1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ext4/inode.c
4  *
5  * Copyright (C) 1992, 1993, 1994, 1995
6  * Remy Card (card@masi.ibp.fr)
7  * Laboratoire MASI - Institut Blaise Pascal
8  * Universite Pierre et Marie Curie (Paris VI)
9  *
10  *  from
11  *
12  *  linux/fs/minix/inode.c
13  *
14  *  Copyright (C) 1991, 1992  Linus Torvalds
15  *
16  *  64-bit file support on 64-bit platforms by Jakub Jelinek
17  *	(jj@sunsite.ms.mff.cuni.cz)
18  *
19  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20  */
21 
22 #include <linux/fs.h>
23 #include <linux/mount.h>
24 #include <linux/time.h>
25 #include <linux/highuid.h>
26 #include <linux/pagemap.h>
27 #include <linux/dax.h>
28 #include <linux/quotaops.h>
29 #include <linux/string.h>
30 #include <linux/buffer_head.h>
31 #include <linux/writeback.h>
32 #include <linux/pagevec.h>
33 #include <linux/mpage.h>
34 #include <linux/rmap.h>
35 #include <linux/namei.h>
36 #include <linux/uio.h>
37 #include <linux/bio.h>
38 #include <linux/workqueue.h>
39 #include <linux/kernel.h>
40 #include <linux/printk.h>
41 #include <linux/slab.h>
42 #include <linux/bitops.h>
43 #include <linux/iomap.h>
44 #include <linux/iversion.h>
45 
46 #include "ext4_jbd2.h"
47 #include "xattr.h"
48 #include "acl.h"
49 #include "truncate.h"
50 
51 #include <trace/events/ext4.h>
52 
53 static void ext4_journalled_zero_new_buffers(handle_t *handle,
54 					    struct inode *inode,
55 					    struct folio *folio,
56 					    unsigned from, unsigned to);
57 
ext4_inode_csum(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)58 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
59 			      struct ext4_inode_info *ei)
60 {
61 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
62 	__u32 csum;
63 	__u16 dummy_csum = 0;
64 	int offset = offsetof(struct ext4_inode, i_checksum_lo);
65 	unsigned int csum_size = sizeof(dummy_csum);
66 
67 	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
68 	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
69 	offset += csum_size;
70 	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
71 			   EXT4_GOOD_OLD_INODE_SIZE - offset);
72 
73 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
74 		offset = offsetof(struct ext4_inode, i_checksum_hi);
75 		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
76 				   EXT4_GOOD_OLD_INODE_SIZE,
77 				   offset - EXT4_GOOD_OLD_INODE_SIZE);
78 		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
79 			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
80 					   csum_size);
81 			offset += csum_size;
82 		}
83 		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
84 				   EXT4_INODE_SIZE(inode->i_sb) - offset);
85 	}
86 
87 	return csum;
88 }
89 
ext4_inode_csum_verify(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)90 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
91 				  struct ext4_inode_info *ei)
92 {
93 	__u32 provided, calculated;
94 
95 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
96 	    cpu_to_le32(EXT4_OS_LINUX) ||
97 	    !ext4_has_feature_metadata_csum(inode->i_sb))
98 		return 1;
99 
100 	provided = le16_to_cpu(raw->i_checksum_lo);
101 	calculated = ext4_inode_csum(inode, raw, ei);
102 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
103 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
104 		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
105 	else
106 		calculated &= 0xFFFF;
107 
108 	return provided == calculated;
109 }
110 
ext4_inode_csum_set(struct inode * inode,struct ext4_inode * raw,struct ext4_inode_info * ei)111 void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
112 			 struct ext4_inode_info *ei)
113 {
114 	__u32 csum;
115 
116 	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
117 	    cpu_to_le32(EXT4_OS_LINUX) ||
118 	    !ext4_has_feature_metadata_csum(inode->i_sb))
119 		return;
120 
121 	csum = ext4_inode_csum(inode, raw, ei);
122 	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
123 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
124 	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
125 		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
126 }
127 
ext4_begin_ordered_truncate(struct inode * inode,loff_t new_size)128 static inline int ext4_begin_ordered_truncate(struct inode *inode,
129 					      loff_t new_size)
130 {
131 	trace_ext4_begin_ordered_truncate(inode, new_size);
132 	/*
133 	 * If jinode is zero, then we never opened the file for
134 	 * writing, so there's no need to call
135 	 * jbd2_journal_begin_ordered_truncate() since there's no
136 	 * outstanding writes we need to flush.
137 	 */
138 	if (!EXT4_I(inode)->jinode)
139 		return 0;
140 	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
141 						   EXT4_I(inode)->jinode,
142 						   new_size);
143 }
144 
145 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
146 				  int pextents);
147 
148 /*
149  * Test whether an inode is a fast symlink.
150  * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
151  */
ext4_inode_is_fast_symlink(struct inode * inode)152 int ext4_inode_is_fast_symlink(struct inode *inode)
153 {
154 	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
155 		int ea_blocks = EXT4_I(inode)->i_file_acl ?
156 				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
157 
158 		if (ext4_has_inline_data(inode))
159 			return 0;
160 
161 		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
162 	}
163 	return S_ISLNK(inode->i_mode) && inode->i_size &&
164 	       (inode->i_size < EXT4_N_BLOCKS * 4);
165 }
166 
167 /*
168  * Called at the last iput() if i_nlink is zero.
169  */
ext4_evict_inode(struct inode * inode)170 void ext4_evict_inode(struct inode *inode)
171 {
172 	handle_t *handle;
173 	int err;
174 	/*
175 	 * Credits for final inode cleanup and freeing:
176 	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
177 	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
178 	 */
179 	int extra_credits = 6;
180 	struct ext4_xattr_inode_array *ea_inode_array = NULL;
181 	bool freeze_protected = false;
182 
183 	trace_ext4_evict_inode(inode);
184 
185 	dax_break_layout_final(inode);
186 
187 	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
188 		ext4_evict_ea_inode(inode);
189 	if (inode->i_nlink) {
190 		truncate_inode_pages_final(&inode->i_data);
191 
192 		goto no_delete;
193 	}
194 
195 	if (is_bad_inode(inode))
196 		goto no_delete;
197 	dquot_initialize(inode);
198 
199 	if (ext4_should_order_data(inode))
200 		ext4_begin_ordered_truncate(inode, 0);
201 	truncate_inode_pages_final(&inode->i_data);
202 
203 	/*
204 	 * For inodes with journalled data, transaction commit could have
205 	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
206 	 * extents converting worker could merge extents and also have dirtied
207 	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
208 	 * we still need to remove the inode from the writeback lists.
209 	 */
210 	if (!list_empty_careful(&inode->i_io_list))
211 		inode_io_list_del(inode);
212 
213 	/*
214 	 * Protect us against freezing - iput() caller didn't have to have any
215 	 * protection against it. When we are in a running transaction though,
216 	 * we are already protected against freezing and we cannot grab further
217 	 * protection due to lock ordering constraints.
218 	 */
219 	if (!ext4_journal_current_handle()) {
220 		sb_start_intwrite(inode->i_sb);
221 		freeze_protected = true;
222 	}
223 
224 	if (!IS_NOQUOTA(inode))
225 		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
226 
227 	/*
228 	 * Block bitmap, group descriptor, and inode are accounted in both
229 	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
230 	 */
231 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
232 			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
233 	if (IS_ERR(handle)) {
234 		ext4_std_error(inode->i_sb, PTR_ERR(handle));
235 		/*
236 		 * If we're going to skip the normal cleanup, we still need to
237 		 * make sure that the in-core orphan linked list is properly
238 		 * cleaned up.
239 		 */
240 		ext4_orphan_del(NULL, inode);
241 		if (freeze_protected)
242 			sb_end_intwrite(inode->i_sb);
243 		goto no_delete;
244 	}
245 
246 	if (IS_SYNC(inode))
247 		ext4_handle_sync(handle);
248 
249 	/*
250 	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
251 	 * special handling of symlinks here because i_size is used to
252 	 * determine whether ext4_inode_info->i_data contains symlink data or
253 	 * block mappings. Setting i_size to 0 will remove its fast symlink
254 	 * status. Erase i_data so that it becomes a valid empty block map.
255 	 */
256 	if (ext4_inode_is_fast_symlink(inode))
257 		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
258 	inode->i_size = 0;
259 	err = ext4_mark_inode_dirty(handle, inode);
260 	if (err) {
261 		ext4_warning(inode->i_sb,
262 			     "couldn't mark inode dirty (err %d)", err);
263 		goto stop_handle;
264 	}
265 	if (inode->i_blocks) {
266 		err = ext4_truncate(inode);
267 		if (err) {
268 			ext4_error_err(inode->i_sb, -err,
269 				       "couldn't truncate inode %lu (err %d)",
270 				       inode->i_ino, err);
271 			goto stop_handle;
272 		}
273 	}
274 
275 	/* Remove xattr references. */
276 	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
277 				      extra_credits);
278 	if (err) {
279 		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
280 stop_handle:
281 		ext4_journal_stop(handle);
282 		ext4_orphan_del(NULL, inode);
283 		if (freeze_protected)
284 			sb_end_intwrite(inode->i_sb);
285 		ext4_xattr_inode_array_free(ea_inode_array);
286 		goto no_delete;
287 	}
288 
289 	/*
290 	 * Kill off the orphan record which ext4_truncate created.
