1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * fs/kernfs/mount.c - kernfs mount implementation
4  *
5  * Copyright (c) 2001-3 Patrick Mochel
6  * Copyright (c) 2007 SUSE Linux Products GmbH
7  * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8  */
9 
10 #include <linux/fs.h>
11 #include <linux/mount.h>
12 #include <linux/init.h>
13 #include <linux/magic.h>
14 #include <linux/slab.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/seq_file.h>
18 #include <linux/exportfs.h>
19 #include <linux/uuid.h>
20 #include <linux/statfs.h>
21 
22 #include "kernfs-internal.h"
23 
24 struct kmem_cache *kernfs_node_cache __ro_after_init;
25 struct kmem_cache *kernfs_iattrs_cache __ro_after_init;
26 struct kernfs_global_locks *kernfs_locks __ro_after_init;
27 
kernfs_sop_show_options(struct seq_file * sf,struct dentry * dentry)28 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
29 {
30 	struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
31 	struct kernfs_syscall_ops *scops = root->syscall_ops;
32 
33 	if (scops && scops->show_options)
34 		return scops->show_options(sf, root);
35 	return 0;
36 }
37 
kernfs_sop_show_path(struct seq_file * sf,struct dentry * dentry)38 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
39 {
40 	struct kernfs_node *node = kernfs_dentry_node(dentry);
41 	struct kernfs_root *root = kernfs_root(node);
42 	struct kernfs_syscall_ops *scops = root->syscall_ops;
43 
44 	if (scops && scops->show_path)
45 		return scops->show_path(sf, node, root);
46 
47 	seq_dentry(sf, dentry, " \t\n\\");
48 	return 0;
49 }
50 
kernfs_statfs(struct dentry * dentry,struct kstatfs * buf)51 static int kernfs_statfs(struct dentry *dentry, struct kstatfs *buf)
52 {
53 	simple_statfs(dentry, buf);
54 	buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
55 	return 0;
56 }
57 
58 const struct super_operations kernfs_sops = {
59 	.statfs		= kernfs_statfs,
60 	.drop_inode	= generic_delete_inode,
61 	.evict_inode	= kernfs_evict_inode,
62 
63 	.show_options	= kernfs_sop_show_options,
64 	.show_path	= kernfs_sop_show_path,
65 };
66 
kernfs_encode_fh(struct inode * inode,__u32 * fh,int * max_len,struct inode * parent)67 static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
68 			    struct inode *parent)
69 {
70 	struct kernfs_node *kn = inode->i_private;
71 
72 	if (*max_len < 2) {
73 		*max_len = 2;
74 		return FILEID_INVALID;
75 	}
76 
77 	*max_len = 2;
78 	*(u64 *)fh = kn->id;
79 	return FILEID_KERNFS;
80 }
81 
__kernfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,bool get_parent)82 static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
83 					    struct fid *fid, int fh_len,
84 					    int fh_type, bool get_parent)
85 {
86 	struct kernfs_super_info *info = kernfs_info(sb);
87 	struct kernfs_node *kn;
88 	struct inode *inode;
89 	u64 id;
90 
91 	if (fh_len < 2)
92 		return NULL;
93 
94 	switch (fh_type) {
95 	case FILEID_KERNFS:
96 		id = *(u64 *)fid;
97 		break;
98 	case FILEID_INO32_GEN:
99 	case FILEID_INO32_GEN_PARENT:
100 		/*
101 		 * blk_log_action() exposes "LOW32,HIGH32" pair without
102 		 * type and userland can call us with generic fid
103 		 * constructed from them.  Combine it back to ID.  See
104 		 * blk_log_action().
