1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 *
4 * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5 *
6 */
7
8 #include <linux/fiemap.h>
9 #include <linux/fs.h>
10 #include <linux/minmax.h>
11 #include <linux/vmalloc.h>
12
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 #ifdef CONFIG_NTFS3_LZX_XPRESS
17 #include "lib/lib.h"
18 #endif
19
ni_ins_mi(struct ntfs_inode * ni,struct rb_root * tree,CLST ino,struct rb_node * ins)20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
21 CLST ino, struct rb_node *ins)
22 {
23 struct rb_node **p = &tree->rb_node;
24 struct rb_node *pr = NULL;
25
26 while (*p) {
27 struct mft_inode *mi;
28
29 pr = *p;
30 mi = rb_entry(pr, struct mft_inode, node);
31 if (mi->rno > ino)
32 p = &pr->rb_left;
33 else if (mi->rno < ino)
34 p = &pr->rb_right;
35 else
36 return mi;
37 }
38
39 if (!ins)
40 return NULL;
41
42 rb_link_node(ins, pr, p);
43 rb_insert_color(ins, tree);
44 return rb_entry(ins, struct mft_inode, node);
45 }
46
47 /*
48 * ni_find_mi - Find mft_inode by record number.
49 */
ni_find_mi(struct ntfs_inode * ni,CLST rno)50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
51 {
52 return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
53 }
54
55 /*
56 * ni_add_mi - Add new mft_inode into ntfs_inode.
57 */
ni_add_mi(struct ntfs_inode * ni,struct mft_inode * mi)58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
59 {
60 ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
61 }
62
63 /*
64 * ni_remove_mi - Remove mft_inode from ntfs_inode.
65 */
ni_remove_mi(struct ntfs_inode * ni,struct mft_inode * mi)66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
67 {
68 rb_erase(&mi->node, &ni->mi_tree);
69 }
70
71 /*
72 * ni_std - Return: Pointer into std_info from primary record.
73 */
ni_std(struct ntfs_inode * ni)74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
75 {
76 const struct ATTRIB *attr;
77
78 attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
79 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO)) :
80 NULL;
81 }
82
83 /*
84 * ni_std5
85 *
86 * Return: Pointer into std_info from primary record.
87 */
ni_std5(struct ntfs_inode * ni)88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
89 {
90 const struct ATTRIB *attr;
91
92 attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
93
94 return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5)) :
95 NULL;
96 }
97
98 /*
99 * ni_clear - Clear resources allocated by ntfs_inode.
100 */
ni_clear(struct ntfs_inode * ni)101 void ni_clear(struct ntfs_inode *ni)
102 {
103 struct rb_node *node;
104
105 if (!ni->vfs_inode.i_nlink && ni->mi.mrec &&
106 is_rec_inuse(ni->mi.mrec) &&
107 !(ni->mi.sbi->flags & NTFS_FLAGS_LOG_REPLAYING))
108 ni_delete_all(ni);
109
110 al_destroy(ni);
111
112 for (node = rb_first(&ni->mi_tree); node;) {
113 struct rb_node *next = rb_next(node);
114 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
115
116 rb_erase(node, &ni->mi_tree);
117 mi_put(mi);
118 node = next;
119 }
120
121 /* Bad inode always has mode == S_IFREG. */
122 if (ni->ni_flags & NI_FLAG_DIR)
123 indx_clear(&ni->dir);
124 else {
125 run_close(&ni->file.run);
126 #ifdef CONFIG_NTFS3_LZX_XPRESS
127 if (ni->file.offs_folio) {
128 /* On-demand allocated page for offsets. */
129 folio_put(ni->file.offs_folio);
130 ni->file.offs_folio = NULL;
131 }
132 #endif
133 }
134
135 mi_clear(&ni->mi);
136 }
137
138 /*
139 * ni_load_mi_ex - Find mft_inode by record number.
140 */
ni_load_mi_ex(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)141 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
142 {
143 int err;
144 struct mft_inode *r;
145
146 r = ni_find_mi(ni, rno);
147 if (r)
148 goto out;
149
150 err = mi_get(ni->mi.sbi, rno, &r);
151 if (err) {
152 _ntfs_bad_inode(&ni->vfs_inode);
153 return err;
154 }
155
156 ni_add_mi(ni, r);
157
158 out:
159 if (mi)
160 *mi = r;
161 return 0;
162 }
163
164 /*
165 * ni_load_mi - Load mft_inode corresponded list_entry.
166 */
ni_load_mi(struct ntfs_inode * ni,const struct ATTR_LIST_ENTRY * le,struct mft_inode ** mi)167 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
168 struct mft_inode **mi)
169 {
170 CLST rno;
171
172 if (!le) {
173 *mi = &ni->mi;
174 return 0;
175 }
176
177 rno = ino_get(&le->ref);
178 if (rno == ni->mi.rno) {
179 *mi = &ni->mi;
180 return 0;
181 }
182 return ni_load_mi_ex(ni, rno, mi);
183 }
184
185 /*
186 * ni_find_attr
187 *
188 * Return: Attribute and record this attribute belongs to.
189 */
ni_find_attr(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le_o,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const CLST * vcn,struct mft_inode ** mi)190 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
191 struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
192 const __le16 *name, u8 name_len, const CLST *vcn,
193 struct mft_inode **mi)
194 {
195 struct ATTR_LIST_ENTRY *le;
196 struct mft_inode *m;
197
198 if (!ni->attr_list.size ||
199 (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
200 if (le_o)
201 *le_o = NULL;
202 if (mi)
203 *mi = &ni->mi;
204
205 /* Look for required attribute in primary record. */
206 return mi_find_attr(ni, &ni->mi, attr, type, name, name_len,
207 NULL);
208 }
209
210 /* First look for list entry of required type. */
211 le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
212 if (!le)
213 return NULL;
214
215 if (le_o)
216 *le_o = le;
217
218 /* Load record that contains this attribute. */
219 if (ni_load_mi(ni, le, &m))
220 return NULL;
221
222 /* Look for required attribute. */
223 attr = mi_find_attr(ni, m, NULL, type, name, name_len, &le->id);
224
225 if (!attr)
226 goto out;
227
228 if (!attr->non_res) {
229 if (vcn && *vcn)
230 goto out;
231 } else if (!vcn) {
232 if (attr->nres.svcn)
233 goto out;
234 } else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
235 *vcn > le64_to_cpu(attr->nres.evcn)) {
236 goto out;
237 }
238
239 if (mi)
240 *mi = m;
241 return attr;
242
243 out:
244 _ntfs_bad_inode(&ni->vfs_inode);
245 return NULL;
246 }
247
248 /*
249 * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
250 */
ni_enum_attr_ex(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le,struct mft_inode ** mi)251 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
252 struct ATTR_LIST_ENTRY **le,
253 struct mft_inode **mi)
254 {
255 struct mft_inode *mi2;
256 struct ATTR_LIST_ENTRY *le2;
257
258 /* Do we have an attribute list? */
259 if (!ni->attr_list.size) {
260 *le = NULL;
261 if (mi)
262 *mi = &ni->mi;
263 /* Enum attributes in primary record. */
264 return mi_enum_attr(ni, &ni->mi, attr);
265 }
266
267 /* Get next list entry. */
268 le2 = *le = al_enumerate(ni, attr ? *le : NULL);
269 if (!le2)
270 return NULL;
271
272 /* Load record that contains the required attribute. */
273 if (ni_load_mi(ni, le2, &mi2))
274 return NULL;
275
276 if (mi)
277 *mi = mi2;
278
279 /* Find attribute in loaded record. */
280 return rec_find_attr_le(ni, mi2, le2);
281 }
282
283 /*
284 * ni_load_all_mi - Load all subrecords.
285 */
ni_load_all_mi(struct ntfs_inode * ni)286 int ni_load_all_mi(struct ntfs_inode *ni)
287 {
288 int err;
289 struct ATTR_LIST_ENTRY *le;
290
291 if (!ni->attr_list.size)
292 return 0;
293
294 le = NULL;
295
296 while ((le = al_enumerate(ni, le))) {
297 CLST rno = ino_get(&le->ref);
298
299 if (rno == ni->mi.rno)
300 continue;
301
302 err = ni_load_mi_ex(ni, rno, NULL);
303 if (err)
304 return err;
305 }
306
307 return 0;
308 }
309
310 /*
311 * ni_add_subrecord - Allocate + format + attach a new subrecord.
312 */
ni_add_subrecord(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)313 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
314 {
315 struct mft_inode *m;
316
317 m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
318 if (!m)
319 return false;
320
321 if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
322 mi_put(m);
323 return false;
324 }
325
326 mi_get_ref(&ni->mi, &m->mrec->parent_ref);
327
328 ni_add_mi(ni, m);
329 *mi = m;
330 return true;
331 }
332
333 /*
334 * ni_remove_attr - Remove all attributes for the given type/name/id.
335 */
ni_remove_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,bool base_only,const __le16 * id)336 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
337 const __le16 *name, u8 name_len, bool base_only,
338 const __le16 *id)
339 {
340 int err;
341 struct ATTRIB *attr;
342 struct ATTR_LIST_ENTRY *le;
343 struct mft_inode *mi;
344 u32 type_in;
345 int diff;
346
347 if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
348 attr = mi_find_attr(ni, &ni->mi, NULL, type, name, name_len,
349 id);
350 if (!attr)
351 return -ENOENT;
352
353 mi_remove_attr(ni, &ni->mi, attr);
354 return 0;
355 }
356
357 type_in = le32_to_cpu(type);
358 le = NULL;
359
360 for (;;) {
361 le = al_enumerate(ni, le);
362 if (!le)
363 return 0;
364
365 next_le2:
366 diff = le32_to_cpu(le->type) - type_in;
367 if (diff < 0)
368 continue;
369
370 if (diff > 0)
371 return 0;
372
373 if (le->name_len != name_len)
374 continue;
375
376 if (name_len &&
377 memcmp(le_name(le), name, name_len * sizeof(short)))
378 continue;
379
380 if (id && le->id != *id)
381 continue;
382 err = ni_load_mi(ni, le, &mi);
383 if (err)
384 return err;
385
386 al_remove_le(ni, le);
387
388 attr = mi_find_attr(ni, mi, NULL, type, name, name_len, id);
389 if (!attr)
390 return -ENOENT;
391
392 mi_remove_attr(ni, mi, attr);
393
394 if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
395 return 0;
396 goto next_le2;
397 }
398 }
399
400 /*
401 * ni_ins_new_attr - Insert the attribute into record.
402 *
403 * Return: Not full constructed attribute or NULL if not possible to create.
404 */
405 static struct ATTRIB *
ni_ins_new_attr(struct ntfs_inode * ni,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTR_LIST_ENTRY ** ins_le)406 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
407 struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
408 const __le16 *name, u8 name_len, u32 asize, u16 name_off,
409 CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
410 {
411 int err;
412 struct ATTRIB *attr;
413 bool le_added = false;
414 struct MFT_REF ref;
415
416 mi_get_ref(mi, &ref);
417
418 if (type != ATTR_LIST && !le && ni->attr_list.size) {
419 err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
420 &ref, &le);
421 if (err) {
422 /* No memory or no space. */
423 return ERR_PTR(err);
424 }
425 le_added = true;
426
427 /*
428 * al_add_le -> attr_set_size (list) -> ni_expand_list
429 * which moves some attributes out of primary record
430 * this means that name may point into moved memory
431 * reinit 'name' from le.
432 */
433 name = le->name;
434 }
435
436 attr = mi_insert_attr(ni, mi, type, name, name_len, asize, name_off);
437 if (!attr) {
438 if (le_added)
439 al_remove_le(ni, le);
440 return NULL;
441 }
442
443 if (type == ATTR_LIST) {
444 /* Attr list is not in list entry array. */
445 goto out;
446 }
447
448 if (!le)
449 goto out;
450
451 /* Update ATTRIB Id and record reference. */
452 le->id = attr->id;
453 ni->attr_list.dirty = true;
454 le->ref = ref;
455
456 out:
457 if (ins_le)
458 *ins_le = le;
459 return attr;
460 }
461
462 /*
463 * ni_repack
464 *
465 * Random write access to sparsed or compressed file may result to
466 * not optimized packed runs.
467 * Here is the place to optimize it.
