1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/namespace.c
4 *
5 * (C) Copyright Al Viro 2000, 2001
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11 #include <linux/syscalls.h>
12 #include <linux/export.h>
13 #include <linux/capability.h>
14 #include <linux/mnt_namespace.h>
15 #include <linux/user_namespace.h>
16 #include <linux/namei.h>
17 #include <linux/security.h>
18 #include <linux/cred.h>
19 #include <linux/idr.h>
20 #include <linux/init.h> /* init_rootfs */
21 #include <linux/fs_struct.h> /* get_fs_root et.al. */
22 #include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23 #include <linux/file.h>
24 #include <linux/uaccess.h>
25 #include <linux/proc_ns.h>
26 #include <linux/magic.h>
27 #include <linux/memblock.h>
28 #include <linux/proc_fs.h>
29 #include <linux/task_work.h>
30 #include <linux/sched/task.h>
31 #include <uapi/linux/mount.h>
32 #include <linux/fs_context.h>
33 #include <linux/shmem_fs.h>
34 #include <linux/mnt_idmapping.h>
35 #include <linux/pidfs.h>
36
37 #include "pnode.h"
38 #include "internal.h"
39
40 /* Maximum number of mounts in a mount namespace */
41 static unsigned int sysctl_mount_max __read_mostly = 100000;
42
43 static unsigned int m_hash_mask __ro_after_init;
44 static unsigned int m_hash_shift __ro_after_init;
45 static unsigned int mp_hash_mask __ro_after_init;
46 static unsigned int mp_hash_shift __ro_after_init;
47
48 static __initdata unsigned long mhash_entries;
set_mhash_entries(char * str)49 static int __init set_mhash_entries(char *str)
50 {
51 if (!str)
52 return 0;
53 mhash_entries = simple_strtoul(str, &str, 0);
54 return 1;
55 }
56 __setup("mhash_entries=", set_mhash_entries);
57
58 static __initdata unsigned long mphash_entries;
set_mphash_entries(char * str)59 static int __init set_mphash_entries(char *str)
60 {
61 if (!str)
62 return 0;
63 mphash_entries = simple_strtoul(str, &str, 0);
64 return 1;
65 }
66 __setup("mphash_entries=", set_mphash_entries);
67
68 static u64 event;
69 static DEFINE_XARRAY_FLAGS(mnt_id_xa, XA_FLAGS_ALLOC);
70 static DEFINE_IDA(mnt_group_ida);
71
72 /* Don't allow confusion with old 32bit mount ID */
73 #define MNT_UNIQUE_ID_OFFSET (1ULL << 31)
74 static u64 mnt_id_ctr = MNT_UNIQUE_ID_OFFSET;
75
76 static struct hlist_head *mount_hashtable __ro_after_init;
77 static struct hlist_head *mountpoint_hashtable __ro_after_init;
78 static struct kmem_cache *mnt_cache __ro_after_init;
79 static DECLARE_RWSEM(namespace_sem);
80 static HLIST_HEAD(unmounted); /* protected by namespace_sem */
81 static LIST_HEAD(ex_mountpoints); /* protected by namespace_sem */
82 static DEFINE_SEQLOCK(mnt_ns_tree_lock);
83
84 #ifdef CONFIG_FSNOTIFY
85 LIST_HEAD(notify_list); /* protected by namespace_sem */
86 #endif
87 static struct rb_root mnt_ns_tree = RB_ROOT; /* protected by mnt_ns_tree_lock */
88 static LIST_HEAD(mnt_ns_list); /* protected by mnt_ns_tree_lock */
89
90 enum mount_kattr_flags_t {
91 MOUNT_KATTR_RECURSE = (1 << 0),
92 MOUNT_KATTR_IDMAP_REPLACE = (1 << 1),
93 };
94
95 struct mount_kattr {
96 unsigned int attr_set;
97 unsigned int attr_clr;
98 unsigned int propagation;
99 unsigned int lookup_flags;
100 enum mount_kattr_flags_t kflags;
101 struct user_namespace *mnt_userns;
102 struct mnt_idmap *mnt_idmap;
103 };
104
105 /* /sys/fs */
106 struct kobject *fs_kobj __ro_after_init;
107 EXPORT_SYMBOL_GPL(fs_kobj);
108
109 /*
110 * vfsmount lock may be taken for read to prevent changes to the
111 * vfsmount hash, ie. during mountpoint lookups or walking back
112 * up the tree.
113 *
114 * It should be taken for write in all cases where the vfsmount
115 * tree or hash is modified or when a vfsmount structure is modified.
116 */
117 __cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
118
node_to_mnt_ns(const struct rb_node * node)119 static inline struct mnt_namespace *node_to_mnt_ns(const struct rb_node *node)
120 {
121 if (!node)
122 return NULL;
123 return rb_entry(node, struct mnt_namespace, mnt_ns_tree_node);
124 }
125
mnt_ns_cmp(struct rb_node * a,const struct rb_node * b)126 static int mnt_ns_cmp(struct rb_node *a, const struct rb_node *b)
127 {
128 struct mnt_namespace *ns_a = node_to_mnt_ns(a);
129 struct mnt_namespace *ns_b = node_to_mnt_ns(b);
130 u64 seq_a = ns_a->seq;
131 u64 seq_b = ns_b->seq;
132
133 if (seq_a < seq_b)
134 return -1;
135 if (seq_a > seq_b)
136 return 1;
137 return 0;
138 }
139
mnt_ns_tree_write_lock(void)140 static inline void mnt_ns_tree_write_lock(void)
141 {
142 write_seqlock(&mnt_ns_tree_lock);
143 }
144
mnt_ns_tree_write_unlock(void)145 static inline void mnt_ns_tree_write_unlock(void)
146 {
147 write_sequnlock(&mnt_ns_tree_lock);
148 }
149
mnt_ns_tree_add(struct mnt_namespace * ns)150 static void mnt_ns_tree_add(struct mnt_namespace *ns)
151 {
152 struct rb_node *node, *prev;
153
154 mnt_ns_tree_write_lock();
155 node = rb_find_add_rcu(&ns->mnt_ns_tree_node, &mnt_ns_tree, mnt_ns_cmp);
156 /*
157 * If there's no previous entry simply add it after the
158 * head and if there is add it after the previous entry.
159 */
160 prev = rb_prev(&ns->mnt_ns_tree_node);
161 if (!prev)
162 list_add_rcu(&ns->mnt_ns_list, &mnt_ns_list);
163 else
164 list_add_rcu(&ns->mnt_ns_list, &node_to_mnt_ns(prev)->mnt_ns_list);
165 mnt_ns_tree_write_unlock();
166
167 WARN_ON_ONCE(node);
168 }
169
mnt_ns_release(struct mnt_namespace * ns)170 static void mnt_ns_release(struct mnt_namespace *ns)
171 {
172 /* keep alive for {list,stat}mount() */
173 if (refcount_dec_and_test(&ns->passive)) {
174 fsnotify_mntns_delete(ns);
175 put_user_ns(ns->user_ns);
176 kfree(ns);
177 }
178 }
DEFINE_FREE(mnt_ns_release,struct mnt_namespace *,if (_T)mnt_ns_release (_T))179 DEFINE_FREE(mnt_ns_release, struct mnt_namespace *, if (_T) mnt_ns_release(_T))
180
181 static void mnt_ns_release_rcu(struct rcu_head *rcu)
182 {
183 mnt_ns_release(container_of(rcu, struct mnt_namespace, mnt_ns_rcu));
184 }
185
mnt_ns_tree_remove(struct mnt_namespace * ns)186 static void mnt_ns_tree_remove(struct mnt_namespace *ns)
187 {
188 /* remove from global mount namespace list */
189 if (!is_anon_ns(ns)) {
190 mnt_ns_tree_write_lock();
191 rb_erase(&ns->mnt_ns_tree_node, &mnt_ns_tree);
192 list_bidir_del_rcu(&ns->mnt_ns_list);
193 mnt_ns_tree_write_unlock();
194 }
195
196 call_rcu(&ns->mnt_ns_rcu, mnt_ns_release_rcu);
197 }
198
mnt_ns_find(const void * key,const struct rb_node * node)199 static int mnt_ns_find(const void *key, const struct rb_node *node)
200 {
201 const u64 mnt_ns_id = *(u64 *)key;
202 const struct mnt_namespace *ns = node_to_mnt_ns(node);
203
204 if (mnt_ns_id < ns->seq)
205 return -1;
206 if (mnt_ns_id > ns->seq)
207 return 1;
208 return 0;
209 }
210
211 /*
212 * Lookup a mount namespace by id and take a passive reference count. Taking a
213 * passive reference means the mount namespace can be emptied if e.g., the last
214 * task holding an active reference exits. To access the mounts of the
215 * namespace the @namespace_sem must first be acquired. If the namespace has
216 * already shut down before acquiring @namespace_sem, {list,stat}mount() will
217 * see that the mount rbtree of the namespace is empty.
218 *
219 * Note the lookup is lockless protected by a sequence counter. We only
220 * need to guard against false negatives as false positives aren't
221 * possible. So if we didn't find a mount namespace and the sequence
222 * counter has changed we need to retry. If the sequence counter is
223 * still the same we know the search actually failed.
224 */
lookup_mnt_ns(u64 mnt_ns_id)225 static struct mnt_namespace *lookup_mnt_ns(u64 mnt_ns_id)
226 {
227 struct mnt_namespace *ns;
228 struct rb_node *node;
229 unsigned int seq;
230
231 guard(rcu)();
232 do {
233 seq = read_seqbegin(&mnt_ns_tree_lock);
234 node = rb_find_rcu(&mnt_ns_id, &mnt_ns_tree, mnt_ns_find);
235 if (node)
236 break;
237 } while (read_seqretry(&mnt_ns_tree_lock, seq));
238
239 if (!node)
240 return NULL;
241
242 /*
243 * The last reference count is put with RCU delay so we can
244 * unconditonally acquire a reference here.
245 */
246 ns = node_to_mnt_ns(node);
247 refcount_inc(&ns->passive);
248 return ns;
249 }
250
lock_mount_hash(void)251 static inline void lock_mount_hash(void)
252 {
253 write_seqlock(&mount_lock);
254 }
255
unlock_mount_hash(void)256 static inline void unlock_mount_hash(void)
257 {
258 write_sequnlock(&mount_lock);
259 }
260
m_hash(struct vfsmount * mnt,struct dentry * dentry)261 static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
262 {
263 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
264 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
265 tmp = tmp + (tmp >> m_hash_shift);
266 return &mount_hashtable[tmp & m_hash_mask];
267 }
268
mp_hash(struct dentry * dentry)269 static inline struct hlist_head *mp_hash(struct dentry *dentry)
270 {
271 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
272 tmp = tmp + (tmp >> mp_hash_shift);
273 return &mountpoint_hashtable[tmp & mp_hash_mask];
274 }
275
mnt_alloc_id(struct mount * mnt)276 static int mnt_alloc_id(struct mount *mnt)
277 {
278 int res;
279
280 xa_lock(&mnt_id_xa);
281 res = __xa_alloc(&mnt_id_xa, &mnt->mnt_id, mnt, XA_LIMIT(1, INT_MAX), GFP_KERNEL);
282 if (!res)
283 mnt->mnt_id_unique = ++mnt_id_ctr;
284 xa_unlock(&mnt_id_xa);
285 return res;
286 }
287
mnt_free_id(struct mount * mnt)288 static void mnt_free_id(struct mount *mnt)
289 {
290 xa_erase(&mnt_id_xa, mnt->mnt_id);
291 }
292
293 /*
294 * Allocate a new peer group ID
295 */
mnt_alloc_group_id(struct mount * mnt)296 static int mnt_alloc_group_id(struct mount *mnt)
297 {
298 int res = ida_alloc_min(&mnt_group_ida, 1, GFP_KERNEL);
299
300 if (res < 0)
301 return res;
302 mnt->mnt_group_id = res;
303 return 0;
304 }
305
306 /*
307 * Release a peer group ID
308 */
mnt_release_group_id(struct mount * mnt)309 void mnt_release_group_id(struct mount *mnt)
310 {
311 ida_free(&mnt_group_ida, mnt->mnt_group_id);
312 mnt->mnt_group_id = 0;
313 }
314
315 /*
316 * vfsmount lock must be held for read
317 */
mnt_add_count(struct mount * mnt,int n)318 static inline void mnt_add_count(struct mount *mnt, int n)
319 {
320 #ifdef CONFIG_SMP
321 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
322 #else
323 preempt_disable();
324 mnt->mnt_count += n;
325 preempt_enable();
326 #endif
327 }
328
329 /*
330 * vfsmount lock must be held for write
331 */
mnt_get_count(struct mount * mnt)332 int mnt_get_count(struct mount *mnt)
333 {
334 #ifdef CONFIG_SMP
335 int count = 0;
336 int cpu;
337
338 for_each_possible_cpu(cpu) {
339 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
340 }
341
342 return count;
343 #else
344 return mnt->mnt_count;
345 #endif
346 }
347
alloc_vfsmnt(const char * name)348 static struct mount *alloc_vfsmnt(const char *name)
349 {
350 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
351 if (mnt) {
352 int err;
353
354 err = mnt_alloc_id(mnt);
355 if (err)
356 goto out_free_cache;
357
358 if (name) {
359 mnt->mnt_devname = kstrdup_const(name,
360 GFP_KERNEL_ACCOUNT);
361 if (!mnt->mnt_devname)
362 goto out_free_id;
363 }
364
365 #ifdef CONFIG_SMP
366 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
367 if (!mnt->mnt_pcp)
368 goto out_free_devname;
369
370 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
371 #else
372 mnt->mnt_count = 1;
373 mnt->mnt_writers = 0;
374 #endif
375
376 INIT_HLIST_NODE(&mnt->mnt_hash);
377 INIT_LIST_HEAD(&mnt->mnt_child);
378 INIT_LIST_HEAD(&mnt->mnt_mounts);
379 INIT_LIST_HEAD(&mnt->mnt_list);
380 INIT_LIST_HEAD(&mnt->mnt_expire);
381 INIT_LIST_HEAD(&mnt->mnt_share);
382 INIT_LIST_HEAD(&mnt->mnt_slave_list);
383 INIT_LIST_HEAD(&mnt->mnt_slave);
384 INIT_HLIST_NODE(&mnt->mnt_mp_list);
385 INIT_LIST_HEAD(&mnt->mnt_umounting);
386 INIT_HLIST_HEAD(&mnt->mnt_stuck_children);
387 RB_CLEAR_NODE(&mnt->mnt_node);
388 mnt->mnt.mnt_idmap = &nop_mnt_idmap;
389 }
390 return mnt;
391
392 #ifdef CONFIG_SMP
393 out_free_devname:
394 kfree_const(mnt->mnt_devname);
395 #endif
396 out_free_id:
397 mnt_free_id(mnt);
398 out_free_cache:
399 kmem_cache_free(mnt_cache, mnt);
400 return NULL;
401 }
402
403 /*
404 * Most r/o checks on a fs are for operations that take
405 * discrete amounts of time, like a write() or unlink().
406 * We must keep track of when those operations start
407 * (for permission checks) and when they end, so that
408 * we can determine when writes are able to occur to
409 * a filesystem.
410 */
411 /*
412 * __mnt_is_readonly: check whether a mount is read-only
413 * @mnt: the mount to check for its write status
414 *
415 * This shouldn't be used directly ouside of the VFS.
416 * It does not guarantee that the filesystem will stay
417 * r/w, just that it is right *now*. This can not and
418 * should not be used in place of IS_RDONLY(inode).
419 * mnt_want/drop_write() will _keep_ the filesystem
420 * r/w.
421 */
__mnt_is_readonly(struct vfsmount * mnt)422 bool __mnt_is_readonly(struct vfsmount *mnt)
423 {
424 return (mnt->mnt_flags & MNT_READONLY) || sb_rdonly(mnt->mnt_sb);
425 }
426 EXPORT_SYMBOL_GPL(__mnt_is_readonly);
427
mnt_inc_writers(struct mount * mnt)428 static inline void mnt_inc_writers(struct mount *mnt)
429 {
430 #ifdef CONFIG_SMP
431 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
432 #else
433 mnt->mnt_writers++;
434 #endif
435 }
436
mnt_dec_writers(struct mount * mnt)437 static inline void mnt_dec_writers(struct mount *mnt)
438 {
439 #ifdef CONFIG_SMP
440 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
441 #else
442 mnt->mnt_writers--;
443 #endif
444 }
445
mnt_get_writers(struct mount * mnt)446 static unsigned int mnt_get_writers(struct mount *mnt)
447 {
448 #ifdef CONFIG_SMP
449 unsigned int count = 0;
450 int cpu;
451
452 for_each_possible_cpu(cpu) {
453 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
454 }
455
456 return count;
457 #else
458 return mnt->mnt_writers;
459 #endif
460 }
461
mnt_is_readonly(struct vfsmount * mnt)462 static int mnt_is_readonly(struct vfsmount *mnt)
463 {
464 if (READ_ONCE(mnt->mnt_sb->s_readonly_remount))
465 return 1;
466 /*
467 * The barrier pairs with the barrier in sb_start_ro_state_change()
468 * making sure if we don't see s_readonly_remount set yet, we also will
469 * not see any superblock / mount flag changes done by remount.
470 * It also pairs with the barrier in sb_end_ro_state_change()
471 * assuring that if we see s_readonly_remount already cleared, we will
472 * see the values of superblock / mount flags updated by remount.
473 */
474 smp_rmb();
475 return __mnt_is_readonly(mnt);
476 }
477
478 /*
479 * Most r/o & frozen checks on a fs are for operations that take discrete
480 * amounts of time, like a write() or unlink(). We must keep track of when
481 * those operations start (for permission checks) and when they end, so that we
482 * can determine when writes are able to occur to a filesystem.
483 */
484 /**
485 * mnt_get_write_access - get write access to a mount without freeze protection
486 * @m: the mount on which to take a write
487 *
488 * This tells the low-level filesystem that a write is about to be performed to
489 * it, and makes sure that writes are allowed (mnt it read-write) before
490 * returning success. This operation does not protect against filesystem being
491 * frozen. When the write operation is finished, mnt_put_write_access() must be
492 * called. This is effectively a refcount.
493 */
mnt_get_write_access(struct vfsmount * m)494 int mnt_get_write_access(struct vfsmount *m)
495 {
496 struct mount *mnt = real_mount(m);
497 int ret = 0;
498
499 preempt_disable();
500 mnt_inc_writers(mnt);
501 /*
502 * The store to mnt_inc_writers must be visible before we pass
503 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
504 * incremented count after it has set MNT_WRITE_HOLD.
505 */
506 smp_mb();
507 might_lock(&mount_lock.lock);
508 while (READ_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) {
509 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
510 cpu_relax();
511 } else {
512 /*
513 * This prevents priority inversion, if the task
514 * setting MNT_WRITE_HOLD got preempted on a remote
515 * CPU, and it prevents life lock if the task setting
516 * MNT_WRITE_HOLD has a lower priority and is bound to
517 * the same CPU as the task that is spinning here.
518 */
519 preempt_enable();
520 lock_mount_hash();
521 unlock_mount_hash();
522 preempt_disable();
523 }
524 }
525 /*
526 * The barrier pairs with the barrier sb_start_ro_state_change() making
527 * sure that if we see MNT_WRITE_HOLD cleared, we will also see
528 * s_readonly_remount set (or even SB_RDONLY / MNT_READONLY flags) in
529 * mnt_is_readonly() and bail in case we are racing with remount
530 * read-only.
531 */
532 smp_rmb();
533 if (mnt_is_readonly(m)) {
534 mnt_dec_writers(mnt);
535 ret = -EROFS;
536 }
537 preempt_enable();
538
539 return ret;
540 }
541 EXPORT_SYMBOL_GPL(mnt_get_write_access);
542
543 /**
544 * mnt_want_write - get write access to a mount
545 * @m: the mount on which to take a write
546 *
547 * This tells the low-level filesystem that a write is about to be performed to
548 * it, and makes sure that writes are allowed (mount is read-write, filesystem
549 * is not frozen) before returning success. When the write operation is
550 * finished, mnt_drop_write() must be called. This is effectively a refcount.
551 */
mnt_want_write(struct vfsmount * m)552 int mnt_want_write(struct vfsmount *m)
553 {
554 int ret;
555
556 sb_start_write(m->mnt_sb);
557 ret = mnt_get_write_access(m);
558 if (ret)
559 sb_end_write(m->mnt_sb);
560 return ret;
561 }
562 EXPORT_SYMBOL_GPL(mnt_want_write);
563
564 /**
565 * mnt_get_write_access_file - get write access to a file's mount
566 * @file: the file who's mount on which to take a write
567 *
568 * This is like mnt_get_write_access, but if @file is already open for write it
569 * skips incrementing mnt_writers (since the open file already has a reference)
570 * and instead only does the check for emergency r/o remounts. This must be
571 * paired with mnt_put_write_access_file.
572 */
mnt_get_write_access_file(struct file * file)573 int mnt_get_write_access_file(struct file *file)
574 {
575 if (file->f_mode & FMODE_WRITER) {
576 /*
577 * Superblock may have become readonly while there are still
578 * writable fd's, e.g. due to a fs error with errors=remount-ro
579 */
580 if (__mnt_is_readonly(file->f_path.mnt))
581 return -EROFS;
582 return 0;
583 }
584 return mnt_get_write_access(file->f_path.mnt);
585 }
586
587 /**
588 * mnt_want_write_file - get write access to a file's mount
589 * @file: the file who's mount on which to take a write
590 *
591 * This is like mnt_want_write, but if the file is already open for writing it
592 * skips incrementing mnt_writers (since the open file already has a reference)
593 * and instead only does the freeze protection and the check for emergency r/o
594 * remounts. This must be paired with mnt_drop_write_file.
595 */
mnt_want_write_file(struct file * file)596 int mnt_want_write_file(struct file *file)
597 {
598 int ret;
599
600 sb_start_write(file_inode(file)->i_sb);
601 ret = mnt_get_write_access_file(file);
602 if (ret)
603 sb_end_write(file_inode(file)->i_sb);
604 return ret;
605 }
606 EXPORT_SYMBOL_GPL(mnt_want_write_file);
607
608 /**
609 * mnt_put_write_access - give up write access to a mount
610 * @mnt: the mount on which to give up write access
611 *
612 * Tells the low-level filesystem that we are done
613 * performing writes to it. Must be matched with
614 * mnt_get_write_access() call above.
615 */
mnt_put_write_access(struct vfsmount * mnt)616 void mnt_put_write_access(struct vfsmount *mnt)
617 {
618 preempt_disable();
619 mnt_dec_writers(real_mount(mnt));
620 preempt_enable();
621 }
622 EXPORT_SYMBOL_GPL(mnt_put_write_access);
623
624 /**
625 * mnt_drop_write - give up write access to a mount
626 * @mnt: the mount on which to give up write access
627 *
628 * Tells the low-level filesystem that we are done performing writes to it and
629 * also allows filesystem to be frozen again. Must be matched with
630 * mnt_want_write() call above.
631 */
mnt_drop_write(struct vfsmount * mnt)632 void mnt_drop_write(struct vfsmount *mnt)
633 {
634 mnt_put_write_access(mnt);
635 sb_end_write(mnt->mnt_sb);
636 }
637 EXPORT_SYMBOL_GPL(mnt_drop_write);
638
mnt_put_write_access_file(struct file * file)639 void mnt_put_write_access_file(struct file *file)
640 {
641 if (!(file->f_mode & FMODE_WRITER))
642 mnt_put_write_access(file->f_path.mnt);
643 }
644
mnt_drop_write_file(struct file * file)645 void mnt_drop_write_file(struct file *file)
646 {
647 mnt_put_write_access_file(file);
648 sb_end_write(file_inode(file)->i_sb);
649 }
650 EXPORT_SYMBOL(mnt_drop_write_file);
651
652 /**
653 * mnt_hold_writers - prevent write access to the given mount
654 * @mnt: mnt to prevent write access to
655 *
656 * Prevents write access to @mnt if there are no active writers for @mnt.
657 * This function needs to be called and return successfully before changing
658 * properties of @mnt that need to remain stable for callers with write access
659 * to @mnt.
660 *
661 * After this functions has been called successfully callers must pair it with
662 * a call to mnt_unhold_writers() in order to stop preventing write access to
663 * @mnt.
664 *
665 * Context: This function expects lock_mount_hash() to be held serializing
666 * setting MNT_WRITE_HOLD.
667 * Return: On success 0 is returned.
668 * On error, -EBUSY is returned.
669 */
mnt_hold_writers(struct mount * mnt)670 static inline int mnt_hold_writers(struct mount *mnt)
671 {
672 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
673 /*
674 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
675 * should be visible before we do.
676 */
677 smp_mb();
678
679 /*
680 * With writers on hold, if this value is zero, then there are
681 * definitely no active writers (although held writers may subsequently
682 * increment the count, they'll have to wait, and decrement it after
683 * seeing MNT_READONLY).
684 *
685 * It is OK to have counter incremented on one CPU and decremented on
686 * another: the sum will add up correctly. The danger would be when we
687 * sum up each counter, if we read a counter before it is incremented,
688 * but then read another CPU's count which it has been subsequently
689 * decremented from -- we would see more decrements than we should.
690 * MNT_WRITE_HOLD protects against this scenario, because
691 * mnt_want_write first increments count, then smp_mb, then spins on
692 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
693 * we're counting up here.
694 */
695 if (mnt_get_writers(mnt) > 0)
696 return -EBUSY;
697
698 return 0;
699 }
700
701 /**
702 * mnt_unhold_writers - stop preventing write access to the given mount
703 * @mnt: mnt to stop preventing write access to
704 *
705 * Stop preventing write access to @mnt allowing callers to gain write access
706 * to @mnt again.
707 *
708 * This function can only be called after a successful call to
709 * mnt_hold_writers().
710 *
711 * Context: This function expects lock_mount_hash() to be held.
712 */
mnt_unhold_writers(struct mount * mnt)713 static inline void mnt_unhold_writers(struct mount *mnt)
714 {
715 /*
716 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
717 * that become unheld will see MNT_READONLY.
718 */
719 smp_wmb();
720 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
721 }
722
mnt_make_readonly(struct mount * mnt)723 static int mnt_make_readonly(struct mount *mnt)
724 {
725 int ret;
726
727 ret = mnt_hold_writers(mnt);
728 if (!ret)
729 mnt->mnt.mnt_flags |= MNT_READONLY;
730 mnt_unhold_writers(mnt);
731 return ret;
732 }
733
sb_prepare_remount_readonly(struct super_block * sb)734 int sb_prepare_remount_readonly(struct super_block *sb)
735 {
736 struct mount *mnt;
737 int err = 0;
738
739 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
740 if (atomic_long_read(&sb->s_remove_count))
741 return -EBUSY;
742
743 lock_mount_hash();
744 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
745 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
746 err = mnt_hold_writers(mnt);
747 if (err)
748 break;
749 }
750 }
751 if (!err && atomic_long_read(&sb->s_remove_count))
752 err = -EBUSY;
753
754 if (!err)
755 sb_start_ro_state_change(sb);
756 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
757 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
758 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
759 }
760 unlock_mount_hash();
761
762 return err;
763 }
764
free_vfsmnt(struct mount * mnt)765 static void free_vfsmnt(struct mount *mnt)
766 {
767 mnt_idmap_put(mnt_idmap(&mnt->mnt));
768 kfree_const(mnt->mnt_devname);
769 #ifdef CONFIG_SMP
770 free_percpu(mnt->mnt_pcp);
771 #endif
772 kmem_cache_free(mnt_cache, mnt);
773 }
774
delayed_free_vfsmnt(struct rcu_head * head)775 static void delayed_free_vfsmnt(struct rcu_head *head)
776 {
777 free_vfsmnt(container_of(head, struct mount, mnt_rcu));
778 }
779
780 /* call under rcu_read_lock */
__legitimize_mnt(struct vfsmount * bastard,unsigned seq)781 int __legitimize_mnt(struct vfsmount *bastard, unsigned seq)
782 {
783 struct mount *mnt;
784 if (read_seqretry(&mount_lock, seq))
785 return 1;
786 if (bastard == NULL)
787 return 0;
788 mnt = real_mount(bastard);
789 mnt_add_count(mnt, 1);
790 smp_mb(); // see mntput_no_expire() and do_umount()
791 if (likely(!read_seqretry(&mount_lock, seq)))
792 return 0;
793 lock_mount_hash();
794 if (unlikely(bastard->mnt_flags & (MNT_SYNC_UMOUNT | MNT_DOOMED))) {
795 mnt_add_count(mnt, -1);
796 unlock_mount_hash();
797 return 1;
798 }
799 unlock_mount_hash();
800 /* caller will mntput() */
801 return -1;
802 }
803
804 /* call under rcu_read_lock */
legitimize_mnt(struct vfsmount * bastard,unsigned seq)805 static bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
806 {
807 int res = __legitimize_mnt(bastard, seq);
808 if (likely(!res))
809 return true;
810 if (unlikely(res < 0)) {
811 rcu_read_unlock();
812 mntput(bastard);
813 rcu_read_lock();
814 }
815 return false;
816 }
817
818 /**
819 * __lookup_mnt - find first child mount
820 * @mnt: parent mount
821 * @dentry: mountpoint
822 *
823 * If @mnt has a child mount @c mounted @dentry find and return it.
824 *
825 * Note that the child mount @c need not be unique. There are cases
826 * where shadow mounts are created. For example, during mount
827 * propagation when a source mount @mnt whose root got overmounted by a
828 * mount @o after path lookup but before @namespace_sem could be
829 * acquired gets copied and propagated. So @mnt gets copied including
830 * @o. When @mnt is propagated to a destination mount @d that already
831 * has another mount @n mounted at the same mountpoint then the source
832 * mount @mnt will be tucked beneath @n, i.e., @n will be mounted on
833 * @mnt and @mnt mounted on @d. Now both @n and @o are mounted at @mnt
834 * on @dentry.
835 *
836 * Return: The first child of @mnt mounted @dentry or NULL.