291 	 * AKPM: I think this can be inside the above `if'.
292 	 * Note that ext4_orphan_del() has to be able to cope with the
293 	 * deletion of a non-existent orphan - this is because we don't
294 	 * know if ext4_truncate() actually created an orphan record.
295 	 * (Well, we could do this if we need to, but heck - it works)
296 	 */
297 	ext4_orphan_del(handle, inode);
298 	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
299 
300 	/*
301 	 * One subtle ordering requirement: if anything has gone wrong
302 	 * (transaction abort, IO errors, whatever), then we can still
303 	 * do these next steps (the fs will already have been marked as
304 	 * having errors), but we can't free the inode if the mark_dirty
305 	 * fails.
306 	 */
307 	if (ext4_mark_inode_dirty(handle, inode))
308 		/* If that failed, just do the required in-core inode clear. */
309 		ext4_clear_inode(inode);
310 	else
311 		ext4_free_inode(handle, inode);
312 	ext4_journal_stop(handle);
313 	if (freeze_protected)
314 		sb_end_intwrite(inode->i_sb);
315 	ext4_xattr_inode_array_free(ea_inode_array);
316 	return;
317 no_delete:
318 	/*
319 	 * Check out some where else accidentally dirty the evicting inode,
320 	 * which may probably cause inode use-after-free issues later.
321 	 */
322 	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
323 
324 	if (!list_empty(&EXT4_I(inode)->i_fc_list))
325 		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
326 	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
327 }
328 
329 #ifdef CONFIG_QUOTA
ext4_get_reserved_space(struct inode * inode)330 qsize_t *ext4_get_reserved_space(struct inode *inode)
331 {
332 	return &EXT4_I(inode)->i_reserved_quota;
333 }
334 #endif
335 
336 /*
337  * Called with i_data_sem down, which is important since we can call
338  * ext4_discard_preallocations() from here.
339  */
ext4_da_update_reserve_space(struct inode * inode,int used,int quota_claim)340 void ext4_da_update_reserve_space(struct inode *inode,
341 					int used, int quota_claim)
342 {
343 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
344 	struct ext4_inode_info *ei = EXT4_I(inode);
345 
346 	spin_lock(&ei->i_block_reservation_lock);
347 	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
348 	if (unlikely(used > ei->i_reserved_data_blocks)) {
349 		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
350 			 "with only %d reserved data blocks",
351 			 __func__, inode->i_ino, used,
352 			 ei->i_reserved_data_blocks);
353 		WARN_ON(1);
354 		used = ei->i_reserved_data_blocks;
355 	}
356 
357 	/* Update per-inode reservations */
358 	ei->i_reserved_data_blocks -= used;
359 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
360 
361 	spin_unlock(&ei->i_block_reservation_lock);
362 
363 	/* Update quota subsystem for data blocks */
364 	if (quota_claim)
365 		dquot_claim_block(inode, EXT4_C2B(sbi, used));
366 	else {
367 		/*
368 		 * We did fallocate with an offset that is already delayed
369 		 * allocated. So on delayed allocated writeback we should
370 		 * not re-claim the quota for fallocated blocks.
371 		 */
372 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
373 	}
374 
375 	/*
376 	 * If we have done all the pending block allocations and if
377 	 * there aren't any writers on the inode, we can discard the
378 	 * inode's preallocations.
379 	 */
380 	if ((ei->i_reserved_data_blocks == 0) &&
381 	    !inode_is_open_for_write(inode))
382 		ext4_discard_preallocations(inode);
383 }
384 
__check_block_validity(struct inode * inode,const char * func,unsigned int line,struct ext4_map_blocks * map)385 static int __check_block_validity(struct inode *inode, const char *func,
386 				unsigned int line,
387 				struct ext4_map_blocks *map)
388 {
389 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
390 
391 	if (journal && inode == journal->j_inode)
392 		return 0;
393 
394 	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
395 		ext4_error_inode(inode, func, line, map->m_pblk,
396 				 "lblock %lu mapped to illegal pblock %llu "
397 				 "(length %d)", (unsigned long) map->m_lblk,
398 				 map->m_pblk, map->m_len);
399 		return -EFSCORRUPTED;
400 	}
401 	return 0;
402 }
403 
ext4_issue_zeroout(struct inode * inode,ext4_lblk_t lblk,ext4_fsblk_t pblk,ext4_lblk_t len)404 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
405 		       ext4_lblk_t len)
406 {
407 	int ret;
408 
409 	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
410 		return fscrypt_zeroout_range(inode, lblk, pblk, len);
411 
412 	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
413 	if (ret > 0)
414 		ret = 0;
415 
416 	return ret;
417 }
418 
419 #define check_block_validity(inode, map)	\
420 	__check_block_validity((inode), __func__, __LINE__, (map))
421 
422 #ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle_t * handle,struct inode * inode,struct ext4_map_blocks * es_map,struct ext4_map_blocks * map,int flags)423 static void ext4_map_blocks_es_recheck(handle_t *handle,
424 				       struct inode *inode,
425 				       struct ext4_map_blocks *es_map,
426 				       struct ext4_map_blocks *map,
427 				       int flags)
428 {
429 	int retval;
430 
431 	map->m_flags = 0;
432 	/*
433 	 * There is a race window that the result is not the same.
434 	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
435 	 * is that we lookup a block mapping in extent status tree with
436 	 * out taking i_data_sem.  So at the time the unwritten extent
437 	 * could be converted.
438 	 */
439 	down_read(&EXT4_I(inode)->i_data_sem);
440 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
441 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
442 	} else {
443 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
444 	}
445 	up_read((&EXT4_I(inode)->i_data_sem));
446 
447 	/*
448 	 * We don't check m_len because extent will be collpased in status
449 	 * tree.  So the m_len might not equal.
450 	 */
451 	if (es_map->m_lblk != map->m_lblk ||
452 	    es_map->m_flags != map->m_flags ||
453 	    es_map->m_pblk != map->m_pblk) {
454 		printk("ES cache assertion failed for inode: %lu "
455 		       "es_cached ex [%d/%d/%llu/%x] != "
456 		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
457 		       inode->i_ino, es_map->m_lblk, es_map->m_len,
458 		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
459 		       map->m_len, map->m_pblk, map->m_flags,
460 		       retval, flags);
461 	}
462 }
463 #endif /* ES_AGGRESSIVE_TEST */
464 
ext4_map_query_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map)465 static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
466 				 struct ext4_map_blocks *map)
467 {
468 	unsigned int status;
469 	int retval;
470 
471 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
472 		retval = ext4_ext_map_blocks(handle, inode, map, 0);
473 	else
474 		retval = ext4_ind_map_blocks(handle, inode, map, 0);
475 
476 	if (retval <= 0)
477 		return retval;
478 
479 	if (unlikely(retval != map->m_len)) {
480 		ext4_warning(inode->i_sb,
481 			     "ES len assertion failed for inode "
482 			     "%lu: retval %d != map->m_len %d",
483 			     inode->i_ino, retval, map->m_len);
484 		WARN_ON(1);
485 	}
486 
487 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
488 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
489 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
490 			      map->m_pblk, status, false);
491 	return retval;
492 }
493 
ext4_map_create_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)494 static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
495 				  struct ext4_map_blocks *map, int flags)
496 {
497 	struct extent_status es;
498 	unsigned int status;
499 	int err, retval = 0;
500 
501 	/*
502 	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
503 	 * indicates that the blocks and quotas has already been
504 	 * checked when the data was copied into the page cache.
505 	 */
506 	if (map->m_flags & EXT4_MAP_DELAYED)
507 		flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
508 
509 	/*
510 	 * Here we clear m_flags because after allocating an new extent,
511 	 * it will be set again.
512 	 */
513 	map->m_flags &= ~EXT4_MAP_FLAGS;
514 
515 	/*
516 	 * We need to check for EXT4 here because migrate could have
517 	 * changed the inode type in between.
518 	 */
519 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
520 		retval = ext4_ext_map_blocks(handle, inode, map, flags);
521 	} else {
522 		retval = ext4_ind_map_blocks(handle, inode, map, flags);
523 
524 		/*
525 		 * We allocated new blocks which will result in i_data's
526 		 * format changing. Force the migrate to fail by clearing
527 		 * migrate flags.