468 */
ni_repack(struct ntfs_inode * ni)469 static int ni_repack(struct ntfs_inode *ni)
470 {
471 #if 1
472 return 0;
473 #else
474 int err = 0;
475 struct ntfs_sb_info *sbi = ni->mi.sbi;
476 struct mft_inode *mi, *mi_p = NULL;
477 struct ATTRIB *attr = NULL, *attr_p;
478 struct ATTR_LIST_ENTRY *le = NULL, *le_p;
479 CLST alloc = 0;
480 u8 cluster_bits = sbi->cluster_bits;
481 CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
482 u32 roff, rs = sbi->record_size;
483 struct runs_tree run;
484
485 run_init(&run);
486
487 while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
488 if (!attr->non_res)
489 continue;
490
491 svcn = le64_to_cpu(attr->nres.svcn);
492 if (svcn != le64_to_cpu(le->vcn)) {
493 err = -EINVAL;
494 break;
495 }
496
497 if (!svcn) {
498 alloc = le64_to_cpu(attr->nres.alloc_size) >>
499 cluster_bits;
500 mi_p = NULL;
501 } else if (svcn != evcn + 1) {
502 err = -EINVAL;
503 break;
504 }
505
506 evcn = le64_to_cpu(attr->nres.evcn);
507
508 if (svcn > evcn + 1) {
509 err = -EINVAL;
510 break;
511 }
512
513 if (!mi_p) {
514 /* Do not try if not enough free space. */
515 if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
516 continue;
517
518 /* Do not try if last attribute segment. */
519 if (evcn + 1 == alloc)
520 continue;
521 run_close(&run);
522 }
523
524 roff = le16_to_cpu(attr->nres.run_off);
525
526 if (roff > le32_to_cpu(attr->size)) {
527 err = -EINVAL;
528 break;
529 }
530
531 err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
532 Add2Ptr(attr, roff),
533 le32_to_cpu(attr->size) - roff);
534 if (err < 0)
535 break;
536
537 if (!mi_p) {
538 mi_p = mi;
539 attr_p = attr;
540 svcn_p = svcn;
541 evcn_p = evcn;
542 le_p = le;
543 err = 0;
544 continue;
545 }
546
547 /*
548 * Run contains data from two records: mi_p and mi
549 * Try to pack in one.
550 */
551 err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
552 if (err)
553 break;
554
555 next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
556
557 if (next_svcn >= evcn + 1) {
558 /* We can remove this attribute segment. */
559 al_remove_le(ni, le);
560 mi_remove_attr(NULL, mi, attr);
561 le = le_p;
562 continue;
563 }
564
565 attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
566 mi->dirty = true;
567 ni->attr_list.dirty = true;
568
569 if (evcn + 1 == alloc) {
570 err = mi_pack_runs(mi, attr, &run,
571 evcn + 1 - next_svcn);
572 if (err)
573 break;
574 mi_p = NULL;
575 } else {
576 mi_p = mi;
577 attr_p = attr;
578 svcn_p = next_svcn;
579 evcn_p = evcn;
580 le_p = le;
581 run_truncate_head(&run, next_svcn);
582 }
583 }
584
585 if (err) {
586 ntfs_inode_warn(&ni->vfs_inode, "repack problem");
587 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
588
589 /* Pack loaded but not packed runs. */
590 if (mi_p)
591 mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
592 }
593
594 run_close(&run);
595 return err;
596 #endif
597 }
598
599 /*
600 * ni_try_remove_attr_list
601 *
602 * Can we remove attribute list?
603 * Check the case when primary record contains enough space for all attributes.
604 */
ni_try_remove_attr_list(struct ntfs_inode * ni)605 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
606 {
607 int err = 0;
608 struct ntfs_sb_info *sbi = ni->mi.sbi;
609 struct ATTRIB *attr, *attr_list, *attr_ins;
610 struct ATTR_LIST_ENTRY *le;
611 struct mft_inode *mi;
612 u32 asize, free;
613 struct MFT_REF ref;
614 struct MFT_REC *mrec;
615 __le16 id;
616
617 if (!ni->attr_list.dirty)
618 return 0;
619
620 err = ni_repack(ni);
621 if (err)
622 return err;
623
624 attr_list = mi_find_attr(ni, &ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
625 if (!attr_list)
626 return 0;
627
628 asize = le32_to_cpu(attr_list->size);
629
630 /* Free space in primary record without attribute list. */
631 free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
632 mi_get_ref(&ni->mi, &ref);
633
634 le = NULL;
635 while ((le = al_enumerate(ni, le))) {
636 if (!memcmp(&le->ref, &ref, sizeof(ref)))
637 continue;
638
639 if (le->vcn)
640 return 0;
641
642 mi = ni_find_mi(ni, ino_get(&le->ref));
643 if (!mi)
644 return 0;
645
646 attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le),
647 le->name_len, &le->id);
648 if (!attr)
649 return 0;
650
651 asize = le32_to_cpu(attr->size);
652 if (asize > free)
653 return 0;
654
655 free -= asize;
656 }
657
658 /* Make a copy of primary record to restore if error. */
659 mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
660 if (!mrec)
661 return 0; /* Not critical. */
662
663 /* It seems that attribute list can be removed from primary record. */
664 mi_remove_attr(NULL, &ni->mi, attr_list);
665
666 /*
667 * Repeat the cycle above and copy all attributes to primary record.
668 * Do not remove original attributes from subrecords!
669 * It should be success!
670 */
671 le = NULL;
672 while ((le = al_enumerate(ni, le))) {
673 if (!memcmp(&le->ref, &ref, sizeof(ref)))
674 continue;
675
676 mi = ni_find_mi(ni, ino_get(&le->ref));
677 if (!mi) {
678 /* Should never happened, 'cause already checked. */
679 goto out;
680 }
681
682 attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le),
683 le->name_len, &le->id);
684 if (!attr) {
685 /* Should never happened, 'cause already checked. */
686 goto out;
687 }
688 asize = le32_to_cpu(attr->size);
689
690 /* Insert into primary record. */
691 attr_ins = mi_insert_attr(ni, &ni->mi, le->type, le_name(le),
692 le->name_len, asize,
693 le16_to_cpu(attr->name_off));
694 if (!attr_ins) {
695 /*
696 * No space in primary record (already checked).
697 */
698 goto out;
699 }
700
701 /* Copy all except id. */
702 id = attr_ins->id;
703 memcpy(attr_ins, attr, asize);
704 attr_ins->id = id;
705 }
706
707 /*
708 * Repeat the cycle above and remove all attributes from subrecords.
709 */
710 le = NULL;
711 while ((le = al_enumerate(ni, le))) {
712 if (!memcmp(&le->ref, &ref, sizeof(ref)))
713 continue;
714
715 mi = ni_find_mi(ni, ino_get(&le->ref));
716 if (!mi)
717 continue;
718
719 attr = mi_find_attr(ni, mi, NULL, le->type, le_name(le),
720 le->name_len, &le->id);
721 if (!attr)
722 continue;
723
724 /* Remove from original record. */
725 mi_remove_attr(NULL, mi, attr);
726 }
727
728 run_deallocate(sbi, &ni->attr_list.run, true);
729 run_close(&ni->attr_list.run);
730 ni->attr_list.size = 0;
731 kvfree(ni->attr_list.le);
732 ni->attr_list.le = NULL;
733 ni->attr_list.dirty = false;
734
735 kfree(mrec);
736 return 0;
737 out:
738 /* Restore primary record. */
739 swap(mrec, ni->mi.mrec);
740 kfree(mrec);
741 return 0;
742 }
743
744 /*
745 * ni_create_attr_list - Generates an attribute list for this primary record.
746 */
ni_create_attr_list(struct ntfs_inode * ni)747 int ni_create_attr_list(struct ntfs_inode *ni)
748 {
749 struct ntfs_sb_info *sbi = ni->mi.sbi;
750 int err;
751 u32 lsize;
752 struct ATTRIB *attr;
753 struct ATTRIB *arr_move[7];
754 struct ATTR_LIST_ENTRY *le, *le_b[7];
755 struct MFT_REC *rec;
756 bool is_mft;
757 CLST rno = 0;
758 struct mft_inode *mi;
759 u32 free_b, nb, to_free, rs;
760 u16 sz;
761
762 is_mft = ni->mi.rno == MFT_REC_MFT;
763 rec = ni->mi.mrec;
764 rs = sbi->record_size;
765
766 /*
767 * Skip estimating exact memory requirement.
768 * Looks like one record_size is always enough.
769 */
770 le = kmalloc(al_aligned(rs), GFP_NOFS);
771 if (!le)
772 return -ENOMEM;
773
774 mi_get_ref(&ni->mi, &le->ref);
775 ni->attr_list.le = le;
776
777 attr = NULL;
778 nb = 0;
779 free_b = 0;
780 attr = NULL;
781
782 for (; (attr = mi_enum_attr(ni, &ni->mi, attr)); le = Add2Ptr(le, sz)) {
783 sz = le_size(attr->name_len);
784 le->type = attr->type;
785 le->size = cpu_to_le16(sz);
786 le->name_len = attr->name_len;
787 le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
788 le->vcn = 0;
789 if (le != ni->attr_list.le)
790 le->ref = ni->attr_list.le->ref;
791 le->id = attr->id;
792
793 if (attr->name_len)
794 memcpy(le->name, attr_name(attr),
795 sizeof(short) * attr->name_len);
796 else if (attr->type == ATTR_STD)
797 continue;
798 else if (attr->type == ATTR_LIST)
799 continue;
800 else if (is_mft && attr->type == ATTR_DATA)
801 continue;
802
803 if (!nb || nb < ARRAY_SIZE(arr_move)) {
804 le_b[nb] = le;
805 arr_move[nb++] = attr;
806 free_b += le32_to_cpu(attr->size);
807 }
808 }
809
810 lsize = PtrOffset(ni->attr_list.le, le);
811 ni->attr_list.size = lsize;
812
813 to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
814 if (to_free <= rs) {
815 to_free = 0;
816 } else {
817 to_free -= rs;
818
819 if (to_free > free_b) {
820 err = -EINVAL;
821 goto out;
822 }
823 }
824
825 /* Allocate child MFT. */
826 err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
827 if (err)
828 goto out;
829
830 err = -EINVAL;
831 /* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
832 while (to_free > 0) {
833 struct ATTRIB *b = arr_move[--nb];
834 u32 asize = le32_to_cpu(b->size);
835 u16 name_off = le16_to_cpu(b->name_off);
836
837 attr = mi_insert_attr(ni, mi, b->type, Add2Ptr(b, name_off),
838 b->name_len, asize, name_off);
839 if (!attr)
840 goto out;
841
842 mi_get_ref(mi, &le_b[nb]->ref);
843 le_b[nb]->id = attr->id;
844
845 /* Copy all except id. */
846 memcpy(attr, b, asize);
847 attr->id = le_b[nb]->id;
848
849 /* Remove from primary record. */
850 if (!mi_remove_attr(NULL, &ni->mi, b))
851 goto out;
852
853 if (to_free <= asize)
854 break;
855 to_free -= asize;
856 if (!nb)
857 goto out;
858 }
859
860 attr = mi_insert_attr(ni, &ni->mi, ATTR_LIST, NULL, 0,
861 lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
862 if (!attr)
863 goto out;
864
865 attr->non_res = 0;
866 attr->flags = 0;
867 attr->res.data_size = cpu_to_le32(lsize);
868 attr->res.data_off = SIZEOF_RESIDENT_LE;
869 attr->res.flags = 0;
870 attr->res.res = 0;
871
872 memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
873
874 ni->attr_list.dirty = false;
875
876 mark_inode_dirty(&ni->vfs_inode);
877 return 0;
878
879 out:
880 kvfree(ni->attr_list.le);
881 ni->attr_list.le = NULL;
882 ni->attr_list.size = 0;
883 return err;
884 }
885
886 /*
887 * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
888 */
ni_ins_attr_ext(struct ntfs_inode * ni,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,CLST svcn,u16 name_off,bool force_ext,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)889 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
890 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
891 u32 asize, CLST svcn, u16 name_off, bool force_ext,
892 struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
893 struct ATTR_LIST_ENTRY **ins_le)
894 {
895 struct ATTRIB *attr;
896 struct mft_inode *mi;
897 CLST rno;
898 u64 vbo;
899 struct rb_node *node;
900 int err;
901 bool is_mft, is_mft_data;
902 struct ntfs_sb_info *sbi = ni->mi.sbi;
903
904 is_mft = ni->mi.rno == MFT_REC_MFT;
905 is_mft_data = is_mft && type == ATTR_DATA && !name_len;
906
907 if (asize > sbi->max_bytes_per_attr) {
908 err = -EINVAL;
909 goto out;
910 }
911
912 /*
913 * Standard information and attr_list cannot be made external.
914 * The Log File cannot have any external attributes.