837 */
__lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)838 struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
839 {
840 struct hlist_head *head = m_hash(mnt, dentry);
841 struct mount *p;
842
843 hlist_for_each_entry_rcu(p, head, mnt_hash)
844 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
845 return p;
846 return NULL;
847 }
848
849 /*
850 * lookup_mnt - Return the first child mount mounted at path
851 *
852 * "First" means first mounted chronologically. If you create the
853 * following mounts:
854 *
855 * mount /dev/sda1 /mnt
856 * mount /dev/sda2 /mnt
857 * mount /dev/sda3 /mnt
858 *
859 * Then lookup_mnt() on the base /mnt dentry in the root mount will
860 * return successively the root dentry and vfsmount of /dev/sda1, then
861 * /dev/sda2, then /dev/sda3, then NULL.
862 *
863 * lookup_mnt takes a reference to the found vfsmount.
864 */
lookup_mnt(const struct path * path)865 struct vfsmount *lookup_mnt(const struct path *path)
866 {
867 struct mount *child_mnt;
868 struct vfsmount *m;
869 unsigned seq;
870
871 rcu_read_lock();
872 do {
873 seq = read_seqbegin(&mount_lock);
874 child_mnt = __lookup_mnt(path->mnt, path->dentry);
875 m = child_mnt ? &child_mnt->mnt : NULL;
876 } while (!legitimize_mnt(m, seq));
877 rcu_read_unlock();
878 return m;
879 }
880
881 /*
882 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
883 * current mount namespace.
884 *
885 * The common case is dentries are not mountpoints at all and that
886 * test is handled inline. For the slow case when we are actually
887 * dealing with a mountpoint of some kind, walk through all of the
888 * mounts in the current mount namespace and test to see if the dentry
889 * is a mountpoint.
890 *
891 * The mount_hashtable is not usable in the context because we
892 * need to identify all mounts that may be in the current mount
893 * namespace not just a mount that happens to have some specified
894 * parent mount.
895 */
__is_local_mountpoint(struct dentry * dentry)896 bool __is_local_mountpoint(struct dentry *dentry)
897 {
898 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
899 struct mount *mnt, *n;
900 bool is_covered = false;
901
902 down_read(&namespace_sem);
903 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
904 is_covered = (mnt->mnt_mountpoint == dentry);
905 if (is_covered)
906 break;
907 }
908 up_read(&namespace_sem);
909
910 return is_covered;
911 }
912
lookup_mountpoint(struct dentry * dentry)913 static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
914 {
915 struct hlist_head *chain = mp_hash(dentry);
916 struct mountpoint *mp;
917
918 hlist_for_each_entry(mp, chain, m_hash) {
919 if (mp->m_dentry == dentry) {
920 mp->m_count++;
921 return mp;
922 }
923 }
924 return NULL;
925 }
926
get_mountpoint(struct dentry * dentry)927 static struct mountpoint *get_mountpoint(struct dentry *dentry)
928 {
929 struct mountpoint *mp, *new = NULL;
930 int ret;
931
932 if (d_mountpoint(dentry)) {
933 /* might be worth a WARN_ON() */
934 if (d_unlinked(dentry))
935 return ERR_PTR(-ENOENT);
936 mountpoint:
937 read_seqlock_excl(&mount_lock);
938 mp = lookup_mountpoint(dentry);
939 read_sequnlock_excl(&mount_lock);
940 if (mp)
941 goto done;
942 }
943
944 if (!new)
945 new = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
946 if (!new)
947 return ERR_PTR(-ENOMEM);
948
949
950 /* Exactly one processes may set d_mounted */
951 ret = d_set_mounted(dentry);
952
953 /* Someone else set d_mounted? */
954 if (ret == -EBUSY)
955 goto mountpoint;
956
957 /* The dentry is not available as a mountpoint? */
958 mp = ERR_PTR(ret);
959 if (ret)
960 goto done;
961
962 /* Add the new mountpoint to the hash table */
963 read_seqlock_excl(&mount_lock);
964 new->m_dentry = dget(dentry);
965 new->m_count = 1;
966 hlist_add_head(&new->m_hash, mp_hash(dentry));
967 INIT_HLIST_HEAD(&new->m_list);
968 read_sequnlock_excl(&mount_lock);
969
970 mp = new;
971 new = NULL;
972 done:
973 kfree(new);
974 return mp;
975 }
976
977 /*
978 * vfsmount lock must be held. Additionally, the caller is responsible
979 * for serializing calls for given disposal list.
980 */
__put_mountpoint(struct mountpoint * mp,struct list_head * list)981 static void __put_mountpoint(struct mountpoint *mp, struct list_head *list)
982 {
983 if (!--mp->m_count) {
984 struct dentry *dentry = mp->m_dentry;
985 BUG_ON(!hlist_empty(&mp->m_list));
986 spin_lock(&dentry->d_lock);
987 dentry->d_flags &= ~DCACHE_MOUNTED;
988 spin_unlock(&dentry->d_lock);
989 dput_to_list(dentry, list);
990 hlist_del(&mp->m_hash);
991 kfree(mp);
992 }
993 }
994
995 /* called with namespace_lock and vfsmount lock */
put_mountpoint(struct mountpoint * mp)996 static void put_mountpoint(struct mountpoint *mp)
997 {
998 __put_mountpoint(mp, &ex_mountpoints);
999 }
1000
check_mnt(struct mount * mnt)1001 static inline int check_mnt(struct mount *mnt)
1002 {
1003 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1004 }
1005
check_anonymous_mnt(struct mount * mnt)1006 static inline bool check_anonymous_mnt(struct mount *mnt)
1007 {
1008 u64 seq;
1009
1010 if (!is_anon_ns(mnt->mnt_ns))
1011 return false;
1012
1013 seq = mnt->mnt_ns->seq_origin;
1014 return !seq || (seq == current->nsproxy->mnt_ns->seq);
1015 }
1016
1017 /*
1018 * vfsmount lock must be held for write
1019 */
touch_mnt_namespace(struct mnt_namespace * ns)1020 static void touch_mnt_namespace(struct mnt_namespace *ns)
1021 {
1022 if (ns) {
1023 ns->event = ++event;
1024 wake_up_interruptible(&ns->poll);
1025 }
1026 }
1027
1028 /*
1029 * vfsmount lock must be held for write
1030 */
__touch_mnt_namespace(struct mnt_namespace * ns)1031 static void __touch_mnt_namespace(struct mnt_namespace *ns)
1032 {
1033 if (ns && ns->event != event) {
1034 ns->event = event;
1035 wake_up_interruptible(&ns->poll);
1036 }
1037 }
1038
1039 /*
1040 * vfsmount lock must be held for write
1041 */
unhash_mnt(struct mount * mnt)1042 static struct mountpoint *unhash_mnt(struct mount *mnt)
1043 {
1044 struct mountpoint *mp;
1045 mnt->mnt_parent = mnt;
1046 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1047 list_del_init(&mnt->mnt_child);
1048 hlist_del_init_rcu(&mnt->mnt_hash);
1049 hlist_del_init(&mnt->mnt_mp_list);
1050 mp = mnt->mnt_mp;
1051 mnt->mnt_mp = NULL;
1052 return mp;
1053 }
1054
1055 /*
1056 * vfsmount lock must be held for write
1057 */
umount_mnt(struct mount * mnt)1058 static void umount_mnt(struct mount *mnt)
1059 {
1060 put_mountpoint(unhash_mnt(mnt));
1061 }
1062
1063 /*
1064 * vfsmount lock must be held for write
1065 */
mnt_set_mountpoint(struct mount * mnt,struct mountpoint * mp,struct mount * child_mnt)1066 void mnt_set_mountpoint(struct mount *mnt,
1067 struct mountpoint *mp,
1068 struct mount *child_mnt)
1069 {
1070 mp->m_count++;
1071 mnt_add_count(mnt, 1); /* essentially, that's mntget */
1072 child_mnt->mnt_mountpoint = mp->m_dentry;
1073 child_mnt->mnt_parent = mnt;
1074 child_mnt->mnt_mp = mp;
1075 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
1076 }
1077
1078 /**
1079 * mnt_set_mountpoint_beneath - mount a mount beneath another one
1080 *
1081 * @new_parent: the source mount
1082 * @top_mnt: the mount beneath which @new_parent is mounted
1083 * @new_mp: the new mountpoint of @top_mnt on @new_parent
1084 *
1085 * Remove @top_mnt from its current mountpoint @top_mnt->mnt_mp and
1086 * parent @top_mnt->mnt_parent and mount it on top of @new_parent at
1087 * @new_mp. And mount @new_parent on the old parent and old
1088 * mountpoint of @top_mnt.
1089 *
1090 * Context: This function expects namespace_lock() and lock_mount_hash()
1091 * to have been acquired in that order.
1092 */
mnt_set_mountpoint_beneath(struct mount * new_parent,struct mount * top_mnt,struct mountpoint * new_mp)1093 static void mnt_set_mountpoint_beneath(struct mount *new_parent,
1094 struct mount *top_mnt,
1095 struct mountpoint *new_mp)
1096 {
1097 struct mount *old_top_parent = top_mnt->mnt_parent;
1098 struct mountpoint *old_top_mp = top_mnt->mnt_mp;
1099
1100 mnt_set_mountpoint(old_top_parent, old_top_mp, new_parent);
1101 mnt_change_mountpoint(new_parent, new_mp, top_mnt);
1102 }
1103
1104
__attach_mnt(struct mount * mnt,struct mount * parent)1105 static void __attach_mnt(struct mount *mnt, struct mount *parent)
1106 {
1107 hlist_add_head_rcu(&mnt->mnt_hash,
1108 m_hash(&parent->mnt, mnt->mnt_mountpoint));
1109 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
1110 }
1111
1112 /**
1113 * attach_mnt - mount a mount, attach to @mount_hashtable and parent's
1114 * list of child mounts
1115 * @parent: the parent
1116 * @mnt: the new mount
1117 * @mp: the new mountpoint
1118 * @beneath: whether to mount @mnt beneath or on top of @parent
1119 *
1120 * If @beneath is false, mount @mnt at @mp on @parent. Then attach @mnt
1121 * to @parent's child mount list and to @mount_hashtable.
1122 *
1123 * If @beneath is true, remove @mnt from its current parent and
1124 * mountpoint and mount it on @mp on @parent, and mount @parent on the
1125 * old parent and old mountpoint of @mnt. Finally, attach @parent to
1126 * @mnt_hashtable and @parent->mnt_parent->mnt_mounts.
1127 *
1128 * Note, when __attach_mnt() is called @mnt->mnt_parent already points
1129 * to the correct parent.
1130 *
1131 * Context: This function expects namespace_lock() and lock_mount_hash()
1132 * to have been acquired in that order.
1133 */
attach_mnt(struct mount * mnt,struct mount * parent,struct mountpoint * mp,bool beneath)1134 static void attach_mnt(struct mount *mnt, struct mount *parent,
1135 struct mountpoint *mp, bool beneath)
1136 {
1137 if (beneath)
1138 mnt_set_mountpoint_beneath(mnt, parent, mp);
1139 else
1140 mnt_set_mountpoint(parent, mp, mnt);
1141 /*
1142 * Note, @mnt->mnt_parent has to be used. If @mnt was mounted
1143 * beneath @parent then @mnt will need to be attached to
1144 * @parent's old parent, not @parent. IOW, @mnt->mnt_parent
1145 * isn't the same mount as @parent.
1146 */
1147 __attach_mnt(mnt, mnt->mnt_parent);
1148 }
1149
mnt_change_mountpoint(struct mount * parent,struct mountpoint * mp,struct mount * mnt)1150 void mnt_change_mountpoint(struct mount *parent, struct mountpoint *mp, struct mount *mnt)
1151 {
1152 struct mountpoint *old_mp = mnt->mnt_mp;
1153 struct mount *old_parent = mnt->mnt_parent;
1154
1155 list_del_init(&mnt->mnt_child);
1156 hlist_del_init(&mnt->mnt_mp_list);
1157 hlist_del_init_rcu(&mnt->mnt_hash);
1158
1159 attach_mnt(mnt, parent, mp, false);
1160
1161 put_mountpoint(old_mp);
1162 mnt_add_count(old_parent, -1);
1163 }
1164
node_to_mount(struct rb_node * node)1165 static inline struct mount *node_to_mount(struct rb_node *node)
1166 {
1167 return node ? rb_entry(node, struct mount, mnt_node) : NULL;
1168 }
1169
mnt_add_to_ns(struct mnt_namespace * ns,struct mount * mnt)1170 static void mnt_add_to_ns(struct mnt_namespace *ns, struct mount *mnt)
1171 {
1172 struct rb_node **link = &ns->mounts.rb_node;
1173 struct rb_node *parent = NULL;
1174 bool mnt_first_node = true, mnt_last_node = true;
1175
1176 WARN_ON(mnt_ns_attached(mnt));
1177 mnt->mnt_ns = ns;
1178 while (*link) {
1179 parent = *link;
1180 if (mnt->mnt_id_unique < node_to_mount(parent)->mnt_id_unique) {
1181 link = &parent->rb_left;
1182 mnt_last_node = false;
1183 } else {
1184 link = &parent->rb_right;
1185 mnt_first_node = false;
1186 }
1187 }
1188
1189 if (mnt_last_node)
1190 ns->mnt_last_node = &mnt->mnt_node;
1191 if (mnt_first_node)
1192 ns->mnt_first_node = &mnt->mnt_node;
1193 rb_link_node(&mnt->mnt_node, parent, link);
1194 rb_insert_color(&mnt->mnt_node, &ns->mounts);
1195
1196 mnt_notify_add(mnt);
1197 }
1198
1199 /*
1200 * vfsmount lock must be held for write
1201 */
commit_tree(struct mount * mnt)1202 static void commit_tree(struct mount *mnt)
1203 {
1204 struct mount *parent = mnt->mnt_parent;
1205 struct mount *m;
1206 LIST_HEAD(head);
1207 struct mnt_namespace *n = parent->mnt_ns;
1208
1209 BUG_ON(parent == mnt);
1210
1211 list_add_tail(&head, &mnt->mnt_list);
1212 while (!list_empty(&head)) {
1213 m = list_first_entry(&head, typeof(*m), mnt_list);
1214 list_del(&m->mnt_list);
1215
1216 mnt_add_to_ns(n, m);
1217 }
1218 n->nr_mounts += n->pending_mounts;
1219 n->pending_mounts = 0;
1220
1221 __attach_mnt(mnt, parent);
1222 touch_mnt_namespace(n);
1223 }
1224
next_mnt(struct mount * p,struct mount * root)1225 static struct mount *next_mnt(struct mount *p, struct mount *root)
1226 {
1227 struct list_head *next = p->mnt_mounts.next;
1228 if (next == &p->mnt_mounts) {
1229 while (1) {
1230 if (p == root)
1231 return NULL;
1232 next = p->mnt_child.next;
1233 if (next != &p->mnt_parent->mnt_mounts)
1234 break;
1235 p = p->mnt_parent;
1236 }
1237 }
1238 return list_entry(next, struct mount, mnt_child);
1239 }
1240
skip_mnt_tree(struct mount * p)1241 static struct mount *skip_mnt_tree(struct mount *p)
1242 {
1243 struct list_head *prev = p->mnt_mounts.prev;
1244 while (prev != &p->mnt_mounts) {
1245 p = list_entry(prev, struct mount, mnt_child);
1246 prev = p->mnt_mounts.prev;
1247 }
1248 return p;
1249 }
1250
1251 /**
1252 * vfs_create_mount - Create a mount for a configured superblock
1253 * @fc: The configuration context with the superblock attached
1254 *
1255 * Create a mount to an already configured superblock. If necessary, the
1256 * caller should invoke vfs_get_tree() before calling this.
1257 *
1258 * Note that this does not attach the mount to anything.
1259 */
vfs_create_mount(struct fs_context * fc)1260 struct vfsmount *vfs_create_mount(struct fs_context *fc)
1261 {
1262 struct mount *mnt;
1263
1264 if (!fc->root)
1265 return ERR_PTR(-EINVAL);
1266
1267 mnt = alloc_vfsmnt(fc->source ?: "none");
1268 if (!mnt)
1269 return ERR_PTR(-ENOMEM);
1270
1271 if (fc->sb_flags & SB_KERNMOUNT)
1272 mnt->mnt.mnt_flags = MNT_INTERNAL;
1273
1274 atomic_inc(&fc->root->d_sb->s_active);
1275 mnt->mnt.mnt_sb = fc->root->d_sb;
1276 mnt->mnt.mnt_root = dget(fc->root);
1277 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1278 mnt->mnt_parent = mnt;
1279
1280 lock_mount_hash();
1281 list_add_tail(&mnt->mnt_instance, &mnt->mnt.mnt_sb->s_mounts);
1282 unlock_mount_hash();
1283 return &mnt->mnt;
1284 }
1285 EXPORT_SYMBOL(vfs_create_mount);
1286
fc_mount(struct fs_context * fc)1287 struct vfsmount *fc_mount(struct fs_context *fc)
1288 {
1289 int err = vfs_get_tree(fc);
1290 if (!err) {
1291 up_write(&fc->root->d_sb->s_umount);
1292 return vfs_create_mount(fc);
1293 }
1294 return ERR_PTR(err);
1295 }
1296 EXPORT_SYMBOL(fc_mount);
1297
vfs_kern_mount(struct file_system_type * type,int flags,const char * name,void * data)1298 struct vfsmount *vfs_kern_mount(struct file_system_type *type,
1299 int flags, const char *name,
1300 void *data)
1301 {
1302 struct fs_context *fc;
1303 struct vfsmount *mnt;
1304 int ret = 0;
1305
1306 if (!type)
1307 return ERR_PTR(-EINVAL);
1308
1309 fc = fs_context_for_mount(type, flags);
1310 if (IS_ERR(fc))
1311 return ERR_CAST(fc);
1312
1313 if (name)
1314 ret = vfs_parse_fs_string(fc, "source",
1315 name, strlen(name));
1316 if (!ret)
1317 ret = parse_monolithic_mount_data(fc, data);
1318 if (!ret)
1319 mnt = fc_mount(fc);
1320 else
1321 mnt = ERR_PTR(ret);
1322
1323 put_fs_context(fc);
1324 return mnt;
1325 }
1326 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1327
1328 struct vfsmount *
vfs_submount(const struct dentry * mountpoint,struct file_system_type * type,const char * name,void * data)1329 vfs_submount(const struct dentry *mountpoint, struct file_system_type *type,
1330 const char *name, void *data)
1331 {
1332 /* Until it is worked out how to pass the user namespace
1333 * through from the parent mount to the submount don't support
1334 * unprivileged mounts with submounts.
1335 */
1336 if (mountpoint->d_sb->s_user_ns != &init_user_ns)
1337 return ERR_PTR(-EPERM);
1338
1339 return vfs_kern_mount(type, SB_SUBMOUNT, name, data);
1340 }
1341 EXPORT_SYMBOL_GPL(vfs_submount);
1342
clone_mnt(struct mount * old,struct dentry * root,int flag)1343 static struct mount *clone_mnt(struct mount *old, struct dentry *root,
1344 int flag)
1345 {
1346 struct super_block *sb = old->mnt.mnt_sb;
1347 struct mount *mnt;
1348 int err;
1349
1350 mnt = alloc_vfsmnt(old->mnt_devname);
1351 if (!mnt)
1352 return ERR_PTR(-ENOMEM);
1353
1354 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
1355 mnt->mnt_group_id = 0; /* not a peer of original */
1356 else
1357 mnt->mnt_group_id = old->mnt_group_id;
1358
1359 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
1360 err = mnt_alloc_group_id(mnt);
1361 if (err)
1362 goto out_free;
1363 }
1364
1365 mnt->mnt.mnt_flags = old->mnt.mnt_flags;
1366 mnt->mnt.mnt_flags &= ~(MNT_WRITE_HOLD|MNT_MARKED|MNT_INTERNAL);
1367
1368 atomic_inc(&sb->s_active);
1369 mnt->mnt.mnt_idmap = mnt_idmap_get(mnt_idmap(&old->mnt));
1370
1371 mnt->mnt.mnt_sb = sb;
1372 mnt->mnt.mnt_root = dget(root);
1373 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1374 mnt->mnt_parent = mnt;
1375 lock_mount_hash();
1376 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1377 unlock_mount_hash();
1378
1379 if ((flag & CL_SLAVE) ||
1380 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1381 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1382 mnt->mnt_master = old;
1383 CLEAR_MNT_SHARED(mnt);
1384 } else if (!(flag & CL_PRIVATE)) {
1385 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1386 list_add(&mnt->mnt_share, &old->mnt_share);
1387 if (IS_MNT_SLAVE(old))
1388 list_add(&mnt->mnt_slave, &old->mnt_slave);
1389 mnt->mnt_master = old->mnt_master;
1390 } else {
1391 CLEAR_MNT_SHARED(mnt);
1392 }
1393 if (flag & CL_MAKE_SHARED)
1394 set_mnt_shared(mnt);
1395
1396 /* stick the duplicate mount on the same expiry list
1397 * as the original if that was on one */
1398 if (flag & CL_EXPIRE) {
1399 if (!list_empty(&old->mnt_expire))
1400 list_add(&mnt->mnt_expire, &old->mnt_expire);
1401 }
1402
1403 return mnt;
1404
1405 out_free:
1406 mnt_free_id(mnt);
1407 free_vfsmnt(mnt);
1408 return ERR_PTR(err);
1409 }
1410
cleanup_mnt(struct mount * mnt)1411 static void cleanup_mnt(struct mount *mnt)
1412 {
1413 struct hlist_node *p;
1414 struct mount *m;
1415 /*
1416 * The warning here probably indicates that somebody messed
1417 * up a mnt_want/drop_write() pair. If this happens, the
1418 * filesystem was probably unable to make r/w->r/o transitions.
1419 * The locking used to deal with mnt_count decrement provides barriers,
1420 * so mnt_get_writers() below is safe.
1421 */
1422 WARN_ON(mnt_get_writers(mnt));
1423 if (unlikely(mnt->mnt_pins.first))
1424 mnt_pin_kill(mnt);
1425 hlist_for_each_entry_safe(m, p, &mnt->mnt_stuck_children, mnt_umount) {
1426 hlist_del(&m->mnt_umount);
1427 mntput(&m->mnt);
1428 }
1429 fsnotify_vfsmount_delete(&mnt->mnt);
1430 dput(mnt->mnt.mnt_root);
1431 deactivate_super(mnt->mnt.mnt_sb);
1432 mnt_free_id(mnt);
1433 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1434 }
1435
__cleanup_mnt(struct rcu_head * head)1436 static void __cleanup_mnt(struct rcu_head *head)
1437 {
1438 cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1439 }
1440
1441 static LLIST_HEAD(delayed_mntput_list);
delayed_mntput(struct work_struct * unused)1442 static void delayed_mntput(struct work_struct *unused)
1443 {
1444 struct llist_node *node = llist_del_all(&delayed_mntput_list);
1445 struct mount *m, *t;
1446
1447 llist_for_each_entry_safe(m, t, node, mnt_llist)
1448 cleanup_mnt(m);
1449 }
1450 static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1451
mntput_no_expire(struct mount * mnt)1452 static void mntput_no_expire(struct mount *mnt)
1453 {
1454 LIST_HEAD(list);
1455 int count;
1456
1457 rcu_read_lock();
1458 if (likely(READ_ONCE(mnt->mnt_ns))) {
1459 /*
1460 * Since we don't do lock_mount_hash() here,
1461 * ->mnt_ns can change under us. However, if it's
1462 * non-NULL, then there's a reference that won't
1463 * be dropped until after an RCU delay done after
1464 * turning ->mnt_ns NULL. So if we observe it
1465 * non-NULL under rcu_read_lock(), the reference
1466 * we are dropping is not the final one.
1467 */
1468 mnt_add_count(mnt, -1);
1469 rcu_read_unlock();
1470 return;
1471 }
1472 lock_mount_hash();
1473 /*
1474 * make sure that if __legitimize_mnt() has not seen us grab
1475 * mount_lock, we'll see their refcount increment here.
1476 */
1477 smp_mb();
1478 mnt_add_count(mnt, -1);
1479 count = mnt_get_count(mnt);
1480 if (count != 0) {
1481 WARN_ON(count < 0);
1482 rcu_read_unlock();
1483 unlock_mount_hash();
1484 return;
1485 }
1486 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1487 rcu_read_unlock();
1488 unlock_mount_hash();
1489 return;
1490 }
1491 mnt->mnt.mnt_flags |= MNT_DOOMED;
1492 rcu_read_unlock();
1493
1494 list_del(&mnt->mnt_instance);
1495
1496 if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1497 struct mount *p, *tmp;
1498 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) {
1499 __put_mountpoint(unhash_mnt(p), &list);
1500 hlist_add_head(&p->mnt_umount, &mnt->mnt_stuck_children);
1501 }
1502 }
1503 unlock_mount_hash();
1504 shrink_dentry_list(&list);
1505
1506 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1507 struct task_struct *task = current;
1508 if (likely(!(task->flags & PF_KTHREAD))) {
1509 init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1510 if (!task_work_add(task, &mnt->mnt_rcu, TWA_RESUME))
1511 return;
1512 }
1513 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1514 schedule_delayed_work(&delayed_mntput_work, 1);
1515 return;
1516 }
1517 cleanup_mnt(mnt);
1518 }
1519
mntput(struct vfsmount * mnt)1520 void mntput(struct vfsmount *mnt)
1521 {
1522 if (mnt) {
1523 struct mount *m = real_mount(mnt);
1524 /* avoid cacheline pingpong */
1525 if (unlikely(m->mnt_expiry_mark))
1526 WRITE_ONCE(m->mnt_expiry_mark, 0);
1527 mntput_no_expire(m);
1528 }
1529 }
1530 EXPORT_SYMBOL(mntput);
1531
mntget(struct vfsmount * mnt)1532 struct vfsmount *mntget(struct vfsmount *mnt)
1533 {
1534 if (mnt)
1535 mnt_add_count(real_mount(mnt), 1);
1536 return mnt;
1537 }
1538 EXPORT_SYMBOL(mntget);
1539
1540 /*
1541 * Make a mount point inaccessible to new lookups.
1542 * Because there may still be current users, the caller MUST WAIT
1543 * for an RCU grace period before destroying the mount point.
1544 */
mnt_make_shortterm(struct vfsmount * mnt)1545 void mnt_make_shortterm(struct vfsmount *mnt)
1546 {
1547 if (mnt)
1548 real_mount(mnt)->mnt_ns = NULL;
1549 }
1550
1551 /**
1552 * path_is_mountpoint() - Check if path is a mount in the current namespace.
1553 * @path: path to check
1554 *
1555 * d_mountpoint() can only be used reliably to establish if a dentry is
1556 * not mounted in any namespace and that common case is handled inline.
1557 * d_mountpoint() isn't aware of the possibility there may be multiple
1558 * mounts using a given dentry in a different namespace. This function
1559 * checks if the passed in path is a mountpoint rather than the dentry
1560 * alone.
1561 */
path_is_mountpoint(const struct path * path)1562 bool path_is_mountpoint(const struct path *path)
1563 {
1564 unsigned seq;
1565 bool res;
1566
1567 if (!d_mountpoint(path->dentry))
1568 return false;
1569
1570 rcu_read_lock();
1571 do {
1572 seq = read_seqbegin(&mount_lock);
1573 res = __path_is_mountpoint(path);
1574 } while (read_seqretry(&mount_lock, seq));
1575 rcu_read_unlock();
1576
1577 return res;
1578 }
1579 EXPORT_SYMBOL(path_is_mountpoint);
1580
mnt_clone_internal(const struct path * path)1581 struct vfsmount *mnt_clone_internal(const struct path *path)
1582 {
1583 struct mount *p;
1584 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1585 if (IS_ERR(p))
1586 return ERR_CAST(p);
1587 p->mnt.mnt_flags |= MNT_INTERNAL;
1588 return &p->mnt;
1589 }
1590
1591 /*
1592 * Returns the mount which either has the specified mnt_id, or has the next
1593 * smallest id afer the specified one.
1594 */
mnt_find_id_at(struct mnt_namespace * ns,u64 mnt_id)1595 static struct mount *mnt_find_id_at(struct mnt_namespace *ns, u64 mnt_id)
1596 {
1597 struct rb_node *node = ns->mounts.rb_node;
1598 struct mount *ret = NULL;
1599
1600 while (node) {
1601 struct mount *m = node_to_mount(node);
1602
1603 if (mnt_id <= m->mnt_id_unique) {
1604 ret = node_to_mount(node);
1605 if (mnt_id == m->mnt_id_unique)
1606 break;
1607 node = node->rb_left;
1608 } else {
1609 node = node->rb_right;
1610 }
1611 }
1612 return ret;
1613 }
1614
1615 /*
1616 * Returns the mount which either has the specified mnt_id, or has the next
1617 * greater id before the specified one.
1618 */
mnt_find_id_at_reverse(struct mnt_namespace * ns,u64 mnt_id)1619 static struct mount *mnt_find_id_at_reverse(struct mnt_namespace *ns, u64 mnt_id)
1620 {
1621 struct rb_node *node = ns->mounts.rb_node;
1622 struct mount *ret = NULL;
1623
1624 while (node) {
1625 struct mount *m = node_to_mount(node);
1626
1627 if (mnt_id >= m->mnt_id_unique) {
1628 ret = node_to_mount(node);
1629 if (mnt_id == m->mnt_id_unique)
1630 break;
1631 node = node->rb_right;
1632 } else {
1633 node = node->rb_left;
1634 }
1635 }
1636 return ret;
1637 }
1638
1639 #ifdef CONFIG_PROC_FS
1640
1641 /* iterator; we want it to have access to namespace_sem, thus here... */
m_start(struct seq_file * m,loff_t * pos)1642 static void *m_start(struct seq_file *m, loff_t *pos)
1643 {
1644 struct proc_mounts *p = m->private;
1645
1646 down_read(&namespace_sem);
1647
1648 return mnt_find_id_at(p->ns, *pos);
1649 }
1650
m_next(struct seq_file * m,void * v,loff_t * pos)1651 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1652 {
1653 struct mount *next = NULL, *mnt = v;
1654 struct rb_node *node = rb_next(&mnt->mnt_node);
1655
1656 ++*pos;
1657 if (node) {
1658 next = node_to_mount(node);
1659 *pos = next->mnt_id_unique;
1660 }
1661 return next;
1662 }
1663
m_stop(struct seq_file * m,void * v)1664 static void m_stop(struct seq_file *m, void *v)
1665 {
1666 up_read(&namespace_sem);
1667 }
1668
m_show(struct seq_file * m,void * v)1669 static int m_show(struct seq_file *m, void *v)
1670 {
1671 struct proc_mounts *p = m->private;
1672 struct mount *r = v;
1673 return p->show(m, &r->mnt);
1674 }
1675
1676 const struct seq_operations mounts_op = {
1677 .start = m_start,
1678 .next = m_next,
1679 .stop = m_stop,
1680 .show = m_show,
1681 };
1682
1683 #endif /* CONFIG_PROC_FS */
1684
1685 /**
1686 * may_umount_tree - check if a mount tree is busy
1687 * @m: root of mount tree
1688 *
1689 * This is called to check if a tree of mounts has any
1690 * open files, pwds, chroots or sub mounts that are
1691 * busy.