528 		 */
529 		if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
530 			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
531 	}
532 	if (retval <= 0)
533 		return retval;
534 
535 	if (unlikely(retval != map->m_len)) {
536 		ext4_warning(inode->i_sb,
537 			     "ES len assertion failed for inode %lu: "
538 			     "retval %d != map->m_len %d",
539 			     inode->i_ino, retval, map->m_len);
540 		WARN_ON(1);
541 	}
542 
543 	/*
544 	 * We have to zeroout blocks before inserting them into extent
545 	 * status tree. Otherwise someone could look them up there and
546 	 * use them before they are really zeroed. We also have to
547 	 * unmap metadata before zeroing as otherwise writeback can
548 	 * overwrite zeros with stale data from block device.
549 	 */
550 	if (flags & EXT4_GET_BLOCKS_ZERO &&
551 	    map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
552 		err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
553 					 map->m_len);
554 		if (err)
555 			return err;
556 	}
557 
558 	/*
559 	 * If the extent has been zeroed out, we don't need to update
560 	 * extent status tree.
561 	 */
562 	if (flags & EXT4_GET_BLOCKS_PRE_IO &&
563 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
564 		if (ext4_es_is_written(&es))
565 			return retval;
566 	}
567 
568 	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
569 			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
570 	ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
571 			      status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
572 
573 	return retval;
574 }
575 
576 /*
577  * The ext4_map_blocks() function tries to look up the requested blocks,
578  * and returns if the blocks are already mapped.
579  *
580  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
581  * and store the allocated blocks in the result buffer head and mark it
582  * mapped.
583  *
584  * If file type is extents based, it will call ext4_ext_map_blocks(),
585  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
586  * based files
587  *
588  * On success, it returns the number of blocks being mapped or allocated.
589  * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
590  * pre-allocated and unwritten, the resulting @map is marked as unwritten.
591  * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
592  *
593  * It returns 0 if plain look up failed (blocks have not been allocated), in
594  * that case, @map is returned as unmapped but we still do fill map->m_len to
595  * indicate the length of a hole starting at map->m_lblk.
596  *
597  * It returns the error in case of allocation failure.
598  */
ext4_map_blocks(handle_t * handle,struct inode * inode,struct ext4_map_blocks * map,int flags)599 int ext4_map_blocks(handle_t *handle, struct inode *inode,
600 		    struct ext4_map_blocks *map, int flags)
601 {
602 	struct extent_status es;
603 	int retval;
604 	int ret = 0;
605 #ifdef ES_AGGRESSIVE_TEST
606 	struct ext4_map_blocks orig_map;
607 
608 	memcpy(&orig_map, map, sizeof(*map));
609 #endif
610 
611 	map->m_flags = 0;
612 	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
613 		  flags, map->m_len, (unsigned long) map->m_lblk);
614 
615 	/*
616 	 * ext4_map_blocks returns an int, and m_len is an unsigned int
617 	 */
618 	if (unlikely(map->m_len > INT_MAX))
619 		map->m_len = INT_MAX;
620 
621 	/* We can handle the block number less than EXT_MAX_BLOCKS */
622 	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
623 		return -EFSCORRUPTED;
624 
625 	/* Lookup extent status tree firstly */
626 	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
627 	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
628 		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
629 			map->m_pblk = ext4_es_pblock(&es) +
630 					map->m_lblk - es.es_lblk;
631 			map->m_flags |= ext4_es_is_written(&es) ?
632 					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
633 			retval = es.es_len - (map->m_lblk - es.es_lblk);
634 			if (retval > map->m_len)
635 				retval = map->m_len;
636 			map->m_len = retval;
637 		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
638 			map->m_pblk = 0;
639 			map->m_flags |= ext4_es_is_delayed(&es) ?
640 					EXT4_MAP_DELAYED : 0;
641 			retval = es.es_len - (map->m_lblk - es.es_lblk);
642 			if (retval > map->m_len)
643 				retval = map->m_len;
644 			map->m_len = retval;
645 			retval = 0;
646 		} else {
647 			BUG();
648 		}
649 
650 		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
651 			return retval;
652 #ifdef ES_AGGRESSIVE_TEST
653 		ext4_map_blocks_es_recheck(handle, inode, map,
654 					   &orig_map, flags);
655 #endif
656 		goto found;
657 	}
658 	/*
659 	 * In the query cache no-wait mode, nothing we can do more if we
660 	 * cannot find extent in the cache.
661 	 */
662 	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
663 		return 0;
664 
665 	/*
666 	 * Try to see if we can get the block without requesting a new
667 	 * file system block.
668 	 */
669 	down_read(&EXT4_I(inode)->i_data_sem);
670 	retval = ext4_map_query_blocks(handle, inode, map);
671 	up_read((&EXT4_I(inode)->i_data_sem));
672 
673 found:
674 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
675 		ret = check_block_validity(inode, map);
676 		if (ret != 0)
677 			return ret;
678 	}
679 
680 	/* If it is only a block(s) look up */
681 	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
682 		return retval;
683 
684 	/*
685 	 * Returns if the blocks have already allocated
686 	 *
687 	 * Note that if blocks have been preallocated
688 	 * ext4_ext_map_blocks() returns with buffer head unmapped
689 	 */
690 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
691 		/*
692 		 * If we need to convert extent to unwritten
693 		 * we continue and do the actual work in
694 		 * ext4_ext_map_blocks()
695 		 */
696 		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
697 			return retval;
698 
699 	/*
700 	 * New blocks allocate and/or writing to unwritten extent
701 	 * will possibly result in updating i_data, so we take
702 	 * the write lock of i_data_sem, and call get_block()
703 	 * with create == 1 flag.
704 	 */
705 	down_write(&EXT4_I(inode)->i_data_sem);
706 	retval = ext4_map_create_blocks(handle, inode, map, flags);
707 	up_write((&EXT4_I(inode)->i_data_sem));
708 	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
709 		ret = check_block_validity(inode, map);
710 		if (ret != 0)
711 			return ret;
712 
713 		/*
714 		 * Inodes with freshly allocated blocks where contents will be
715 		 * visible after transaction commit must be on transaction's
716 		 * ordered data list.
717 		 */
718 		if (map->m_flags & EXT4_MAP_NEW &&
719 		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
720 		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
721 		    !ext4_is_quota_file(inode) &&
722 		    ext4_should_order_data(inode)) {
723 			loff_t start_byte =
724 				(loff_t)map->m_lblk << inode->i_blkbits;
725 			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
726 
727 			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
728 				ret = ext4_jbd2_inode_add_wait(handle, inode,
729 						start_byte, length);
730 			else
731 				ret = ext4_jbd2_inode_add_write(handle, inode,
732 						start_byte, length);
733 			if (ret)
734 				return ret;
735 		}
736 	}
737 	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
738 				map->m_flags & EXT4_MAP_MAPPED))
739 		ext4_fc_track_range(handle, inode, map->m_lblk,
740 					map->m_lblk + map->m_len - 1);
741 	if (retval < 0)
742 		ext_debug(inode, "failed with err %d\n", retval);
743 	return retval;
744 }
745 
746 /*
747  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
748  * we have to be careful as someone else may be manipulating b_state as well.
749  */
ext4_update_bh_state(struct buffer_head * bh,unsigned long flags)750 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
751 {
752 	unsigned long old_state;
753 	unsigned long new_state;
754 
755 	flags &= EXT4_MAP_FLAGS;
756 
757 	/* Dummy buffer_head? Set non-atomically. */
758 	if (!bh->b_folio) {
759 		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
760 		return;
761 	}
762 	/*
763 	 * Someone else may be modifying b_state. Be careful! This is ugly but
764 	 * once we get rid of using bh as a container for mapping information
765 	 * to pass to / from get_block functions, this can go away.
766 	 */
767 	old_state = READ_ONCE(bh->b_state);
768 	do {
769 		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
770 	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
771 }
772 
_ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int flags)773 static int _ext4_get_block(struct inode *inode, sector_t iblock,
774 			   struct buffer_head *bh, int flags)
775 {
776 	struct ext4_map_blocks map;
777 	int ret = 0;
778 
779 	if (ext4_has_inline_data(inode))
780 		return -ERANGE;
781 
782 	map.m_lblk = iblock;
783 	map.m_len = bh->b_size >> inode->i_blkbits;
784 
785 	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
786 			      flags);
787 	if (ret > 0) {
788 		map_bh(bh, inode->i_sb, map.m_pblk);
789 		ext4_update_bh_state(bh, map.m_flags);
790 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
791 		ret = 0;
792 	} else if (ret == 0) {
793 		/* hole case, need to fill in bh->b_size */
794 		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
795 	}
796 	return ret;
797 }
798 
ext4_get_block(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)799 int ext4_get_block(struct inode *inode, sector_t iblock,
800 		   struct buffer_head *bh, int create)
801 {
802 	return _ext4_get_block(inode, iblock, bh,
803 			       create ? EXT4_GET_BLOCKS_CREATE : 0);
804 }
805 
806 /*
807  * Get block function used when preparing for buffered write if we require
808  * creating an unwritten extent if blocks haven't been allocated.  The extent
809  * will be converted to written after the IO is complete.