915 */
916 if (type == ATTR_STD || type == ATTR_LIST ||
917 ni->mi.rno == MFT_REC_LOG) {
918 err = -EINVAL;
919 goto out;
920 }
921
922 /* Create attribute list if it is not already existed. */
923 if (!ni->attr_list.size) {
924 err = ni_create_attr_list(ni);
925 if (err)
926 goto out;
927 }
928
929 vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
930
931 if (force_ext)
932 goto insert_ext;
933
934 /* Load all subrecords into memory. */
935 err = ni_load_all_mi(ni);
936 if (err)
937 goto out;
938
939 /* Check each of loaded subrecord. */
940 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
941 mi = rb_entry(node, struct mft_inode, node);
942
943 if (is_mft_data &&
944 (mi_enum_attr(ni, mi, NULL) ||
945 vbo <= ((u64)mi->rno << sbi->record_bits))) {
946 /* We can't accept this record 'cause MFT's bootstrapping. */
947 continue;
948 }
949 if (is_mft &&
950 mi_find_attr(ni, mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
951 /*
952 * This child record already has a ATTR_DATA.
953 * So it can't accept any other records.
954 */
955 continue;
956 }
957
958 if ((type != ATTR_NAME || name_len) &&
959 mi_find_attr(ni, mi, NULL, type, name, name_len, NULL)) {
960 /* Only indexed attributes can share same record. */
961 continue;
962 }
963
964 /*
965 * Do not try to insert this attribute
966 * if there is no room in record.
967 */
968 if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
969 continue;
970
971 /* Try to insert attribute into this subrecord. */
972 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
973 name_off, svcn, ins_le);
974 if (!attr)
975 continue;
976 if (IS_ERR(attr))
977 return PTR_ERR(attr);
978
979 if (ins_attr)
980 *ins_attr = attr;
981 if (ins_mi)
982 *ins_mi = mi;
983 return 0;
984 }
985
986 insert_ext:
987 /* We have to allocate a new child subrecord. */
988 err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
989 if (err)
990 goto out;
991
992 if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
993 err = -EINVAL;
994 goto out1;
995 }
996
997 attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
998 name_off, svcn, ins_le);
999 if (!attr) {
1000 err = -EINVAL;
1001 goto out2;
1002 }
1003
1004 if (IS_ERR(attr)) {
1005 err = PTR_ERR(attr);
1006 goto out2;
1007 }
1008
1009 if (ins_attr)
1010 *ins_attr = attr;
1011 if (ins_mi)
1012 *ins_mi = mi;
1013
1014 return 0;
1015
1016 out2:
1017 ni_remove_mi(ni, mi);
1018 mi_put(mi);
1019
1020 out1:
1021 ntfs_mark_rec_free(sbi, rno, is_mft);
1022
1023 out:
1024 return err;
1025 }
1026
1027 /*
1028 * ni_insert_attr - Insert an attribute into the file.
1029 *
1030 * If the primary record has room, it will just insert the attribute.
1031 * If not, it may make the attribute external.
1032 * For $MFT::Data it may make room for the attribute by
1033 * making other attributes external.
1034 *
1035 * NOTE:
1036 * The ATTR_LIST and ATTR_STD cannot be made external.
1037 * This function does not fill new attribute full.
1038 * It only fills 'size'/'type'/'id'/'name_len' fields.
1039 */
ni_insert_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)1040 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1041 const __le16 *name, u8 name_len, u32 asize,
1042 u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1043 struct mft_inode **ins_mi,
1044 struct ATTR_LIST_ENTRY **ins_le)
1045 {
1046 struct ntfs_sb_info *sbi = ni->mi.sbi;
1047 int err;
1048 struct ATTRIB *attr, *eattr;
1049 struct MFT_REC *rec;
1050 bool is_mft;
1051 struct ATTR_LIST_ENTRY *le;
1052 u32 list_reserve, max_free, free, used, t32;
1053 __le16 id;
1054 u16 t16;
1055
1056 is_mft = ni->mi.rno == MFT_REC_MFT;
1057 rec = ni->mi.mrec;
1058
1059 list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1060 used = le32_to_cpu(rec->used);
1061 free = sbi->record_size - used;
1062
1063 if (is_mft && type != ATTR_LIST) {
1064 /* Reserve space for the ATTRIB list. */
1065 if (free < list_reserve)
1066 free = 0;
1067 else
1068 free -= list_reserve;
1069 }
1070
1071 if (asize <= free) {
1072 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1073 asize, name_off, svcn, ins_le);
1074 if (IS_ERR(attr)) {
1075 err = PTR_ERR(attr);
1076 goto out;
1077 }
1078
1079 if (attr) {
1080 if (ins_attr)
1081 *ins_attr = attr;
1082 if (ins_mi)
1083 *ins_mi = &ni->mi;
1084 err = 0;
1085 goto out;
1086 }
1087 }
1088
1089 if (!is_mft || type != ATTR_DATA || svcn) {
1090 /* This ATTRIB will be external. */
1091 err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1092 svcn, name_off, false, ins_attr, ins_mi,
1093 ins_le);
1094 goto out;
1095 }
1096
1097 /*
1098 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1099 *
1100 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1101 * Evict as many other attributes as possible.
1102 */
1103 max_free = free;
1104
1105 /* Estimate the result of moving all possible attributes away. */
1106 attr = NULL;
1107
1108 while ((attr = mi_enum_attr(ni, &ni->mi, attr))) {
1109 if (attr->type == ATTR_STD)
1110 continue;
1111 if (attr->type == ATTR_LIST)
1112 continue;
1113 max_free += le32_to_cpu(attr->size);
1114 }
1115
1116 if (max_free < asize + list_reserve) {
1117 /* Impossible to insert this attribute into primary record. */
1118 err = -EINVAL;
1119 goto out;
1120 }
1121
1122 /* Start real attribute moving. */
1123 attr = NULL;
1124
1125 for (;;) {
1126 attr = mi_enum_attr(ni, &ni->mi, attr);
1127 if (!attr) {
1128 /* We should never be here 'cause we have already check this case. */
1129 err = -EINVAL;
1130 goto out;
1131 }
1132
1133 /* Skip attributes that MUST be primary record. */
1134 if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1135 continue;
1136
1137 le = NULL;
1138 if (ni->attr_list.size) {
1139 le = al_find_le(ni, NULL, attr);
1140 if (!le) {
1141 /* Really this is a serious bug. */
1142 err = -EINVAL;
1143 goto out;
1144 }
1145 }
1146
1147 t32 = le32_to_cpu(attr->size);
1148 t16 = le16_to_cpu(attr->name_off);
1149 err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1150 attr->name_len, t32, attr_svcn(attr), t16,
1151 false, &eattr, NULL, NULL);
1152 if (err)
1153 return err;
1154
1155 id = eattr->id;
1156 memcpy(eattr, attr, t32);
1157 eattr->id = id;
1158
1159 /* Remove from primary record. */
1160 mi_remove_attr(NULL, &ni->mi, attr);
1161
1162 /* attr now points to next attribute. */
1163 if (attr->type == ATTR_END)
1164 goto out;
1165 }
1166 while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1167 ;
1168
1169 attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1170 name_off, svcn, ins_le);
1171 if (!attr) {
1172 err = -EINVAL;
1173 goto out;
1174 }
1175
1176 if (IS_ERR(attr)) {
1177 err = PTR_ERR(attr);
1178 goto out;
1179 }
1180
1181 if (ins_attr)
1182 *ins_attr = attr;
1183 if (ins_mi)
1184 *ins_mi = &ni->mi;
1185
1186 out:
1187 return err;
1188 }
1189
1190 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
ni_expand_mft_list(struct ntfs_inode * ni)1191 static int ni_expand_mft_list(struct ntfs_inode *ni)
1192 {
1193 int err = 0;
1194 struct runs_tree *run = &ni->file.run;
1195 u32 asize, run_size, done = 0;
1196 struct ATTRIB *attr;
1197 struct rb_node *node;
1198 CLST mft_min, mft_new, svcn, evcn, plen;
1199 struct mft_inode *mi, *mi_min, *mi_new;
1200 struct ntfs_sb_info *sbi = ni->mi.sbi;
1201
1202 /* Find the nearest MFT. */
1203 mft_min = 0;
1204 mft_new = 0;
1205 mi_min = NULL;
1206
1207 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1208 mi = rb_entry(node, struct mft_inode, node);
1209
1210 attr = mi_enum_attr(ni, mi, NULL);
1211
1212 if (!attr) {
1213 mft_min = mi->rno;
1214 mi_min = mi;
1215 break;
1216 }
1217 }
1218
1219 if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1220 mft_new = 0;
1221 /* Really this is not critical. */
1222 } else if (mft_min > mft_new) {
1223 mft_min = mft_new;
1224 mi_min = mi_new;
1225 } else {
1226 ntfs_mark_rec_free(sbi, mft_new, true);
1227 mft_new = 0;
1228 ni_remove_mi(ni, mi_new);
1229 }
1230
1231 attr = mi_find_attr(ni, &ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1232 if (!attr) {
1233 err = -EINVAL;
1234 goto out;
1235 }
1236
1237 asize = le32_to_cpu(attr->size);
1238
1239 evcn = le64_to_cpu(attr->nres.evcn);
1240 svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1241 if (evcn + 1 >= svcn) {
1242 err = -EINVAL;
1243 goto out;
1244 }
1245
1246 /*
1247 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1248 *
1249 * Update first part of ATTR_DATA in 'primary MFT.
1250 */
1251 err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1252 asize - SIZEOF_NONRESIDENT, &plen);
1253 if (err < 0)
1254 goto out;
1255
1256 run_size = ALIGN(err, 8);
1257 err = 0;
1258
1259 if (plen < svcn) {
1260 err = -EINVAL;
1261 goto out;
1262 }
1263
1264 attr->nres.evcn = cpu_to_le64(svcn - 1);
1265 attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1266 /* 'done' - How many bytes of primary MFT becomes free. */
1267 done = asize - run_size - SIZEOF_NONRESIDENT;
1268 le32_sub_cpu(&ni->mi.mrec->used, done);
1269
1270 /* Estimate packed size (run_buf=NULL). */
1271 err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1272 &plen);
1273 if (err < 0)
1274 goto out;
1275
1276 run_size = ALIGN(err, 8);
1277 err = 0;
1278
1279 if (plen < evcn + 1 - svcn) {
1280 err = -EINVAL;
1281 goto out;
1282 }
1283
1284 /*
1285 * This function may implicitly call expand attr_list.
1286 * Insert second part of ATTR_DATA in 'mi_min'.
1287 */
1288 attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1289 SIZEOF_NONRESIDENT + run_size,
1290 SIZEOF_NONRESIDENT, svcn, NULL);
1291 if (!attr) {
1292 err = -EINVAL;
1293 goto out;
1294 }
1295
1296 if (IS_ERR(attr)) {
1297 err = PTR_ERR(attr);
1298 goto out;
1299 }
1300
1301 attr->non_res = 1;
1302 attr->name_off = SIZEOF_NONRESIDENT_LE;
1303 attr->flags = 0;
1304
1305 /* This function can't fail - cause already checked above. */
1306 run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1307 run_size, &plen);
1308
1309 attr->nres.svcn = cpu_to_le64(svcn);
1310 attr->nres.evcn = cpu_to_le64(evcn);
1311 attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1312
1313 out:
1314 if (mft_new) {
1315 ntfs_mark_rec_free(sbi, mft_new, true);
1316 ni_remove_mi(ni, mi_new);
1317 }
1318
1319 return !err && !done ? -EOPNOTSUPP : err;
1320 }
1321
1322 /*
1323 * ni_expand_list - Move all possible attributes out of primary record.
