1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * Some corrections by tytso.
10 */
11
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
14 */
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
16 */
17
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/wordpart.h>
22 #include <linux/fs.h>
23 #include <linux/filelock.h>
24 #include <linux/namei.h>
25 #include <linux/pagemap.h>
26 #include <linux/sched/mm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/personality.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
31 #include <linux/mount.h>
32 #include <linux/audit.h>
33 #include <linux/capability.h>
34 #include <linux/file.h>
35 #include <linux/fcntl.h>
36 #include <linux/device_cgroup.h>
37 #include <linux/fs_struct.h>
38 #include <linux/posix_acl.h>
39 #include <linux/hash.h>
40 #include <linux/bitops.h>
41 #include <linux/init_task.h>
42 #include <linux/uaccess.h>
43
44 #include "internal.h"
45 #include "mount.h"
46
47 /* [Feb-1997 T. Schoebel-Theuer]
48 * Fundamental changes in the pathname lookup mechanisms (namei)
49 * were necessary because of omirr. The reason is that omirr needs
50 * to know the _real_ pathname, not the user-supplied one, in case
51 * of symlinks (and also when transname replacements occur).
52 *
53 * The new code replaces the old recursive symlink resolution with
54 * an iterative one (in case of non-nested symlink chains). It does
55 * this with calls to <fs>_follow_link().
56 * As a side effect, dir_namei(), _namei() and follow_link() are now
57 * replaced with a single function lookup_dentry() that can handle all
58 * the special cases of the former code.
59 *
60 * With the new dcache, the pathname is stored at each inode, at least as
61 * long as the refcount of the inode is positive. As a side effect, the
62 * size of the dcache depends on the inode cache and thus is dynamic.
63 *
64 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
65 * resolution to correspond with current state of the code.
66 *
67 * Note that the symlink resolution is not *completely* iterative.
68 * There is still a significant amount of tail- and mid- recursion in
69 * the algorithm. Also, note that <fs>_readlink() is not used in
70 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
71 * may return different results than <fs>_follow_link(). Many virtual
72 * filesystems (including /proc) exhibit this behavior.
73 */
74
75 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
76 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
77 * and the name already exists in form of a symlink, try to create the new
78 * name indicated by the symlink. The old code always complained that the
79 * name already exists, due to not following the symlink even if its target
80 * is nonexistent. The new semantics affects also mknod() and link() when
81 * the name is a symlink pointing to a non-existent name.
82 *
83 * I don't know which semantics is the right one, since I have no access
84 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
85 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
86 * "old" one. Personally, I think the new semantics is much more logical.
87 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
88 * file does succeed in both HP-UX and SunOs, but not in Solaris
89 * and in the old Linux semantics.
90 */
91
92 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
93 * semantics. See the comments in "open_namei" and "do_link" below.
94 *
95 * [10-Sep-98 Alan Modra] Another symlink change.
96 */
97
98 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
99 * inside the path - always follow.
100 * in the last component in creation/removal/renaming - never follow.
101 * if LOOKUP_FOLLOW passed - follow.
102 * if the pathname has trailing slashes - follow.
103 * otherwise - don't follow.
104 * (applied in that order).
105 *
106 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
107 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
108 * During the 2.4 we need to fix the userland stuff depending on it -
109 * hopefully we will be able to get rid of that wart in 2.5. So far only
110 * XEmacs seems to be relying on it...
111 */
112 /*
113 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
114 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
115 * any extra contention...
116 */
117
118 /* In order to reduce some races, while at the same time doing additional
119 * checking and hopefully speeding things up, we copy filenames to the
120 * kernel data space before using them..
121 *
122 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
123 * PATH_MAX includes the nul terminator --RR.
124 */
125
126 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
127
initname(struct filename * name,const char __user * uptr)128 static inline void initname(struct filename *name, const char __user *uptr)
129 {
130 name->uptr = uptr;
131 name->aname = NULL;
132 atomic_set(&name->refcnt, 1);
133 }
134
135 struct filename *
getname_flags(const char __user * filename,int flags)136 getname_flags(const char __user *filename, int flags)
137 {
138 struct filename *result;
139 char *kname;
140 int len;
141
142 result = audit_reusename(filename);
143 if (result)
144 return result;
145
146 result = __getname();
147 if (unlikely(!result))
148 return ERR_PTR(-ENOMEM);
149
150 /*
151 * First, try to embed the struct filename inside the names_cache
152 * allocation
153 */
154 kname = (char *)result->iname;
155 result->name = kname;
156
157 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
158 /*
159 * Handle both empty path and copy failure in one go.
160 */
161 if (unlikely(len <= 0)) {
162 if (unlikely(len < 0)) {
163 __putname(result);
164 return ERR_PTR(len);
165 }
166
167 /* The empty path is special. */
168 if (!(flags & LOOKUP_EMPTY)) {
169 __putname(result);
170 return ERR_PTR(-ENOENT);
171 }
172 }
173
174 /*
175 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
176 * separate struct filename so we can dedicate the entire
177 * names_cache allocation for the pathname, and re-do the copy from
178 * userland.
179 */
180 if (unlikely(len == EMBEDDED_NAME_MAX)) {
181 const size_t size = offsetof(struct filename, iname[1]);
182 kname = (char *)result;
183
184 /*
185 * size is chosen that way we to guarantee that
186 * result->iname[0] is within the same object and that
187 * kname can't be equal to result->iname, no matter what.
188 */
189 result = kzalloc(size, GFP_KERNEL);
190 if (unlikely(!result)) {
191 __putname(kname);
192 return ERR_PTR(-ENOMEM);
193 }
194 result->name = kname;
195 len = strncpy_from_user(kname, filename, PATH_MAX);
196 if (unlikely(len < 0)) {
197 __putname(kname);
198 kfree(result);
199 return ERR_PTR(len);
200 }
201 /* The empty path is special. */
202 if (unlikely(!len) && !(flags & LOOKUP_EMPTY)) {
203 __putname(kname);
204 kfree(result);
205 return ERR_PTR(-ENOENT);
206 }
207 if (unlikely(len == PATH_MAX)) {
208 __putname(kname);
209 kfree(result);
210 return ERR_PTR(-ENAMETOOLONG);
211 }
212 }
213 initname(result, filename);
214 audit_getname(result);
215 return result;
216 }
217
getname_uflags(const char __user * filename,int uflags)218 struct filename *getname_uflags(const char __user *filename, int uflags)
219 {
220 int flags = (uflags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
221
222 return getname_flags(filename, flags);
223 }
224
__getname_maybe_null(const char __user * pathname)225 struct filename *__getname_maybe_null(const char __user *pathname)
226 {
227 struct filename *name;
228 char c;
229
230 /* try to save on allocations; loss on um, though */
231 if (get_user(c, pathname))
232 return ERR_PTR(-EFAULT);
233 if (!c)
234 return NULL;
235
236 name = getname_flags(pathname, LOOKUP_EMPTY);
237 if (!IS_ERR(name) && !(name->name[0])) {
238 putname(name);
239 name = NULL;
240 }
241 return name;
242 }
243
getname_kernel(const char * filename)244 struct filename *getname_kernel(const char * filename)
245 {
246 struct filename *result;
247 int len = strlen(filename) + 1;
248
249 result = __getname();
250 if (unlikely(!result))
251 return ERR_PTR(-ENOMEM);
252
253 if (len <= EMBEDDED_NAME_MAX) {
254 result->name = (char *)result->iname;
255 } else if (len <= PATH_MAX) {
256 const size_t size = offsetof(struct filename, iname[1]);
257 struct filename *tmp;
258
259 tmp = kmalloc(size, GFP_KERNEL);
260 if (unlikely(!tmp)) {
261 __putname(result);
262 return ERR_PTR(-ENOMEM);
263 }
264 tmp->name = (char *)result;
265 result = tmp;
266 } else {
267 __putname(result);
268 return ERR_PTR(-ENAMETOOLONG);
269 }
270 memcpy((char *)result->name, filename, len);
271 initname(result, NULL);
272 audit_getname(result);
273 return result;
274 }
275 EXPORT_SYMBOL(getname_kernel);
276
putname(struct filename * name)277 void putname(struct filename *name)
278 {
279 int refcnt;
280
281 if (IS_ERR_OR_NULL(name))
282 return;
283
284 refcnt = atomic_read(&name->refcnt);
285 if (refcnt != 1) {
286 if (WARN_ON_ONCE(!refcnt))
287 return;
288
289 if (!atomic_dec_and_test(&name->refcnt))
290 return;
291 }
292
293 if (name->name != name->iname) {
294 __putname(name->name);
295 kfree(name);
296 } else
297 __putname(name);
298 }
299 EXPORT_SYMBOL(putname);
300
301 /**
302 * check_acl - perform ACL permission checking
303 * @idmap: idmap of the mount the inode was found from
304 * @inode: inode to check permissions on
305 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
306 *
307 * This function performs the ACL permission checking. Since this function
308 * retrieve POSIX acls it needs to know whether it is called from a blocking or
309 * non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
310 *
311 * If the inode has been found through an idmapped mount the idmap of
312 * the vfsmount must be passed through @idmap. This function will then take
313 * care to map the inode according to @idmap before checking permissions.
314 * On non-idmapped mounts or if permission checking is to be performed on the
315 * raw inode simply pass @nop_mnt_idmap.
316 */
check_acl(struct mnt_idmap * idmap,struct inode * inode,int mask)317 static int check_acl(struct mnt_idmap *idmap,
318 struct inode *inode, int mask)
319 {
320 #ifdef CONFIG_FS_POSIX_ACL
321 struct posix_acl *acl;
322
323 if (mask & MAY_NOT_BLOCK) {
324 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
325 if (!acl)
326 return -EAGAIN;
327 /* no ->get_inode_acl() calls in RCU mode... */
328 if (is_uncached_acl(acl))
329 return -ECHILD;
330 return posix_acl_permission(idmap, inode, acl, mask);
331 }
332
333 acl = get_inode_acl(inode, ACL_TYPE_ACCESS);
334 if (IS_ERR(acl))
335 return PTR_ERR(acl);
336 if (acl) {
337 int error = posix_acl_permission(idmap, inode, acl, mask);
338 posix_acl_release(acl);
339 return error;
340 }
341 #endif
342
343 return -EAGAIN;
344 }
345
346 /*
347 * Very quick optimistic "we know we have no ACL's" check.
348 *
349 * Note that this is purely for ACL_TYPE_ACCESS, and purely
350 * for the "we have cached that there are no ACLs" case.
351 *
352 * If this returns true, we know there are no ACLs. But if
353 * it returns false, we might still not have ACLs (it could
354 * be the is_uncached_acl() case).
355 */
no_acl_inode(struct inode * inode)356 static inline bool no_acl_inode(struct inode *inode)
357 {
358 #ifdef CONFIG_FS_POSIX_ACL
359 return likely(!READ_ONCE(inode->i_acl));
360 #else
361 return true;
362 #endif
363 }
364
365 /**
366 * acl_permission_check - perform basic UNIX permission checking
367 * @idmap: idmap of the mount the inode was found from
368 * @inode: inode to check permissions on
369 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
370 *
371 * This function performs the basic UNIX permission checking. Since this
372 * function may retrieve POSIX acls it needs to know whether it is called from a
373 * blocking or non-blocking context and thus cares about the MAY_NOT_BLOCK bit.
374 *
375 * If the inode has been found through an idmapped mount the idmap of
376 * the vfsmount must be passed through @idmap. This function will then take
377 * care to map the inode according to @idmap before checking permissions.
378 * On non-idmapped mounts or if permission checking is to be performed on the
379 * raw inode simply pass @nop_mnt_idmap.
380 */
acl_permission_check(struct mnt_idmap * idmap,struct inode * inode,int mask)381 static int acl_permission_check(struct mnt_idmap *idmap,
382 struct inode *inode, int mask)
383 {
384 unsigned int mode = inode->i_mode;
385 vfsuid_t vfsuid;
386
387 /*
388 * Common cheap case: everybody has the requested
389 * rights, and there are no ACLs to check. No need
390 * to do any owner/group checks in that case.
391 *
392 * - 'mask&7' is the requested permission bit set
393 * - multiplying by 0111 spreads them out to all of ugo
394 * - '& ~mode' looks for missing inode permission bits
395 * - the '!' is for "no missing permissions"
396 *
397 * After that, we just need to check that there are no
398 * ACL's on the inode - do the 'IS_POSIXACL()' check last
399 * because it will dereference the ->i_sb pointer and we
400 * want to avoid that if at all possible.
401 */
402 if (!((mask & 7) * 0111 & ~mode)) {
403 if (no_acl_inode(inode))
404 return 0;
405 if (!IS_POSIXACL(inode))
406 return 0;
407 }
408
409 /* Are we the owner? If so, ACL's don't matter */
410 vfsuid = i_uid_into_vfsuid(idmap, inode);
411 if (likely(vfsuid_eq_kuid(vfsuid, current_fsuid()))) {
412 mask &= 7;
413 mode >>= 6;
414 return (mask & ~mode) ? -EACCES : 0;
415 }
416
417 /* Do we have ACL's? */
418 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
419 int error = check_acl(idmap, inode, mask);
420 if (error != -EAGAIN)
421 return error;
422 }
423
424 /* Only RWX matters for group/other mode bits */
425 mask &= 7;
426
427 /*
428 * Are the group permissions different from
429 * the other permissions in the bits we care
430 * about? Need to check group ownership if so.
431 */
432 if (mask & (mode ^ (mode >> 3))) {
433 vfsgid_t vfsgid = i_gid_into_vfsgid(idmap, inode);
434 if (vfsgid_in_group_p(vfsgid))
435 mode >>= 3;
436 }
437
438 /* Bits in 'mode' clear that we require? */
439 return (mask & ~mode) ? -EACCES : 0;
440 }
441
442 /**
443 * generic_permission - check for access rights on a Posix-like filesystem
444 * @idmap: idmap of the mount the inode was found from
445 * @inode: inode to check access rights for
446 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC,
447 * %MAY_NOT_BLOCK ...)
448 *
449 * Used to check for read/write/execute permissions on a file.
450 * We use "fsuid" for this, letting us set arbitrary permissions
451 * for filesystem access without changing the "normal" uids which
452 * are used for other things.
453 *
454 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
455 * request cannot be satisfied (eg. requires blocking or too much complexity).
456 * It would then be called again in ref-walk mode.
457 *
458 * If the inode has been found through an idmapped mount the idmap of
459 * the vfsmount must be passed through @idmap. This function will then take
460 * care to map the inode according to @idmap before checking permissions.
461 * On non-idmapped mounts or if permission checking is to be performed on the
462 * raw inode simply pass @nop_mnt_idmap.
463 */
generic_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)464 int generic_permission(struct mnt_idmap *idmap, struct inode *inode,
465 int mask)
466 {
467 int ret;
468
469 /*
470 * Do the basic permission checks.
471 */
472 ret = acl_permission_check(idmap, inode, mask);
473 if (ret != -EACCES)
474 return ret;
475
476 if (S_ISDIR(inode->i_mode)) {
477 /* DACs are overridable for directories */
478 if (!(mask & MAY_WRITE))
479 if (capable_wrt_inode_uidgid(idmap, inode,
480 CAP_DAC_READ_SEARCH))
481 return 0;
482 if (capable_wrt_inode_uidgid(idmap, inode,
483 CAP_DAC_OVERRIDE))
484 return 0;
485 return -EACCES;
486 }
487
488 /*
489 * Searching includes executable on directories, else just read.
490 */
491 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
492 if (mask == MAY_READ)
493 if (capable_wrt_inode_uidgid(idmap, inode,
494 CAP_DAC_READ_SEARCH))
495 return 0;
496 /*
497 * Read/write DACs are always overridable.
498 * Executable DACs are overridable when there is
499 * at least one exec bit set.
500 */
501 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
502 if (capable_wrt_inode_uidgid(idmap, inode,
503 CAP_DAC_OVERRIDE))
504 return 0;
505
506 return -EACCES;
507 }
508 EXPORT_SYMBOL(generic_permission);
509
510 /**
511 * do_inode_permission - UNIX permission checking
512 * @idmap: idmap of the mount the inode was found from
513 * @inode: inode to check permissions on
514 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC ...)
515 *
516 * We _really_ want to just do "generic_permission()" without
517 * even looking at the inode->i_op values. So we keep a cache
518 * flag in inode->i_opflags, that says "this has not special
519 * permission function, use the fast case".
520 */
do_inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)521 static inline int do_inode_permission(struct mnt_idmap *idmap,
522 struct inode *inode, int mask)
523 {
524 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
525 if (likely(inode->i_op->permission))
526 return inode->i_op->permission(idmap, inode, mask);
527
528 /* This gets set once for the inode lifetime */
529 spin_lock(&inode->i_lock);
530 inode->i_opflags |= IOP_FASTPERM;
531 spin_unlock(&inode->i_lock);
532 }
533 return generic_permission(idmap, inode, mask);
534 }
535
536 /**
537 * sb_permission - Check superblock-level permissions
538 * @sb: Superblock of inode to check permission on
539 * @inode: Inode to check permission on
540 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
541 *
542 * Separate out file-system wide checks from inode-specific permission checks.
543 */
sb_permission(struct super_block * sb,struct inode * inode,int mask)544 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
545 {
546 if (unlikely(mask & MAY_WRITE)) {
547 umode_t mode = inode->i_mode;
548
549 /* Nobody gets write access to a read-only fs. */
550 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
551 return -EROFS;
552 }
553 return 0;
554 }
555
556 /**
557 * inode_permission - Check for access rights to a given inode
558 * @idmap: idmap of the mount the inode was found from
559 * @inode: Inode to check permission on
560 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
561 *
562 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
563 * this, letting us set arbitrary permissions for filesystem access without
564 * changing the "normal" UIDs which are used for other things.
565 *
566 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
567 */
inode_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)568 int inode_permission(struct mnt_idmap *idmap,
569 struct inode *inode, int mask)
570 {
571 int retval;
572
573 retval = sb_permission(inode->i_sb, inode, mask);
574 if (retval)
575 return retval;
576
577 if (unlikely(mask & MAY_WRITE)) {
578 /*
579 * Nobody gets write access to an immutable file.
580 */
581 if (IS_IMMUTABLE(inode))
582 return -EPERM;
583
584 /*
585 * Updating mtime will likely cause i_uid and i_gid to be
586 * written back improperly if their true value is unknown
587 * to the vfs.
588 */
589 if (HAS_UNMAPPED_ID(idmap, inode))
590 return -EACCES;
591 }
592
593 retval = do_inode_permission(idmap, inode, mask);
594 if (retval)
595 return retval;
596
597 retval = devcgroup_inode_permission(inode, mask);
598 if (retval)
599 return retval;
600
601 return security_inode_permission(inode, mask);
602 }
603 EXPORT_SYMBOL(inode_permission);
604
605 /**
606 * path_get - get a reference to a path
607 * @path: path to get the reference to
608 *
609 * Given a path increment the reference count to the dentry and the vfsmount.
610 */
path_get(const struct path * path)611 void path_get(const struct path *path)
612 {
613 mntget(path->mnt);
614 dget(path->dentry);
615 }
616 EXPORT_SYMBOL(path_get);
617
618 /**
619 * path_put - put a reference to a path
620 * @path: path to put the reference to
621 *
622 * Given a path decrement the reference count to the dentry and the vfsmount.
623 */
path_put(const struct path * path)624 void path_put(const struct path *path)
625 {
626 dput(path->dentry);
627 mntput(path->mnt);
628 }
629 EXPORT_SYMBOL(path_put);
630
631 #define EMBEDDED_LEVELS 2
632 struct nameidata {
633 struct path path;
634 struct qstr last;
635 struct path root;
636 struct inode *inode; /* path.dentry.d_inode */
637 unsigned int flags, state;
638 unsigned seq, next_seq, m_seq, r_seq;
639 int last_type;
640 unsigned depth;
641 int total_link_count;
642 struct saved {
643 struct path link;
644 struct delayed_call done;
645 const char *name;
646 unsigned seq;
647 } *stack, internal[EMBEDDED_LEVELS];
648 struct filename *name;
649 const char *pathname;
650 struct nameidata *saved;
651 unsigned root_seq;
652 int dfd;
653 vfsuid_t dir_vfsuid;
654 umode_t dir_mode;
655 } __randomize_layout;
656
657 #define ND_ROOT_PRESET 1
658 #define ND_ROOT_GRABBED 2
659 #define ND_JUMPED 4
660
__set_nameidata(struct nameidata * p,int dfd,struct filename * name)661 static void __set_nameidata(struct nameidata *p, int dfd, struct filename *name)
662 {
663 struct nameidata *old = current->nameidata;
664 p->stack = p->internal;
665 p->depth = 0;
666 p->dfd = dfd;
667 p->name = name;
668 p->pathname = likely(name) ? name->name : "";
669 p->path.mnt = NULL;
670 p->path.dentry = NULL;
671 p->total_link_count = old ? old->total_link_count : 0;
672 p->saved = old;
673 current->nameidata = p;
674 }
675
set_nameidata(struct nameidata * p,int dfd,struct filename * name,const struct path * root)676 static inline void set_nameidata(struct nameidata *p, int dfd, struct filename *name,
677 const struct path *root)
678 {
679 __set_nameidata(p, dfd, name);
680 p->state = 0;
681 if (unlikely(root)) {
682 p->state = ND_ROOT_PRESET;
683 p->root = *root;
684 }
685 }
686
restore_nameidata(void)687 static void restore_nameidata(void)
688 {
689 struct nameidata *now = current->nameidata, *old = now->saved;
690
691 current->nameidata = old;
692 if (old)
693 old->total_link_count = now->total_link_count;
694 if (now->stack != now->internal)
695 kfree(now->stack);
696 }
697
nd_alloc_stack(struct nameidata * nd)698 static bool nd_alloc_stack(struct nameidata *nd)
699 {
700 struct saved *p;
701
702 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
703 nd->flags & LOOKUP_RCU ? GFP_ATOMIC : GFP_KERNEL);
704 if (unlikely(!p))
705 return false;
706 memcpy(p, nd->internal, sizeof(nd->internal));
707 nd->stack = p;
708 return true;
709 }
710
711 /**
712 * path_connected - Verify that a dentry is below mnt.mnt_root
713 * @mnt: The mountpoint to check.
714 * @dentry: The dentry to check.
715 *
716 * Rename can sometimes move a file or directory outside of a bind
717 * mount, path_connected allows those cases to be detected.
718 */
path_connected(struct vfsmount * mnt,struct dentry * dentry)719 static bool path_connected(struct vfsmount *mnt, struct dentry *dentry)
720 {
721 struct super_block *sb = mnt->mnt_sb;
722
723 /* Bind mounts can have disconnected paths */
724 if (mnt->mnt_root == sb->s_root)
725 return true;
726
727 return is_subdir(dentry, mnt->mnt_root);
728 }
729
drop_links(struct nameidata * nd)730 static void drop_links(struct nameidata *nd)
731 {
732 int i = nd->depth;
733 while (i--) {
734 struct saved *last = nd->stack + i;
735 do_delayed_call(&last->done);
736 clear_delayed_call(&last->done);
737 }
738 }
739
leave_rcu(struct nameidata * nd)740 static void leave_rcu(struct nameidata *nd)
741 {
742 nd->flags &= ~LOOKUP_RCU;
743 nd->seq = nd->next_seq = 0;
744 rcu_read_unlock();
745 }
746
terminate_walk(struct nameidata * nd)747 static void terminate_walk(struct nameidata *nd)
748 {
749 drop_links(nd);
750 if (!(nd->flags & LOOKUP_RCU)) {
751 int i;
752 path_put(&nd->path);
753 for (i = 0; i < nd->depth; i++)
754 path_put(&nd->stack[i].link);
755 if (nd->state & ND_ROOT_GRABBED) {
756 path_put(&nd->root);
757 nd->state &= ~ND_ROOT_GRABBED;
758 }
759 } else {
760 leave_rcu(nd);
761 }
762 nd->depth = 0;
763 nd->path.mnt = NULL;
764 nd->path.dentry = NULL;
765 }
766
767 /* path_put is needed afterwards regardless of success or failure */
__legitimize_path(struct path * path,unsigned seq,unsigned mseq)768 static bool __legitimize_path(struct path *path, unsigned seq, unsigned mseq)
769 {
770 int res = __legitimize_mnt(path->mnt, mseq);
771 if (unlikely(res)) {
772 if (res > 0)
773 path->mnt = NULL;
774 path->dentry = NULL;
775 return false;
776 }
777 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
778 path->dentry = NULL;
779 return false;
780 }
781 return !read_seqcount_retry(&path->dentry->d_seq, seq);
782 }
783
legitimize_path(struct nameidata * nd,struct path * path,unsigned seq)784 static inline bool legitimize_path(struct nameidata *nd,
785 struct path *path, unsigned seq)
786 {
787 return __legitimize_path(path, seq, nd->m_seq);
788 }
789
legitimize_links(struct nameidata * nd)790 static bool legitimize_links(struct nameidata *nd)
791 {
792 int i;
793 if (unlikely(nd->flags & LOOKUP_CACHED)) {
794 drop_links(nd);
795 nd->depth = 0;
796 return false;
797 }
798 for (i = 0; i < nd->depth; i++) {
799 struct saved *last = nd->stack + i;
800 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
801 drop_links(nd);
802 nd->depth = i + 1;
803 return false;
804 }
805 }
806 return true;
807 }
808
legitimize_root(struct nameidata * nd)809 static bool legitimize_root(struct nameidata *nd)
810 {
811 /* Nothing to do if nd->root is zero or is managed by the VFS user. */
812 if (!nd->root.mnt || (nd->state & ND_ROOT_PRESET))
813 return true;
814 nd->state |= ND_ROOT_GRABBED;
815 return legitimize_path(nd, &nd->root, nd->root_seq);
816 }
817
818 /*
819 * Path walking has 2 modes, rcu-walk and ref-walk (see
820 * Documentation/filesystems/path-lookup.txt). In situations when we can't
821 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
822 * normal reference counts on dentries and vfsmounts to transition to ref-walk
823 * mode. Refcounts are grabbed at the last known good point before rcu-walk
824 * got stuck, so ref-walk may continue from there. If this is not successful
825 * (eg. a seqcount has changed), then failure is returned and it's up to caller
826 * to restart the path walk from the beginning in ref-walk mode.
