1059 	list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1060 	used = le32_to_cpu(rec->used);
1061 	free = sbi->record_size - used;
1062 
1063 	if (is_mft && type != ATTR_LIST) {
1064 		/* Reserve space for the ATTRIB list. */
1065 		if (free < list_reserve)
1066 			free = 0;
1067 		else
1068 			free -= list_reserve;
1069 	}
1070 
1071 	if (asize <= free) {
1072 		attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1073 				       asize, name_off, svcn, ins_le);
1074 		if (IS_ERR(attr)) {
1075 			err = PTR_ERR(attr);
1076 			goto out;
1077 		}
1078 
1079 		if (attr) {
1080 			if (ins_attr)
1081 				*ins_attr = attr;
1082 			if (ins_mi)
1083 				*ins_mi = &ni->mi;
1084 			err = 0;
1085 			goto out;
1086 		}
1087 	}
1088 
1089 	if (!is_mft || type != ATTR_DATA || svcn) {
1090 		/* This ATTRIB will be external. */
1091 		err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1092 				      svcn, name_off, false, ins_attr, ins_mi,
1093 				      ins_le);
1094 		goto out;
1095 	}
1096 
1097 	/*
1098 	 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1099 	 *
1100 	 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1101 	 * Evict as many other attributes as possible.
1102 	 */
1103 	max_free = free;
1104 
1105 	/* Estimate the result of moving all possible attributes away. */
1106 	attr = NULL;
1107 
1108 	while ((attr = mi_enum_attr(ni, &ni->mi, attr))) {
1109 		if (attr->type == ATTR_STD)
1110 			continue;
1111 		if (attr->type == ATTR_LIST)
1112 			continue;
1113 		max_free += le32_to_cpu(attr->size);
1114 	}
1115 
1116 	if (max_free < asize + list_reserve) {
1117 		/* Impossible to insert this attribute into primary record. */
1118 		err = -EINVAL;
1119 		goto out;
1120 	}
1121 
1122 	/* Start real attribute moving. */
1123 	attr = NULL;
1124 
1125 	for (;;) {
1126 		attr = mi_enum_attr(ni, &ni->mi, attr);
1127 		if (!attr) {
1128 			/* We should never be here 'cause we have already check this case. */
1129 			err = -EINVAL;
1130 			goto out;
1131 		}
1132 
1133 		/* Skip attributes that MUST be primary record. */
1134 		if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1135 			continue;
1136 
1137 		le = NULL;
1138 		if (ni->attr_list.size) {
1139 			le = al_find_le(ni, NULL, attr);
1140 			if (!le) {
1141 				/* Really this is a serious bug. */
1142 				err = -EINVAL;
1143 				goto out;
1144 			}
1145 		}
1146 
1147 		t32 = le32_to_cpu(attr->size);
1148 		t16 = le16_to_cpu(attr->name_off);
1149 		err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1150 				      attr->name_len, t32, attr_svcn(attr), t16,
1151 				      false, &eattr, NULL, NULL);
1152 		if (err)
1153 			return err;
1154 
1155 		id = eattr->id;
1156 		memcpy(eattr, attr, t32);
1157 		eattr->id = id;
1158 
1159 		/* Remove from primary record. */
1160 		mi_remove_attr(NULL, &ni->mi, attr);
1161 
1162 		/* attr now points to next attribute. */
1163 		if (attr->type == ATTR_END)
1164 			goto out;
1165 	}
1166 	while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1167 		;
1168 
1169 	attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1170 			       name_off, svcn, ins_le);
1171 	if (!attr) {
1172 		err = -EINVAL;
1173 		goto out;
1174 	}
1175 
1176 	if (IS_ERR(attr)) {
1177 		err = PTR_ERR(attr);
1178 		goto out;
1179 	}
1180 
1181 	if (ins_attr)
1182 		*ins_attr = attr;
1183 	if (ins_mi)
1184 		*ins_mi = &ni->mi;
1185 
1186 out:
1187 	return err;
1188 }
1189 
1190 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
ni_expand_mft_list(struct ntfs_inode * ni)1191 static int ni_expand_mft_list(struct ntfs_inode *ni)
1192 {
1193 	int err = 0;
1194 	struct runs_tree *run = &ni->file.run;
1195 	u32 asize, run_size, done = 0;
1196 	struct ATTRIB *attr;
1197 	struct rb_node *node;
1198 	CLST mft_min, mft_new, svcn, evcn, plen;
1199 	struct mft_inode *mi, *mi_min, *mi_new;
1200 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1201 
1202 	/* Find the nearest MFT. */
1203 	mft_min = 0;
1204 	mft_new = 0;
1205 	mi_min = NULL;
1206 
1207 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1208 		mi = rb_entry(node, struct mft_inode, node);
1209 
1210 		attr = mi_enum_attr(ni, mi, NULL);
1211 
1212 		if (!attr) {
1213 			mft_min = mi->rno;
1214 			mi_min = mi;
1215 			break;
1216 		}
1217 	}
1218 
1219 	if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1220 		mft_new = 0;
1221 		/* Really this is not critical. */
1222 	} else if (mft_min > mft_new) {
1223 		mft_min = mft_new;
1224 		mi_min = mi_new;
1225 	} else {
1226 		ntfs_mark_rec_free(sbi, mft_new, true);
1227 		mft_new = 0;
1228 		ni_remove_mi(ni, mi_new);
1229 	}
1230 
1231 	attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1232 	if (!attr) {
1233 		err = -EINVAL;
1234 		goto out;
1235 	}
1236 
1237 	asize = le32_to_cpu(attr->size);
1238 
1239 	evcn = le64_to_cpu(attr->nres.evcn);
1240 	svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1241 	if (evcn + 1 >= svcn) {
1242 		err = -EINVAL;
1243 		goto out;
1244 	}
1245 
1246 	/*
1247 	 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1248 	 *
1249 	 * Update first part of ATTR_DATA in 'primary MFT.
1250 	 */
1251 	err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1252 		       asize - SIZEOF_NONRESIDENT, &plen);
1253 	if (err < 0)
1254 		goto out;
1255 
1256 	run_size = ALIGN(err, 8);
1257 	err = 0;
1258 
1259 	if (plen < svcn) {
1260 		err = -EINVAL;
1261 		goto out;
1262 	}
1263 
1264 	attr->nres.evcn = cpu_to_le64(svcn - 1);
1265 	attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1266 	/* 'done' - How many bytes of primary MFT becomes free. */
1267 	done = asize - run_size - SIZEOF_NONRESIDENT;
1268 	le32_sub_cpu(&ni->mi.mrec->used, done);
1269 
1270 	/* Estimate packed size (run_buf=NULL). */
1271 	err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1272 		       &plen);
1273 	if (err < 0)
1274 		goto out;
1275 
1276 	run_size = ALIGN(err, 8);
1277 	err = 0;
1278 
1279 	if (plen < evcn + 1 - svcn) {
1280 		err = -EINVAL;
1281 		goto out;
1282 	}
1283 
1284 	/*
1285 	 * This function may implicitly call expand attr_list.
1286 	 * Insert second part of ATTR_DATA in 'mi_min'.
1287 	 */
1288 	attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1289 			       SIZEOF_NONRESIDENT + run_size,
1290 			       SIZEOF_NONRESIDENT, svcn, NULL);
1291 	if (!attr) {
1292 		err = -EINVAL;
1293 		goto out;
1294 	}
1295 
1296 	if (IS_ERR(attr)) {
1297 		err = PTR_ERR(attr);
1298 		goto out;
1299 	}
1300 
1301 	attr->non_res = 1;
1302 	attr->name_off = SIZEOF_NONRESIDENT_LE;
1303 	attr->flags = 0;
1304 
1305 	/* This function can't fail - cause already checked above. */
1306 	run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1307 		 run_size, &plen);
1308 
1309 	attr->nres.svcn = cpu_to_le64(svcn);
1310 	attr->nres.evcn = cpu_to_le64(evcn);
1311 	attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1312 
1313 out:
1314 	if (mft_new) {
1315 		ntfs_mark_rec_free(sbi, mft_new, true);
1316 		ni_remove_mi(ni, mi_new);
1317 	}
1318 
1319 	return !err && !done ? -EOPNOTSUPP : err;
1320 }
1321 
1322 /*
1323  * ni_expand_list - Move all possible attributes out of primary record.
1324  */
ni_expand_list(struct ntfs_inode * ni)1325 int ni_expand_list(struct ntfs_inode *ni)
1326 {
1327 	int err = 0;
1328 	u32 asize, done = 0;
1329 	struct ATTRIB *attr, *ins_attr;
1330 	struct ATTR_LIST_ENTRY *le;
1331 	bool is_mft = ni->mi.rno == MFT_REC_MFT;
1332 	struct MFT_REF ref;
1333 
1334 	mi_get_ref(&ni->mi, &ref);
1335 	le = NULL;
1336 
1337 	while ((le = al_enumerate(ni, le))) {
1338 		if (le->type == ATTR_STD)
1339 			continue;
1340 
1341 		if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1342 			continue;
1343 
1344 		if (is_mft && le->type == ATTR_DATA)
1345 			continue;
1346 
1347 		/* Find attribute in primary record. */
1348 		attr = rec_find_attr_le(ni, &ni->mi, le);
1349 		if (!attr) {
1350 			err = -EINVAL;
1351 			goto out;
1352 		}
1353 
1354 		asize = le32_to_cpu(attr->size);
1355 
1356 		/* Always insert into new record to avoid collisions (deep recursive). */
1357 		err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1358 				      attr->name_len, asize, attr_svcn(attr),
1359 				      le16_to_cpu(attr->name_off), true,
1360 				      &ins_attr, NULL, NULL);
1361 
1362 		if (err)
1363 			goto out;
1364 
1365 		memcpy(ins_attr, attr, asize);
1366 		ins_attr->id = le->id;
1367 		/* Remove from primary record. */
1368 		mi_remove_attr(NULL, &ni->mi, attr);
1369 
1370 		done += asize;
1371 		goto out;
1372 	}
1373 
1374 	if (!is_mft) {
1375 		err = -EFBIG; /* Attr list is too big(?) */
1376 		goto out;
1377 	}
1378 
1379 	/* Split MFT data as much as possible. */
1380 	err = ni_expand_mft_list(ni);
1381 
1382 out:
1383 	return !err && !done ? -EOPNOTSUPP : err;
1384 }
1385 
1386 /*
1387  * ni_insert_nonresident - Insert new nonresident attribute.