1692 */
may_umount_tree(struct vfsmount * m)1693 int may_umount_tree(struct vfsmount *m)
1694 {
1695 struct mount *mnt = real_mount(m);
1696 int actual_refs = 0;
1697 int minimum_refs = 0;
1698 struct mount *p;
1699 BUG_ON(!m);
1700
1701 /* write lock needed for mnt_get_count */
1702 lock_mount_hash();
1703 for (p = mnt; p; p = next_mnt(p, mnt)) {
1704 actual_refs += mnt_get_count(p);
1705 minimum_refs += 2;
1706 }
1707 unlock_mount_hash();
1708
1709 if (actual_refs > minimum_refs)
1710 return 0;
1711
1712 return 1;
1713 }
1714
1715 EXPORT_SYMBOL(may_umount_tree);
1716
1717 /**
1718 * may_umount - check if a mount point is busy
1719 * @mnt: root of mount
1720 *
1721 * This is called to check if a mount point has any
1722 * open files, pwds, chroots or sub mounts. If the
1723 * mount has sub mounts this will return busy
1724 * regardless of whether the sub mounts are busy.
1725 *
1726 * Doesn't take quota and stuff into account. IOW, in some cases it will
1727 * give false negatives. The main reason why it's here is that we need
1728 * a non-destructive way to look for easily umountable filesystems.
1729 */
may_umount(struct vfsmount * mnt)1730 int may_umount(struct vfsmount *mnt)
1731 {
1732 int ret = 1;
1733 down_read(&namespace_sem);
1734 lock_mount_hash();
1735 if (propagate_mount_busy(real_mount(mnt), 2))
1736 ret = 0;
1737 unlock_mount_hash();
1738 up_read(&namespace_sem);
1739 return ret;
1740 }
1741
1742 EXPORT_SYMBOL(may_umount);
1743
1744 #ifdef CONFIG_FSNOTIFY
mnt_notify(struct mount * p)1745 static void mnt_notify(struct mount *p)
1746 {
1747 if (!p->prev_ns && p->mnt_ns) {
1748 fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1749 } else if (p->prev_ns && !p->mnt_ns) {
1750 fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1751 } else if (p->prev_ns == p->mnt_ns) {
1752 fsnotify_mnt_move(p->mnt_ns, &p->mnt);
1753 } else {
1754 fsnotify_mnt_detach(p->prev_ns, &p->mnt);
1755 fsnotify_mnt_attach(p->mnt_ns, &p->mnt);
1756 }
1757 p->prev_ns = p->mnt_ns;
1758 }
1759
notify_mnt_list(void)1760 static void notify_mnt_list(void)
1761 {
1762 struct mount *m, *tmp;
1763 /*
1764 * Notify about mounts that were added/reparented/detached/remain
1765 * connected after unmount.
1766 */
1767 list_for_each_entry_safe(m, tmp, ¬ify_list, to_notify) {
1768 mnt_notify(m);
1769 list_del_init(&m->to_notify);
1770 }
1771 }
1772
need_notify_mnt_list(void)1773 static bool need_notify_mnt_list(void)
1774 {
1775 return !list_empty(¬ify_list);
1776 }
1777 #else
notify_mnt_list(void)1778 static void notify_mnt_list(void)
1779 {
1780 }
1781
need_notify_mnt_list(void)1782 static bool need_notify_mnt_list(void)
1783 {
1784 return false;
1785 }
1786 #endif
1787
namespace_unlock(void)1788 static void namespace_unlock(void)
1789 {
1790 struct hlist_head head;
1791 struct hlist_node *p;
1792 struct mount *m;
1793 LIST_HEAD(list);
1794
1795 hlist_move_list(&unmounted, &head);
1796 list_splice_init(&ex_mountpoints, &list);
1797
1798 if (need_notify_mnt_list()) {
1799 /*
1800 * No point blocking out concurrent readers while notifications
1801 * are sent. This will also allow statmount()/listmount() to run
1802 * concurrently.
1803 */
1804 downgrade_write(&namespace_sem);
1805 notify_mnt_list();
1806 up_read(&namespace_sem);
1807 } else {
1808 up_write(&namespace_sem);
1809 }
1810
1811 shrink_dentry_list(&list);
1812
1813 if (likely(hlist_empty(&head)))
1814 return;
1815
1816 synchronize_rcu_expedited();
1817
1818 hlist_for_each_entry_safe(m, p, &head, mnt_umount) {
1819 hlist_del(&m->mnt_umount);
1820 mntput(&m->mnt);
1821 }
1822 }
1823
namespace_lock(void)1824 static inline void namespace_lock(void)
1825 {
1826 down_write(&namespace_sem);
1827 }
1828
1829 DEFINE_GUARD(namespace_lock, struct rw_semaphore *, namespace_lock(), namespace_unlock())
1830
1831 enum umount_tree_flags {
1832 UMOUNT_SYNC = 1,
1833 UMOUNT_PROPAGATE = 2,
1834 UMOUNT_CONNECTED = 4,
1835 };
1836
disconnect_mount(struct mount * mnt,enum umount_tree_flags how)1837 static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1838 {
1839 /* Leaving mounts connected is only valid for lazy umounts */
1840 if (how & UMOUNT_SYNC)
1841 return true;
1842
1843 /* A mount without a parent has nothing to be connected to */
1844 if (!mnt_has_parent(mnt))
1845 return true;
1846
1847 /* Because the reference counting rules change when mounts are
1848 * unmounted and connected, umounted mounts may not be
1849 * connected to mounted mounts.
1850 */
1851 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1852 return true;
1853
1854 /* Has it been requested that the mount remain connected? */
1855 if (how & UMOUNT_CONNECTED)
1856 return false;
1857
1858 /* Is the mount locked such that it needs to remain connected? */
1859 if (IS_MNT_LOCKED(mnt))
1860 return false;
1861
1862 /* By default disconnect the mount */
1863 return true;
1864 }
1865
1866 /*
1867 * mount_lock must be held
1868 * namespace_sem must be held for write
1869 */
umount_tree(struct mount * mnt,enum umount_tree_flags how)1870 static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1871 {
1872 LIST_HEAD(tmp_list);
1873 struct mount *p;
1874
1875 if (how & UMOUNT_PROPAGATE)
1876 propagate_mount_unlock(mnt);
1877
1878 /* Gather the mounts to umount */
1879 for (p = mnt; p; p = next_mnt(p, mnt)) {
1880 p->mnt.mnt_flags |= MNT_UMOUNT;
1881 if (mnt_ns_attached(p))
1882 move_from_ns(p, &tmp_list);
1883 else
1884 list_move(&p->mnt_list, &tmp_list);
1885 }
1886
1887 /* Hide the mounts from mnt_mounts */
1888 list_for_each_entry(p, &tmp_list, mnt_list) {
1889 list_del_init(&p->mnt_child);
1890 }
1891
1892 /* Add propagated mounts to the tmp_list */
1893 if (how & UMOUNT_PROPAGATE)
1894 propagate_umount(&tmp_list);
1895
1896 while (!list_empty(&tmp_list)) {
1897 struct mnt_namespace *ns;
1898 bool disconnect;
1899 p = list_first_entry(&tmp_list, struct mount, mnt_list);
1900 list_del_init(&p->mnt_expire);
1901 list_del_init(&p->mnt_list);
1902 ns = p->mnt_ns;
1903 if (ns) {
1904 ns->nr_mounts--;
1905 __touch_mnt_namespace(ns);
1906 }
1907 p->mnt_ns = NULL;
1908 if (how & UMOUNT_SYNC)
1909 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1910
1911 disconnect = disconnect_mount(p, how);
1912 if (mnt_has_parent(p)) {
1913 mnt_add_count(p->mnt_parent, -1);
1914 if (!disconnect) {
1915 /* Don't forget about p */
1916 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1917 } else {
1918 umount_mnt(p);
1919 }
1920 }
1921 change_mnt_propagation(p, MS_PRIVATE);
1922 if (disconnect)
1923 hlist_add_head(&p->mnt_umount, &unmounted);
1924
1925 /*
1926 * At this point p->mnt_ns is NULL, notification will be queued
1927 * only if
1928 *
1929 * - p->prev_ns is non-NULL *and*
1930 * - p->prev_ns->n_fsnotify_marks is non-NULL
1931 *
1932 * This will preclude queuing the mount if this is a cleanup
1933 * after a failed copy_tree() or destruction of an anonymous
1934 * namespace, etc.
1935 */
1936 mnt_notify_add(p);
1937 }
1938 }
1939
1940 static void shrink_submounts(struct mount *mnt);
1941
do_umount_root(struct super_block * sb)1942 static int do_umount_root(struct super_block *sb)
1943 {
1944 int ret = 0;
1945
1946 down_write(&sb->s_umount);
1947 if (!sb_rdonly(sb)) {
1948 struct fs_context *fc;
1949
1950 fc = fs_context_for_reconfigure(sb->s_root, SB_RDONLY,
1951 SB_RDONLY);
1952 if (IS_ERR(fc)) {
1953 ret = PTR_ERR(fc);
1954 } else {
1955 ret = parse_monolithic_mount_data(fc, NULL);
1956 if (!ret)
1957 ret = reconfigure_super(fc);
1958 put_fs_context(fc);
1959 }
1960 }
1961 up_write(&sb->s_umount);
1962 return ret;
1963 }
1964
do_umount(struct mount * mnt,int flags)1965 static int do_umount(struct mount *mnt, int flags)
1966 {
1967 struct super_block *sb = mnt->mnt.mnt_sb;
1968 int retval;
1969
1970 retval = security_sb_umount(&mnt->mnt, flags);
1971 if (retval)
1972 return retval;
1973
1974 /*
1975 * Allow userspace to request a mountpoint be expired rather than
1976 * unmounting unconditionally. Unmount only happens if:
1977 * (1) the mark is already set (the mark is cleared by mntput())
1978 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1979 */
1980 if (flags & MNT_EXPIRE) {
1981 if (&mnt->mnt == current->fs->root.mnt ||
1982 flags & (MNT_FORCE | MNT_DETACH))
1983 return -EINVAL;
1984
1985 /*
1986 * probably don't strictly need the lock here if we examined
1987 * all race cases, but it's a slowpath.
1988 */
1989 lock_mount_hash();
1990 if (mnt_get_count(mnt) != 2) {
1991 unlock_mount_hash();
1992 return -EBUSY;
1993 }
1994 unlock_mount_hash();
1995
1996 if (!xchg(&mnt->mnt_expiry_mark, 1))
1997 return -EAGAIN;
1998 }
1999
2000 /*
2001 * If we may have to abort operations to get out of this
2002 * mount, and they will themselves hold resources we must
2003 * allow the fs to do things. In the Unix tradition of
2004 * 'Gee thats tricky lets do it in userspace' the umount_begin
2005 * might fail to complete on the first run through as other tasks
2006 * must return, and the like. Thats for the mount program to worry
2007 * about for the moment.
2008 */
2009
2010 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
2011 sb->s_op->umount_begin(sb);
2012 }
2013
2014 /*
2015 * No sense to grab the lock for this test, but test itself looks
2016 * somewhat bogus. Suggestions for better replacement?
2017 * Ho-hum... In principle, we might treat that as umount + switch
2018 * to rootfs. GC would eventually take care of the old vfsmount.
2019 * Actually it makes sense, especially if rootfs would contain a
2020 * /reboot - static binary that would close all descriptors and
2021 * call reboot(9). Then init(8) could umount root and exec /reboot.
2022 */
2023 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
2024 /*
2025 * Special case for "unmounting" root ...
2026 * we just try to remount it readonly.
2027 */
2028 if (!ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2029 return -EPERM;
2030 return do_umount_root(sb);
2031 }
2032
2033 namespace_lock();
2034 lock_mount_hash();
2035
2036 /* Recheck MNT_LOCKED with the locks held */
2037 retval = -EINVAL;
2038 if (mnt->mnt.mnt_flags & MNT_LOCKED)
2039 goto out;
2040
2041 event++;
2042 if (flags & MNT_DETACH) {
2043 if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
2044 umount_tree(mnt, UMOUNT_PROPAGATE);
2045 retval = 0;
2046 } else {
2047 smp_mb(); // paired with __legitimize_mnt()
2048 shrink_submounts(mnt);
2049 retval = -EBUSY;
2050 if (!propagate_mount_busy(mnt, 2)) {
2051 if (mnt_ns_attached(mnt) || !list_empty(&mnt->mnt_list))
2052 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2053 retval = 0;
2054 }
2055 }
2056 out:
2057 unlock_mount_hash();
2058 namespace_unlock();
2059 return retval;
2060 }
2061
2062 /*
2063 * __detach_mounts - lazily unmount all mounts on the specified dentry
2064 *
2065 * During unlink, rmdir, and d_drop it is possible to loose the path
2066 * to an existing mountpoint, and wind up leaking the mount.
2067 * detach_mounts allows lazily unmounting those mounts instead of
2068 * leaking them.
2069 *
2070 * The caller may hold dentry->d_inode->i_mutex.
2071 */
__detach_mounts(struct dentry * dentry)2072 void __detach_mounts(struct dentry *dentry)
2073 {
2074 struct mountpoint *mp;
2075 struct mount *mnt;
2076
2077 namespace_lock();
2078 lock_mount_hash();
2079 mp = lookup_mountpoint(dentry);
2080 if (!mp)
2081 goto out_unlock;
2082
2083 event++;
2084 while (!hlist_empty(&mp->m_list)) {
2085 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
2086 if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
2087 umount_mnt(mnt);
2088 hlist_add_head(&mnt->mnt_umount, &unmounted);
2089 }
2090 else umount_tree(mnt, UMOUNT_CONNECTED);
2091 }
2092 put_mountpoint(mp);
2093 out_unlock:
2094 unlock_mount_hash();
2095 namespace_unlock();
2096 }
2097
2098 /*
2099 * Is the caller allowed to modify his namespace?
2100 */
may_mount(void)2101 bool may_mount(void)
2102 {
2103 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
2104 }
2105
warn_mandlock(void)2106 static void warn_mandlock(void)
2107 {
2108 pr_warn_once("=======================================================\n"
2109 "WARNING: The mand mount option has been deprecated and\n"
2110 " and is ignored by this kernel. Remove the mand\n"
2111 " option from the mount to silence this warning.\n"
2112 "=======================================================\n");
2113 }
2114
can_umount(const struct path * path,int flags)2115 static int can_umount(const struct path *path, int flags)
2116 {
2117 struct mount *mnt = real_mount(path->mnt);
2118 struct super_block *sb = path->dentry->d_sb;
2119
2120 if (!may_mount())
2121 return -EPERM;
2122 if (!path_mounted(path))
2123 return -EINVAL;
2124 if (!check_mnt(mnt))
2125 return -EINVAL;
2126 if (mnt->mnt.mnt_flags & MNT_LOCKED) /* Check optimistically */
2127 return -EINVAL;
2128 if (flags & MNT_FORCE && !ns_capable(sb->s_user_ns, CAP_SYS_ADMIN))
2129 return -EPERM;
2130 return 0;
2131 }
2132
2133 // caller is responsible for flags being sane
path_umount(struct path * path,int flags)2134 int path_umount(struct path *path, int flags)
2135 {
2136 struct mount *mnt = real_mount(path->mnt);
2137 int ret;
2138
2139 ret = can_umount(path, flags);
2140 if (!ret)
2141 ret = do_umount(mnt, flags);
2142
2143 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2144 dput(path->dentry);
2145 mntput_no_expire(mnt);
2146 return ret;
2147 }
2148
ksys_umount(char __user * name,int flags)2149 static int ksys_umount(char __user *name, int flags)
2150 {
2151 int lookup_flags = LOOKUP_MOUNTPOINT;
2152 struct path path;
2153 int ret;
2154
2155 // basic validity checks done first
2156 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
2157 return -EINVAL;
2158
2159 if (!(flags & UMOUNT_NOFOLLOW))
2160 lookup_flags |= LOOKUP_FOLLOW;
2161 ret = user_path_at(AT_FDCWD, name, lookup_flags, &path);
2162 if (ret)
2163 return ret;
2164 return path_umount(&path, flags);
2165 }
2166
SYSCALL_DEFINE2(umount,char __user *,name,int,flags)2167 SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
2168 {
2169 return ksys_umount(name, flags);
2170 }
2171
2172 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
2173
2174 /*
2175 * The 2.0 compatible umount. No flags.
2176 */
SYSCALL_DEFINE1(oldumount,char __user *,name)2177 SYSCALL_DEFINE1(oldumount, char __user *, name)
2178 {
2179 return ksys_umount(name, 0);
2180 }
2181
2182 #endif
2183
is_mnt_ns_file(struct dentry * dentry)2184 static bool is_mnt_ns_file(struct dentry *dentry)
2185 {
2186 struct ns_common *ns;
2187
2188 /* Is this a proxy for a mount namespace? */
2189 if (dentry->d_op != &ns_dentry_operations)
2190 return false;
2191
2192 ns = d_inode(dentry)->i_private;
2193
2194 return ns->ops == &mntns_operations;
2195 }
2196
from_mnt_ns(struct mnt_namespace * mnt)2197 struct ns_common *from_mnt_ns(struct mnt_namespace *mnt)
2198 {
2199 return &mnt->ns;
2200 }
2201
get_sequential_mnt_ns(struct mnt_namespace * mntns,bool previous)2202 struct mnt_namespace *get_sequential_mnt_ns(struct mnt_namespace *mntns, bool previous)
2203 {
2204 guard(rcu)();
2205
2206 for (;;) {
2207 struct list_head *list;
2208
2209 if (previous)
2210 list = rcu_dereference(list_bidir_prev_rcu(&mntns->mnt_ns_list));
2211 else
2212 list = rcu_dereference(list_next_rcu(&mntns->mnt_ns_list));
2213 if (list_is_head(list, &mnt_ns_list))
2214 return ERR_PTR(-ENOENT);
2215
2216 mntns = list_entry_rcu(list, struct mnt_namespace, mnt_ns_list);
2217
2218 /*
2219 * The last passive reference count is put with RCU
2220 * delay so accessing the mount namespace is not just
2221 * safe but all relevant members are still valid.
2222 */
2223 if (!ns_capable_noaudit(mntns->user_ns, CAP_SYS_ADMIN))
2224 continue;
2225
2226 /*
2227 * We need an active reference count as we're persisting
2228 * the mount namespace and it might already be on its
2229 * deathbed.
2230 */
2231 if (!refcount_inc_not_zero(&mntns->ns.count))
2232 continue;
2233
2234 return mntns;
2235 }
2236 }
2237
mnt_ns_from_dentry(struct dentry * dentry)2238 struct mnt_namespace *mnt_ns_from_dentry(struct dentry *dentry)
2239 {
2240 if (!is_mnt_ns_file(dentry))
2241 return NULL;
2242
2243 return to_mnt_ns(get_proc_ns(dentry->d_inode));
2244 }
2245
mnt_ns_loop(struct dentry * dentry)2246 static bool mnt_ns_loop(struct dentry *dentry)
2247 {
2248 /* Could bind mounting the mount namespace inode cause a
2249 * mount namespace loop?
2250 */
2251 struct mnt_namespace *mnt_ns = mnt_ns_from_dentry(dentry);
2252
2253 if (!mnt_ns)
2254 return false;
2255
2256 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
2257 }
2258
copy_tree(struct mount * src_root,struct dentry * dentry,int flag)2259 struct mount *copy_tree(struct mount *src_root, struct dentry *dentry,
2260 int flag)
2261 {
2262 struct mount *res, *src_parent, *src_root_child, *src_mnt,
2263 *dst_parent, *dst_mnt;
2264
2265 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(src_root))
2266 return ERR_PTR(-EINVAL);
2267
2268 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
2269 return ERR_PTR(-EINVAL);
2270
2271 res = dst_mnt = clone_mnt(src_root, dentry, flag);
2272 if (IS_ERR(dst_mnt))
2273 return dst_mnt;
2274
2275 src_parent = src_root;
2276 dst_mnt->mnt_mountpoint = src_root->mnt_mountpoint;
2277
2278 list_for_each_entry(src_root_child, &src_root->mnt_mounts, mnt_child) {
2279 if (!is_subdir(src_root_child->mnt_mountpoint, dentry))
2280 continue;
2281
2282 for (src_mnt = src_root_child; src_mnt;
2283 src_mnt = next_mnt(src_mnt, src_root_child)) {
2284 if (!(flag & CL_COPY_UNBINDABLE) &&
2285 IS_MNT_UNBINDABLE(src_mnt)) {
2286 if (src_mnt->mnt.mnt_flags & MNT_LOCKED) {
2287 /* Both unbindable and locked. */
2288 dst_mnt = ERR_PTR(-EPERM);
2289 goto out;
2290 } else {
2291 src_mnt = skip_mnt_tree(src_mnt);
2292 continue;
2293 }
2294 }
2295 if (!(flag & CL_COPY_MNT_NS_FILE) &&
2296 is_mnt_ns_file(src_mnt->mnt.mnt_root)) {
2297 src_mnt = skip_mnt_tree(src_mnt);
2298 continue;
2299 }
2300 while (src_parent != src_mnt->mnt_parent) {
2301 src_parent = src_parent->mnt_parent;
2302 dst_mnt = dst_mnt->mnt_parent;
2303 }
2304
2305 src_parent = src_mnt;
2306 dst_parent = dst_mnt;
2307 dst_mnt = clone_mnt(src_mnt, src_mnt->mnt.mnt_root, flag);
2308 if (IS_ERR(dst_mnt))
2309 goto out;
2310 lock_mount_hash();
2311 list_add_tail(&dst_mnt->mnt_list, &res->mnt_list);
2312 attach_mnt(dst_mnt, dst_parent, src_parent->mnt_mp, false);
2313 unlock_mount_hash();
2314 }
2315 }
2316 return res;
2317
2318 out:
2319 if (res) {
2320 lock_mount_hash();
2321 umount_tree(res, UMOUNT_SYNC);
2322 unlock_mount_hash();
2323 }
2324 return dst_mnt;
2325 }
2326
2327 /* Caller should check returned pointer for errors */
2328
collect_mounts(const struct path * path)2329 struct vfsmount *collect_mounts(const struct path *path)
2330 {
2331 struct mount *tree;
2332 namespace_lock();
2333 if (!check_mnt(real_mount(path->mnt)))
2334 tree = ERR_PTR(-EINVAL);
2335 else
2336 tree = copy_tree(real_mount(path->mnt), path->dentry,
2337 CL_COPY_ALL | CL_PRIVATE);
2338 namespace_unlock();
2339 if (IS_ERR(tree))
2340 return ERR_CAST(tree);
2341 return &tree->mnt;
2342 }
2343
2344 static void free_mnt_ns(struct mnt_namespace *);
2345 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *, bool);
2346
must_dissolve(struct mnt_namespace * mnt_ns)2347 static inline bool must_dissolve(struct mnt_namespace *mnt_ns)
2348 {
2349 /*
2350 * This mount belonged to an anonymous mount namespace
2351 * but was moved to a non-anonymous mount namespace and
2352 * then unmounted.
2353 */
2354 if (unlikely(!mnt_ns))
2355 return false;
2356
2357 /*
2358 * This mount belongs to a non-anonymous mount namespace
2359 * and we know that such a mount can never transition to
2360 * an anonymous mount namespace again.
2361 */
2362 if (!is_anon_ns(mnt_ns)) {
2363 /*
2364 * A detached mount either belongs to an anonymous mount
2365 * namespace or a non-anonymous mount namespace. It
2366 * should never belong to something purely internal.
2367 */
2368 VFS_WARN_ON_ONCE(mnt_ns == MNT_NS_INTERNAL);
2369 return false;
2370 }
2371
2372 return true;
2373 }
2374
dissolve_on_fput(struct vfsmount * mnt)2375 void dissolve_on_fput(struct vfsmount *mnt)
2376 {
2377 struct mnt_namespace *ns;
2378 struct mount *m = real_mount(mnt);
2379
2380 scoped_guard(rcu) {
2381 if (!must_dissolve(READ_ONCE(m->mnt_ns)))
2382 return;
2383 }
2384
2385 scoped_guard(namespace_lock, &namespace_sem) {
2386 ns = m->mnt_ns;
2387 if (!must_dissolve(ns))
2388 return;
2389
2390 /*
2391 * After must_dissolve() we know that this is a detached
2392 * mount in an anonymous mount namespace.
2393 *
2394 * Now when mnt_has_parent() reports that this mount
2395 * tree has a parent, we know that this anonymous mount
2396 * tree has been moved to another anonymous mount
2397 * namespace.
2398 *
2399 * So when closing this file we cannot unmount the mount
2400 * tree. This will be done when the file referring to
2401 * the root of the anonymous mount namespace will be
2402 * closed (It could already be closed but it would sync
2403 * on @namespace_sem and wait for us to finish.).
2404 */
2405 if (mnt_has_parent(m))
2406 return;
2407
2408 lock_mount_hash();
2409 umount_tree(m, UMOUNT_CONNECTED);
2410 unlock_mount_hash();
2411 }
2412
2413 /* Make sure we notice when we leak mounts. */
2414 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
2415 free_mnt_ns(ns);
2416 }
2417
drop_collected_mounts(struct vfsmount * mnt)2418 void drop_collected_mounts(struct vfsmount *mnt)
2419 {
2420 namespace_lock();
2421 lock_mount_hash();
2422 umount_tree(real_mount(mnt), 0);
2423 unlock_mount_hash();
2424 namespace_unlock();
2425 }
2426
has_locked_children(struct mount * mnt,struct dentry * dentry)2427 bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2428 {
2429 struct mount *child;
2430
2431 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2432 if (!is_subdir(child->mnt_mountpoint, dentry))
2433 continue;
2434
2435 if (child->mnt.mnt_flags & MNT_LOCKED)
2436 return true;
2437 }
2438 return false;
2439 }
2440
2441 /*
2442 * Check that there aren't references to earlier/same mount namespaces in the
2443 * specified subtree. Such references can act as pins for mount namespaces
2444 * that aren't checked by the mount-cycle checking code, thereby allowing
2445 * cycles to be made.
2446 */
check_for_nsfs_mounts(struct mount * subtree)2447 static bool check_for_nsfs_mounts(struct mount *subtree)
2448 {
2449 struct mount *p;
2450 bool ret = false;
2451
2452 lock_mount_hash();
2453 for (p = subtree; p; p = next_mnt(p, subtree))
2454 if (mnt_ns_loop(p->mnt.mnt_root))
2455 goto out;
2456
2457 ret = true;
2458 out:
2459 unlock_mount_hash();
2460 return ret;
2461 }
2462
2463 /**
2464 * clone_private_mount - create a private clone of a path
2465 * @path: path to clone
2466 *
2467 * This creates a new vfsmount, which will be the clone of @path. The new mount
2468 * will not be attached anywhere in the namespace and will be private (i.e.
2469 * changes to the originating mount won't be propagated into this).
2470 *
2471 * This assumes caller has called or done the equivalent of may_mount().
2472 *
2473 * Release with mntput().
