1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/kernfs/mount.c - kernfs mount implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10 #include <linux/fs.h>
11 #include <linux/mount.h>
12 #include <linux/init.h>
13 #include <linux/magic.h>
14 #include <linux/slab.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/seq_file.h>
18 #include <linux/exportfs.h>
19 #include <linux/uuid.h>
20 #include <linux/statfs.h>
21
22 #include "kernfs-internal.h"
23
24 struct kmem_cache *kernfs_node_cache __ro_after_init;
25 struct kmem_cache *kernfs_iattrs_cache __ro_after_init;
26 struct kernfs_global_locks *kernfs_locks __ro_after_init;
27
kernfs_sop_show_options(struct seq_file * sf,struct dentry * dentry)28 static int kernfs_sop_show_options(struct seq_file *sf, struct dentry *dentry)
29 {
30 struct kernfs_root *root = kernfs_root(kernfs_dentry_node(dentry));
31 struct kernfs_syscall_ops *scops = root->syscall_ops;
32
33 if (scops && scops->show_options)
34 return scops->show_options(sf, root);
35 return 0;
36 }
37
kernfs_sop_show_path(struct seq_file * sf,struct dentry * dentry)38 static int kernfs_sop_show_path(struct seq_file *sf, struct dentry *dentry)
39 {
40 struct kernfs_node *node = kernfs_dentry_node(dentry);
41 struct kernfs_root *root = kernfs_root(node);
42 struct kernfs_syscall_ops *scops = root->syscall_ops;
43
44 if (scops && scops->show_path)
45 return scops->show_path(sf, node, root);
46
47 seq_dentry(sf, dentry, " \t\n\\");
48 return 0;
49 }
50
kernfs_statfs(struct dentry * dentry,struct kstatfs * buf)51 static int kernfs_statfs(struct dentry *dentry, struct kstatfs *buf)
52 {
53 simple_statfs(dentry, buf);
54 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
55 return 0;
56 }
57
58 const struct super_operations kernfs_sops = {
59 .statfs = kernfs_statfs,
60 .drop_inode = generic_delete_inode,
61 .evict_inode = kernfs_evict_inode,
62
63 .show_options = kernfs_sop_show_options,
64 .show_path = kernfs_sop_show_path,
65 };
66
kernfs_encode_fh(struct inode * inode,__u32 * fh,int * max_len,struct inode * parent)67 static int kernfs_encode_fh(struct inode *inode, __u32 *fh, int *max_len,
68 struct inode *parent)
69 {
70 struct kernfs_node *kn = inode->i_private;
71
72 if (*max_len < 2) {
73 *max_len = 2;
74 return FILEID_INVALID;
75 }
76
77 *max_len = 2;
78 *(u64 *)fh = kn->id;
79 return FILEID_KERNFS;
80 }
81
__kernfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,bool get_parent)82 static struct dentry *__kernfs_fh_to_dentry(struct super_block *sb,
83 struct fid *fid, int fh_len,
84 int fh_type, bool get_parent)
85 {
86 struct kernfs_super_info *info = kernfs_info(sb);
87 struct kernfs_node *kn;
88 struct inode *inode;
89 u64 id;
90
91 if (fh_len < 2)
92 return NULL;
93
94 switch (fh_type) {
95 case FILEID_KERNFS:
96 id = *(u64 *)fid;
97 break;
98 case FILEID_INO32_GEN:
99 case FILEID_INO32_GEN_PARENT:
100 /*
101 * blk_log_action() exposes "LOW32,HIGH32" pair without
102 * type and userland can call us with generic fid
103 * constructed from them. Combine it back to ID. See
104 * blk_log_action().