1388  */
ni_insert_nonresident(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const struct runs_tree * run,CLST svcn,CLST len,__le16 flags,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1389 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1390 			  const __le16 *name, u8 name_len,
1391 			  const struct runs_tree *run, CLST svcn, CLST len,
1392 			  __le16 flags, struct ATTRIB **new_attr,
1393 			  struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1394 {
1395 	int err;
1396 	CLST plen;
1397 	struct ATTRIB *attr;
1398 	bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) &&
1399 		      !svcn;
1400 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1401 	u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1402 	u32 run_off = name_off + name_size;
1403 	u32 run_size, asize;
1404 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1405 
1406 	/* Estimate packed size (run_buf=NULL). */
1407 	err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1408 		       &plen);
1409 	if (err < 0)
1410 		goto out;
1411 
1412 	run_size = ALIGN(err, 8);
1413 
1414 	if (plen < len) {
1415 		err = -EINVAL;
1416 		goto out;
1417 	}
1418 
1419 	asize = run_off + run_size;
1420 
1421 	if (asize > sbi->max_bytes_per_attr) {
1422 		err = -EINVAL;
1423 		goto out;
1424 	}
1425 
1426 	err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1427 			     &attr, mi, le);
1428 
1429 	if (err)
1430 		goto out;
1431 
1432 	attr->non_res = 1;
1433 	attr->name_off = cpu_to_le16(name_off);
1434 	attr->flags = flags;
1435 
1436 	/* This function can't fail - cause already checked above. */
1437 	run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1438 
1439 	attr->nres.svcn = cpu_to_le64(svcn);
1440 	attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1441 
1442 	if (new_attr)
1443 		*new_attr = attr;
1444 
1445 	*(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1446 
1447 	attr->nres.alloc_size =
1448 		svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1449 	attr->nres.data_size = attr->nres.alloc_size;
1450 	attr->nres.valid_size = attr->nres.alloc_size;
1451 
1452 	if (is_ext) {
1453 		if (flags & ATTR_FLAG_COMPRESSED)
1454 			attr->nres.c_unit = NTFS_LZNT_CUNIT;
1455 		attr->nres.total_size = attr->nres.alloc_size;
1456 	}
1457 
1458 out:
1459 	return err;
1460 }
1461 
1462 /*
1463  * ni_insert_resident - Inserts new resident attribute.
1464  */
ni_insert_resident(struct ntfs_inode * ni,u32 data_size,enum ATTR_TYPE type,const __le16 * name,u8 name_len,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1465 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1466 		       enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1467 		       struct ATTRIB **new_attr, struct mft_inode **mi,
1468 		       struct ATTR_LIST_ENTRY **le)
1469 {
1470 	int err;
1471 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1472 	u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1473 	struct ATTRIB *attr;
1474 
1475 	err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1476 			     0, &attr, mi, le);
1477 	if (err)
1478 		return err;
1479 
1480 	attr->non_res = 0;
1481 	attr->flags = 0;
1482 
1483 	attr->res.data_size = cpu_to_le32(data_size);
1484 	attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1485 	if (type == ATTR_NAME) {
1486 		attr->res.flags = RESIDENT_FLAG_INDEXED;
1487 
1488 		/* is_attr_indexed(attr)) == true */
1489 		le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1490 		ni->mi.dirty = true;
1491 	}
1492 	attr->res.res = 0;
1493 
1494 	if (new_attr)
1495 		*new_attr = attr;
1496 
1497 	return 0;
1498 }
1499 
1500 /*
1501  * ni_remove_attr_le - Remove attribute from record.
1502  */
ni_remove_attr_le(struct ntfs_inode * ni,struct ATTRIB * attr,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le)1503 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1504 		       struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1505 {
1506 	mi_remove_attr(ni, mi, attr);
1507 
1508 	if (le)
1509 		al_remove_le(ni, le);
1510 }
1511 
1512 /*
1513  * ni_delete_all - Remove all attributes and frees allocates space.
1514  *
1515  * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1516  */
ni_delete_all(struct ntfs_inode * ni)1517 int ni_delete_all(struct ntfs_inode *ni)
1518 {
1519 	int err;
1520 	struct ATTR_LIST_ENTRY *le = NULL;
1521 	struct ATTRIB *attr = NULL;
1522 	struct rb_node *node;
1523 	u16 roff;
1524 	u32 asize;
1525 	CLST svcn, evcn;
1526 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1527 	bool nt3 = is_ntfs3(sbi);
1528 	struct MFT_REF ref;
1529 
1530 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1531 		if (!nt3 || attr->name_len) {
1532 			;
1533 		} else if (attr->type == ATTR_REPARSE) {
1534 			mi_get_ref(&ni->mi, &ref);
1535 			ntfs_remove_reparse(sbi, 0, &ref);
1536 		} else if (attr->type == ATTR_ID && !attr->non_res &&
1537 			   le32_to_cpu(attr->res.data_size) >=
1538 				   sizeof(struct GUID)) {
1539 			ntfs_objid_remove(sbi, resident_data(attr));
1540 		}
1541 
1542 		if (!attr->non_res)
1543 			continue;
1544 
1545 		svcn = le64_to_cpu(attr->nres.svcn);
1546 		evcn = le64_to_cpu(attr->nres.evcn);
1547 
1548 		if (evcn + 1 <= svcn)
1549 			continue;
1550 
1551 		asize = le32_to_cpu(attr->size);
1552 		roff = le16_to_cpu(attr->nres.run_off);
1553 
1554 		if (roff > asize) {
1555 			/* ni_enum_attr_ex checks this case. */
1556 			continue;
1557 		}
1558 
1559 		/* run==1 means unpack and deallocate. */
1560 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1561 			      Add2Ptr(attr, roff), asize - roff);
1562 	}
1563 
1564 	if (ni->attr_list.size) {
1565 		run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1566 		al_destroy(ni);
1567 	}
1568 
1569 	/* Free all subrecords. */
1570 	for (node = rb_first(&ni->mi_tree); node;) {
1571 		struct rb_node *next = rb_next(node);
1572 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1573 
1574 		clear_rec_inuse(mi->mrec);
1575 		mi->dirty = true;
1576 		mi_write(mi, 0);
1577 
1578 		ntfs_mark_rec_free(sbi, mi->rno, false);
1579 		ni_remove_mi(ni, mi);
1580 		mi_put(mi);
1581 		node = next;
1582 	}
1583 
1584 	/* Free base record. */
1585 	clear_rec_inuse(ni->mi.mrec);
1586 	ni->mi.dirty = true;
1587 	err = mi_write(&ni->mi, 0);
1588 
1589 	ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1590 
1591 	return err;
1592 }
1593 
1594 /* ni_fname_name
1595  *
1596  * Return: File name attribute by its value.
1597  */
ni_fname_name(struct ntfs_inode * ni,const struct le_str * uni,const struct MFT_REF * home_dir,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1598 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1599 				     const struct le_str *uni,
1600 				     const struct MFT_REF *home_dir,
1601 				     struct mft_inode **mi,
1602 				     struct ATTR_LIST_ENTRY **le)
1603 {
1604 	struct ATTRIB *attr = NULL;
1605 	struct ATTR_FILE_NAME *fname;
1606 
1607 	if (le)
1608 		*le = NULL;
1609 
1610 	/* Enumerate all names. */
1611 next:
1612 	attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1613 	if (!attr)
1614 		return NULL;
1615 
1616 	fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1617 	if (!fname)
1618 		goto next;
1619 
1620 	if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1621 		goto next;
1622 
1623 	if (!uni)
1624 		return fname;
1625 
1626 	if (uni->len != fname->name_len)
1627 		goto next;
1628 
1629 	if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL,
1630 			   false))
1631 		goto next;
1632 	return fname;
1633 }
1634 
1635 /*
1636  * ni_fname_type
1637  *
1638  * Return: File name attribute with given type.
1639  */
ni_fname_type(struct ntfs_inode * ni,u8 name_type,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1640 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1641 				     struct mft_inode **mi,
1642 				     struct ATTR_LIST_ENTRY **le)
1643 {
1644 	struct ATTRIB *attr = NULL;
1645 	struct ATTR_FILE_NAME *fname;
1646 
1647 	*le = NULL;
1648 
1649 	if (name_type == FILE_NAME_POSIX)
1650 		return NULL;
1651 
1652 	/* Enumerate all names. */
1653 	for (;;) {
1654 		attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1655 		if (!attr)
1656 			return NULL;
1657 
1658 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1659 		if (fname && name_type == fname->type)
1660 			return fname;
1661 	}
1662 }
1663 
1664 /*
1665  * ni_new_attr_flags
1666  *
1667  * Process compressed/sparsed in special way.