105 		 */
106 		id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
107 		break;
108 	default:
109 		return NULL;
110 	}
111 
112 	kn = kernfs_find_and_get_node_by_id(info->root, id);
113 	if (!kn)
114 		return ERR_PTR(-ESTALE);
115 
116 	if (get_parent) {
117 		struct kernfs_node *parent;
118 
119 		parent = kernfs_get_parent(kn);
120 		kernfs_put(kn);
121 		kn = parent;
122 		if (!kn)
123 			return ERR_PTR(-ESTALE);
124 	}
125 
126 	inode = kernfs_get_inode(sb, kn);
127 	kernfs_put(kn);
128 	return d_obtain_alias(inode);
129 }
130 
kernfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)131 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
132 					  struct fid *fid, int fh_len,
133 					  int fh_type)
134 {
135 	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
136 }
137 
kernfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)138 static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
139 					  struct fid *fid, int fh_len,
140 					  int fh_type)
141 {
142 	return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
143 }
144 
kernfs_get_parent_dentry(struct dentry * child)145 static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
146 {
147 	struct kernfs_node *kn = kernfs_dentry_node(child);
148 	struct kernfs_root *root = kernfs_root(kn);
149 
150 	guard(rwsem_read)(&root->kernfs_rwsem);
151 	return d_obtain_alias(kernfs_get_inode(child->d_sb, kernfs_parent(kn)));
152 }
153 
154 static const struct export_operations kernfs_export_ops = {
155 	.encode_fh	= kernfs_encode_fh,
156 	.fh_to_dentry	= kernfs_fh_to_dentry,
157 	.fh_to_parent	= kernfs_fh_to_parent,
158 	.get_parent	= kernfs_get_parent_dentry,
159 };
160 
161 /**
162  * kernfs_root_from_sb - determine kernfs_root associated with a super_block
163  * @sb: the super_block in question
164  *
165  * Return: the kernfs_root associated with @sb.  If @sb is not a kernfs one,
166  * %NULL is returned.
167  */
kernfs_root_from_sb(struct super_block * sb)168 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
169 {
170 	if (sb->s_op == &kernfs_sops)
171 		return kernfs_info(sb)->root;
172 	return NULL;
173 }
174 
175 /*
176  * find the next ancestor in the path down to @child, where @parent was the
177  * ancestor whose descendant we want to find.
178  *
179  * Say the path is /a/b/c/d.  @child is d, @parent is %NULL.  We return the root
180  * node.  If @parent is b, then we return the node for c.
181  * Passing in d as @parent is not ok.
182  */
find_next_ancestor(struct kernfs_node * child,struct kernfs_node * parent)183 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
184 					      struct kernfs_node *parent)
185 {
186 	if (child == parent) {
187 		pr_crit_once("BUG in find_next_ancestor: called with parent == child");
188 		return NULL;
189 	}
190 
191 	while (kernfs_parent(child) != parent) {
192 		child = kernfs_parent(child);
193 		if (!child)
194 			return NULL;
195 	}
196 
197 	return child;
198 }
199 
200 /**
201  * kernfs_node_dentry - get a dentry for the given kernfs_node
202  * @kn: kernfs_node for which a dentry is needed
203  * @sb: the kernfs super_block
204  *
205  * Return: the dentry pointer
206  */
kernfs_node_dentry(struct kernfs_node * kn,struct super_block * sb)207 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
208 				  struct super_block *sb)
209 {
210 	struct dentry *dentry;
211 	struct kernfs_node *knparent;
212 	struct kernfs_root *root;
213 
214 	BUG_ON(sb->s_op != &kernfs_sops);
215 
216 	dentry = dget(sb->s_root);
217 
218 	/* Check if this is the root kernfs_node */
219 	if (!rcu_access_pointer(kn->__parent))
220 		return dentry;
221 
222 	root = kernfs_root(kn);
223 	/*
224 	 * As long as kn is valid, its parent can not vanish. This is cgroup's
225 	 * kn so it can't have its parent replaced. Therefore it is safe to use
226 	 * the ancestor node outside of the RCU or locked section.