105 */
106 id = ((u64)fid->i32.gen << 32) | fid->i32.ino;
107 break;
108 default:
109 return NULL;
110 }
111
112 kn = kernfs_find_and_get_node_by_id(info->root, id);
113 if (!kn)
114 return ERR_PTR(-ESTALE);
115
116 if (get_parent) {
117 struct kernfs_node *parent;
118
119 parent = kernfs_get_parent(kn);
120 kernfs_put(kn);
121 kn = parent;
122 if (!kn)
123 return ERR_PTR(-ESTALE);
124 }
125
126 inode = kernfs_get_inode(sb, kn);
127 kernfs_put(kn);
128 return d_obtain_alias(inode);
129 }
130
kernfs_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)131 static struct dentry *kernfs_fh_to_dentry(struct super_block *sb,
132 struct fid *fid, int fh_len,
133 int fh_type)
134 {
135 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, false);
136 }
137
kernfs_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type)138 static struct dentry *kernfs_fh_to_parent(struct super_block *sb,
139 struct fid *fid, int fh_len,
140 int fh_type)
141 {
142 return __kernfs_fh_to_dentry(sb, fid, fh_len, fh_type, true);
143 }
144
kernfs_get_parent_dentry(struct dentry * child)145 static struct dentry *kernfs_get_parent_dentry(struct dentry *child)
146 {
147 struct kernfs_node *kn = kernfs_dentry_node(child);
148 struct kernfs_root *root = kernfs_root(kn);
149
150 guard(rwsem_read)(&root->kernfs_rwsem);
151 return d_obtain_alias(kernfs_get_inode(child->d_sb, kernfs_parent(kn)));
152 }
153
154 static const struct export_operations kernfs_export_ops = {
155 .encode_fh = kernfs_encode_fh,
156 .fh_to_dentry = kernfs_fh_to_dentry,
157 .fh_to_parent = kernfs_fh_to_parent,
158 .get_parent = kernfs_get_parent_dentry,
159 };
160
161 /**
162 * kernfs_root_from_sb - determine kernfs_root associated with a super_block
163 * @sb: the super_block in question
164 *
165 * Return: the kernfs_root associated with @sb. If @sb is not a kernfs one,
166 * %NULL is returned.
167 */
kernfs_root_from_sb(struct super_block * sb)168 struct kernfs_root *kernfs_root_from_sb(struct super_block *sb)
169 {
170 if (sb->s_op == &kernfs_sops)
171 return kernfs_info(sb)->root;
172 return NULL;
173 }
174
175 /*
176 * find the next ancestor in the path down to @child, where @parent was the
177 * ancestor whose descendant we want to find.
178 *
179 * Say the path is /a/b/c/d. @child is d, @parent is %NULL. We return the root
180 * node. If @parent is b, then we return the node for c.
181 * Passing in d as @parent is not ok.
182 */
find_next_ancestor(struct kernfs_node * child,struct kernfs_node * parent)183 static struct kernfs_node *find_next_ancestor(struct kernfs_node *child,
184 struct kernfs_node *parent)
185 {
186 if (child == parent) {
187 pr_crit_once("BUG in find_next_ancestor: called with parent == child");
188 return NULL;
189 }
190
191 while (kernfs_parent(child) != parent) {
192 child = kernfs_parent(child);
193 if (!child)
194 return NULL;
195 }
196
197 return child;
198 }
199
200 /**
201 * kernfs_node_dentry - get a dentry for the given kernfs_node
202 * @kn: kernfs_node for which a dentry is needed
203 * @sb: the kernfs super_block
204 *
205 * Return: the dentry pointer
206 */
kernfs_node_dentry(struct kernfs_node * kn,struct super_block * sb)207 struct dentry *kernfs_node_dentry(struct kernfs_node *kn,
208 struct super_block *sb)
209 {
210 struct dentry *dentry;
211 struct kernfs_node *knparent;
212 struct kernfs_root *root;
213
214 BUG_ON(sb->s_op != &kernfs_sops);
215
216 dentry = dget(sb->s_root);
217
218 /* Check if this is the root kernfs_node */
219 if (!rcu_access_pointer(kn->__parent))
220 return dentry;
221
222 root = kernfs_root(kn);
223 /*
224 * As long as kn is valid, its parent can not vanish. This is cgroup's
225 * kn so it can't have its parent replaced. Therefore it is safe to use
226 * the ancestor node outside of the RCU or locked section.