2474 */
clone_private_mount(const struct path * path)2475 struct vfsmount *clone_private_mount(const struct path *path)
2476 {
2477 struct mount *old_mnt = real_mount(path->mnt);
2478 struct mount *new_mnt;
2479
2480 guard(rwsem_read)(&namespace_sem);
2481
2482 if (IS_MNT_UNBINDABLE(old_mnt))
2483 return ERR_PTR(-EINVAL);
2484
2485 if (mnt_has_parent(old_mnt)) {
2486 if (!check_mnt(old_mnt))
2487 return ERR_PTR(-EINVAL);
2488 } else {
2489 if (!is_mounted(&old_mnt->mnt))
2490 return ERR_PTR(-EINVAL);
2491
2492 /* Make sure this isn't something purely kernel internal. */
2493 if (!is_anon_ns(old_mnt->mnt_ns))
2494 return ERR_PTR(-EINVAL);
2495
2496 /* Make sure we don't create mount namespace loops. */
2497 if (!check_for_nsfs_mounts(old_mnt))
2498 return ERR_PTR(-EINVAL);
2499 }
2500
2501 if (has_locked_children(old_mnt, path->dentry))
2502 return ERR_PTR(-EINVAL);
2503
2504 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
2505 if (IS_ERR(new_mnt))
2506 return ERR_PTR(-EINVAL);
2507
2508 /* Longterm mount to be removed by kern_unmount*() */
2509 new_mnt->mnt_ns = MNT_NS_INTERNAL;
2510 return &new_mnt->mnt;
2511 }
2512 EXPORT_SYMBOL_GPL(clone_private_mount);
2513
iterate_mounts(int (* f)(struct vfsmount *,void *),void * arg,struct vfsmount * root)2514 int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
2515 struct vfsmount *root)
2516 {
2517 struct mount *mnt;
2518 int res = f(root, arg);
2519 if (res)
2520 return res;
2521 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
2522 res = f(&mnt->mnt, arg);
2523 if (res)
2524 return res;
2525 }
2526 return 0;
2527 }
2528
lock_mnt_tree(struct mount * mnt)2529 static void lock_mnt_tree(struct mount *mnt)
2530 {
2531 struct mount *p;
2532
2533 for (p = mnt; p; p = next_mnt(p, mnt)) {
2534 int flags = p->mnt.mnt_flags;
2535 /* Don't allow unprivileged users to change mount flags */
2536 flags |= MNT_LOCK_ATIME;
2537
2538 if (flags & MNT_READONLY)
2539 flags |= MNT_LOCK_READONLY;
2540
2541 if (flags & MNT_NODEV)
2542 flags |= MNT_LOCK_NODEV;
2543
2544 if (flags & MNT_NOSUID)
2545 flags |= MNT_LOCK_NOSUID;
2546
2547 if (flags & MNT_NOEXEC)
2548 flags |= MNT_LOCK_NOEXEC;
2549 /* Don't allow unprivileged users to reveal what is under a mount */
2550 if (list_empty(&p->mnt_expire))
2551 flags |= MNT_LOCKED;
2552 p->mnt.mnt_flags = flags;
2553 }
2554 }
2555
cleanup_group_ids(struct mount * mnt,struct mount * end)2556 static void cleanup_group_ids(struct mount *mnt, struct mount *end)
2557 {
2558 struct mount *p;
2559
2560 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
2561 if (p->mnt_group_id && !IS_MNT_SHARED(p))
2562 mnt_release_group_id(p);
2563 }
2564 }
2565
invent_group_ids(struct mount * mnt,bool recurse)2566 static int invent_group_ids(struct mount *mnt, bool recurse)
2567 {
2568 struct mount *p;
2569
2570 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
2571 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
2572 int err = mnt_alloc_group_id(p);
2573 if (err) {
2574 cleanup_group_ids(mnt, p);
2575 return err;
2576 }
2577 }
2578 }
2579
2580 return 0;
2581 }
2582
count_mounts(struct mnt_namespace * ns,struct mount * mnt)2583 int count_mounts(struct mnt_namespace *ns, struct mount *mnt)
2584 {
2585 unsigned int max = READ_ONCE(sysctl_mount_max);
2586 unsigned int mounts = 0;
2587 struct mount *p;
2588
2589 if (ns->nr_mounts >= max)
2590 return -ENOSPC;
2591 max -= ns->nr_mounts;
2592 if (ns->pending_mounts >= max)
2593 return -ENOSPC;
2594 max -= ns->pending_mounts;
2595
2596 for (p = mnt; p; p = next_mnt(p, mnt))
2597 mounts++;
2598
2599 if (mounts > max)
2600 return -ENOSPC;
2601
2602 ns->pending_mounts += mounts;
2603 return 0;
2604 }
2605
2606 enum mnt_tree_flags_t {
2607 MNT_TREE_MOVE = BIT(0),
2608 MNT_TREE_BENEATH = BIT(1),
2609 MNT_TREE_PROPAGATION = BIT(2),
2610 };
2611
2612 /**
2613 * attach_recursive_mnt - attach a source mount tree
2614 * @source_mnt: mount tree to be attached
2615 * @top_mnt: mount that @source_mnt will be mounted on or mounted beneath
2616 * @dest_mp: the mountpoint @source_mnt will be mounted at
2617 * @flags: modify how @source_mnt is supposed to be attached
2618 *
2619 * NOTE: in the table below explains the semantics when a source mount
2620 * of a given type is attached to a destination mount of a given type.
2621 * ---------------------------------------------------------------------------
2622 * | BIND MOUNT OPERATION |
2623 * |**************************************************************************
2624 * | source-->| shared | private | slave | unbindable |
2625 * | dest | | | | |
2626 * | | | | | | |
2627 * | v | | | | |
2628 * |**************************************************************************
2629 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
2630 * | | | | | |
2631 * |non-shared| shared (+) | private | slave (*) | invalid |
2632 * ***************************************************************************
2633 * A bind operation clones the source mount and mounts the clone on the
2634 * destination mount.
2635 *
2636 * (++) the cloned mount is propagated to all the mounts in the propagation
2637 * tree of the destination mount and the cloned mount is added to
2638 * the peer group of the source mount.
2639 * (+) the cloned mount is created under the destination mount and is marked
2640 * as shared. The cloned mount is added to the peer group of the source
2641 * mount.
2642 * (+++) the mount is propagated to all the mounts in the propagation tree
2643 * of the destination mount and the cloned mount is made slave
2644 * of the same master as that of the source mount. The cloned mount
2645 * is marked as 'shared and slave'.
2646 * (*) the cloned mount is made a slave of the same master as that of the
2647 * source mount.
2648 *
2649 * ---------------------------------------------------------------------------
2650 * | MOVE MOUNT OPERATION |
2651 * |**************************************************************************
2652 * | source-->| shared | private | slave | unbindable |
2653 * | dest | | | | |
2654 * | | | | | | |
2655 * | v | | | | |
2656 * |**************************************************************************
2657 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
2658 * | | | | | |
2659 * |non-shared| shared (+*) | private | slave (*) | unbindable |
2660 * ***************************************************************************
2661 *
2662 * (+) the mount is moved to the destination. And is then propagated to
2663 * all the mounts in the propagation tree of the destination mount.
2664 * (+*) the mount is moved to the destination.
2665 * (+++) the mount is moved to the destination and is then propagated to
2666 * all the mounts belonging to the destination mount's propagation tree.
2667 * the mount is marked as 'shared and slave'.
2668 * (*) the mount continues to be a slave at the new location.
2669 *
2670 * if the source mount is a tree, the operations explained above is
2671 * applied to each mount in the tree.
2672 * Must be called without spinlocks held, since this function can sleep
2673 * in allocations.
2674 *
2675 * Context: The function expects namespace_lock() to be held.
2676 * Return: If @source_mnt was successfully attached 0 is returned.
2677 * Otherwise a negative error code is returned.
2678 */
attach_recursive_mnt(struct mount * source_mnt,struct mount * top_mnt,struct mountpoint * dest_mp,enum mnt_tree_flags_t flags)2679 static int attach_recursive_mnt(struct mount *source_mnt,
2680 struct mount *top_mnt,
2681 struct mountpoint *dest_mp,
2682 enum mnt_tree_flags_t flags)
2683 {
2684 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2685 HLIST_HEAD(tree_list);
2686 struct mnt_namespace *ns = top_mnt->mnt_ns;
2687 struct mountpoint *smp;
2688 struct mount *child, *dest_mnt, *p;
2689 struct hlist_node *n;
2690 int err = 0;
2691 bool moving = flags & MNT_TREE_MOVE, beneath = flags & MNT_TREE_BENEATH;
2692
2693 /*
2694 * Preallocate a mountpoint in case the new mounts need to be
2695 * mounted beneath mounts on the same mountpoint.
2696 */
2697 smp = get_mountpoint(source_mnt->mnt.mnt_root);
2698 if (IS_ERR(smp))
2699 return PTR_ERR(smp);
2700
2701 /* Is there space to add these mounts to the mount namespace? */
2702 if (!moving) {
2703 err = count_mounts(ns, source_mnt);
2704 if (err)
2705 goto out;
2706 }
2707
2708 if (beneath)
2709 dest_mnt = top_mnt->mnt_parent;
2710 else
2711 dest_mnt = top_mnt;
2712
2713 if (IS_MNT_SHARED(dest_mnt)) {
2714 err = invent_group_ids(source_mnt, true);
2715 if (err)
2716 goto out;
2717 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
2718 }
2719 lock_mount_hash();
2720 if (err)
2721 goto out_cleanup_ids;
2722
2723 if (IS_MNT_SHARED(dest_mnt)) {
2724 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2725 set_mnt_shared(p);
2726 }
2727
2728 if (moving) {
2729 if (beneath)
2730 dest_mp = smp;
2731 unhash_mnt(source_mnt);
2732 attach_mnt(source_mnt, top_mnt, dest_mp, beneath);
2733 mnt_notify_add(source_mnt);
2734 touch_mnt_namespace(source_mnt->mnt_ns);
2735 } else {
2736 if (source_mnt->mnt_ns) {
2737 LIST_HEAD(head);
2738
2739 /* move from anon - the caller will destroy */
2740 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
2741 move_from_ns(p, &head);
2742 list_del_init(&head);
2743 }
2744 if (beneath)
2745 mnt_set_mountpoint_beneath(source_mnt, top_mnt, smp);
2746 else
2747 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
2748 commit_tree(source_mnt);
2749 }
2750
2751 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
2752 struct mount *q;
2753 hlist_del_init(&child->mnt_hash);
2754 q = __lookup_mnt(&child->mnt_parent->mnt,
2755 child->mnt_mountpoint);
2756 if (q)
2757 mnt_change_mountpoint(child, smp, q);
2758 /* Notice when we are propagating across user namespaces */
2759 if (child->mnt_parent->mnt_ns->user_ns != user_ns)
2760 lock_mnt_tree(child);
2761 child->mnt.mnt_flags &= ~MNT_LOCKED;
2762 commit_tree(child);
2763 }
2764 put_mountpoint(smp);
2765 unlock_mount_hash();
2766
2767 return 0;
2768
2769 out_cleanup_ids:
2770 while (!hlist_empty(&tree_list)) {
2771 child = hlist_entry(tree_list.first, struct mount, mnt_hash);
2772 child->mnt_parent->mnt_ns->pending_mounts = 0;
2773 umount_tree(child, UMOUNT_SYNC);
2774 }
2775 unlock_mount_hash();
2776 cleanup_group_ids(source_mnt, NULL);
2777 out:
2778 ns->pending_mounts = 0;
2779
2780 read_seqlock_excl(&mount_lock);
2781 put_mountpoint(smp);
2782 read_sequnlock_excl(&mount_lock);
2783
2784 return err;
2785 }
2786
2787 /**
2788 * do_lock_mount - lock mount and mountpoint
2789 * @path: target path
2790 * @beneath: whether the intention is to mount beneath @path
2791 *
2792 * Follow the mount stack on @path until the top mount @mnt is found. If
2793 * the initial @path->{mnt,dentry} is a mountpoint lookup the first
2794 * mount stacked on top of it. Then simply follow @{mnt,mnt->mnt_root}
2795 * until nothing is stacked on top of it anymore.
2796 *
2797 * Acquire the inode_lock() on the top mount's ->mnt_root to protect
2798 * against concurrent removal of the new mountpoint from another mount
2799 * namespace.
2800 *
2801 * If @beneath is requested, acquire inode_lock() on @mnt's mountpoint
2802 * @mp on @mnt->mnt_parent must be acquired. This protects against a
2803 * concurrent unlink of @mp->mnt_dentry from another mount namespace
2804 * where @mnt doesn't have a child mount mounted @mp. A concurrent
2805 * removal of @mnt->mnt_root doesn't matter as nothing will be mounted
2806 * on top of it for @beneath.
2807 *
2808 * In addition, @beneath needs to make sure that @mnt hasn't been
2809 * unmounted or moved from its current mountpoint in between dropping
2810 * @mount_lock and acquiring @namespace_sem. For the !@beneath case @mnt
2811 * being unmounted would be detected later by e.g., calling
2812 * check_mnt(mnt) in the function it's called from. For the @beneath
2813 * case however, it's useful to detect it directly in do_lock_mount().
2814 * If @mnt hasn't been unmounted then @mnt->mnt_mountpoint still points
2815 * to @mnt->mnt_mp->m_dentry. But if @mnt has been unmounted it will
2816 * point to @mnt->mnt_root and @mnt->mnt_mp will be NULL.
2817 *
2818 * Return: Either the target mountpoint on the top mount or the top
2819 * mount's mountpoint.
2820 */
do_lock_mount(struct path * path,bool beneath)2821 static struct mountpoint *do_lock_mount(struct path *path, bool beneath)
2822 {
2823 struct vfsmount *mnt = path->mnt;
2824 struct dentry *dentry;
2825 struct mountpoint *mp = ERR_PTR(-ENOENT);
2826 struct path under = {};
2827
2828 for (;;) {
2829 struct mount *m = real_mount(mnt);
2830
2831 if (beneath) {
2832 path_put(&under);
2833 read_seqlock_excl(&mount_lock);
2834 under.mnt = mntget(&m->mnt_parent->mnt);
2835 under.dentry = dget(m->mnt_mountpoint);
2836 read_sequnlock_excl(&mount_lock);
2837 dentry = under.dentry;
2838 } else {
2839 dentry = path->dentry;
2840 }
2841
2842 inode_lock(dentry->d_inode);
2843 namespace_lock();
2844
2845 if (unlikely(cant_mount(dentry) || !is_mounted(mnt)))
2846 break; // not to be mounted on
2847
2848 if (beneath && unlikely(m->mnt_mountpoint != dentry ||
2849 &m->mnt_parent->mnt != under.mnt)) {
2850 namespace_unlock();
2851 inode_unlock(dentry->d_inode);
2852 continue; // got moved
2853 }
2854
2855 mnt = lookup_mnt(path);
2856 if (unlikely(mnt)) {
2857 namespace_unlock();
2858 inode_unlock(dentry->d_inode);
2859 path_put(path);
2860 path->mnt = mnt;
2861 path->dentry = dget(mnt->mnt_root);
2862 continue; // got overmounted
2863 }
2864 mp = get_mountpoint(dentry);
2865 if (IS_ERR(mp))
2866 break;
2867 if (beneath) {
2868 /*
2869 * @under duplicates the references that will stay
2870 * at least until namespace_unlock(), so the path_put()
2871 * below is safe (and OK to do under namespace_lock -
2872 * we are not dropping the final references here).
2873 */
2874 path_put(&under);
2875 }
2876 return mp;
2877 }
2878 namespace_unlock();
2879 inode_unlock(dentry->d_inode);
2880 if (beneath)
2881 path_put(&under);
2882 return mp;
2883 }
2884
lock_mount(struct path * path)2885 static inline struct mountpoint *lock_mount(struct path *path)
2886 {
2887 return do_lock_mount(path, false);
2888 }
2889
unlock_mount(struct mountpoint * where)2890 static void unlock_mount(struct mountpoint *where)
2891 {
2892 inode_unlock(where->m_dentry->d_inode);
2893 read_seqlock_excl(&mount_lock);
2894 put_mountpoint(where);
2895 read_sequnlock_excl(&mount_lock);
2896 namespace_unlock();
2897 }
2898
graft_tree(struct mount * mnt,struct mount * p,struct mountpoint * mp)2899 static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
2900 {
2901 if (mnt->mnt.mnt_sb->s_flags & SB_NOUSER)
2902 return -EINVAL;
2903
2904 if (d_is_dir(mp->m_dentry) !=
2905 d_is_dir(mnt->mnt.mnt_root))
2906 return -ENOTDIR;
2907
2908 return attach_recursive_mnt(mnt, p, mp, 0);
2909 }
2910
2911 /*
2912 * Sanity check the flags to change_mnt_propagation.
2913 */
2914
flags_to_propagation_type(int ms_flags)2915 static int flags_to_propagation_type(int ms_flags)
2916 {
2917 int type = ms_flags & ~(MS_REC | MS_SILENT);
2918
2919 /* Fail if any non-propagation flags are set */
2920 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2921 return 0;
2922 /* Only one propagation flag should be set */
2923 if (!is_power_of_2(type))
2924 return 0;
2925 return type;
2926 }
2927
2928 /*
2929 * recursively change the type of the mountpoint.
2930 */
do_change_type(struct path * path,int ms_flags)2931 static int do_change_type(struct path *path, int ms_flags)
2932 {
2933 struct mount *m;
2934 struct mount *mnt = real_mount(path->mnt);
2935 int recurse = ms_flags & MS_REC;
2936 int type;
2937 int err = 0;
2938
2939 if (!path_mounted(path))
2940 return -EINVAL;
2941
2942 type = flags_to_propagation_type(ms_flags);
2943 if (!type)
2944 return -EINVAL;
2945
2946 namespace_lock();
2947 if (type == MS_SHARED) {
2948 err = invent_group_ids(mnt, recurse);
2949 if (err)
2950 goto out_unlock;
2951 }
2952
2953 lock_mount_hash();
2954 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2955 change_mnt_propagation(m, type);
2956 unlock_mount_hash();
2957
2958 out_unlock:
2959 namespace_unlock();
2960 return err;
2961 }
2962
2963 /* may_copy_tree() - check if a mount tree can be copied
2964 * @path: path to the mount tree to be copied
2965 *
2966 * This helper checks if the caller may copy the mount tree starting
2967 * from @path->mnt. The caller may copy the mount tree under the
2968 * following circumstances:
2969 *
2970 * (1) The caller is located in the mount namespace of the mount tree.
2971 * This also implies that the mount does not belong to an anonymous
2972 * mount namespace.
2973 * (2) The caller tries to copy an nfs mount referring to a mount
2974 * namespace, i.e., the caller is trying to copy a mount namespace
2975 * entry from nsfs.
2976 * (3) The caller tries to copy a pidfs mount referring to a pidfd.
2977 * (4) The caller is trying to copy a mount tree that belongs to an
2978 * anonymous mount namespace.
2979 *
2980 * For that to be safe, this helper enforces that the origin mount
2981 * namespace the anonymous mount namespace was created from is the
2982 * same as the caller's mount namespace by comparing the sequence
2983 * numbers.
2984 *
2985 * This is not strictly necessary. The current semantics of the new
2986 * mount api enforce that the caller must be located in the same
2987 * mount namespace as the mount tree it interacts with. Using the
2988 * origin sequence number preserves these semantics even for
2989 * anonymous mount namespaces. However, one could envision extending
2990 * the api to directly operate across mount namespace if needed.
2991 *
2992 * The ownership of a non-anonymous mount namespace such as the
2993 * caller's cannot change.
2994 * => We know that the caller's mount namespace is stable.
2995 *
2996 * If the origin sequence number of the anonymous mount namespace is
2997 * the same as the sequence number of the caller's mount namespace.
2998 * => The owning namespaces are the same.
2999 *
3000 * ==> The earlier capability check on the owning namespace of the
3001 * caller's mount namespace ensures that the caller has the
3002 * ability to copy the mount tree.
3003 *
3004 * Returns true if the mount tree can be copied, false otherwise.
3005 */
may_copy_tree(struct path * path)3006 static inline bool may_copy_tree(struct path *path)
3007 {
3008 struct mount *mnt = real_mount(path->mnt);
3009 const struct dentry_operations *d_op;
3010
3011 if (check_mnt(mnt))
3012 return true;
3013
3014 d_op = path->dentry->d_op;
3015 if (d_op == &ns_dentry_operations)
3016 return true;
3017
3018 if (d_op == &pidfs_dentry_operations)
3019 return true;
3020
3021 if (!is_mounted(path->mnt))
3022 return false;
3023
3024 return check_anonymous_mnt(mnt);
3025 }
3026
3027
__do_loopback(struct path * old_path,int recurse)3028 static struct mount *__do_loopback(struct path *old_path, int recurse)
3029 {
3030 struct mount *mnt = ERR_PTR(-EINVAL), *old = real_mount(old_path->mnt);
3031
3032 if (IS_MNT_UNBINDABLE(old))
3033 return mnt;
3034
3035 if (!may_copy_tree(old_path))
3036 return mnt;
3037
3038 if (!recurse && has_locked_children(old, old_path->dentry))
3039 return mnt;
3040
3041 if (recurse)
3042 mnt = copy_tree(old, old_path->dentry, CL_COPY_MNT_NS_FILE);
3043 else
3044 mnt = clone_mnt(old, old_path->dentry, 0);
3045
3046 if (!IS_ERR(mnt))
3047 mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3048
3049 return mnt;
3050 }
3051
3052 /*
3053 * do loopback mount.
3054 */
do_loopback(struct path * path,const char * old_name,int recurse)3055 static int do_loopback(struct path *path, const char *old_name,
3056 int recurse)
3057 {
3058 struct path old_path;
3059 struct mount *mnt = NULL, *parent;
3060 struct mountpoint *mp;
3061 int err;
3062 if (!old_name || !*old_name)
3063 return -EINVAL;
3064 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
3065 if (err)
3066 return err;
3067
3068 err = -EINVAL;
3069 if (mnt_ns_loop(old_path.dentry))
3070 goto out;
3071
3072 mp = lock_mount(path);
3073 if (IS_ERR(mp)) {
3074 err = PTR_ERR(mp);
3075 goto out;
3076 }
3077
3078 parent = real_mount(path->mnt);
3079 if (!check_mnt(parent))
3080 goto out2;
3081
3082 mnt = __do_loopback(&old_path, recurse);
3083 if (IS_ERR(mnt)) {
3084 err = PTR_ERR(mnt);
3085 goto out2;
3086 }
3087
3088 err = graft_tree(mnt, parent, mp);
3089 if (err) {
3090 lock_mount_hash();
3091 umount_tree(mnt, UMOUNT_SYNC);
3092 unlock_mount_hash();
3093 }
3094 out2:
3095 unlock_mount(mp);
3096 out:
3097 path_put(&old_path);
3098 return err;
3099 }
3100
open_detached_copy(struct path * path,bool recursive)3101 static struct file *open_detached_copy(struct path *path, bool recursive)
3102 {
3103 struct mnt_namespace *ns, *mnt_ns = current->nsproxy->mnt_ns, *src_mnt_ns;
3104 struct user_namespace *user_ns = mnt_ns->user_ns;
3105 struct mount *mnt, *p;
3106 struct file *file;
3107
3108 ns = alloc_mnt_ns(user_ns, true);
3109 if (IS_ERR(ns))
3110 return ERR_CAST(ns);
3111
3112 namespace_lock();
3113
3114 /*
3115 * Record the sequence number of the source mount namespace.
3116 * This needs to hold namespace_sem to ensure that the mount
3117 * doesn't get attached.
3118 */
3119 if (is_mounted(path->mnt)) {
3120 src_mnt_ns = real_mount(path->mnt)->mnt_ns;
3121 if (is_anon_ns(src_mnt_ns))
3122 ns->seq_origin = src_mnt_ns->seq_origin;
3123 else
3124 ns->seq_origin = src_mnt_ns->seq;
3125 }
3126
3127 mnt = __do_loopback(path, recursive);
3128 if (IS_ERR(mnt)) {
3129 namespace_unlock();
3130 free_mnt_ns(ns);
3131 return ERR_CAST(mnt);
3132 }
3133
3134 lock_mount_hash();
3135 for (p = mnt; p; p = next_mnt(p, mnt)) {
3136 mnt_add_to_ns(ns, p);
3137 ns->nr_mounts++;
3138 }
3139 ns->root = mnt;
3140 mntget(&mnt->mnt);
3141 unlock_mount_hash();
3142 namespace_unlock();
3143
3144 mntput(path->mnt);
3145 path->mnt = &mnt->mnt;
3146 file = dentry_open(path, O_PATH, current_cred());
3147 if (IS_ERR(file))
3148 dissolve_on_fput(path->mnt);
3149 else
3150 file->f_mode |= FMODE_NEED_UNMOUNT;
3151 return file;
3152 }
3153
vfs_open_tree(int dfd,const char __user * filename,unsigned int flags)3154 static struct file *vfs_open_tree(int dfd, const char __user *filename, unsigned int flags)
3155 {
3156 int ret;
3157 struct path path __free(path_put) = {};
3158 int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
3159 bool detached = flags & OPEN_TREE_CLONE;
3160
3161 BUILD_BUG_ON(OPEN_TREE_CLOEXEC != O_CLOEXEC);
3162
3163 if (flags & ~(AT_EMPTY_PATH | AT_NO_AUTOMOUNT | AT_RECURSIVE |
3164 AT_SYMLINK_NOFOLLOW | OPEN_TREE_CLONE |
3165 OPEN_TREE_CLOEXEC))
3166 return ERR_PTR(-EINVAL);
3167
3168 if ((flags & (AT_RECURSIVE | OPEN_TREE_CLONE)) == AT_RECURSIVE)
3169 return ERR_PTR(-EINVAL);
3170
3171 if (flags & AT_NO_AUTOMOUNT)
3172 lookup_flags &= ~LOOKUP_AUTOMOUNT;
3173 if (flags & AT_SYMLINK_NOFOLLOW)
3174 lookup_flags &= ~LOOKUP_FOLLOW;
3175 if (flags & AT_EMPTY_PATH)
3176 lookup_flags |= LOOKUP_EMPTY;
3177
3178 if (detached && !may_mount())
3179 return ERR_PTR(-EPERM);
3180
3181 ret = user_path_at(dfd, filename, lookup_flags, &path);
3182 if (unlikely(ret))
3183 return ERR_PTR(ret);
3184
3185 if (detached)
3186 return open_detached_copy(&path, flags & AT_RECURSIVE);
3187
3188 return dentry_open(&path, O_PATH, current_cred());
3189 }
3190
SYSCALL_DEFINE3(open_tree,int,dfd,const char __user *,filename,unsigned,flags)3191 SYSCALL_DEFINE3(open_tree, int, dfd, const char __user *, filename, unsigned, flags)
3192 {
3193 int fd;
3194 struct file *file __free(fput) = NULL;
3195
3196 file = vfs_open_tree(dfd, filename, flags);
3197 if (IS_ERR(file))
3198 return PTR_ERR(file);
3199
3200 fd = get_unused_fd_flags(flags & O_CLOEXEC);
3201 if (fd < 0)
3202 return fd;
3203
3204 fd_install(fd, no_free_ptr(file));
3205 return fd;
3206 }
3207
3208 /*
3209 * Don't allow locked mount flags to be cleared.
3210 *
3211 * No locks need to be held here while testing the various MNT_LOCK
3212 * flags because those flags can never be cleared once they are set.
3213 */
can_change_locked_flags(struct mount * mnt,unsigned int mnt_flags)3214 static bool can_change_locked_flags(struct mount *mnt, unsigned int mnt_flags)
3215 {
3216 unsigned int fl = mnt->mnt.mnt_flags;
3217
3218 if ((fl & MNT_LOCK_READONLY) &&
3219 !(mnt_flags & MNT_READONLY))
3220 return false;
3221
3222 if ((fl & MNT_LOCK_NODEV) &&
3223 !(mnt_flags & MNT_NODEV))
3224 return false;
3225
3226 if ((fl & MNT_LOCK_NOSUID) &&
3227 !(mnt_flags & MNT_NOSUID))
3228 return false;
3229
3230 if ((fl & MNT_LOCK_NOEXEC) &&
3231 !(mnt_flags & MNT_NOEXEC))
3232 return false;
3233
3234 if ((fl & MNT_LOCK_ATIME) &&
3235 ((fl & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK)))
3236 return false;
3237
3238 return true;
3239 }
3240
change_mount_ro_state(struct mount * mnt,unsigned int mnt_flags)3241 static int change_mount_ro_state(struct mount *mnt, unsigned int mnt_flags)
3242 {
3243 bool readonly_request = (mnt_flags & MNT_READONLY);
3244
3245 if (readonly_request == __mnt_is_readonly(&mnt->mnt))
3246 return 0;
3247
3248 if (readonly_request)
3249 return mnt_make_readonly(mnt);
3250
3251 mnt->mnt.mnt_flags &= ~MNT_READONLY;
3252 return 0;
3253 }
3254
set_mount_attributes(struct mount * mnt,unsigned int mnt_flags)3255 static void set_mount_attributes(struct mount *mnt, unsigned int mnt_flags)
3256 {
3257 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
3258 mnt->mnt.mnt_flags = mnt_flags;
3259 touch_mnt_namespace(mnt->mnt_ns);
3260 }
3261
mnt_warn_timestamp_expiry(struct path * mountpoint,struct vfsmount * mnt)3262 static void mnt_warn_timestamp_expiry(struct path *mountpoint, struct vfsmount *mnt)
3263 {
3264 struct super_block *sb = mnt->mnt_sb;
3265
3266 if (!__mnt_is_readonly(mnt) &&
3267 (!(sb->s_iflags & SB_I_TS_EXPIRY_WARNED)) &&
3268 (ktime_get_real_seconds() + TIME_UPTIME_SEC_MAX > sb->s_time_max)) {
3269 char *buf, *mntpath;
3270
3271 buf = (char *)__get_free_page(GFP_KERNEL);
3272 if (buf)
3273 mntpath = d_path(mountpoint, buf, PAGE_SIZE);
3274 else
3275 mntpath = ERR_PTR(-ENOMEM);
3276 if (IS_ERR(mntpath))
3277 mntpath = "(unknown)";
3278
3279 pr_warn("%s filesystem being %s at %s supports timestamps until %ptTd (0x%llx)\n",
3280 sb->s_type->name,
3281 is_mounted(mnt) ? "remounted" : "mounted",
3282 mntpath, &sb->s_time_max,
3283 (unsigned long long)sb->s_time_max);
3284
3285 sb->s_iflags |= SB_I_TS_EXPIRY_WARNED;
3286 if (buf)
3287 free_page((unsigned long)buf);
3288 }
3289 }
3290
3291 /*
3292 * Handle reconfiguration of the mountpoint only without alteration of the
3293 * superblock it refers to. This is triggered by specifying MS_REMOUNT|MS_BIND
3294 * to mount(2).
3295 */
do_reconfigure_mnt(struct path * path,unsigned int mnt_flags)3296 static int do_reconfigure_mnt(struct path *path, unsigned int mnt_flags)
3297 {
3298 struct super_block *sb = path->mnt->mnt_sb;
3299 struct mount *mnt = real_mount(path->mnt);
3300 int ret;
3301
3302 if (!check_mnt(mnt))
3303 return -EINVAL;
3304
3305 if (!path_mounted(path))
3306 return -EINVAL;
3307
3308 if (!can_change_locked_flags(mnt, mnt_flags))
3309 return -EPERM;
3310
3311 /*
3312 * We're only checking whether the superblock is read-only not
3313 * changing it, so only take down_read(&sb->s_umount).
3314 */
3315 down_read(&sb->s_umount);
3316 lock_mount_hash();
3317 ret = change_mount_ro_state(mnt, mnt_flags);
3318 if (ret == 0)
3319 set_mount_attributes(mnt, mnt_flags);
3320 unlock_mount_hash();
3321 up_read(&sb->s_umount);
3322
3323 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3324
3325 return ret;
3326 }
3327
3328 /*
3329 * change filesystem flags. dir should be a physical root of filesystem.