227 	 */
228 	if (WARN_ON_ONCE(!(root->flags & KERNFS_ROOT_INVARIANT_PARENT)))
229 		return ERR_PTR(-EINVAL);
230 	scoped_guard(rcu) {
231 		knparent = find_next_ancestor(kn, NULL);
232 	}
233 	if (WARN_ON(!knparent)) {
234 		dput(dentry);
235 		return ERR_PTR(-EINVAL);
236 	}
237 
238 	do {
239 		struct dentry *dtmp;
240 		struct kernfs_node *kntmp;
241 		const char *name;
242 
243 		if (kn == knparent)
244 			return dentry;
245 
246 		scoped_guard(rwsem_read, &root->kernfs_rwsem) {
247 			kntmp = find_next_ancestor(kn, knparent);
248 			if (WARN_ON(!kntmp)) {
249 				dput(dentry);
250 				return ERR_PTR(-EINVAL);
251 			}
252 			name = kstrdup(kernfs_rcu_name(kntmp), GFP_KERNEL);
253 		}
254 		if (!name) {
255 			dput(dentry);
256 			return ERR_PTR(-ENOMEM);
257 		}
258 		dtmp = lookup_positive_unlocked(name, dentry, strlen(name));
259 		dput(dentry);
260 		kfree(name);
261 		if (IS_ERR(dtmp))
262 			return dtmp;
263 		knparent = kntmp;
264 		dentry = dtmp;
265 	} while (true);
266 }
267 
kernfs_fill_super(struct super_block * sb,struct kernfs_fs_context * kfc)268 static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
269 {
270 	struct kernfs_super_info *info = kernfs_info(sb);
271 	struct kernfs_root *kf_root = kfc->root;
272 	struct inode *inode;
273 	struct dentry *root;
274 
275 	info->sb = sb;
276 	/* Userspace would break if executables or devices appear on sysfs */
277 	sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
278 	sb->s_blocksize = PAGE_SIZE;
279 	sb->s_blocksize_bits = PAGE_SHIFT;
280 	sb->s_magic = kfc->magic;
281 	sb->s_op = &kernfs_sops;
282 	sb->s_xattr = kernfs_xattr_handlers;
283 	if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
284 		sb->s_export_op = &kernfs_export_ops;
285 	sb->s_time_gran = 1;
286 
287 	/* sysfs dentries and inodes don't require IO to create */
288 	sb->s_shrink->seeks = 0;
289 
290 	/* get root inode, initialize and unlock it */
291 	down_read(&kf_root->kernfs_rwsem);
292 	inode = kernfs_get_inode(sb, info->root->kn);
293 	up_read(&kf_root->kernfs_rwsem);
294 	if (!inode) {
295 		pr_debug("kernfs: could not get root inode\n");
296 		return -ENOMEM;
297 	}
298 
299 	/* instantiate and link root dentry */
300 	root = d_make_root(inode);
301 	if (!root) {
302 		pr_debug("%s: could not get root dentry!\n", __func__);
303 		return -ENOMEM;
304 	}
305 	sb->s_root = root;
306 	sb->s_d_op = &kernfs_dops;
307 	return 0;
308 }
309 
kernfs_test_super(struct super_block * sb,struct fs_context * fc)310 static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
311 {
312 	struct kernfs_super_info *sb_info = kernfs_info(sb);
313 	struct kernfs_super_info *info = fc->s_fs_info;
314 
315 	return sb_info->root == info->root && sb_info->ns == info->ns;
316 }
317 
kernfs_set_super(struct super_block * sb,struct fs_context * fc)318 static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
319 {
320 	struct kernfs_fs_context *kfc = fc->fs_private;
321 
322 	kfc->ns_tag = NULL;
323 	return set_anon_super_fc(sb, fc);
324 }
325 
326 /**
327  * kernfs_super_ns - determine the namespace tag of a kernfs super_block
328  * @sb: super_block of interest
329  *
330  * Return: the namespace tag associated with kernfs super_block @sb.
331  */
kernfs_super_ns(struct super_block * sb)332 const void *kernfs_super_ns(struct super_block *sb)
333 {
334 	struct kernfs_super_info *info = kernfs_info(sb);
335 
336 	return info->ns;
337 }
338 
339 /**
340  * kernfs_get_tree - kernfs filesystem access/retrieval helper
341  * @fc: The filesystem context.