227 */
228 if (WARN_ON_ONCE(!(root->flags & KERNFS_ROOT_INVARIANT_PARENT)))
229 return ERR_PTR(-EINVAL);
230 scoped_guard(rcu) {
231 knparent = find_next_ancestor(kn, NULL);
232 }
233 if (WARN_ON(!knparent)) {
234 dput(dentry);
235 return ERR_PTR(-EINVAL);
236 }
237
238 do {
239 struct dentry *dtmp;
240 struct kernfs_node *kntmp;
241 const char *name;
242
243 if (kn == knparent)
244 return dentry;
245
246 scoped_guard(rwsem_read, &root->kernfs_rwsem) {
247 kntmp = find_next_ancestor(kn, knparent);
248 if (WARN_ON(!kntmp)) {
249 dput(dentry);
250 return ERR_PTR(-EINVAL);
251 }
252 name = kstrdup(kernfs_rcu_name(kntmp), GFP_KERNEL);
253 }
254 if (!name) {
255 dput(dentry);
256 return ERR_PTR(-ENOMEM);
257 }
258 dtmp = lookup_positive_unlocked(name, dentry, strlen(name));
259 dput(dentry);
260 kfree(name);
261 if (IS_ERR(dtmp))
262 return dtmp;
263 knparent = kntmp;
264 dentry = dtmp;
265 } while (true);
266 }
267
kernfs_fill_super(struct super_block * sb,struct kernfs_fs_context * kfc)268 static int kernfs_fill_super(struct super_block *sb, struct kernfs_fs_context *kfc)
269 {
270 struct kernfs_super_info *info = kernfs_info(sb);
271 struct kernfs_root *kf_root = kfc->root;
272 struct inode *inode;
273 struct dentry *root;
274
275 info->sb = sb;
276 /* Userspace would break if executables or devices appear on sysfs */
277 sb->s_iflags |= SB_I_NOEXEC | SB_I_NODEV;
278 sb->s_blocksize = PAGE_SIZE;
279 sb->s_blocksize_bits = PAGE_SHIFT;
280 sb->s_magic = kfc->magic;
281 sb->s_op = &kernfs_sops;
282 sb->s_xattr = kernfs_xattr_handlers;
283 if (info->root->flags & KERNFS_ROOT_SUPPORT_EXPORTOP)
284 sb->s_export_op = &kernfs_export_ops;
285 sb->s_time_gran = 1;
286
287 /* sysfs dentries and inodes don't require IO to create */
288 sb->s_shrink->seeks = 0;
289
290 /* get root inode, initialize and unlock it */
291 down_read(&kf_root->kernfs_rwsem);
292 inode = kernfs_get_inode(sb, info->root->kn);
293 up_read(&kf_root->kernfs_rwsem);
294 if (!inode) {
295 pr_debug("kernfs: could not get root inode\n");
296 return -ENOMEM;
297 }
298
299 /* instantiate and link root dentry */
300 root = d_make_root(inode);
301 if (!root) {
302 pr_debug("%s: could not get root dentry!\n", __func__);
303 return -ENOMEM;
304 }
305 sb->s_root = root;
306 sb->s_d_op = &kernfs_dops;
307 return 0;
308 }
309
kernfs_test_super(struct super_block * sb,struct fs_context * fc)310 static int kernfs_test_super(struct super_block *sb, struct fs_context *fc)
311 {
312 struct kernfs_super_info *sb_info = kernfs_info(sb);
313 struct kernfs_super_info *info = fc->s_fs_info;
314
315 return sb_info->root == info->root && sb_info->ns == info->ns;
316 }
317
kernfs_set_super(struct super_block * sb,struct fs_context * fc)318 static int kernfs_set_super(struct super_block *sb, struct fs_context *fc)
319 {
320 struct kernfs_fs_context *kfc = fc->fs_private;
321
322 kfc->ns_tag = NULL;
323 return set_anon_super_fc(sb, fc);
324 }
325
326 /**
327 * kernfs_super_ns - determine the namespace tag of a kernfs super_block
328 * @sb: super_block of interest
329 *
330 * Return: the namespace tag associated with kernfs super_block @sb.
331 */
kernfs_super_ns(struct super_block * sb)332 const void *kernfs_super_ns(struct super_block *sb)
333 {
334 struct kernfs_super_info *info = kernfs_info(sb);
335
336 return info->ns;
337 }
338
339 /**
340 * kernfs_get_tree - kernfs filesystem access/retrieval helper
341 * @fc: The filesystem context.