1668  * NOTE: You need to set ni->std_fa = new_fa
1669  * after this function to keep internal structures in consistency.
1670  */
ni_new_attr_flags(struct ntfs_inode * ni,enum FILE_ATTRIBUTE new_fa)1671 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1672 {
1673 	struct ATTRIB *attr;
1674 	struct mft_inode *mi;
1675 	__le16 new_aflags;
1676 	u32 new_asize;
1677 
1678 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1679 	if (!attr)
1680 		return -EINVAL;
1681 
1682 	new_aflags = attr->flags;
1683 
1684 	if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1685 		new_aflags |= ATTR_FLAG_SPARSED;
1686 	else
1687 		new_aflags &= ~ATTR_FLAG_SPARSED;
1688 
1689 	if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1690 		new_aflags |= ATTR_FLAG_COMPRESSED;
1691 	else
1692 		new_aflags &= ~ATTR_FLAG_COMPRESSED;
1693 
1694 	if (new_aflags == attr->flags)
1695 		return 0;
1696 
1697 	if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1698 	    (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1699 		ntfs_inode_warn(&ni->vfs_inode,
1700 				"file can't be sparsed and compressed");
1701 		return -EOPNOTSUPP;
1702 	}
1703 
1704 	if (!attr->non_res)
1705 		goto out;
1706 
1707 	if (attr->nres.data_size) {
1708 		ntfs_inode_warn(
1709 			&ni->vfs_inode,
1710 			"one can change sparsed/compressed only for empty files");
1711 		return -EOPNOTSUPP;
1712 	}
1713 
1714 	/* Resize nonresident empty attribute in-place only. */
1715 	new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
1716 			    (SIZEOF_NONRESIDENT_EX + 8) :
1717 			    (SIZEOF_NONRESIDENT + 8);
1718 
1719 	if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1720 		return -EOPNOTSUPP;
1721 
1722 	if (new_aflags & ATTR_FLAG_SPARSED) {
1723 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1724 		/* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1725 		attr->nres.c_unit = 0;
1726 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1727 	} else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1728 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1729 		/* The only allowed: 16 clusters per frame. */
1730 		attr->nres.c_unit = NTFS_LZNT_CUNIT;
1731 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1732 	} else {
1733 		attr->name_off = SIZEOF_NONRESIDENT_LE;
1734 		/* Normal files. */
1735 		attr->nres.c_unit = 0;
1736 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1737 	}
1738 	attr->nres.run_off = attr->name_off;
1739 out:
1740 	attr->flags = new_aflags;
1741 	mi->dirty = true;
1742 
1743 	return 0;
1744 }
1745 
1746 /*
1747  * ni_parse_reparse
1748  *
1749  * buffer - memory for reparse buffer header
1750  */
ni_parse_reparse(struct ntfs_inode * ni,struct ATTRIB * attr,struct REPARSE_DATA_BUFFER * buffer)1751 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1752 				   struct REPARSE_DATA_BUFFER *buffer)
1753 {
1754 	const struct REPARSE_DATA_BUFFER *rp = NULL;
1755 	u8 bits;
1756 	u16 len;
1757 	typeof(rp->CompressReparseBuffer) *cmpr;
1758 
1759 	/* Try to estimate reparse point. */
1760 	if (!attr->non_res) {
1761 		rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1762 	} else if (le64_to_cpu(attr->nres.data_size) >=
1763 		   sizeof(struct REPARSE_DATA_BUFFER)) {
1764 		struct runs_tree run;
1765 
1766 		run_init(&run);
1767 
1768 		if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1769 		    !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1770 				      sizeof(struct REPARSE_DATA_BUFFER),
1771 				      NULL)) {
1772 			rp = buffer;
1773 		}
1774 
1775 		run_close(&run);
1776 	}
1777 
1778 	if (!rp)
1779 		return REPARSE_NONE;
1780 
1781 	len = le16_to_cpu(rp->ReparseDataLength);
1782 	switch (rp->ReparseTag) {
1783 	case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1784 		break; /* Symbolic link. */
1785 	case IO_REPARSE_TAG_MOUNT_POINT:
1786 		break; /* Mount points and junctions. */
1787 	case IO_REPARSE_TAG_SYMLINK:
1788 		break;
1789 	case IO_REPARSE_TAG_COMPRESS:
1790 		/*
1791 		 * WOF - Windows Overlay Filter - Used to compress files with
1792 		 * LZX/Xpress.
1793 		 *
1794 		 * Unlike native NTFS file compression, the Windows
1795 		 * Overlay Filter supports only read operations. This means
1796 		 * that it doesn't need to sector-align each compressed chunk,
1797 		 * so the compressed data can be packed more tightly together.
1798 		 * If you open the file for writing, the WOF just decompresses
1799 		 * the entire file, turning it back into a plain file.
1800 		 *
1801 		 * Ntfs3 driver decompresses the entire file only on write or
1802 		 * change size requests.
1803 		 */
1804 
1805 		cmpr = &rp->CompressReparseBuffer;
1806 		if (len < sizeof(*cmpr) ||
1807 		    cmpr->WofVersion != WOF_CURRENT_VERSION ||
1808 		    cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1809 		    cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1810 			return REPARSE_NONE;
1811 		}
1812 
1813 		switch (cmpr->CompressionFormat) {
1814 		case WOF_COMPRESSION_XPRESS4K:
1815 			bits = 0xc; // 4k
1816 			break;
1817 		case WOF_COMPRESSION_XPRESS8K:
1818 			bits = 0xd; // 8k
1819 			break;
1820 		case WOF_COMPRESSION_XPRESS16K:
1821 			bits = 0xe; // 16k
1822 			break;
1823 		case WOF_COMPRESSION_LZX32K:
1824 			bits = 0xf; // 32k
1825 			break;
1826 		default:
1827 			bits = 0x10; // 64k
1828 			break;
1829 		}
1830 		ni_set_ext_compress_bits(ni, bits);
1831 		return REPARSE_COMPRESSED;
1832 
1833 	case IO_REPARSE_TAG_DEDUP:
1834 		ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1835 		return REPARSE_DEDUPLICATED;
1836 
1837 	default:
1838 		if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1839 			break;
1840 
1841 		return REPARSE_NONE;
1842 	}
1843 
1844 	if (buffer != rp)
1845 		memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1846 
1847 	/* Looks like normal symlink. */
1848 	return REPARSE_LINK;
1849 }
1850 
1851 /*
1852  * ni_fiemap - Helper for file_fiemap().
1853  *
1854  * Assumed ni_lock.
1855  * TODO: Less aggressive locks.
1856  */
ni_fiemap(struct ntfs_inode * ni,struct fiemap_extent_info * fieinfo,__u64 vbo,__u64 len)1857 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1858 	      __u64 vbo, __u64 len)
1859 {
1860 	int err = 0;
1861 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1862 	u8 cluster_bits = sbi->cluster_bits;
1863 	struct runs_tree run;
1864 	struct ATTRIB *attr;
1865 	CLST vcn = vbo >> cluster_bits;
1866 	CLST lcn, clen;
1867 	u64 valid = ni->i_valid;
1868 	u64 lbo, bytes;
1869 	u64 end, alloc_size;
1870 	size_t idx = -1;
1871 	u32 flags;
1872 	bool ok;
1873 
1874 	run_init(&run);
1875 	if (S_ISDIR(ni->vfs_inode.i_mode)) {
1876 		attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1877 				    ARRAY_SIZE(I30_NAME), NULL, NULL);
1878 	} else {
1879 		attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1880 				    NULL);
1881 		if (!attr) {
1882 			err = -EINVAL;
1883 			goto out;
1884 		}
1885 		if (is_attr_compressed(attr)) {
1886 			/* Unfortunately cp -r incorrectly treats compressed clusters. */
1887 			err = -EOPNOTSUPP;
1888 			ntfs_inode_warn(
1889 				&ni->vfs_inode,
1890 				"fiemap is not supported for compressed file (cp -r)");
1891 			goto out;
1892 		}
1893 	}
1894 
1895 	if (!attr || !attr->non_res) {
1896 		err = fiemap_fill_next_extent(
1897 			fieinfo, 0, 0,
1898 			attr ? le32_to_cpu(attr->res.data_size) : 0,
1899 			FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1900 				FIEMAP_EXTENT_MERGED);
1901 		goto out;
1902 	}
1903 
1904 	end = vbo + len;
1905 	alloc_size = le64_to_cpu(attr->nres.alloc_size);
1906 	if (end > alloc_size)
1907 		end = alloc_size;
1908 
1909 	while (vbo < end) {
1910 		if (idx == -1) {
1911 			ok = run_lookup_entry(&run, vcn, &lcn, &clen, &idx);
1912 		} else {
1913 			CLST vcn_next = vcn;
1914 
1915 			ok = run_get_entry(&run, ++idx, &vcn, &lcn, &clen) &&
1916 			     vcn == vcn_next;
1917 			if (!ok)
1918 				vcn = vcn_next;
1919 		}
1920 
1921 		if (!ok) {
1922 			err = attr_load_runs_vcn(ni, attr->type,
1923 						 attr_name(attr),
1924 						 attr->name_len, &run, vcn);
1925 
1926 			if (err)
1927 				break;
1928 
1929 			ok = run_lookup_entry(&run, vcn, &lcn, &clen, &idx);
1930 
1931 			if (!ok) {
1932 				err = -EINVAL;
1933 				break;
1934 			}
1935 		}
1936 
1937 		if (!clen) {
1938 			err = -EINVAL; // ?