810  */
ext4_get_block_unwritten(struct inode * inode,sector_t iblock,struct buffer_head * bh_result,int create)811 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
812 			     struct buffer_head *bh_result, int create)
813 {
814 	int ret = 0;
815 
816 	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
817 		   inode->i_ino, create);
818 	ret = _ext4_get_block(inode, iblock, bh_result,
819 			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
820 
821 	/*
822 	 * If the buffer is marked unwritten, mark it as new to make sure it is
823 	 * zeroed out correctly in case of partial writes. Otherwise, there is
824 	 * a chance of stale data getting exposed.
825 	 */
826 	if (ret == 0 && buffer_unwritten(bh_result))
827 		set_buffer_new(bh_result);
828 
829 	return ret;
830 }
831 
832 /* Maximum number of blocks we map for direct IO at once. */
833 #define DIO_MAX_BLOCKS 4096
834 
835 /*
836  * `handle' can be NULL if create is zero
837  */
ext4_getblk(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)838 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
839 				ext4_lblk_t block, int map_flags)
840 {
841 	struct ext4_map_blocks map;
842 	struct buffer_head *bh;
843 	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
844 	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
845 	int err;
846 
847 	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
848 		    || handle != NULL || create == 0);
849 	ASSERT(create == 0 || !nowait);
850 
851 	map.m_lblk = block;
852 	map.m_len = 1;
853 	err = ext4_map_blocks(handle, inode, &map, map_flags);
854 
855 	if (err == 0)
856 		return create ? ERR_PTR(-ENOSPC) : NULL;
857 	if (err < 0)
858 		return ERR_PTR(err);
859 
860 	if (nowait)
861 		return sb_find_get_block(inode->i_sb, map.m_pblk);
862 
863 	/*
864 	 * Since bh could introduce extra ref count such as referred by
865 	 * journal_head etc. Try to avoid using __GFP_MOVABLE here
866 	 * as it may fail the migration when journal_head remains.
867 	 */
868 	bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
869 				inode->i_sb->s_blocksize);
870 
871 	if (unlikely(!bh))
872 		return ERR_PTR(-ENOMEM);
873 	if (map.m_flags & EXT4_MAP_NEW) {
874 		ASSERT(create != 0);
875 		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
876 			    || (handle != NULL));
877 
878 		/*
879 		 * Now that we do not always journal data, we should
880 		 * keep in mind whether this should always journal the
881 		 * new buffer as metadata.  For now, regular file
882 		 * writes use ext4_get_block instead, so it's not a
883 		 * problem.
884 		 */
885 		lock_buffer(bh);
886 		BUFFER_TRACE(bh, "call get_create_access");
887 		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
888 						     EXT4_JTR_NONE);
889 		if (unlikely(err)) {
890 			unlock_buffer(bh);
891 			goto errout;
892 		}
893 		if (!buffer_uptodate(bh)) {
894 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
895 			set_buffer_uptodate(bh);
896 		}
897 		unlock_buffer(bh);
898 		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
899 		err = ext4_handle_dirty_metadata(handle, inode, bh);
900 		if (unlikely(err))
901 			goto errout;
902 	} else
903 		BUFFER_TRACE(bh, "not a new buffer");
904 	return bh;
905 errout:
906 	brelse(bh);
907 	return ERR_PTR(err);
908 }
909 
ext4_bread(handle_t * handle,struct inode * inode,ext4_lblk_t block,int map_flags)910 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
911 			       ext4_lblk_t block, int map_flags)
912 {
913 	struct buffer_head *bh;
914 	int ret;
915 
916 	bh = ext4_getblk(handle, inode, block, map_flags);
917 	if (IS_ERR(bh))
918 		return bh;
919 	if (!bh || ext4_buffer_uptodate(bh))
920 		return bh;
921 
922 	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
923 	if (ret) {
924 		put_bh(bh);
925 		return ERR_PTR(ret);
926 	}
927 	return bh;
928 }
929 
930 /* Read a contiguous batch of blocks. */
ext4_bread_batch(struct inode * inode,ext4_lblk_t block,int bh_count,bool wait,struct buffer_head ** bhs)931 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
932 		     bool wait, struct buffer_head **bhs)
933 {
934 	int i, err;
935 
936 	for (i = 0; i < bh_count; i++) {
937 		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
938 		if (IS_ERR(bhs[i])) {
939 			err = PTR_ERR(bhs[i]);
940 			bh_count = i;
941 			goto out_brelse;
942 		}
943 	}
944 
945 	for (i = 0; i < bh_count; i++)
946 		/* Note that NULL bhs[i] is valid because of holes. */
947 		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
948 			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
949 
950 	if (!wait)
951 		return 0;
952 
953 	for (i = 0; i < bh_count; i++)
954 		if (bhs[i])
955 			wait_on_buffer(bhs[i]);
956 
957 	for (i = 0; i < bh_count; i++) {
958 		if (bhs[i] && !buffer_uptodate(bhs[i])) {
959 			err = -EIO;
960 			goto out_brelse;
961 		}
962 	}
963 	return 0;
964 
965 out_brelse:
966 	for (i = 0; i < bh_count; i++) {
967 		brelse(bhs[i]);
968 		bhs[i] = NULL;
969 	}
970 	return err;
971 }
972 
ext4_walk_page_buffers(handle_t * handle,struct inode * inode,struct buffer_head * head,unsigned from,unsigned to,int * partial,int (* fn)(handle_t * handle,struct inode * inode,struct buffer_head * bh))973 int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
974 			   struct buffer_head *head,
975 			   unsigned from,
976 			   unsigned to,
977 			   int *partial,
978 			   int (*fn)(handle_t *handle, struct inode *inode,
979 				     struct buffer_head *bh))
980 {
981 	struct buffer_head *bh;
982 	unsigned block_start, block_end;
983 	unsigned blocksize = head->b_size;
984 	int err, ret = 0;
985 	struct buffer_head *next;
986 
987 	for (bh = head, block_start = 0;
988 	     ret == 0 && (bh != head || !block_start);
989 	     block_start = block_end, bh = next) {
990 		next = bh->b_this_page;
991 		block_end = block_start + blocksize;
992 		if (block_end <= from || block_start >= to) {
993 			if (partial && !buffer_uptodate(bh))
994 				*partial = 1;
995 			continue;
996 		}
997 		err = (*fn)(handle, inode, bh);
998 		if (!ret)
999 			ret = err;
1000 	}
1001 	return ret;
1002 }
1003 
1004 /*
1005  * Helper for handling dirtying of journalled data. We also mark the folio as
1006  * dirty so that writeback code knows about this page (and inode) contains
1007  * dirty data. ext4_writepages() then commits appropriate transaction to
1008  * make data stable.
1009  */
ext4_dirty_journalled_data(handle_t * handle,struct buffer_head * bh)1010 static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
1011 {
1012 	folio_mark_dirty(bh->b_folio);
1013 	return ext4_handle_dirty_metadata(handle, NULL, bh);
1014 }
1015 
do_journal_get_write_access(handle_t * handle,struct inode * inode,struct buffer_head * bh)1016 int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1017 				struct buffer_head *bh)
1018 {
1019 	if (!buffer_mapped(bh) || buffer_freed(bh))
1020 		return 0;
1021 	BUFFER_TRACE(bh, "get write access");
1022 	return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1023 					    EXT4_JTR_NONE);
1024 }
1025 
ext4_block_write_begin(handle_t * handle,struct folio * folio,loff_t pos,unsigned len,get_block_t * get_block)1026 int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1027 			   loff_t pos, unsigned len,
1028 			   get_block_t *get_block)
1029 {
1030 	unsigned from = pos & (PAGE_SIZE - 1);
1031 	unsigned to = from + len;
1032 	struct inode *inode = folio->mapping->host;
1033 	unsigned block_start, block_end;
1034 	sector_t block;
1035 	int err = 0;
1036 	unsigned blocksize = inode->i_sb->s_blocksize;
1037 	unsigned bbits;
1038 	struct buffer_head *bh, *head, *wait[2];
1039 	int nr_wait = 0;
1040 	int i;
1041 	bool should_journal_data = ext4_should_journal_data(inode);
1042 
1043 	BUG_ON(!folio_test_locked(folio));
1044 	BUG_ON(from > PAGE_SIZE);
1045 	BUG_ON(to > PAGE_SIZE);
1046 	BUG_ON(from > to);
1047 
1048 	head = folio_buffers(folio);
1049 	if (!head)
1050 		head = create_empty_buffers(folio, blocksize, 0);
1051 	bbits = ilog2(blocksize);
1052 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1053 
1054 	for (bh = head, block_start = 0; bh != head || !block_start;
1055 	    block++, block_start = block_end, bh = bh->b_this_page) {
1056 		block_end = block_start + blocksize;
1057 		if (block_end <= from || block_start >= to) {
1058 			if (folio_test_uptodate(folio)) {
1059 				set_buffer_uptodate(bh);
1060 			}
1061 			continue;
1062 		}
1063 		if (buffer_new(bh))
1064 			clear_buffer_new(bh);
1065 		if (!buffer_mapped(bh)) {
1066 			WARN_ON(bh->b_size != blocksize);
1067 			err = get_block(inode, block, bh, 1);
1068 			if (err)
1069 				break;
1070 			if (buffer_new(bh)) {
1071 				/*
1072 				 * We may be zeroing partial buffers or all new
1073 				 * buffers in case of failure. Prepare JBD2 for
1074 				 * that.