1324 */
ni_expand_list(struct ntfs_inode * ni)1325 int ni_expand_list(struct ntfs_inode *ni)
1326 {
1327 int err = 0;
1328 u32 asize, done = 0;
1329 struct ATTRIB *attr, *ins_attr;
1330 struct ATTR_LIST_ENTRY *le;
1331 bool is_mft = ni->mi.rno == MFT_REC_MFT;
1332 struct MFT_REF ref;
1333
1334 mi_get_ref(&ni->mi, &ref);
1335 le = NULL;
1336
1337 while ((le = al_enumerate(ni, le))) {
1338 if (le->type == ATTR_STD)
1339 continue;
1340
1341 if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1342 continue;
1343
1344 if (is_mft && le->type == ATTR_DATA)
1345 continue;
1346
1347 /* Find attribute in primary record. */
1348 attr = rec_find_attr_le(ni, &ni->mi, le);
1349 if (!attr) {
1350 err = -EINVAL;
1351 goto out;
1352 }
1353
1354 asize = le32_to_cpu(attr->size);
1355
1356 /* Always insert into new record to avoid collisions (deep recursive). */
1357 err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1358 attr->name_len, asize, attr_svcn(attr),
1359 le16_to_cpu(attr->name_off), true,
1360 &ins_attr, NULL, NULL);
1361
1362 if (err)
1363 goto out;
1364
1365 memcpy(ins_attr, attr, asize);
1366 ins_attr->id = le->id;
1367 /* Remove from primary record. */
1368 mi_remove_attr(NULL, &ni->mi, attr);
1369
1370 done += asize;
1371 goto out;
1372 }
1373
1374 if (!is_mft) {
1375 err = -EFBIG; /* Attr list is too big(?) */
1376 goto out;
1377 }
1378
1379 /* Split MFT data as much as possible. */
1380 err = ni_expand_mft_list(ni);
1381
1382 out:
1383 return !err && !done ? -EOPNOTSUPP : err;
1384 }
1385
1386 /*
1387 * ni_insert_nonresident - Insert new nonresident attribute.
1388 */
ni_insert_nonresident(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const struct runs_tree * run,CLST svcn,CLST len,__le16 flags,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1389 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1390 const __le16 *name, u8 name_len,
1391 const struct runs_tree *run, CLST svcn, CLST len,
1392 __le16 flags, struct ATTRIB **new_attr,
1393 struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1394 {
1395 int err;
1396 CLST plen;
1397 struct ATTRIB *attr;
1398 bool is_ext = (flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) &&
1399 !svcn;
1400 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1401 u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1402 u32 run_off = name_off + name_size;
1403 u32 run_size, asize;
1404 struct ntfs_sb_info *sbi = ni->mi.sbi;
1405
1406 /* Estimate packed size (run_buf=NULL). */
1407 err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1408 &plen);
1409 if (err < 0)
1410 goto out;
1411
1412 run_size = ALIGN(err, 8);
1413
1414 if (plen < len) {
1415 err = -EINVAL;
1416 goto out;
1417 }
1418
1419 asize = run_off + run_size;
1420
1421 if (asize > sbi->max_bytes_per_attr) {
1422 err = -EINVAL;
1423 goto out;
1424 }
1425
1426 err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1427 &attr, mi, le);
1428
1429 if (err)
1430 goto out;
1431
1432 attr->non_res = 1;
1433 attr->name_off = cpu_to_le16(name_off);
1434 attr->flags = flags;
1435
1436 /* This function can't fail - cause already checked above. */
1437 run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1438
1439 attr->nres.svcn = cpu_to_le64(svcn);
1440 attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1441
1442 if (new_attr)
1443 *new_attr = attr;
1444
1445 *(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1446
1447 attr->nres.alloc_size =
1448 svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1449 attr->nres.data_size = attr->nres.alloc_size;
1450 attr->nres.valid_size = attr->nres.alloc_size;
1451
1452 if (is_ext) {
1453 if (flags & ATTR_FLAG_COMPRESSED)
1454 attr->nres.c_unit = NTFS_LZNT_CUNIT;
1455 attr->nres.total_size = attr->nres.alloc_size;
1456 }
1457
1458 out:
1459 return err;
1460 }
1461
1462 /*
1463 * ni_insert_resident - Inserts new resident attribute.
1464 */
ni_insert_resident(struct ntfs_inode * ni,u32 data_size,enum ATTR_TYPE type,const __le16 * name,u8 name_len,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1465 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1466 enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1467 struct ATTRIB **new_attr, struct mft_inode **mi,
1468 struct ATTR_LIST_ENTRY **le)
1469 {
1470 int err;
1471 u32 name_size = ALIGN(name_len * sizeof(short), 8);
1472 u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1473 struct ATTRIB *attr;
1474
1475 err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1476 0, &attr, mi, le);
1477 if (err)
1478 return err;
1479
1480 attr->non_res = 0;
1481 attr->flags = 0;
1482
1483 attr->res.data_size = cpu_to_le32(data_size);
1484 attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1485 if (type == ATTR_NAME) {
1486 attr->res.flags = RESIDENT_FLAG_INDEXED;
1487
1488 /* is_attr_indexed(attr)) == true */
1489 le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1490 ni->mi.dirty = true;
1491 }
1492 attr->res.res = 0;
1493
1494 if (new_attr)
1495 *new_attr = attr;
1496
1497 return 0;
1498 }
1499
1500 /*
1501 * ni_remove_attr_le - Remove attribute from record.
1502 */
ni_remove_attr_le(struct ntfs_inode * ni,struct ATTRIB * attr,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le)1503 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1504 struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1505 {
1506 mi_remove_attr(ni, mi, attr);
1507
1508 if (le)
1509 al_remove_le(ni, le);
1510 }
1511
1512 /*
1513 * ni_delete_all - Remove all attributes and frees allocates space.
1514 *
1515 * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1516 */
ni_delete_all(struct ntfs_inode * ni)1517 int ni_delete_all(struct ntfs_inode *ni)
1518 {
1519 int err;
1520 struct ATTR_LIST_ENTRY *le = NULL;
1521 struct ATTRIB *attr = NULL;
1522 struct rb_node *node;
1523 u16 roff;
1524 u32 asize;
1525 CLST svcn, evcn;
1526 struct ntfs_sb_info *sbi = ni->mi.sbi;
1527 bool nt3 = is_ntfs3(sbi);
1528 struct MFT_REF ref;
1529
1530 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1531 if (!nt3 || attr->name_len) {
1532 ;
1533 } else if (attr->type == ATTR_REPARSE) {
1534 mi_get_ref(&ni->mi, &ref);
1535 ntfs_remove_reparse(sbi, 0, &ref);
1536 } else if (attr->type == ATTR_ID && !attr->non_res &&
1537 le32_to_cpu(attr->res.data_size) >=
1538 sizeof(struct GUID)) {
1539 ntfs_objid_remove(sbi, resident_data(attr));
1540 }
1541
1542 if (!attr->non_res)
1543 continue;
1544
1545 svcn = le64_to_cpu(attr->nres.svcn);
1546 evcn = le64_to_cpu(attr->nres.evcn);
1547
1548 if (evcn + 1 <= svcn)
1549 continue;
1550
1551 asize = le32_to_cpu(attr->size);
1552 roff = le16_to_cpu(attr->nres.run_off);
1553
1554 if (roff > asize) {
1555 /* ni_enum_attr_ex checks this case. */
1556 continue;
1557 }
1558
1559 /* run==1 means unpack and deallocate. */
1560 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1561 Add2Ptr(attr, roff), asize - roff);
1562 }
1563
1564 if (ni->attr_list.size) {
1565 run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1566 al_destroy(ni);
1567 }
1568
1569 /* Free all subrecords. */
1570 for (node = rb_first(&ni->mi_tree); node;) {
1571 struct rb_node *next = rb_next(node);
1572 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1573
1574 clear_rec_inuse(mi->mrec);
1575 mi->dirty = true;
1576 mi_write(mi, 0);
1577
1578 ntfs_mark_rec_free(sbi, mi->rno, false);
1579 ni_remove_mi(ni, mi);
1580 mi_put(mi);
1581 node = next;
1582 }
1583
1584 /* Free base record. */
1585 clear_rec_inuse(ni->mi.mrec);
1586 ni->mi.dirty = true;
1587 err = mi_write(&ni->mi, 0);
1588
1589 ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1590
1591 return err;
1592 }
1593
1594 /* ni_fname_name
1595 *
1596 * Return: File name attribute by its value.
1597 */
ni_fname_name(struct ntfs_inode * ni,const struct le_str * uni,const struct MFT_REF * home_dir,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1598 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1599 const struct le_str *uni,
1600 const struct MFT_REF *home_dir,
1601 struct mft_inode **mi,
1602 struct ATTR_LIST_ENTRY **le)
1603 {
1604 struct ATTRIB *attr = NULL;
1605 struct ATTR_FILE_NAME *fname;
1606
1607 if (le)
1608 *le = NULL;
1609
1610 /* Enumerate all names. */
1611 next:
1612 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1613 if (!attr)
1614 return NULL;
1615
1616 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1617 if (!fname)
1618 goto next;
1619
1620 if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1621 goto next;
1622
1623 if (!uni)
1624 return fname;
1625
1626 if (uni->len != fname->name_len)
1627 goto next;
1628
1629 if (ntfs_cmp_names(uni->name, uni->len, fname->name, uni->len, NULL,
1630 false))
1631 goto next;
1632 return fname;
1633 }
1634
1635 /*
1636 * ni_fname_type
1637 *
1638 * Return: File name attribute with given type.
1639 */
ni_fname_type(struct ntfs_inode * ni,u8 name_type,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1640 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1641 struct mft_inode **mi,
1642 struct ATTR_LIST_ENTRY **le)
1643 {
1644 struct ATTRIB *attr = NULL;
1645 struct ATTR_FILE_NAME *fname;
1646
1647 *le = NULL;
1648
1649 if (name_type == FILE_NAME_POSIX)
1650 return NULL;
1651
1652 /* Enumerate all names. */
1653 for (;;) {
1654 attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1655 if (!attr)
1656 return NULL;
1657
1658 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1659 if (fname && name_type == fname->type)
1660 return fname;
1661 }
1662 }
1663
1664 /*
1665 * ni_new_attr_flags
1666 *
1667 * Process compressed/sparsed in special way.
1668 * NOTE: You need to set ni->std_fa = new_fa
1669 * after this function to keep internal structures in consistency.
1670 */
ni_new_attr_flags(struct ntfs_inode * ni,enum FILE_ATTRIBUTE new_fa)1671 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1672 {
1673 struct ATTRIB *attr;
1674 struct mft_inode *mi;
1675 __le16 new_aflags;
1676 u32 new_asize;
1677
1678 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1679 if (!attr)
1680 return -EINVAL;
1681
1682 new_aflags = attr->flags;
1683
1684 if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1685 new_aflags |= ATTR_FLAG_SPARSED;
1686 else
1687 new_aflags &= ~ATTR_FLAG_SPARSED;
1688
1689 if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1690 new_aflags |= ATTR_FLAG_COMPRESSED;
1691 else
1692 new_aflags &= ~ATTR_FLAG_COMPRESSED;
1693
1694 if (new_aflags == attr->flags)
1695 return 0;
1696
1697 if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1698 (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1699 ntfs_inode_warn(&ni->vfs_inode,
1700 "file can't be sparsed and compressed");
1701 return -EOPNOTSUPP;
1702 }
1703
1704 if (!attr->non_res)
1705 goto out;
1706
1707 if (attr->nres.data_size) {
1708 ntfs_inode_warn(
1709 &ni->vfs_inode,
1710 "one can change sparsed/compressed only for empty files");
1711 return -EOPNOTSUPP;
1712 }
1713
1714 /* Resize nonresident empty attribute in-place only. */
1715 new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ?
1716 (SIZEOF_NONRESIDENT_EX + 8) :
1717 (SIZEOF_NONRESIDENT + 8);
1718
1719 if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1720 return -EOPNOTSUPP;
1721
1722 if (new_aflags & ATTR_FLAG_SPARSED) {
1723 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1724 /* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1725 attr->nres.c_unit = 0;
1726 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1727 } else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1728 attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1729 /* The only allowed: 16 clusters per frame. */
1730 attr->nres.c_unit = NTFS_LZNT_CUNIT;
1731 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1732 } else {
1733 attr->name_off = SIZEOF_NONRESIDENT_LE;
1734 /* Normal files. */
1735 attr->nres.c_unit = 0;
1736 ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1737 }
1738 attr->nres.run_off = attr->name_off;
1739 out:
1740 attr->flags = new_aflags;
1741 mi->dirty = true;
1742
1743 return 0;
1744 }
1745
1746 /*
1747 * ni_parse_reparse
1748 *
1749 * buffer - memory for reparse buffer header
1750 */
ni_parse_reparse(struct ntfs_inode * ni,struct ATTRIB * attr,struct REPARSE_DATA_BUFFER * buffer)1751 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1752 struct REPARSE_DATA_BUFFER *buffer)
1753 {
1754 const struct REPARSE_DATA_BUFFER *rp = NULL;
1755 u8 bits;
1756 u16 len;
1757 typeof(rp->CompressReparseBuffer) *cmpr;
1758
1759 /* Try to estimate reparse point. */
1760 if (!attr->non_res) {
1761 rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1762 } else if (le64_to_cpu(attr->nres.data_size) >=
1763 sizeof(struct REPARSE_DATA_BUFFER)) {
1764 struct runs_tree run;
1765
1766 run_init(&run);
1767
1768 if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1769 !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1770 sizeof(struct REPARSE_DATA_BUFFER),
1771 NULL)) {
1772 rp = buffer;
1773 }
1774
1775 run_close(&run);
1776 }
1777
1778 if (!rp)
1779 return REPARSE_NONE;
1780
1781 len = le16_to_cpu(rp->ReparseDataLength);
1782 switch (rp->ReparseTag) {
1783 case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1784 break; /* Symbolic link. */
1785 case IO_REPARSE_TAG_MOUNT_POINT:
1786 break; /* Mount points and junctions. */
1787 case IO_REPARSE_TAG_SYMLINK:
1788 break;
1789 case IO_REPARSE_TAG_COMPRESS:
1790 /*
1791 * WOF - Windows Overlay Filter - Used to compress files with
1792 * LZX/Xpress.