3330 * If you've mounted a non-root directory somewhere and want to do remount
3331 * on it - tough luck.
3332 */
do_remount(struct path * path,int ms_flags,int sb_flags,int mnt_flags,void * data)3333 static int do_remount(struct path *path, int ms_flags, int sb_flags,
3334 int mnt_flags, void *data)
3335 {
3336 int err;
3337 struct super_block *sb = path->mnt->mnt_sb;
3338 struct mount *mnt = real_mount(path->mnt);
3339 struct fs_context *fc;
3340
3341 if (!check_mnt(mnt))
3342 return -EINVAL;
3343
3344 if (!path_mounted(path))
3345 return -EINVAL;
3346
3347 if (!can_change_locked_flags(mnt, mnt_flags))
3348 return -EPERM;
3349
3350 fc = fs_context_for_reconfigure(path->dentry, sb_flags, MS_RMT_MASK);
3351 if (IS_ERR(fc))
3352 return PTR_ERR(fc);
3353
3354 /*
3355 * Indicate to the filesystem that the remount request is coming
3356 * from the legacy mount system call.
3357 */
3358 fc->oldapi = true;
3359
3360 err = parse_monolithic_mount_data(fc, data);
3361 if (!err) {
3362 down_write(&sb->s_umount);
3363 err = -EPERM;
3364 if (ns_capable(sb->s_user_ns, CAP_SYS_ADMIN)) {
3365 err = reconfigure_super(fc);
3366 if (!err) {
3367 lock_mount_hash();
3368 set_mount_attributes(mnt, mnt_flags);
3369 unlock_mount_hash();
3370 }
3371 }
3372 up_write(&sb->s_umount);
3373 }
3374
3375 mnt_warn_timestamp_expiry(path, &mnt->mnt);
3376
3377 put_fs_context(fc);
3378 return err;
3379 }
3380
tree_contains_unbindable(struct mount * mnt)3381 static inline int tree_contains_unbindable(struct mount *mnt)
3382 {
3383 struct mount *p;
3384 for (p = mnt; p; p = next_mnt(p, mnt)) {
3385 if (IS_MNT_UNBINDABLE(p))
3386 return 1;
3387 }
3388 return 0;
3389 }
3390
do_set_group(struct path * from_path,struct path * to_path)3391 static int do_set_group(struct path *from_path, struct path *to_path)
3392 {
3393 struct mount *from, *to;
3394 int err;
3395
3396 from = real_mount(from_path->mnt);
3397 to = real_mount(to_path->mnt);
3398
3399 namespace_lock();
3400
3401 err = -EINVAL;
3402 /* To and From must be mounted */
3403 if (!is_mounted(&from->mnt))
3404 goto out;
3405 if (!is_mounted(&to->mnt))
3406 goto out;
3407
3408 err = -EPERM;
3409 /* We should be allowed to modify mount namespaces of both mounts */
3410 if (!ns_capable(from->mnt_ns->user_ns, CAP_SYS_ADMIN))
3411 goto out;
3412 if (!ns_capable(to->mnt_ns->user_ns, CAP_SYS_ADMIN))
3413 goto out;
3414
3415 err = -EINVAL;
3416 /* To and From paths should be mount roots */
3417 if (!path_mounted(from_path))
3418 goto out;
3419 if (!path_mounted(to_path))
3420 goto out;
3421
3422 /* Setting sharing groups is only allowed across same superblock */
3423 if (from->mnt.mnt_sb != to->mnt.mnt_sb)
3424 goto out;
3425
3426 /* From mount root should be wider than To mount root */
3427 if (!is_subdir(to->mnt.mnt_root, from->mnt.mnt_root))
3428 goto out;
3429
3430 /* From mount should not have locked children in place of To's root */
3431 if (has_locked_children(from, to->mnt.mnt_root))
3432 goto out;
3433
3434 /* Setting sharing groups is only allowed on private mounts */
3435 if (IS_MNT_SHARED(to) || IS_MNT_SLAVE(to))
3436 goto out;
3437
3438 /* From should not be private */
3439 if (!IS_MNT_SHARED(from) && !IS_MNT_SLAVE(from))
3440 goto out;
3441
3442 if (IS_MNT_SLAVE(from)) {
3443 struct mount *m = from->mnt_master;
3444
3445 list_add(&to->mnt_slave, &m->mnt_slave_list);
3446 to->mnt_master = m;
3447 }
3448
3449 if (IS_MNT_SHARED(from)) {
3450 to->mnt_group_id = from->mnt_group_id;
3451 list_add(&to->mnt_share, &from->mnt_share);
3452 lock_mount_hash();
3453 set_mnt_shared(to);
3454 unlock_mount_hash();
3455 }
3456
3457 err = 0;
3458 out:
3459 namespace_unlock();
3460 return err;
3461 }
3462
3463 /**
3464 * path_overmounted - check if path is overmounted
3465 * @path: path to check
3466 *
3467 * Check if path is overmounted, i.e., if there's a mount on top of
3468 * @path->mnt with @path->dentry as mountpoint.
3469 *
3470 * Context: This function expects namespace_lock() to be held.
3471 * Return: If path is overmounted true is returned, false if not.
3472 */
path_overmounted(const struct path * path)3473 static inline bool path_overmounted(const struct path *path)
3474 {
3475 rcu_read_lock();
3476 if (unlikely(__lookup_mnt(path->mnt, path->dentry))) {
3477 rcu_read_unlock();
3478 return true;
3479 }
3480 rcu_read_unlock();
3481 return false;
3482 }
3483
3484 /**
3485 * can_move_mount_beneath - check that we can mount beneath the top mount
3486 * @from: mount to mount beneath
3487 * @to: mount under which to mount
3488 * @mp: mountpoint of @to
3489 *
3490 * - Make sure that @to->dentry is actually the root of a mount under
3491 * which we can mount another mount.
3492 * - Make sure that nothing can be mounted beneath the caller's current
3493 * root or the rootfs of the namespace.
3494 * - Make sure that the caller can unmount the topmost mount ensuring
3495 * that the caller could reveal the underlying mountpoint.
3496 * - Ensure that nothing has been mounted on top of @from before we
3497 * grabbed @namespace_sem to avoid creating pointless shadow mounts.
3498 * - Prevent mounting beneath a mount if the propagation relationship
3499 * between the source mount, parent mount, and top mount would lead to
3500 * nonsensical mount trees.
3501 *
3502 * Context: This function expects namespace_lock() to be held.
3503 * Return: On success 0, and on error a negative error code is returned.
3504 */
can_move_mount_beneath(const struct path * from,const struct path * to,const struct mountpoint * mp)3505 static int can_move_mount_beneath(const struct path *from,
3506 const struct path *to,
3507 const struct mountpoint *mp)
3508 {
3509 struct mount *mnt_from = real_mount(from->mnt),
3510 *mnt_to = real_mount(to->mnt),
3511 *parent_mnt_to = mnt_to->mnt_parent;
3512
3513 if (!mnt_has_parent(mnt_to))
3514 return -EINVAL;
3515
3516 if (!path_mounted(to))
3517 return -EINVAL;
3518
3519 if (IS_MNT_LOCKED(mnt_to))
3520 return -EINVAL;
3521
3522 /* Avoid creating shadow mounts during mount propagation. */
3523 if (path_overmounted(from))
3524 return -EINVAL;
3525
3526 /*
3527 * Mounting beneath the rootfs only makes sense when the
3528 * semantics of pivot_root(".", ".") are used.
3529 */
3530 if (&mnt_to->mnt == current->fs->root.mnt)
3531 return -EINVAL;
3532 if (parent_mnt_to == current->nsproxy->mnt_ns->root)
3533 return -EINVAL;
3534
3535 for (struct mount *p = mnt_from; mnt_has_parent(p); p = p->mnt_parent)
3536 if (p == mnt_to)
3537 return -EINVAL;
3538
3539 /*
3540 * If the parent mount propagates to the child mount this would
3541 * mean mounting @mnt_from on @mnt_to->mnt_parent and then
3542 * propagating a copy @c of @mnt_from on top of @mnt_to. This
3543 * defeats the whole purpose of mounting beneath another mount.
3544 */
3545 if (propagation_would_overmount(parent_mnt_to, mnt_to, mp))
3546 return -EINVAL;
3547
3548 /*
3549 * If @mnt_to->mnt_parent propagates to @mnt_from this would
3550 * mean propagating a copy @c of @mnt_from on top of @mnt_from.
3551 * Afterwards @mnt_from would be mounted on top of
3552 * @mnt_to->mnt_parent and @mnt_to would be unmounted from
3553 * @mnt->mnt_parent and remounted on @mnt_from. But since @c is
3554 * already mounted on @mnt_from, @mnt_to would ultimately be
3555 * remounted on top of @c. Afterwards, @mnt_from would be
3556 * covered by a copy @c of @mnt_from and @c would be covered by
3557 * @mnt_from itself. This defeats the whole purpose of mounting
3558 * @mnt_from beneath @mnt_to.
3559 */
3560 if (check_mnt(mnt_from) &&
3561 propagation_would_overmount(parent_mnt_to, mnt_from, mp))
3562 return -EINVAL;
3563
3564 return 0;
3565 }
3566
3567 /* may_use_mount() - check if a mount tree can be used
3568 * @mnt: vfsmount to be used
3569 *
3570 * This helper checks if the caller may use the mount tree starting
3571 * from @path->mnt. The caller may use the mount tree under the
3572 * following circumstances:
3573 *
3574 * (1) The caller is located in the mount namespace of the mount tree.
3575 * This also implies that the mount does not belong to an anonymous
3576 * mount namespace.
3577 * (2) The caller is trying to use a mount tree that belongs to an
3578 * anonymous mount namespace.
3579 *
3580 * For that to be safe, this helper enforces that the origin mount
3581 * namespace the anonymous mount namespace was created from is the
3582 * same as the caller's mount namespace by comparing the sequence
3583 * numbers.
3584 *
3585 * The ownership of a non-anonymous mount namespace such as the
3586 * caller's cannot change.
3587 * => We know that the caller's mount namespace is stable.
3588 *
3589 * If the origin sequence number of the anonymous mount namespace is
3590 * the same as the sequence number of the caller's mount namespace.
3591 * => The owning namespaces are the same.
3592 *
3593 * ==> The earlier capability check on the owning namespace of the
3594 * caller's mount namespace ensures that the caller has the
3595 * ability to use the mount tree.
3596 *
3597 * Returns true if the mount tree can be used, false otherwise.
3598 */
may_use_mount(struct mount * mnt)3599 static inline bool may_use_mount(struct mount *mnt)
3600 {
3601 if (check_mnt(mnt))
3602 return true;
3603
3604 /*
3605 * Make sure that noone unmounted the target path or somehow
3606 * managed to get their hands on something purely kernel
3607 * internal.
3608 */
3609 if (!is_mounted(&mnt->mnt))
3610 return false;
3611
3612 return check_anonymous_mnt(mnt);
3613 }
3614
do_move_mount(struct path * old_path,struct path * new_path,enum mnt_tree_flags_t flags)3615 static int do_move_mount(struct path *old_path,
3616 struct path *new_path, enum mnt_tree_flags_t flags)
3617 {
3618 struct mnt_namespace *ns;
3619 struct mount *p;
3620 struct mount *old;
3621 struct mount *parent;
3622 struct mountpoint *mp, *old_mp;
3623 int err;
3624 bool attached, beneath = flags & MNT_TREE_BENEATH;
3625
3626 mp = do_lock_mount(new_path, beneath);
3627 if (IS_ERR(mp))
3628 return PTR_ERR(mp);
3629
3630 old = real_mount(old_path->mnt);
3631 p = real_mount(new_path->mnt);
3632 parent = old->mnt_parent;
3633 attached = mnt_has_parent(old);
3634 if (attached)
3635 flags |= MNT_TREE_MOVE;
3636 old_mp = old->mnt_mp;
3637 ns = old->mnt_ns;
3638
3639 err = -EINVAL;
3640 if (!may_use_mount(p))
3641 goto out;
3642
3643 /* The thing moved must be mounted... */
3644 if (!is_mounted(&old->mnt))
3645 goto out;
3646
3647 /* ... and either ours or the root of anon namespace */
3648 if (!(attached ? check_mnt(old) : is_anon_ns(ns)))
3649 goto out;
3650
3651 if (is_anon_ns(ns)) {
3652 /*
3653 * Ending up with two files referring to the root of the
3654 * same anonymous mount namespace would cause an error
3655 * as this would mean trying to move the same mount
3656 * twice into the mount tree which would be rejected
3657 * later. But be explicit about it right here.
3658 */
3659 if ((is_anon_ns(p->mnt_ns) && ns == p->mnt_ns))
3660 goto out;
3661
3662 /*
3663 * If this is an anonymous mount tree ensure that mount
3664 * propagation can detect mounts that were just
3665 * propagated to the target mount tree so we don't
3666 * propagate onto them.
3667 */
3668 ns->mntns_flags |= MNTNS_PROPAGATING;
3669 } else if (is_anon_ns(p->mnt_ns)) {
3670 /*
3671 * Don't allow moving an attached mount tree to an
3672 * anonymous mount tree.
3673 */
3674 goto out;
3675 }
3676
3677 if (old->mnt.mnt_flags & MNT_LOCKED)
3678 goto out;
3679
3680 if (!path_mounted(old_path))
3681 goto out;
3682
3683 if (d_is_dir(new_path->dentry) !=
3684 d_is_dir(old_path->dentry))
3685 goto out;
3686 /*
3687 * Don't move a mount residing in a shared parent.
3688 */
3689 if (attached && IS_MNT_SHARED(parent))
3690 goto out;
3691
3692 if (beneath) {
3693 err = can_move_mount_beneath(old_path, new_path, mp);
3694 if (err)
3695 goto out;
3696
3697 err = -EINVAL;
3698 p = p->mnt_parent;
3699 flags |= MNT_TREE_BENEATH;
3700 }
3701
3702 /*
3703 * Don't move a mount tree containing unbindable mounts to a destination
3704 * mount which is shared.
3705 */
3706 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
3707 goto out;
3708 err = -ELOOP;
3709 if (!check_for_nsfs_mounts(old))
3710 goto out;
3711 for (; mnt_has_parent(p); p = p->mnt_parent)
3712 if (p == old)
3713 goto out;
3714
3715 err = attach_recursive_mnt(old, real_mount(new_path->mnt), mp, flags);
3716 if (err)
3717 goto out;
3718
3719 /* if the mount is moved, it should no longer be expire
3720 * automatically */
3721 list_del_init(&old->mnt_expire);
3722 if (attached)
3723 put_mountpoint(old_mp);
3724 out:
3725 if (is_anon_ns(ns))
3726 ns->mntns_flags &= ~MNTNS_PROPAGATING;
3727 unlock_mount(mp);
3728 if (!err) {
3729 if (attached) {
3730 mntput_no_expire(parent);
3731 } else {
3732 /* Make sure we notice when we leak mounts. */
3733 VFS_WARN_ON_ONCE(!mnt_ns_empty(ns));
3734 free_mnt_ns(ns);
3735 }
3736 }
3737 return err;
3738 }
3739
do_move_mount_old(struct path * path,const char * old_name)3740 static int do_move_mount_old(struct path *path, const char *old_name)
3741 {
3742 struct path old_path;
3743 int err;
3744
3745 if (!old_name || !*old_name)
3746 return -EINVAL;
3747
3748 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
3749 if (err)
3750 return err;
3751
3752 err = do_move_mount(&old_path, path, 0);
3753 path_put(&old_path);
3754 return err;
3755 }
3756
3757 /*
3758 * add a mount into a namespace's mount tree
3759 */
do_add_mount(struct mount * newmnt,struct mountpoint * mp,const struct path * path,int mnt_flags)3760 static int do_add_mount(struct mount *newmnt, struct mountpoint *mp,
3761 const struct path *path, int mnt_flags)
3762 {
3763 struct mount *parent = real_mount(path->mnt);
3764
3765 mnt_flags &= ~MNT_INTERNAL_FLAGS;
3766
3767 if (unlikely(!check_mnt(parent))) {
3768 /* that's acceptable only for automounts done in private ns */
3769 if (!(mnt_flags & MNT_SHRINKABLE))
3770 return -EINVAL;
3771 /* ... and for those we'd better have mountpoint still alive */
3772 if (!parent->mnt_ns)
3773 return -EINVAL;
3774 }
3775
3776 /* Refuse the same filesystem on the same mount point */
3777 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && path_mounted(path))
3778 return -EBUSY;
3779
3780 if (d_is_symlink(newmnt->mnt.mnt_root))
3781 return -EINVAL;
3782
3783 newmnt->mnt.mnt_flags = mnt_flags;
3784 return graft_tree(newmnt, parent, mp);
3785 }
3786
3787 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags);
3788
3789 /*
3790 * Create a new mount using a superblock configuration and request it
3791 * be added to the namespace tree.
3792 */
do_new_mount_fc(struct fs_context * fc,struct path * mountpoint,unsigned int mnt_flags)3793 static int do_new_mount_fc(struct fs_context *fc, struct path *mountpoint,
3794 unsigned int mnt_flags)
3795 {
3796 struct vfsmount *mnt;
3797 struct mountpoint *mp;
3798 struct super_block *sb = fc->root->d_sb;
3799 int error;
3800
3801 error = security_sb_kern_mount(sb);
3802 if (!error && mount_too_revealing(sb, &mnt_flags))
3803 error = -EPERM;
3804
3805 if (unlikely(error)) {
3806 fc_drop_locked(fc);
3807 return error;
3808 }
3809
3810 up_write(&sb->s_umount);
3811
3812 mnt = vfs_create_mount(fc);
3813 if (IS_ERR(mnt))
3814 return PTR_ERR(mnt);
3815
3816 mnt_warn_timestamp_expiry(mountpoint, mnt);
3817
3818 mp = lock_mount(mountpoint);
3819 if (IS_ERR(mp)) {
3820 mntput(mnt);
3821 return PTR_ERR(mp);
3822 }
3823 error = do_add_mount(real_mount(mnt), mp, mountpoint, mnt_flags);
3824 unlock_mount(mp);
3825 if (error < 0)
3826 mntput(mnt);
3827 return error;
3828 }
3829
3830 /*
3831 * create a new mount for userspace and request it to be added into the
3832 * namespace's tree
3833 */
do_new_mount(struct path * path,const char * fstype,int sb_flags,int mnt_flags,const char * name,void * data)3834 static int do_new_mount(struct path *path, const char *fstype, int sb_flags,
3835 int mnt_flags, const char *name, void *data)
3836 {
3837 struct file_system_type *type;
3838 struct fs_context *fc;
3839 const char *subtype = NULL;
3840 int err = 0;
3841
3842 if (!fstype)
3843 return -EINVAL;
3844
3845 type = get_fs_type(fstype);
3846 if (!type)
3847 return -ENODEV;
3848
3849 if (type->fs_flags & FS_HAS_SUBTYPE) {
3850 subtype = strchr(fstype, '.');
3851 if (subtype) {
3852 subtype++;
3853 if (!*subtype) {
3854 put_filesystem(type);
3855 return -EINVAL;
3856 }
3857 }
3858 }
3859
3860 fc = fs_context_for_mount(type, sb_flags);
3861 put_filesystem(type);
3862 if (IS_ERR(fc))
3863 return PTR_ERR(fc);
3864
3865 /*
3866 * Indicate to the filesystem that the mount request is coming
3867 * from the legacy mount system call.
3868 */
3869 fc->oldapi = true;
3870
3871 if (subtype)
3872 err = vfs_parse_fs_string(fc, "subtype",
3873 subtype, strlen(subtype));
3874 if (!err && name)
3875 err = vfs_parse_fs_string(fc, "source", name, strlen(name));
3876 if (!err)
3877 err = parse_monolithic_mount_data(fc, data);
3878 if (!err && !mount_capable(fc))
3879 err = -EPERM;
3880 if (!err)
3881 err = vfs_get_tree(fc);
3882 if (!err)
3883 err = do_new_mount_fc(fc, path, mnt_flags);
3884
3885 put_fs_context(fc);
3886 return err;
3887 }
3888
finish_automount(struct vfsmount * m,const struct path * path)3889 int finish_automount(struct vfsmount *m, const struct path *path)
3890 {
3891 struct dentry *dentry = path->dentry;
3892 struct mountpoint *mp;
3893 struct mount *mnt;
3894 int err;
3895
3896 if (!m)
3897 return 0;
3898 if (IS_ERR(m))
3899 return PTR_ERR(m);
3900
3901 mnt = real_mount(m);
3902 /* The new mount record should have at least 2 refs to prevent it being
3903 * expired before we get a chance to add it
3904 */
3905 BUG_ON(mnt_get_count(mnt) < 2);
3906
3907 if (m->mnt_sb == path->mnt->mnt_sb &&
3908 m->mnt_root == dentry) {
3909 err = -ELOOP;
3910 goto discard;
3911 }
3912
3913 /*
3914 * we don't want to use lock_mount() - in this case finding something
3915 * that overmounts our mountpoint to be means "quitely drop what we've
3916 * got", not "try to mount it on top".
3917 */
3918 inode_lock(dentry->d_inode);
3919 namespace_lock();
3920 if (unlikely(cant_mount(dentry))) {
3921 err = -ENOENT;
3922 goto discard_locked;
3923 }
3924 if (path_overmounted(path)) {
3925 err = 0;
3926 goto discard_locked;
3927 }
3928 mp = get_mountpoint(dentry);
3929 if (IS_ERR(mp)) {
3930 err = PTR_ERR(mp);
3931 goto discard_locked;
3932 }
3933
3934 err = do_add_mount(mnt, mp, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
3935 unlock_mount(mp);
3936 if (unlikely(err))
3937 goto discard;
3938 mntput(m);
3939 return 0;
3940
3941 discard_locked:
3942 namespace_unlock();
3943 inode_unlock(dentry->d_inode);
3944 discard:
3945 /* remove m from any expiration list it may be on */
3946 if (!list_empty(&mnt->mnt_expire)) {
3947 namespace_lock();
3948 list_del_init(&mnt->mnt_expire);
3949 namespace_unlock();
3950 }
3951 mntput(m);
3952 mntput(m);
3953 return err;
3954 }
3955
3956 /**
3957 * mnt_set_expiry - Put a mount on an expiration list
3958 * @mnt: The mount to list.
3959 * @expiry_list: The list to add the mount to.
3960 */
mnt_set_expiry(struct vfsmount * mnt,struct list_head * expiry_list)3961 void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
3962 {
3963 namespace_lock();
3964
3965 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
3966
3967 namespace_unlock();
3968 }
3969 EXPORT_SYMBOL(mnt_set_expiry);
3970
3971 /*
3972 * process a list of expirable mountpoints with the intent of discarding any
3973 * mountpoints that aren't in use and haven't been touched since last we came
3974 * here
3975 */
mark_mounts_for_expiry(struct list_head * mounts)3976 void mark_mounts_for_expiry(struct list_head *mounts)
3977 {
3978 struct mount *mnt, *next;
3979 LIST_HEAD(graveyard);
3980
3981 if (list_empty(mounts))
3982 return;
3983
3984 namespace_lock();
3985 lock_mount_hash();
3986
3987 /* extract from the expiration list every vfsmount that matches the
3988 * following criteria:
3989 * - only referenced by its parent vfsmount
3990 * - still marked for expiry (marked on the last call here; marks are
3991 * cleared by mntput())
3992 */
3993 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
3994 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
3995 propagate_mount_busy(mnt, 1))
3996 continue;
3997 list_move(&mnt->mnt_expire, &graveyard);
3998 }
3999 while (!list_empty(&graveyard)) {
4000 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
4001 touch_mnt_namespace(mnt->mnt_ns);
4002 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
4003 }
4004 unlock_mount_hash();
4005 namespace_unlock();
4006 }
4007
4008 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
4009
4010 /*
4011 * Ripoff of 'select_parent()'
4012 *
4013 * search the list of submounts for a given mountpoint, and move any
4014 * shrinkable submounts to the 'graveyard' list.
4015 */
select_submounts(struct mount * parent,struct list_head * graveyard)4016 static int select_submounts(struct mount *parent, struct list_head *graveyard)
4017 {
4018 struct mount *this_parent = parent;
4019 struct list_head *next;
4020 int found = 0;
4021
4022 repeat:
4023 next = this_parent->mnt_mounts.next;
4024 resume:
4025 while (next != &this_parent->mnt_mounts) {
4026 struct list_head *tmp = next;
4027 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
4028
4029 next = tmp->next;
4030 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
4031 continue;
4032 /*
4033 * Descend a level if the d_mounts list is non-empty.
4034 */
4035 if (!list_empty(&mnt->mnt_mounts)) {
4036 this_parent = mnt;
4037 goto repeat;
4038 }
4039
4040 if (!propagate_mount_busy(mnt, 1)) {
4041 list_move_tail(&mnt->mnt_expire, graveyard);
4042 found++;
4043 }
4044 }
4045 /*
4046 * All done at this level ... ascend and resume the search
4047 */
4048 if (this_parent != parent) {
4049 next = this_parent->mnt_child.next;
4050 this_parent = this_parent->mnt_parent;
4051 goto resume;
4052 }
4053 return found;
4054 }
4055
4056 /*
4057 * process a list of expirable mountpoints with the intent of discarding any
4058 * submounts of a specific parent mountpoint
4059 *
4060 * mount_lock must be held for write
4061 */
shrink_submounts(struct mount * mnt)4062 static void shrink_submounts(struct mount *mnt)
4063 {
4064 LIST_HEAD(graveyard);
4065 struct mount *m;
4066
4067 /* extract submounts of 'mountpoint' from the expiration list */
4068 while (select_submounts(mnt, &graveyard)) {
4069 while (!list_empty(&graveyard)) {
4070 m = list_first_entry(&graveyard, struct mount,
4071 mnt_expire);
4072 touch_mnt_namespace(m->mnt_ns);
4073 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
4074 }
4075 }
4076 }
4077
copy_mount_options(const void __user * data)4078 static void *copy_mount_options(const void __user * data)
4079 {
4080 char *copy;
4081 unsigned left, offset;
4082
4083 if (!data)
4084 return NULL;
4085
4086 copy = kmalloc(PAGE_SIZE, GFP_KERNEL);
4087 if (!copy)
4088 return ERR_PTR(-ENOMEM);
4089
4090 left = copy_from_user(copy, data, PAGE_SIZE);
4091
4092 /*
4093 * Not all architectures have an exact copy_from_user(). Resort to
4094 * byte at a time.
4095 */
4096 offset = PAGE_SIZE - left;
4097 while (left) {
4098 char c;
4099 if (get_user(c, (const char __user *)data + offset))
4100 break;
4101 copy[offset] = c;
4102 left--;
4103 offset++;
4104 }
4105
4106 if (left == PAGE_SIZE) {
4107 kfree(copy);
4108 return ERR_PTR(-EFAULT);
4109 }
4110
4111 return copy;
4112 }
4113
copy_mount_string(const void __user * data)4114 static char *copy_mount_string(const void __user *data)
4115 {
4116 return data ? strndup_user(data, PATH_MAX) : NULL;
4117 }
4118
4119 /*
4120 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
4121 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
4122 *
4123 * data is a (void *) that can point to any structure up to
4124 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
4125 * information (or be NULL).
4126 *
4127 * Pre-0.97 versions of mount() didn't have a flags word.
4128 * When the flags word was introduced its top half was required
4129 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
4130 * Therefore, if this magic number is present, it carries no information
4131 * and must be discarded.
4132 */
path_mount(const char * dev_name,struct path * path,const char * type_page,unsigned long flags,void * data_page)4133 int path_mount(const char *dev_name, struct path *path,
4134 const char *type_page, unsigned long flags, void *data_page)
4135 {
4136 unsigned int mnt_flags = 0, sb_flags;
4137 int ret;
4138
4139 /* Discard magic */
4140 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
4141 flags &= ~MS_MGC_MSK;
4142
4143 /* Basic sanity checks */
4144 if (data_page)
4145 ((char *)data_page)[PAGE_SIZE - 1] = 0;
4146
4147 if (flags & MS_NOUSER)
4148 return -EINVAL;
4149
4150 ret = security_sb_mount(dev_name, path, type_page, flags, data_page);
4151 if (ret)
4152 return ret;
4153 if (!may_mount())
4154 return -EPERM;
4155 if (flags & SB_MANDLOCK)
4156 warn_mandlock();
4157
4158 /* Default to relatime unless overriden */
4159 if (!(flags & MS_NOATIME))
4160 mnt_flags |= MNT_RELATIME;
4161
4162 /* Separate the per-mountpoint flags */
4163 if (flags & MS_NOSUID)
4164 mnt_flags |= MNT_NOSUID;
4165 if (flags & MS_NODEV)
4166 mnt_flags |= MNT_NODEV;
4167 if (flags & MS_NOEXEC)
4168 mnt_flags |= MNT_NOEXEC;
4169 if (flags & MS_NOATIME)
4170 mnt_flags |= MNT_NOATIME;
4171 if (flags & MS_NODIRATIME)
4172 mnt_flags |= MNT_NODIRATIME;
4173 if (flags & MS_STRICTATIME)
4174 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
4175 if (flags & MS_RDONLY)
4176 mnt_flags |= MNT_READONLY;
4177 if (flags & MS_NOSYMFOLLOW)
4178 mnt_flags |= MNT_NOSYMFOLLOW;
4179
4180 /* The default atime for remount is preservation */
4181 if ((flags & MS_REMOUNT) &&
4182 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
4183 MS_STRICTATIME)) == 0)) {
4184 mnt_flags &= ~MNT_ATIME_MASK;
4185 mnt_flags |= path->mnt->mnt_flags & MNT_ATIME_MASK;
4186 }
4187
4188 sb_flags = flags & (SB_RDONLY |
4189 SB_SYNCHRONOUS |
4190 SB_MANDLOCK |
4191 SB_DIRSYNC |
4192 SB_SILENT |
4193 SB_POSIXACL |
4194 SB_LAZYTIME |
4195 SB_I_VERSION);
4196
4197 if ((flags & (MS_REMOUNT | MS_BIND)) == (MS_REMOUNT | MS_BIND))
4198 return do_reconfigure_mnt(path, mnt_flags);
4199 if (flags & MS_REMOUNT)
4200 return do_remount(path, flags, sb_flags, mnt_flags, data_page);
4201 if (flags & MS_BIND)
4202 return do_loopback(path, dev_name, flags & MS_REC);
4203 if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
4204 return do_change_type(path, flags);
4205 if (flags & MS_MOVE)
4206 return do_move_mount_old(path, dev_name);
4207
4208 return do_new_mount(path, type_page, sb_flags, mnt_flags, dev_name,
4209 data_page);
4210 }
4211
do_mount(const char * dev_name,const char __user * dir_name,const char * type_page,unsigned long flags,void * data_page)4212 int do_mount(const char *dev_name, const char __user *dir_name,
4213 const char *type_page, unsigned long flags, void *data_page)
4214 {
4215 struct path path;
4216 int ret;
4217
4218 ret = user_path_at(AT_FDCWD, dir_name, LOOKUP_FOLLOW, &path);
4219 if (ret)
4220 return ret;
4221 ret = path_mount(dev_name, &path, type_page, flags, data_page);
4222 path_put(&path);
4223 return ret;
4224 }
4225
inc_mnt_namespaces(struct user_namespace * ns)4226 static struct ucounts *inc_mnt_namespaces(struct user_namespace *ns)
4227 {
4228 return inc_ucount(ns, current_euid(), UCOUNT_MNT_NAMESPACES);
4229 }
4230
dec_mnt_namespaces(struct ucounts * ucounts)4231 static void dec_mnt_namespaces(struct ucounts *ucounts)
4232 {
4233 dec_ucount(ucounts, UCOUNT_MNT_NAMESPACES);
4234 }
4235
free_mnt_ns(struct mnt_namespace * ns)4236 static void free_mnt_ns(struct mnt_namespace *ns)
4237 {
4238 if (!is_anon_ns(ns))
4239 ns_free_inum(&ns->ns);
4240 dec_mnt_namespaces(ns->ucounts);
4241 mnt_ns_tree_remove(ns);
4242 }
4243
4244 /*
4245 * Assign a sequence number so we can detect when we attempt to bind
4246 * mount a reference to an older mount namespace into the current
4247 * mount namespace, preventing reference counting loops. A 64bit
4248 * number incrementing at 10Ghz will take 12,427 years to wrap which
4249 * is effectively never, so we can ignore the possibility.