827 */
828
829 /**
830 * try_to_unlazy - try to switch to ref-walk mode.
831 * @nd: nameidata pathwalk data
832 * Returns: true on success, false on failure
833 *
834 * try_to_unlazy attempts to legitimize the current nd->path and nd->root
835 * for ref-walk mode.
836 * Must be called from rcu-walk context.
837 * Nothing should touch nameidata between try_to_unlazy() failure and
838 * terminate_walk().
839 */
try_to_unlazy(struct nameidata * nd)840 static bool try_to_unlazy(struct nameidata *nd)
841 {
842 struct dentry *parent = nd->path.dentry;
843
844 BUG_ON(!(nd->flags & LOOKUP_RCU));
845
846 if (unlikely(!legitimize_links(nd)))
847 goto out1;
848 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
849 goto out;
850 if (unlikely(!legitimize_root(nd)))
851 goto out;
852 leave_rcu(nd);
853 BUG_ON(nd->inode != parent->d_inode);
854 return true;
855
856 out1:
857 nd->path.mnt = NULL;
858 nd->path.dentry = NULL;
859 out:
860 leave_rcu(nd);
861 return false;
862 }
863
864 /**
865 * try_to_unlazy_next - try to switch to ref-walk mode.
866 * @nd: nameidata pathwalk data
867 * @dentry: next dentry to step into
868 * Returns: true on success, false on failure
869 *
870 * Similar to try_to_unlazy(), but here we have the next dentry already
871 * picked by rcu-walk and want to legitimize that in addition to the current
872 * nd->path and nd->root for ref-walk mode. Must be called from rcu-walk context.
873 * Nothing should touch nameidata between try_to_unlazy_next() failure and
874 * terminate_walk().
875 */
try_to_unlazy_next(struct nameidata * nd,struct dentry * dentry)876 static bool try_to_unlazy_next(struct nameidata *nd, struct dentry *dentry)
877 {
878 int res;
879 BUG_ON(!(nd->flags & LOOKUP_RCU));
880
881 if (unlikely(!legitimize_links(nd)))
882 goto out2;
883 res = __legitimize_mnt(nd->path.mnt, nd->m_seq);
884 if (unlikely(res)) {
885 if (res > 0)
886 goto out2;
887 goto out1;
888 }
889 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
890 goto out1;
891
892 /*
893 * We need to move both the parent and the dentry from the RCU domain
894 * to be properly refcounted. And the sequence number in the dentry
895 * validates *both* dentry counters, since we checked the sequence
896 * number of the parent after we got the child sequence number. So we
897 * know the parent must still be valid if the child sequence number is
898 */
899 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
900 goto out;
901 if (read_seqcount_retry(&dentry->d_seq, nd->next_seq))
902 goto out_dput;
903 /*
904 * Sequence counts matched. Now make sure that the root is
905 * still valid and get it if required.
906 */
907 if (unlikely(!legitimize_root(nd)))
908 goto out_dput;
909 leave_rcu(nd);
910 return true;
911
912 out2:
913 nd->path.mnt = NULL;
914 out1:
915 nd->path.dentry = NULL;
916 out:
917 leave_rcu(nd);
918 return false;
919 out_dput:
920 leave_rcu(nd);
921 dput(dentry);
922 return false;
923 }
924
d_revalidate(struct inode * dir,const struct qstr * name,struct dentry * dentry,unsigned int flags)925 static inline int d_revalidate(struct inode *dir, const struct qstr *name,
926 struct dentry *dentry, unsigned int flags)
927 {
928 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
929 return dentry->d_op->d_revalidate(dir, name, dentry, flags);
930 else
931 return 1;
932 }
933
934 /**
935 * complete_walk - successful completion of path walk
936 * @nd: pointer nameidata
937 *
938 * If we had been in RCU mode, drop out of it and legitimize nd->path.
939 * Revalidate the final result, unless we'd already done that during
940 * the path walk or the filesystem doesn't ask for it. Return 0 on
941 * success, -error on failure. In case of failure caller does not
942 * need to drop nd->path.
943 */
complete_walk(struct nameidata * nd)944 static int complete_walk(struct nameidata *nd)
945 {
946 struct dentry *dentry = nd->path.dentry;
947 int status;
948
949 if (nd->flags & LOOKUP_RCU) {
950 /*
951 * We don't want to zero nd->root for scoped-lookups or
952 * externally-managed nd->root.
953 */
954 if (!(nd->state & ND_ROOT_PRESET))
955 if (!(nd->flags & LOOKUP_IS_SCOPED))
956 nd->root.mnt = NULL;
957 nd->flags &= ~LOOKUP_CACHED;
958 if (!try_to_unlazy(nd))
959 return -ECHILD;
960 }
961
962 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
963 /*
964 * While the guarantee of LOOKUP_IS_SCOPED is (roughly) "don't
965 * ever step outside the root during lookup" and should already
966 * be guaranteed by the rest of namei, we want to avoid a namei
967 * BUG resulting in userspace being given a path that was not
968 * scoped within the root at some point during the lookup.
969 *
970 * So, do a final sanity-check to make sure that in the
971 * worst-case scenario (a complete bypass of LOOKUP_IS_SCOPED)
972 * we won't silently return an fd completely outside of the
973 * requested root to userspace.
974 *
975 * Userspace could move the path outside the root after this
976 * check, but as discussed elsewhere this is not a concern (the
977 * resolved file was inside the root at some point).
978 */
979 if (!path_is_under(&nd->path, &nd->root))
980 return -EXDEV;
981 }
982
983 if (likely(!(nd->state & ND_JUMPED)))
984 return 0;
985
986 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
987 return 0;
988
989 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
990 if (status > 0)
991 return 0;
992
993 if (!status)
994 status = -ESTALE;
995
996 return status;
997 }
998
set_root(struct nameidata * nd)999 static int set_root(struct nameidata *nd)
1000 {
1001 struct fs_struct *fs = current->fs;
1002
1003 /*
1004 * Jumping to the real root in a scoped-lookup is a BUG in namei, but we
1005 * still have to ensure it doesn't happen because it will cause a breakout
1006 * from the dirfd.
1007 */
1008 if (WARN_ON(nd->flags & LOOKUP_IS_SCOPED))
1009 return -ENOTRECOVERABLE;
1010
1011 if (nd->flags & LOOKUP_RCU) {
1012 unsigned seq;
1013
1014 do {
1015 seq = read_seqcount_begin(&fs->seq);
1016 nd->root = fs->root;
1017 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
1018 } while (read_seqcount_retry(&fs->seq, seq));
1019 } else {
1020 get_fs_root(fs, &nd->root);
1021 nd->state |= ND_ROOT_GRABBED;
1022 }
1023 return 0;
1024 }
1025
nd_jump_root(struct nameidata * nd)1026 static int nd_jump_root(struct nameidata *nd)
1027 {
1028 if (unlikely(nd->flags & LOOKUP_BENEATH))
1029 return -EXDEV;
1030 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1031 /* Absolute path arguments to path_init() are allowed. */
1032 if (nd->path.mnt != NULL && nd->path.mnt != nd->root.mnt)
1033 return -EXDEV;
1034 }
1035 if (!nd->root.mnt) {
1036 int error = set_root(nd);
1037 if (error)
1038 return error;
1039 }
1040 if (nd->flags & LOOKUP_RCU) {
1041 struct dentry *d;
1042 nd->path = nd->root;
1043 d = nd->path.dentry;
1044 nd->inode = d->d_inode;
1045 nd->seq = nd->root_seq;
1046 if (read_seqcount_retry(&d->d_seq, nd->seq))
1047 return -ECHILD;
1048 } else {
1049 path_put(&nd->path);
1050 nd->path = nd->root;
1051 path_get(&nd->path);
1052 nd->inode = nd->path.dentry->d_inode;
1053 }
1054 nd->state |= ND_JUMPED;
1055 return 0;
1056 }
1057
1058 /*
1059 * Helper to directly jump to a known parsed path from ->get_link,
1060 * caller must have taken a reference to path beforehand.
1061 */
nd_jump_link(const struct path * path)1062 int nd_jump_link(const struct path *path)
1063 {
1064 int error = -ELOOP;
1065 struct nameidata *nd = current->nameidata;
1066
1067 if (unlikely(nd->flags & LOOKUP_NO_MAGICLINKS))
1068 goto err;
1069
1070 error = -EXDEV;
1071 if (unlikely(nd->flags & LOOKUP_NO_XDEV)) {
1072 if (nd->path.mnt != path->mnt)
1073 goto err;
1074 }
1075 /* Not currently safe for scoped-lookups. */
1076 if (unlikely(nd->flags & LOOKUP_IS_SCOPED))
1077 goto err;
1078
1079 path_put(&nd->path);
1080 nd->path = *path;
1081 nd->inode = nd->path.dentry->d_inode;
1082 nd->state |= ND_JUMPED;
1083 return 0;
1084
1085 err:
1086 path_put(path);
1087 return error;
1088 }
1089
put_link(struct nameidata * nd)1090 static inline void put_link(struct nameidata *nd)
1091 {
1092 struct saved *last = nd->stack + --nd->depth;
1093 do_delayed_call(&last->done);
1094 if (!(nd->flags & LOOKUP_RCU))
1095 path_put(&last->link);
1096 }
1097
1098 static int sysctl_protected_symlinks __read_mostly;
1099 static int sysctl_protected_hardlinks __read_mostly;
1100 static int sysctl_protected_fifos __read_mostly;
1101 static int sysctl_protected_regular __read_mostly;
1102
1103 #ifdef CONFIG_SYSCTL
1104 static const struct ctl_table namei_sysctls[] = {
1105 {
1106 .procname = "protected_symlinks",
1107 .data = &sysctl_protected_symlinks,
1108 .maxlen = sizeof(int),
1109 .mode = 0644,
1110 .proc_handler = proc_dointvec_minmax,
1111 .extra1 = SYSCTL_ZERO,
1112 .extra2 = SYSCTL_ONE,
1113 },
1114 {
1115 .procname = "protected_hardlinks",
1116 .data = &sysctl_protected_hardlinks,
1117 .maxlen = sizeof(int),
1118 .mode = 0644,
1119 .proc_handler = proc_dointvec_minmax,
1120 .extra1 = SYSCTL_ZERO,
1121 .extra2 = SYSCTL_ONE,
1122 },
1123 {
1124 .procname = "protected_fifos",
1125 .data = &sysctl_protected_fifos,
1126 .maxlen = sizeof(int),
1127 .mode = 0644,
1128 .proc_handler = proc_dointvec_minmax,
1129 .extra1 = SYSCTL_ZERO,
1130 .extra2 = SYSCTL_TWO,
1131 },
1132 {
1133 .procname = "protected_regular",
1134 .data = &sysctl_protected_regular,
1135 .maxlen = sizeof(int),
1136 .mode = 0644,
1137 .proc_handler = proc_dointvec_minmax,
1138 .extra1 = SYSCTL_ZERO,
1139 .extra2 = SYSCTL_TWO,
1140 },
1141 };
1142
init_fs_namei_sysctls(void)1143 static int __init init_fs_namei_sysctls(void)
1144 {
1145 register_sysctl_init("fs", namei_sysctls);
1146 return 0;
1147 }
1148 fs_initcall(init_fs_namei_sysctls);
1149
1150 #endif /* CONFIG_SYSCTL */
1151
1152 /**
1153 * may_follow_link - Check symlink following for unsafe situations
1154 * @nd: nameidata pathwalk data
1155 * @inode: Used for idmapping.
1156 *
1157 * In the case of the sysctl_protected_symlinks sysctl being enabled,
1158 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
1159 * in a sticky world-writable directory. This is to protect privileged
1160 * processes from failing races against path names that may change out
1161 * from under them by way of other users creating malicious symlinks.
1162 * It will permit symlinks to be followed only when outside a sticky
1163 * world-writable directory, or when the uid of the symlink and follower
1164 * match, or when the directory owner matches the symlink's owner.
1165 *
1166 * Returns 0 if following the symlink is allowed, -ve on error.
1167 */
may_follow_link(struct nameidata * nd,const struct inode * inode)1168 static inline int may_follow_link(struct nameidata *nd, const struct inode *inode)
1169 {
1170 struct mnt_idmap *idmap;
1171 vfsuid_t vfsuid;
1172
1173 if (!sysctl_protected_symlinks)
1174 return 0;
1175
1176 idmap = mnt_idmap(nd->path.mnt);
1177 vfsuid = i_uid_into_vfsuid(idmap, inode);
1178 /* Allowed if owner and follower match. */
1179 if (vfsuid_eq_kuid(vfsuid, current_fsuid()))
1180 return 0;
1181
1182 /* Allowed if parent directory not sticky and world-writable. */
1183 if ((nd->dir_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
1184 return 0;
1185
1186 /* Allowed if parent directory and link owner match. */
1187 if (vfsuid_valid(nd->dir_vfsuid) && vfsuid_eq(nd->dir_vfsuid, vfsuid))
1188 return 0;
1189
1190 if (nd->flags & LOOKUP_RCU)
1191 return -ECHILD;
1192
1193 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
1194 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
1195 return -EACCES;
1196 }
1197
1198 /**
1199 * safe_hardlink_source - Check for safe hardlink conditions
1200 * @idmap: idmap of the mount the inode was found from
1201 * @inode: the source inode to hardlink from
1202 *
1203 * Return false if at least one of the following conditions:
1204 * - inode is not a regular file
1205 * - inode is setuid
1206 * - inode is setgid and group-exec
1207 * - access failure for read and write
1208 *
1209 * Otherwise returns true.
1210 */
safe_hardlink_source(struct mnt_idmap * idmap,struct inode * inode)1211 static bool safe_hardlink_source(struct mnt_idmap *idmap,
1212 struct inode *inode)
1213 {
1214 umode_t mode = inode->i_mode;
1215
1216 /* Special files should not get pinned to the filesystem. */
1217 if (!S_ISREG(mode))
1218 return false;
1219
1220 /* Setuid files should not get pinned to the filesystem. */
1221 if (mode & S_ISUID)
1222 return false;
1223
1224 /* Executable setgid files should not get pinned to the filesystem. */
1225 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
1226 return false;
1227
1228 /* Hardlinking to unreadable or unwritable sources is dangerous. */
1229 if (inode_permission(idmap, inode, MAY_READ | MAY_WRITE))
1230 return false;
1231
1232 return true;
1233 }
1234
1235 /**
1236 * may_linkat - Check permissions for creating a hardlink
1237 * @idmap: idmap of the mount the inode was found from
1238 * @link: the source to hardlink from
1239 *
1240 * Block hardlink when all of:
1241 * - sysctl_protected_hardlinks enabled
1242 * - fsuid does not match inode
1243 * - hardlink source is unsafe (see safe_hardlink_source() above)
1244 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
1245 *
1246 * If the inode has been found through an idmapped mount the idmap of
1247 * the vfsmount must be passed through @idmap. This function will then take
1248 * care to map the inode according to @idmap before checking permissions.
1249 * On non-idmapped mounts or if permission checking is to be performed on the
1250 * raw inode simply pass @nop_mnt_idmap.
1251 *
1252 * Returns 0 if successful, -ve on error.
1253 */
may_linkat(struct mnt_idmap * idmap,const struct path * link)1254 int may_linkat(struct mnt_idmap *idmap, const struct path *link)
1255 {
1256 struct inode *inode = link->dentry->d_inode;
1257
1258 /* Inode writeback is not safe when the uid or gid are invalid. */
1259 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
1260 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
1261 return -EOVERFLOW;
1262
1263 if (!sysctl_protected_hardlinks)
1264 return 0;
1265
1266 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
1267 * otherwise, it must be a safe source.
1268 */
1269 if (safe_hardlink_source(idmap, inode) ||
1270 inode_owner_or_capable(idmap, inode))
1271 return 0;
1272
1273 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
1274 return -EPERM;
1275 }
1276
1277 /**
1278 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1279 * should be allowed, or not, on files that already
1280 * exist.
1281 * @idmap: idmap of the mount the inode was found from
1282 * @nd: nameidata pathwalk data
1283 * @inode: the inode of the file to open
1284 *
1285 * Block an O_CREAT open of a FIFO (or a regular file) when:
1286 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1287 * - the file already exists
1288 * - we are in a sticky directory
1289 * - we don't own the file
1290 * - the owner of the directory doesn't own the file
1291 * - the directory is world writable
1292 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1293 * the directory doesn't have to be world writable: being group writable will
1294 * be enough.
1295 *
1296 * If the inode has been found through an idmapped mount the idmap of
1297 * the vfsmount must be passed through @idmap. This function will then take
1298 * care to map the inode according to @idmap before checking permissions.
1299 * On non-idmapped mounts or if permission checking is to be performed on the
1300 * raw inode simply pass @nop_mnt_idmap.
1301 *
1302 * Returns 0 if the open is allowed, -ve on error.
1303 */
may_create_in_sticky(struct mnt_idmap * idmap,struct nameidata * nd,struct inode * const inode)1304 static int may_create_in_sticky(struct mnt_idmap *idmap, struct nameidata *nd,
1305 struct inode *const inode)
1306 {
1307 umode_t dir_mode = nd->dir_mode;
1308 vfsuid_t dir_vfsuid = nd->dir_vfsuid, i_vfsuid;
1309
1310 if (likely(!(dir_mode & S_ISVTX)))
1311 return 0;
1312
1313 if (S_ISREG(inode->i_mode) && !sysctl_protected_regular)
1314 return 0;
1315
1316 if (S_ISFIFO(inode->i_mode) && !sysctl_protected_fifos)
1317 return 0;
1318
1319 i_vfsuid = i_uid_into_vfsuid(idmap, inode);
1320
1321 if (vfsuid_eq(i_vfsuid, dir_vfsuid))
1322 return 0;
1323
1324 if (vfsuid_eq_kuid(i_vfsuid, current_fsuid()))
1325 return 0;
1326
1327 if (likely(dir_mode & 0002)) {
1328 audit_log_path_denied(AUDIT_ANOM_CREAT, "sticky_create");
1329 return -EACCES;
1330 }
1331
1332 if (dir_mode & 0020) {
1333 if (sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) {
1334 audit_log_path_denied(AUDIT_ANOM_CREAT,
1335 "sticky_create_fifo");
1336 return -EACCES;
1337 }
1338
1339 if (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode)) {
1340 audit_log_path_denied(AUDIT_ANOM_CREAT,
1341 "sticky_create_regular");
1342 return -EACCES;
1343 }
1344 }
1345
1346 return 0;
1347 }
1348
1349 /*
1350 * follow_up - Find the mountpoint of path's vfsmount
1351 *
1352 * Given a path, find the mountpoint of its source file system.
1353 * Replace @path with the path of the mountpoint in the parent mount.
1354 * Up is towards /.
1355 *
1356 * Return 1 if we went up a level and 0 if we were already at the
1357 * root.
1358 */
follow_up(struct path * path)1359 int follow_up(struct path *path)
1360 {
1361 struct mount *mnt = real_mount(path->mnt);
1362 struct mount *parent;
1363 struct dentry *mountpoint;
1364
1365 read_seqlock_excl(&mount_lock);
1366 parent = mnt->mnt_parent;
1367 if (parent == mnt) {
1368 read_sequnlock_excl(&mount_lock);
1369 return 0;
1370 }
1371 mntget(&parent->mnt);
1372 mountpoint = dget(mnt->mnt_mountpoint);
1373 read_sequnlock_excl(&mount_lock);
1374 dput(path->dentry);
1375 path->dentry = mountpoint;
1376 mntput(path->mnt);
1377 path->mnt = &parent->mnt;
1378 return 1;
1379 }
1380 EXPORT_SYMBOL(follow_up);
1381
choose_mountpoint_rcu(struct mount * m,const struct path * root,struct path * path,unsigned * seqp)1382 static bool choose_mountpoint_rcu(struct mount *m, const struct path *root,
1383 struct path *path, unsigned *seqp)
1384 {
1385 while (mnt_has_parent(m)) {
1386 struct dentry *mountpoint = m->mnt_mountpoint;
1387
1388 m = m->mnt_parent;
1389 if (unlikely(root->dentry == mountpoint &&
1390 root->mnt == &m->mnt))
1391 break;
1392 if (mountpoint != m->mnt.mnt_root) {
1393 path->mnt = &m->mnt;
1394 path->dentry = mountpoint;
1395 *seqp = read_seqcount_begin(&mountpoint->d_seq);
1396 return true;
1397 }
1398 }
1399 return false;
1400 }
1401
choose_mountpoint(struct mount * m,const struct path * root,struct path * path)1402 static bool choose_mountpoint(struct mount *m, const struct path *root,
1403 struct path *path)
1404 {
1405 bool found;
1406
1407 rcu_read_lock();
1408 while (1) {
1409 unsigned seq, mseq = read_seqbegin(&mount_lock);
1410
1411 found = choose_mountpoint_rcu(m, root, path, &seq);
1412 if (unlikely(!found)) {
1413 if (!read_seqretry(&mount_lock, mseq))
1414 break;
1415 } else {
1416 if (likely(__legitimize_path(path, seq, mseq)))
1417 break;
1418 rcu_read_unlock();
1419 path_put(path);
1420 rcu_read_lock();
1421 }
1422 }
1423 rcu_read_unlock();
1424 return found;
1425 }
1426
1427 /*
1428 * Perform an automount
1429 * - return -EISDIR to tell follow_managed() to stop and return the path we
1430 * were called with.
1431 */
follow_automount(struct path * path,int * count,unsigned lookup_flags)1432 static int follow_automount(struct path *path, int *count, unsigned lookup_flags)
1433 {
1434 struct dentry *dentry = path->dentry;
1435
1436 /* We don't want to mount if someone's just doing a stat -
1437 * unless they're stat'ing a directory and appended a '/' to
1438 * the name.
1439 *
1440 * We do, however, want to mount if someone wants to open or
1441 * create a file of any type under the mountpoint, wants to
1442 * traverse through the mountpoint or wants to open the
1443 * mounted directory. Also, autofs may mark negative dentries
1444 * as being automount points. These will need the attentions
1445 * of the daemon to instantiate them before they can be used.
1446 */
1447 if (!(lookup_flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1448 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1449 dentry->d_inode)
1450 return -EISDIR;
1451
1452 if (count && (*count)++ >= MAXSYMLINKS)
1453 return -ELOOP;
1454
1455 return finish_automount(dentry->d_op->d_automount(path), path);
1456 }
1457
1458 /*
1459 * mount traversal - out-of-line part. One note on ->d_flags accesses -
1460 * dentries are pinned but not locked here, so negative dentry can go
1461 * positive right under us. Use of smp_load_acquire() provides a barrier
1462 * sufficient for ->d_inode and ->d_flags consistency.