1939 			break;
1940 		}
1941 
1942 		if (lcn == SPARSE_LCN) {
1943 			vcn += clen;
1944 			vbo = (u64)vcn << cluster_bits;
1945 			continue;
1946 		}
1947 
1948 		flags = FIEMAP_EXTENT_MERGED;
1949 		if (S_ISDIR(ni->vfs_inode.i_mode)) {
1950 			;
1951 		} else if (is_attr_compressed(attr)) {
1952 			CLST clst_data;
1953 
1954 			err = attr_is_frame_compressed(ni, attr,
1955 						       vcn >> attr->nres.c_unit,
1956 						       &clst_data, &run);
1957 			if (err)
1958 				break;
1959 			if (clst_data < NTFS_LZNT_CLUSTERS)
1960 				flags |= FIEMAP_EXTENT_ENCODED;
1961 		} else if (is_attr_encrypted(attr)) {
1962 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1963 		}
1964 
1965 		vbo = (u64)vcn << cluster_bits;
1966 		bytes = (u64)clen << cluster_bits;
1967 		lbo = (u64)lcn << cluster_bits;
1968 
1969 		vcn += clen;
1970 
1971 		if (vbo + bytes >= end)
1972 			bytes = end - vbo;
1973 
1974 		if (vbo + bytes <= valid) {
1975 			;
1976 		} else if (vbo >= valid) {
1977 			flags |= FIEMAP_EXTENT_UNWRITTEN;
1978 		} else {
1979 			/* vbo < valid && valid < vbo + bytes */
1980 			u64 dlen = valid - vbo;
1981 
1982 			if (vbo + dlen >= end)
1983 				flags |= FIEMAP_EXTENT_LAST;
1984 
1985 			err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
1986 						      flags);
1987 
1988 			if (err < 0)
1989 				break;
1990 			if (err == 1) {
1991 				err = 0;
1992 				break;
1993 			}
1994 
1995 			vbo = valid;
1996 			bytes -= dlen;
1997 			if (!bytes)
1998 				continue;
1999 
2000 			lbo += dlen;
2001 			flags |= FIEMAP_EXTENT_UNWRITTEN;
2002 		}
2003 
2004 		if (vbo + bytes >= end)
2005 			flags |= FIEMAP_EXTENT_LAST;
2006 
2007 		err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2008 		if (err < 0)
2009 			break;
2010 		if (err == 1) {
2011 			err = 0;
2012 			break;
2013 		}
2014 
2015 		vbo += bytes;
2016 	}
2017 
2018 out:
2019 	run_close(&run);
2020 	return err;
2021 }
2022 
2023 /*
2024  * ni_readpage_cmpr
2025  *
2026  * When decompressing, we typically obtain more than one page per reference.
2027  * We inject the additional pages into the page cache.
2028  */
ni_readpage_cmpr(struct ntfs_inode * ni,struct folio * folio)2029 int ni_readpage_cmpr(struct ntfs_inode *ni, struct folio *folio)
2030 {
2031 	int err;
2032 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2033 	struct address_space *mapping = folio->mapping;
2034 	pgoff_t index = folio->index;
2035 	u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2036 	struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2037 	u8 frame_bits;
2038 	CLST frame;
2039 	u32 i, idx, frame_size, pages_per_frame;
2040 	gfp_t gfp_mask;
2041 	struct page *pg;
2042 
2043 	if (vbo >= i_size_read(&ni->vfs_inode)) {
2044 		folio_zero_range(folio, 0, folio_size(folio));
2045 		folio_mark_uptodate(folio);
2046 		err = 0;
2047 		goto out;
2048 	}
2049 
2050 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2051 		/* Xpress or LZX. */
2052 		frame_bits = ni_ext_compress_bits(ni);
2053 	} else {
2054 		/* LZNT compression. */
2055 		frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2056 	}
2057 	frame_size = 1u << frame_bits;
2058 	frame = vbo >> frame_bits;
2059 	frame_vbo = (u64)frame << frame_bits;
2060 	idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2061 
2062 	pages_per_frame = frame_size >> PAGE_SHIFT;
2063 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2064 	if (!pages) {
2065 		err = -ENOMEM;
2066 		goto out;
2067 	}
2068 
2069 	pages[idx] = &folio->page;
2070 	index = frame_vbo >> PAGE_SHIFT;
2071 	gfp_mask = mapping_gfp_mask(mapping);
2072 
2073 	for (i = 0; i < pages_per_frame; i++, index++) {
2074 		if (i == idx)
2075 			continue;
2076 
2077 		pg = find_or_create_page(mapping, index, gfp_mask);
2078 		if (!pg) {
2079 			err = -ENOMEM;
2080 			goto out1;
2081 		}
2082 		pages[i] = pg;
2083 	}
2084 
2085 	err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2086 
2087 out1:
2088 	for (i = 0; i < pages_per_frame; i++) {
2089 		pg = pages[i];
2090 		if (i == idx || !pg)
2091 			continue;
2092 		unlock_page(pg);
2093 		put_page(pg);
2094 	}
2095 
2096 out:
2097 	/* At this point, err contains 0 or -EIO depending on the "critical" page. */
2098 	kfree(pages);
2099 	folio_unlock(folio);
2100 
2101 	return err;
2102 }
2103 
2104 #ifdef CONFIG_NTFS3_LZX_XPRESS
2105 /*
2106  * ni_decompress_file - Decompress LZX/Xpress compressed file.
2107  *
2108  * Remove ATTR_DATA::WofCompressedData.
2109  * Remove ATTR_REPARSE.
2110  */
ni_decompress_file(struct ntfs_inode * ni)2111 int ni_decompress_file(struct ntfs_inode *ni)
2112 {
2113 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2114 	struct inode *inode = &ni->vfs_inode;
2115 	loff_t i_size = i_size_read(inode);
2116 	struct address_space *mapping = inode->i_mapping;
2117 	gfp_t gfp_mask = mapping_gfp_mask(mapping);
2118 	struct page **pages = NULL;
2119 	struct ATTR_LIST_ENTRY *le;
2120 	struct ATTRIB *attr;
2121 	CLST vcn, cend, lcn, clen, end;
2122 	pgoff_t index;
2123 	u64 vbo;
2124 	u8 frame_bits;
2125 	u32 i, frame_size, pages_per_frame, bytes;
2126 	struct mft_inode *mi;
2127 	int err;
2128 
2129 	/* Clusters for decompressed data. */
2130 	cend = bytes_to_cluster(sbi, i_size);
2131 
2132 	if (!i_size)
2133 		goto remove_wof;
2134 
2135 	/* Check in advance. */
2136 	if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2137 		err = -ENOSPC;
2138 		goto out;
2139 	}
2140 
2141 	frame_bits = ni_ext_compress_bits(ni);
2142 	frame_size = 1u << frame_bits;
2143 	pages_per_frame = frame_size >> PAGE_SHIFT;
2144 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2145 	if (!pages) {
2146 		err = -ENOMEM;
2147 		goto out;
2148 	}
2149 
2150 	/*
2151 	 * Step 1: Decompress data and copy to new allocated clusters.
2152 	 */
2153 	index = 0;
2154 	for (vbo = 0; vbo < i_size; vbo += bytes) {
2155 		u32 nr_pages;
2156 		bool new;
2157 
2158 		if (vbo + frame_size > i_size) {
2159 			bytes = i_size - vbo;
2160 			nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2161 		} else {
2162 			nr_pages = pages_per_frame;
2163 			bytes = frame_size;
2164 		}
2165 
2166 		end = bytes_to_cluster(sbi, vbo + bytes);
2167 
2168 		for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2169 			err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2170 						  &clen, &new, false);
2171 			if (err)
2172 				goto out;
2173 		}
2174 
2175 		for (i = 0; i < pages_per_frame; i++, index++) {
2176 			struct page *pg;
2177 
2178 			pg = find_or_create_page(mapping, index, gfp_mask);
2179 			if (!pg) {
2180 				while (i--) {
2181 					unlock_page(pages[i]);
2182 					put_page(pages[i]);
2183 				}
2184 				err = -ENOMEM;
2185 				goto out;
2186 			}
2187 			pages[i] = pg;
2188 		}
2189 
2190 		err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2191 
2192 		if (!err) {
2193 			down_read(&ni->file.run_lock);
2194 			err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2195 					     nr_pages, vbo, bytes,
2196 					     REQ_OP_WRITE);
2197 			up_read(&ni->file.run_lock);
2198 		}
2199 
2200 		for (i = 0; i < pages_per_frame; i++) {
2201 			unlock_page(pages[i]);
2202 			put_page(pages[i]);
2203 		}
2204 
2205 		if (err)
2206 			goto out;
2207 
2208 		cond_resched();
2209 	}
2210 
2211 remove_wof:
2212 	/*
2213 	 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2214 	 * and ATTR_REPARSE.