4250 */
4251 static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
4252
alloc_mnt_ns(struct user_namespace * user_ns,bool anon)4253 static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns, bool anon)
4254 {
4255 struct mnt_namespace *new_ns;
4256 struct ucounts *ucounts;
4257 int ret;
4258
4259 ucounts = inc_mnt_namespaces(user_ns);
4260 if (!ucounts)
4261 return ERR_PTR(-ENOSPC);
4262
4263 new_ns = kzalloc(sizeof(struct mnt_namespace), GFP_KERNEL_ACCOUNT);
4264 if (!new_ns) {
4265 dec_mnt_namespaces(ucounts);
4266 return ERR_PTR(-ENOMEM);
4267 }
4268 if (!anon) {
4269 ret = ns_alloc_inum(&new_ns->ns);
4270 if (ret) {
4271 kfree(new_ns);
4272 dec_mnt_namespaces(ucounts);
4273 return ERR_PTR(ret);
4274 }
4275 }
4276 new_ns->ns.ops = &mntns_operations;
4277 if (!anon)
4278 new_ns->seq = atomic64_inc_return(&mnt_ns_seq);
4279 refcount_set(&new_ns->ns.count, 1);
4280 refcount_set(&new_ns->passive, 1);
4281 new_ns->mounts = RB_ROOT;
4282 INIT_LIST_HEAD(&new_ns->mnt_ns_list);
4283 RB_CLEAR_NODE(&new_ns->mnt_ns_tree_node);
4284 init_waitqueue_head(&new_ns->poll);
4285 new_ns->user_ns = get_user_ns(user_ns);
4286 new_ns->ucounts = ucounts;
4287 return new_ns;
4288 }
4289
4290 __latent_entropy
copy_mnt_ns(unsigned long flags,struct mnt_namespace * ns,struct user_namespace * user_ns,struct fs_struct * new_fs)4291 struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
4292 struct user_namespace *user_ns, struct fs_struct *new_fs)
4293 {
4294 struct mnt_namespace *new_ns;
4295 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
4296 struct mount *p, *q;
4297 struct mount *old;
4298 struct mount *new;
4299 int copy_flags;
4300
4301 BUG_ON(!ns);
4302
4303 if (likely(!(flags & CLONE_NEWNS))) {
4304 get_mnt_ns(ns);
4305 return ns;
4306 }
4307
4308 old = ns->root;
4309
4310 new_ns = alloc_mnt_ns(user_ns, false);
4311 if (IS_ERR(new_ns))
4312 return new_ns;
4313
4314 namespace_lock();
4315 /* First pass: copy the tree topology */
4316 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
4317 if (user_ns != ns->user_ns)
4318 copy_flags |= CL_SHARED_TO_SLAVE;
4319 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
4320 if (IS_ERR(new)) {
4321 namespace_unlock();
4322 ns_free_inum(&new_ns->ns);
4323 dec_mnt_namespaces(new_ns->ucounts);
4324 mnt_ns_release(new_ns);
4325 return ERR_CAST(new);
4326 }
4327 if (user_ns != ns->user_ns) {
4328 lock_mount_hash();
4329 lock_mnt_tree(new);
4330 unlock_mount_hash();
4331 }
4332 new_ns->root = new;
4333
4334 /*
4335 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
4336 * as belonging to new namespace. We have already acquired a private
4337 * fs_struct, so tsk->fs->lock is not needed.
4338 */
4339 p = old;
4340 q = new;
4341 while (p) {
4342 mnt_add_to_ns(new_ns, q);
4343 new_ns->nr_mounts++;
4344 if (new_fs) {
4345 if (&p->mnt == new_fs->root.mnt) {
4346 new_fs->root.mnt = mntget(&q->mnt);
4347 rootmnt = &p->mnt;
4348 }
4349 if (&p->mnt == new_fs->pwd.mnt) {
4350 new_fs->pwd.mnt = mntget(&q->mnt);
4351 pwdmnt = &p->mnt;
4352 }
4353 }
4354 p = next_mnt(p, old);
4355 q = next_mnt(q, new);
4356 if (!q)
4357 break;
4358 // an mntns binding we'd skipped?
4359 while (p->mnt.mnt_root != q->mnt.mnt_root)
4360 p = next_mnt(skip_mnt_tree(p), old);
4361 }
4362 namespace_unlock();
4363
4364 if (rootmnt)
4365 mntput(rootmnt);
4366 if (pwdmnt)
4367 mntput(pwdmnt);
4368
4369 mnt_ns_tree_add(new_ns);
4370 return new_ns;
4371 }
4372
mount_subtree(struct vfsmount * m,const char * name)4373 struct dentry *mount_subtree(struct vfsmount *m, const char *name)
4374 {
4375 struct mount *mnt = real_mount(m);
4376 struct mnt_namespace *ns;
4377 struct super_block *s;
4378 struct path path;
4379 int err;
4380
4381 ns = alloc_mnt_ns(&init_user_ns, true);
4382 if (IS_ERR(ns)) {
4383 mntput(m);
4384 return ERR_CAST(ns);
4385 }
4386 ns->root = mnt;
4387 ns->nr_mounts++;
4388 mnt_add_to_ns(ns, mnt);
4389
4390 err = vfs_path_lookup(m->mnt_root, m,
4391 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
4392
4393 put_mnt_ns(ns);
4394
4395 if (err)
4396 return ERR_PTR(err);
4397
4398 /* trade a vfsmount reference for active sb one */
4399 s = path.mnt->mnt_sb;
4400 atomic_inc(&s->s_active);
4401 mntput(path.mnt);
4402 /* lock the sucker */
4403 down_write(&s->s_umount);
4404 /* ... and return the root of (sub)tree on it */
4405 return path.dentry;
4406 }
4407 EXPORT_SYMBOL(mount_subtree);
4408
SYSCALL_DEFINE5(mount,char __user *,dev_name,char __user *,dir_name,char __user *,type,unsigned long,flags,void __user *,data)4409 SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
4410 char __user *, type, unsigned long, flags, void __user *, data)
4411 {
4412 int ret;
4413 char *kernel_type;
4414 char *kernel_dev;
4415 void *options;
4416
4417 kernel_type = copy_mount_string(type);
4418 ret = PTR_ERR(kernel_type);
4419 if (IS_ERR(kernel_type))
4420 goto out_type;
4421
4422 kernel_dev = copy_mount_string(dev_name);
4423 ret = PTR_ERR(kernel_dev);
4424 if (IS_ERR(kernel_dev))
4425 goto out_dev;
4426
4427 options = copy_mount_options(data);
4428 ret = PTR_ERR(options);
4429 if (IS_ERR(options))
4430 goto out_data;
4431
4432 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, options);
4433
4434 kfree(options);
4435 out_data:
4436 kfree(kernel_dev);
4437 out_dev:
4438 kfree(kernel_type);
4439 out_type:
4440 return ret;
4441 }
4442
4443 #define FSMOUNT_VALID_FLAGS \
4444 (MOUNT_ATTR_RDONLY | MOUNT_ATTR_NOSUID | MOUNT_ATTR_NODEV | \
4445 MOUNT_ATTR_NOEXEC | MOUNT_ATTR__ATIME | MOUNT_ATTR_NODIRATIME | \
4446 MOUNT_ATTR_NOSYMFOLLOW)
4447
4448 #define MOUNT_SETATTR_VALID_FLAGS (FSMOUNT_VALID_FLAGS | MOUNT_ATTR_IDMAP)
4449
4450 #define MOUNT_SETATTR_PROPAGATION_FLAGS \
4451 (MS_UNBINDABLE | MS_PRIVATE | MS_SLAVE | MS_SHARED)
4452
attr_flags_to_mnt_flags(u64 attr_flags)4453 static unsigned int attr_flags_to_mnt_flags(u64 attr_flags)
4454 {
4455 unsigned int mnt_flags = 0;
4456
4457 if (attr_flags & MOUNT_ATTR_RDONLY)
4458 mnt_flags |= MNT_READONLY;
4459 if (attr_flags & MOUNT_ATTR_NOSUID)
4460 mnt_flags |= MNT_NOSUID;
4461 if (attr_flags & MOUNT_ATTR_NODEV)
4462 mnt_flags |= MNT_NODEV;
4463 if (attr_flags & MOUNT_ATTR_NOEXEC)
4464 mnt_flags |= MNT_NOEXEC;
4465 if (attr_flags & MOUNT_ATTR_NODIRATIME)
4466 mnt_flags |= MNT_NODIRATIME;
4467 if (attr_flags & MOUNT_ATTR_NOSYMFOLLOW)
4468 mnt_flags |= MNT_NOSYMFOLLOW;
4469
4470 return mnt_flags;
4471 }
4472
4473 /*
4474 * Create a kernel mount representation for a new, prepared superblock
4475 * (specified by fs_fd) and attach to an open_tree-like file descriptor.
4476 */
SYSCALL_DEFINE3(fsmount,int,fs_fd,unsigned int,flags,unsigned int,attr_flags)4477 SYSCALL_DEFINE3(fsmount, int, fs_fd, unsigned int, flags,
4478 unsigned int, attr_flags)
4479 {
4480 struct mnt_namespace *ns;
4481 struct fs_context *fc;
4482 struct file *file;
4483 struct path newmount;
4484 struct mount *mnt;
4485 unsigned int mnt_flags = 0;
4486 long ret;
4487
4488 if (!may_mount())
4489 return -EPERM;
4490
4491 if ((flags & ~(FSMOUNT_CLOEXEC)) != 0)
4492 return -EINVAL;
4493
4494 if (attr_flags & ~FSMOUNT_VALID_FLAGS)
4495 return -EINVAL;
4496
4497 mnt_flags = attr_flags_to_mnt_flags(attr_flags);
4498
4499 switch (attr_flags & MOUNT_ATTR__ATIME) {
4500 case MOUNT_ATTR_STRICTATIME:
4501 break;
4502 case MOUNT_ATTR_NOATIME:
4503 mnt_flags |= MNT_NOATIME;
4504 break;
4505 case MOUNT_ATTR_RELATIME:
4506 mnt_flags |= MNT_RELATIME;
4507 break;
4508 default:
4509 return -EINVAL;
4510 }
4511
4512 CLASS(fd, f)(fs_fd);
4513 if (fd_empty(f))
4514 return -EBADF;
4515
4516 if (fd_file(f)->f_op != &fscontext_fops)
4517 return -EINVAL;
4518
4519 fc = fd_file(f)->private_data;
4520
4521 ret = mutex_lock_interruptible(&fc->uapi_mutex);
4522 if (ret < 0)
4523 return ret;
4524
4525 /* There must be a valid superblock or we can't mount it */
4526 ret = -EINVAL;
4527 if (!fc->root)
4528 goto err_unlock;
4529
4530 ret = -EPERM;
4531 if (mount_too_revealing(fc->root->d_sb, &mnt_flags)) {
4532 pr_warn("VFS: Mount too revealing\n");
4533 goto err_unlock;
4534 }
4535
4536 ret = -EBUSY;
4537 if (fc->phase != FS_CONTEXT_AWAITING_MOUNT)
4538 goto err_unlock;
4539
4540 if (fc->sb_flags & SB_MANDLOCK)
4541 warn_mandlock();
4542
4543 newmount.mnt = vfs_create_mount(fc);
4544 if (IS_ERR(newmount.mnt)) {
4545 ret = PTR_ERR(newmount.mnt);
4546 goto err_unlock;
4547 }
4548 newmount.dentry = dget(fc->root);
4549 newmount.mnt->mnt_flags = mnt_flags;
4550
4551 /* We've done the mount bit - now move the file context into more or
4552 * less the same state as if we'd done an fspick(). We don't want to
4553 * do any memory allocation or anything like that at this point as we
4554 * don't want to have to handle any errors incurred.
4555 */
4556 vfs_clean_context(fc);
4557
4558 ns = alloc_mnt_ns(current->nsproxy->mnt_ns->user_ns, true);
4559 if (IS_ERR(ns)) {
4560 ret = PTR_ERR(ns);
4561 goto err_path;
4562 }
4563 mnt = real_mount(newmount.mnt);
4564 ns->root = mnt;
4565 ns->nr_mounts = 1;
4566 mnt_add_to_ns(ns, mnt);
4567 mntget(newmount.mnt);
4568
4569 /* Attach to an apparent O_PATH fd with a note that we need to unmount
4570 * it, not just simply put it.
4571 */
4572 file = dentry_open(&newmount, O_PATH, fc->cred);
4573 if (IS_ERR(file)) {
4574 dissolve_on_fput(newmount.mnt);
4575 ret = PTR_ERR(file);
4576 goto err_path;
4577 }
4578 file->f_mode |= FMODE_NEED_UNMOUNT;
4579
4580 ret = get_unused_fd_flags((flags & FSMOUNT_CLOEXEC) ? O_CLOEXEC : 0);
4581 if (ret >= 0)
4582 fd_install(ret, file);
4583 else
4584 fput(file);
4585
4586 err_path:
4587 path_put(&newmount);
4588 err_unlock:
4589 mutex_unlock(&fc->uapi_mutex);
4590 return ret;
4591 }
4592
vfs_move_mount(struct path * from_path,struct path * to_path,enum mnt_tree_flags_t mflags)4593 static inline int vfs_move_mount(struct path *from_path, struct path *to_path,
4594 enum mnt_tree_flags_t mflags)
4595 {
4596 int ret;
4597
4598 ret = security_move_mount(from_path, to_path);
4599 if (ret)
4600 return ret;
4601
4602 if (mflags & MNT_TREE_PROPAGATION)
4603 return do_set_group(from_path, to_path);
4604
4605 return do_move_mount(from_path, to_path, mflags);
4606 }
4607
4608 /*
4609 * Move a mount from one place to another. In combination with
4610 * fsopen()/fsmount() this is used to install a new mount and in combination
4611 * with open_tree(OPEN_TREE_CLONE [| AT_RECURSIVE]) it can be used to copy
4612 * a mount subtree.
4613 *
4614 * Note the flags value is a combination of MOVE_MOUNT_* flags.
4615 */
SYSCALL_DEFINE5(move_mount,int,from_dfd,const char __user *,from_pathname,int,to_dfd,const char __user *,to_pathname,unsigned int,flags)4616 SYSCALL_DEFINE5(move_mount,
4617 int, from_dfd, const char __user *, from_pathname,
4618 int, to_dfd, const char __user *, to_pathname,
4619 unsigned int, flags)
4620 {
4621 struct path to_path __free(path_put) = {};
4622 struct path from_path __free(path_put) = {};
4623 struct filename *to_name __free(putname) = NULL;
4624 struct filename *from_name __free(putname) = NULL;
4625 unsigned int lflags, uflags;
4626 enum mnt_tree_flags_t mflags = 0;
4627 int ret = 0;
4628
4629 if (!may_mount())
4630 return -EPERM;
4631
4632 if (flags & ~MOVE_MOUNT__MASK)
4633 return -EINVAL;
4634
4635 if ((flags & (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP)) ==
4636 (MOVE_MOUNT_BENEATH | MOVE_MOUNT_SET_GROUP))
4637 return -EINVAL;
4638
4639 if (flags & MOVE_MOUNT_SET_GROUP) mflags |= MNT_TREE_PROPAGATION;
4640 if (flags & MOVE_MOUNT_BENEATH) mflags |= MNT_TREE_BENEATH;
4641
4642 lflags = 0;
4643 if (flags & MOVE_MOUNT_F_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4644 if (flags & MOVE_MOUNT_F_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4645 uflags = 0;
4646 if (flags & MOVE_MOUNT_F_EMPTY_PATH) uflags = AT_EMPTY_PATH;
4647 from_name = getname_maybe_null(from_pathname, uflags);
4648 if (IS_ERR(from_name))
4649 return PTR_ERR(from_name);
4650
4651 lflags = 0;
4652 if (flags & MOVE_MOUNT_T_SYMLINKS) lflags |= LOOKUP_FOLLOW;
4653 if (flags & MOVE_MOUNT_T_AUTOMOUNTS) lflags |= LOOKUP_AUTOMOUNT;
4654 uflags = 0;
4655 if (flags & MOVE_MOUNT_T_EMPTY_PATH) uflags = AT_EMPTY_PATH;
4656 to_name = getname_maybe_null(to_pathname, uflags);
4657 if (IS_ERR(to_name))
4658 return PTR_ERR(to_name);
4659
4660 if (!to_name && to_dfd >= 0) {
4661 CLASS(fd_raw, f_to)(to_dfd);
4662 if (fd_empty(f_to))
4663 return -EBADF;
4664
4665 to_path = fd_file(f_to)->f_path;
4666 path_get(&to_path);
4667 } else {
4668 ret = filename_lookup(to_dfd, to_name, lflags, &to_path, NULL);
4669 if (ret)
4670 return ret;
4671 }
4672
4673 if (!from_name && from_dfd >= 0) {
4674 CLASS(fd_raw, f_from)(from_dfd);
4675 if (fd_empty(f_from))
4676 return -EBADF;
4677
4678 return vfs_move_mount(&fd_file(f_from)->f_path, &to_path, mflags);
4679 }
4680
4681 ret = filename_lookup(from_dfd, from_name, lflags, &from_path, NULL);
4682 if (ret)
4683 return ret;
4684
4685 return vfs_move_mount(&from_path, &to_path, mflags);
4686 }
4687
4688 /*
4689 * Return true if path is reachable from root
4690 *
4691 * namespace_sem or mount_lock is held
4692 */
is_path_reachable(struct mount * mnt,struct dentry * dentry,const struct path * root)4693 bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
4694 const struct path *root)
4695 {
4696 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
4697 dentry = mnt->mnt_mountpoint;
4698 mnt = mnt->mnt_parent;
4699 }
4700 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
4701 }
4702
path_is_under(const struct path * path1,const struct path * path2)4703 bool path_is_under(const struct path *path1, const struct path *path2)
4704 {
4705 bool res;
4706 read_seqlock_excl(&mount_lock);
4707 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
4708 read_sequnlock_excl(&mount_lock);
4709 return res;
4710 }
4711 EXPORT_SYMBOL(path_is_under);
4712
4713 /*
4714 * pivot_root Semantics:
4715 * Moves the root file system of the current process to the directory put_old,
4716 * makes new_root as the new root file system of the current process, and sets
4717 * root/cwd of all processes which had them on the current root to new_root.
4718 *
4719 * Restrictions:
4720 * The new_root and put_old must be directories, and must not be on the
4721 * same file system as the current process root. The put_old must be
4722 * underneath new_root, i.e. adding a non-zero number of /.. to the string
4723 * pointed to by put_old must yield the same directory as new_root. No other
4724 * file system may be mounted on put_old. After all, new_root is a mountpoint.
4725 *
4726 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
4727 * See Documentation/filesystems/ramfs-rootfs-initramfs.rst for alternatives
4728 * in this situation.
4729 *
4730 * Notes:
4731 * - we don't move root/cwd if they are not at the root (reason: if something
4732 * cared enough to change them, it's probably wrong to force them elsewhere)
4733 * - it's okay to pick a root that isn't the root of a file system, e.g.
4734 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
4735 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
4736 * first.
4737 */
SYSCALL_DEFINE2(pivot_root,const char __user *,new_root,const char __user *,put_old)4738 SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
4739 const char __user *, put_old)
4740 {
4741 struct path new, old, root;
4742 struct mount *new_mnt, *root_mnt, *old_mnt, *root_parent, *ex_parent;
4743 struct mountpoint *old_mp, *root_mp;
4744 int error;
4745
4746 if (!may_mount())
4747 return -EPERM;
4748
4749 error = user_path_at(AT_FDCWD, new_root,
4750 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &new);
4751 if (error)
4752 goto out0;
4753
4754 error = user_path_at(AT_FDCWD, put_old,
4755 LOOKUP_FOLLOW | LOOKUP_DIRECTORY, &old);
4756 if (error)
4757 goto out1;
4758
4759 error = security_sb_pivotroot(&old, &new);
4760 if (error)
4761 goto out2;
4762
4763 get_fs_root(current->fs, &root);
4764 old_mp = lock_mount(&old);
4765 error = PTR_ERR(old_mp);
4766 if (IS_ERR(old_mp))
4767 goto out3;
4768
4769 error = -EINVAL;
4770 new_mnt = real_mount(new.mnt);
4771 root_mnt = real_mount(root.mnt);
4772 old_mnt = real_mount(old.mnt);
4773 ex_parent = new_mnt->mnt_parent;
4774 root_parent = root_mnt->mnt_parent;
4775 if (IS_MNT_SHARED(old_mnt) ||
4776 IS_MNT_SHARED(ex_parent) ||
4777 IS_MNT_SHARED(root_parent))
4778 goto out4;
4779 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
4780 goto out4;
4781 if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
4782 goto out4;
4783 error = -ENOENT;
4784 if (d_unlinked(new.dentry))
4785 goto out4;
4786 error = -EBUSY;
4787 if (new_mnt == root_mnt || old_mnt == root_mnt)
4788 goto out4; /* loop, on the same file system */
4789 error = -EINVAL;
4790 if (!path_mounted(&root))
4791 goto out4; /* not a mountpoint */
4792 if (!mnt_has_parent(root_mnt))
4793 goto out4; /* not attached */
4794 if (!path_mounted(&new))
4795 goto out4; /* not a mountpoint */
4796 if (!mnt_has_parent(new_mnt))
4797 goto out4; /* not attached */
4798 /* make sure we can reach put_old from new_root */
4799 if (!is_path_reachable(old_mnt, old.dentry, &new))
4800 goto out4;
4801 /* make certain new is below the root */
4802 if (!is_path_reachable(new_mnt, new.dentry, &root))
4803 goto out4;
4804 lock_mount_hash();
4805 umount_mnt(new_mnt);
4806 root_mp = unhash_mnt(root_mnt); /* we'll need its mountpoint */
4807 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
4808 new_mnt->mnt.mnt_flags |= MNT_LOCKED;
4809 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
4810 }
4811 /* mount old root on put_old */
4812 attach_mnt(root_mnt, old_mnt, old_mp, false);
4813 /* mount new_root on / */
4814 attach_mnt(new_mnt, root_parent, root_mp, false);
4815 mnt_add_count(root_parent, -1);
4816 touch_mnt_namespace(current->nsproxy->mnt_ns);
4817 /* A moved mount should not expire automatically */
4818 list_del_init(&new_mnt->mnt_expire);
4819 put_mountpoint(root_mp);
4820 unlock_mount_hash();
4821 mnt_notify_add(root_mnt);
4822 mnt_notify_add(new_mnt);
4823 chroot_fs_refs(&root, &new);
4824 error = 0;
4825 out4:
4826 unlock_mount(old_mp);
4827 if (!error)
4828 mntput_no_expire(ex_parent);
4829 out3:
4830 path_put(&root);
4831 out2:
4832 path_put(&old);
4833 out1:
4834 path_put(&new);
4835 out0:
4836 return error;
4837 }
4838
recalc_flags(struct mount_kattr * kattr,struct mount * mnt)4839 static unsigned int recalc_flags(struct mount_kattr *kattr, struct mount *mnt)
4840 {
4841 unsigned int flags = mnt->mnt.mnt_flags;
4842
4843 /* flags to clear */
4844 flags &= ~kattr->attr_clr;
4845 /* flags to raise */
4846 flags |= kattr->attr_set;
4847
4848 return flags;
4849 }
4850
can_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4851 static int can_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4852 {
4853 struct vfsmount *m = &mnt->mnt;
4854 struct user_namespace *fs_userns = m->mnt_sb->s_user_ns;
4855
4856 if (!kattr->mnt_idmap)
4857 return 0;
4858
4859 /*
4860 * Creating an idmapped mount with the filesystem wide idmapping
4861 * doesn't make sense so block that. We don't allow mushy semantics.
4862 */
4863 if (kattr->mnt_userns == m->mnt_sb->s_user_ns)
4864 return -EINVAL;
4865
4866 /*
4867 * We only allow an mount to change it's idmapping if it has
4868 * never been accessible to userspace.
4869 */
4870 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE) && is_idmapped_mnt(m))
4871 return -EPERM;
4872
4873 /* The underlying filesystem doesn't support idmapped mounts yet. */
4874 if (!(m->mnt_sb->s_type->fs_flags & FS_ALLOW_IDMAP))
4875 return -EINVAL;
4876
4877 /* The filesystem has turned off idmapped mounts. */
4878 if (m->mnt_sb->s_iflags & SB_I_NOIDMAP)
4879 return -EINVAL;
4880
4881 /* We're not controlling the superblock. */
4882 if (!ns_capable(fs_userns, CAP_SYS_ADMIN))
4883 return -EPERM;
4884
4885 /* Mount has already been visible in the filesystem hierarchy. */
4886 if (!is_anon_ns(mnt->mnt_ns))
4887 return -EINVAL;
4888
4889 return 0;
4890 }
4891
4892 /**
4893 * mnt_allow_writers() - check whether the attribute change allows writers
4894 * @kattr: the new mount attributes
4895 * @mnt: the mount to which @kattr will be applied
4896 *
4897 * Check whether thew new mount attributes in @kattr allow concurrent writers.
4898 *
4899 * Return: true if writers need to be held, false if not
4900 */
mnt_allow_writers(const struct mount_kattr * kattr,const struct mount * mnt)4901 static inline bool mnt_allow_writers(const struct mount_kattr *kattr,
4902 const struct mount *mnt)
4903 {
4904 return (!(kattr->attr_set & MNT_READONLY) ||
4905 (mnt->mnt.mnt_flags & MNT_READONLY)) &&
4906 !kattr->mnt_idmap;
4907 }
4908
mount_setattr_prepare(struct mount_kattr * kattr,struct mount * mnt)4909 static int mount_setattr_prepare(struct mount_kattr *kattr, struct mount *mnt)
4910 {
4911 struct mount *m;
4912 int err;
4913
4914 for (m = mnt; m; m = next_mnt(m, mnt)) {
4915 if (!can_change_locked_flags(m, recalc_flags(kattr, m))) {
4916 err = -EPERM;
4917 break;
4918 }
4919
4920 err = can_idmap_mount(kattr, m);
4921 if (err)
4922 break;
4923
4924 if (!mnt_allow_writers(kattr, m)) {
4925 err = mnt_hold_writers(m);
4926 if (err)
4927 break;
4928 }
4929
4930 if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4931 return 0;
4932 }
4933
4934 if (err) {
4935 struct mount *p;
4936
4937 /*
4938 * If we had to call mnt_hold_writers() MNT_WRITE_HOLD will
4939 * be set in @mnt_flags. The loop unsets MNT_WRITE_HOLD for all
4940 * mounts and needs to take care to include the first mount.
4941 */
4942 for (p = mnt; p; p = next_mnt(p, mnt)) {
4943 /* If we had to hold writers unblock them. */
4944 if (p->mnt.mnt_flags & MNT_WRITE_HOLD)
4945 mnt_unhold_writers(p);
4946
4947 /*
4948 * We're done once the first mount we changed got
4949 * MNT_WRITE_HOLD unset.