1463 */
__traverse_mounts(struct path * path,unsigned flags,bool * jumped,int * count,unsigned lookup_flags)1464 static int __traverse_mounts(struct path *path, unsigned flags, bool *jumped,
1465 int *count, unsigned lookup_flags)
1466 {
1467 struct vfsmount *mnt = path->mnt;
1468 bool need_mntput = false;
1469 int ret = 0;
1470
1471 while (flags & DCACHE_MANAGED_DENTRY) {
1472 /* Allow the filesystem to manage the transit without i_mutex
1473 * being held. */
1474 if (flags & DCACHE_MANAGE_TRANSIT) {
1475 ret = path->dentry->d_op->d_manage(path, false);
1476 flags = smp_load_acquire(&path->dentry->d_flags);
1477 if (ret < 0)
1478 break;
1479 }
1480
1481 if (flags & DCACHE_MOUNTED) { // something's mounted on it..
1482 struct vfsmount *mounted = lookup_mnt(path);
1483 if (mounted) { // ... in our namespace
1484 dput(path->dentry);
1485 if (need_mntput)
1486 mntput(path->mnt);
1487 path->mnt = mounted;
1488 path->dentry = dget(mounted->mnt_root);
1489 // here we know it's positive
1490 flags = path->dentry->d_flags;
1491 need_mntput = true;
1492 continue;
1493 }
1494 }
1495
1496 if (!(flags & DCACHE_NEED_AUTOMOUNT))
1497 break;
1498
1499 // uncovered automount point
1500 ret = follow_automount(path, count, lookup_flags);
1501 flags = smp_load_acquire(&path->dentry->d_flags);
1502 if (ret < 0)
1503 break;
1504 }
1505
1506 if (ret == -EISDIR)
1507 ret = 0;
1508 // possible if you race with several mount --move
1509 if (need_mntput && path->mnt == mnt)
1510 mntput(path->mnt);
1511 if (!ret && unlikely(d_flags_negative(flags)))
1512 ret = -ENOENT;
1513 *jumped = need_mntput;
1514 return ret;
1515 }
1516
traverse_mounts(struct path * path,bool * jumped,int * count,unsigned lookup_flags)1517 static inline int traverse_mounts(struct path *path, bool *jumped,
1518 int *count, unsigned lookup_flags)
1519 {
1520 unsigned flags = smp_load_acquire(&path->dentry->d_flags);
1521
1522 /* fastpath */
1523 if (likely(!(flags & DCACHE_MANAGED_DENTRY))) {
1524 *jumped = false;
1525 if (unlikely(d_flags_negative(flags)))
1526 return -ENOENT;
1527 return 0;
1528 }
1529 return __traverse_mounts(path, flags, jumped, count, lookup_flags);
1530 }
1531
follow_down_one(struct path * path)1532 int follow_down_one(struct path *path)
1533 {
1534 struct vfsmount *mounted;
1535
1536 mounted = lookup_mnt(path);
1537 if (mounted) {
1538 dput(path->dentry);
1539 mntput(path->mnt);
1540 path->mnt = mounted;
1541 path->dentry = dget(mounted->mnt_root);
1542 return 1;
1543 }
1544 return 0;
1545 }
1546 EXPORT_SYMBOL(follow_down_one);
1547
1548 /*
1549 * Follow down to the covering mount currently visible to userspace. At each
1550 * point, the filesystem owning that dentry may be queried as to whether the
1551 * caller is permitted to proceed or not.
1552 */
follow_down(struct path * path,unsigned int flags)1553 int follow_down(struct path *path, unsigned int flags)
1554 {
1555 struct vfsmount *mnt = path->mnt;
1556 bool jumped;
1557 int ret = traverse_mounts(path, &jumped, NULL, flags);
1558
1559 if (path->mnt != mnt)
1560 mntput(mnt);
1561 return ret;
1562 }
1563 EXPORT_SYMBOL(follow_down);
1564
1565 /*
1566 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1567 * we meet a managed dentry that would need blocking.
1568 */
__follow_mount_rcu(struct nameidata * nd,struct path * path)1569 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path)
1570 {
1571 struct dentry *dentry = path->dentry;
1572 unsigned int flags = dentry->d_flags;
1573
1574 if (likely(!(flags & DCACHE_MANAGED_DENTRY)))
1575 return true;
1576
1577 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1578 return false;
1579
1580 for (;;) {
1581 /*
1582 * Don't forget we might have a non-mountpoint managed dentry
1583 * that wants to block transit.
1584 */
1585 if (unlikely(flags & DCACHE_MANAGE_TRANSIT)) {
1586 int res = dentry->d_op->d_manage(path, true);
1587 if (res)
1588 return res == -EISDIR;
1589 flags = dentry->d_flags;
1590 }
1591
1592 if (flags & DCACHE_MOUNTED) {
1593 struct mount *mounted = __lookup_mnt(path->mnt, dentry);
1594 if (mounted) {
1595 path->mnt = &mounted->mnt;
1596 dentry = path->dentry = mounted->mnt.mnt_root;
1597 nd->state |= ND_JUMPED;
1598 nd->next_seq = read_seqcount_begin(&dentry->d_seq);
1599 flags = dentry->d_flags;
1600 // makes sure that non-RCU pathwalk could reach
1601 // this state.
1602 if (read_seqretry(&mount_lock, nd->m_seq))
1603 return false;
1604 continue;
1605 }
1606 if (read_seqretry(&mount_lock, nd->m_seq))
1607 return false;
1608 }
1609 return !(flags & DCACHE_NEED_AUTOMOUNT);
1610 }
1611 }
1612
handle_mounts(struct nameidata * nd,struct dentry * dentry,struct path * path)1613 static inline int handle_mounts(struct nameidata *nd, struct dentry *dentry,
1614 struct path *path)
1615 {
1616 bool jumped;
1617 int ret;
1618
1619 path->mnt = nd->path.mnt;
1620 path->dentry = dentry;
1621 if (nd->flags & LOOKUP_RCU) {
1622 unsigned int seq = nd->next_seq;
1623 if (likely(__follow_mount_rcu(nd, path)))
1624 return 0;
1625 // *path and nd->next_seq might've been clobbered
1626 path->mnt = nd->path.mnt;
1627 path->dentry = dentry;
1628 nd->next_seq = seq;
1629 if (!try_to_unlazy_next(nd, dentry))
1630 return -ECHILD;
1631 }
1632 ret = traverse_mounts(path, &jumped, &nd->total_link_count, nd->flags);
1633 if (jumped) {
1634 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
1635 ret = -EXDEV;
1636 else
1637 nd->state |= ND_JUMPED;
1638 }
1639 if (unlikely(ret)) {
1640 dput(path->dentry);
1641 if (path->mnt != nd->path.mnt)
1642 mntput(path->mnt);
1643 }
1644 return ret;
1645 }
1646
1647 /*
1648 * This looks up the name in dcache and possibly revalidates the found dentry.
1649 * NULL is returned if the dentry does not exist in the cache.
1650 */
lookup_dcache(const struct qstr * name,struct dentry * dir,unsigned int flags)1651 static struct dentry *lookup_dcache(const struct qstr *name,
1652 struct dentry *dir,
1653 unsigned int flags)
1654 {
1655 struct dentry *dentry = d_lookup(dir, name);
1656 if (dentry) {
1657 int error = d_revalidate(dir->d_inode, name, dentry, flags);
1658 if (unlikely(error <= 0)) {
1659 if (!error)
1660 d_invalidate(dentry);
1661 dput(dentry);
1662 return ERR_PTR(error);
1663 }
1664 }
1665 return dentry;
1666 }
1667
lookup_one_qstr_excl_raw(const struct qstr * name,struct dentry * base,unsigned int flags)1668 static struct dentry *lookup_one_qstr_excl_raw(const struct qstr *name,
1669 struct dentry *base,
1670 unsigned int flags)
1671 {
1672 struct dentry *dentry;
1673 struct dentry *old;
1674 struct inode *dir;
1675
1676 dentry = lookup_dcache(name, base, flags);
1677 if (dentry)
1678 return dentry;
1679
1680 /* Don't create child dentry for a dead directory. */
1681 dir = base->d_inode;
1682 if (unlikely(IS_DEADDIR(dir)))
1683 return ERR_PTR(-ENOENT);
1684
1685 dentry = d_alloc(base, name);
1686 if (unlikely(!dentry))
1687 return ERR_PTR(-ENOMEM);
1688
1689 old = dir->i_op->lookup(dir, dentry, flags);
1690 if (unlikely(old)) {
1691 dput(dentry);
1692 dentry = old;
1693 }
1694 return dentry;
1695 }
1696
1697 /*
1698 * Parent directory has inode locked exclusive. This is one
1699 * and only case when ->lookup() gets called on non in-lookup
1700 * dentries - as the matter of fact, this only gets called
1701 * when directory is guaranteed to have no in-lookup children
1702 * at all.
1703 * Will return -ENOENT if name isn't found and LOOKUP_CREATE wasn't passed.
1704 * Will return -EEXIST if name is found and LOOKUP_EXCL was passed.
1705 */
lookup_one_qstr_excl(const struct qstr * name,struct dentry * base,unsigned int flags)1706 struct dentry *lookup_one_qstr_excl(const struct qstr *name,
1707 struct dentry *base, unsigned int flags)
1708 {
1709 struct dentry *dentry;
1710
1711 dentry = lookup_one_qstr_excl_raw(name, base, flags);
1712 if (IS_ERR(dentry))
1713 return dentry;
1714 if (d_is_negative(dentry) && !(flags & LOOKUP_CREATE)) {
1715 dput(dentry);
1716 return ERR_PTR(-ENOENT);
1717 }
1718 if (d_is_positive(dentry) && (flags & LOOKUP_EXCL)) {
1719 dput(dentry);
1720 return ERR_PTR(-EEXIST);
1721 }
1722 return dentry;
1723 }
1724 EXPORT_SYMBOL(lookup_one_qstr_excl);
1725
1726 /**
1727 * lookup_fast - do fast lockless (but racy) lookup of a dentry
1728 * @nd: current nameidata
1729 *
1730 * Do a fast, but racy lookup in the dcache for the given dentry, and
1731 * revalidate it. Returns a valid dentry pointer or NULL if one wasn't
1732 * found. On error, an ERR_PTR will be returned.
1733 *
1734 * If this function returns a valid dentry and the walk is no longer
1735 * lazy, the dentry will carry a reference that must later be put. If
1736 * RCU mode is still in force, then this is not the case and the dentry
1737 * must be legitimized before use. If this returns NULL, then the walk
1738 * will no longer be in RCU mode.
1739 */
lookup_fast(struct nameidata * nd)1740 static struct dentry *lookup_fast(struct nameidata *nd)
1741 {
1742 struct dentry *dentry, *parent = nd->path.dentry;
1743 int status = 1;
1744
1745 /*
1746 * Rename seqlock is not required here because in the off chance
1747 * of a false negative due to a concurrent rename, the caller is
1748 * going to fall back to non-racy lookup.
1749 */
1750 if (nd->flags & LOOKUP_RCU) {
1751 dentry = __d_lookup_rcu(parent, &nd->last, &nd->next_seq);
1752 if (unlikely(!dentry)) {
1753 if (!try_to_unlazy(nd))
1754 return ERR_PTR(-ECHILD);
1755 return NULL;
1756 }
1757
1758 /*
1759 * This sequence count validates that the parent had no
1760 * changes while we did the lookup of the dentry above.
1761 */
1762 if (read_seqcount_retry(&parent->d_seq, nd->seq))
1763 return ERR_PTR(-ECHILD);
1764
1765 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1766 if (likely(status > 0))
1767 return dentry;
1768 if (!try_to_unlazy_next(nd, dentry))
1769 return ERR_PTR(-ECHILD);
1770 if (status == -ECHILD)
1771 /* we'd been told to redo it in non-rcu mode */
1772 status = d_revalidate(nd->inode, &nd->last,
1773 dentry, nd->flags);
1774 } else {
1775 dentry = __d_lookup(parent, &nd->last);
1776 if (unlikely(!dentry))
1777 return NULL;
1778 status = d_revalidate(nd->inode, &nd->last, dentry, nd->flags);
1779 }
1780 if (unlikely(status <= 0)) {
1781 if (!status)
1782 d_invalidate(dentry);
1783 dput(dentry);
1784 return ERR_PTR(status);
1785 }
1786 return dentry;
1787 }
1788
1789 /* Fast lookup failed, do it the slow way */
__lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1790 static struct dentry *__lookup_slow(const struct qstr *name,
1791 struct dentry *dir,
1792 unsigned int flags)
1793 {
1794 struct dentry *dentry, *old;
1795 struct inode *inode = dir->d_inode;
1796 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1797
1798 /* Don't go there if it's already dead */
1799 if (unlikely(IS_DEADDIR(inode)))
1800 return ERR_PTR(-ENOENT);
1801 again:
1802 dentry = d_alloc_parallel(dir, name, &wq);
1803 if (IS_ERR(dentry))
1804 return dentry;
1805 if (unlikely(!d_in_lookup(dentry))) {
1806 int error = d_revalidate(inode, name, dentry, flags);
1807 if (unlikely(error <= 0)) {
1808 if (!error) {
1809 d_invalidate(dentry);
1810 dput(dentry);
1811 goto again;
1812 }
1813 dput(dentry);
1814 dentry = ERR_PTR(error);
1815 }
1816 } else {
1817 old = inode->i_op->lookup(inode, dentry, flags);
1818 d_lookup_done(dentry);
1819 if (unlikely(old)) {
1820 dput(dentry);
1821 dentry = old;
1822 }
1823 }
1824 return dentry;
1825 }
1826
lookup_slow(const struct qstr * name,struct dentry * dir,unsigned int flags)1827 static struct dentry *lookup_slow(const struct qstr *name,
1828 struct dentry *dir,
1829 unsigned int flags)
1830 {
1831 struct inode *inode = dir->d_inode;
1832 struct dentry *res;
1833 inode_lock_shared(inode);
1834 res = __lookup_slow(name, dir, flags);
1835 inode_unlock_shared(inode);
1836 return res;
1837 }
1838
may_lookup(struct mnt_idmap * idmap,struct nameidata * restrict nd)1839 static inline int may_lookup(struct mnt_idmap *idmap,
1840 struct nameidata *restrict nd)
1841 {
1842 int err, mask;
1843
1844 mask = nd->flags & LOOKUP_RCU ? MAY_NOT_BLOCK : 0;
1845 err = inode_permission(idmap, nd->inode, mask | MAY_EXEC);
1846 if (likely(!err))
1847 return 0;
1848
1849 // If we failed, and we weren't in LOOKUP_RCU, it's final
1850 if (!(nd->flags & LOOKUP_RCU))
1851 return err;
1852
1853 // Drop out of RCU mode to make sure it wasn't transient
1854 if (!try_to_unlazy(nd))
1855 return -ECHILD; // redo it all non-lazy
1856
1857 if (err != -ECHILD) // hard error
1858 return err;
1859
1860 return inode_permission(idmap, nd->inode, MAY_EXEC);
1861 }
1862
reserve_stack(struct nameidata * nd,struct path * link)1863 static int reserve_stack(struct nameidata *nd, struct path *link)
1864 {
1865 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS))
1866 return -ELOOP;
1867
1868 if (likely(nd->depth != EMBEDDED_LEVELS))
1869 return 0;
1870 if (likely(nd->stack != nd->internal))
1871 return 0;
1872 if (likely(nd_alloc_stack(nd)))
1873 return 0;
1874
1875 if (nd->flags & LOOKUP_RCU) {
1876 // we need to grab link before we do unlazy. And we can't skip
1877 // unlazy even if we fail to grab the link - cleanup needs it
1878 bool grabbed_link = legitimize_path(nd, link, nd->next_seq);
1879
1880 if (!try_to_unlazy(nd) || !grabbed_link)
1881 return -ECHILD;
1882
1883 if (nd_alloc_stack(nd))
1884 return 0;
1885 }
1886 return -ENOMEM;
1887 }
1888
1889 enum {WALK_TRAILING = 1, WALK_MORE = 2, WALK_NOFOLLOW = 4};
1890
pick_link(struct nameidata * nd,struct path * link,struct inode * inode,int flags)1891 static const char *pick_link(struct nameidata *nd, struct path *link,
1892 struct inode *inode, int flags)
1893 {
1894 struct saved *last;
1895 const char *res;
1896 int error = reserve_stack(nd, link);
1897
1898 if (unlikely(error)) {
1899 if (!(nd->flags & LOOKUP_RCU))
1900 path_put(link);
1901 return ERR_PTR(error);
1902 }
1903 last = nd->stack + nd->depth++;
1904 last->link = *link;
1905 clear_delayed_call(&last->done);
1906 last->seq = nd->next_seq;
1907
1908 if (flags & WALK_TRAILING) {
1909 error = may_follow_link(nd, inode);
1910 if (unlikely(error))
1911 return ERR_PTR(error);
1912 }
1913
1914 if (unlikely(nd->flags & LOOKUP_NO_SYMLINKS) ||
1915 unlikely(link->mnt->mnt_flags & MNT_NOSYMFOLLOW))
1916 return ERR_PTR(-ELOOP);
1917
1918 if (!(nd->flags & LOOKUP_RCU)) {
1919 touch_atime(&last->link);
1920 cond_resched();
1921 } else if (atime_needs_update(&last->link, inode)) {
1922 if (!try_to_unlazy(nd))
1923 return ERR_PTR(-ECHILD);
1924 touch_atime(&last->link);
1925 }
1926
1927 error = security_inode_follow_link(link->dentry, inode,
1928 nd->flags & LOOKUP_RCU);
1929 if (unlikely(error))
1930 return ERR_PTR(error);
1931
1932 res = READ_ONCE(inode->i_link);
1933 if (!res) {
1934 const char * (*get)(struct dentry *, struct inode *,
1935 struct delayed_call *);
1936 get = inode->i_op->get_link;
1937 if (nd->flags & LOOKUP_RCU) {
1938 res = get(NULL, inode, &last->done);
1939 if (res == ERR_PTR(-ECHILD) && try_to_unlazy(nd))
1940 res = get(link->dentry, inode, &last->done);
1941 } else {
1942 res = get(link->dentry, inode, &last->done);
1943 }
1944 if (!res)
1945 goto all_done;
1946 if (IS_ERR(res))
1947 return res;
1948 }
1949 if (*res == '/') {
1950 error = nd_jump_root(nd);
1951 if (unlikely(error))
1952 return ERR_PTR(error);
1953 while (unlikely(*++res == '/'))
1954 ;
1955 }
1956 if (*res)
1957 return res;
1958 all_done: // pure jump
1959 put_link(nd);
1960 return NULL;
1961 }
1962
1963 /*
1964 * Do we need to follow links? We _really_ want to be able
1965 * to do this check without having to look at inode->i_op,
1966 * so we keep a cache of "no, this doesn't need follow_link"
1967 * for the common case.
1968 *
1969 * NOTE: dentry must be what nd->next_seq had been sampled from.
1970 */
step_into(struct nameidata * nd,int flags,struct dentry * dentry)1971 static const char *step_into(struct nameidata *nd, int flags,
1972 struct dentry *dentry)
1973 {
1974 struct path path;
1975 struct inode *inode;
1976 int err = handle_mounts(nd, dentry, &path);
1977
1978 if (err < 0)
1979 return ERR_PTR(err);
1980 inode = path.dentry->d_inode;
1981 if (likely(!d_is_symlink(path.dentry)) ||
1982 ((flags & WALK_TRAILING) && !(nd->flags & LOOKUP_FOLLOW)) ||
1983 (flags & WALK_NOFOLLOW)) {
1984 /* not a symlink or should not follow */
1985 if (nd->flags & LOOKUP_RCU) {
1986 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
1987 return ERR_PTR(-ECHILD);
1988 if (unlikely(!inode))
1989 return ERR_PTR(-ENOENT);
1990 } else {
1991 dput(nd->path.dentry);
1992 if (nd->path.mnt != path.mnt)
1993 mntput(nd->path.mnt);
1994 }
1995 nd->path = path;
1996 nd->inode = inode;
1997 nd->seq = nd->next_seq;
1998 return NULL;
1999 }
2000 if (nd->flags & LOOKUP_RCU) {
2001 /* make sure that d_is_symlink above matches inode */
2002 if (read_seqcount_retry(&path.dentry->d_seq, nd->next_seq))
2003 return ERR_PTR(-ECHILD);
2004 } else {
2005 if (path.mnt == nd->path.mnt)
2006 mntget(path.mnt);
2007 }
2008 return pick_link(nd, &path, inode, flags);
2009 }
2010
follow_dotdot_rcu(struct nameidata * nd)2011 static struct dentry *follow_dotdot_rcu(struct nameidata *nd)
2012 {
2013 struct dentry *parent, *old;
2014
2015 if (path_equal(&nd->path, &nd->root))
2016 goto in_root;
2017 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2018 struct path path;
2019 unsigned seq;
2020 if (!choose_mountpoint_rcu(real_mount(nd->path.mnt),
2021 &nd->root, &path, &seq))
2022 goto in_root;
2023 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2024 return ERR_PTR(-ECHILD);
2025 nd->path = path;
2026 nd->inode = path.dentry->d_inode;
2027 nd->seq = seq;
2028 // makes sure that non-RCU pathwalk could reach this state
2029 if (read_seqretry(&mount_lock, nd->m_seq))
2030 return ERR_PTR(-ECHILD);
2031 /* we know that mountpoint was pinned */
2032 }
2033 old = nd->path.dentry;
2034 parent = old->d_parent;
2035 nd->next_seq = read_seqcount_begin(&parent->d_seq);
2036 // makes sure that non-RCU pathwalk could reach this state
2037 if (read_seqcount_retry(&old->d_seq, nd->seq))
2038 return ERR_PTR(-ECHILD);
2039 if (unlikely(!path_connected(nd->path.mnt, parent)))
2040 return ERR_PTR(-ECHILD);
2041 return parent;
2042 in_root:
2043 if (read_seqretry(&mount_lock, nd->m_seq))
2044 return ERR_PTR(-ECHILD);
2045 if (unlikely(nd->flags & LOOKUP_BENEATH))
2046 return ERR_PTR(-ECHILD);
2047 nd->next_seq = nd->seq;
2048 return nd->path.dentry;
2049 }
2050
follow_dotdot(struct nameidata * nd)2051 static struct dentry *follow_dotdot(struct nameidata *nd)
2052 {
2053 struct dentry *parent;
2054
2055 if (path_equal(&nd->path, &nd->root))
2056 goto in_root;
2057 if (unlikely(nd->path.dentry == nd->path.mnt->mnt_root)) {
2058 struct path path;
2059
2060 if (!choose_mountpoint(real_mount(nd->path.mnt),
2061 &nd->root, &path))
2062 goto in_root;
2063 path_put(&nd->path);
2064 nd->path = path;
2065 nd->inode = path.dentry->d_inode;
2066 if (unlikely(nd->flags & LOOKUP_NO_XDEV))
2067 return ERR_PTR(-EXDEV);
2068 }
2069 /* rare case of legitimate dget_parent()... */
2070 parent = dget_parent(nd->path.dentry);
2071 if (unlikely(!path_connected(nd->path.mnt, parent))) {
2072 dput(parent);
2073 return ERR_PTR(-ENOENT);
2074 }
2075 return parent;
2076
2077 in_root:
2078 if (unlikely(nd->flags & LOOKUP_BENEATH))
2079 return ERR_PTR(-EXDEV);
2080 return dget(nd->path.dentry);
2081 }
2082
handle_dots(struct nameidata * nd,int type)2083 static const char *handle_dots(struct nameidata *nd, int type)
2084 {
2085 if (type == LAST_DOTDOT) {
2086 const char *error = NULL;
2087 struct dentry *parent;
2088
2089 if (!nd->root.mnt) {
2090 error = ERR_PTR(set_root(nd));
2091 if (error)
2092 return error;
2093 }
2094 if (nd->flags & LOOKUP_RCU)
2095 parent = follow_dotdot_rcu(nd);
2096 else
2097 parent = follow_dotdot(nd);
2098 if (IS_ERR(parent))
2099 return ERR_CAST(parent);
2100 error = step_into(nd, WALK_NOFOLLOW, parent);
2101 if (unlikely(error))
2102 return error;
2103
2104 if (unlikely(nd->flags & LOOKUP_IS_SCOPED)) {
2105 /*
2106 * If there was a racing rename or mount along our
2107 * path, then we can't be sure that ".." hasn't jumped
2108 * above nd->root (and so userspace should retry or use
2109 * some fallback).