2215 	 */
2216 	attr = NULL;
2217 	le = NULL;
2218 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2219 		CLST svcn, evcn;
2220 		u32 asize, roff;
2221 
2222 		if (attr->type == ATTR_REPARSE) {
2223 			struct MFT_REF ref;
2224 
2225 			mi_get_ref(&ni->mi, &ref);
2226 			ntfs_remove_reparse(sbi, 0, &ref);
2227 		}
2228 
2229 		if (!attr->non_res)
2230 			continue;
2231 
2232 		if (attr->type != ATTR_REPARSE &&
2233 		    (attr->type != ATTR_DATA ||
2234 		     attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2235 		     memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2236 			continue;
2237 
2238 		svcn = le64_to_cpu(attr->nres.svcn);
2239 		evcn = le64_to_cpu(attr->nres.evcn);
2240 
2241 		if (evcn + 1 <= svcn)
2242 			continue;
2243 
2244 		asize = le32_to_cpu(attr->size);
2245 		roff = le16_to_cpu(attr->nres.run_off);
2246 
2247 		if (roff > asize) {
2248 			err = -EINVAL;
2249 			goto out;
2250 		}
2251 
2252 		/*run==1  Means unpack and deallocate. */
2253 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2254 			      Add2Ptr(attr, roff), asize - roff);
2255 	}
2256 
2257 	/*
2258 	 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2259 	 */
2260 	err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2261 			     false, NULL);
2262 	if (err)
2263 		goto out;
2264 
2265 	/*
2266 	 * Step 4: Remove ATTR_REPARSE.
2267 	 */
2268 	err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2269 	if (err)
2270 		goto out;
2271 
2272 	/*
2273 	 * Step 5: Remove sparse flag from data attribute.
2274 	 */
2275 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2276 	if (!attr) {
2277 		err = -EINVAL;
2278 		goto out;
2279 	}
2280 
2281 	if (attr->non_res && is_attr_sparsed(attr)) {
2282 		/* Sparsed attribute header is 8 bytes bigger than normal. */
2283 		struct MFT_REC *rec = mi->mrec;
2284 		u32 used = le32_to_cpu(rec->used);
2285 		u32 asize = le32_to_cpu(attr->size);
2286 		u16 roff = le16_to_cpu(attr->nres.run_off);
2287 		char *rbuf = Add2Ptr(attr, roff);
2288 
2289 		memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2290 		attr->size = cpu_to_le32(asize - 8);
2291 		attr->flags &= ~ATTR_FLAG_SPARSED;
2292 		attr->nres.run_off = cpu_to_le16(roff - 8);
2293 		attr->nres.c_unit = 0;
2294 		rec->used = cpu_to_le32(used - 8);
2295 		mi->dirty = true;
2296 		ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2297 				FILE_ATTRIBUTE_REPARSE_POINT);
2298 
2299 		mark_inode_dirty(inode);
2300 	}
2301 
2302 	/* Clear cached flag. */
2303 	ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2304 	if (ni->file.offs_folio) {
2305 		folio_put(ni->file.offs_folio);
2306 		ni->file.offs_folio = NULL;
2307 	}
2308 	mapping->a_ops = &ntfs_aops;
2309 
2310 out:
2311 	kfree(pages);
2312 	if (err)
2313 		_ntfs_bad_inode(inode);
2314 
2315 	return err;
2316 }
2317 
2318 /*
2319  * decompress_lzx_xpress - External compression LZX/Xpress.
2320  */
decompress_lzx_xpress(struct ntfs_sb_info * sbi,const char * cmpr,size_t cmpr_size,void * unc,size_t unc_size,u32 frame_size)2321 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2322 				 size_t cmpr_size, void *unc, size_t unc_size,
2323 				 u32 frame_size)
2324 {
2325 	int err;
2326 	void *ctx;
2327 
2328 	if (cmpr_size == unc_size) {
2329 		/* Frame not compressed. */
2330 		memcpy(unc, cmpr, unc_size);
2331 		return 0;
2332 	}
2333 
2334 	err = 0;
2335 	if (frame_size == 0x8000) {
2336 		mutex_lock(&sbi->compress.mtx_lzx);
2337 		/* LZX: Frame compressed. */
2338 		ctx = sbi->compress.lzx;
2339 		if (!ctx) {
2340 			/* Lazy initialize LZX decompress context. */
2341 			ctx = lzx_allocate_decompressor();
2342 			if (!ctx) {
2343 				err = -ENOMEM;
2344 				goto out1;
2345 			}
2346 
2347 			sbi->compress.lzx = ctx;
2348 		}
2349 
2350 		if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2351 			/* Treat all errors as "invalid argument". */
2352 			err = -EINVAL;
2353 		}
2354 out1:
2355 		mutex_unlock(&sbi->compress.mtx_lzx);
2356 	} else {
2357 		/* XPRESS: Frame compressed. */
2358 		mutex_lock(&sbi->compress.mtx_xpress);
2359 		ctx = sbi->compress.xpress;
2360 		if (!ctx) {
2361 			/* Lazy initialize Xpress decompress context. */
2362 			ctx = xpress_allocate_decompressor();
2363 			if (!ctx) {
2364 				err = -ENOMEM;
2365 				goto out2;
2366 			}
2367 
2368 			sbi->compress.xpress = ctx;
2369 		}
2370 
2371 		if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2372 			/* Treat all errors as "invalid argument". */
2373 			err = -EINVAL;
2374 		}
2375 out2:
2376 		mutex_unlock(&sbi->compress.mtx_xpress);
2377 	}
2378 	return err;
2379 }
2380 #endif
2381 
2382 /*
2383  * ni_read_frame
2384  *
2385  * Pages - Array of locked pages.
2386  */
ni_read_frame(struct ntfs_inode * ni,u64 frame_vbo,struct page ** pages,u32 pages_per_frame)2387 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2388 		  u32 pages_per_frame)
2389 {
2390 	int err;
2391 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2392 	u8 cluster_bits = sbi->cluster_bits;
2393 	char *frame_ondisk = NULL;
2394 	char *frame_mem = NULL;
2395 	struct page **pages_disk = NULL;
2396 	struct ATTR_LIST_ENTRY *le = NULL;
2397 	struct runs_tree *run = &ni->file.run;
2398 	u64 valid_size = ni->i_valid;
2399 	u64 vbo_disk;
2400 	size_t unc_size;
2401 	u32 frame_size, i, npages_disk, ondisk_size;
2402 	struct page *pg;
2403 	struct ATTRIB *attr;
2404 	CLST frame, clst_data;
2405 
2406 	/*
2407 	 * To simplify decompress algorithm do vmap for source
2408 	 * and target pages.
2409 	 */
2410 	for (i = 0; i < pages_per_frame; i++)
2411 		kmap(pages[i]);
2412 
2413 	frame_size = pages_per_frame << PAGE_SHIFT;
2414 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2415 	if (!frame_mem) {
2416 		err = -ENOMEM;
2417 		goto out;
2418 	}
2419 
2420 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2421 	if (!attr) {
2422 		err = -ENOENT;
2423 		goto out1;
2424 	}
2425 
2426 	if (!attr->non_res) {
2427 		u32 data_size = le32_to_cpu(attr->res.data_size);
2428 
2429 		memset(frame_mem, 0, frame_size);
2430 		if (frame_vbo < data_size) {
2431 			ondisk_size = data_size - frame_vbo;
2432 			memcpy(frame_mem, resident_data(attr) + frame_vbo,
2433 			       min(ondisk_size, frame_size));
2434 		}
2435 		err = 0;
2436 		goto out1;
2437 	}
2438 
2439 	if (frame_vbo >= valid_size) {
2440 		memset(frame_mem, 0, frame_size);
2441 		err = 0;
2442 		goto out1;
2443 	}
2444 
2445 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2446 #ifndef CONFIG_NTFS3_LZX_XPRESS
2447 		err = -EOPNOTSUPP;
2448 		goto out1;
2449 #else
2450 		loff_t i_size = i_size_read(&ni->vfs_inode);
2451 		u32 frame_bits = ni_ext_compress_bits(ni);
2452 		u64 frame64 = frame_vbo >> frame_bits;
2453 		u64 frames, vbo_data;
2454 
2455 		if (frame_size != (1u << frame_bits)) {
2456 			err = -EINVAL;
2457 			goto out1;
2458 		}
2459 		switch (frame_size) {
2460 		case 0x1000:
2461 		case 0x2000:
2462 		case 0x4000:
2463 		case 0x8000:
2464 			break;
2465 		default:
2466 			/* Unknown compression. */
2467 			err = -EOPNOTSUPP;
2468 			goto out1;
2469 		}
2470 
2471 		attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2472 				    ARRAY_SIZE(WOF_NAME), NULL, NULL);
2473 		if (!attr) {
2474 			ntfs_inode_err(
2475 				&ni->vfs_inode,
2476 				"external compressed file should contains data attribute \"WofCompressedData\"");
2477 			err = -EINVAL;
2478 			goto out1;
2479 		}
2480 
2481 		if (!attr->non_res) {
2482 			run = NULL;
2483 		} else {
2484 			run = run_alloc();
2485 			if (!run) {
2486 				err = -ENOMEM;
2487 				goto out1;
2488 			}
2489 		}
2490 
2491 		frames = (i_size - 1) >> frame_bits;
2492 
2493 		err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2494 					  frame_bits, &ondisk_size, &vbo_data);
2495 		if (err)
2496 			goto out2;
2497 
2498 		if (frame64 == frames) {
2499 			unc_size = 1 + ((i_size - 1) & (frame_size - 1));
2500 			ondisk_size = attr_size(attr) - vbo_data;
2501 		} else {
2502 			unc_size = frame_size;
2503 		}
2504 
2505 		if (ondisk_size > frame_size) {
2506 			err = -EINVAL;
2507 			goto out2;
2508 		}
2509 
2510 		if (!attr->non_res) {
2511 			if (vbo_data + ondisk_size >
2512 			    le32_to_cpu(attr->res.data_size)) {
2513 				err = -EINVAL;
2514 				goto out1;
2515 			}
2516 
2517 			err = decompress_lzx_xpress(
2518 				sbi, Add2Ptr(resident_data(attr), vbo_data),
2519 				ondisk_size, frame_mem, unc_size, frame_size);
2520 			goto out1;
2521 		}
2522 		vbo_disk = vbo_data;
2523 		/* Load all runs to read [vbo_disk-vbo_to). */