4950 */
4951 if (p == m)
4952 break;
4953 }
4954 }
4955 return err;
4956 }
4957
do_idmap_mount(const struct mount_kattr * kattr,struct mount * mnt)4958 static void do_idmap_mount(const struct mount_kattr *kattr, struct mount *mnt)
4959 {
4960 struct mnt_idmap *old_idmap;
4961
4962 if (!kattr->mnt_idmap)
4963 return;
4964
4965 old_idmap = mnt_idmap(&mnt->mnt);
4966
4967 /* Pairs with smp_load_acquire() in mnt_idmap(). */
4968 smp_store_release(&mnt->mnt.mnt_idmap, mnt_idmap_get(kattr->mnt_idmap));
4969 mnt_idmap_put(old_idmap);
4970 }
4971
mount_setattr_commit(struct mount_kattr * kattr,struct mount * mnt)4972 static void mount_setattr_commit(struct mount_kattr *kattr, struct mount *mnt)
4973 {
4974 struct mount *m;
4975
4976 for (m = mnt; m; m = next_mnt(m, mnt)) {
4977 unsigned int flags;
4978
4979 do_idmap_mount(kattr, m);
4980 flags = recalc_flags(kattr, m);
4981 WRITE_ONCE(m->mnt.mnt_flags, flags);
4982
4983 /* If we had to hold writers unblock them. */
4984 if (m->mnt.mnt_flags & MNT_WRITE_HOLD)
4985 mnt_unhold_writers(m);
4986
4987 if (kattr->propagation)
4988 change_mnt_propagation(m, kattr->propagation);
4989 if (!(kattr->kflags & MOUNT_KATTR_RECURSE))
4990 break;
4991 }
4992 touch_mnt_namespace(mnt->mnt_ns);
4993 }
4994
do_mount_setattr(struct path * path,struct mount_kattr * kattr)4995 static int do_mount_setattr(struct path *path, struct mount_kattr *kattr)
4996 {
4997 struct mount *mnt = real_mount(path->mnt);
4998 int err = 0;
4999
5000 if (!path_mounted(path))
5001 return -EINVAL;
5002
5003 if (kattr->mnt_userns) {
5004 struct mnt_idmap *mnt_idmap;
5005
5006 mnt_idmap = alloc_mnt_idmap(kattr->mnt_userns);
5007 if (IS_ERR(mnt_idmap))
5008 return PTR_ERR(mnt_idmap);
5009 kattr->mnt_idmap = mnt_idmap;
5010 }
5011
5012 if (kattr->propagation) {
5013 /*
5014 * Only take namespace_lock() if we're actually changing
5015 * propagation.
5016 */
5017 namespace_lock();
5018 if (kattr->propagation == MS_SHARED) {
5019 err = invent_group_ids(mnt, kattr->kflags & MOUNT_KATTR_RECURSE);
5020 if (err) {
5021 namespace_unlock();
5022 return err;
5023 }
5024 }
5025 }
5026
5027 err = -EINVAL;
5028 lock_mount_hash();
5029
5030 /* Ensure that this isn't anything purely vfs internal. */
5031 if (!is_mounted(&mnt->mnt))
5032 goto out;
5033
5034 /*
5035 * If this is an attached mount make sure it's located in the callers
5036 * mount namespace. If it's not don't let the caller interact with it.
5037 *
5038 * If this mount doesn't have a parent it's most often simply a
5039 * detached mount with an anonymous mount namespace. IOW, something
5040 * that's simply not attached yet. But there are apparently also users
5041 * that do change mount properties on the rootfs itself. That obviously
5042 * neither has a parent nor is it a detached mount so we cannot
5043 * unconditionally check for detached mounts.
5044 */
5045 if ((mnt_has_parent(mnt) || !is_anon_ns(mnt->mnt_ns)) && !check_mnt(mnt))
5046 goto out;
5047
5048 /*
5049 * First, we get the mount tree in a shape where we can change mount
5050 * properties without failure. If we succeeded to do so we commit all
5051 * changes and if we failed we clean up.
5052 */
5053 err = mount_setattr_prepare(kattr, mnt);
5054 if (!err)
5055 mount_setattr_commit(kattr, mnt);
5056
5057 out:
5058 unlock_mount_hash();
5059
5060 if (kattr->propagation) {
5061 if (err)
5062 cleanup_group_ids(mnt, NULL);
5063 namespace_unlock();
5064 }
5065
5066 return err;
5067 }
5068
build_mount_idmapped(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)5069 static int build_mount_idmapped(const struct mount_attr *attr, size_t usize,
5070 struct mount_kattr *kattr)
5071 {
5072 struct ns_common *ns;
5073 struct user_namespace *mnt_userns;
5074
5075 if (!((attr->attr_set | attr->attr_clr) & MOUNT_ATTR_IDMAP))
5076 return 0;
5077
5078 if (attr->attr_clr & MOUNT_ATTR_IDMAP) {
5079 /*
5080 * We can only remove an idmapping if it's never been
5081 * exposed to userspace.
5082 */
5083 if (!(kattr->kflags & MOUNT_KATTR_IDMAP_REPLACE))
5084 return -EINVAL;
5085
5086 /*
5087 * Removal of idmappings is equivalent to setting
5088 * nop_mnt_idmap.
5089 */
5090 if (!(attr->attr_set & MOUNT_ATTR_IDMAP)) {
5091 kattr->mnt_idmap = &nop_mnt_idmap;
5092 return 0;
5093 }
5094 }
5095
5096 if (attr->userns_fd > INT_MAX)
5097 return -EINVAL;
5098
5099 CLASS(fd, f)(attr->userns_fd);
5100 if (fd_empty(f))
5101 return -EBADF;
5102
5103 if (!proc_ns_file(fd_file(f)))
5104 return -EINVAL;
5105
5106 ns = get_proc_ns(file_inode(fd_file(f)));
5107 if (ns->ops->type != CLONE_NEWUSER)
5108 return -EINVAL;
5109
5110 /*
5111 * The initial idmapping cannot be used to create an idmapped
5112 * mount. We use the initial idmapping as an indicator of a mount
5113 * that is not idmapped. It can simply be passed into helpers that
5114 * are aware of idmapped mounts as a convenient shortcut. A user
5115 * can just create a dedicated identity mapping to achieve the same
5116 * result.
5117 */
5118 mnt_userns = container_of(ns, struct user_namespace, ns);
5119 if (mnt_userns == &init_user_ns)
5120 return -EPERM;
5121
5122 /* We're not controlling the target namespace. */
5123 if (!ns_capable(mnt_userns, CAP_SYS_ADMIN))
5124 return -EPERM;
5125
5126 kattr->mnt_userns = get_user_ns(mnt_userns);
5127 return 0;
5128 }
5129
build_mount_kattr(const struct mount_attr * attr,size_t usize,struct mount_kattr * kattr)5130 static int build_mount_kattr(const struct mount_attr *attr, size_t usize,
5131 struct mount_kattr *kattr)
5132 {
5133 if (attr->propagation & ~MOUNT_SETATTR_PROPAGATION_FLAGS)
5134 return -EINVAL;
5135 if (hweight32(attr->propagation & MOUNT_SETATTR_PROPAGATION_FLAGS) > 1)
5136 return -EINVAL;
5137 kattr->propagation = attr->propagation;
5138
5139 if ((attr->attr_set | attr->attr_clr) & ~MOUNT_SETATTR_VALID_FLAGS)
5140 return -EINVAL;
5141
5142 kattr->attr_set = attr_flags_to_mnt_flags(attr->attr_set);
5143 kattr->attr_clr = attr_flags_to_mnt_flags(attr->attr_clr);
5144
5145 /*
5146 * Since the MOUNT_ATTR_<atime> values are an enum, not a bitmap,
5147 * users wanting to transition to a different atime setting cannot
5148 * simply specify the atime setting in @attr_set, but must also
5149 * specify MOUNT_ATTR__ATIME in the @attr_clr field.
5150 * So ensure that MOUNT_ATTR__ATIME can't be partially set in
5151 * @attr_clr and that @attr_set can't have any atime bits set if
5152 * MOUNT_ATTR__ATIME isn't set in @attr_clr.
5153 */
5154 if (attr->attr_clr & MOUNT_ATTR__ATIME) {
5155 if ((attr->attr_clr & MOUNT_ATTR__ATIME) != MOUNT_ATTR__ATIME)
5156 return -EINVAL;
5157
5158 /*
5159 * Clear all previous time settings as they are mutually
5160 * exclusive.
5161 */
5162 kattr->attr_clr |= MNT_RELATIME | MNT_NOATIME;
5163 switch (attr->attr_set & MOUNT_ATTR__ATIME) {
5164 case MOUNT_ATTR_RELATIME:
5165 kattr->attr_set |= MNT_RELATIME;
5166 break;
5167 case MOUNT_ATTR_NOATIME:
5168 kattr->attr_set |= MNT_NOATIME;
5169 break;
5170 case MOUNT_ATTR_STRICTATIME:
5171 break;
5172 default:
5173 return -EINVAL;
5174 }
5175 } else {
5176 if (attr->attr_set & MOUNT_ATTR__ATIME)
5177 return -EINVAL;
5178 }
5179
5180 return build_mount_idmapped(attr, usize, kattr);
5181 }
5182
finish_mount_kattr(struct mount_kattr * kattr)5183 static void finish_mount_kattr(struct mount_kattr *kattr)
5184 {
5185 if (kattr->mnt_userns) {
5186 put_user_ns(kattr->mnt_userns);
5187 kattr->mnt_userns = NULL;
5188 }
5189
5190 if (kattr->mnt_idmap)
5191 mnt_idmap_put(kattr->mnt_idmap);
5192 }
5193
wants_mount_setattr(struct mount_attr __user * uattr,size_t usize,struct mount_kattr * kattr)5194 static int wants_mount_setattr(struct mount_attr __user *uattr, size_t usize,
5195 struct mount_kattr *kattr)
5196 {
5197 int ret;
5198 struct mount_attr attr;
5199
5200 BUILD_BUG_ON(sizeof(struct mount_attr) != MOUNT_ATTR_SIZE_VER0);
5201
5202 if (unlikely(usize > PAGE_SIZE))
5203 return -E2BIG;
5204 if (unlikely(usize < MOUNT_ATTR_SIZE_VER0))
5205 return -EINVAL;
5206
5207 if (!may_mount())
5208 return -EPERM;
5209
5210 ret = copy_struct_from_user(&attr, sizeof(attr), uattr, usize);
5211 if (ret)
5212 return ret;
5213
5214 /* Don't bother walking through the mounts if this is a nop. */
5215 if (attr.attr_set == 0 &&
5216 attr.attr_clr == 0 &&
5217 attr.propagation == 0)
5218 return 0; /* Tell caller to not bother. */
5219
5220 ret = build_mount_kattr(&attr, usize, kattr);
5221 if (ret < 0)
5222 return ret;
5223
5224 return 1;
5225 }
5226
SYSCALL_DEFINE5(mount_setattr,int,dfd,const char __user *,path,unsigned int,flags,struct mount_attr __user *,uattr,size_t,usize)5227 SYSCALL_DEFINE5(mount_setattr, int, dfd, const char __user *, path,
5228 unsigned int, flags, struct mount_attr __user *, uattr,
5229 size_t, usize)
5230 {
5231 int err;
5232 struct path target;
5233 struct mount_kattr kattr;
5234 unsigned int lookup_flags = LOOKUP_AUTOMOUNT | LOOKUP_FOLLOW;
5235
5236 if (flags & ~(AT_EMPTY_PATH |
5237 AT_RECURSIVE |
5238 AT_SYMLINK_NOFOLLOW |
5239 AT_NO_AUTOMOUNT))
5240 return -EINVAL;
5241
5242 if (flags & AT_NO_AUTOMOUNT)
5243 lookup_flags &= ~LOOKUP_AUTOMOUNT;
5244 if (flags & AT_SYMLINK_NOFOLLOW)
5245 lookup_flags &= ~LOOKUP_FOLLOW;
5246 if (flags & AT_EMPTY_PATH)
5247 lookup_flags |= LOOKUP_EMPTY;
5248
5249 kattr = (struct mount_kattr) {
5250 .lookup_flags = lookup_flags,
5251 };
5252
5253 if (flags & AT_RECURSIVE)
5254 kattr.kflags |= MOUNT_KATTR_RECURSE;
5255
5256 err = wants_mount_setattr(uattr, usize, &kattr);
5257 if (err <= 0)
5258 return err;
5259
5260 err = user_path_at(dfd, path, kattr.lookup_flags, &target);
5261 if (!err) {
5262 err = do_mount_setattr(&target, &kattr);
5263 path_put(&target);
5264 }
5265 finish_mount_kattr(&kattr);
5266 return err;
5267 }
5268
SYSCALL_DEFINE5(open_tree_attr,int,dfd,const char __user *,filename,unsigned,flags,struct mount_attr __user *,uattr,size_t,usize)5269 SYSCALL_DEFINE5(open_tree_attr, int, dfd, const char __user *, filename,
5270 unsigned, flags, struct mount_attr __user *, uattr,
5271 size_t, usize)
5272 {
5273 struct file __free(fput) *file = NULL;
5274 int fd;
5275
5276 if (!uattr && usize)
5277 return -EINVAL;
5278
5279 file = vfs_open_tree(dfd, filename, flags);
5280 if (IS_ERR(file))
5281 return PTR_ERR(file);
5282
5283 if (uattr) {
5284 int ret;
5285 struct mount_kattr kattr = {};
5286
5287 kattr.kflags = MOUNT_KATTR_IDMAP_REPLACE;
5288 if (flags & AT_RECURSIVE)
5289 kattr.kflags |= MOUNT_KATTR_RECURSE;
5290
5291 ret = wants_mount_setattr(uattr, usize, &kattr);
5292 if (ret < 0)
5293 return ret;
5294
5295 if (ret) {
5296 ret = do_mount_setattr(&file->f_path, &kattr);
5297 if (ret)
5298 return ret;
5299
5300 finish_mount_kattr(&kattr);
5301 }
5302 }
5303
5304 fd = get_unused_fd_flags(flags & O_CLOEXEC);
5305 if (fd < 0)
5306 return fd;
5307
5308 fd_install(fd, no_free_ptr(file));
5309 return fd;
5310 }
5311
show_path(struct seq_file * m,struct dentry * root)5312 int show_path(struct seq_file *m, struct dentry *root)
5313 {
5314 if (root->d_sb->s_op->show_path)
5315 return root->d_sb->s_op->show_path(m, root);
5316
5317 seq_dentry(m, root, " \t\n\\");
5318 return 0;
5319 }
5320
lookup_mnt_in_ns(u64 id,struct mnt_namespace * ns)5321 static struct vfsmount *lookup_mnt_in_ns(u64 id, struct mnt_namespace *ns)
5322 {
5323 struct mount *mnt = mnt_find_id_at(ns, id);
5324
5325 if (!mnt || mnt->mnt_id_unique != id)
5326 return NULL;
5327
5328 return &mnt->mnt;
5329 }
5330
5331 struct kstatmount {
5332 struct statmount __user *buf;
5333 size_t bufsize;
5334 struct vfsmount *mnt;
5335 struct mnt_idmap *idmap;
5336 u64 mask;
5337 struct path root;
5338 struct seq_file seq;
5339
5340 /* Must be last --ends in a flexible-array member. */
5341 struct statmount sm;
5342 };
5343
mnt_to_attr_flags(struct vfsmount * mnt)5344 static u64 mnt_to_attr_flags(struct vfsmount *mnt)
5345 {
5346 unsigned int mnt_flags = READ_ONCE(mnt->mnt_flags);
5347 u64 attr_flags = 0;
5348
5349 if (mnt_flags & MNT_READONLY)
5350 attr_flags |= MOUNT_ATTR_RDONLY;
5351 if (mnt_flags & MNT_NOSUID)
5352 attr_flags |= MOUNT_ATTR_NOSUID;
5353 if (mnt_flags & MNT_NODEV)
5354 attr_flags |= MOUNT_ATTR_NODEV;
5355 if (mnt_flags & MNT_NOEXEC)
5356 attr_flags |= MOUNT_ATTR_NOEXEC;
5357 if (mnt_flags & MNT_NODIRATIME)
5358 attr_flags |= MOUNT_ATTR_NODIRATIME;
5359 if (mnt_flags & MNT_NOSYMFOLLOW)
5360 attr_flags |= MOUNT_ATTR_NOSYMFOLLOW;
5361
5362 if (mnt_flags & MNT_NOATIME)
5363 attr_flags |= MOUNT_ATTR_NOATIME;
5364 else if (mnt_flags & MNT_RELATIME)
5365 attr_flags |= MOUNT_ATTR_RELATIME;
5366 else
5367 attr_flags |= MOUNT_ATTR_STRICTATIME;
5368
5369 if (is_idmapped_mnt(mnt))
5370 attr_flags |= MOUNT_ATTR_IDMAP;
5371
5372 return attr_flags;
5373 }
5374
mnt_to_propagation_flags(struct mount * m)5375 static u64 mnt_to_propagation_flags(struct mount *m)
5376 {
5377 u64 propagation = 0;
5378
5379 if (IS_MNT_SHARED(m))
5380 propagation |= MS_SHARED;
5381 if (IS_MNT_SLAVE(m))
5382 propagation |= MS_SLAVE;
5383 if (IS_MNT_UNBINDABLE(m))
5384 propagation |= MS_UNBINDABLE;
5385 if (!propagation)
5386 propagation |= MS_PRIVATE;
5387
5388 return propagation;
5389 }
5390
statmount_sb_basic(struct kstatmount * s)5391 static void statmount_sb_basic(struct kstatmount *s)
5392 {
5393 struct super_block *sb = s->mnt->mnt_sb;
5394
5395 s->sm.mask |= STATMOUNT_SB_BASIC;
5396 s->sm.sb_dev_major = MAJOR(sb->s_dev);
5397 s->sm.sb_dev_minor = MINOR(sb->s_dev);
5398 s->sm.sb_magic = sb->s_magic;
5399 s->sm.sb_flags = sb->s_flags & (SB_RDONLY|SB_SYNCHRONOUS|SB_DIRSYNC|SB_LAZYTIME);
5400 }
5401
statmount_mnt_basic(struct kstatmount * s)5402 static void statmount_mnt_basic(struct kstatmount *s)
5403 {
5404 struct mount *m = real_mount(s->mnt);
5405
5406 s->sm.mask |= STATMOUNT_MNT_BASIC;
5407 s->sm.mnt_id = m->mnt_id_unique;
5408 s->sm.mnt_parent_id = m->mnt_parent->mnt_id_unique;
5409 s->sm.mnt_id_old = m->mnt_id;
5410 s->sm.mnt_parent_id_old = m->mnt_parent->mnt_id;
5411 s->sm.mnt_attr = mnt_to_attr_flags(&m->mnt);
5412 s->sm.mnt_propagation = mnt_to_propagation_flags(m);
5413 s->sm.mnt_peer_group = IS_MNT_SHARED(m) ? m->mnt_group_id : 0;
5414 s->sm.mnt_master = IS_MNT_SLAVE(m) ? m->mnt_master->mnt_group_id : 0;
5415 }
5416
statmount_propagate_from(struct kstatmount * s)5417 static void statmount_propagate_from(struct kstatmount *s)
5418 {
5419 struct mount *m = real_mount(s->mnt);
5420
5421 s->sm.mask |= STATMOUNT_PROPAGATE_FROM;
5422 if (IS_MNT_SLAVE(m))
5423 s->sm.propagate_from = get_dominating_id(m, ¤t->fs->root);
5424 }
5425
statmount_mnt_root(struct kstatmount * s,struct seq_file * seq)5426 static int statmount_mnt_root(struct kstatmount *s, struct seq_file *seq)
5427 {
5428 int ret;
5429 size_t start = seq->count;
5430
5431 ret = show_path(seq, s->mnt->mnt_root);
5432 if (ret)
5433 return ret;
5434
5435 if (unlikely(seq_has_overflowed(seq)))
5436 return -EAGAIN;
5437
5438 /*
5439 * Unescape the result. It would be better if supplied string was not
5440 * escaped in the first place, but that's a pretty invasive change.
5441 */
5442 seq->buf[seq->count] = '\0';
5443 seq->count = start;
5444 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5445 return 0;
5446 }
5447
statmount_mnt_point(struct kstatmount * s,struct seq_file * seq)5448 static int statmount_mnt_point(struct kstatmount *s, struct seq_file *seq)
5449 {
5450 struct vfsmount *mnt = s->mnt;
5451 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
5452 int err;
5453
5454 err = seq_path_root(seq, &mnt_path, &s->root, "");
5455 return err == SEQ_SKIP ? 0 : err;
5456 }
5457
statmount_fs_type(struct kstatmount * s,struct seq_file * seq)5458 static int statmount_fs_type(struct kstatmount *s, struct seq_file *seq)
5459 {
5460 struct super_block *sb = s->mnt->mnt_sb;
5461
5462 seq_puts(seq, sb->s_type->name);
5463 return 0;
5464 }
5465
statmount_fs_subtype(struct kstatmount * s,struct seq_file * seq)5466 static void statmount_fs_subtype(struct kstatmount *s, struct seq_file *seq)
5467 {
5468 struct super_block *sb = s->mnt->mnt_sb;
5469
5470 if (sb->s_subtype)
5471 seq_puts(seq, sb->s_subtype);
5472 }
5473
statmount_sb_source(struct kstatmount * s,struct seq_file * seq)5474 static int statmount_sb_source(struct kstatmount *s, struct seq_file *seq)
5475 {
5476 struct super_block *sb = s->mnt->mnt_sb;
5477 struct mount *r = real_mount(s->mnt);
5478
5479 if (sb->s_op->show_devname) {
5480 size_t start = seq->count;
5481 int ret;
5482
5483 ret = sb->s_op->show_devname(seq, s->mnt->mnt_root);
5484 if (ret)
5485 return ret;
5486
5487 if (unlikely(seq_has_overflowed(seq)))
5488 return -EAGAIN;
5489
5490 /* Unescape the result */
5491 seq->buf[seq->count] = '\0';
5492 seq->count = start;
5493 seq_commit(seq, string_unescape_inplace(seq->buf + start, UNESCAPE_OCTAL));
5494 } else if (r->mnt_devname) {
5495 seq_puts(seq, r->mnt_devname);
5496 }
5497 return 0;
5498 }
5499
statmount_mnt_ns_id(struct kstatmount * s,struct mnt_namespace * ns)5500 static void statmount_mnt_ns_id(struct kstatmount *s, struct mnt_namespace *ns)
5501 {
5502 s->sm.mask |= STATMOUNT_MNT_NS_ID;
5503 s->sm.mnt_ns_id = ns->seq;
5504 }
5505
statmount_mnt_opts(struct kstatmount * s,struct seq_file * seq)5506 static int statmount_mnt_opts(struct kstatmount *s, struct seq_file *seq)
5507 {
5508 struct vfsmount *mnt = s->mnt;
5509 struct super_block *sb = mnt->mnt_sb;
5510 size_t start = seq->count;
5511 int err;
5512
5513 err = security_sb_show_options(seq, sb);
5514 if (err)
5515 return err;
5516
5517 if (sb->s_op->show_options) {
5518 err = sb->s_op->show_options(seq, mnt->mnt_root);
5519 if (err)
5520 return err;
5521 }
5522
5523 if (unlikely(seq_has_overflowed(seq)))
5524 return -EAGAIN;
5525
5526 if (seq->count == start)
5527 return 0;
5528
5529 /* skip leading comma */
5530 memmove(seq->buf + start, seq->buf + start + 1,
5531 seq->count - start - 1);
5532 seq->count--;
5533
5534 return 0;
5535 }
5536
statmount_opt_process(struct seq_file * seq,size_t start)5537 static inline int statmount_opt_process(struct seq_file *seq, size_t start)
5538 {
5539 char *buf_end, *opt_end, *src, *dst;
5540 int count = 0;
5541
5542 if (unlikely(seq_has_overflowed(seq)))
5543 return -EAGAIN;
5544
5545 buf_end = seq->buf + seq->count;
5546 dst = seq->buf + start;
5547 src = dst + 1; /* skip initial comma */
5548
5549 if (src >= buf_end) {
5550 seq->count = start;
5551 return 0;
5552 }
5553
5554 *buf_end = '\0';
5555 for (; src < buf_end; src = opt_end + 1) {
5556 opt_end = strchrnul(src, ',');
5557 *opt_end = '\0';
5558 dst += string_unescape(src, dst, 0, UNESCAPE_OCTAL) + 1;
5559 if (WARN_ON_ONCE(++count == INT_MAX))
5560 return -EOVERFLOW;
5561 }
5562 seq->count = dst - 1 - seq->buf;
5563 return count;
5564 }
5565
statmount_opt_array(struct kstatmount * s,struct seq_file * seq)5566 static int statmount_opt_array(struct kstatmount *s, struct seq_file *seq)
5567 {
5568 struct vfsmount *mnt = s->mnt;
5569 struct super_block *sb = mnt->mnt_sb;
5570 size_t start = seq->count;
5571 int err;
5572
5573 if (!sb->s_op->show_options)
5574 return 0;
5575
5576 err = sb->s_op->show_options(seq, mnt->mnt_root);
5577 if (err)
5578 return err;
5579
5580 err = statmount_opt_process(seq, start);
5581 if (err < 0)
5582 return err;
5583
5584 s->sm.opt_num = err;
5585 return 0;
5586 }
5587
statmount_opt_sec_array(struct kstatmount * s,struct seq_file * seq)5588 static int statmount_opt_sec_array(struct kstatmount *s, struct seq_file *seq)
5589 {
5590 struct vfsmount *mnt = s->mnt;
5591 struct super_block *sb = mnt->mnt_sb;
5592 size_t start = seq->count;
5593 int err;
5594
5595 err = security_sb_show_options(seq, sb);
5596 if (err)
5597 return err;
5598
5599 err = statmount_opt_process(seq, start);
5600 if (err < 0)
5601 return err;
5602
5603 s->sm.opt_sec_num = err;
5604 return 0;
5605 }
5606
statmount_mnt_uidmap(struct kstatmount * s,struct seq_file * seq)5607 static inline int statmount_mnt_uidmap(struct kstatmount *s, struct seq_file *seq)
5608 {
5609 int ret;
5610
5611 ret = statmount_mnt_idmap(s->idmap, seq, true);
5612 if (ret < 0)
5613 return ret;
5614
5615 s->sm.mnt_uidmap_num = ret;
5616 /*
5617 * Always raise STATMOUNT_MNT_UIDMAP even if there are no valid
5618 * mappings. This allows userspace to distinguish between a
5619 * non-idmapped mount and an idmapped mount where none of the
5620 * individual mappings are valid in the caller's idmapping.
5621 */
5622 if (is_valid_mnt_idmap(s->idmap))
5623 s->sm.mask |= STATMOUNT_MNT_UIDMAP;
5624 return 0;
5625 }
5626
statmount_mnt_gidmap(struct kstatmount * s,struct seq_file * seq)5627 static inline int statmount_mnt_gidmap(struct kstatmount *s, struct seq_file *seq)
5628 {
5629 int ret;
5630
5631 ret = statmount_mnt_idmap(s->idmap, seq, false);
5632 if (ret < 0)
5633 return ret;
5634
5635 s->sm.mnt_gidmap_num = ret;
5636 /*
5637 * Always raise STATMOUNT_MNT_GIDMAP even if there are no valid
5638 * mappings. This allows userspace to distinguish between a
5639 * non-idmapped mount and an idmapped mount where none of the
5640 * individual mappings are valid in the caller's idmapping.
5641 */
5642 if (is_valid_mnt_idmap(s->idmap))
5643 s->sm.mask |= STATMOUNT_MNT_GIDMAP;
5644 return 0;
5645 }
5646
statmount_string(struct kstatmount * s,u64 flag)5647 static int statmount_string(struct kstatmount *s, u64 flag)
5648 {
5649 int ret = 0;
5650 size_t kbufsize;
5651 struct seq_file *seq = &s->seq;
5652 struct statmount *sm = &s->sm;
5653 u32 start, *offp;
5654
5655 /* Reserve an empty string at the beginning for any unset offsets */
5656 if (!seq->count)
5657 seq_putc(seq, 0);
5658
5659 start = seq->count;
5660
5661 switch (flag) {
5662 case STATMOUNT_FS_TYPE:
5663 offp = &sm->fs_type;
5664 ret = statmount_fs_type(s, seq);
5665 break;
5666 case STATMOUNT_MNT_ROOT:
5667 offp = &sm->mnt_root;
5668 ret = statmount_mnt_root(s, seq);
5669 break;
5670 case STATMOUNT_MNT_POINT:
5671 offp = &sm->mnt_point;
5672 ret = statmount_mnt_point(s, seq);
5673 break;
5674 case STATMOUNT_MNT_OPTS:
5675 offp = &sm->mnt_opts;
5676 ret = statmount_mnt_opts(s, seq);
5677 break;
5678 case STATMOUNT_OPT_ARRAY:
5679 offp = &sm->opt_array;
5680 ret = statmount_opt_array(s, seq);
5681 break;
5682 case STATMOUNT_OPT_SEC_ARRAY:
5683 offp = &sm->opt_sec_array;
5684 ret = statmount_opt_sec_array(s, seq);
5685 break;
5686 case STATMOUNT_FS_SUBTYPE:
5687 offp = &sm->fs_subtype;
5688 statmount_fs_subtype(s, seq);
5689 break;
5690 case STATMOUNT_SB_SOURCE:
5691 offp = &sm->sb_source;
5692 ret = statmount_sb_source(s, seq);
5693 break;
5694 case STATMOUNT_MNT_UIDMAP:
5695 sm->mnt_uidmap = start;
5696 ret = statmount_mnt_uidmap(s, seq);
5697 break;
5698 case STATMOUNT_MNT_GIDMAP:
5699 sm->mnt_gidmap = start;
5700 ret = statmount_mnt_gidmap(s, seq);
5701 break;
5702 default:
5703 WARN_ON_ONCE(true);
5704 return -EINVAL;
5705 }
5706
5707 /*
5708 * If nothing was emitted, return to avoid setting the flag
5709 * and terminating the buffer.