2110 */
2111 smp_rmb();
2112 if (__read_seqcount_retry(&mount_lock.seqcount, nd->m_seq))
2113 return ERR_PTR(-EAGAIN);
2114 if (__read_seqcount_retry(&rename_lock.seqcount, nd->r_seq))
2115 return ERR_PTR(-EAGAIN);
2116 }
2117 }
2118 return NULL;
2119 }
2120
walk_component(struct nameidata * nd,int flags)2121 static const char *walk_component(struct nameidata *nd, int flags)
2122 {
2123 struct dentry *dentry;
2124 /*
2125 * "." and ".." are special - ".." especially so because it has
2126 * to be able to know about the current root directory and
2127 * parent relationships.
2128 */
2129 if (unlikely(nd->last_type != LAST_NORM)) {
2130 if (!(flags & WALK_MORE) && nd->depth)
2131 put_link(nd);
2132 return handle_dots(nd, nd->last_type);
2133 }
2134 dentry = lookup_fast(nd);
2135 if (IS_ERR(dentry))
2136 return ERR_CAST(dentry);
2137 if (unlikely(!dentry)) {
2138 dentry = lookup_slow(&nd->last, nd->path.dentry, nd->flags);
2139 if (IS_ERR(dentry))
2140 return ERR_CAST(dentry);
2141 }
2142 if (!(flags & WALK_MORE) && nd->depth)
2143 put_link(nd);
2144 return step_into(nd, flags, dentry);
2145 }
2146
2147 /*
2148 * We can do the critical dentry name comparison and hashing
2149 * operations one word at a time, but we are limited to:
2150 *
2151 * - Architectures with fast unaligned word accesses. We could
2152 * do a "get_unaligned()" if this helps and is sufficiently
2153 * fast.
2154 *
2155 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
2156 * do not trap on the (extremely unlikely) case of a page
2157 * crossing operation.
2158 *
2159 * - Furthermore, we need an efficient 64-bit compile for the
2160 * 64-bit case in order to generate the "number of bytes in
2161 * the final mask". Again, that could be replaced with a
2162 * efficient population count instruction or similar.
2163 */
2164 #ifdef CONFIG_DCACHE_WORD_ACCESS
2165
2166 #include <asm/word-at-a-time.h>
2167
2168 #ifdef HASH_MIX
2169
2170 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
2171
2172 #elif defined(CONFIG_64BIT)
2173 /*
2174 * Register pressure in the mixing function is an issue, particularly
2175 * on 32-bit x86, but almost any function requires one state value and
2176 * one temporary. Instead, use a function designed for two state values
2177 * and no temporaries.
2178 *
2179 * This function cannot create a collision in only two iterations, so
2180 * we have two iterations to achieve avalanche. In those two iterations,
2181 * we have six layers of mixing, which is enough to spread one bit's
2182 * influence out to 2^6 = 64 state bits.
2183 *
2184 * Rotate constants are scored by considering either 64 one-bit input
2185 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
2186 * probability of that delta causing a change to each of the 128 output
2187 * bits, using a sample of random initial states.
2188 *
2189 * The Shannon entropy of the computed probabilities is then summed
2190 * to produce a score. Ideally, any input change has a 50% chance of
2191 * toggling any given output bit.
2192 *
2193 * Mixing scores (in bits) for (12,45):
2194 * Input delta: 1-bit 2-bit
2195 * 1 round: 713.3 42542.6
2196 * 2 rounds: 2753.7 140389.8
2197 * 3 rounds: 5954.1 233458.2
2198 * 4 rounds: 7862.6 256672.2
2199 * Perfect: 8192 258048
2200 * (64*128) (64*63/2 * 128)
2201 */
2202 #define HASH_MIX(x, y, a) \
2203 ( x ^= (a), \
2204 y ^= x, x = rol64(x,12),\
2205 x += y, y = rol64(y,45),\
2206 y *= 9 )
2207
2208 /*
2209 * Fold two longs into one 32-bit hash value. This must be fast, but
2210 * latency isn't quite as critical, as there is a fair bit of additional
2211 * work done before the hash value is used.
2212 */
fold_hash(unsigned long x,unsigned long y)2213 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2214 {
2215 y ^= x * GOLDEN_RATIO_64;
2216 y *= GOLDEN_RATIO_64;
2217 return y >> 32;
2218 }
2219
2220 #else /* 32-bit case */
2221
2222 /*
2223 * Mixing scores (in bits) for (7,20):
2224 * Input delta: 1-bit 2-bit
2225 * 1 round: 330.3 9201.6
2226 * 2 rounds: 1246.4 25475.4
2227 * 3 rounds: 1907.1 31295.1
2228 * 4 rounds: 2042.3 31718.6
2229 * Perfect: 2048 31744
2230 * (32*64) (32*31/2 * 64)
2231 */
2232 #define HASH_MIX(x, y, a) \
2233 ( x ^= (a), \
2234 y ^= x, x = rol32(x, 7),\
2235 x += y, y = rol32(y,20),\
2236 y *= 9 )
2237
fold_hash(unsigned long x,unsigned long y)2238 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
2239 {
2240 /* Use arch-optimized multiply if one exists */
2241 return __hash_32(y ^ __hash_32(x));
2242 }
2243
2244 #endif
2245
2246 /*
2247 * Return the hash of a string of known length. This is carfully
2248 * designed to match hash_name(), which is the more critical function.
2249 * In particular, we must end by hashing a final word containing 0..7
2250 * payload bytes, to match the way that hash_name() iterates until it
2251 * finds the delimiter after the name.
2252 */
full_name_hash(const void * salt,const char * name,unsigned int len)2253 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2254 {
2255 unsigned long a, x = 0, y = (unsigned long)salt;
2256
2257 for (;;) {
2258 if (!len)
2259 goto done;
2260 a = load_unaligned_zeropad(name);
2261 if (len < sizeof(unsigned long))
2262 break;
2263 HASH_MIX(x, y, a);
2264 name += sizeof(unsigned long);
2265 len -= sizeof(unsigned long);
2266 }
2267 x ^= a & bytemask_from_count(len);
2268 done:
2269 return fold_hash(x, y);
2270 }
2271 EXPORT_SYMBOL(full_name_hash);
2272
2273 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2274 u64 hashlen_string(const void *salt, const char *name)
2275 {
2276 unsigned long a = 0, x = 0, y = (unsigned long)salt;
2277 unsigned long adata, mask, len;
2278 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2279
2280 len = 0;
2281 goto inside;
2282
2283 do {
2284 HASH_MIX(x, y, a);
2285 len += sizeof(unsigned long);
2286 inside:
2287 a = load_unaligned_zeropad(name+len);
2288 } while (!has_zero(a, &adata, &constants));
2289
2290 adata = prep_zero_mask(a, adata, &constants);
2291 mask = create_zero_mask(adata);
2292 x ^= a & zero_bytemask(mask);
2293
2294 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
2295 }
2296 EXPORT_SYMBOL(hashlen_string);
2297
2298 /*
2299 * Calculate the length and hash of the path component, and
2300 * return the length as the result.
2301 */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2302 static inline const char *hash_name(struct nameidata *nd,
2303 const char *name,
2304 unsigned long *lastword)
2305 {
2306 unsigned long a, b, x, y = (unsigned long)nd->path.dentry;
2307 unsigned long adata, bdata, mask, len;
2308 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
2309
2310 /*
2311 * The first iteration is special, because it can result in
2312 * '.' and '..' and has no mixing other than the final fold.
2313 */
2314 a = load_unaligned_zeropad(name);
2315 b = a ^ REPEAT_BYTE('/');
2316 if (has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)) {
2317 adata = prep_zero_mask(a, adata, &constants);
2318 bdata = prep_zero_mask(b, bdata, &constants);
2319 mask = create_zero_mask(adata | bdata);
2320 a &= zero_bytemask(mask);
2321 *lastword = a;
2322 len = find_zero(mask);
2323 nd->last.hash = fold_hash(a, y);
2324 nd->last.len = len;
2325 return name + len;
2326 }
2327
2328 len = 0;
2329 x = 0;
2330 do {
2331 HASH_MIX(x, y, a);
2332 len += sizeof(unsigned long);
2333 a = load_unaligned_zeropad(name+len);
2334 b = a ^ REPEAT_BYTE('/');
2335 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
2336
2337 adata = prep_zero_mask(a, adata, &constants);
2338 bdata = prep_zero_mask(b, bdata, &constants);
2339 mask = create_zero_mask(adata | bdata);
2340 a &= zero_bytemask(mask);
2341 x ^= a;
2342 len += find_zero(mask);
2343 *lastword = 0; // Multi-word components cannot be DOT or DOTDOT
2344
2345 nd->last.hash = fold_hash(x, y);
2346 nd->last.len = len;
2347 return name + len;
2348 }
2349
2350 /*
2351 * Note that the 'last' word is always zero-masked, but
2352 * was loaded as a possibly big-endian word.
2353 */
2354 #ifdef __BIG_ENDIAN
2355 #define LAST_WORD_IS_DOT (0x2eul << (BITS_PER_LONG-8))
2356 #define LAST_WORD_IS_DOTDOT (0x2e2eul << (BITS_PER_LONG-16))
2357 #endif
2358
2359 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2360
2361 /* Return the hash of a string of known length */
full_name_hash(const void * salt,const char * name,unsigned int len)2362 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2363 {
2364 unsigned long hash = init_name_hash(salt);
2365 while (len--)
2366 hash = partial_name_hash((unsigned char)*name++, hash);
2367 return end_name_hash(hash);
2368 }
2369 EXPORT_SYMBOL(full_name_hash);
2370
2371 /* Return the "hash_len" (hash and length) of a null-terminated string */
hashlen_string(const void * salt,const char * name)2372 u64 hashlen_string(const void *salt, const char *name)
2373 {
2374 unsigned long hash = init_name_hash(salt);
2375 unsigned long len = 0, c;
2376
2377 c = (unsigned char)*name;
2378 while (c) {
2379 len++;
2380 hash = partial_name_hash(c, hash);
2381 c = (unsigned char)name[len];
2382 }
2383 return hashlen_create(end_name_hash(hash), len);
2384 }
2385 EXPORT_SYMBOL(hashlen_string);
2386
2387 /*
2388 * We know there's a real path component here of at least
2389 * one character.
2390 */
hash_name(struct nameidata * nd,const char * name,unsigned long * lastword)2391 static inline const char *hash_name(struct nameidata *nd, const char *name, unsigned long *lastword)
2392 {
2393 unsigned long hash = init_name_hash(nd->path.dentry);
2394 unsigned long len = 0, c, last = 0;
2395
2396 c = (unsigned char)*name;
2397 do {
2398 last = (last << 8) + c;
2399 len++;
2400 hash = partial_name_hash(c, hash);
2401 c = (unsigned char)name[len];
2402 } while (c && c != '/');
2403
2404 // This is reliable for DOT or DOTDOT, since the component
2405 // cannot contain NUL characters - top bits being zero means
2406 // we cannot have had any other pathnames.
2407 *lastword = last;
2408 nd->last.hash = end_name_hash(hash);
2409 nd->last.len = len;
2410 return name + len;
2411 }
2412
2413 #endif
2414
2415 #ifndef LAST_WORD_IS_DOT
2416 #define LAST_WORD_IS_DOT 0x2e
2417 #define LAST_WORD_IS_DOTDOT 0x2e2e
2418 #endif
2419
2420 /*
2421 * Name resolution.
2422 * This is the basic name resolution function, turning a pathname into
2423 * the final dentry. We expect 'base' to be positive and a directory.
2424 *
2425 * Returns 0 and nd will have valid dentry and mnt on success.
2426 * Returns error and drops reference to input namei data on failure.
2427 */
link_path_walk(const char * name,struct nameidata * nd)2428 static int link_path_walk(const char *name, struct nameidata *nd)
2429 {
2430 int depth = 0; // depth <= nd->depth
2431 int err;
2432
2433 nd->last_type = LAST_ROOT;
2434 nd->flags |= LOOKUP_PARENT;
2435 if (IS_ERR(name))
2436 return PTR_ERR(name);
2437 while (*name=='/')
2438 name++;
2439 if (!*name) {
2440 nd->dir_mode = 0; // short-circuit the 'hardening' idiocy
2441 return 0;
2442 }
2443
2444 /* At this point we know we have a real path component. */
2445 for(;;) {
2446 struct mnt_idmap *idmap;
2447 const char *link;
2448 unsigned long lastword;
2449
2450 idmap = mnt_idmap(nd->path.mnt);
2451 err = may_lookup(idmap, nd);
2452 if (err)
2453 return err;
2454
2455 nd->last.name = name;
2456 name = hash_name(nd, name, &lastword);
2457
2458 switch(lastword) {
2459 case LAST_WORD_IS_DOTDOT:
2460 nd->last_type = LAST_DOTDOT;
2461 nd->state |= ND_JUMPED;
2462 break;
2463
2464 case LAST_WORD_IS_DOT:
2465 nd->last_type = LAST_DOT;
2466 break;
2467
2468 default:
2469 nd->last_type = LAST_NORM;
2470 nd->state &= ~ND_JUMPED;
2471
2472 struct dentry *parent = nd->path.dentry;
2473 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2474 err = parent->d_op->d_hash(parent, &nd->last);
2475 if (err < 0)
2476 return err;
2477 }
2478 }
2479
2480 if (!*name)
2481 goto OK;
2482 /*
2483 * If it wasn't NUL, we know it was '/'. Skip that
2484 * slash, and continue until no more slashes.
2485 */
2486 do {
2487 name++;
2488 } while (unlikely(*name == '/'));
2489 if (unlikely(!*name)) {
2490 OK:
2491 /* pathname or trailing symlink, done */
2492 if (!depth) {
2493 nd->dir_vfsuid = i_uid_into_vfsuid(idmap, nd->inode);
2494 nd->dir_mode = nd->inode->i_mode;
2495 nd->flags &= ~LOOKUP_PARENT;
2496 return 0;
2497 }
2498 /* last component of nested symlink */
2499 name = nd->stack[--depth].name;
2500 link = walk_component(nd, 0);
2501 } else {
2502 /* not the last component */
2503 link = walk_component(nd, WALK_MORE);
2504 }
2505 if (unlikely(link)) {
2506 if (IS_ERR(link))
2507 return PTR_ERR(link);
2508 /* a symlink to follow */
2509 nd->stack[depth++].name = name;
2510 name = link;
2511 continue;
2512 }
2513 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2514 if (nd->flags & LOOKUP_RCU) {
2515 if (!try_to_unlazy(nd))
2516 return -ECHILD;
2517 }
2518 return -ENOTDIR;
2519 }
2520 }
2521 }
2522
2523 /* must be paired with terminate_walk() */
path_init(struct nameidata * nd,unsigned flags)2524 static const char *path_init(struct nameidata *nd, unsigned flags)
2525 {
2526 int error;
2527 const char *s = nd->pathname;
2528
2529 /* LOOKUP_CACHED requires RCU, ask caller to retry */
2530 if ((flags & (LOOKUP_RCU | LOOKUP_CACHED)) == LOOKUP_CACHED)
2531 return ERR_PTR(-EAGAIN);
2532
2533 if (!*s)
2534 flags &= ~LOOKUP_RCU;
2535 if (flags & LOOKUP_RCU)
2536 rcu_read_lock();
2537 else
2538 nd->seq = nd->next_seq = 0;
2539
2540 nd->flags = flags;
2541 nd->state |= ND_JUMPED;
2542
2543 nd->m_seq = __read_seqcount_begin(&mount_lock.seqcount);
2544 nd->r_seq = __read_seqcount_begin(&rename_lock.seqcount);
2545 smp_rmb();
2546
2547 if (nd->state & ND_ROOT_PRESET) {
2548 struct dentry *root = nd->root.dentry;
2549 struct inode *inode = root->d_inode;
2550 if (*s && unlikely(!d_can_lookup(root)))
2551 return ERR_PTR(-ENOTDIR);
2552 nd->path = nd->root;
2553 nd->inode = inode;
2554 if (flags & LOOKUP_RCU) {
2555 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2556 nd->root_seq = nd->seq;
2557 } else {
2558 path_get(&nd->path);
2559 }
2560 return s;
2561 }
2562
2563 nd->root.mnt = NULL;
2564
2565 /* Absolute pathname -- fetch the root (LOOKUP_IN_ROOT uses nd->dfd). */
2566 if (*s == '/' && !(flags & LOOKUP_IN_ROOT)) {
2567 error = nd_jump_root(nd);
2568 if (unlikely(error))
2569 return ERR_PTR(error);
2570 return s;
2571 }
2572
2573 /* Relative pathname -- get the starting-point it is relative to. */
2574 if (nd->dfd == AT_FDCWD) {
2575 if (flags & LOOKUP_RCU) {
2576 struct fs_struct *fs = current->fs;
2577 unsigned seq;
2578
2579 do {
2580 seq = read_seqcount_begin(&fs->seq);
2581 nd->path = fs->pwd;
2582 nd->inode = nd->path.dentry->d_inode;
2583 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2584 } while (read_seqcount_retry(&fs->seq, seq));
2585 } else {
2586 get_fs_pwd(current->fs, &nd->path);
2587 nd->inode = nd->path.dentry->d_inode;
2588 }
2589 } else {
2590 /* Caller must check execute permissions on the starting path component */
2591 CLASS(fd_raw, f)(nd->dfd);
2592 struct dentry *dentry;
2593
2594 if (fd_empty(f))
2595 return ERR_PTR(-EBADF);
2596
2597 if (flags & LOOKUP_LINKAT_EMPTY) {
2598 if (fd_file(f)->f_cred != current_cred() &&
2599 !ns_capable(fd_file(f)->f_cred->user_ns, CAP_DAC_READ_SEARCH))
2600 return ERR_PTR(-ENOENT);
2601 }
2602
2603 dentry = fd_file(f)->f_path.dentry;
2604
2605 if (*s && unlikely(!d_can_lookup(dentry)))
2606 return ERR_PTR(-ENOTDIR);
2607
2608 nd->path = fd_file(f)->f_path;
2609 if (flags & LOOKUP_RCU) {
2610 nd->inode = nd->path.dentry->d_inode;
2611 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2612 } else {
2613 path_get(&nd->path);
2614 nd->inode = nd->path.dentry->d_inode;
2615 }
2616 }
2617
2618 /* For scoped-lookups we need to set the root to the dirfd as well. */
2619 if (flags & LOOKUP_IS_SCOPED) {
2620 nd->root = nd->path;
2621 if (flags & LOOKUP_RCU) {
2622 nd->root_seq = nd->seq;
2623 } else {
2624 path_get(&nd->root);
2625 nd->state |= ND_ROOT_GRABBED;
2626 }
2627 }
2628 return s;
2629 }
2630
lookup_last(struct nameidata * nd)2631 static inline const char *lookup_last(struct nameidata *nd)
2632 {
2633 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2634 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2635
2636 return walk_component(nd, WALK_TRAILING);
2637 }
2638
handle_lookup_down(struct nameidata * nd)2639 static int handle_lookup_down(struct nameidata *nd)
2640 {
2641 if (!(nd->flags & LOOKUP_RCU))
2642 dget(nd->path.dentry);
2643 nd->next_seq = nd->seq;
2644 return PTR_ERR(step_into(nd, WALK_NOFOLLOW, nd->path.dentry));
2645 }
2646
2647 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_lookupat(struct nameidata * nd,unsigned flags,struct path * path)2648 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2649 {
2650 const char *s = path_init(nd, flags);
2651 int err;
2652
2653 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2654 err = handle_lookup_down(nd);
2655 if (unlikely(err < 0))
2656 s = ERR_PTR(err);
2657 }
2658
2659 while (!(err = link_path_walk(s, nd)) &&
2660 (s = lookup_last(nd)) != NULL)
2661 ;
2662 if (!err && unlikely(nd->flags & LOOKUP_MOUNTPOINT)) {
2663 err = handle_lookup_down(nd);
2664 nd->state &= ~ND_JUMPED; // no d_weak_revalidate(), please...
2665 }
2666 if (!err)
2667 err = complete_walk(nd);
2668
2669 if (!err && nd->flags & LOOKUP_DIRECTORY)
2670 if (!d_can_lookup(nd->path.dentry))
2671 err = -ENOTDIR;
2672 if (!err) {
2673 *path = nd->path;
2674 nd->path.mnt = NULL;
2675 nd->path.dentry = NULL;
2676 }
2677 terminate_walk(nd);
2678 return err;
2679 }
2680
filename_lookup(int dfd,struct filename * name,unsigned flags,struct path * path,struct path * root)2681 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2682 struct path *path, struct path *root)
2683 {
2684 int retval;
2685 struct nameidata nd;
2686 if (IS_ERR(name))
2687 return PTR_ERR(name);
2688 set_nameidata(&nd, dfd, name, root);
2689 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2690 if (unlikely(retval == -ECHILD))
2691 retval = path_lookupat(&nd, flags, path);
2692 if (unlikely(retval == -ESTALE))
2693 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2694
2695 if (likely(!retval))
2696 audit_inode(name, path->dentry,
2697 flags & LOOKUP_MOUNTPOINT ? AUDIT_INODE_NOEVAL : 0);
2698 restore_nameidata();
2699 return retval;
2700 }
2701
2702 /* Returns 0 and nd will be valid on success; Returns error, otherwise. */
path_parentat(struct nameidata * nd,unsigned flags,struct path * parent)2703 static int path_parentat(struct nameidata *nd, unsigned flags,
2704 struct path *parent)
2705 {
2706 const char *s = path_init(nd, flags);
2707 int err = link_path_walk(s, nd);
2708 if (!err)
2709 err = complete_walk(nd);
2710 if (!err) {
2711 *parent = nd->path;
2712 nd->path.mnt = NULL;
2713 nd->path.dentry = NULL;
2714 }
2715 terminate_walk(nd);
2716 return err;
2717 }
2718
2719 /* Note: this does not consume "name" */
__filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2720 static int __filename_parentat(int dfd, struct filename *name,
2721 unsigned int flags, struct path *parent,
2722 struct qstr *last, int *type,
2723 const struct path *root)
2724 {
2725 int retval;
2726 struct nameidata nd;
2727
2728 if (IS_ERR(name))
2729 return PTR_ERR(name);
2730 set_nameidata(&nd, dfd, name, root);
2731 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2732 if (unlikely(retval == -ECHILD))
2733 retval = path_parentat(&nd, flags, parent);
2734 if (unlikely(retval == -ESTALE))
2735 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2736 if (likely(!retval)) {
2737 *last = nd.last;
2738 *type = nd.last_type;
2739 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2740 }
2741 restore_nameidata();
2742 return retval;
2743 }
2744
filename_parentat(int dfd,struct filename * name,unsigned int flags,struct path * parent,struct qstr * last,int * type)2745 static int filename_parentat(int dfd, struct filename *name,
2746 unsigned int flags, struct path *parent,
2747 struct qstr *last, int *type)
2748 {
2749 return __filename_parentat(dfd, name, flags, parent, last, type, NULL);
2750 }
2751
2752 /* does lookup, returns the object with parent locked */
__kern_path_locked(int dfd,struct filename * name,struct path * path)2753 static struct dentry *__kern_path_locked(int dfd, struct filename *name, struct path *path)
2754 {
2755 struct path parent_path __free(path_put) = {};
2756 struct dentry *d;
2757 struct qstr last;
2758 int type, error;
2759
2760 error = filename_parentat(dfd, name, 0, &parent_path, &last, &type);
2761 if (error)
2762 return ERR_PTR(error);
2763 if (unlikely(type != LAST_NORM))
2764 return ERR_PTR(-EINVAL);
2765 inode_lock_nested(parent_path.dentry->d_inode, I_MUTEX_PARENT);
2766 d = lookup_one_qstr_excl(&last, parent_path.dentry, 0);
2767 if (IS_ERR(d)) {
2768 inode_unlock(parent_path.dentry->d_inode);
2769 return d;
2770 }
2771 path->dentry = no_free_ptr(parent_path.dentry);
2772 path->mnt = no_free_ptr(parent_path.mnt);
2773 return d;
2774 }
2775
kern_path_locked_negative(const char * name,struct path * path)2776 struct dentry *kern_path_locked_negative(const char *name, struct path *path)
2777 {
2778 struct path parent_path __free(path_put) = {};
2779 struct filename *filename __free(putname) = getname_kernel(name);
2780 struct dentry *d;
2781 struct qstr last;
2782 int type, error;
2783
2784 error = filename_parentat(AT_FDCWD, filename, 0, &parent_path, &last, &type);
2785 if (error)
2786 return ERR_PTR(error);
2787 if (unlikely(type != LAST_NORM))
2788 return ERR_PTR(-EINVAL);
2789 inode_lock_nested(parent_path.dentry->d_inode, I_MUTEX_PARENT);
2790 d = lookup_one_qstr_excl_raw(&last, parent_path.dentry, 0);
2791 if (IS_ERR(d)) {
2792 inode_unlock(parent_path.dentry->d_inode);
2793 return d;
2794 }
2795 path->dentry = no_free_ptr(parent_path.dentry);
2796 path->mnt = no_free_ptr(parent_path.mnt);
2797 return d;
2798 }
2799
kern_path_locked(const char * name,struct path * path)2800 struct dentry *kern_path_locked(const char *name, struct path *path)
2801 {
2802 struct filename *filename = getname_kernel(name);
2803 struct dentry *res = __kern_path_locked(AT_FDCWD, filename, path);
2804
2805 putname(filename);
2806 return res;
2807 }
2808
user_path_locked_at(int dfd,const char __user * name,struct path * path)2809 struct dentry *user_path_locked_at(int dfd, const char __user *name, struct path *path)
2810 {
2811 struct filename *filename = getname(name);
2812 struct dentry *res = __kern_path_locked(dfd, filename, path);
2813
2814 putname(filename);
2815 return res;
2816 }
2817 EXPORT_SYMBOL(user_path_locked_at);
2818
kern_path(const char * name,unsigned int flags,struct path * path)2819 int kern_path(const char *name, unsigned int flags, struct path *path)
2820 {
2821 struct filename *filename = getname_kernel(name);
2822 int ret = filename_lookup(AT_FDCWD, filename, flags, path, NULL);
2823
2824 putname(filename);
2825 return ret;
2826
2827 }
2828 EXPORT_SYMBOL(kern_path);
2829
2830 /**
2831 * vfs_path_parent_lookup - lookup a parent path relative to a dentry-vfsmount pair
2832 * @filename: filename structure
2833 * @flags: lookup flags
2834 * @parent: pointer to struct path to fill
2835 * @last: last component
2836 * @type: type of the last component
2837 * @root: pointer to struct path of the base directory
2838 */
vfs_path_parent_lookup(struct filename * filename,unsigned int flags,struct path * parent,struct qstr * last,int * type,const struct path * root)2839 int vfs_path_parent_lookup(struct filename *filename, unsigned int flags,
2840 struct path *parent, struct qstr *last, int *type,
2841 const struct path *root)
2842 {
2843 return __filename_parentat(AT_FDCWD, filename, flags, parent, last,
2844 type, root);
2845 }
2846 EXPORT_SYMBOL(vfs_path_parent_lookup);
2847
2848 /**
2849 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2850 * @dentry: pointer to dentry of the base directory
2851 * @mnt: pointer to vfs mount of the base directory
2852 * @name: pointer to file name
2853 * @flags: lookup flags
2854 * @path: pointer to struct path to fill
2855 */
vfs_path_lookup(struct dentry * dentry,struct vfsmount * mnt,const char * name,unsigned int flags,struct path * path)2856 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2857 const char *name, unsigned int flags,
2858 struct path *path)
2859 {
2860 struct filename *filename;
2861 struct path root = {.mnt = mnt, .dentry = dentry};
2862 int ret;
2863
2864 filename = getname_kernel(name);
2865 /* the first argument of filename_lookup() is ignored with root */
2866 ret = filename_lookup(AT_FDCWD, filename, flags, path, &root);
2867 putname(filename);
2868 return ret;
2869 }
2870 EXPORT_SYMBOL(vfs_path_lookup);
2871
lookup_one_common(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len,struct qstr * this)2872 static int lookup_one_common(struct mnt_idmap *idmap,
2873 const char *name, struct dentry *base, int len,
2874 struct qstr *this)
2875 {
2876 this->name = name;
2877 this->len = len;
2878 this->hash = full_name_hash(base, name, len);
2879 if (!len)
2880 return -EACCES;
2881
2882 if (is_dot_dotdot(name, len))
2883 return -EACCES;
2884
2885 while (len--) {
2886 unsigned int c = *(const unsigned char *)name++;
2887 if (c == '/' || c == '\0')
2888 return -EACCES;
2889 }
2890 /*
2891 * See if the low-level filesystem might want
2892 * to use its own hash..