2524 		err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2525 					   ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2526 					   vbo_data + ondisk_size);
2527 		if (err)
2528 			goto out2;
2529 		npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2530 			       PAGE_SIZE - 1) >>
2531 			      PAGE_SHIFT;
2532 #endif
2533 	} else if (is_attr_compressed(attr)) {
2534 		/* LZNT compression. */
2535 		if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2536 			err = -EOPNOTSUPP;
2537 			goto out1;
2538 		}
2539 
2540 		if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2541 			err = -EOPNOTSUPP;
2542 			goto out1;
2543 		}
2544 
2545 		down_write(&ni->file.run_lock);
2546 		run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2547 		frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2548 		err = attr_is_frame_compressed(ni, attr, frame, &clst_data,
2549 					       run);
2550 		up_write(&ni->file.run_lock);
2551 		if (err)
2552 			goto out1;
2553 
2554 		if (!clst_data) {
2555 			memset(frame_mem, 0, frame_size);
2556 			goto out1;
2557 		}
2558 
2559 		frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2560 		ondisk_size = clst_data << cluster_bits;
2561 
2562 		if (clst_data >= NTFS_LZNT_CLUSTERS) {
2563 			/* Frame is not compressed. */
2564 			down_read(&ni->file.run_lock);
2565 			err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2566 					     frame_vbo, ondisk_size,
2567 					     REQ_OP_READ);
2568 			up_read(&ni->file.run_lock);
2569 			goto out1;
2570 		}
2571 		vbo_disk = frame_vbo;
2572 		npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2573 	} else {
2574 		__builtin_unreachable();
2575 		err = -EINVAL;
2576 		goto out1;
2577 	}
2578 
2579 	pages_disk = kcalloc(npages_disk, sizeof(*pages_disk), GFP_NOFS);
2580 	if (!pages_disk) {
2581 		err = -ENOMEM;
2582 		goto out2;
2583 	}
2584 
2585 	for (i = 0; i < npages_disk; i++) {
2586 		pg = alloc_page(GFP_KERNEL);
2587 		if (!pg) {
2588 			err = -ENOMEM;
2589 			goto out3;
2590 		}
2591 		pages_disk[i] = pg;
2592 		lock_page(pg);
2593 		kmap(pg);
2594 	}
2595 
2596 	/* Read 'ondisk_size' bytes from disk. */
2597 	down_read(&ni->file.run_lock);
2598 	err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2599 			     ondisk_size, REQ_OP_READ);
2600 	up_read(&ni->file.run_lock);
2601 	if (err)
2602 		goto out3;
2603 
2604 	/*
2605 	 * To simplify decompress algorithm do vmap for source and target pages.
2606 	 */
2607 	frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2608 	if (!frame_ondisk) {
2609 		err = -ENOMEM;
2610 		goto out3;
2611 	}
2612 
2613 	/* Decompress: Frame_ondisk -> frame_mem. */
2614 #ifdef CONFIG_NTFS3_LZX_XPRESS
2615 	if (run != &ni->file.run) {
2616 		/* LZX or XPRESS */
2617 		err = decompress_lzx_xpress(
2618 			sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2619 			ondisk_size, frame_mem, unc_size, frame_size);
2620 	} else
2621 #endif
2622 	{
2623 		/* LZNT - Native NTFS compression. */
2624 		unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2625 					   frame_size);
2626 		if ((ssize_t)unc_size < 0)
2627 			err = unc_size;
2628 		else if (!unc_size || unc_size > frame_size)
2629 			err = -EINVAL;
2630 	}
2631 	if (!err && valid_size < frame_vbo + frame_size) {
2632 		size_t ok = valid_size - frame_vbo;
2633 
2634 		memset(frame_mem + ok, 0, frame_size - ok);
2635 	}
2636 
2637 	vunmap(frame_ondisk);
2638 
2639 out3:
2640 	for (i = 0; i < npages_disk; i++) {
2641 		pg = pages_disk[i];
2642 		if (pg) {
2643 			kunmap(pg);
2644 			unlock_page(pg);
2645 			put_page(pg);
2646 		}
2647 	}
2648 	kfree(pages_disk);
2649 
2650 out2:
2651 #ifdef CONFIG_NTFS3_LZX_XPRESS
2652 	if (run != &ni->file.run)
2653 		run_free(run);
2654 #endif
2655 out1:
2656 	vunmap(frame_mem);
2657 out:
2658 	for (i = 0; i < pages_per_frame; i++) {
2659 		pg = pages[i];
2660 		kunmap(pg);
2661 		SetPageUptodate(pg);
2662 	}
2663 
2664 	return err;
2665 }
2666 
2667 /*
2668  * ni_write_frame
2669  *
2670  * Pages - Array of locked pages.
2671  */
ni_write_frame(struct ntfs_inode * ni,struct page ** pages,u32 pages_per_frame)2672 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2673 		   u32 pages_per_frame)
2674 {
2675 	int err;
2676 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2677 	struct folio *folio = page_folio(pages[0]);
2678 	u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2679 	u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2680 	u64 frame_vbo = folio_pos(folio);
2681 	CLST frame = frame_vbo >> frame_bits;
2682 	char *frame_ondisk = NULL;
2683 	struct page **pages_disk = NULL;
2684 	struct ATTR_LIST_ENTRY *le = NULL;
2685 	char *frame_mem;
2686 	struct ATTRIB *attr;
2687 	struct mft_inode *mi;
2688 	u32 i;
2689 	struct page *pg;
2690 	size_t compr_size, ondisk_size;
2691 	struct lznt *lznt;
2692 
2693 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2694 	if (!attr) {
2695 		err = -ENOENT;
2696 		goto out;
2697 	}
2698 
2699 	if (WARN_ON(!is_attr_compressed(attr))) {
2700 		err = -EINVAL;
2701 		goto out;
2702 	}
2703 
2704 	if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2705 		err = -EOPNOTSUPP;
2706 		goto out;
2707 	}
2708 
2709 	if (!attr->non_res) {
2710 		down_write(&ni->file.run_lock);
2711 		err = attr_make_nonresident(ni, attr, le, mi,
2712 					    le32_to_cpu(attr->res.data_size),
2713 					    &ni->file.run, &attr, pages[0]);
2714 		up_write(&ni->file.run_lock);
2715 		if (err)
2716 			goto out;
2717 	}
2718 
2719 	if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2720 		err = -EOPNOTSUPP;
2721 		goto out;
2722 	}
2723 
2724 	pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2725 	if (!pages_disk) {
2726 		err = -ENOMEM;
2727 		goto out;
2728 	}
2729 
2730 	for (i = 0; i < pages_per_frame; i++) {
2731 		pg = alloc_page(GFP_KERNEL);
2732 		if (!pg) {
2733 			err = -ENOMEM;
2734 			goto out1;
2735 		}
2736 		pages_disk[i] = pg;
2737 		lock_page(pg);
2738 		kmap(pg);
2739 	}
2740 
2741 	/* To simplify compress algorithm do vmap for source and target pages. */
2742 	frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2743 	if (!frame_ondisk) {
2744 		err = -ENOMEM;
2745 		goto out1;
2746 	}
2747 
2748 	for (i = 0; i < pages_per_frame; i++)
2749 		kmap(pages[i]);
2750 
2751 	/* Map in-memory frame for read-only. */
2752 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2753 	if (!frame_mem) {
2754 		err = -ENOMEM;
2755 		goto out2;
2756 	}
2757 
2758 	mutex_lock(&sbi->compress.mtx_lznt);
2759 	lznt = NULL;
2760 	if (!sbi->compress.lznt) {
2761 		/*
2762 		 * LZNT implements two levels of compression:
2763 		 * 0 - Standard compression
2764 		 * 1 - Best compression, requires a lot of cpu
2765 		 * use mount option?
2766 		 */
2767 		lznt = get_lznt_ctx(0);
2768 		if (!lznt) {
2769 			mutex_unlock(&sbi->compress.mtx_lznt);
2770 			err = -ENOMEM;
2771 			goto out3;
2772 		}
2773 
2774 		sbi->compress.lznt = lznt;
2775 		lznt = NULL;
2776 	}
2777 
2778 	/* Compress: frame_mem -> frame_ondisk */
2779 	compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2780 				   frame_size, sbi->compress.lznt);
2781 	mutex_unlock(&sbi->compress.mtx_lznt);
2782 	kfree(lznt);
2783 
2784 	if (compr_size + sbi->cluster_size > frame_size) {
2785 		/* Frame is not compressed. */
2786 		compr_size = frame_size;
2787 		ondisk_size = frame_size;
2788 	} else if (compr_size) {
2789 		/* Frame is compressed. */
2790 		ondisk_size = ntfs_up_cluster(sbi, compr_size);
2791 		memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2792 	} else {
2793 		/* Frame is sparsed. */
2794 		ondisk_size = 0;
2795 	}
2796 
2797 	down_write(&ni->file.run_lock);
2798 	run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2799 	err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2800 	up_write(&ni->file.run_lock);
2801 	if (err)
2802 		goto out2;
2803 
2804 	if (!ondisk_size)
2805 		goto out2;
2806 
2807 	down_read(&ni->file.run_lock);
2808 	err = ntfs_bio_pages(sbi, &ni->file.run,
2809 			     ondisk_size < frame_size ? pages_disk : pages,
2810 			     pages_per_frame, frame_vbo, ondisk_size,
2811 			     REQ_OP_WRITE);
2812 	up_read(&ni->file.run_lock);
2813 
2814 out3:
2815 	vunmap(frame_mem);
2816 
2817 out2:
2818 	for (i = 0; i < pages_per_frame; i++)
2819 		kunmap(pages[i]);
2820 
2821 	vunmap(frame_ondisk);
2822 out1:
2823 	for (i = 0; i < pages_per_frame; i++) {
2824 		pg = pages_disk[i];
2825 		if (pg) {
2826 			kunmap(pg);
2827 			unlock_page(pg);
2828 			put_page(pg);
2829 		}
2830 	}
2831 	kfree(pages_disk);
2832 out:
2833 	return err;
2834 }
2835 
2836 /*
2837  * ni_remove_name - Removes name 'de' from MFT and from directory.