1793 *
1794 * Unlike native NTFS file compression, the Windows
1795 * Overlay Filter supports only read operations. This means
1796 * that it doesn't need to sector-align each compressed chunk,
1797 * so the compressed data can be packed more tightly together.
1798 * If you open the file for writing, the WOF just decompresses
1799 * the entire file, turning it back into a plain file.
1800 *
1801 * Ntfs3 driver decompresses the entire file only on write or
1802 * change size requests.
1803 */
1804
1805 cmpr = &rp->CompressReparseBuffer;
1806 if (len < sizeof(*cmpr) ||
1807 cmpr->WofVersion != WOF_CURRENT_VERSION ||
1808 cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1809 cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1810 return REPARSE_NONE;
1811 }
1812
1813 switch (cmpr->CompressionFormat) {
1814 case WOF_COMPRESSION_XPRESS4K:
1815 bits = 0xc; // 4k
1816 break;
1817 case WOF_COMPRESSION_XPRESS8K:
1818 bits = 0xd; // 8k
1819 break;
1820 case WOF_COMPRESSION_XPRESS16K:
1821 bits = 0xe; // 16k
1822 break;
1823 case WOF_COMPRESSION_LZX32K:
1824 bits = 0xf; // 32k
1825 break;
1826 default:
1827 bits = 0x10; // 64k
1828 break;
1829 }
1830 ni_set_ext_compress_bits(ni, bits);
1831 return REPARSE_COMPRESSED;
1832
1833 case IO_REPARSE_TAG_DEDUP:
1834 ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1835 return REPARSE_DEDUPLICATED;
1836
1837 default:
1838 if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1839 break;
1840
1841 return REPARSE_NONE;
1842 }
1843
1844 if (buffer != rp)
1845 memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1846
1847 /* Looks like normal symlink. */
1848 return REPARSE_LINK;
1849 }
1850
1851 /*
1852 * ni_fiemap - Helper for file_fiemap().
1853 *
1854 * Assumed ni_lock.
1855 * TODO: Less aggressive locks.
1856 */
ni_fiemap(struct ntfs_inode * ni,struct fiemap_extent_info * fieinfo,__u64 vbo,__u64 len)1857 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1858 __u64 vbo, __u64 len)
1859 {
1860 int err = 0;
1861 struct ntfs_sb_info *sbi = ni->mi.sbi;
1862 u8 cluster_bits = sbi->cluster_bits;
1863 struct runs_tree run;
1864 struct ATTRIB *attr;
1865 CLST vcn = vbo >> cluster_bits;
1866 CLST lcn, clen;
1867 u64 valid = ni->i_valid;
1868 u64 lbo, bytes;
1869 u64 end, alloc_size;
1870 size_t idx = -1;
1871 u32 flags;
1872 bool ok;
1873
1874 run_init(&run);
1875 if (S_ISDIR(ni->vfs_inode.i_mode)) {
1876 attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1877 ARRAY_SIZE(I30_NAME), NULL, NULL);
1878 } else {
1879 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1880 NULL);
1881 if (!attr) {
1882 err = -EINVAL;
1883 goto out;
1884 }
1885 if (is_attr_compressed(attr)) {
1886 /* Unfortunately cp -r incorrectly treats compressed clusters. */
1887 err = -EOPNOTSUPP;
1888 ntfs_inode_warn(
1889 &ni->vfs_inode,
1890 "fiemap is not supported for compressed file (cp -r)");
1891 goto out;
1892 }
1893 }
1894
1895 if (!attr || !attr->non_res) {
1896 err = fiemap_fill_next_extent(
1897 fieinfo, 0, 0,
1898 attr ? le32_to_cpu(attr->res.data_size) : 0,
1899 FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1900 FIEMAP_EXTENT_MERGED);
1901 goto out;
1902 }
1903
1904 end = vbo + len;
1905 alloc_size = le64_to_cpu(attr->nres.alloc_size);
1906 if (end > alloc_size)
1907 end = alloc_size;
1908
1909 while (vbo < end) {
1910 if (idx == -1) {
1911 ok = run_lookup_entry(&run, vcn, &lcn, &clen, &idx);
1912 } else {
1913 CLST vcn_next = vcn;
1914
1915 ok = run_get_entry(&run, ++idx, &vcn, &lcn, &clen) &&
1916 vcn == vcn_next;
1917 if (!ok)
1918 vcn = vcn_next;
1919 }
1920
1921 if (!ok) {
1922 err = attr_load_runs_vcn(ni, attr->type,
1923 attr_name(attr),
1924 attr->name_len, &run, vcn);
1925
1926 if (err)
1927 break;
1928
1929 ok = run_lookup_entry(&run, vcn, &lcn, &clen, &idx);
1930
1931 if (!ok) {
1932 err = -EINVAL;
1933 break;
1934 }
1935 }
1936
1937 if (!clen) {
1938 err = -EINVAL; // ?
1939 break;
1940 }
1941
1942 if (lcn == SPARSE_LCN) {
1943 vcn += clen;
1944 vbo = (u64)vcn << cluster_bits;
1945 continue;
1946 }
1947
1948 flags = FIEMAP_EXTENT_MERGED;
1949 if (S_ISDIR(ni->vfs_inode.i_mode)) {
1950 ;
1951 } else if (is_attr_compressed(attr)) {
1952 CLST clst_data;
1953
1954 err = attr_is_frame_compressed(ni, attr,
1955 vcn >> attr->nres.c_unit,
1956 &clst_data, &run);
1957 if (err)
1958 break;
1959 if (clst_data < NTFS_LZNT_CLUSTERS)
1960 flags |= FIEMAP_EXTENT_ENCODED;
1961 } else if (is_attr_encrypted(attr)) {
1962 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1963 }
1964
1965 vbo = (u64)vcn << cluster_bits;
1966 bytes = (u64)clen << cluster_bits;
1967 lbo = (u64)lcn << cluster_bits;
1968
1969 vcn += clen;
1970
1971 if (vbo + bytes >= end)
1972 bytes = end - vbo;
1973
1974 if (vbo + bytes <= valid) {
1975 ;
1976 } else if (vbo >= valid) {
1977 flags |= FIEMAP_EXTENT_UNWRITTEN;
1978 } else {
1979 /* vbo < valid && valid < vbo + bytes */
1980 u64 dlen = valid - vbo;
1981
1982 if (vbo + dlen >= end)
1983 flags |= FIEMAP_EXTENT_LAST;
1984
1985 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
1986 flags);
1987
1988 if (err < 0)
1989 break;
1990 if (err == 1) {
1991 err = 0;
1992 break;
1993 }
1994
1995 vbo = valid;
1996 bytes -= dlen;
1997 if (!bytes)
1998 continue;
1999
2000 lbo += dlen;
2001 flags |= FIEMAP_EXTENT_UNWRITTEN;
2002 }
2003
2004 if (vbo + bytes >= end)
2005 flags |= FIEMAP_EXTENT_LAST;
2006
2007 err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2008 if (err < 0)
2009 break;
2010 if (err == 1) {
2011 err = 0;
2012 break;
2013 }
2014
2015 vbo += bytes;
2016 }
2017
2018 out:
2019 run_close(&run);
2020 return err;
2021 }
2022
2023 /*
2024 * ni_readpage_cmpr
2025 *
2026 * When decompressing, we typically obtain more than one page per reference.
2027 * We inject the additional pages into the page cache.
2028 */
ni_readpage_cmpr(struct ntfs_inode * ni,struct folio * folio)2029 int ni_readpage_cmpr(struct ntfs_inode *ni, struct folio *folio)
2030 {
2031 int err;
2032 struct ntfs_sb_info *sbi = ni->mi.sbi;
2033 struct address_space *mapping = folio->mapping;
2034 pgoff_t index = folio->index;
2035 u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2036 struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2037 u8 frame_bits;
2038 CLST frame;
2039 u32 i, idx, frame_size, pages_per_frame;
2040 gfp_t gfp_mask;
2041 struct page *pg;
2042
2043 if (vbo >= i_size_read(&ni->vfs_inode)) {
2044 folio_zero_range(folio, 0, folio_size(folio));
2045 folio_mark_uptodate(folio);
2046 err = 0;
2047 goto out;
2048 }
2049
2050 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2051 /* Xpress or LZX. */
2052 frame_bits = ni_ext_compress_bits(ni);
2053 } else {
2054 /* LZNT compression. */
2055 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2056 }
2057 frame_size = 1u << frame_bits;
2058 frame = vbo >> frame_bits;
2059 frame_vbo = (u64)frame << frame_bits;
2060 idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2061
2062 pages_per_frame = frame_size >> PAGE_SHIFT;
2063 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2064 if (!pages) {
2065 err = -ENOMEM;
2066 goto out;
2067 }
2068
2069 pages[idx] = &folio->page;
2070 index = frame_vbo >> PAGE_SHIFT;
2071 gfp_mask = mapping_gfp_mask(mapping);
2072
2073 for (i = 0; i < pages_per_frame; i++, index++) {
2074 if (i == idx)
2075 continue;
2076
2077 pg = find_or_create_page(mapping, index, gfp_mask);
2078 if (!pg) {
2079 err = -ENOMEM;
2080 goto out1;
2081 }
2082 pages[i] = pg;
2083 }
2084
2085 err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2086
2087 out1:
2088 for (i = 0; i < pages_per_frame; i++) {
2089 pg = pages[i];
2090 if (i == idx || !pg)
2091 continue;
2092 unlock_page(pg);
2093 put_page(pg);
2094 }
2095
2096 out:
2097 /* At this point, err contains 0 or -EIO depending on the "critical" page. */
2098 kfree(pages);
2099 folio_unlock(folio);
2100
2101 return err;
2102 }
2103
2104 #ifdef CONFIG_NTFS3_LZX_XPRESS
2105 /*
2106 * ni_decompress_file - Decompress LZX/Xpress compressed file.
2107 *
2108 * Remove ATTR_DATA::WofCompressedData.
2109 * Remove ATTR_REPARSE.
2110 */
ni_decompress_file(struct ntfs_inode * ni)2111 int ni_decompress_file(struct ntfs_inode *ni)
2112 {
2113 struct ntfs_sb_info *sbi = ni->mi.sbi;
2114 struct inode *inode = &ni->vfs_inode;
2115 loff_t i_size = i_size_read(inode);
2116 struct address_space *mapping = inode->i_mapping;
2117 gfp_t gfp_mask = mapping_gfp_mask(mapping);
2118 struct page **pages = NULL;
2119 struct ATTR_LIST_ENTRY *le;
2120 struct ATTRIB *attr;
2121 CLST vcn, cend, lcn, clen, end;
2122 pgoff_t index;
2123 u64 vbo;
2124 u8 frame_bits;
2125 u32 i, frame_size, pages_per_frame, bytes;
2126 struct mft_inode *mi;
2127 int err;
2128
2129 /* Clusters for decompressed data. */
2130 cend = bytes_to_cluster(sbi, i_size);
2131
2132 if (!i_size)
2133 goto remove_wof;
2134
2135 /* Check in advance. */
2136 if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2137 err = -ENOSPC;
2138 goto out;
2139 }
2140
2141 frame_bits = ni_ext_compress_bits(ni);
2142 frame_size = 1u << frame_bits;
2143 pages_per_frame = frame_size >> PAGE_SHIFT;
2144 pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2145 if (!pages) {
2146 err = -ENOMEM;
2147 goto out;
2148 }
2149
2150 /*
2151 * Step 1: Decompress data and copy to new allocated clusters.