342  *
343  * This is to be called from each kernfs user's fs_context->ops->get_tree()
344  * implementation, which should set the specified ->@fs_type and ->@flags, and
345  * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
346  * respectively.
347  *
348  * Return: %0 on success, -errno on failure.
349  */
kernfs_get_tree(struct fs_context * fc)350 int kernfs_get_tree(struct fs_context *fc)
351 {
352 	struct kernfs_fs_context *kfc = fc->fs_private;
353 	struct super_block *sb;
354 	struct kernfs_super_info *info;
355 	int error;
356 
357 	info = kzalloc(sizeof(*info), GFP_KERNEL);
358 	if (!info)
359 		return -ENOMEM;
360 
361 	info->root = kfc->root;
362 	info->ns = kfc->ns_tag;
363 	INIT_LIST_HEAD(&info->node);
364 
365 	fc->s_fs_info = info;
366 	sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
367 	if (IS_ERR(sb))
368 		return PTR_ERR(sb);
369 
370 	if (!sb->s_root) {
371 		struct kernfs_super_info *info = kernfs_info(sb);
372 		struct kernfs_root *root = kfc->root;
373 
374 		kfc->new_sb_created = true;
375 
376 		error = kernfs_fill_super(sb, kfc);
377 		if (error) {
378 			deactivate_locked_super(sb);
379 			return error;
380 		}
381 		sb->s_flags |= SB_ACTIVE;
382 
383 		uuid_t uuid;
384 		uuid_gen(&uuid);
385 		super_set_uuid(sb, uuid.b, sizeof(uuid));
386 
387 		down_write(&root->kernfs_supers_rwsem);
388 		list_add(&info->node, &info->root->supers);
389 		up_write(&root->kernfs_supers_rwsem);
390 	}
391 
392 	fc->root = dget(sb->s_root);
393 	return 0;
394 }
395 
kernfs_free_fs_context(struct fs_context * fc)396 void kernfs_free_fs_context(struct fs_context *fc)
397 {
398 	/* Note that we don't deal with kfc->ns_tag here. */
399 	kfree(fc->s_fs_info);
400 	fc->s_fs_info = NULL;
401 }
402 
403 /**
404  * kernfs_kill_sb - kill_sb for kernfs
405  * @sb: super_block being killed
406  *
407  * This can be used directly for file_system_type->kill_sb().  If a kernfs
408  * user needs extra cleanup, it can implement its own kill_sb() and call
409  * this function at the end.
410  */
kernfs_kill_sb(struct super_block * sb)411 void kernfs_kill_sb(struct super_block *sb)
412 {
413 	struct kernfs_super_info *info = kernfs_info(sb);
414 	struct kernfs_root *root = info->root;
415 
416 	down_write(&root->kernfs_supers_rwsem);
417 	list_del(&info->node);
418 	up_write(&root->kernfs_supers_rwsem);
419 
420 	/*
421 	 * Remove the superblock from fs_supers/s_instances
422 	 * so we can't find it, before freeing kernfs_super_info.
423 	 */
424 	kill_anon_super(sb);
425 	kfree(info);
426 }
427 
kernfs_mutex_init(void)428 static void __init kernfs_mutex_init(void)
429 {
430 	int count;
431 
432 	for (count = 0; count < NR_KERNFS_LOCKS; count++)
433 		mutex_init(&kernfs_locks->open_file_mutex[count]);
434 }
435 
kernfs_lock_init(void)436 static void __init kernfs_lock_init(void)
437 {
438 	kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL);
439 	WARN_ON(!kernfs_locks);
440 
441 	kernfs_mutex_init();
442 }
443 
kernfs_init(void)444 void __init kernfs_init(void)
445 {
446 	kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
447 					      sizeof(struct kernfs_node),
448 					      0, SLAB_PANIC, NULL);
449 
450 	/* Creates slab cache for kernfs inode attributes */
451 	kernfs_iattrs_cache  = kmem_cache_create("kernfs_iattrs_cache",
452 					      sizeof(struct kernfs_iattrs),
453 					      0, SLAB_PANIC, NULL);
454 
455 	kernfs_lock_init();
456 }
457