5710 */
5711 if (seq->count == start)
5712 return ret;
5713 if (unlikely(check_add_overflow(sizeof(*sm), seq->count, &kbufsize)))
5714 return -EOVERFLOW;
5715 if (kbufsize >= s->bufsize)
5716 return -EOVERFLOW;
5717
5718 /* signal a retry */
5719 if (unlikely(seq_has_overflowed(seq)))
5720 return -EAGAIN;
5721
5722 if (ret)
5723 return ret;
5724
5725 seq->buf[seq->count++] = '\0';
5726 sm->mask |= flag;
5727 *offp = start;
5728 return 0;
5729 }
5730
copy_statmount_to_user(struct kstatmount * s)5731 static int copy_statmount_to_user(struct kstatmount *s)
5732 {
5733 struct statmount *sm = &s->sm;
5734 struct seq_file *seq = &s->seq;
5735 char __user *str = ((char __user *)s->buf) + sizeof(*sm);
5736 size_t copysize = min_t(size_t, s->bufsize, sizeof(*sm));
5737
5738 if (seq->count && copy_to_user(str, seq->buf, seq->count))
5739 return -EFAULT;
5740
5741 /* Return the number of bytes copied to the buffer */
5742 sm->size = copysize + seq->count;
5743 if (copy_to_user(s->buf, sm, copysize))
5744 return -EFAULT;
5745
5746 return 0;
5747 }
5748
listmnt_next(struct mount * curr,bool reverse)5749 static struct mount *listmnt_next(struct mount *curr, bool reverse)
5750 {
5751 struct rb_node *node;
5752
5753 if (reverse)
5754 node = rb_prev(&curr->mnt_node);
5755 else
5756 node = rb_next(&curr->mnt_node);
5757
5758 return node_to_mount(node);
5759 }
5760
grab_requested_root(struct mnt_namespace * ns,struct path * root)5761 static int grab_requested_root(struct mnt_namespace *ns, struct path *root)
5762 {
5763 struct mount *first, *child;
5764
5765 rwsem_assert_held(&namespace_sem);
5766
5767 /* We're looking at our own ns, just use get_fs_root. */
5768 if (ns == current->nsproxy->mnt_ns) {
5769 get_fs_root(current->fs, root);
5770 return 0;
5771 }
5772
5773 /*
5774 * We have to find the first mount in our ns and use that, however it
5775 * may not exist, so handle that properly.
5776 */
5777 if (mnt_ns_empty(ns))
5778 return -ENOENT;
5779
5780 first = child = ns->root;
5781 for (;;) {
5782 child = listmnt_next(child, false);
5783 if (!child)
5784 return -ENOENT;
5785 if (child->mnt_parent == first)
5786 break;
5787 }
5788
5789 root->mnt = mntget(&child->mnt);
5790 root->dentry = dget(root->mnt->mnt_root);
5791 return 0;
5792 }
5793
5794 /* This must be updated whenever a new flag is added */
5795 #define STATMOUNT_SUPPORTED (STATMOUNT_SB_BASIC | \
5796 STATMOUNT_MNT_BASIC | \
5797 STATMOUNT_PROPAGATE_FROM | \
5798 STATMOUNT_MNT_ROOT | \
5799 STATMOUNT_MNT_POINT | \
5800 STATMOUNT_FS_TYPE | \
5801 STATMOUNT_MNT_NS_ID | \
5802 STATMOUNT_MNT_OPTS | \
5803 STATMOUNT_FS_SUBTYPE | \
5804 STATMOUNT_SB_SOURCE | \
5805 STATMOUNT_OPT_ARRAY | \
5806 STATMOUNT_OPT_SEC_ARRAY | \
5807 STATMOUNT_SUPPORTED_MASK)
5808
do_statmount(struct kstatmount * s,u64 mnt_id,u64 mnt_ns_id,struct mnt_namespace * ns)5809 static int do_statmount(struct kstatmount *s, u64 mnt_id, u64 mnt_ns_id,
5810 struct mnt_namespace *ns)
5811 {
5812 struct path root __free(path_put) = {};
5813 struct mount *m;
5814 int err;
5815
5816 /* Has the namespace already been emptied? */
5817 if (mnt_ns_id && mnt_ns_empty(ns))
5818 return -ENOENT;
5819
5820 s->mnt = lookup_mnt_in_ns(mnt_id, ns);
5821 if (!s->mnt)
5822 return -ENOENT;
5823
5824 err = grab_requested_root(ns, &root);
5825 if (err)
5826 return err;
5827
5828 /*
5829 * Don't trigger audit denials. We just want to determine what
5830 * mounts to show users.
5831 */
5832 m = real_mount(s->mnt);
5833 if (!is_path_reachable(m, m->mnt.mnt_root, &root) &&
5834 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
5835 return -EPERM;
5836
5837 err = security_sb_statfs(s->mnt->mnt_root);
5838 if (err)
5839 return err;
5840
5841 s->root = root;
5842 s->idmap = mnt_idmap(s->mnt);
5843 if (s->mask & STATMOUNT_SB_BASIC)
5844 statmount_sb_basic(s);
5845
5846 if (s->mask & STATMOUNT_MNT_BASIC)
5847 statmount_mnt_basic(s);
5848
5849 if (s->mask & STATMOUNT_PROPAGATE_FROM)
5850 statmount_propagate_from(s);
5851
5852 if (s->mask & STATMOUNT_FS_TYPE)
5853 err = statmount_string(s, STATMOUNT_FS_TYPE);
5854
5855 if (!err && s->mask & STATMOUNT_MNT_ROOT)
5856 err = statmount_string(s, STATMOUNT_MNT_ROOT);
5857
5858 if (!err && s->mask & STATMOUNT_MNT_POINT)
5859 err = statmount_string(s, STATMOUNT_MNT_POINT);
5860
5861 if (!err && s->mask & STATMOUNT_MNT_OPTS)
5862 err = statmount_string(s, STATMOUNT_MNT_OPTS);
5863
5864 if (!err && s->mask & STATMOUNT_OPT_ARRAY)
5865 err = statmount_string(s, STATMOUNT_OPT_ARRAY);
5866
5867 if (!err && s->mask & STATMOUNT_OPT_SEC_ARRAY)
5868 err = statmount_string(s, STATMOUNT_OPT_SEC_ARRAY);
5869
5870 if (!err && s->mask & STATMOUNT_FS_SUBTYPE)
5871 err = statmount_string(s, STATMOUNT_FS_SUBTYPE);
5872
5873 if (!err && s->mask & STATMOUNT_SB_SOURCE)
5874 err = statmount_string(s, STATMOUNT_SB_SOURCE);
5875
5876 if (!err && s->mask & STATMOUNT_MNT_UIDMAP)
5877 err = statmount_string(s, STATMOUNT_MNT_UIDMAP);
5878
5879 if (!err && s->mask & STATMOUNT_MNT_GIDMAP)
5880 err = statmount_string(s, STATMOUNT_MNT_GIDMAP);
5881
5882 if (!err && s->mask & STATMOUNT_MNT_NS_ID)
5883 statmount_mnt_ns_id(s, ns);
5884
5885 if (!err && s->mask & STATMOUNT_SUPPORTED_MASK) {
5886 s->sm.mask |= STATMOUNT_SUPPORTED_MASK;
5887 s->sm.supported_mask = STATMOUNT_SUPPORTED;
5888 }
5889
5890 if (err)
5891 return err;
5892
5893 /* Are there bits in the return mask not present in STATMOUNT_SUPPORTED? */
5894 WARN_ON_ONCE(~STATMOUNT_SUPPORTED & s->sm.mask);
5895
5896 return 0;
5897 }
5898
retry_statmount(const long ret,size_t * seq_size)5899 static inline bool retry_statmount(const long ret, size_t *seq_size)
5900 {
5901 if (likely(ret != -EAGAIN))
5902 return false;
5903 if (unlikely(check_mul_overflow(*seq_size, 2, seq_size)))
5904 return false;
5905 if (unlikely(*seq_size > MAX_RW_COUNT))
5906 return false;
5907 return true;
5908 }
5909
5910 #define STATMOUNT_STRING_REQ (STATMOUNT_MNT_ROOT | STATMOUNT_MNT_POINT | \
5911 STATMOUNT_FS_TYPE | STATMOUNT_MNT_OPTS | \
5912 STATMOUNT_FS_SUBTYPE | STATMOUNT_SB_SOURCE | \
5913 STATMOUNT_OPT_ARRAY | STATMOUNT_OPT_SEC_ARRAY | \
5914 STATMOUNT_MNT_UIDMAP | STATMOUNT_MNT_GIDMAP)
5915
prepare_kstatmount(struct kstatmount * ks,struct mnt_id_req * kreq,struct statmount __user * buf,size_t bufsize,size_t seq_size)5916 static int prepare_kstatmount(struct kstatmount *ks, struct mnt_id_req *kreq,
5917 struct statmount __user *buf, size_t bufsize,
5918 size_t seq_size)
5919 {
5920 if (!access_ok(buf, bufsize))
5921 return -EFAULT;
5922
5923 memset(ks, 0, sizeof(*ks));
5924 ks->mask = kreq->param;
5925 ks->buf = buf;
5926 ks->bufsize = bufsize;
5927
5928 if (ks->mask & STATMOUNT_STRING_REQ) {
5929 if (bufsize == sizeof(ks->sm))
5930 return -EOVERFLOW;
5931
5932 ks->seq.buf = kvmalloc(seq_size, GFP_KERNEL_ACCOUNT);
5933 if (!ks->seq.buf)
5934 return -ENOMEM;
5935
5936 ks->seq.size = seq_size;
5937 }
5938
5939 return 0;
5940 }
5941
copy_mnt_id_req(const struct mnt_id_req __user * req,struct mnt_id_req * kreq)5942 static int copy_mnt_id_req(const struct mnt_id_req __user *req,
5943 struct mnt_id_req *kreq)
5944 {
5945 int ret;
5946 size_t usize;
5947
5948 BUILD_BUG_ON(sizeof(struct mnt_id_req) != MNT_ID_REQ_SIZE_VER1);
5949
5950 ret = get_user(usize, &req->size);
5951 if (ret)
5952 return -EFAULT;
5953 if (unlikely(usize > PAGE_SIZE))
5954 return -E2BIG;
5955 if (unlikely(usize < MNT_ID_REQ_SIZE_VER0))
5956 return -EINVAL;
5957 memset(kreq, 0, sizeof(*kreq));
5958 ret = copy_struct_from_user(kreq, sizeof(*kreq), req, usize);
5959 if (ret)
5960 return ret;
5961 if (kreq->spare != 0)
5962 return -EINVAL;
5963 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
5964 if (kreq->mnt_id <= MNT_UNIQUE_ID_OFFSET)
5965 return -EINVAL;
5966 return 0;
5967 }
5968
5969 /*
5970 * If the user requested a specific mount namespace id, look that up and return
5971 * that, or if not simply grab a passive reference on our mount namespace and
5972 * return that.
5973 */
grab_requested_mnt_ns(const struct mnt_id_req * kreq)5974 static struct mnt_namespace *grab_requested_mnt_ns(const struct mnt_id_req *kreq)
5975 {
5976 struct mnt_namespace *mnt_ns;
5977
5978 if (kreq->mnt_ns_id && kreq->spare)
5979 return ERR_PTR(-EINVAL);
5980
5981 if (kreq->mnt_ns_id)
5982 return lookup_mnt_ns(kreq->mnt_ns_id);
5983
5984 if (kreq->spare) {
5985 struct ns_common *ns;
5986
5987 CLASS(fd, f)(kreq->spare);
5988 if (fd_empty(f))
5989 return ERR_PTR(-EBADF);
5990
5991 if (!proc_ns_file(fd_file(f)))
5992 return ERR_PTR(-EINVAL);
5993
5994 ns = get_proc_ns(file_inode(fd_file(f)));
5995 if (ns->ops->type != CLONE_NEWNS)
5996 return ERR_PTR(-EINVAL);
5997
5998 mnt_ns = to_mnt_ns(ns);
5999 } else {
6000 mnt_ns = current->nsproxy->mnt_ns;
6001 }
6002
6003 refcount_inc(&mnt_ns->passive);
6004 return mnt_ns;
6005 }
6006
SYSCALL_DEFINE4(statmount,const struct mnt_id_req __user *,req,struct statmount __user *,buf,size_t,bufsize,unsigned int,flags)6007 SYSCALL_DEFINE4(statmount, const struct mnt_id_req __user *, req,
6008 struct statmount __user *, buf, size_t, bufsize,
6009 unsigned int, flags)
6010 {
6011 struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
6012 struct kstatmount *ks __free(kfree) = NULL;
6013 struct mnt_id_req kreq;
6014 /* We currently support retrieval of 3 strings. */
6015 size_t seq_size = 3 * PATH_MAX;
6016 int ret;
6017
6018 if (flags)
6019 return -EINVAL;
6020
6021 ret = copy_mnt_id_req(req, &kreq);
6022 if (ret)
6023 return ret;
6024
6025 ns = grab_requested_mnt_ns(&kreq);
6026 if (!ns)
6027 return -ENOENT;
6028
6029 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
6030 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
6031 return -ENOENT;
6032
6033 ks = kmalloc(sizeof(*ks), GFP_KERNEL_ACCOUNT);
6034 if (!ks)
6035 return -ENOMEM;
6036
6037 retry:
6038 ret = prepare_kstatmount(ks, &kreq, buf, bufsize, seq_size);
6039 if (ret)
6040 return ret;
6041
6042 scoped_guard(rwsem_read, &namespace_sem)
6043 ret = do_statmount(ks, kreq.mnt_id, kreq.mnt_ns_id, ns);
6044
6045 if (!ret)
6046 ret = copy_statmount_to_user(ks);
6047 kvfree(ks->seq.buf);
6048 if (retry_statmount(ret, &seq_size))
6049 goto retry;
6050 return ret;
6051 }
6052
do_listmount(struct mnt_namespace * ns,u64 mnt_parent_id,u64 last_mnt_id,u64 * mnt_ids,size_t nr_mnt_ids,bool reverse)6053 static ssize_t do_listmount(struct mnt_namespace *ns, u64 mnt_parent_id,
6054 u64 last_mnt_id, u64 *mnt_ids, size_t nr_mnt_ids,
6055 bool reverse)
6056 {
6057 struct path root __free(path_put) = {};
6058 struct path orig;
6059 struct mount *r, *first;
6060 ssize_t ret;
6061
6062 rwsem_assert_held(&namespace_sem);
6063
6064 ret = grab_requested_root(ns, &root);
6065 if (ret)
6066 return ret;
6067
6068 if (mnt_parent_id == LSMT_ROOT) {
6069 orig = root;
6070 } else {
6071 orig.mnt = lookup_mnt_in_ns(mnt_parent_id, ns);
6072 if (!orig.mnt)
6073 return -ENOENT;
6074 orig.dentry = orig.mnt->mnt_root;
6075 }
6076
6077 /*
6078 * Don't trigger audit denials. We just want to determine what
6079 * mounts to show users.
6080 */
6081 if (!is_path_reachable(real_mount(orig.mnt), orig.dentry, &root) &&
6082 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
6083 return -EPERM;
6084
6085 ret = security_sb_statfs(orig.dentry);
6086 if (ret)
6087 return ret;
6088
6089 if (!last_mnt_id) {
6090 if (reverse)
6091 first = node_to_mount(ns->mnt_last_node);
6092 else
6093 first = node_to_mount(ns->mnt_first_node);
6094 } else {
6095 if (reverse)
6096 first = mnt_find_id_at_reverse(ns, last_mnt_id - 1);
6097 else
6098 first = mnt_find_id_at(ns, last_mnt_id + 1);
6099 }
6100
6101 for (ret = 0, r = first; r && nr_mnt_ids; r = listmnt_next(r, reverse)) {
6102 if (r->mnt_id_unique == mnt_parent_id)
6103 continue;
6104 if (!is_path_reachable(r, r->mnt.mnt_root, &orig))
6105 continue;
6106 *mnt_ids = r->mnt_id_unique;
6107 mnt_ids++;
6108 nr_mnt_ids--;
6109 ret++;
6110 }
6111 return ret;
6112 }
6113
SYSCALL_DEFINE4(listmount,const struct mnt_id_req __user *,req,u64 __user *,mnt_ids,size_t,nr_mnt_ids,unsigned int,flags)6114 SYSCALL_DEFINE4(listmount, const struct mnt_id_req __user *, req,
6115 u64 __user *, mnt_ids, size_t, nr_mnt_ids, unsigned int, flags)
6116 {
6117 u64 *kmnt_ids __free(kvfree) = NULL;
6118 const size_t maxcount = 1000000;
6119 struct mnt_namespace *ns __free(mnt_ns_release) = NULL;
6120 struct mnt_id_req kreq;
6121 u64 last_mnt_id;
6122 ssize_t ret;
6123
6124 if (flags & ~LISTMOUNT_REVERSE)
6125 return -EINVAL;
6126
6127 /*
6128 * If the mount namespace really has more than 1 million mounts the
6129 * caller must iterate over the mount namespace (and reconsider their
6130 * system design...).
6131 */
6132 if (unlikely(nr_mnt_ids > maxcount))
6133 return -EOVERFLOW;
6134
6135 if (!access_ok(mnt_ids, nr_mnt_ids * sizeof(*mnt_ids)))
6136 return -EFAULT;
6137
6138 ret = copy_mnt_id_req(req, &kreq);
6139 if (ret)
6140 return ret;
6141
6142 last_mnt_id = kreq.param;
6143 /* The first valid unique mount id is MNT_UNIQUE_ID_OFFSET + 1. */
6144 if (last_mnt_id != 0 && last_mnt_id <= MNT_UNIQUE_ID_OFFSET)
6145 return -EINVAL;
6146
6147 kmnt_ids = kvmalloc_array(nr_mnt_ids, sizeof(*kmnt_ids),
6148 GFP_KERNEL_ACCOUNT);
6149 if (!kmnt_ids)
6150 return -ENOMEM;
6151
6152 ns = grab_requested_mnt_ns(&kreq);
6153 if (!ns)
6154 return -ENOENT;
6155
6156 if (kreq.mnt_ns_id && (ns != current->nsproxy->mnt_ns) &&
6157 !ns_capable_noaudit(ns->user_ns, CAP_SYS_ADMIN))
6158 return -ENOENT;
6159
6160 scoped_guard(rwsem_read, &namespace_sem)
6161 ret = do_listmount(ns, kreq.mnt_id, last_mnt_id, kmnt_ids,
6162 nr_mnt_ids, (flags & LISTMOUNT_REVERSE));
6163 if (ret <= 0)
6164 return ret;
6165
6166 if (copy_to_user(mnt_ids, kmnt_ids, ret * sizeof(*mnt_ids)))
6167 return -EFAULT;
6168
6169 return ret;
6170 }
6171
init_mount_tree(void)6172 static void __init init_mount_tree(void)
6173 {
6174 struct vfsmount *mnt;
6175 struct mount *m;
6176 struct mnt_namespace *ns;
6177 struct path root;
6178
6179 mnt = vfs_kern_mount(&rootfs_fs_type, 0, "rootfs", NULL);
6180 if (IS_ERR(mnt))
6181 panic("Can't create rootfs");
6182
6183 ns = alloc_mnt_ns(&init_user_ns, false);
6184 if (IS_ERR(ns))
6185 panic("Can't allocate initial namespace");
6186 m = real_mount(mnt);
6187 ns->root = m;
6188 ns->nr_mounts = 1;
6189 mnt_add_to_ns(ns, m);
6190 init_task.nsproxy->mnt_ns = ns;
6191 get_mnt_ns(ns);
6192
6193 root.mnt = mnt;
6194 root.dentry = mnt->mnt_root;
6195 mnt->mnt_flags |= MNT_LOCKED;
6196
6197 set_fs_pwd(current->fs, &root);
6198 set_fs_root(current->fs, &root);
6199
6200 mnt_ns_tree_add(ns);
6201 }
6202
mnt_init(void)6203 void __init mnt_init(void)
6204 {
6205 int err;
6206
6207 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
6208 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
6209
6210 mount_hashtable = alloc_large_system_hash("Mount-cache",
6211 sizeof(struct hlist_head),
6212 mhash_entries, 19,
6213 HASH_ZERO,
6214 &m_hash_shift, &m_hash_mask, 0, 0);
6215 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
6216 sizeof(struct hlist_head),
6217 mphash_entries, 19,
6218 HASH_ZERO,
6219 &mp_hash_shift, &mp_hash_mask, 0, 0);
6220
6221 if (!mount_hashtable || !mountpoint_hashtable)
6222 panic("Failed to allocate mount hash table\n");
6223
6224 kernfs_init();
6225
6226 err = sysfs_init();
6227 if (err)
6228 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
6229 __func__, err);
6230 fs_kobj = kobject_create_and_add("fs", NULL);
6231 if (!fs_kobj)
6232 printk(KERN_WARNING "%s: kobj create error\n", __func__);
6233 shmem_init();
6234 init_rootfs();
6235 init_mount_tree();
6236 }
6237
put_mnt_ns(struct mnt_namespace * ns)6238 void put_mnt_ns(struct mnt_namespace *ns)
6239 {
6240 if (!refcount_dec_and_test(&ns->ns.count))
6241 return;
6242 drop_collected_mounts(&ns->root->mnt);
6243 free_mnt_ns(ns);
6244 }
6245
kern_mount(struct file_system_type * type)6246 struct vfsmount *kern_mount(struct file_system_type *type)
6247 {
6248 struct vfsmount *mnt;
6249 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
6250 if (!IS_ERR(mnt)) {
6251 /*
6252 * it is a longterm mount, don't release mnt until
6253 * we unmount before file sys is unregistered
6254 */
6255 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
6256 }
6257 return mnt;
6258 }
6259 EXPORT_SYMBOL_GPL(kern_mount);
6260
kern_unmount(struct vfsmount * mnt)6261 void kern_unmount(struct vfsmount *mnt)
6262 {
6263 /* release long term mount so mount point can be released */
6264 if (!IS_ERR(mnt)) {
6265 mnt_make_shortterm(mnt);
6266 synchronize_rcu(); /* yecchhh... */
6267 mntput(mnt);
6268 }
6269 }
6270 EXPORT_SYMBOL(kern_unmount);
6271
kern_unmount_array(struct vfsmount * mnt[],unsigned int num)6272 void kern_unmount_array(struct vfsmount *mnt[], unsigned int num)
6273 {
6274 unsigned int i;
6275
6276 for (i = 0; i < num; i++)
6277 mnt_make_shortterm(mnt[i]);
6278 synchronize_rcu_expedited();
6279 for (i = 0; i < num; i++)
6280 mntput(mnt[i]);
6281 }
6282 EXPORT_SYMBOL(kern_unmount_array);
6283
our_mnt(struct vfsmount * mnt)6284 bool our_mnt(struct vfsmount *mnt)
6285 {
6286 return check_mnt(real_mount(mnt));
6287 }
6288
current_chrooted(void)6289 bool current_chrooted(void)
6290 {
6291 /* Does the current process have a non-standard root */
6292 struct path ns_root;
6293 struct path fs_root;
6294 bool chrooted;
6295
6296 /* Find the namespace root */
6297 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt;
6298 ns_root.dentry = ns_root.mnt->mnt_root;
6299 path_get(&ns_root);
6300 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
6301 ;
6302
6303 get_fs_root(current->fs, &fs_root);
6304
6305 chrooted = !path_equal(&fs_root, &ns_root);
6306
6307 path_put(&fs_root);
6308 path_put(&ns_root);
6309
6310 return chrooted;
6311 }
6312
mnt_already_visible(struct mnt_namespace * ns,const struct super_block * sb,int * new_mnt_flags)6313 static bool mnt_already_visible(struct mnt_namespace *ns,
6314 const struct super_block *sb,
6315 int *new_mnt_flags)
6316 {
6317 int new_flags = *new_mnt_flags;
6318 struct mount *mnt, *n;
6319 bool visible = false;
6320
6321 down_read(&namespace_sem);
6322 rbtree_postorder_for_each_entry_safe(mnt, n, &ns->mounts, mnt_node) {
6323 struct mount *child;
6324 int mnt_flags;
6325
6326 if (mnt->mnt.mnt_sb->s_type != sb->s_type)
6327 continue;
6328
6329 /* This mount is not fully visible if it's root directory
6330 * is not the root directory of the filesystem.
6331 */
6332 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
6333 continue;
6334
6335 /* A local view of the mount flags */
6336 mnt_flags = mnt->mnt.mnt_flags;
6337
6338 /* Don't miss readonly hidden in the superblock flags */
6339 if (sb_rdonly(mnt->mnt.mnt_sb))
6340 mnt_flags |= MNT_LOCK_READONLY;
6341
6342 /* Verify the mount flags are equal to or more permissive
6343 * than the proposed new mount.
6344 */
6345 if ((mnt_flags & MNT_LOCK_READONLY) &&
6346 !(new_flags & MNT_READONLY))
6347 continue;
6348 if ((mnt_flags & MNT_LOCK_ATIME) &&
6349 ((mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
6350 continue;
6351
6352 /* This mount is not fully visible if there are any
6353 * locked child mounts that cover anything except for
6354 * empty directories.
6355 */
6356 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
6357 struct inode *inode = child->mnt_mountpoint->d_inode;
6358 /* Only worry about locked mounts */
6359 if (!(child->mnt.mnt_flags & MNT_LOCKED))
6360 continue;
6361 /* Is the directory permanently empty? */
6362 if (!is_empty_dir_inode(inode))
6363 goto next;
6364 }
6365 /* Preserve the locked attributes */
6366 *new_mnt_flags |= mnt_flags & (MNT_LOCK_READONLY | \
6367 MNT_LOCK_ATIME);
6368 visible = true;
6369 goto found;
6370 next: ;
6371 }
6372 found:
6373 up_read(&namespace_sem);
6374 return visible;
6375 }
6376
mount_too_revealing(const struct super_block * sb,int * new_mnt_flags)6377 static bool mount_too_revealing(const struct super_block *sb, int *new_mnt_flags)
6378 {
6379 const unsigned long required_iflags = SB_I_NOEXEC | SB_I_NODEV;
6380 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
6381 unsigned long s_iflags;
6382
6383 if (ns->user_ns == &init_user_ns)
6384 return false;
6385
6386 /* Can this filesystem be too revealing? */
6387 s_iflags = sb->s_iflags;
6388 if (!(s_iflags & SB_I_USERNS_VISIBLE))
6389 return false;
6390
6391 if ((s_iflags & required_iflags) != required_iflags) {
6392 WARN_ONCE(1, "Expected s_iflags to contain 0x%lx\n",
6393 required_iflags);
6394 return true;
6395 }
6396
6397 return !mnt_already_visible(ns, sb, new_mnt_flags);
6398 }
6399
mnt_may_suid(struct vfsmount * mnt)6400 bool mnt_may_suid(struct vfsmount *mnt)
6401 {
6402 /*
6403 * Foreign mounts (accessed via fchdir or through /proc
6404 * symlinks) are always treated as if they are nosuid. This
6405 * prevents namespaces from trusting potentially unsafe
6406 * suid/sgid bits, file caps, or security labels that originate
6407 * in other namespaces.
6408 */
6409 return !(mnt->mnt_flags & MNT_NOSUID) && check_mnt(real_mount(mnt)) &&
6410 current_in_userns(mnt->mnt_sb->s_user_ns);
6411 }
6412
mntns_get(struct task_struct * task)6413 static struct ns_common *mntns_get(struct task_struct *task)
6414 {
6415 struct ns_common *ns = NULL;
6416 struct nsproxy *nsproxy;
6417
6418 task_lock(task);
6419 nsproxy = task->nsproxy;
6420 if (nsproxy) {
6421 ns = &nsproxy->mnt_ns->ns;
6422 get_mnt_ns(to_mnt_ns(ns));
6423 }
6424 task_unlock(task);
6425
6426 return ns;
6427 }
6428
mntns_put(struct ns_common * ns)6429 static void mntns_put(struct ns_common *ns)
6430 {
6431 put_mnt_ns(to_mnt_ns(ns));
6432 }
6433
mntns_install(struct nsset * nsset,struct ns_common * ns)6434 static int mntns_install(struct nsset *nsset, struct ns_common *ns)
6435 {
6436 struct nsproxy *nsproxy = nsset->nsproxy;
6437 struct fs_struct *fs = nsset->fs;
6438 struct mnt_namespace *mnt_ns = to_mnt_ns(ns), *old_mnt_ns;
6439 struct user_namespace *user_ns = nsset->cred->user_ns;
6440 struct path root;
6441 int err;
6442
6443 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
6444 !ns_capable(user_ns, CAP_SYS_CHROOT) ||
6445 !ns_capable(user_ns, CAP_SYS_ADMIN))
6446 return -EPERM;
6447
6448 if (is_anon_ns(mnt_ns))
6449 return -EINVAL;
6450
6451 if (fs->users != 1)
6452 return -EINVAL;
6453
6454 get_mnt_ns(mnt_ns);
6455 old_mnt_ns = nsproxy->mnt_ns;
6456 nsproxy->mnt_ns = mnt_ns;
6457
6458 /* Find the root */
6459 err = vfs_path_lookup(mnt_ns->root->mnt.mnt_root, &mnt_ns->root->mnt,
6460 "/", LOOKUP_DOWN, &root);
6461 if (err) {
6462 /* revert to old namespace */
6463 nsproxy->mnt_ns = old_mnt_ns;
6464 put_mnt_ns(mnt_ns);
6465 return err;
6466 }
6467
6468 put_mnt_ns(old_mnt_ns);
6469
6470 /* Update the pwd and root */
6471 set_fs_pwd(fs, &root);
6472 set_fs_root(fs, &root);
6473
6474 path_put(&root);
6475 return 0;
6476 }
6477
mntns_owner(struct ns_common * ns)6478 static struct user_namespace *mntns_owner(struct ns_common *ns)
6479 {
6480 return to_mnt_ns(ns)->user_ns;
6481 }
6482
6483 const struct proc_ns_operations mntns_operations = {
6484 .name = "mnt",
6485 .type = CLONE_NEWNS,
6486 .get = mntns_get,
6487 .put = mntns_put,
6488 .install = mntns_install,
6489 .owner = mntns_owner,
6490 };
6491
6492 #ifdef CONFIG_SYSCTL
6493 static const struct ctl_table fs_namespace_sysctls[] = {
6494 {
6495 .procname = "mount-max",
6496 .data = &sysctl_mount_max,
6497 .maxlen = sizeof(unsigned int),
6498 .mode = 0644,
6499 .proc_handler = proc_dointvec_minmax,
6500 .extra1 = SYSCTL_ONE,
6501 },
6502 };
6503
init_fs_namespace_sysctls(void)6504 static int __init init_fs_namespace_sysctls(void)
6505 {
6506 register_sysctl_init("fs", fs_namespace_sysctls);
6507 return 0;
6508 }
6509 fs_initcall(init_fs_namespace_sysctls);
6510
6511 #endif /* CONFIG_SYSCTL */
6512