2893 */
2894 if (base->d_flags & DCACHE_OP_HASH) {
2895 int err = base->d_op->d_hash(base, this);
2896 if (err < 0)
2897 return err;
2898 }
2899
2900 return inode_permission(idmap, base->d_inode, MAY_EXEC);
2901 }
2902
2903 /**
2904 * try_lookup_one_len - filesystem helper to lookup single pathname component
2905 * @name: pathname component to lookup
2906 * @base: base directory to lookup from
2907 * @len: maximum length @len should be interpreted to
2908 *
2909 * Look up a dentry by name in the dcache, returning NULL if it does not
2910 * currently exist. The function does not try to create a dentry.
2911 *
2912 * Note that this routine is purely a helper for filesystem usage and should
2913 * not be called by generic code.
2914 *
2915 * No locks need be held - only a counted reference to @base is needed.
2916 *
2917 */
try_lookup_one_len(const char * name,struct dentry * base,int len)2918 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2919 {
2920 struct qstr this;
2921 int err;
2922
2923 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2924 if (err)
2925 return ERR_PTR(err);
2926
2927 return lookup_dcache(&this, base, 0);
2928 }
2929 EXPORT_SYMBOL(try_lookup_one_len);
2930
2931 /**
2932 * lookup_one_len - filesystem helper to lookup single pathname component
2933 * @name: pathname component to lookup
2934 * @base: base directory to lookup from
2935 * @len: maximum length @len should be interpreted to
2936 *
2937 * Note that this routine is purely a helper for filesystem usage and should
2938 * not be called by generic code.
2939 *
2940 * The caller must hold base->i_mutex.
2941 */
lookup_one_len(const char * name,struct dentry * base,int len)2942 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2943 {
2944 struct dentry *dentry;
2945 struct qstr this;
2946 int err;
2947
2948 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2949
2950 err = lookup_one_common(&nop_mnt_idmap, name, base, len, &this);
2951 if (err)
2952 return ERR_PTR(err);
2953
2954 dentry = lookup_dcache(&this, base, 0);
2955 return dentry ? dentry : __lookup_slow(&this, base, 0);
2956 }
2957 EXPORT_SYMBOL(lookup_one_len);
2958
2959 /**
2960 * lookup_one - filesystem helper to lookup single pathname component
2961 * @idmap: idmap of the mount the lookup is performed from
2962 * @name: pathname component to lookup
2963 * @base: base directory to lookup from
2964 * @len: maximum length @len should be interpreted to
2965 *
2966 * Note that this routine is purely a helper for filesystem usage and should
2967 * not be called by generic code.
2968 *
2969 * The caller must hold base->i_mutex.
2970 */
lookup_one(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)2971 struct dentry *lookup_one(struct mnt_idmap *idmap, const char *name,
2972 struct dentry *base, int len)
2973 {
2974 struct dentry *dentry;
2975 struct qstr this;
2976 int err;
2977
2978 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2979
2980 err = lookup_one_common(idmap, name, base, len, &this);
2981 if (err)
2982 return ERR_PTR(err);
2983
2984 dentry = lookup_dcache(&this, base, 0);
2985 return dentry ? dentry : __lookup_slow(&this, base, 0);
2986 }
2987 EXPORT_SYMBOL(lookup_one);
2988
2989 /**
2990 * lookup_one_unlocked - filesystem helper to lookup single pathname component
2991 * @idmap: idmap of the mount the lookup is performed from
2992 * @name: pathname component to lookup
2993 * @base: base directory to lookup from
2994 * @len: maximum length @len should be interpreted to
2995 *
2996 * Note that this routine is purely a helper for filesystem usage and should
2997 * not be called by generic code.
2998 *
2999 * Unlike lookup_one_len, it should be called without the parent
3000 * i_mutex held, and will take the i_mutex itself if necessary.
3001 */
lookup_one_unlocked(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)3002 struct dentry *lookup_one_unlocked(struct mnt_idmap *idmap,
3003 const char *name, struct dentry *base,
3004 int len)
3005 {
3006 struct qstr this;
3007 int err;
3008 struct dentry *ret;
3009
3010 err = lookup_one_common(idmap, name, base, len, &this);
3011 if (err)
3012 return ERR_PTR(err);
3013
3014 ret = lookup_dcache(&this, base, 0);
3015 if (!ret)
3016 ret = lookup_slow(&this, base, 0);
3017 return ret;
3018 }
3019 EXPORT_SYMBOL(lookup_one_unlocked);
3020
3021 /**
3022 * lookup_one_positive_unlocked - filesystem helper to lookup single
3023 * pathname component
3024 * @idmap: idmap of the mount the lookup is performed from
3025 * @name: pathname component to lookup
3026 * @base: base directory to lookup from
3027 * @len: maximum length @len should be interpreted to
3028 *
3029 * This helper will yield ERR_PTR(-ENOENT) on negatives. The helper returns
3030 * known positive or ERR_PTR(). This is what most of the users want.
3031 *
3032 * Note that pinned negative with unlocked parent _can_ become positive at any
3033 * time, so callers of lookup_one_unlocked() need to be very careful; pinned
3034 * positives have >d_inode stable, so this one avoids such problems.
3035 *
3036 * Note that this routine is purely a helper for filesystem usage and should
3037 * not be called by generic code.
3038 *
3039 * The helper should be called without i_mutex held.
3040 */
lookup_one_positive_unlocked(struct mnt_idmap * idmap,const char * name,struct dentry * base,int len)3041 struct dentry *lookup_one_positive_unlocked(struct mnt_idmap *idmap,
3042 const char *name,
3043 struct dentry *base, int len)
3044 {
3045 struct dentry *ret = lookup_one_unlocked(idmap, name, base, len);
3046
3047 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
3048 dput(ret);
3049 ret = ERR_PTR(-ENOENT);
3050 }
3051 return ret;
3052 }
3053 EXPORT_SYMBOL(lookup_one_positive_unlocked);
3054
3055 /**
3056 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
3057 * @name: pathname component to lookup
3058 * @base: base directory to lookup from
3059 * @len: maximum length @len should be interpreted to
3060 *
3061 * Note that this routine is purely a helper for filesystem usage and should
3062 * not be called by generic code.
3063 *
3064 * Unlike lookup_one_len, it should be called without the parent
3065 * i_mutex held, and will take the i_mutex itself if necessary.
3066 */
lookup_one_len_unlocked(const char * name,struct dentry * base,int len)3067 struct dentry *lookup_one_len_unlocked(const char *name,
3068 struct dentry *base, int len)
3069 {
3070 return lookup_one_unlocked(&nop_mnt_idmap, name, base, len);
3071 }
3072 EXPORT_SYMBOL(lookup_one_len_unlocked);
3073
3074 /*
3075 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
3076 * on negatives. Returns known positive or ERR_PTR(); that's what
3077 * most of the users want. Note that pinned negative with unlocked parent
3078 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
3079 * need to be very careful; pinned positives have ->d_inode stable, so
3080 * this one avoids such problems.
3081 */
lookup_positive_unlocked(const char * name,struct dentry * base,int len)3082 struct dentry *lookup_positive_unlocked(const char *name,
3083 struct dentry *base, int len)
3084 {
3085 return lookup_one_positive_unlocked(&nop_mnt_idmap, name, base, len);
3086 }
3087 EXPORT_SYMBOL(lookup_positive_unlocked);
3088
3089 #ifdef CONFIG_UNIX98_PTYS
path_pts(struct path * path)3090 int path_pts(struct path *path)
3091 {
3092 /* Find something mounted on "pts" in the same directory as
3093 * the input path.
3094 */
3095 struct dentry *parent = dget_parent(path->dentry);
3096 struct dentry *child;
3097 struct qstr this = QSTR_INIT("pts", 3);
3098
3099 if (unlikely(!path_connected(path->mnt, parent))) {
3100 dput(parent);
3101 return -ENOENT;
3102 }
3103 dput(path->dentry);
3104 path->dentry = parent;
3105 child = d_hash_and_lookup(parent, &this);
3106 if (IS_ERR_OR_NULL(child))
3107 return -ENOENT;
3108
3109 path->dentry = child;
3110 dput(parent);
3111 follow_down(path, 0);
3112 return 0;
3113 }
3114 #endif
3115
user_path_at(int dfd,const char __user * name,unsigned flags,struct path * path)3116 int user_path_at(int dfd, const char __user *name, unsigned flags,
3117 struct path *path)
3118 {
3119 struct filename *filename = getname_flags(name, flags);
3120 int ret = filename_lookup(dfd, filename, flags, path, NULL);
3121
3122 putname(filename);
3123 return ret;
3124 }
3125 EXPORT_SYMBOL(user_path_at);
3126
__check_sticky(struct mnt_idmap * idmap,struct inode * dir,struct inode * inode)3127 int __check_sticky(struct mnt_idmap *idmap, struct inode *dir,
3128 struct inode *inode)
3129 {
3130 kuid_t fsuid = current_fsuid();
3131
3132 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, inode), fsuid))
3133 return 0;
3134 if (vfsuid_eq_kuid(i_uid_into_vfsuid(idmap, dir), fsuid))
3135 return 0;
3136 return !capable_wrt_inode_uidgid(idmap, inode, CAP_FOWNER);
3137 }
3138 EXPORT_SYMBOL(__check_sticky);
3139
3140 /*
3141 * Check whether we can remove a link victim from directory dir, check
3142 * whether the type of victim is right.
3143 * 1. We can't do it if dir is read-only (done in permission())
3144 * 2. We should have write and exec permissions on dir
3145 * 3. We can't remove anything from append-only dir
3146 * 4. We can't do anything with immutable dir (done in permission())
3147 * 5. If the sticky bit on dir is set we should either
3148 * a. be owner of dir, or
3149 * b. be owner of victim, or
3150 * c. have CAP_FOWNER capability
3151 * 6. If the victim is append-only or immutable we can't do antyhing with
3152 * links pointing to it.
3153 * 7. If the victim has an unknown uid or gid we can't change the inode.
3154 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
3155 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
3156 * 10. We can't remove a root or mountpoint.
3157 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
3158 * nfs_async_unlink().
3159 */
may_delete(struct mnt_idmap * idmap,struct inode * dir,struct dentry * victim,bool isdir)3160 static int may_delete(struct mnt_idmap *idmap, struct inode *dir,
3161 struct dentry *victim, bool isdir)
3162 {
3163 struct inode *inode = d_backing_inode(victim);
3164 int error;
3165
3166 if (d_is_negative(victim))
3167 return -ENOENT;
3168 BUG_ON(!inode);
3169
3170 BUG_ON(victim->d_parent->d_inode != dir);
3171
3172 /* Inode writeback is not safe when the uid or gid are invalid. */
3173 if (!vfsuid_valid(i_uid_into_vfsuid(idmap, inode)) ||
3174 !vfsgid_valid(i_gid_into_vfsgid(idmap, inode)))
3175 return -EOVERFLOW;
3176
3177 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
3178
3179 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3180 if (error)
3181 return error;
3182 if (IS_APPEND(dir))
3183 return -EPERM;
3184
3185 if (check_sticky(idmap, dir, inode) || IS_APPEND(inode) ||
3186 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) ||
3187 HAS_UNMAPPED_ID(idmap, inode))
3188 return -EPERM;
3189 if (isdir) {
3190 if (!d_is_dir(victim))
3191 return -ENOTDIR;
3192 if (IS_ROOT(victim))
3193 return -EBUSY;
3194 } else if (d_is_dir(victim))
3195 return -EISDIR;
3196 if (IS_DEADDIR(dir))
3197 return -ENOENT;
3198 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
3199 return -EBUSY;
3200 return 0;
3201 }
3202
3203 /* Check whether we can create an object with dentry child in directory
3204 * dir.
3205 * 1. We can't do it if child already exists (open has special treatment for
3206 * this case, but since we are inlined it's OK)
3207 * 2. We can't do it if dir is read-only (done in permission())
3208 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
3209 * 4. We should have write and exec permissions on dir
3210 * 5. We can't do it if dir is immutable (done in permission())
3211 */
may_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * child)3212 static inline int may_create(struct mnt_idmap *idmap,
3213 struct inode *dir, struct dentry *child)
3214 {
3215 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
3216 if (child->d_inode)
3217 return -EEXIST;
3218 if (IS_DEADDIR(dir))
3219 return -ENOENT;
3220 if (!fsuidgid_has_mapping(dir->i_sb, idmap))
3221 return -EOVERFLOW;
3222
3223 return inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3224 }
3225
3226 // p1 != p2, both are on the same filesystem, ->s_vfs_rename_mutex is held
lock_two_directories(struct dentry * p1,struct dentry * p2)3227 static struct dentry *lock_two_directories(struct dentry *p1, struct dentry *p2)
3228 {
3229 struct dentry *p = p1, *q = p2, *r;
3230
3231 while ((r = p->d_parent) != p2 && r != p)
3232 p = r;
3233 if (r == p2) {
3234 // p is a child of p2 and an ancestor of p1 or p1 itself
3235 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3236 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT2);
3237 return p;
3238 }
3239 // p is the root of connected component that contains p1
3240 // p2 does not occur on the path from p to p1
3241 while ((r = q->d_parent) != p1 && r != p && r != q)
3242 q = r;
3243 if (r == p1) {
3244 // q is a child of p1 and an ancestor of p2 or p2 itself
3245 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3246 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3247 return q;
3248 } else if (likely(r == p)) {
3249 // both p2 and p1 are descendents of p
3250 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3251 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
3252 return NULL;
3253 } else { // no common ancestor at the time we'd been called
3254 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3255 return ERR_PTR(-EXDEV);
3256 }
3257 }
3258
3259 /*
3260 * p1 and p2 should be directories on the same fs.
3261 */
lock_rename(struct dentry * p1,struct dentry * p2)3262 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
3263 {
3264 if (p1 == p2) {
3265 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
3266 return NULL;
3267 }
3268
3269 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
3270 return lock_two_directories(p1, p2);
3271 }
3272 EXPORT_SYMBOL(lock_rename);
3273
3274 /*
3275 * c1 and p2 should be on the same fs.
3276 */
lock_rename_child(struct dentry * c1,struct dentry * p2)3277 struct dentry *lock_rename_child(struct dentry *c1, struct dentry *p2)
3278 {
3279 if (READ_ONCE(c1->d_parent) == p2) {
3280 /*
3281 * hopefully won't need to touch ->s_vfs_rename_mutex at all.
3282 */
3283 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3284 /*
3285 * now that p2 is locked, nobody can move in or out of it,
3286 * so the test below is safe.
3287 */
3288 if (likely(c1->d_parent == p2))
3289 return NULL;
3290
3291 /*
3292 * c1 got moved out of p2 while we'd been taking locks;
3293 * unlock and fall back to slow case.
3294 */
3295 inode_unlock(p2->d_inode);
3296 }
3297
3298 mutex_lock(&c1->d_sb->s_vfs_rename_mutex);
3299 /*
3300 * nobody can move out of any directories on this fs.
3301 */
3302 if (likely(c1->d_parent != p2))
3303 return lock_two_directories(c1->d_parent, p2);
3304
3305 /*
3306 * c1 got moved into p2 while we were taking locks;
3307 * we need p2 locked and ->s_vfs_rename_mutex unlocked,
3308 * for consistency with lock_rename().
3309 */
3310 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
3311 mutex_unlock(&c1->d_sb->s_vfs_rename_mutex);
3312 return NULL;
3313 }
3314 EXPORT_SYMBOL(lock_rename_child);
3315
unlock_rename(struct dentry * p1,struct dentry * p2)3316 void unlock_rename(struct dentry *p1, struct dentry *p2)
3317 {
3318 inode_unlock(p1->d_inode);
3319 if (p1 != p2) {
3320 inode_unlock(p2->d_inode);
3321 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
3322 }
3323 }
3324 EXPORT_SYMBOL(unlock_rename);
3325
3326 /**
3327 * vfs_prepare_mode - prepare the mode to be used for a new inode
3328 * @idmap: idmap of the mount the inode was found from
3329 * @dir: parent directory of the new inode
3330 * @mode: mode of the new inode
3331 * @mask_perms: allowed permission by the vfs
3332 * @type: type of file to be created
3333 *
3334 * This helper consolidates and enforces vfs restrictions on the @mode of a new
3335 * object to be created.
3336 *
3337 * Umask stripping depends on whether the filesystem supports POSIX ACLs (see
3338 * the kernel documentation for mode_strip_umask()). Moving umask stripping
3339 * after setgid stripping allows the same ordering for both non-POSIX ACL and
3340 * POSIX ACL supporting filesystems.
3341 *
3342 * Note that it's currently valid for @type to be 0 if a directory is created.
3343 * Filesystems raise that flag individually and we need to check whether each
3344 * filesystem can deal with receiving S_IFDIR from the vfs before we enforce a
3345 * non-zero type.
3346 *
3347 * Returns: mode to be passed to the filesystem
3348 */
vfs_prepare_mode(struct mnt_idmap * idmap,const struct inode * dir,umode_t mode,umode_t mask_perms,umode_t type)3349 static inline umode_t vfs_prepare_mode(struct mnt_idmap *idmap,
3350 const struct inode *dir, umode_t mode,
3351 umode_t mask_perms, umode_t type)
3352 {
3353 mode = mode_strip_sgid(idmap, dir, mode);
3354 mode = mode_strip_umask(dir, mode);
3355
3356 /*
3357 * Apply the vfs mandated allowed permission mask and set the type of
3358 * file to be created before we call into the filesystem.
3359 */
3360 mode &= (mask_perms & ~S_IFMT);
3361 mode |= (type & S_IFMT);
3362
3363 return mode;
3364 }
3365
3366 /**
3367 * vfs_create - create new file
3368 * @idmap: idmap of the mount the inode was found from
3369 * @dir: inode of the parent directory
3370 * @dentry: dentry of the child file
3371 * @mode: mode of the child file
3372 * @want_excl: whether the file must not yet exist
3373 *
3374 * Create a new file.
3375 *
3376 * If the inode has been found through an idmapped mount the idmap of
3377 * the vfsmount must be passed through @idmap. This function will then take
3378 * care to map the inode according to @idmap before checking permissions.
3379 * On non-idmapped mounts or if permission checking is to be performed on the
3380 * raw inode simply pass @nop_mnt_idmap.
3381 */
vfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool want_excl)3382 int vfs_create(struct mnt_idmap *idmap, struct inode *dir,
3383 struct dentry *dentry, umode_t mode, bool want_excl)
3384 {
3385 int error;
3386
3387 error = may_create(idmap, dir, dentry);
3388 if (error)
3389 return error;
3390
3391 if (!dir->i_op->create)
3392 return -EACCES; /* shouldn't it be ENOSYS? */
3393
3394 mode = vfs_prepare_mode(idmap, dir, mode, S_IALLUGO, S_IFREG);
3395 error = security_inode_create(dir, dentry, mode);
3396 if (error)
3397 return error;
3398 error = dir->i_op->create(idmap, dir, dentry, mode, want_excl);
3399 if (!error)
3400 fsnotify_create(dir, dentry);
3401 return error;
3402 }
3403 EXPORT_SYMBOL(vfs_create);
3404
vfs_mkobj(struct dentry * dentry,umode_t mode,int (* f)(struct dentry *,umode_t,void *),void * arg)3405 int vfs_mkobj(struct dentry *dentry, umode_t mode,
3406 int (*f)(struct dentry *, umode_t, void *),
3407 void *arg)
3408 {
3409 struct inode *dir = dentry->d_parent->d_inode;
3410 int error = may_create(&nop_mnt_idmap, dir, dentry);
3411 if (error)
3412 return error;
3413
3414 mode &= S_IALLUGO;
3415 mode |= S_IFREG;
3416 error = security_inode_create(dir, dentry, mode);
3417 if (error)
3418 return error;
3419 error = f(dentry, mode, arg);
3420 if (!error)
3421 fsnotify_create(dir, dentry);
3422 return error;
3423 }
3424 EXPORT_SYMBOL(vfs_mkobj);
3425
may_open_dev(const struct path * path)3426 bool may_open_dev(const struct path *path)
3427 {
3428 return !(path->mnt->mnt_flags & MNT_NODEV) &&
3429 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
3430 }
3431
may_open(struct mnt_idmap * idmap,const struct path * path,int acc_mode,int flag)3432 static int may_open(struct mnt_idmap *idmap, const struct path *path,
3433 int acc_mode, int flag)
3434 {
3435 struct dentry *dentry = path->dentry;
3436 struct inode *inode = dentry->d_inode;
3437 int error;
3438
3439 if (!inode)
3440 return -ENOENT;
3441
3442 switch (inode->i_mode & S_IFMT) {
3443 case S_IFLNK:
3444 return -ELOOP;
3445 case S_IFDIR:
3446 if (acc_mode & MAY_WRITE)
3447 return -EISDIR;
3448 if (acc_mode & MAY_EXEC)
3449 return -EACCES;
3450 break;
3451 case S_IFBLK:
3452 case S_IFCHR:
3453 if (!may_open_dev(path))
3454 return -EACCES;
3455 fallthrough;
3456 case S_IFIFO:
3457 case S_IFSOCK:
3458 if (acc_mode & MAY_EXEC)
3459 return -EACCES;
3460 flag &= ~O_TRUNC;
3461 break;
3462 case S_IFREG:
3463 if ((acc_mode & MAY_EXEC) && path_noexec(path))
3464 return -EACCES;
3465 break;
3466 default:
3467 VFS_BUG_ON_INODE(1, inode);
3468 }
3469
3470 error = inode_permission(idmap, inode, MAY_OPEN | acc_mode);
3471 if (error)
3472 return error;
3473
3474 /*
3475 * An append-only file must be opened in append mode for writing.