1075 				 */
1076 				if (should_journal_data)
1077 					do_journal_get_write_access(handle,
1078 								    inode, bh);
1079 				if (folio_test_uptodate(folio)) {
1080 					/*
1081 					 * Unlike __block_write_begin() we leave
1082 					 * dirtying of new uptodate buffers to
1083 					 * ->write_end() time or
1084 					 * folio_zero_new_buffers().
1085 					 */
1086 					set_buffer_uptodate(bh);
1087 					continue;
1088 				}
1089 				if (block_end > to || block_start < from)
1090 					folio_zero_segments(folio, to,
1091 							    block_end,
1092 							    block_start, from);
1093 				continue;
1094 			}
1095 		}
1096 		if (folio_test_uptodate(folio)) {
1097 			set_buffer_uptodate(bh);
1098 			continue;
1099 		}
1100 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1101 		    !buffer_unwritten(bh) &&
1102 		    (block_start < from || block_end > to)) {
1103 			ext4_read_bh_lock(bh, 0, false);
1104 			wait[nr_wait++] = bh;
1105 		}
1106 	}
1107 	/*
1108 	 * If we issued read requests, let them complete.
1109 	 */
1110 	for (i = 0; i < nr_wait; i++) {
1111 		wait_on_buffer(wait[i]);
1112 		if (!buffer_uptodate(wait[i]))
1113 			err = -EIO;
1114 	}
1115 	if (unlikely(err)) {
1116 		if (should_journal_data)
1117 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1118 							 from, to);
1119 		else
1120 			folio_zero_new_buffers(folio, from, to);
1121 	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1122 		for (i = 0; i < nr_wait; i++) {
1123 			int err2;
1124 
1125 			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1126 						blocksize, bh_offset(wait[i]));
1127 			if (err2) {
1128 				clear_buffer_uptodate(wait[i]);
1129 				err = err2;
1130 			}
1131 		}
1132 	}
1133 
1134 	return err;
1135 }
1136 
1137 /*
1138  * To preserve ordering, it is essential that the hole instantiation and
1139  * the data write be encapsulated in a single transaction.  We cannot
1140  * close off a transaction and start a new one between the ext4_get_block()
1141  * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1142  * ext4_write_begin() is the right place.
1143  */
ext4_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)1144 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1145 			    loff_t pos, unsigned len,
1146 			    struct folio **foliop, void **fsdata)
1147 {
1148 	struct inode *inode = mapping->host;
1149 	int ret, needed_blocks;
1150 	handle_t *handle;
1151 	int retries = 0;
1152 	struct folio *folio;
1153 	pgoff_t index;
1154 	unsigned from, to;
1155 
1156 	ret = ext4_emergency_state(inode->i_sb);
1157 	if (unlikely(ret))
1158 		return ret;
1159 
1160 	trace_ext4_write_begin(inode, pos, len);
1161 	/*
1162 	 * Reserve one block more for addition to orphan list in case
1163 	 * we allocate blocks but write fails for some reason
1164 	 */
1165 	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1166 	index = pos >> PAGE_SHIFT;
1167 	from = pos & (PAGE_SIZE - 1);
1168 	to = from + len;
1169 
1170 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1171 		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1172 						    foliop);
1173 		if (ret < 0)
1174 			return ret;
1175 		if (ret == 1)
1176 			return 0;
1177 	}
1178 
1179 	/*
1180 	 * __filemap_get_folio() can take a long time if the
1181 	 * system is thrashing due to memory pressure, or if the folio
1182 	 * is being written back.  So grab it first before we start
1183 	 * the transaction handle.  This also allows us to allocate
1184 	 * the folio (if needed) without using GFP_NOFS.
1185 	 */
1186 retry_grab:
1187 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1188 					mapping_gfp_mask(mapping));
1189 	if (IS_ERR(folio))
1190 		return PTR_ERR(folio);
1191 	/*
1192 	 * The same as page allocation, we prealloc buffer heads before
1193 	 * starting the handle.
1194 	 */
1195 	if (!folio_buffers(folio))
1196 		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1197 
1198 	folio_unlock(folio);
1199 
1200 retry_journal:
1201 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1202 	if (IS_ERR(handle)) {
1203 		folio_put(folio);
1204 		return PTR_ERR(handle);
1205 	}
1206 
1207 	folio_lock(folio);
1208 	if (folio->mapping != mapping) {
1209 		/* The folio got truncated from under us */
1210 		folio_unlock(folio);
1211 		folio_put(folio);
1212 		ext4_journal_stop(handle);
1213 		goto retry_grab;
1214 	}
1215 	/* In case writeback began while the folio was unlocked */
1216 	folio_wait_stable(folio);
1217 
1218 	if (ext4_should_dioread_nolock(inode))
1219 		ret = ext4_block_write_begin(handle, folio, pos, len,
1220 					     ext4_get_block_unwritten);
1221 	else
1222 		ret = ext4_block_write_begin(handle, folio, pos, len,
1223 					     ext4_get_block);
1224 	if (!ret && ext4_should_journal_data(inode)) {
1225 		ret = ext4_walk_page_buffers(handle, inode,
1226 					     folio_buffers(folio), from, to,
1227 					     NULL, do_journal_get_write_access);
1228 	}
1229 
1230 	if (ret) {
1231 		bool extended = (pos + len > inode->i_size) &&
1232 				!ext4_verity_in_progress(inode);
1233 
1234 		folio_unlock(folio);
1235 		/*
1236 		 * ext4_block_write_begin may have instantiated a few blocks
1237 		 * outside i_size.  Trim these off again. Don't need
1238 		 * i_size_read because we hold i_rwsem.
1239 		 *
1240 		 * Add inode to orphan list in case we crash before
1241 		 * truncate finishes
1242 		 */
1243 		if (extended && ext4_can_truncate(inode))
1244 			ext4_orphan_add(handle, inode);
1245 
1246 		ext4_journal_stop(handle);
1247 		if (extended) {
1248 			ext4_truncate_failed_write(inode);
1249 			/*
1250 			 * If truncate failed early the inode might
1251 			 * still be on the orphan list; we need to
1252 			 * make sure the inode is removed from the
1253 			 * orphan list in that case.
1254 			 */
1255 			if (inode->i_nlink)
1256 				ext4_orphan_del(NULL, inode);
1257 		}
1258 
1259 		if (ret == -ENOSPC &&
1260 		    ext4_should_retry_alloc(inode->i_sb, &retries))
1261 			goto retry_journal;
1262 		folio_put(folio);
1263 		return ret;
1264 	}
1265 	*foliop = folio;
1266 	return ret;
1267 }
1268 
1269 /* For write_end() in data=journal mode */
write_end_fn(handle_t * handle,struct inode * inode,struct buffer_head * bh)1270 static int write_end_fn(handle_t *handle, struct inode *inode,
1271 			struct buffer_head *bh)
1272 {
1273 	int ret;
1274 	if (!buffer_mapped(bh) || buffer_freed(bh))
1275 		return 0;
1276 	set_buffer_uptodate(bh);
1277 	ret = ext4_dirty_journalled_data(handle, bh);
1278 	clear_buffer_meta(bh);
1279 	clear_buffer_prio(bh);
1280 	return ret;
1281 }
1282 
1283 /*
1284  * We need to pick up the new inode size which generic_commit_write gave us
1285  * `file' can be NULL - eg, when called from page_symlink().
1286  *
1287  * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1288  * buffers are managed internally.
1289  */
ext4_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)1290 static int ext4_write_end(struct file *file,
1291 			  struct address_space *mapping,
1292 			  loff_t pos, unsigned len, unsigned copied,
1293 			  struct folio *folio, void *fsdata)
1294 {
1295 	handle_t *handle = ext4_journal_current_handle();
1296 	struct inode *inode = mapping->host;
1297 	loff_t old_size = inode->i_size;
1298 	int ret = 0, ret2;
1299 	int i_size_changed = 0;
1300 	bool verity = ext4_verity_in_progress(inode);
1301 
1302 	trace_ext4_write_end(inode, pos, len, copied);
1303 
1304 	if (ext4_has_inline_data(inode) &&
1305 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1306 		return ext4_write_inline_data_end(inode, pos, len, copied,
1307 						  folio);
1308 
1309 	copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
1310 	/*
1311 	 * it's important to update i_size while still holding folio lock:
1312 	 * page writeout could otherwise come in and zero beyond i_size.