342 *
343 * This is to be called from each kernfs user's fs_context->ops->get_tree()
344 * implementation, which should set the specified ->@fs_type and ->@flags, and
345 * specify the hierarchy and namespace tag to mount via ->@root and ->@ns,
346 * respectively.
347 *
348 * Return: %0 on success, -errno on failure.
349 */
kernfs_get_tree(struct fs_context * fc)350 int kernfs_get_tree(struct fs_context *fc)
351 {
352 struct kernfs_fs_context *kfc = fc->fs_private;
353 struct super_block *sb;
354 struct kernfs_super_info *info;
355 int error;
356
357 info = kzalloc(sizeof(*info), GFP_KERNEL);
358 if (!info)
359 return -ENOMEM;
360
361 info->root = kfc->root;
362 info->ns = kfc->ns_tag;
363 INIT_LIST_HEAD(&info->node);
364
365 fc->s_fs_info = info;
366 sb = sget_fc(fc, kernfs_test_super, kernfs_set_super);
367 if (IS_ERR(sb))
368 return PTR_ERR(sb);
369
370 if (!sb->s_root) {
371 struct kernfs_super_info *info = kernfs_info(sb);
372 struct kernfs_root *root = kfc->root;
373
374 kfc->new_sb_created = true;
375
376 error = kernfs_fill_super(sb, kfc);
377 if (error) {
378 deactivate_locked_super(sb);
379 return error;
380 }
381 sb->s_flags |= SB_ACTIVE;
382
383 uuid_t uuid;
384 uuid_gen(&uuid);
385 super_set_uuid(sb, uuid.b, sizeof(uuid));
386
387 down_write(&root->kernfs_supers_rwsem);
388 list_add(&info->node, &info->root->supers);
389 up_write(&root->kernfs_supers_rwsem);
390 }
391
392 fc->root = dget(sb->s_root);
393 return 0;
394 }
395
kernfs_free_fs_context(struct fs_context * fc)396 void kernfs_free_fs_context(struct fs_context *fc)
397 {
398 /* Note that we don't deal with kfc->ns_tag here. */
399 kfree(fc->s_fs_info);
400 fc->s_fs_info = NULL;
401 }
402
403 /**
404 * kernfs_kill_sb - kill_sb for kernfs
405 * @sb: super_block being killed
406 *
407 * This can be used directly for file_system_type->kill_sb(). If a kernfs
408 * user needs extra cleanup, it can implement its own kill_sb() and call
409 * this function at the end.
410 */
kernfs_kill_sb(struct super_block * sb)411 void kernfs_kill_sb(struct super_block *sb)
412 {
413 struct kernfs_super_info *info = kernfs_info(sb);
414 struct kernfs_root *root = info->root;
415
416 down_write(&root->kernfs_supers_rwsem);
417 list_del(&info->node);
418 up_write(&root->kernfs_supers_rwsem);
419
420 /*
421 * Remove the superblock from fs_supers/s_instances
422 * so we can't find it, before freeing kernfs_super_info.
423 */
424 kill_anon_super(sb);
425 kfree(info);
426 }
427
kernfs_mutex_init(void)428 static void __init kernfs_mutex_init(void)
429 {
430 int count;
431
432 for (count = 0; count < NR_KERNFS_LOCKS; count++)
433 mutex_init(&kernfs_locks->open_file_mutex[count]);
434 }
435
kernfs_lock_init(void)436 static void __init kernfs_lock_init(void)
437 {
438 kernfs_locks = kmalloc(sizeof(struct kernfs_global_locks), GFP_KERNEL);
439 WARN_ON(!kernfs_locks);
440
441 kernfs_mutex_init();
442 }
443
kernfs_init(void)444 void __init kernfs_init(void)
445 {
446 kernfs_node_cache = kmem_cache_create("kernfs_node_cache",
447 sizeof(struct kernfs_node),
448 0, SLAB_PANIC, NULL);
449
450 /* Creates slab cache for kernfs inode attributes */
451 kernfs_iattrs_cache = kmem_cache_create("kernfs_iattrs_cache",
452 sizeof(struct kernfs_iattrs),
453 0, SLAB_PANIC, NULL);
454
455 kernfs_lock_init();
456 }
457