3476 */
3477 if (IS_APPEND(inode)) {
3478 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
3479 return -EPERM;
3480 if (flag & O_TRUNC)
3481 return -EPERM;
3482 }
3483
3484 /* O_NOATIME can only be set by the owner or superuser */
3485 if (flag & O_NOATIME && !inode_owner_or_capable(idmap, inode))
3486 return -EPERM;
3487
3488 return 0;
3489 }
3490
handle_truncate(struct mnt_idmap * idmap,struct file * filp)3491 static int handle_truncate(struct mnt_idmap *idmap, struct file *filp)
3492 {
3493 const struct path *path = &filp->f_path;
3494 struct inode *inode = path->dentry->d_inode;
3495 int error = get_write_access(inode);
3496 if (error)
3497 return error;
3498
3499 error = security_file_truncate(filp);
3500 if (!error) {
3501 error = do_truncate(idmap, path->dentry, 0,
3502 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
3503 filp);
3504 }
3505 put_write_access(inode);
3506 return error;
3507 }
3508
open_to_namei_flags(int flag)3509 static inline int open_to_namei_flags(int flag)
3510 {
3511 if ((flag & O_ACCMODE) == 3)
3512 flag--;
3513 return flag;
3514 }
3515
may_o_create(struct mnt_idmap * idmap,const struct path * dir,struct dentry * dentry,umode_t mode)3516 static int may_o_create(struct mnt_idmap *idmap,
3517 const struct path *dir, struct dentry *dentry,
3518 umode_t mode)
3519 {
3520 int error = security_path_mknod(dir, dentry, mode, 0);
3521 if (error)
3522 return error;
3523
3524 if (!fsuidgid_has_mapping(dir->dentry->d_sb, idmap))
3525 return -EOVERFLOW;
3526
3527 error = inode_permission(idmap, dir->dentry->d_inode,
3528 MAY_WRITE | MAY_EXEC);
3529 if (error)
3530 return error;
3531
3532 return security_inode_create(dir->dentry->d_inode, dentry, mode);
3533 }
3534
3535 /*
3536 * Attempt to atomically look up, create and open a file from a negative
3537 * dentry.
3538 *
3539 * Returns 0 if successful. The file will have been created and attached to
3540 * @file by the filesystem calling finish_open().
3541 *
3542 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
3543 * be set. The caller will need to perform the open themselves. @path will
3544 * have been updated to point to the new dentry. This may be negative.
3545 *
3546 * Returns an error code otherwise.
3547 */
atomic_open(struct nameidata * nd,struct dentry * dentry,struct file * file,int open_flag,umode_t mode)3548 static struct dentry *atomic_open(struct nameidata *nd, struct dentry *dentry,
3549 struct file *file,
3550 int open_flag, umode_t mode)
3551 {
3552 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3553 struct inode *dir = nd->path.dentry->d_inode;
3554 int error;
3555
3556 if (nd->flags & LOOKUP_DIRECTORY)
3557 open_flag |= O_DIRECTORY;
3558
3559 file->f_path.dentry = DENTRY_NOT_SET;
3560 file->f_path.mnt = nd->path.mnt;
3561 error = dir->i_op->atomic_open(dir, dentry, file,
3562 open_to_namei_flags(open_flag), mode);
3563 d_lookup_done(dentry);
3564 if (!error) {
3565 if (file->f_mode & FMODE_OPENED) {
3566 if (unlikely(dentry != file->f_path.dentry)) {
3567 dput(dentry);
3568 dentry = dget(file->f_path.dentry);
3569 }
3570 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3571 error = -EIO;
3572 } else {
3573 if (file->f_path.dentry) {
3574 dput(dentry);
3575 dentry = file->f_path.dentry;
3576 }
3577 if (unlikely(d_is_negative(dentry)))
3578 error = -ENOENT;
3579 }
3580 }
3581 if (error) {
3582 dput(dentry);
3583 dentry = ERR_PTR(error);
3584 }
3585 return dentry;
3586 }
3587
3588 /*
3589 * Look up and maybe create and open the last component.
3590 *
3591 * Must be called with parent locked (exclusive in O_CREAT case).
3592 *
3593 * Returns 0 on success, that is, if
3594 * the file was successfully atomically created (if necessary) and opened, or
3595 * the file was not completely opened at this time, though lookups and
3596 * creations were performed.
3597 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3598 * In the latter case dentry returned in @path might be negative if O_CREAT
3599 * hadn't been specified.
3600 *
3601 * An error code is returned on failure.
3602 */
lookup_open(struct nameidata * nd,struct file * file,const struct open_flags * op,bool got_write)3603 static struct dentry *lookup_open(struct nameidata *nd, struct file *file,
3604 const struct open_flags *op,
3605 bool got_write)
3606 {
3607 struct mnt_idmap *idmap;
3608 struct dentry *dir = nd->path.dentry;
3609 struct inode *dir_inode = dir->d_inode;
3610 int open_flag = op->open_flag;
3611 struct dentry *dentry;
3612 int error, create_error = 0;
3613 umode_t mode = op->mode;
3614 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3615
3616 if (unlikely(IS_DEADDIR(dir_inode)))
3617 return ERR_PTR(-ENOENT);
3618
3619 file->f_mode &= ~FMODE_CREATED;
3620 dentry = d_lookup(dir, &nd->last);
3621 for (;;) {
3622 if (!dentry) {
3623 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3624 if (IS_ERR(dentry))
3625 return dentry;
3626 }
3627 if (d_in_lookup(dentry))
3628 break;
3629
3630 error = d_revalidate(dir_inode, &nd->last, dentry, nd->flags);
3631 if (likely(error > 0))
3632 break;
3633 if (error)
3634 goto out_dput;
3635 d_invalidate(dentry);
3636 dput(dentry);
3637 dentry = NULL;
3638 }
3639 if (dentry->d_inode) {
3640 /* Cached positive dentry: will open in f_op->open */
3641 return dentry;
3642 }
3643
3644 if (open_flag & O_CREAT)
3645 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3646
3647 /*
3648 * Checking write permission is tricky, bacuse we don't know if we are
3649 * going to actually need it: O_CREAT opens should work as long as the
3650 * file exists. But checking existence breaks atomicity. The trick is
3651 * to check access and if not granted clear O_CREAT from the flags.
3652 *
3653 * Another problem is returing the "right" error value (e.g. for an
3654 * O_EXCL open we want to return EEXIST not EROFS).
3655 */
3656 if (unlikely(!got_write))
3657 open_flag &= ~O_TRUNC;
3658 idmap = mnt_idmap(nd->path.mnt);
3659 if (open_flag & O_CREAT) {
3660 if (open_flag & O_EXCL)
3661 open_flag &= ~O_TRUNC;
3662 mode = vfs_prepare_mode(idmap, dir->d_inode, mode, mode, mode);
3663 if (likely(got_write))
3664 create_error = may_o_create(idmap, &nd->path,
3665 dentry, mode);
3666 else
3667 create_error = -EROFS;
3668 }
3669 if (create_error)
3670 open_flag &= ~O_CREAT;
3671 if (dir_inode->i_op->atomic_open) {
3672 dentry = atomic_open(nd, dentry, file, open_flag, mode);
3673 if (unlikely(create_error) && dentry == ERR_PTR(-ENOENT))
3674 dentry = ERR_PTR(create_error);
3675 return dentry;
3676 }
3677
3678 if (d_in_lookup(dentry)) {
3679 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3680 nd->flags);
3681 d_lookup_done(dentry);
3682 if (unlikely(res)) {
3683 if (IS_ERR(res)) {
3684 error = PTR_ERR(res);
3685 goto out_dput;
3686 }
3687 dput(dentry);
3688 dentry = res;
3689 }
3690 }
3691
3692 /* Negative dentry, just create the file */
3693 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3694 file->f_mode |= FMODE_CREATED;
3695 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3696 if (!dir_inode->i_op->create) {
3697 error = -EACCES;
3698 goto out_dput;
3699 }
3700
3701 error = dir_inode->i_op->create(idmap, dir_inode, dentry,
3702 mode, open_flag & O_EXCL);
3703 if (error)
3704 goto out_dput;
3705 }
3706 if (unlikely(create_error) && !dentry->d_inode) {
3707 error = create_error;
3708 goto out_dput;
3709 }
3710 return dentry;
3711
3712 out_dput:
3713 dput(dentry);
3714 return ERR_PTR(error);
3715 }
3716
trailing_slashes(struct nameidata * nd)3717 static inline bool trailing_slashes(struct nameidata *nd)
3718 {
3719 return (bool)nd->last.name[nd->last.len];
3720 }
3721
lookup_fast_for_open(struct nameidata * nd,int open_flag)3722 static struct dentry *lookup_fast_for_open(struct nameidata *nd, int open_flag)
3723 {
3724 struct dentry *dentry;
3725
3726 if (open_flag & O_CREAT) {
3727 if (trailing_slashes(nd))
3728 return ERR_PTR(-EISDIR);
3729
3730 /* Don't bother on an O_EXCL create */
3731 if (open_flag & O_EXCL)
3732 return NULL;
3733 }
3734
3735 if (trailing_slashes(nd))
3736 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3737
3738 dentry = lookup_fast(nd);
3739 if (IS_ERR_OR_NULL(dentry))
3740 return dentry;
3741
3742 if (open_flag & O_CREAT) {
3743 /* Discard negative dentries. Need inode_lock to do the create */
3744 if (!dentry->d_inode) {
3745 if (!(nd->flags & LOOKUP_RCU))
3746 dput(dentry);
3747 dentry = NULL;
3748 }
3749 }
3750 return dentry;
3751 }
3752
open_last_lookups(struct nameidata * nd,struct file * file,const struct open_flags * op)3753 static const char *open_last_lookups(struct nameidata *nd,
3754 struct file *file, const struct open_flags *op)
3755 {
3756 struct dentry *dir = nd->path.dentry;
3757 int open_flag = op->open_flag;
3758 bool got_write = false;
3759 struct dentry *dentry;
3760 const char *res;
3761
3762 nd->flags |= op->intent;
3763
3764 if (nd->last_type != LAST_NORM) {
3765 if (nd->depth)
3766 put_link(nd);
3767 return handle_dots(nd, nd->last_type);
3768 }
3769
3770 /* We _can_ be in RCU mode here */
3771 dentry = lookup_fast_for_open(nd, open_flag);
3772 if (IS_ERR(dentry))
3773 return ERR_CAST(dentry);
3774
3775 if (likely(dentry))
3776 goto finish_lookup;
3777
3778 if (!(open_flag & O_CREAT)) {
3779 if (WARN_ON_ONCE(nd->flags & LOOKUP_RCU))
3780 return ERR_PTR(-ECHILD);
3781 } else {
3782 if (nd->flags & LOOKUP_RCU) {
3783 if (!try_to_unlazy(nd))
3784 return ERR_PTR(-ECHILD);
3785 }
3786 }
3787
3788 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3789 got_write = !mnt_want_write(nd->path.mnt);
3790 /*
3791 * do _not_ fail yet - we might not need that or fail with
3792 * a different error; let lookup_open() decide; we'll be
3793 * dropping this one anyway.
3794 */
3795 }
3796 if (open_flag & O_CREAT)
3797 inode_lock(dir->d_inode);
3798 else
3799 inode_lock_shared(dir->d_inode);
3800 dentry = lookup_open(nd, file, op, got_write);
3801 if (!IS_ERR(dentry)) {
3802 if (file->f_mode & FMODE_CREATED)
3803 fsnotify_create(dir->d_inode, dentry);
3804 if (file->f_mode & FMODE_OPENED)
3805 fsnotify_open(file);
3806 }
3807 if (open_flag & O_CREAT)
3808 inode_unlock(dir->d_inode);
3809 else
3810 inode_unlock_shared(dir->d_inode);
3811
3812 if (got_write)
3813 mnt_drop_write(nd->path.mnt);
3814
3815 if (IS_ERR(dentry))
3816 return ERR_CAST(dentry);
3817
3818 if (file->f_mode & (FMODE_OPENED | FMODE_CREATED)) {
3819 dput(nd->path.dentry);
3820 nd->path.dentry = dentry;
3821 return NULL;
3822 }
3823
3824 finish_lookup:
3825 if (nd->depth)
3826 put_link(nd);
3827 res = step_into(nd, WALK_TRAILING, dentry);
3828 if (unlikely(res))
3829 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3830 return res;
3831 }
3832
3833 /*
3834 * Handle the last step of open()
3835 */
do_open(struct nameidata * nd,struct file * file,const struct open_flags * op)3836 static int do_open(struct nameidata *nd,
3837 struct file *file, const struct open_flags *op)
3838 {
3839 struct mnt_idmap *idmap;
3840 int open_flag = op->open_flag;
3841 bool do_truncate;
3842 int acc_mode;
3843 int error;
3844
3845 if (!(file->f_mode & (FMODE_OPENED | FMODE_CREATED))) {
3846 error = complete_walk(nd);
3847 if (error)
3848 return error;
3849 }
3850 if (!(file->f_mode & FMODE_CREATED))
3851 audit_inode(nd->name, nd->path.dentry, 0);
3852 idmap = mnt_idmap(nd->path.mnt);
3853 if (open_flag & O_CREAT) {
3854 if ((open_flag & O_EXCL) && !(file->f_mode & FMODE_CREATED))
3855 return -EEXIST;
3856 if (d_is_dir(nd->path.dentry))
3857 return -EISDIR;
3858 error = may_create_in_sticky(idmap, nd,
3859 d_backing_inode(nd->path.dentry));
3860 if (unlikely(error))
3861 return error;
3862 }
3863 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3864 return -ENOTDIR;
3865
3866 do_truncate = false;
3867 acc_mode = op->acc_mode;
3868 if (file->f_mode & FMODE_CREATED) {
3869 /* Don't check for write permission, don't truncate */
3870 open_flag &= ~O_TRUNC;
3871 acc_mode = 0;
3872 } else if (d_is_reg(nd->path.dentry) && open_flag & O_TRUNC) {
3873 error = mnt_want_write(nd->path.mnt);
3874 if (error)
3875 return error;
3876 do_truncate = true;
3877 }
3878 error = may_open(idmap, &nd->path, acc_mode, open_flag);
3879 if (!error && !(file->f_mode & FMODE_OPENED))
3880 error = vfs_open(&nd->path, file);
3881 if (!error)
3882 error = security_file_post_open(file, op->acc_mode);
3883 if (!error && do_truncate)
3884 error = handle_truncate(idmap, file);
3885 if (unlikely(error > 0)) {
3886 WARN_ON(1);
3887 error = -EINVAL;
3888 }
3889 if (do_truncate)
3890 mnt_drop_write(nd->path.mnt);
3891 return error;
3892 }
3893
3894 /**
3895 * vfs_tmpfile - create tmpfile
3896 * @idmap: idmap of the mount the inode was found from
3897 * @parentpath: pointer to the path of the base directory
3898 * @file: file descriptor of the new tmpfile
3899 * @mode: mode of the new tmpfile
3900 *
3901 * Create a temporary file.
3902 *
3903 * If the inode has been found through an idmapped mount the idmap of
3904 * the vfsmount must be passed through @idmap. This function will then take
3905 * care to map the inode according to @idmap before checking permissions.
3906 * On non-idmapped mounts or if permission checking is to be performed on the
3907 * raw inode simply pass @nop_mnt_idmap.
3908 */
vfs_tmpfile(struct mnt_idmap * idmap,const struct path * parentpath,struct file * file,umode_t mode)3909 int vfs_tmpfile(struct mnt_idmap *idmap,
3910 const struct path *parentpath,
3911 struct file *file, umode_t mode)
3912 {
3913 struct dentry *child;
3914 struct inode *dir = d_inode(parentpath->dentry);
3915 struct inode *inode;
3916 int error;
3917 int open_flag = file->f_flags;
3918
3919 /* we want directory to be writable */
3920 error = inode_permission(idmap, dir, MAY_WRITE | MAY_EXEC);
3921 if (error)
3922 return error;
3923 if (!dir->i_op->tmpfile)
3924 return -EOPNOTSUPP;
3925 child = d_alloc(parentpath->dentry, &slash_name);
3926 if (unlikely(!child))
3927 return -ENOMEM;
3928 file->f_path.mnt = parentpath->mnt;
3929 file->f_path.dentry = child;
3930 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
3931 error = dir->i_op->tmpfile(idmap, dir, file, mode);
3932 dput(child);
3933 if (file->f_mode & FMODE_OPENED)
3934 fsnotify_open(file);
3935 if (error)
3936 return error;
3937 /* Don't check for other permissions, the inode was just created */
3938 error = may_open(idmap, &file->f_path, 0, file->f_flags);
3939 if (error)
3940 return error;
3941 inode = file_inode(file);
3942 if (!(open_flag & O_EXCL)) {
3943 spin_lock(&inode->i_lock);
3944 inode->i_state |= I_LINKABLE;
3945 spin_unlock(&inode->i_lock);
3946 }
3947 security_inode_post_create_tmpfile(idmap, inode);
3948 return 0;
3949 }
3950
3951 /**
3952 * kernel_tmpfile_open - open a tmpfile for kernel internal use
3953 * @idmap: idmap of the mount the inode was found from
3954 * @parentpath: path of the base directory
3955 * @mode: mode of the new tmpfile
3956 * @open_flag: flags
3957 * @cred: credentials for open
3958 *
3959 * Create and open a temporary file. The file is not accounted in nr_files,
3960 * hence this is only for kernel internal use, and must not be installed into
3961 * file tables or such.
3962 */
kernel_tmpfile_open(struct mnt_idmap * idmap,const struct path * parentpath,umode_t mode,int open_flag,const struct cred * cred)3963 struct file *kernel_tmpfile_open(struct mnt_idmap *idmap,
3964 const struct path *parentpath,
3965 umode_t mode, int open_flag,
3966 const struct cred *cred)
3967 {
3968 struct file *file;
3969 int error;
3970
3971 file = alloc_empty_file_noaccount(open_flag, cred);
3972 if (IS_ERR(file))
3973 return file;
3974
3975 error = vfs_tmpfile(idmap, parentpath, file, mode);
3976 if (error) {
3977 fput(file);
3978 file = ERR_PTR(error);
3979 }
3980 return file;
3981 }
3982 EXPORT_SYMBOL(kernel_tmpfile_open);
3983
do_tmpfile(struct nameidata * nd,unsigned flags,const struct open_flags * op,struct file * file)3984 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3985 const struct open_flags *op,
3986 struct file *file)
3987 {
3988 struct path path;
3989 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3990
3991 if (unlikely(error))
3992 return error;
3993 error = mnt_want_write(path.mnt);
3994 if (unlikely(error))
3995 goto out;
3996 error = vfs_tmpfile(mnt_idmap(path.mnt), &path, file, op->mode);
3997 if (error)
3998 goto out2;
3999 audit_inode(nd->name, file->f_path.dentry, 0);
4000 out2:
4001 mnt_drop_write(path.mnt);
4002 out:
4003 path_put(&path);
4004 return error;
4005 }
4006
do_o_path(struct nameidata * nd,unsigned flags,struct file * file)4007 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
4008 {
4009 struct path path;
4010 int error = path_lookupat(nd, flags, &path);
4011 if (!error) {
4012 audit_inode(nd->name, path.dentry, 0);
4013 error = vfs_open(&path, file);
4014 path_put(&path);
4015 }
4016 return error;
4017 }
4018
path_openat(struct nameidata * nd,const struct open_flags * op,unsigned flags)4019 static struct file *path_openat(struct nameidata *nd,
4020 const struct open_flags *op, unsigned flags)
4021 {
4022 struct file *file;
4023 int error;
4024
4025 file = alloc_empty_file(op->open_flag, current_cred());
4026 if (IS_ERR(file))
4027 return file;
4028
4029 if (unlikely(file->f_flags & __O_TMPFILE)) {
4030 error = do_tmpfile(nd, flags, op, file);
4031 } else if (unlikely(file->f_flags & O_PATH)) {
4032 error = do_o_path(nd, flags, file);
4033 } else {
4034 const char *s = path_init(nd, flags);
4035 while (!(error = link_path_walk(s, nd)) &&
4036 (s = open_last_lookups(nd, file, op)) != NULL)
4037 ;
4038 if (!error)
4039 error = do_open(nd, file, op);
4040 terminate_walk(nd);
4041 }
4042 if (likely(!error)) {
4043 if (likely(file->f_mode & FMODE_OPENED))
4044 return file;
4045 WARN_ON(1);
4046 error = -EINVAL;
4047 }
4048 fput_close(file);
4049 if (error == -EOPENSTALE) {
4050 if (flags & LOOKUP_RCU)
4051 error = -ECHILD;
4052 else
4053 error = -ESTALE;
4054 }
4055 return ERR_PTR(error);
4056 }
4057
do_filp_open(int dfd,struct filename * pathname,const struct open_flags * op)4058 struct file *do_filp_open(int dfd, struct filename *pathname,
4059 const struct open_flags *op)
4060 {
4061 struct nameidata nd;
4062 int flags = op->lookup_flags;
4063 struct file *filp;
4064
4065 set_nameidata(&nd, dfd, pathname, NULL);
4066 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
4067 if (unlikely(filp == ERR_PTR(-ECHILD)))
4068 filp = path_openat(&nd, op, flags);
4069 if (unlikely(filp == ERR_PTR(-ESTALE)))
4070 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
4071 restore_nameidata();
4072 return filp;
4073 }
4074
do_file_open_root(const struct path * root,const char * name,const struct open_flags * op)4075 struct file *do_file_open_root(const struct path *root,
4076 const char *name, const struct open_flags *op)
4077 {
4078 struct nameidata nd;
4079 struct file *file;
4080 struct filename *filename;
4081 int flags = op->lookup_flags;
4082
4083 if (d_is_symlink(root->dentry) && op->intent & LOOKUP_OPEN)
4084 return ERR_PTR(-ELOOP);
4085
4086 filename = getname_kernel(name);
4087 if (IS_ERR(filename))
4088 return ERR_CAST(filename);
4089
4090 set_nameidata(&nd, -1, filename, root);
4091 file = path_openat(&nd, op, flags | LOOKUP_RCU);
4092 if (unlikely(file == ERR_PTR(-ECHILD)))
4093 file = path_openat(&nd, op, flags);
4094 if (unlikely(file == ERR_PTR(-ESTALE)))
4095 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
4096 restore_nameidata();
4097 putname(filename);
4098 return file;
4099 }
4100
filename_create(int dfd,struct filename * name,struct path * path,unsigned int lookup_flags)4101 static struct dentry *filename_create(int dfd, struct filename *name,
4102 struct path *path, unsigned int lookup_flags)
4103 {
4104 struct dentry *dentry = ERR_PTR(-EEXIST);
4105 struct qstr last;
4106 bool want_dir = lookup_flags & LOOKUP_DIRECTORY;
4107 unsigned int reval_flag = lookup_flags & LOOKUP_REVAL;
4108 unsigned int create_flags = LOOKUP_CREATE | LOOKUP_EXCL;
4109 int type;
4110 int err2;
4111 int error;
4112
4113 error = filename_parentat(dfd, name, reval_flag, path, &last, &type);
4114 if (error)
4115 return ERR_PTR(error);
4116
4117 /*
4118 * Yucky last component or no last component at all?