1313 	 *
1314 	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1315 	 * blocks are being written past EOF, so skip the i_size update.
1316 	 */
1317 	if (!verity)
1318 		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1319 	folio_unlock(folio);
1320 	folio_put(folio);
1321 
1322 	if (old_size < pos && !verity) {
1323 		pagecache_isize_extended(inode, old_size, pos);
1324 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1325 	}
1326 	/*
1327 	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1328 	 * makes the holding time of folio lock longer. Second, it forces lock
1329 	 * ordering of folio lock and transaction start for journaling
1330 	 * filesystems.
1331 	 */
1332 	if (i_size_changed)
1333 		ret = ext4_mark_inode_dirty(handle, inode);
1334 
1335 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1336 		/* if we have allocated more blocks and copied
1337 		 * less. We will have blocks allocated outside
1338 		 * inode->i_size. So truncate them
1339 		 */
1340 		ext4_orphan_add(handle, inode);
1341 
1342 	ret2 = ext4_journal_stop(handle);
1343 	if (!ret)
1344 		ret = ret2;
1345 
1346 	if (pos + len > inode->i_size && !verity) {
1347 		ext4_truncate_failed_write(inode);
1348 		/*
1349 		 * If truncate failed early the inode might still be
1350 		 * on the orphan list; we need to make sure the inode
1351 		 * is removed from the orphan list in that case.
1352 		 */
1353 		if (inode->i_nlink)
1354 			ext4_orphan_del(NULL, inode);
1355 	}
1356 
1357 	return ret ? ret : copied;
1358 }
1359 
1360 /*
1361  * This is a private version of folio_zero_new_buffers() which doesn't
1362  * set the buffer to be dirty, since in data=journalled mode we need
1363  * to call ext4_dirty_journalled_data() instead.
1364  */
ext4_journalled_zero_new_buffers(handle_t * handle,struct inode * inode,struct folio * folio,unsigned from,unsigned to)1365 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1366 					    struct inode *inode,
1367 					    struct folio *folio,
1368 					    unsigned from, unsigned to)
1369 {
1370 	unsigned int block_start = 0, block_end;
1371 	struct buffer_head *head, *bh;
1372 
1373 	bh = head = folio_buffers(folio);
1374 	do {
1375 		block_end = block_start + bh->b_size;
1376 		if (buffer_new(bh)) {
1377 			if (block_end > from && block_start < to) {
1378 				if (!folio_test_uptodate(folio)) {
1379 					unsigned start, size;
1380 
1381 					start = max(from, block_start);
1382 					size = min(to, block_end) - start;
1383 
1384 					folio_zero_range(folio, start, size);
1385 				}
1386 				clear_buffer_new(bh);
1387 				write_end_fn(handle, inode, bh);
1388 			}
1389 		}
1390 		block_start = block_end;
1391 		bh = bh->b_this_page;
1392 	} while (bh != head);
1393 }
1394 
ext4_journalled_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)1395 static int ext4_journalled_write_end(struct file *file,
1396 				     struct address_space *mapping,
1397 				     loff_t pos, unsigned len, unsigned copied,
1398 				     struct folio *folio, void *fsdata)
1399 {
1400 	handle_t *handle = ext4_journal_current_handle();
1401 	struct inode *inode = mapping->host;
1402 	loff_t old_size = inode->i_size;
1403 	int ret = 0, ret2;
1404 	int partial = 0;
1405 	unsigned from, to;
1406 	int size_changed = 0;
1407 	bool verity = ext4_verity_in_progress(inode);
1408 
1409 	trace_ext4_journalled_write_end(inode, pos, len, copied);
1410 	from = pos & (PAGE_SIZE - 1);
1411 	to = from + len;
1412 
1413 	BUG_ON(!ext4_handle_valid(handle));
1414 
1415 	if (ext4_has_inline_data(inode))
1416 		return ext4_write_inline_data_end(inode, pos, len, copied,
1417 						  folio);
1418 
1419 	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
1420 		copied = 0;
1421 		ext4_journalled_zero_new_buffers(handle, inode, folio,
1422 						 from, to);
1423 	} else {
1424 		if (unlikely(copied < len))
1425 			ext4_journalled_zero_new_buffers(handle, inode, folio,
1426 							 from + copied, to);
1427 		ret = ext4_walk_page_buffers(handle, inode,
1428 					     folio_buffers(folio),
1429 					     from, from + copied, &partial,
1430 					     write_end_fn);
1431 		if (!partial)
1432 			folio_mark_uptodate(folio);
1433 	}
1434 	if (!verity)
1435 		size_changed = ext4_update_inode_size(inode, pos + copied);
1436 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1437 	folio_unlock(folio);
1438 	folio_put(folio);
1439 
1440 	if (old_size < pos && !verity) {
1441 		pagecache_isize_extended(inode, old_size, pos);
1442 		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1443 	}
1444 
1445 	if (size_changed) {
1446 		ret2 = ext4_mark_inode_dirty(handle, inode);
1447 		if (!ret)
1448 			ret = ret2;
1449 	}
1450 
1451 	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1452 		/* if we have allocated more blocks and copied
1453 		 * less. We will have blocks allocated outside
1454 		 * inode->i_size. So truncate them
1455 		 */
1456 		ext4_orphan_add(handle, inode);
1457 
1458 	ret2 = ext4_journal_stop(handle);
1459 	if (!ret)
1460 		ret = ret2;
1461 	if (pos + len > inode->i_size && !verity) {
1462 		ext4_truncate_failed_write(inode);
1463 		/*
1464 		 * If truncate failed early the inode might still be
1465 		 * on the orphan list; we need to make sure the inode
1466 		 * is removed from the orphan list in that case.
1467 		 */
1468 		if (inode->i_nlink)
1469 			ext4_orphan_del(NULL, inode);
1470 	}
1471 
1472 	return ret ? ret : copied;
1473 }
1474 
1475 /*
1476  * Reserve space for 'nr_resv' clusters
1477  */
ext4_da_reserve_space(struct inode * inode,int nr_resv)1478 static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1479 {
1480 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1481 	struct ext4_inode_info *ei = EXT4_I(inode);
1482 	int ret;
1483 
1484 	/*
1485 	 * We will charge metadata quota at writeout time; this saves
1486 	 * us from metadata over-estimation, though we may go over by
1487 	 * a small amount in the end.  Here we just reserve for data.
1488 	 */
1489 	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1490 	if (ret)
1491 		return ret;
1492 
1493 	spin_lock(&ei->i_block_reservation_lock);
1494 	if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1495 		spin_unlock(&ei->i_block_reservation_lock);
1496 		dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1497 		return -ENOSPC;
1498 	}
1499 	ei->i_reserved_data_blocks += nr_resv;
1500 	trace_ext4_da_reserve_space(inode, nr_resv);
1501 	spin_unlock(&ei->i_block_reservation_lock);
1502 
1503 	return 0;       /* success */
1504 }
1505 
ext4_da_release_space(struct inode * inode,int to_free)1506 void ext4_da_release_space(struct inode *inode, int to_free)
1507 {
1508 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1509 	struct ext4_inode_info *ei = EXT4_I(inode);
1510 
1511 	if (!to_free)
1512 		return;		/* Nothing to release, exit */
1513 
1514 	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1515 
1516 	trace_ext4_da_release_space(inode, to_free);
1517 	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1518 		/*
1519 		 * if there aren't enough reserved blocks, then the
1520 		 * counter is messed up somewhere.  Since this
1521 		 * function is called from invalidate page, it's
1522 		 * harmless to return without any action.
1523 		 */
1524 		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1525 			 "ino %lu, to_free %d with only %d reserved "
1526 			 "data blocks", inode->i_ino, to_free,
1527 			 ei->i_reserved_data_blocks);
1528 		WARN_ON(1);
1529 		to_free = ei->i_reserved_data_blocks;
1530 	}
1531 	ei->i_reserved_data_blocks -= to_free;
1532 
1533 	/* update fs dirty data blocks counter */
1534 	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1535 
1536 	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1537 
1538 	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1539 }
1540 
1541 /*
1542  * Delayed allocation stuff
1543  */
1544 
1545 struct mpage_da_data {
1546 	/* These are input fields for ext4_do_writepages() */
1547 	struct inode *inode;
1548 	struct writeback_control *wbc;
1549 	unsigned int can_map:1;	/* Can writepages call map blocks? */
1550 
1551 	/* These are internal state of ext4_do_writepages() */
1552 	pgoff_t first_page;	/* The first page to write */
1553 	pgoff_t next_page;	/* Current page to examine */
1554 	pgoff_t last_page;	/* Last page to examine */
1555 	/*
1556 	 * Extent to map - this can be after first_page because that can be
1557 	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1558 	 * is delalloc or unwritten.