2152 */
2153 index = 0;
2154 for (vbo = 0; vbo < i_size; vbo += bytes) {
2155 u32 nr_pages;
2156 bool new;
2157
2158 if (vbo + frame_size > i_size) {
2159 bytes = i_size - vbo;
2160 nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2161 } else {
2162 nr_pages = pages_per_frame;
2163 bytes = frame_size;
2164 }
2165
2166 end = bytes_to_cluster(sbi, vbo + bytes);
2167
2168 for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2169 err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2170 &clen, &new, false);
2171 if (err)
2172 goto out;
2173 }
2174
2175 for (i = 0; i < pages_per_frame; i++, index++) {
2176 struct page *pg;
2177
2178 pg = find_or_create_page(mapping, index, gfp_mask);
2179 if (!pg) {
2180 while (i--) {
2181 unlock_page(pages[i]);
2182 put_page(pages[i]);
2183 }
2184 err = -ENOMEM;
2185 goto out;
2186 }
2187 pages[i] = pg;
2188 }
2189
2190 err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2191
2192 if (!err) {
2193 down_read(&ni->file.run_lock);
2194 err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2195 nr_pages, vbo, bytes,
2196 REQ_OP_WRITE);
2197 up_read(&ni->file.run_lock);
2198 }
2199
2200 for (i = 0; i < pages_per_frame; i++) {
2201 unlock_page(pages[i]);
2202 put_page(pages[i]);
2203 }
2204
2205 if (err)
2206 goto out;
2207
2208 cond_resched();
2209 }
2210
2211 remove_wof:
2212 /*
2213 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2214 * and ATTR_REPARSE.
2215 */
2216 attr = NULL;
2217 le = NULL;
2218 while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2219 CLST svcn, evcn;
2220 u32 asize, roff;
2221
2222 if (attr->type == ATTR_REPARSE) {
2223 struct MFT_REF ref;
2224
2225 mi_get_ref(&ni->mi, &ref);
2226 ntfs_remove_reparse(sbi, 0, &ref);
2227 }
2228
2229 if (!attr->non_res)
2230 continue;
2231
2232 if (attr->type != ATTR_REPARSE &&
2233 (attr->type != ATTR_DATA ||
2234 attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2235 memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2236 continue;
2237
2238 svcn = le64_to_cpu(attr->nres.svcn);
2239 evcn = le64_to_cpu(attr->nres.evcn);
2240
2241 if (evcn + 1 <= svcn)
2242 continue;
2243
2244 asize = le32_to_cpu(attr->size);
2245 roff = le16_to_cpu(attr->nres.run_off);
2246
2247 if (roff > asize) {
2248 err = -EINVAL;
2249 goto out;
2250 }
2251
2252 /*run==1 Means unpack and deallocate. */
2253 run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2254 Add2Ptr(attr, roff), asize - roff);
2255 }
2256
2257 /*
2258 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2259 */
2260 err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2261 false, NULL);
2262 if (err)
2263 goto out;
2264
2265 /*
2266 * Step 4: Remove ATTR_REPARSE.
2267 */
2268 err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2269 if (err)
2270 goto out;
2271
2272 /*
2273 * Step 5: Remove sparse flag from data attribute.
2274 */
2275 attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2276 if (!attr) {
2277 err = -EINVAL;
2278 goto out;
2279 }
2280
2281 if (attr->non_res && is_attr_sparsed(attr)) {
2282 /* Sparsed attribute header is 8 bytes bigger than normal. */
2283 struct MFT_REC *rec = mi->mrec;
2284 u32 used = le32_to_cpu(rec->used);
2285 u32 asize = le32_to_cpu(attr->size);
2286 u16 roff = le16_to_cpu(attr->nres.run_off);
2287 char *rbuf = Add2Ptr(attr, roff);
2288
2289 memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2290 attr->size = cpu_to_le32(asize - 8);
2291 attr->flags &= ~ATTR_FLAG_SPARSED;
2292 attr->nres.run_off = cpu_to_le16(roff - 8);
2293 attr->nres.c_unit = 0;
2294 rec->used = cpu_to_le32(used - 8);
2295 mi->dirty = true;
2296 ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2297 FILE_ATTRIBUTE_REPARSE_POINT);
2298
2299 mark_inode_dirty(inode);
2300 }
2301
2302 /* Clear cached flag. */
2303 ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2304 if (ni->file.offs_folio) {
2305 folio_put(ni->file.offs_folio);
2306 ni->file.offs_folio = NULL;
2307 }
2308 mapping->a_ops = &ntfs_aops;
2309
2310 out:
2311 kfree(pages);
2312 if (err)
2313 _ntfs_bad_inode(inode);
2314
2315 return err;
2316 }
2317
2318 /*
2319 * decompress_lzx_xpress - External compression LZX/Xpress.
2320 */
decompress_lzx_xpress(struct ntfs_sb_info * sbi,const char * cmpr,size_t cmpr_size,void * unc,size_t unc_size,u32 frame_size)2321 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2322 size_t cmpr_size, void *unc, size_t unc_size,
2323 u32 frame_size)
2324 {
2325 int err;
2326 void *ctx;
2327
2328 if (cmpr_size == unc_size) {
2329 /* Frame not compressed. */
2330 memcpy(unc, cmpr, unc_size);
2331 return 0;
2332 }
2333
2334 err = 0;
2335 if (frame_size == 0x8000) {
2336 mutex_lock(&sbi->compress.mtx_lzx);
2337 /* LZX: Frame compressed. */
2338 ctx = sbi->compress.lzx;
2339 if (!ctx) {
2340 /* Lazy initialize LZX decompress context. */
2341 ctx = lzx_allocate_decompressor();
2342 if (!ctx) {
2343 err = -ENOMEM;
2344 goto out1;
2345 }
2346
2347 sbi->compress.lzx = ctx;
2348 }
2349
2350 if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2351 /* Treat all errors as "invalid argument". */
2352 err = -EINVAL;
2353 }
2354 out1:
2355 mutex_unlock(&sbi->compress.mtx_lzx);
2356 } else {
2357 /* XPRESS: Frame compressed. */
2358 mutex_lock(&sbi->compress.mtx_xpress);
2359 ctx = sbi->compress.xpress;
2360 if (!ctx) {
2361 /* Lazy initialize Xpress decompress context. */
2362 ctx = xpress_allocate_decompressor();
2363 if (!ctx) {
2364 err = -ENOMEM;
2365 goto out2;
2366 }
2367
2368 sbi->compress.xpress = ctx;
2369 }
2370
2371 if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2372 /* Treat all errors as "invalid argument". */
2373 err = -EINVAL;
2374 }
2375 out2:
2376 mutex_unlock(&sbi->compress.mtx_xpress);
2377 }
2378 return err;
2379 }
2380 #endif
2381
2382 /*
2383 * ni_read_frame
2384 *
2385 * Pages - Array of locked pages.
2386 */
ni_read_frame(struct ntfs_inode * ni,u64 frame_vbo,struct page ** pages,u32 pages_per_frame)2387 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2388 u32 pages_per_frame)
2389 {
2390 int err;
2391 struct ntfs_sb_info *sbi = ni->mi.sbi;
2392 u8 cluster_bits = sbi->cluster_bits;
2393 char *frame_ondisk = NULL;
2394 char *frame_mem = NULL;
2395 struct page **pages_disk = NULL;
2396 struct ATTR_LIST_ENTRY *le = NULL;
2397 struct runs_tree *run = &ni->file.run;
2398 u64 valid_size = ni->i_valid;
2399 u64 vbo_disk;
2400 size_t unc_size;
2401 u32 frame_size, i, npages_disk, ondisk_size;
2402 struct page *pg;
2403 struct ATTRIB *attr;
2404 CLST frame, clst_data;
2405
2406 /*
2407 * To simplify decompress algorithm do vmap for source
2408 * and target pages.
2409 */
2410 for (i = 0; i < pages_per_frame; i++)
2411 kmap(pages[i]);
2412
2413 frame_size = pages_per_frame << PAGE_SHIFT;
2414 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2415 if (!frame_mem) {
2416 err = -ENOMEM;
2417 goto out;
2418 }
2419
2420 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2421 if (!attr) {
2422 err = -ENOENT;
2423 goto out1;
2424 }
2425
2426 if (!attr->non_res) {
2427 u32 data_size = le32_to_cpu(attr->res.data_size);
2428
2429 memset(frame_mem, 0, frame_size);
2430 if (frame_vbo < data_size) {
2431 ondisk_size = data_size - frame_vbo;
2432 memcpy(frame_mem, resident_data(attr) + frame_vbo,
2433 min(ondisk_size, frame_size));
2434 }
2435 err = 0;
2436 goto out1;
2437 }
2438
2439 if (frame_vbo >= valid_size) {
2440 memset(frame_mem, 0, frame_size);
2441 err = 0;
2442 goto out1;
2443 }
2444
2445 if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2446 #ifndef CONFIG_NTFS3_LZX_XPRESS
2447 err = -EOPNOTSUPP;
2448 goto out1;
2449 #else
2450 loff_t i_size = i_size_read(&ni->vfs_inode);
2451 u32 frame_bits = ni_ext_compress_bits(ni);
2452 u64 frame64 = frame_vbo >> frame_bits;
2453 u64 frames, vbo_data;
2454
2455 if (frame_size != (1u << frame_bits)) {
2456 err = -EINVAL;
2457 goto out1;
2458 }
2459 switch (frame_size) {
2460 case 0x1000:
2461 case 0x2000:
2462 case 0x4000:
2463 case 0x8000:
2464 break;
2465 default:
2466 /* Unknown compression. */
2467 err = -EOPNOTSUPP;
2468 goto out1;
2469 }
2470
2471 attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2472 ARRAY_SIZE(WOF_NAME), NULL, NULL);
2473 if (!attr) {
2474 ntfs_inode_err(
2475 &ni->vfs_inode,
2476 "external compressed file should contains data attribute \"WofCompressedData\"");
2477 err = -EINVAL;
2478 goto out1;
2479 }
2480
2481 if (!attr->non_res) {
2482 run = NULL;
2483 } else {
2484 run = run_alloc();
2485 if (!run) {
2486 err = -ENOMEM;
2487 goto out1;
2488 }
2489 }
2490
2491 frames = (i_size - 1) >> frame_bits;
2492
2493 err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2494 frame_bits, &ondisk_size, &vbo_data);
2495 if (err)
2496 goto out2;
2497
2498 if (frame64 == frames) {
2499 unc_size = 1 + ((i_size - 1) & (frame_size - 1));
2500 ondisk_size = attr_size(attr) - vbo_data;
2501 } else {
2502 unc_size = frame_size;
2503 }
2504
2505 if (ondisk_size > frame_size) {
2506 err = -EINVAL;
2507 goto out2;
2508 }
2509
2510 if (!attr->non_res) {
2511 if (vbo_data + ondisk_size >
2512 le32_to_cpu(attr->res.data_size)) {
2513 err = -EINVAL;
2514 goto out1;
2515 }
2516
2517 err = decompress_lzx_xpress(
2518 sbi, Add2Ptr(resident_data(attr), vbo_data),
2519 ondisk_size, frame_mem, unc_size, frame_size);
2520 goto out1;
2521 }
2522 vbo_disk = vbo_data;
2523 /* Load all runs to read [vbo_disk-vbo_to). */
2524 err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2525 ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2526 vbo_data + ondisk_size);
2527 if (err)
2528 goto out2;
2529 npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2530 PAGE_SIZE - 1) >>
2531 PAGE_SHIFT;
2532 #endif
2533 } else if (is_attr_compressed(attr)) {
2534 /* LZNT compression. */
2535 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2536 err = -EOPNOTSUPP;
2537 goto out1;
2538 }
2539
2540 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2541 err = -EOPNOTSUPP;
2542 goto out1;
2543 }
2544
2545 down_write(&ni->file.run_lock);
2546 run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2547 frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2548 err = attr_is_frame_compressed(ni, attr, frame, &clst_data,
2549 run);
2550 up_write(&ni->file.run_lock);
2551 if (err)
2552 goto out1;
2553
2554 if (!clst_data) {
2555 memset(frame_mem, 0, frame_size);
2556 goto out1;
2557 }
2558
2559 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2560 ondisk_size = clst_data << cluster_bits;
2561
2562 if (clst_data >= NTFS_LZNT_CLUSTERS) {
2563 /* Frame is not compressed. */
2564 down_read(&ni->file.run_lock);
2565 err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2566 frame_vbo, ondisk_size,
2567 REQ_OP_READ);
2568 up_read(&ni->file.run_lock);
2569 goto out1;
2570 }
2571 vbo_disk = frame_vbo;
2572 npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2573 } else {
2574 __builtin_unreachable();
2575 err = -EINVAL;
2576 goto out1;
2577 }
2578
2579 pages_disk = kcalloc(npages_disk, sizeof(*pages_disk), GFP_NOFS);
2580 if (!pages_disk) {
2581 err = -ENOMEM;
2582 goto out2;
2583 }
2584
2585 for (i = 0; i < npages_disk; i++) {
2586 pg = alloc_page(GFP_KERNEL);
2587 if (!pg) {
2588 err = -ENOMEM;
2589 goto out3;
2590 }
2591 pages_disk[i] = pg;
2592 lock_page(pg);
2593 kmap(pg);
2594 }
2595
2596 /* Read 'ondisk_size' bytes from disk. */
2597 down_read(&ni->file.run_lock);
2598 err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2599 ondisk_size, REQ_OP_READ);
2600 up_read(&ni->file.run_lock);
2601 if (err)
2602 goto out3;
2603
2604 /*
2605 * To simplify decompress algorithm do vmap for source and target pages.