4119 * (foo/., foo/.., /////)
4120 */
4121 if (unlikely(type != LAST_NORM))
4122 goto out;
4123
4124 /* don't fail immediately if it's r/o, at least try to report other errors */
4125 err2 = mnt_want_write(path->mnt);
4126 /*
4127 * Do the final lookup. Suppress 'create' if there is a trailing
4128 * '/', and a directory wasn't requested.
4129 */
4130 if (last.name[last.len] && !want_dir)
4131 create_flags &= ~LOOKUP_CREATE;
4132 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
4133 dentry = lookup_one_qstr_excl(&last, path->dentry,
4134 reval_flag | create_flags);
4135 if (IS_ERR(dentry))
4136 goto unlock;
4137
4138 if (unlikely(err2)) {
4139 error = err2;
4140 goto fail;
4141 }
4142 return dentry;
4143 fail:
4144 dput(dentry);
4145 dentry = ERR_PTR(error);
4146 unlock:
4147 inode_unlock(path->dentry->d_inode);
4148 if (!err2)
4149 mnt_drop_write(path->mnt);
4150 out:
4151 path_put(path);
4152 return dentry;
4153 }
4154
kern_path_create(int dfd,const char * pathname,struct path * path,unsigned int lookup_flags)4155 struct dentry *kern_path_create(int dfd, const char *pathname,
4156 struct path *path, unsigned int lookup_flags)
4157 {
4158 struct filename *filename = getname_kernel(pathname);
4159 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4160
4161 putname(filename);
4162 return res;
4163 }
4164 EXPORT_SYMBOL(kern_path_create);
4165
done_path_create(struct path * path,struct dentry * dentry)4166 void done_path_create(struct path *path, struct dentry *dentry)
4167 {
4168 if (!IS_ERR(dentry))
4169 dput(dentry);
4170 inode_unlock(path->dentry->d_inode);
4171 mnt_drop_write(path->mnt);
4172 path_put(path);
4173 }
4174 EXPORT_SYMBOL(done_path_create);
4175
user_path_create(int dfd,const char __user * pathname,struct path * path,unsigned int lookup_flags)4176 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
4177 struct path *path, unsigned int lookup_flags)
4178 {
4179 struct filename *filename = getname(pathname);
4180 struct dentry *res = filename_create(dfd, filename, path, lookup_flags);
4181
4182 putname(filename);
4183 return res;
4184 }
4185 EXPORT_SYMBOL(user_path_create);
4186
4187 /**
4188 * vfs_mknod - create device node or file
4189 * @idmap: idmap of the mount the inode was found from
4190 * @dir: inode of the parent directory
4191 * @dentry: dentry of the child device node
4192 * @mode: mode of the child device node
4193 * @dev: device number of device to create
4194 *
4195 * Create a device node or file.
4196 *
4197 * If the inode has been found through an idmapped mount the idmap of
4198 * the vfsmount must be passed through @idmap. This function will then take
4199 * care to map the inode according to @idmap before checking permissions.
4200 * On non-idmapped mounts or if permission checking is to be performed on the
4201 * raw inode simply pass @nop_mnt_idmap.
4202 */
vfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)4203 int vfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
4204 struct dentry *dentry, umode_t mode, dev_t dev)
4205 {
4206 bool is_whiteout = S_ISCHR(mode) && dev == WHITEOUT_DEV;
4207 int error = may_create(idmap, dir, dentry);
4208
4209 if (error)
4210 return error;
4211
4212 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !is_whiteout &&
4213 !capable(CAP_MKNOD))
4214 return -EPERM;
4215
4216 if (!dir->i_op->mknod)
4217 return -EPERM;
4218
4219 mode = vfs_prepare_mode(idmap, dir, mode, mode, mode);
4220 error = devcgroup_inode_mknod(mode, dev);
4221 if (error)
4222 return error;
4223
4224 error = security_inode_mknod(dir, dentry, mode, dev);
4225 if (error)
4226 return error;
4227
4228 error = dir->i_op->mknod(idmap, dir, dentry, mode, dev);
4229 if (!error)
4230 fsnotify_create(dir, dentry);
4231 return error;
4232 }
4233 EXPORT_SYMBOL(vfs_mknod);
4234
may_mknod(umode_t mode)4235 static int may_mknod(umode_t mode)
4236 {
4237 switch (mode & S_IFMT) {
4238 case S_IFREG:
4239 case S_IFCHR:
4240 case S_IFBLK:
4241 case S_IFIFO:
4242 case S_IFSOCK:
4243 case 0: /* zero mode translates to S_IFREG */
4244 return 0;
4245 case S_IFDIR:
4246 return -EPERM;
4247 default:
4248 return -EINVAL;
4249 }
4250 }
4251
do_mknodat(int dfd,struct filename * name,umode_t mode,unsigned int dev)4252 static int do_mknodat(int dfd, struct filename *name, umode_t mode,
4253 unsigned int dev)
4254 {
4255 struct mnt_idmap *idmap;
4256 struct dentry *dentry;
4257 struct path path;
4258 int error;
4259 unsigned int lookup_flags = 0;
4260
4261 error = may_mknod(mode);
4262 if (error)
4263 goto out1;
4264 retry:
4265 dentry = filename_create(dfd, name, &path, lookup_flags);
4266 error = PTR_ERR(dentry);
4267 if (IS_ERR(dentry))
4268 goto out1;
4269
4270 error = security_path_mknod(&path, dentry,
4271 mode_strip_umask(path.dentry->d_inode, mode), dev);
4272 if (error)
4273 goto out2;
4274
4275 idmap = mnt_idmap(path.mnt);
4276 switch (mode & S_IFMT) {
4277 case 0: case S_IFREG:
4278 error = vfs_create(idmap, path.dentry->d_inode,
4279 dentry, mode, true);
4280 if (!error)
4281 security_path_post_mknod(idmap, dentry);
4282 break;
4283 case S_IFCHR: case S_IFBLK:
4284 error = vfs_mknod(idmap, path.dentry->d_inode,
4285 dentry, mode, new_decode_dev(dev));
4286 break;
4287 case S_IFIFO: case S_IFSOCK:
4288 error = vfs_mknod(idmap, path.dentry->d_inode,
4289 dentry, mode, 0);
4290 break;
4291 }
4292 out2:
4293 done_path_create(&path, dentry);
4294 if (retry_estale(error, lookup_flags)) {
4295 lookup_flags |= LOOKUP_REVAL;
4296 goto retry;
4297 }
4298 out1:
4299 putname(name);
4300 return error;
4301 }
4302
SYSCALL_DEFINE4(mknodat,int,dfd,const char __user *,filename,umode_t,mode,unsigned int,dev)4303 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
4304 unsigned int, dev)
4305 {
4306 return do_mknodat(dfd, getname(filename), mode, dev);
4307 }
4308
SYSCALL_DEFINE3(mknod,const char __user *,filename,umode_t,mode,unsigned,dev)4309 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
4310 {
4311 return do_mknodat(AT_FDCWD, getname(filename), mode, dev);
4312 }
4313
4314 /**
4315 * vfs_mkdir - create directory returning correct dentry if possible
4316 * @idmap: idmap of the mount the inode was found from
4317 * @dir: inode of the parent directory
4318 * @dentry: dentry of the child directory
4319 * @mode: mode of the child directory
4320 *
4321 * Create a directory.
4322 *
4323 * If the inode has been found through an idmapped mount the idmap of
4324 * the vfsmount must be passed through @idmap. This function will then take
4325 * care to map the inode according to @idmap before checking permissions.
4326 * On non-idmapped mounts or if permission checking is to be performed on the
4327 * raw inode simply pass @nop_mnt_idmap.
4328 *
4329 * In the event that the filesystem does not use the *@dentry but leaves it
4330 * negative or unhashes it and possibly splices a different one returning it,
4331 * the original dentry is dput() and the alternate is returned.
4332 *
4333 * In case of an error the dentry is dput() and an ERR_PTR() is returned.
4334 */
vfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)4335 struct dentry *vfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
4336 struct dentry *dentry, umode_t mode)
4337 {
4338 int error;
4339 unsigned max_links = dir->i_sb->s_max_links;
4340 struct dentry *de;
4341
4342 error = may_create(idmap, dir, dentry);
4343 if (error)
4344 goto err;
4345
4346 error = -EPERM;
4347 if (!dir->i_op->mkdir)
4348 goto err;
4349
4350 mode = vfs_prepare_mode(idmap, dir, mode, S_IRWXUGO | S_ISVTX, 0);
4351 error = security_inode_mkdir(dir, dentry, mode);
4352 if (error)
4353 goto err;
4354
4355 error = -EMLINK;
4356 if (max_links && dir->i_nlink >= max_links)
4357 goto err;
4358
4359 de = dir->i_op->mkdir(idmap, dir, dentry, mode);
4360 error = PTR_ERR(de);
4361 if (IS_ERR(de))
4362 goto err;
4363 if (de) {
4364 dput(dentry);
4365 dentry = de;
4366 }
4367 fsnotify_mkdir(dir, dentry);
4368 return dentry;
4369
4370 err:
4371 dput(dentry);
4372 return ERR_PTR(error);
4373 }
4374 EXPORT_SYMBOL(vfs_mkdir);
4375
do_mkdirat(int dfd,struct filename * name,umode_t mode)4376 int do_mkdirat(int dfd, struct filename *name, umode_t mode)
4377 {
4378 struct dentry *dentry;
4379 struct path path;
4380 int error;
4381 unsigned int lookup_flags = LOOKUP_DIRECTORY;
4382
4383 retry:
4384 dentry = filename_create(dfd, name, &path, lookup_flags);
4385 error = PTR_ERR(dentry);
4386 if (IS_ERR(dentry))
4387 goto out_putname;
4388
4389 error = security_path_mkdir(&path, dentry,
4390 mode_strip_umask(path.dentry->d_inode, mode));
4391 if (!error) {
4392 dentry = vfs_mkdir(mnt_idmap(path.mnt), path.dentry->d_inode,
4393 dentry, mode);
4394 if (IS_ERR(dentry))
4395 error = PTR_ERR(dentry);
4396 }
4397 done_path_create(&path, dentry);
4398 if (retry_estale(error, lookup_flags)) {
4399 lookup_flags |= LOOKUP_REVAL;
4400 goto retry;
4401 }
4402 out_putname:
4403 putname(name);
4404 return error;
4405 }
4406
SYSCALL_DEFINE3(mkdirat,int,dfd,const char __user *,pathname,umode_t,mode)4407 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
4408 {
4409 return do_mkdirat(dfd, getname(pathname), mode);
4410 }
4411
SYSCALL_DEFINE2(mkdir,const char __user *,pathname,umode_t,mode)4412 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
4413 {
4414 return do_mkdirat(AT_FDCWD, getname(pathname), mode);
4415 }
4416
4417 /**
4418 * vfs_rmdir - remove directory
4419 * @idmap: idmap of the mount the inode was found from
4420 * @dir: inode of the parent directory
4421 * @dentry: dentry of the child directory
4422 *
4423 * Remove a directory.
4424 *
4425 * If the inode has been found through an idmapped mount the idmap of
4426 * the vfsmount must be passed through @idmap. This function will then take
4427 * care to map the inode according to @idmap before checking permissions.
4428 * On non-idmapped mounts or if permission checking is to be performed on the
4429 * raw inode simply pass @nop_mnt_idmap.
4430 */
vfs_rmdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry)4431 int vfs_rmdir(struct mnt_idmap *idmap, struct inode *dir,
4432 struct dentry *dentry)
4433 {
4434 int error = may_delete(idmap, dir, dentry, 1);
4435
4436 if (error)
4437 return error;
4438
4439 if (!dir->i_op->rmdir)
4440 return -EPERM;
4441
4442 dget(dentry);
4443 inode_lock(dentry->d_inode);
4444
4445 error = -EBUSY;
4446 if (is_local_mountpoint(dentry) ||
4447 (dentry->d_inode->i_flags & S_KERNEL_FILE))
4448 goto out;
4449
4450 error = security_inode_rmdir(dir, dentry);
4451 if (error)
4452 goto out;
4453
4454 error = dir->i_op->rmdir(dir, dentry);
4455 if (error)
4456 goto out;
4457
4458 shrink_dcache_parent(dentry);
4459 dentry->d_inode->i_flags |= S_DEAD;
4460 dont_mount(dentry);
4461 detach_mounts(dentry);
4462
4463 out:
4464 inode_unlock(dentry->d_inode);
4465 dput(dentry);
4466 if (!error)
4467 d_delete_notify(dir, dentry);
4468 return error;
4469 }
4470 EXPORT_SYMBOL(vfs_rmdir);
4471
do_rmdir(int dfd,struct filename * name)4472 int do_rmdir(int dfd, struct filename *name)
4473 {
4474 int error;
4475 struct dentry *dentry;
4476 struct path path;
4477 struct qstr last;
4478 int type;
4479 unsigned int lookup_flags = 0;
4480 retry:
4481 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4482 if (error)
4483 goto exit1;
4484
4485 switch (type) {
4486 case LAST_DOTDOT:
4487 error = -ENOTEMPTY;
4488 goto exit2;
4489 case LAST_DOT:
4490 error = -EINVAL;
4491 goto exit2;
4492 case LAST_ROOT:
4493 error = -EBUSY;
4494 goto exit2;
4495 }
4496
4497 error = mnt_want_write(path.mnt);
4498 if (error)
4499 goto exit2;
4500
4501 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4502 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4503 error = PTR_ERR(dentry);
4504 if (IS_ERR(dentry))
4505 goto exit3;
4506 error = security_path_rmdir(&path, dentry);
4507 if (error)
4508 goto exit4;
4509 error = vfs_rmdir(mnt_idmap(path.mnt), path.dentry->d_inode, dentry);
4510 exit4:
4511 dput(dentry);
4512 exit3:
4513 inode_unlock(path.dentry->d_inode);
4514 mnt_drop_write(path.mnt);
4515 exit2:
4516 path_put(&path);
4517 if (retry_estale(error, lookup_flags)) {
4518 lookup_flags |= LOOKUP_REVAL;
4519 goto retry;
4520 }
4521 exit1:
4522 putname(name);
4523 return error;
4524 }
4525
SYSCALL_DEFINE1(rmdir,const char __user *,pathname)4526 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
4527 {
4528 return do_rmdir(AT_FDCWD, getname(pathname));
4529 }
4530
4531 /**
4532 * vfs_unlink - unlink a filesystem object
4533 * @idmap: idmap of the mount the inode was found from
4534 * @dir: parent directory
4535 * @dentry: victim
4536 * @delegated_inode: returns victim inode, if the inode is delegated.
4537 *
4538 * The caller must hold dir->i_mutex.
4539 *
4540 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
4541 * return a reference to the inode in delegated_inode. The caller
4542 * should then break the delegation on that inode and retry. Because
4543 * breaking a delegation may take a long time, the caller should drop
4544 * dir->i_mutex before doing so.
4545 *
4546 * Alternatively, a caller may pass NULL for delegated_inode. This may
4547 * be appropriate for callers that expect the underlying filesystem not
4548 * to be NFS exported.
4549 *
4550 * If the inode has been found through an idmapped mount the idmap of
4551 * the vfsmount must be passed through @idmap. This function will then take
4552 * care to map the inode according to @idmap before checking permissions.
4553 * On non-idmapped mounts or if permission checking is to be performed on the
4554 * raw inode simply pass @nop_mnt_idmap.
4555 */
vfs_unlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,struct inode ** delegated_inode)4556 int vfs_unlink(struct mnt_idmap *idmap, struct inode *dir,
4557 struct dentry *dentry, struct inode **delegated_inode)
4558 {
4559 struct inode *target = dentry->d_inode;
4560 int error = may_delete(idmap, dir, dentry, 0);
4561
4562 if (error)
4563 return error;
4564
4565 if (!dir->i_op->unlink)
4566 return -EPERM;
4567
4568 inode_lock(target);
4569 if (IS_SWAPFILE(target))
4570 error = -EPERM;
4571 else if (is_local_mountpoint(dentry))
4572 error = -EBUSY;
4573 else {
4574 error = security_inode_unlink(dir, dentry);
4575 if (!error) {
4576 error = try_break_deleg(target, delegated_inode);
4577 if (error)
4578 goto out;
4579 error = dir->i_op->unlink(dir, dentry);
4580 if (!error) {
4581 dont_mount(dentry);
4582 detach_mounts(dentry);
4583 }
4584 }
4585 }
4586 out:
4587 inode_unlock(target);
4588
4589 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
4590 if (!error && dentry->d_flags & DCACHE_NFSFS_RENAMED) {
4591 fsnotify_unlink(dir, dentry);
4592 } else if (!error) {
4593 fsnotify_link_count(target);
4594 d_delete_notify(dir, dentry);
4595 }
4596
4597 return error;
4598 }
4599 EXPORT_SYMBOL(vfs_unlink);
4600
4601 /*
4602 * Make sure that the actual truncation of the file will occur outside its
4603 * directory's i_mutex. Truncate can take a long time if there is a lot of
4604 * writeout happening, and we don't want to prevent access to the directory
4605 * while waiting on the I/O.
4606 */
do_unlinkat(int dfd,struct filename * name)4607 int do_unlinkat(int dfd, struct filename *name)
4608 {
4609 int error;
4610 struct dentry *dentry;
4611 struct path path;
4612 struct qstr last;
4613 int type;
4614 struct inode *inode = NULL;
4615 struct inode *delegated_inode = NULL;
4616 unsigned int lookup_flags = 0;
4617 retry:
4618 error = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
4619 if (error)
4620 goto exit1;
4621
4622 error = -EISDIR;
4623 if (type != LAST_NORM)
4624 goto exit2;
4625
4626 error = mnt_want_write(path.mnt);
4627 if (error)
4628 goto exit2;
4629 retry_deleg:
4630 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
4631 dentry = lookup_one_qstr_excl(&last, path.dentry, lookup_flags);
4632 error = PTR_ERR(dentry);
4633 if (!IS_ERR(dentry)) {
4634
4635 /* Why not before? Because we want correct error value */
4636 if (last.name[last.len])
4637 goto slashes;
4638 inode = dentry->d_inode;
4639 ihold(inode);
4640 error = security_path_unlink(&path, dentry);
4641 if (error)
4642 goto exit3;
4643 error = vfs_unlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4644 dentry, &delegated_inode);
4645 exit3:
4646 dput(dentry);
4647 }
4648 inode_unlock(path.dentry->d_inode);
4649 if (inode)
4650 iput(inode); /* truncate the inode here */
4651 inode = NULL;
4652 if (delegated_inode) {
4653 error = break_deleg_wait(&delegated_inode);
4654 if (!error)
4655 goto retry_deleg;
4656 }
4657 mnt_drop_write(path.mnt);
4658 exit2:
4659 path_put(&path);
4660 if (retry_estale(error, lookup_flags)) {
4661 lookup_flags |= LOOKUP_REVAL;
4662 inode = NULL;
4663 goto retry;
4664 }
4665 exit1:
4666 putname(name);
4667 return error;
4668
4669 slashes:
4670 if (d_is_dir(dentry))
4671 error = -EISDIR;
4672 else
4673 error = -ENOTDIR;
4674 goto exit3;
4675 }
4676
SYSCALL_DEFINE3(unlinkat,int,dfd,const char __user *,pathname,int,flag)4677 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4678 {
4679 if ((flag & ~AT_REMOVEDIR) != 0)
4680 return -EINVAL;
4681
4682 if (flag & AT_REMOVEDIR)
4683 return do_rmdir(dfd, getname(pathname));
4684 return do_unlinkat(dfd, getname(pathname));
4685 }
4686
SYSCALL_DEFINE1(unlink,const char __user *,pathname)4687 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4688 {
4689 return do_unlinkat(AT_FDCWD, getname(pathname));
4690 }
4691
4692 /**
4693 * vfs_symlink - create symlink
4694 * @idmap: idmap of the mount the inode was found from
4695 * @dir: inode of the parent directory
4696 * @dentry: dentry of the child symlink file
4697 * @oldname: name of the file to link to
4698 *
4699 * Create a symlink.
4700 *
4701 * If the inode has been found through an idmapped mount the idmap of
4702 * the vfsmount must be passed through @idmap. This function will then take
4703 * care to map the inode according to @idmap before checking permissions.
4704 * On non-idmapped mounts or if permission checking is to be performed on the
4705 * raw inode simply pass @nop_mnt_idmap.
4706 */
vfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * oldname)4707 int vfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
4708 struct dentry *dentry, const char *oldname)
4709 {
4710 int error;
4711
4712 error = may_create(idmap, dir, dentry);
4713 if (error)
4714 return error;
4715
4716 if (!dir->i_op->symlink)
4717 return -EPERM;
4718
4719 error = security_inode_symlink(dir, dentry, oldname);
4720 if (error)
4721 return error;
4722
4723 error = dir->i_op->symlink(idmap, dir, dentry, oldname);
4724 if (!error)
4725 fsnotify_create(dir, dentry);
4726 return error;
4727 }
4728 EXPORT_SYMBOL(vfs_symlink);
4729
do_symlinkat(struct filename * from,int newdfd,struct filename * to)4730 int do_symlinkat(struct filename *from, int newdfd, struct filename *to)
4731 {
4732 int error;
4733 struct dentry *dentry;
4734 struct path path;
4735 unsigned int lookup_flags = 0;
4736
4737 if (IS_ERR(from)) {
4738 error = PTR_ERR(from);
4739 goto out_putnames;
4740 }
4741 retry:
4742 dentry = filename_create(newdfd, to, &path, lookup_flags);
4743 error = PTR_ERR(dentry);
4744 if (IS_ERR(dentry))
4745 goto out_putnames;
4746
4747 error = security_path_symlink(&path, dentry, from->name);
4748 if (!error)
4749 error = vfs_symlink(mnt_idmap(path.mnt), path.dentry->d_inode,
4750 dentry, from->name);
4751 done_path_create(&path, dentry);
4752 if (retry_estale(error, lookup_flags)) {
4753 lookup_flags |= LOOKUP_REVAL;
4754 goto retry;
4755 }
4756 out_putnames:
4757 putname(to);
4758 putname(from);
4759 return error;
4760 }
4761
SYSCALL_DEFINE3(symlinkat,const char __user *,oldname,int,newdfd,const char __user *,newname)4762 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4763 int, newdfd, const char __user *, newname)
4764 {
4765 return do_symlinkat(getname(oldname), newdfd, getname(newname));
4766 }
4767
SYSCALL_DEFINE2(symlink,const char __user *,oldname,const char __user *,newname)4768 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4769 {
4770 return do_symlinkat(getname(oldname), AT_FDCWD, getname(newname));
4771 }
4772
4773 /**
4774 * vfs_link - create a new link
4775 * @old_dentry: object to be linked
4776 * @idmap: idmap of the mount
4777 * @dir: new parent
4778 * @new_dentry: where to create the new link
4779 * @delegated_inode: returns inode needing a delegation break
4780 *
4781 * The caller must hold dir->i_mutex
4782 *
4783 * If vfs_link discovers a delegation on the to-be-linked file in need
4784 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4785 * inode in delegated_inode. The caller should then break the delegation
4786 * and retry. Because breaking a delegation may take a long time, the
4787 * caller should drop the i_mutex before doing so.
4788 *
4789 * Alternatively, a caller may pass NULL for delegated_inode. This may
4790 * be appropriate for callers that expect the underlying filesystem not
4791 * to be NFS exported.
4792 *
4793 * If the inode has been found through an idmapped mount the idmap of
4794 * the vfsmount must be passed through @idmap. This function will then take
4795 * care to map the inode according to @idmap before checking permissions.
4796 * On non-idmapped mounts or if permission checking is to be performed on the
4797 * raw inode simply pass @nop_mnt_idmap.
4798 */
vfs_link(struct dentry * old_dentry,struct mnt_idmap * idmap,struct inode * dir,struct dentry * new_dentry,struct inode ** delegated_inode)4799 int vfs_link(struct dentry *old_dentry, struct mnt_idmap *idmap,
4800 struct inode *dir, struct dentry *new_dentry,
4801 struct inode **delegated_inode)
4802 {
4803 struct inode *inode = old_dentry->d_inode;
4804 unsigned max_links = dir->i_sb->s_max_links;
4805 int error;
4806
4807 if (!inode)
4808 return -ENOENT;
4809
4810 error = may_create(idmap, dir, new_dentry);
4811 if (error)
4812 return error;
4813
4814 if (dir->i_sb != inode->i_sb)
4815 return -EXDEV;
4816
4817 /*
4818 * A link to an append-only or immutable file cannot be created.
4819 */
4820 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4821 return -EPERM;
4822 /*
4823 * Updating the link count will likely cause i_uid and i_gid to
4824 * be writen back improperly if their true value is unknown to
4825 * the vfs.