1559 	 */
1560 	struct ext4_map_blocks map;
1561 	struct ext4_io_submit io_submit;	/* IO submission data */
1562 	unsigned int do_map:1;
1563 	unsigned int scanned_until_end:1;
1564 	unsigned int journalled_more_data:1;
1565 };
1566 
mpage_release_unused_pages(struct mpage_da_data * mpd,bool invalidate)1567 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1568 				       bool invalidate)
1569 {
1570 	unsigned nr, i;
1571 	pgoff_t index, end;
1572 	struct folio_batch fbatch;
1573 	struct inode *inode = mpd->inode;
1574 	struct address_space *mapping = inode->i_mapping;
1575 
1576 	/* This is necessary when next_page == 0. */
1577 	if (mpd->first_page >= mpd->next_page)
1578 		return;
1579 
1580 	mpd->scanned_until_end = 0;
1581 	index = mpd->first_page;
1582 	end   = mpd->next_page - 1;
1583 	if (invalidate) {
1584 		ext4_lblk_t start, last;
1585 		start = index << (PAGE_SHIFT - inode->i_blkbits);
1586 		last = end << (PAGE_SHIFT - inode->i_blkbits);
1587 
1588 		/*
1589 		 * avoid racing with extent status tree scans made by
1590 		 * ext4_insert_delayed_block()
1591 		 */
1592 		down_write(&EXT4_I(inode)->i_data_sem);
1593 		ext4_es_remove_extent(inode, start, last - start + 1);
1594 		up_write(&EXT4_I(inode)->i_data_sem);
1595 	}
1596 
1597 	folio_batch_init(&fbatch);
1598 	while (index <= end) {
1599 		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1600 		if (nr == 0)
1601 			break;
1602 		for (i = 0; i < nr; i++) {
1603 			struct folio *folio = fbatch.folios[i];
1604 
1605 			if (folio->index < mpd->first_page)
1606 				continue;
1607 			if (folio_next_index(folio) - 1 > end)
1608 				continue;
1609 			BUG_ON(!folio_test_locked(folio));
1610 			BUG_ON(folio_test_writeback(folio));
1611 			if (invalidate) {
1612 				if (folio_mapped(folio))
1613 					folio_clear_dirty_for_io(folio);
1614 				block_invalidate_folio(folio, 0,
1615 						folio_size(folio));
1616 				folio_clear_uptodate(folio);
1617 			}
1618 			folio_unlock(folio);
1619 		}
1620 		folio_batch_release(&fbatch);
1621 	}
1622 }
1623 
ext4_print_free_blocks(struct inode * inode)1624 static void ext4_print_free_blocks(struct inode *inode)
1625 {
1626 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1627 	struct super_block *sb = inode->i_sb;
1628 	struct ext4_inode_info *ei = EXT4_I(inode);
1629 
1630 	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1631 	       EXT4_C2B(EXT4_SB(inode->i_sb),
1632 			ext4_count_free_clusters(sb)));
1633 	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1634 	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1635 	       (long long) EXT4_C2B(EXT4_SB(sb),
1636 		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1637 	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1638 	       (long long) EXT4_C2B(EXT4_SB(sb),
1639 		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1640 	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1641 	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1642 		 ei->i_reserved_data_blocks);
1643 	return;
1644 }
1645 
1646 /*
1647  * Check whether the cluster containing lblk has been allocated or has
1648  * delalloc reservation.
1649  *
1650  * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1651  * reservation, 2 if it's already been allocated, negative error code on
1652  * failure.
1653  */
ext4_clu_alloc_state(struct inode * inode,ext4_lblk_t lblk)1654 static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1655 {
1656 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1657 	int ret;
1658 
1659 	/* Has delalloc reservation? */
1660 	if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1661 		return 1;
1662 
1663 	/* Already been allocated? */
1664 	if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1665 		return 2;
1666 	ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1667 	if (ret < 0)
1668 		return ret;
1669 	if (ret > 0)
1670 		return 2;
1671 
1672 	return 0;
1673 }
1674 
1675 /*
1676  * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1677  *                              status tree, incrementing the reserved
1678  *                              cluster/block count or making pending
1679  *                              reservations where needed
1680  *
1681  * @inode - file containing the newly added block
1682  * @lblk - start logical block to be added
1683  * @len - length of blocks to be added
1684  *
1685  * Returns 0 on success, negative error code on failure.
1686  */
ext4_insert_delayed_blocks(struct inode * inode,ext4_lblk_t lblk,ext4_lblk_t len)1687 static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1688 				      ext4_lblk_t len)
1689 {
1690 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1691 	int ret;
1692 	bool lclu_allocated = false;
1693 	bool end_allocated = false;
1694 	ext4_lblk_t resv_clu;
1695 	ext4_lblk_t end = lblk + len - 1;
1696 
1697 	/*
1698 	 * If the cluster containing lblk or end is shared with a delayed,
1699 	 * written, or unwritten extent in a bigalloc file system, it's
1700 	 * already been accounted for and does not need to be reserved.
1701 	 * A pending reservation must be made for the cluster if it's
1702 	 * shared with a written or unwritten extent and doesn't already
1703 	 * have one.  Written and unwritten extents can be purged from the
1704 	 * extents status tree if the system is under memory pressure, so
1705 	 * it's necessary to examine the extent tree if a search of the
1706 	 * extents status tree doesn't get a match.
1707 	 */
1708 	if (sbi->s_cluster_ratio == 1) {
1709 		ret = ext4_da_reserve_space(inode, len);
1710 		if (ret != 0)   /* ENOSPC */
1711 			return ret;
1712 	} else {   /* bigalloc */
1713 		resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1714 
1715 		ret = ext4_clu_alloc_state(inode, lblk);
1716 		if (ret < 0)
1717 			return ret;
1718 		if (ret > 0) {
1719 			resv_clu--;
1720 			lclu_allocated = (ret == 2);
1721 		}
1722 
1723 		if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1724 			ret = ext4_clu_alloc_state(inode, end);
1725 			if (ret < 0)
1726 				return ret;
1727 			if (ret > 0) {
1728 				resv_clu--;
1729 				end_allocated = (ret == 2);
1730 			}
1731 		}
1732 
1733 		if (resv_clu) {
1734 			ret = ext4_da_reserve_space(inode, resv_clu);
1735 			if (ret != 0)   /* ENOSPC */
1736 				return ret;
1737 		}
1738 	}
1739 
1740 	ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1741 				      end_allocated);
1742 	return 0;
1743 }
1744 
1745 /*
1746  * Looks up the requested blocks and sets the delalloc extent map.
1747  * First try to look up for the extent entry that contains the requested
1748  * blocks in the extent status tree without i_data_sem, then try to look
1749  * up for the ondisk extent mapping with i_data_sem in read mode,
1750  * finally hold i_data_sem in write mode, looks up again and add a
1751  * delalloc extent entry if it still couldn't find any extent. Pass out
1752  * the mapped extent through @map and return 0 on success.
1753  */
ext4_da_map_blocks(struct inode * inode,struct ext4_map_blocks * map)1754 static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1755 {
1756 	struct extent_status es;
1757 	int retval;
1758 #ifdef ES_AGGRESSIVE_TEST
1759 	struct ext4_map_blocks orig_map;
1760 
1761 	memcpy(&orig_map, map, sizeof(*map));
1762 #endif
1763 
1764 	map->m_flags = 0;
1765 	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
1766 		  (unsigned long) map->m_lblk);
1767 
1768 	/* Lookup extent status tree firstly */
1769 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1770 		map->m_len = min_t(unsigned int, map->m_len,
1771 				   es.es_len - (map->m_lblk - es.es_lblk));
1772 
1773 		if (ext4_es_is_hole(&es))
1774 			goto add_delayed;
1775 
1776 found:
1777 		/*
1778 		 * Delayed extent could be allocated by fallocate.
1779 		 * So we need to check it.
1780 		 */
1781 		if (ext4_es_is_delayed(&es)) {
1782 			map->m_flags |= EXT4_MAP_DELAYED;
1783 			return 0;
1784 		}
1785 
1786 		map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
1787 		if (ext4_es_is_written(&es))
1788 			map->m_flags |= EXT4_MAP_MAPPED;
1789 		else if (ext4_es_is_unwritten(&es))
1790 			map->m_flags |= EXT4_MAP_UNWRITTEN;
1791 		else
1792 			BUG();
1793 
1794 #ifdef ES_AGGRESSIVE_TEST
1795 		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1796 #endif
1797 		return 0;
1798 	}
1799 
1800 	/*
1801 	 * Try to see if we can get the block without requesting a new
1802 	 * file system block.