2838  * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2839  */
ni_remove_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE ** de2,int * undo_step)2840 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2841 		   struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2842 {
2843 	int err;
2844 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2845 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2846 	struct ATTR_FILE_NAME *fname;
2847 	struct ATTR_LIST_ENTRY *le;
2848 	struct mft_inode *mi;
2849 	u16 de_key_size = le16_to_cpu(de->key_size);
2850 	u8 name_type;
2851 
2852 	*undo_step = 0;
2853 
2854 	/* Find name in record. */
2855 	mi_get_ref(&dir_ni->mi, &de_name->home);
2856 
2857 	fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len,
2858 			      &de_name->home, &mi, &le);
2859 	if (!fname)
2860 		return -ENOENT;
2861 
2862 	memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2863 	name_type = paired_name(fname->type);
2864 
2865 	/* Mark ntfs as dirty. It will be cleared at umount. */
2866 	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2867 
2868 	/* Step 1: Remove name from directory. */
2869 	err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2870 	if (err)
2871 		return err;
2872 
2873 	/* Step 2: Remove name from MFT. */
2874 	ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2875 
2876 	*undo_step = 2;
2877 
2878 	/* Get paired name. */
2879 	fname = ni_fname_type(ni, name_type, &mi, &le);
2880 	if (fname) {
2881 		u16 de2_key_size = fname_full_size(fname);
2882 
2883 		*de2 = Add2Ptr(de, 1024);
2884 		(*de2)->key_size = cpu_to_le16(de2_key_size);
2885 
2886 		memcpy(*de2 + 1, fname, de2_key_size);
2887 
2888 		/* Step 3: Remove paired name from directory. */
2889 		err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2890 					de2_key_size, sbi);
2891 		if (err)
2892 			return err;
2893 
2894 		/* Step 4: Remove paired name from MFT. */
2895 		ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2896 
2897 		*undo_step = 4;
2898 	}
2899 	return 0;
2900 }
2901 
2902 /*
2903  * ni_remove_name_undo - Paired function for ni_remove_name.
2904  *
2905  * Return: True if ok
2906  */
ni_remove_name_undo(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * de2,int undo_step)2907 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2908 			 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2909 {
2910 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2911 	struct ATTRIB *attr;
2912 	u16 de_key_size;
2913 
2914 	switch (undo_step) {
2915 	case 4:
2916 		de_key_size = le16_to_cpu(de2->key_size);
2917 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2918 				       &attr, NULL, NULL))
2919 			return false;
2920 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2921 
2922 		mi_get_ref(&ni->mi, &de2->ref);
2923 		de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2924 					sizeof(struct NTFS_DE));
2925 		de2->flags = 0;
2926 		de2->res = 0;
2927 
2928 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1))
2929 			return false;
2930 		fallthrough;
2931 
2932 	case 2:
2933 		de_key_size = le16_to_cpu(de->key_size);
2934 
2935 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2936 				       &attr, NULL, NULL))
2937 			return false;
2938 
2939 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
2940 		mi_get_ref(&ni->mi, &de->ref);
2941 
2942 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
2943 			return false;
2944 	}
2945 
2946 	return true;
2947 }
2948 
2949 /*
2950  * ni_add_name - Add new name into MFT and into directory.
2951  */
ni_add_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de)2952 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2953 		struct NTFS_DE *de)
2954 {
2955 	int err;
2956 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2957 	struct ATTRIB *attr;
2958 	struct ATTR_LIST_ENTRY *le;
2959 	struct mft_inode *mi;
2960 	struct ATTR_FILE_NAME *fname;
2961 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2962 	u16 de_key_size = le16_to_cpu(de->key_size);
2963 
2964 	if (sbi->options->windows_names &&
2965 	    !valid_windows_name(sbi, (struct le_str *)&de_name->name_len))
2966 		return -EINVAL;
2967 
2968 	/* If option "hide_dot_files" then set hidden attribute for dot files. */
2969 	if (ni->mi.sbi->options->hide_dot_files) {
2970 		if (de_name->name_len > 0 &&
2971 		    le16_to_cpu(de_name->name[0]) == '.')
2972 			ni->std_fa |= FILE_ATTRIBUTE_HIDDEN;
2973 		else
2974 			ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN;
2975 	}
2976 
2977 	mi_get_ref(&ni->mi, &de->ref);
2978 	mi_get_ref(&dir_ni->mi, &de_name->home);
2979 
2980 	/* Fill duplicate from any ATTR_NAME. */
2981 	fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
2982 	if (fname)
2983 		memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
2984 	de_name->dup.fa = ni->std_fa;
2985 
2986 	/* Insert new name into MFT. */
2987 	err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
2988 				 &mi, &le);
2989 	if (err)
2990 		return err;
2991 
2992 	memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
2993 
2994 	/* Insert new name into directory. */
2995 	err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0);
2996 	if (err)
2997 		ni_remove_attr_le(ni, attr, mi, le);
2998 
2999 	return err;
3000 }
3001 
3002 /*
3003  * ni_rename - Remove one name and insert new name.
3004  */
ni_rename(struct ntfs_inode * dir_ni,struct ntfs_inode * new_dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * new_de,bool * is_bad)3005 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3006 	      struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3007 	      bool *is_bad)
3008 {
3009 	int err;
3010 	struct NTFS_DE *de2 = NULL;
3011 	int undo = 0;
3012 
3013 	/*
3014 	 * There are two possible ways to rename:
3015 	 * 1) Add new name and remove old name.
3016 	 * 2) Remove old name and add new name.
3017 	 *
3018 	 * In most cases (not all!) adding new name into MFT and into directory can
3019 	 * allocate additional cluster(s).
3020 	 * Second way may result to bad inode if we can't add new name
3021 	 * and then can't restore (add) old name.
3022 	 */
3023 
3024 	/*
3025 	 * Way 1 - Add new + remove old.
3026 	 */
3027 	err = ni_add_name(new_dir_ni, ni, new_de);
3028 	if (!err) {
3029 		err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3030 		if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3031 			*is_bad = true;
3032 	}
3033 
3034 	/*
3035 	 * Way 2 - Remove old + add new.
3036 	 */
3037 	/*
3038 	 *	err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3039 	 *	if (!err) {
3040 	 *		err = ni_add_name(new_dir_ni, ni, new_de);
3041 	 *		if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3042 	 *			*is_bad = true;
3043 	 *	}
3044 	 */
3045 
3046 	return err;
3047 }
3048 
3049 /*
3050  * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3051  */
ni_is_dirty(struct inode * inode)3052 bool ni_is_dirty(struct inode *inode)
3053 {
3054 	struct ntfs_inode *ni = ntfs_i(inode);
3055 	struct rb_node *node;
3056 
3057 	if (ni->mi.dirty || ni->attr_list.dirty ||
3058 	    (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3059 		return true;
3060 
3061 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3062 		if (rb_entry(node, struct mft_inode, node)->dirty)
3063 			return true;
3064 	}
3065 
3066 	return false;
3067 }
3068 
3069 /*
3070  * ni_update_parent
3071  *
3072  * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3073  */
ni_update_parent(struct ntfs_inode * ni,struct NTFS_DUP_INFO * dup,int sync)3074 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3075 			     int sync)
3076 {
3077 	struct ATTRIB *attr;
3078 	struct mft_inode *mi;
3079 	struct ATTR_LIST_ENTRY *le = NULL;
3080 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3081 	struct super_block *sb = sbi->sb;
3082 	bool re_dirty = false;
3083 
3084 	if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3085 		dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3086 		attr = NULL;
3087 		dup->alloc_size = 0;
3088 		dup->data_size = 0;
3089 	} else {
3090 		dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3091 
3092 		attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3093 				    &mi);
3094 		if (!attr) {
3095 			dup->alloc_size = dup->data_size = 0;
3096 		} else if (!attr->non_res) {
3097 			u32 data_size = le32_to_cpu(attr->res.data_size);
3098 
3099 			dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3100 			dup->data_size = cpu_to_le64(data_size);
3101 		} else {
3102 			u64 new_valid = ni->i_valid;
3103 			u64 data_size = le64_to_cpu(attr->nres.data_size);
3104 			__le64 valid_le;
3105 
3106 			dup->alloc_size = is_attr_ext(attr) ?