4826 */
4827 if (HAS_UNMAPPED_ID(idmap, inode))
4828 return -EPERM;
4829 if (!dir->i_op->link)
4830 return -EPERM;
4831 if (S_ISDIR(inode->i_mode))
4832 return -EPERM;
4833
4834 error = security_inode_link(old_dentry, dir, new_dentry);
4835 if (error)
4836 return error;
4837
4838 inode_lock(inode);
4839 /* Make sure we don't allow creating hardlink to an unlinked file */
4840 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4841 error = -ENOENT;
4842 else if (max_links && inode->i_nlink >= max_links)
4843 error = -EMLINK;
4844 else {
4845 error = try_break_deleg(inode, delegated_inode);
4846 if (!error)
4847 error = dir->i_op->link(old_dentry, dir, new_dentry);
4848 }
4849
4850 if (!error && (inode->i_state & I_LINKABLE)) {
4851 spin_lock(&inode->i_lock);
4852 inode->i_state &= ~I_LINKABLE;
4853 spin_unlock(&inode->i_lock);
4854 }
4855 inode_unlock(inode);
4856 if (!error)
4857 fsnotify_link(dir, inode, new_dentry);
4858 return error;
4859 }
4860 EXPORT_SYMBOL(vfs_link);
4861
4862 /*
4863 * Hardlinks are often used in delicate situations. We avoid
4864 * security-related surprises by not following symlinks on the
4865 * newname. --KAB
4866 *
4867 * We don't follow them on the oldname either to be compatible
4868 * with linux 2.0, and to avoid hard-linking to directories
4869 * and other special files. --ADM
4870 */
do_linkat(int olddfd,struct filename * old,int newdfd,struct filename * new,int flags)4871 int do_linkat(int olddfd, struct filename *old, int newdfd,
4872 struct filename *new, int flags)
4873 {
4874 struct mnt_idmap *idmap;
4875 struct dentry *new_dentry;
4876 struct path old_path, new_path;
4877 struct inode *delegated_inode = NULL;
4878 int how = 0;
4879 int error;
4880
4881 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) {
4882 error = -EINVAL;
4883 goto out_putnames;
4884 }
4885 /*
4886 * To use null names we require CAP_DAC_READ_SEARCH or
4887 * that the open-time creds of the dfd matches current.
4888 * This ensures that not everyone will be able to create
4889 * a hardlink using the passed file descriptor.
4890 */
4891 if (flags & AT_EMPTY_PATH)
4892 how |= LOOKUP_LINKAT_EMPTY;
4893
4894 if (flags & AT_SYMLINK_FOLLOW)
4895 how |= LOOKUP_FOLLOW;
4896 retry:
4897 error = filename_lookup(olddfd, old, how, &old_path, NULL);
4898 if (error)
4899 goto out_putnames;
4900
4901 new_dentry = filename_create(newdfd, new, &new_path,
4902 (how & LOOKUP_REVAL));
4903 error = PTR_ERR(new_dentry);
4904 if (IS_ERR(new_dentry))
4905 goto out_putpath;
4906
4907 error = -EXDEV;
4908 if (old_path.mnt != new_path.mnt)
4909 goto out_dput;
4910 idmap = mnt_idmap(new_path.mnt);
4911 error = may_linkat(idmap, &old_path);
4912 if (unlikely(error))
4913 goto out_dput;
4914 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4915 if (error)
4916 goto out_dput;
4917 error = vfs_link(old_path.dentry, idmap, new_path.dentry->d_inode,
4918 new_dentry, &delegated_inode);
4919 out_dput:
4920 done_path_create(&new_path, new_dentry);
4921 if (delegated_inode) {
4922 error = break_deleg_wait(&delegated_inode);
4923 if (!error) {
4924 path_put(&old_path);
4925 goto retry;
4926 }
4927 }
4928 if (retry_estale(error, how)) {
4929 path_put(&old_path);
4930 how |= LOOKUP_REVAL;
4931 goto retry;
4932 }
4933 out_putpath:
4934 path_put(&old_path);
4935 out_putnames:
4936 putname(old);
4937 putname(new);
4938
4939 return error;
4940 }
4941
SYSCALL_DEFINE5(linkat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,int,flags)4942 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4943 int, newdfd, const char __user *, newname, int, flags)
4944 {
4945 return do_linkat(olddfd, getname_uflags(oldname, flags),
4946 newdfd, getname(newname), flags);
4947 }
4948
SYSCALL_DEFINE2(link,const char __user *,oldname,const char __user *,newname)4949 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4950 {
4951 return do_linkat(AT_FDCWD, getname(oldname), AT_FDCWD, getname(newname), 0);
4952 }
4953
4954 /**
4955 * vfs_rename - rename a filesystem object
4956 * @rd: pointer to &struct renamedata info
4957 *
4958 * The caller must hold multiple mutexes--see lock_rename()).
4959 *
4960 * If vfs_rename discovers a delegation in need of breaking at either
4961 * the source or destination, it will return -EWOULDBLOCK and return a
4962 * reference to the inode in delegated_inode. The caller should then
4963 * break the delegation and retry. Because breaking a delegation may
4964 * take a long time, the caller should drop all locks before doing
4965 * so.
4966 *
4967 * Alternatively, a caller may pass NULL for delegated_inode. This may
4968 * be appropriate for callers that expect the underlying filesystem not
4969 * to be NFS exported.
4970 *
4971 * The worst of all namespace operations - renaming directory. "Perverted"
4972 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4973 * Problems:
4974 *
4975 * a) we can get into loop creation.
4976 * b) race potential - two innocent renames can create a loop together.
4977 * That's where 4.4BSD screws up. Current fix: serialization on
4978 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4979 * story.
4980 * c) we may have to lock up to _four_ objects - parents and victim (if it exists),
4981 * and source (if it's a non-directory or a subdirectory that moves to
4982 * different parent).
4983 * And that - after we got ->i_mutex on parents (until then we don't know
4984 * whether the target exists). Solution: try to be smart with locking
4985 * order for inodes. We rely on the fact that tree topology may change
4986 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4987 * move will be locked. Thus we can rank directories by the tree
4988 * (ancestors first) and rank all non-directories after them.
4989 * That works since everybody except rename does "lock parent, lookup,
4990 * lock child" and rename is under ->s_vfs_rename_mutex.
4991 * HOWEVER, it relies on the assumption that any object with ->lookup()
4992 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4993 * we'd better make sure that there's no link(2) for them.
4994 * d) conversion from fhandle to dentry may come in the wrong moment - when
4995 * we are removing the target. Solution: we will have to grab ->i_mutex
4996 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4997 * ->i_mutex on parents, which works but leads to some truly excessive
4998 * locking].
4999 */
vfs_rename(struct renamedata * rd)5000 int vfs_rename(struct renamedata *rd)
5001 {
5002 int error;
5003 struct inode *old_dir = rd->old_dir, *new_dir = rd->new_dir;
5004 struct dentry *old_dentry = rd->old_dentry;
5005 struct dentry *new_dentry = rd->new_dentry;
5006 struct inode **delegated_inode = rd->delegated_inode;
5007 unsigned int flags = rd->flags;
5008 bool is_dir = d_is_dir(old_dentry);
5009 struct inode *source = old_dentry->d_inode;
5010 struct inode *target = new_dentry->d_inode;
5011 bool new_is_dir = false;
5012 unsigned max_links = new_dir->i_sb->s_max_links;
5013 struct name_snapshot old_name;
5014 bool lock_old_subdir, lock_new_subdir;
5015
5016 if (source == target)
5017 return 0;
5018
5019 error = may_delete(rd->old_mnt_idmap, old_dir, old_dentry, is_dir);
5020 if (error)
5021 return error;
5022
5023 if (!target) {
5024 error = may_create(rd->new_mnt_idmap, new_dir, new_dentry);
5025 } else {
5026 new_is_dir = d_is_dir(new_dentry);
5027
5028 if (!(flags & RENAME_EXCHANGE))
5029 error = may_delete(rd->new_mnt_idmap, new_dir,
5030 new_dentry, is_dir);
5031 else
5032 error = may_delete(rd->new_mnt_idmap, new_dir,
5033 new_dentry, new_is_dir);
5034 }
5035 if (error)
5036 return error;
5037
5038 if (!old_dir->i_op->rename)
5039 return -EPERM;
5040
5041 /*
5042 * If we are going to change the parent - check write permissions,
5043 * we'll need to flip '..'.
5044 */
5045 if (new_dir != old_dir) {
5046 if (is_dir) {
5047 error = inode_permission(rd->old_mnt_idmap, source,
5048 MAY_WRITE);
5049 if (error)
5050 return error;
5051 }
5052 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
5053 error = inode_permission(rd->new_mnt_idmap, target,
5054 MAY_WRITE);
5055 if (error)
5056 return error;
5057 }
5058 }
5059
5060 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
5061 flags);
5062 if (error)
5063 return error;
5064
5065 take_dentry_name_snapshot(&old_name, old_dentry);
5066 dget(new_dentry);
5067 /*
5068 * Lock children.
5069 * The source subdirectory needs to be locked on cross-directory
5070 * rename or cross-directory exchange since its parent changes.
5071 * The target subdirectory needs to be locked on cross-directory
5072 * exchange due to parent change and on any rename due to becoming
5073 * a victim.
5074 * Non-directories need locking in all cases (for NFS reasons);
5075 * they get locked after any subdirectories (in inode address order).
5076 *
5077 * NOTE: WE ONLY LOCK UNRELATED DIRECTORIES IN CROSS-DIRECTORY CASE.
5078 * NEVER, EVER DO THAT WITHOUT ->s_vfs_rename_mutex.
5079 */
5080 lock_old_subdir = new_dir != old_dir;
5081 lock_new_subdir = new_dir != old_dir || !(flags & RENAME_EXCHANGE);
5082 if (is_dir) {
5083 if (lock_old_subdir)
5084 inode_lock_nested(source, I_MUTEX_CHILD);
5085 if (target && (!new_is_dir || lock_new_subdir))
5086 inode_lock(target);
5087 } else if (new_is_dir) {
5088 if (lock_new_subdir)
5089 inode_lock_nested(target, I_MUTEX_CHILD);
5090 inode_lock(source);
5091 } else {
5092 lock_two_nondirectories(source, target);
5093 }
5094
5095 error = -EPERM;
5096 if (IS_SWAPFILE(source) || (target && IS_SWAPFILE(target)))
5097 goto out;
5098
5099 error = -EBUSY;
5100 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
5101 goto out;
5102
5103 if (max_links && new_dir != old_dir) {
5104 error = -EMLINK;
5105 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
5106 goto out;
5107 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
5108 old_dir->i_nlink >= max_links)
5109 goto out;
5110 }
5111 if (!is_dir) {
5112 error = try_break_deleg(source, delegated_inode);
5113 if (error)
5114 goto out;
5115 }
5116 if (target && !new_is_dir) {
5117 error = try_break_deleg(target, delegated_inode);
5118 if (error)
5119 goto out;
5120 }
5121 error = old_dir->i_op->rename(rd->new_mnt_idmap, old_dir, old_dentry,
5122 new_dir, new_dentry, flags);
5123 if (error)
5124 goto out;
5125
5126 if (!(flags & RENAME_EXCHANGE) && target) {
5127 if (is_dir) {
5128 shrink_dcache_parent(new_dentry);
5129 target->i_flags |= S_DEAD;
5130 }
5131 dont_mount(new_dentry);
5132 detach_mounts(new_dentry);
5133 }
5134 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
5135 if (!(flags & RENAME_EXCHANGE))
5136 d_move(old_dentry, new_dentry);
5137 else
5138 d_exchange(old_dentry, new_dentry);
5139 }
5140 out:
5141 if (!is_dir || lock_old_subdir)
5142 inode_unlock(source);
5143 if (target && (!new_is_dir || lock_new_subdir))
5144 inode_unlock(target);
5145 dput(new_dentry);
5146 if (!error) {
5147 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
5148 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
5149 if (flags & RENAME_EXCHANGE) {
5150 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
5151 new_is_dir, NULL, new_dentry);
5152 }
5153 }
5154 release_dentry_name_snapshot(&old_name);
5155
5156 return error;
5157 }
5158 EXPORT_SYMBOL(vfs_rename);
5159
do_renameat2(int olddfd,struct filename * from,int newdfd,struct filename * to,unsigned int flags)5160 int do_renameat2(int olddfd, struct filename *from, int newdfd,
5161 struct filename *to, unsigned int flags)
5162 {
5163 struct renamedata rd;
5164 struct dentry *old_dentry, *new_dentry;
5165 struct dentry *trap;
5166 struct path old_path, new_path;
5167 struct qstr old_last, new_last;
5168 int old_type, new_type;
5169 struct inode *delegated_inode = NULL;
5170 unsigned int lookup_flags = 0, target_flags =
5171 LOOKUP_RENAME_TARGET | LOOKUP_CREATE;
5172 bool should_retry = false;
5173 int error = -EINVAL;
5174
5175 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
5176 goto put_names;
5177
5178 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
5179 (flags & RENAME_EXCHANGE))
5180 goto put_names;
5181
5182 if (flags & RENAME_EXCHANGE)
5183 target_flags = 0;
5184 if (flags & RENAME_NOREPLACE)
5185 target_flags |= LOOKUP_EXCL;
5186
5187 retry:
5188 error = filename_parentat(olddfd, from, lookup_flags, &old_path,
5189 &old_last, &old_type);
5190 if (error)
5191 goto put_names;
5192
5193 error = filename_parentat(newdfd, to, lookup_flags, &new_path, &new_last,
5194 &new_type);
5195 if (error)
5196 goto exit1;
5197
5198 error = -EXDEV;
5199 if (old_path.mnt != new_path.mnt)
5200 goto exit2;
5201
5202 error = -EBUSY;
5203 if (old_type != LAST_NORM)
5204 goto exit2;
5205
5206 if (flags & RENAME_NOREPLACE)
5207 error = -EEXIST;
5208 if (new_type != LAST_NORM)
5209 goto exit2;
5210
5211 error = mnt_want_write(old_path.mnt);
5212 if (error)
5213 goto exit2;
5214
5215 retry_deleg:
5216 trap = lock_rename(new_path.dentry, old_path.dentry);
5217 if (IS_ERR(trap)) {
5218 error = PTR_ERR(trap);
5219 goto exit_lock_rename;
5220 }
5221
5222 old_dentry = lookup_one_qstr_excl(&old_last, old_path.dentry,
5223 lookup_flags);
5224 error = PTR_ERR(old_dentry);
5225 if (IS_ERR(old_dentry))
5226 goto exit3;
5227 new_dentry = lookup_one_qstr_excl(&new_last, new_path.dentry,
5228 lookup_flags | target_flags);
5229 error = PTR_ERR(new_dentry);
5230 if (IS_ERR(new_dentry))
5231 goto exit4;
5232 if (flags & RENAME_EXCHANGE) {
5233 if (!d_is_dir(new_dentry)) {
5234 error = -ENOTDIR;
5235 if (new_last.name[new_last.len])
5236 goto exit5;
5237 }
5238 }
5239 /* unless the source is a directory trailing slashes give -ENOTDIR */
5240 if (!d_is_dir(old_dentry)) {
5241 error = -ENOTDIR;
5242 if (old_last.name[old_last.len])
5243 goto exit5;
5244 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
5245 goto exit5;
5246 }
5247 /* source should not be ancestor of target */
5248 error = -EINVAL;
5249 if (old_dentry == trap)
5250 goto exit5;
5251 /* target should not be an ancestor of source */
5252 if (!(flags & RENAME_EXCHANGE))
5253 error = -ENOTEMPTY;
5254 if (new_dentry == trap)
5255 goto exit5;
5256
5257 error = security_path_rename(&old_path, old_dentry,
5258 &new_path, new_dentry, flags);
5259 if (error)
5260 goto exit5;
5261
5262 rd.old_dir = old_path.dentry->d_inode;
5263 rd.old_dentry = old_dentry;
5264 rd.old_mnt_idmap = mnt_idmap(old_path.mnt);
5265 rd.new_dir = new_path.dentry->d_inode;
5266 rd.new_dentry = new_dentry;
5267 rd.new_mnt_idmap = mnt_idmap(new_path.mnt);
5268 rd.delegated_inode = &delegated_inode;
5269 rd.flags = flags;
5270 error = vfs_rename(&rd);
5271 exit5:
5272 dput(new_dentry);
5273 exit4:
5274 dput(old_dentry);
5275 exit3:
5276 unlock_rename(new_path.dentry, old_path.dentry);
5277 exit_lock_rename:
5278 if (delegated_inode) {
5279 error = break_deleg_wait(&delegated_inode);
5280 if (!error)
5281 goto retry_deleg;
5282 }
5283 mnt_drop_write(old_path.mnt);
5284 exit2:
5285 if (retry_estale(error, lookup_flags))
5286 should_retry = true;
5287 path_put(&new_path);
5288 exit1:
5289 path_put(&old_path);
5290 if (should_retry) {
5291 should_retry = false;
5292 lookup_flags |= LOOKUP_REVAL;
5293 goto retry;
5294 }
5295 put_names:
5296 putname(from);
5297 putname(to);
5298 return error;
5299 }
5300
SYSCALL_DEFINE5(renameat2,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname,unsigned int,flags)5301 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
5302 int, newdfd, const char __user *, newname, unsigned int, flags)
5303 {
5304 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5305 flags);
5306 }
5307
SYSCALL_DEFINE4(renameat,int,olddfd,const char __user *,oldname,int,newdfd,const char __user *,newname)5308 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
5309 int, newdfd, const char __user *, newname)
5310 {
5311 return do_renameat2(olddfd, getname(oldname), newdfd, getname(newname),
5312 0);
5313 }
5314
SYSCALL_DEFINE2(rename,const char __user *,oldname,const char __user *,newname)5315 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
5316 {
5317 return do_renameat2(AT_FDCWD, getname(oldname), AT_FDCWD,
5318 getname(newname), 0);
5319 }
5320
readlink_copy(char __user * buffer,int buflen,const char * link,int linklen)5321 int readlink_copy(char __user *buffer, int buflen, const char *link, int linklen)
5322 {
5323 int copylen;
5324
5325 copylen = linklen;
5326 if (unlikely(copylen > (unsigned) buflen))
5327 copylen = buflen;
5328 if (copy_to_user(buffer, link, copylen))
5329 copylen = -EFAULT;
5330 return copylen;
5331 }
5332
5333 /**
5334 * vfs_readlink - copy symlink body into userspace buffer
5335 * @dentry: dentry on which to get symbolic link
5336 * @buffer: user memory pointer
5337 * @buflen: size of buffer
5338 *
5339 * Does not touch atime. That's up to the caller if necessary
5340 *
5341 * Does not call security hook.
5342 */
vfs_readlink(struct dentry * dentry,char __user * buffer,int buflen)5343 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5344 {
5345 struct inode *inode = d_inode(dentry);
5346 DEFINE_DELAYED_CALL(done);
5347 const char *link;
5348 int res;
5349
5350 if (inode->i_opflags & IOP_CACHED_LINK)
5351 return readlink_copy(buffer, buflen, inode->i_link, inode->i_linklen);
5352
5353 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
5354 if (unlikely(inode->i_op->readlink))
5355 return inode->i_op->readlink(dentry, buffer, buflen);
5356
5357 if (!d_is_symlink(dentry))
5358 return -EINVAL;
5359
5360 spin_lock(&inode->i_lock);
5361 inode->i_opflags |= IOP_DEFAULT_READLINK;
5362 spin_unlock(&inode->i_lock);
5363 }
5364
5365 link = READ_ONCE(inode->i_link);
5366 if (!link) {
5367 link = inode->i_op->get_link(dentry, inode, &done);
5368 if (IS_ERR(link))
5369 return PTR_ERR(link);
5370 }
5371 res = readlink_copy(buffer, buflen, link, strlen(link));
5372 do_delayed_call(&done);
5373 return res;
5374 }
5375 EXPORT_SYMBOL(vfs_readlink);
5376
5377 /**
5378 * vfs_get_link - get symlink body
5379 * @dentry: dentry on which to get symbolic link
5380 * @done: caller needs to free returned data with this
5381 *
5382 * Calls security hook and i_op->get_link() on the supplied inode.
5383 *
5384 * It does not touch atime. That's up to the caller if necessary.
5385 *
5386 * Does not work on "special" symlinks like /proc/$$/fd/N
5387 */
vfs_get_link(struct dentry * dentry,struct delayed_call * done)5388 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
5389 {
5390 const char *res = ERR_PTR(-EINVAL);
5391 struct inode *inode = d_inode(dentry);
5392
5393 if (d_is_symlink(dentry)) {
5394 res = ERR_PTR(security_inode_readlink(dentry));
5395 if (!res)
5396 res = inode->i_op->get_link(dentry, inode, done);
5397 }
5398 return res;
5399 }
5400 EXPORT_SYMBOL(vfs_get_link);
5401
5402 /* get the link contents into pagecache */
__page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5403 static char *__page_get_link(struct dentry *dentry, struct inode *inode,
5404 struct delayed_call *callback)
5405 {
5406 struct page *page;
5407 struct address_space *mapping = inode->i_mapping;
5408
5409 if (!dentry) {
5410 page = find_get_page(mapping, 0);
5411 if (!page)
5412 return ERR_PTR(-ECHILD);
5413 if (!PageUptodate(page)) {
5414 put_page(page);
5415 return ERR_PTR(-ECHILD);
5416 }
5417 } else {
5418 page = read_mapping_page(mapping, 0, NULL);
5419 if (IS_ERR(page))
5420 return (char*)page;
5421 }
5422 set_delayed_call(callback, page_put_link, page);
5423 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
5424 return page_address(page);
5425 }
5426
page_get_link_raw(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5427 const char *page_get_link_raw(struct dentry *dentry, struct inode *inode,
5428 struct delayed_call *callback)
5429 {
5430 return __page_get_link(dentry, inode, callback);
5431 }
5432 EXPORT_SYMBOL_GPL(page_get_link_raw);
5433
page_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * callback)5434 const char *page_get_link(struct dentry *dentry, struct inode *inode,
5435 struct delayed_call *callback)
5436 {
5437 char *kaddr = __page_get_link(dentry, inode, callback);
5438
5439 if (!IS_ERR(kaddr))
5440 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
5441 return kaddr;
5442 }
5443
5444 EXPORT_SYMBOL(page_get_link);
5445
page_put_link(void * arg)5446 void page_put_link(void *arg)
5447 {
5448 put_page(arg);
5449 }
5450 EXPORT_SYMBOL(page_put_link);
5451
page_readlink(struct dentry * dentry,char __user * buffer,int buflen)5452 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
5453 {
5454 const char *link;
5455 int res;
5456
5457 DEFINE_DELAYED_CALL(done);
5458 link = page_get_link(dentry, d_inode(dentry), &done);
5459 res = PTR_ERR(link);
5460 if (!IS_ERR(link))
5461 res = readlink_copy(buffer, buflen, link, strlen(link));
5462 do_delayed_call(&done);
5463 return res;
5464 }
5465 EXPORT_SYMBOL(page_readlink);
5466
page_symlink(struct inode * inode,const char * symname,int len)5467 int page_symlink(struct inode *inode, const char *symname, int len)
5468 {
5469 struct address_space *mapping = inode->i_mapping;
5470 const struct address_space_operations *aops = mapping->a_ops;
5471 bool nofs = !mapping_gfp_constraint(mapping, __GFP_FS);
5472 struct folio *folio;
5473 void *fsdata = NULL;
5474 int err;
5475 unsigned int flags;
5476
5477 retry:
5478 if (nofs)
5479 flags = memalloc_nofs_save();
5480 err = aops->write_begin(NULL, mapping, 0, len-1, &folio, &fsdata);
5481 if (nofs)
5482 memalloc_nofs_restore(flags);
5483 if (err)
5484 goto fail;
5485
5486 memcpy(folio_address(folio), symname, len - 1);
5487
5488 err = aops->write_end(NULL, mapping, 0, len - 1, len - 1,
5489 folio, fsdata);
5490 if (err < 0)
5491 goto fail;
5492 if (err < len-1)
5493 goto retry;
5494
5495 mark_inode_dirty(inode);
5496 return 0;
5497 fail:
5498 return err;
5499 }
5500 EXPORT_SYMBOL(page_symlink);
5501
5502 const struct inode_operations page_symlink_inode_operations = {
5503 .get_link = page_get_link,
5504 };
5505 EXPORT_SYMBOL(page_symlink_inode_operations);
5506