2606 */
2607 frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2608 if (!frame_ondisk) {
2609 err = -ENOMEM;
2610 goto out3;
2611 }
2612
2613 /* Decompress: Frame_ondisk -> frame_mem. */
2614 #ifdef CONFIG_NTFS3_LZX_XPRESS
2615 if (run != &ni->file.run) {
2616 /* LZX or XPRESS */
2617 err = decompress_lzx_xpress(
2618 sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2619 ondisk_size, frame_mem, unc_size, frame_size);
2620 } else
2621 #endif
2622 {
2623 /* LZNT - Native NTFS compression. */
2624 unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2625 frame_size);
2626 if ((ssize_t)unc_size < 0)
2627 err = unc_size;
2628 else if (!unc_size || unc_size > frame_size)
2629 err = -EINVAL;
2630 }
2631 if (!err && valid_size < frame_vbo + frame_size) {
2632 size_t ok = valid_size - frame_vbo;
2633
2634 memset(frame_mem + ok, 0, frame_size - ok);
2635 }
2636
2637 vunmap(frame_ondisk);
2638
2639 out3:
2640 for (i = 0; i < npages_disk; i++) {
2641 pg = pages_disk[i];
2642 if (pg) {
2643 kunmap(pg);
2644 unlock_page(pg);
2645 put_page(pg);
2646 }
2647 }
2648 kfree(pages_disk);
2649
2650 out2:
2651 #ifdef CONFIG_NTFS3_LZX_XPRESS
2652 if (run != &ni->file.run)
2653 run_free(run);
2654 #endif
2655 out1:
2656 vunmap(frame_mem);
2657 out:
2658 for (i = 0; i < pages_per_frame; i++) {
2659 pg = pages[i];
2660 kunmap(pg);
2661 SetPageUptodate(pg);
2662 }
2663
2664 return err;
2665 }
2666
2667 /*
2668 * ni_write_frame
2669 *
2670 * Pages - Array of locked pages.
2671 */
ni_write_frame(struct ntfs_inode * ni,struct page ** pages,u32 pages_per_frame)2672 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2673 u32 pages_per_frame)
2674 {
2675 int err;
2676 struct ntfs_sb_info *sbi = ni->mi.sbi;
2677 struct folio *folio = page_folio(pages[0]);
2678 u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2679 u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2680 u64 frame_vbo = folio_pos(folio);
2681 CLST frame = frame_vbo >> frame_bits;
2682 char *frame_ondisk = NULL;
2683 struct page **pages_disk = NULL;
2684 struct ATTR_LIST_ENTRY *le = NULL;
2685 char *frame_mem;
2686 struct ATTRIB *attr;
2687 struct mft_inode *mi;
2688 u32 i;
2689 struct page *pg;
2690 size_t compr_size, ondisk_size;
2691 struct lznt *lznt;
2692
2693 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2694 if (!attr) {
2695 err = -ENOENT;
2696 goto out;
2697 }
2698
2699 if (WARN_ON(!is_attr_compressed(attr))) {
2700 err = -EINVAL;
2701 goto out;
2702 }
2703
2704 if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2705 err = -EOPNOTSUPP;
2706 goto out;
2707 }
2708
2709 if (!attr->non_res) {
2710 down_write(&ni->file.run_lock);
2711 err = attr_make_nonresident(ni, attr, le, mi,
2712 le32_to_cpu(attr->res.data_size),
2713 &ni->file.run, &attr, pages[0]);
2714 up_write(&ni->file.run_lock);
2715 if (err)
2716 goto out;
2717 }
2718
2719 if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2720 err = -EOPNOTSUPP;
2721 goto out;
2722 }
2723
2724 pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2725 if (!pages_disk) {
2726 err = -ENOMEM;
2727 goto out;
2728 }
2729
2730 for (i = 0; i < pages_per_frame; i++) {
2731 pg = alloc_page(GFP_KERNEL);
2732 if (!pg) {
2733 err = -ENOMEM;
2734 goto out1;
2735 }
2736 pages_disk[i] = pg;
2737 lock_page(pg);
2738 kmap(pg);
2739 }
2740
2741 /* To simplify compress algorithm do vmap for source and target pages. */
2742 frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2743 if (!frame_ondisk) {
2744 err = -ENOMEM;
2745 goto out1;
2746 }
2747
2748 for (i = 0; i < pages_per_frame; i++)
2749 kmap(pages[i]);
2750
2751 /* Map in-memory frame for read-only. */
2752 frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2753 if (!frame_mem) {
2754 err = -ENOMEM;
2755 goto out2;
2756 }
2757
2758 mutex_lock(&sbi->compress.mtx_lznt);
2759 lznt = NULL;
2760 if (!sbi->compress.lznt) {
2761 /*
2762 * LZNT implements two levels of compression:
2763 * 0 - Standard compression
2764 * 1 - Best compression, requires a lot of cpu
2765 * use mount option?
2766 */
2767 lznt = get_lznt_ctx(0);
2768 if (!lznt) {
2769 mutex_unlock(&sbi->compress.mtx_lznt);
2770 err = -ENOMEM;
2771 goto out3;
2772 }
2773
2774 sbi->compress.lznt = lznt;
2775 lznt = NULL;
2776 }
2777
2778 /* Compress: frame_mem -> frame_ondisk */
2779 compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2780 frame_size, sbi->compress.lznt);
2781 mutex_unlock(&sbi->compress.mtx_lznt);
2782 kfree(lznt);
2783
2784 if (compr_size + sbi->cluster_size > frame_size) {
2785 /* Frame is not compressed. */
2786 compr_size = frame_size;
2787 ondisk_size = frame_size;
2788 } else if (compr_size) {
2789 /* Frame is compressed. */
2790 ondisk_size = ntfs_up_cluster(sbi, compr_size);
2791 memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2792 } else {
2793 /* Frame is sparsed. */
2794 ondisk_size = 0;
2795 }
2796
2797 down_write(&ni->file.run_lock);
2798 run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2799 err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2800 up_write(&ni->file.run_lock);
2801 if (err)
2802 goto out2;
2803
2804 if (!ondisk_size)
2805 goto out2;
2806
2807 down_read(&ni->file.run_lock);
2808 err = ntfs_bio_pages(sbi, &ni->file.run,
2809 ondisk_size < frame_size ? pages_disk : pages,
2810 pages_per_frame, frame_vbo, ondisk_size,
2811 REQ_OP_WRITE);
2812 up_read(&ni->file.run_lock);
2813
2814 out3:
2815 vunmap(frame_mem);
2816
2817 out2:
2818 for (i = 0; i < pages_per_frame; i++)
2819 kunmap(pages[i]);
2820
2821 vunmap(frame_ondisk);
2822 out1:
2823 for (i = 0; i < pages_per_frame; i++) {
2824 pg = pages_disk[i];
2825 if (pg) {
2826 kunmap(pg);
2827 unlock_page(pg);
2828 put_page(pg);
2829 }
2830 }
2831 kfree(pages_disk);
2832 out:
2833 return err;
2834 }
2835
2836 /*
2837 * ni_remove_name - Removes name 'de' from MFT and from directory.
2838 * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2839 */
ni_remove_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE ** de2,int * undo_step)2840 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2841 struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2842 {
2843 int err;
2844 struct ntfs_sb_info *sbi = ni->mi.sbi;
2845 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2846 struct ATTR_FILE_NAME *fname;
2847 struct ATTR_LIST_ENTRY *le;
2848 struct mft_inode *mi;
2849 u16 de_key_size = le16_to_cpu(de->key_size);
2850 u8 name_type;
2851
2852 *undo_step = 0;
2853
2854 /* Find name in record. */
2855 mi_get_ref(&dir_ni->mi, &de_name->home);
2856
2857 fname = ni_fname_name(ni, (struct le_str *)&de_name->name_len,
2858 &de_name->home, &mi, &le);
2859 if (!fname)
2860 return -ENOENT;
2861
2862 memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2863 name_type = paired_name(fname->type);
2864
2865 /* Mark ntfs as dirty. It will be cleared at umount. */
2866 ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2867
2868 /* Step 1: Remove name from directory. */
2869 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2870 if (err)
2871 return err;
2872
2873 /* Step 2: Remove name from MFT. */
2874 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2875
2876 *undo_step = 2;
2877
2878 /* Get paired name. */
2879 fname = ni_fname_type(ni, name_type, &mi, &le);
2880 if (fname) {
2881 u16 de2_key_size = fname_full_size(fname);
2882
2883 *de2 = Add2Ptr(de, 1024);
2884 (*de2)->key_size = cpu_to_le16(de2_key_size);
2885
2886 memcpy(*de2 + 1, fname, de2_key_size);
2887
2888 /* Step 3: Remove paired name from directory. */
2889 err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2890 de2_key_size, sbi);
2891 if (err)
2892 return err;
2893
2894 /* Step 4: Remove paired name from MFT. */
2895 ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2896
2897 *undo_step = 4;
2898 }
2899 return 0;
2900 }
2901
2902 /*
2903 * ni_remove_name_undo - Paired function for ni_remove_name.
2904 *
2905 * Return: True if ok
2906 */
ni_remove_name_undo(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * de2,int undo_step)2907 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2908 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2909 {
2910 struct ntfs_sb_info *sbi = ni->mi.sbi;
2911 struct ATTRIB *attr;
2912 u16 de_key_size;
2913
2914 switch (undo_step) {
2915 case 4:
2916 de_key_size = le16_to_cpu(de2->key_size);
2917 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2918 &attr, NULL, NULL))
2919 return false;
2920 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2921
2922 mi_get_ref(&ni->mi, &de2->ref);
2923 de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2924 sizeof(struct NTFS_DE));
2925 de2->flags = 0;
2926 de2->res = 0;
2927
2928 if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL, 1))
2929 return false;
2930 fallthrough;
2931
2932 case 2:
2933 de_key_size = le16_to_cpu(de->key_size);
2934
2935 if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2936 &attr, NULL, NULL))
2937 return false;
2938
2939 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
2940 mi_get_ref(&ni->mi, &de->ref);
2941
2942 if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
2943 return false;
2944 }
2945
2946 return true;
2947 }
2948
2949 /*
2950 * ni_add_name - Add new name into MFT and into directory.
2951 */
ni_add_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de)2952 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2953 struct NTFS_DE *de)
2954 {
2955 int err;
2956 struct ntfs_sb_info *sbi = ni->mi.sbi;
2957 struct ATTRIB *attr;
2958 struct ATTR_LIST_ENTRY *le;
2959 struct mft_inode *mi;
2960 struct ATTR_FILE_NAME *fname;
2961 struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2962 u16 de_key_size = le16_to_cpu(de->key_size);
2963
2964 if (sbi->options->windows_names &&
2965 !valid_windows_name(sbi, (struct le_str *)&de_name->name_len))
2966 return -EINVAL;
2967
2968 /* If option "hide_dot_files" then set hidden attribute for dot files. */
2969 if (ni->mi.sbi->options->hide_dot_files) {
2970 if (de_name->name_len > 0 &&
2971 le16_to_cpu(de_name->name[0]) == '.')