3107 						  attr->nres.total_size :
3108 						  attr->nres.alloc_size;
3109 			dup->data_size = attr->nres.data_size;
3110 
3111 			if (new_valid > data_size)
3112 				new_valid = data_size;
3113 
3114 			valid_le = cpu_to_le64(new_valid);
3115 			if (valid_le != attr->nres.valid_size) {
3116 				attr->nres.valid_size = valid_le;
3117 				mi->dirty = true;
3118 			}
3119 		}
3120 	}
3121 
3122 	/* TODO: Fill reparse info. */
3123 	dup->reparse = 0;
3124 	dup->ea_size = 0;
3125 
3126 	if (ni->ni_flags & NI_FLAG_EA) {
3127 		attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3128 				    NULL);
3129 		if (attr) {
3130 			const struct EA_INFO *info;
3131 
3132 			info = resident_data_ex(attr, sizeof(struct EA_INFO));
3133 			/* If ATTR_EA_INFO exists 'info' can't be NULL. */
3134 			if (info)
3135 				dup->ea_size = info->size_pack;
3136 		}
3137 	}
3138 
3139 	attr = NULL;
3140 	le = NULL;
3141 
3142 	while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3143 				    &mi))) {
3144 		struct inode *dir;
3145 		struct ATTR_FILE_NAME *fname;
3146 
3147 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3148 		if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3149 			continue;
3150 
3151 		/* Check simple case when parent inode equals current inode. */
3152 		if (ino_get(&fname->home) == ni->vfs_inode.i_ino) {
3153 			ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3154 			continue;
3155 		}
3156 
3157 		/* ntfs_iget5 may sleep. */
3158 		dir = ntfs_iget5(sb, &fname->home, NULL);
3159 		if (IS_ERR(dir)) {
3160 			ntfs_inode_warn(
3161 				&ni->vfs_inode,
3162 				"failed to open parent directory r=%lx to update",
3163 				(long)ino_get(&fname->home));
3164 			continue;
3165 		}
3166 
3167 		if (!is_bad_inode(dir)) {
3168 			struct ntfs_inode *dir_ni = ntfs_i(dir);
3169 
3170 			if (!ni_trylock(dir_ni)) {
3171 				re_dirty = true;
3172 			} else {
3173 				indx_update_dup(dir_ni, sbi, fname, dup, sync);
3174 				ni_unlock(dir_ni);
3175 				memcpy(&fname->dup, dup, sizeof(fname->dup));
3176 				mi->dirty = true;
3177 			}
3178 		}
3179 		iput(dir);
3180 	}
3181 
3182 	return re_dirty;
3183 }
3184 
3185 /*
3186  * ni_write_inode - Write MFT base record and all subrecords to disk.
3187  */
ni_write_inode(struct inode * inode,int sync,const char * hint)3188 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3189 {
3190 	int err = 0, err2;
3191 	struct ntfs_inode *ni = ntfs_i(inode);
3192 	struct super_block *sb = inode->i_sb;
3193 	struct ntfs_sb_info *sbi = sb->s_fs_info;
3194 	bool re_dirty = false;
3195 	struct ATTR_STD_INFO *std;
3196 	struct rb_node *node, *next;
3197 	struct NTFS_DUP_INFO dup;
3198 
3199 	if (is_bad_inode(inode) || sb_rdonly(sb))
3200 		return 0;
3201 
3202 	if (unlikely(ntfs3_forced_shutdown(sb)))
3203 		return -EIO;
3204 
3205 	if (!ni_trylock(ni)) {
3206 		/* 'ni' is under modification, skip for now. */
3207 		mark_inode_dirty_sync(inode);
3208 		return 0;
3209 	}
3210 
3211 	if (!ni->mi.mrec)
3212 		goto out;
3213 
3214 	if (is_rec_inuse(ni->mi.mrec) &&
3215 	    !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3216 		bool modified = false;
3217 		struct timespec64 ts;
3218 
3219 		/* Update times in standard attribute. */
3220 		std = ni_std(ni);
3221 		if (!std) {
3222 			err = -EINVAL;
3223 			goto out;
3224 		}
3225 
3226 		/* Update the access times if they have changed. */
3227 		ts = inode_get_mtime(inode);
3228 		dup.m_time = kernel2nt(&ts);
3229 		if (std->m_time != dup.m_time) {
3230 			std->m_time = dup.m_time;
3231 			modified = true;
3232 		}
3233 
3234 		ts = inode_get_ctime(inode);
3235 		dup.c_time = kernel2nt(&ts);
3236 		if (std->c_time != dup.c_time) {
3237 			std->c_time = dup.c_time;
3238 			modified = true;
3239 		}
3240 
3241 		ts = inode_get_atime(inode);
3242 		dup.a_time = kernel2nt(&ts);
3243 		if (std->a_time != dup.a_time) {
3244 			std->a_time = dup.a_time;
3245 			modified = true;
3246 		}
3247 
3248 		dup.fa = ni->std_fa;
3249 		if (std->fa != dup.fa) {
3250 			std->fa = dup.fa;
3251 			modified = true;
3252 		}
3253 
3254 		/* std attribute is always in primary MFT record. */
3255 		if (modified)
3256 			ni->mi.dirty = true;
3257 
3258 		if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3259 		    (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3260 		    /* Avoid __wait_on_freeing_inode(inode). */
3261 		    && (sb->s_flags & SB_ACTIVE)) {
3262 			dup.cr_time = std->cr_time;
3263 			/* Not critical if this function fail. */
3264 			re_dirty = ni_update_parent(ni, &dup, sync);
3265 
3266 			if (re_dirty)
3267 				ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3268 			else
3269 				ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3270 		}
3271 
3272 		/* Update attribute list. */
3273 		if (ni->attr_list.size && ni->attr_list.dirty) {
3274 			if (inode->i_ino != MFT_REC_MFT || sync) {
3275 				err = ni_try_remove_attr_list(ni);
3276 				if (err)
3277 					goto out;
3278 			}
3279 
3280 			err = al_update(ni, sync);
3281 			if (err)
3282 				goto out;
3283 		}
3284 	}
3285 
3286 	for (node = rb_first(&ni->mi_tree); node; node = next) {
3287 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3288 		bool is_empty;
3289 
3290 		next = rb_next(node);
3291 
3292 		if (!mi->dirty)
3293 			continue;
3294 
3295 		is_empty = !mi_enum_attr(ni, mi, NULL);
3296 
3297 		if (is_empty)
3298 			clear_rec_inuse(mi->mrec);
3299 
3300 		err2 = mi_write(mi, sync);
3301 		if (!err && err2)
3302 			err = err2;
3303 
3304 		if (is_empty) {
3305 			ntfs_mark_rec_free(sbi, mi->rno, false);
3306 			rb_erase(node, &ni->mi_tree);
3307 			mi_put(mi);
3308 		}
3309 	}
3310 
3311 	if (ni->mi.dirty) {
3312 		err2 = mi_write(&ni->mi, sync);
3313 		if (!err && err2)
3314 			err = err2;
3315 	}
3316 out:
3317 	ni_unlock(ni);
3318 
3319 	if (err) {
3320 		ntfs_inode_err(inode, "%s failed, %d.", hint, err);
3321 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3322 		return err;
3323 	}
3324 
3325 	if (re_dirty)
3326 		mark_inode_dirty_sync(inode);
3327 
3328 	return 0;
3329 }
3330 
3331 /*
3332  * ni_set_compress
3333  *
3334  * Helper for 'ntfs_fileattr_set'.
3335  * Changes compression for empty files and directories only.
3336  */
ni_set_compress(struct inode * inode,bool compr)3337 int ni_set_compress(struct inode *inode, bool compr)
3338 {
3339 	int err;
3340 	struct ntfs_inode *ni = ntfs_i(inode);
3341 	struct ATTR_STD_INFO *std;
3342 	const char *bad_inode;
3343 
3344 	if (is_compressed(ni) == !!compr)
3345 		return 0;
3346 
3347 	if (is_sparsed(ni)) {
3348 		/* sparse and compress not compatible. */
3349 		return -EOPNOTSUPP;
3350 	}
3351 
3352 	if (!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode)) {
3353 		/*Skip other inodes. (symlink,fifo,...) */
3354 		return -EOPNOTSUPP;
3355 	}
3356 
3357 	bad_inode = NULL;
3358 
3359 	ni_lock(ni);
3360 
3361 	std = ni_std(ni);
3362 	if (!std) {
3363 		bad_inode = "no std";
3364 		goto out;
3365 	}
3366 
3367 	if (S_ISREG(inode->i_mode)) {
3368 		err = attr_set_compress(ni, compr);
3369 		if (err) {
3370 			if (err == -ENOENT) {
3371 				/* Fix on the fly? */
3372 				/* Each file must contain data attribute. */
3373 				bad_inode = "no data attribute";
3374 			}
3375 			goto out;
3376 		}
3377 	}
3378 
3379 	ni->std_fa = std->fa;
3380 	if (compr) {
3381 		std->fa &= ~FILE_ATTRIBUTE_SPARSE_FILE;
3382 		std->fa |= FILE_ATTRIBUTE_COMPRESSED;
3383 	} else {
3384 		std->fa &= ~FILE_ATTRIBUTE_COMPRESSED;
3385 	}
3386 
3387 	if (ni->std_fa != std->fa) {
3388 		ni->std_fa = std->fa;
3389 		ni->mi.dirty = true;
3390 	}
3391 	/* update duplicate information and directory entries in ni_write_inode.*/
3392 	ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3393 	err = 0;
3394 
3395 out:
3396 	ni_unlock(ni);
3397 	if (bad_inode) {
3398 		ntfs_bad_inode(inode, bad_inode);
3399 		err = -EINVAL;
3400 	}
3401 
3402 	return err;
3403 }
3404