2972 ni->std_fa |= FILE_ATTRIBUTE_HIDDEN;
2973 else
2974 ni->std_fa &= ~FILE_ATTRIBUTE_HIDDEN;
2975 }
2976
2977 mi_get_ref(&ni->mi, &de->ref);
2978 mi_get_ref(&dir_ni->mi, &de_name->home);
2979
2980 /* Fill duplicate from any ATTR_NAME. */
2981 fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
2982 if (fname)
2983 memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
2984 de_name->dup.fa = ni->std_fa;
2985
2986 /* Insert new name into MFT. */
2987 err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
2988 &mi, &le);
2989 if (err)
2990 return err;
2991
2992 memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
2993
2994 /* Insert new name into directory. */
2995 err = indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 0);
2996 if (err)
2997 ni_remove_attr_le(ni, attr, mi, le);
2998
2999 return err;
3000 }
3001
3002 /*
3003 * ni_rename - Remove one name and insert new name.
3004 */
ni_rename(struct ntfs_inode * dir_ni,struct ntfs_inode * new_dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * new_de,bool * is_bad)3005 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3006 struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3007 bool *is_bad)
3008 {
3009 int err;
3010 struct NTFS_DE *de2 = NULL;
3011 int undo = 0;
3012
3013 /*
3014 * There are two possible ways to rename:
3015 * 1) Add new name and remove old name.
3016 * 2) Remove old name and add new name.
3017 *
3018 * In most cases (not all!) adding new name into MFT and into directory can
3019 * allocate additional cluster(s).
3020 * Second way may result to bad inode if we can't add new name
3021 * and then can't restore (add) old name.
3022 */
3023
3024 /*
3025 * Way 1 - Add new + remove old.
3026 */
3027 err = ni_add_name(new_dir_ni, ni, new_de);
3028 if (!err) {
3029 err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3030 if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3031 *is_bad = true;
3032 }
3033
3034 /*
3035 * Way 2 - Remove old + add new.
3036 */
3037 /*
3038 * err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3039 * if (!err) {
3040 * err = ni_add_name(new_dir_ni, ni, new_de);
3041 * if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3042 * *is_bad = true;
3043 * }
3044 */
3045
3046 return err;
3047 }
3048
3049 /*
3050 * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3051 */
ni_is_dirty(struct inode * inode)3052 bool ni_is_dirty(struct inode *inode)
3053 {
3054 struct ntfs_inode *ni = ntfs_i(inode);
3055 struct rb_node *node;
3056
3057 if (ni->mi.dirty || ni->attr_list.dirty ||
3058 (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3059 return true;
3060
3061 for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3062 if (rb_entry(node, struct mft_inode, node)->dirty)
3063 return true;
3064 }
3065
3066 return false;
3067 }
3068
3069 /*
3070 * ni_update_parent
3071 *
3072 * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3073 */
ni_update_parent(struct ntfs_inode * ni,struct NTFS_DUP_INFO * dup,int sync)3074 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3075 int sync)
3076 {
3077 struct ATTRIB *attr;
3078 struct mft_inode *mi;
3079 struct ATTR_LIST_ENTRY *le = NULL;
3080 struct ntfs_sb_info *sbi = ni->mi.sbi;
3081 struct super_block *sb = sbi->sb;
3082 bool re_dirty = false;
3083
3084 if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3085 dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3086 attr = NULL;
3087 dup->alloc_size = 0;
3088 dup->data_size = 0;
3089 } else {
3090 dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3091
3092 attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3093 &mi);
3094 if (!attr) {
3095 dup->alloc_size = dup->data_size = 0;
3096 } else if (!attr->non_res) {
3097 u32 data_size = le32_to_cpu(attr->res.data_size);
3098
3099 dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3100 dup->data_size = cpu_to_le64(data_size);
3101 } else {
3102 u64 new_valid = ni->i_valid;
3103 u64 data_size = le64_to_cpu(attr->nres.data_size);
3104 __le64 valid_le;
3105
3106 dup->alloc_size = is_attr_ext(attr) ?
3107 attr->nres.total_size :
3108 attr->nres.alloc_size;
3109 dup->data_size = attr->nres.data_size;
3110
3111 if (new_valid > data_size)
3112 new_valid = data_size;
3113
3114 valid_le = cpu_to_le64(new_valid);
3115 if (valid_le != attr->nres.valid_size) {
3116 attr->nres.valid_size = valid_le;
3117 mi->dirty = true;
3118 }
3119 }
3120 }
3121
3122 /* TODO: Fill reparse info. */
3123 dup->reparse = 0;
3124 dup->ea_size = 0;
3125
3126 if (ni->ni_flags & NI_FLAG_EA) {
3127 attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3128 NULL);
3129 if (attr) {
3130 const struct EA_INFO *info;
3131
3132 info = resident_data_ex(attr, sizeof(struct EA_INFO));
3133 /* If ATTR_EA_INFO exists 'info' can't be NULL. */
3134 if (info)
3135 dup->ea_size = info->size_pack;
3136 }
3137 }
3138
3139 attr = NULL;
3140 le = NULL;
3141
3142 while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3143 &mi))) {
3144 struct inode *dir;
3145 struct ATTR_FILE_NAME *fname;
3146
3147 fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3148 if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3149 continue;
3150
3151 /* Check simple case when parent inode equals current inode. */
3152 if (ino_get(&fname->home) == ni->vfs_inode.i_ino) {
3153 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3154 continue;
3155 }
3156
3157 /* ntfs_iget5 may sleep. */
3158 dir = ntfs_iget5(sb, &fname->home, NULL);
3159 if (IS_ERR(dir)) {
3160 ntfs_inode_warn(
3161 &ni->vfs_inode,
3162 "failed to open parent directory r=%lx to update",
3163 (long)ino_get(&fname->home));
3164 continue;
3165 }
3166
3167 if (!is_bad_inode(dir)) {
3168 struct ntfs_inode *dir_ni = ntfs_i(dir);
3169
3170 if (!ni_trylock(dir_ni)) {
3171 re_dirty = true;
3172 } else {
3173 indx_update_dup(dir_ni, sbi, fname, dup, sync);
3174 ni_unlock(dir_ni);
3175 memcpy(&fname->dup, dup, sizeof(fname->dup));
3176 mi->dirty = true;
3177 }
3178 }
3179 iput(dir);
3180 }
3181
3182 return re_dirty;
3183 }
3184
3185 /*
3186 * ni_write_inode - Write MFT base record and all subrecords to disk.
3187 */
ni_write_inode(struct inode * inode,int sync,const char * hint)3188 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3189 {
3190 int err = 0, err2;
3191 struct ntfs_inode *ni = ntfs_i(inode);
3192 struct super_block *sb = inode->i_sb;
3193 struct ntfs_sb_info *sbi = sb->s_fs_info;
3194 bool re_dirty = false;
3195 struct ATTR_STD_INFO *std;
3196 struct rb_node *node, *next;
3197 struct NTFS_DUP_INFO dup;
3198
3199 if (is_bad_inode(inode) || sb_rdonly(sb))
3200 return 0;
3201
3202 if (unlikely(ntfs3_forced_shutdown(sb)))
3203 return -EIO;
3204
3205 if (!ni_trylock(ni)) {
3206 /* 'ni' is under modification, skip for now. */
3207 mark_inode_dirty_sync(inode);
3208 return 0;
3209 }
3210
3211 if (!ni->mi.mrec)
3212 goto out;
3213
3214 if (is_rec_inuse(ni->mi.mrec) &&
3215 !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3216 bool modified = false;
3217 struct timespec64 ts;
3218
3219 /* Update times in standard attribute. */
3220 std = ni_std(ni);
3221 if (!std) {
3222 err = -EINVAL;
3223 goto out;
3224 }
3225
3226 /* Update the access times if they have changed. */
3227 ts = inode_get_mtime(inode);
3228 dup.m_time = kernel2nt(&ts);
3229 if (std->m_time != dup.m_time) {
3230 std->m_time = dup.m_time;
3231 modified = true;
3232 }
3233
3234 ts = inode_get_ctime(inode);
3235 dup.c_time = kernel2nt(&ts);
3236 if (std->c_time != dup.c_time) {
3237 std->c_time = dup.c_time;
3238 modified = true;
3239 }
3240
3241 ts = inode_get_atime(inode);
3242 dup.a_time = kernel2nt(&ts);
3243 if (std->a_time != dup.a_time) {
3244 std->a_time = dup.a_time;
3245 modified = true;
3246 }
3247
3248 dup.fa = ni->std_fa;
3249 if (std->fa != dup.fa) {
3250 std->fa = dup.fa;
3251 modified = true;
3252 }
3253
3254 /* std attribute is always in primary MFT record. */
3255 if (modified)
3256 ni->mi.dirty = true;
3257
3258 if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3259 (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3260 /* Avoid __wait_on_freeing_inode(inode). */
3261 && (sb->s_flags & SB_ACTIVE)) {
3262 dup.cr_time = std->cr_time;
3263 /* Not critical if this function fail. */
3264 re_dirty = ni_update_parent(ni, &dup, sync);
3265
3266 if (re_dirty)
3267 ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3268 else
3269 ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3270 }
3271
3272 /* Update attribute list. */
3273 if (ni->attr_list.size && ni->attr_list.dirty) {
3274 if (inode->i_ino != MFT_REC_MFT || sync) {
3275 err = ni_try_remove_attr_list(ni);
3276 if (err)
3277 goto out;
3278 }
3279
3280 err = al_update(ni, sync);
3281 if (err)
3282 goto out;
3283 }
3284 }
3285
3286 for (node = rb_first(&ni->mi_tree); node; node = next) {
3287 struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3288 bool is_empty;
3289
3290 next = rb_next(node);
3291
3292 if (!mi->dirty)
3293 continue;
3294
3295 is_empty = !mi_enum_attr(ni, mi, NULL);
3296
3297 if (is_empty)
3298 clear_rec_inuse(mi->mrec);
3299
3300 err2 = mi_write(mi, sync);
3301 if (!err && err2)
3302 err = err2;
3303
3304 if (is_empty) {
3305 ntfs_mark_rec_free(sbi, mi->rno, false);
3306 rb_erase(node, &ni->mi_tree);
3307 mi_put(mi);
3308 }
3309 }
3310
3311 if (ni->mi.dirty) {
3312 err2 = mi_write(&ni->mi, sync);
3313 if (!err && err2)
3314 err = err2;
3315 }
3316 out:
3317 ni_unlock(ni);
3318
3319 if (err) {
3320 ntfs_inode_err(inode, "%s failed, %d.", hint, err);
3321 ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3322 return err;
3323 }
3324
3325 if (re_dirty)
3326 mark_inode_dirty_sync(inode);
3327
3328 return 0;
3329 }
3330
3331 /*
3332 * ni_set_compress
3333 *
3334 * Helper for 'ntfs_fileattr_set'.
3335 * Changes compression for empty files and directories only.
3336 */
ni_set_compress(struct inode * inode,bool compr)3337 int ni_set_compress(struct inode *inode, bool compr)
3338 {
3339 int err;
3340 struct ntfs_inode *ni = ntfs_i(inode);
3341 struct ATTR_STD_INFO *std;
3342 const char *bad_inode;
3343
3344 if (is_compressed(ni) == !!compr)
3345 return 0;
3346
3347 if (is_sparsed(ni)) {
3348 /* sparse and compress not compatible. */
3349 return -EOPNOTSUPP;
3350 }
3351
3352 if (!S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode)) {
3353 /*Skip other inodes. (symlink,fifo,...) */
3354 return -EOPNOTSUPP;
3355 }
3356
3357 bad_inode = NULL;
3358
3359 ni_lock(ni);
3360
3361 std = ni_std(ni);
3362 if (!std) {
3363 bad_inode = "no std";
3364 goto out;
3365 }
3366
3367 if (S_ISREG(inode->i_mode)) {
3368 err = attr_set_compress(ni, compr);
3369 if (err) {
3370 if (err == -ENOENT) {
3371 /* Fix on the fly? */
3372 /* Each file must contain data attribute. */
3373 bad_inode = "no data attribute";
3374 }
3375 goto out;
3376 }
3377 }
3378
3379 ni->std_fa = std->fa;
3380 if (compr) {
3381 std->fa &= ~FILE_ATTRIBUTE_SPARSE_FILE;
3382 std->fa |= FILE_ATTRIBUTE_COMPRESSED;
3383 } else {
3384 std->fa &= ~FILE_ATTRIBUTE_COMPRESSED;
3385 }
3386
3387 if (ni->std_fa != std->fa) {
3388 ni->std_fa = std->fa;
3389 ni->mi.dirty = true;
3390 }
3391 /* update duplicate information and directory entries in ni_write_inode.*/
3392 ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3393 err = 0;
3394
3395 out:
3396 ni_unlock(ni);
3397 if (bad_inode) {
3398 ntfs_bad_inode(inode, bad_inode);
3399 err = -EINVAL;
3400 }
3401
3402 return err;
3403 }
3404