1803 	 */
1804 	down_read(&EXT4_I(inode)->i_data_sem);
1805 	if (ext4_has_inline_data(inode))
1806 		retval = 0;
1807 	else
1808 		retval = ext4_map_query_blocks(NULL, inode, map);
1809 	up_read(&EXT4_I(inode)->i_data_sem);
1810 	if (retval)
1811 		return retval < 0 ? retval : 0;
1812 
1813 add_delayed:
1814 	down_write(&EXT4_I(inode)->i_data_sem);
1815 	/*
1816 	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1817 	 * and fallocate path (no folio lock) can race. Make sure we
1818 	 * lookup the extent status tree here again while i_data_sem
1819 	 * is held in write mode, before inserting a new da entry in
1820 	 * the extent status tree.
1821 	 */
1822 	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1823 		map->m_len = min_t(unsigned int, map->m_len,
1824 				   es.es_len - (map->m_lblk - es.es_lblk));
1825 
1826 		if (!ext4_es_is_hole(&es)) {
1827 			up_write(&EXT4_I(inode)->i_data_sem);
1828 			goto found;
1829 		}
1830 	} else if (!ext4_has_inline_data(inode)) {
1831 		retval = ext4_map_query_blocks(NULL, inode, map);
1832 		if (retval) {
1833 			up_write(&EXT4_I(inode)->i_data_sem);
1834 			return retval < 0 ? retval : 0;
1835 		}
1836 	}
1837 
1838 	map->m_flags |= EXT4_MAP_DELAYED;
1839 	retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1840 	up_write(&EXT4_I(inode)->i_data_sem);
1841 
1842 	return retval;
1843 }
1844 
1845 /*
1846  * This is a special get_block_t callback which is used by
1847  * ext4_da_write_begin().  It will either return mapped block or
1848  * reserve space for a single block.
1849  *
1850  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1851  * We also have b_blocknr = -1 and b_bdev initialized properly
1852  *
1853  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1854  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1855  * initialized properly.
1856  */
ext4_da_get_block_prep(struct inode * inode,sector_t iblock,struct buffer_head * bh,int create)1857 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1858 			   struct buffer_head *bh, int create)
1859 {
1860 	struct ext4_map_blocks map;
1861 	sector_t invalid_block = ~((sector_t) 0xffff);
1862 	int ret = 0;
1863 
1864 	BUG_ON(create == 0);
1865 	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1866 
1867 	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1868 		invalid_block = ~0;
1869 
1870 	map.m_lblk = iblock;
1871 	map.m_len = 1;
1872 
1873 	/*
1874 	 * first, we need to know whether the block is allocated already
1875 	 * preallocated blocks are unmapped but should treated
1876 	 * the same as allocated blocks.
1877 	 */
1878 	ret = ext4_da_map_blocks(inode, &map);
1879 	if (ret < 0)
1880 		return ret;
1881 
1882 	if (map.m_flags & EXT4_MAP_DELAYED) {
1883 		map_bh(bh, inode->i_sb, invalid_block);
1884 		set_buffer_new(bh);
1885 		set_buffer_delay(bh);
1886 		return 0;
1887 	}
1888 
1889 	map_bh(bh, inode->i_sb, map.m_pblk);
1890 	ext4_update_bh_state(bh, map.m_flags);
1891 
1892 	if (buffer_unwritten(bh)) {
1893 		/* A delayed write to unwritten bh should be marked
1894 		 * new and mapped.  Mapped ensures that we don't do
1895 		 * get_block multiple times when we write to the same
1896 		 * offset and new ensures that we do proper zero out
1897 		 * for partial write.
1898 		 */
1899 		set_buffer_new(bh);
1900 		set_buffer_mapped(bh);
1901 	}
1902 	return 0;
1903 }
1904 
mpage_folio_done(struct mpage_da_data * mpd,struct folio * folio)1905 static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1906 {
1907 	mpd->first_page += folio_nr_pages(folio);
1908 	folio_unlock(folio);
1909 }
1910 
mpage_submit_folio(struct mpage_da_data * mpd,struct folio * folio)1911 static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1912 {
1913 	size_t len;
1914 	loff_t size;
1915 	int err;
1916 
1917 	BUG_ON(folio->index != mpd->first_page);
1918 	folio_clear_dirty_for_io(folio);
1919 	/*
1920 	 * We have to be very careful here!  Nothing protects writeback path
1921 	 * against i_size changes and the page can be writeably mapped into
1922 	 * page tables. So an application can be growing i_size and writing
1923 	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1924 	 * write-protects our page in page tables and the page cannot get
1925 	 * written to again until we release folio lock. So only after
1926 	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1927 	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1928 	 * on the barrier provided by folio_test_clear_dirty() in
1929 	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1930 	 * after page tables are updated.
1931 	 */
1932 	size = i_size_read(mpd->inode);
1933 	len = folio_size(folio);
1934 	if (folio_pos(folio) + len > size &&
1935 	    !ext4_verity_in_progress(mpd->inode))
1936 		len = size & (len - 1);
1937 	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1938 	if (!err)
1939 		mpd->wbc->nr_to_write--;
1940 
1941 	return err;
1942 }
1943 
1944 #define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1945 
1946 /*
1947  * mballoc gives us at most this number of blocks...
1948  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1949  * The rest of mballoc seems to handle chunks up to full group size.
1950  */
1951 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1952 
1953 /*
1954  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1955  *
1956  * @mpd - extent of blocks
1957  * @lblk - logical number of the block in the file
1958  * @bh - buffer head we want to add to the extent
1959  *
1960  * The function is used to collect contig. blocks in the same state. If the
1961  * buffer doesn't require mapping for writeback and we haven't started the
1962  * extent of buffers to map yet, the function returns 'true' immediately - the
1963  * caller can write the buffer right away. Otherwise the function returns true
1964  * if the block has been added to the extent, false if the block couldn't be
1965  * added.
1966  */
mpage_add_bh_to_extent(struct mpage_da_data * mpd,ext4_lblk_t lblk,struct buffer_head * bh)1967 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1968 				   struct buffer_head *bh)
1969 {
1970 	struct ext4_map_blocks *map = &mpd->map;
1971 
1972 	/* Buffer that doesn't need mapping for writeback? */
1973 	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1974 	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1975 		/* So far no extent to map => we write the buffer right away */
1976 		if (map->m_len == 0)
1977 			return true;
1978 		return false;
1979 	}
1980 
1981 	/* First block in the extent? */
1982 	if (map->m_len == 0) {
1983 		/* We cannot map unless handle is started... */
1984 		if (!mpd->do_map)
1985 			return false;
1986 		map->m_lblk = lblk;
1987 		map->m_len = 1;
1988 		map->m_flags = bh->b_state & BH_FLAGS;
1989 		return true;
1990 	}
1991 
1992 	/* Don't go larger than mballoc is willing to allocate */
1993 	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1994 		return false;
1995 
1996 	/* Can we merge the block to our big extent? */
1997 	if (lblk == map->m_lblk + map->m_len &&
1998 	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1999 		map->m_len++;
2000 		return true;
2001 	}
2002 	return false;
2003 }
2004 
2005 /*
2006  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2007  *
2008  * @mpd - extent of blocks for mapping
2009  * @head - the first buffer in the page
2010  * @bh - buffer we should start processing from
2011  * @lblk - logical number of the block in the file corresponding to @bh
2012  *
2013  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2014  * the page for IO if all buffers in this page were mapped and there's no
2015  * accumulated extent of buffers to map or add buffers in the page to the
2016  * extent of buffers to map. The function returns 1 if the caller can continue
2017  * by processing the next page, 0 if it should stop adding buffers to the
2018  * extent to map because we cannot extend it anymore. It can also return value
2019  * < 0 in case of error during IO submission.
2020  */
mpage_process_page_bufs(struct mpage_da_data * mpd,struct buffer_head * head,struct buffer_head * bh,ext4_lblk_t lblk)2021 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2022 				   struct buffer_head *head,
2023 				   struct buffer_head *bh,
2024 				   ext4_lblk_t lblk)
2025 {
2026 	struct inode *inode = mpd->inode;
2027 	int err;
2028 	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2029 							>> inode->i_blkbits;
2030 
2031 	if (ext4_verity_in_progress(inode))
2032 		blocks = EXT_MAX_BLOCKS;
2033 
2034 	do {
2035 		BUG_ON(buffer_locked(bh));
2036 
2037 		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2038 			/* Found extent to map? */
2039 			if (mpd->map.m_len)
2040 				return 0;
2041 			/* Buffer needs mapping and handle is not started? */
2042 			if (!mpd->do_map)
2043 				return 0;
2044 			/* Everything mapped so far and we hit EOF */
2045 			break;
2046 		}
2047 	} while (lblk++, (bh = bh->b_this_page) != head);
2048 	/* So far everything mapped? Submit the page for IO. */
2049 	if (mpd->map.m_len == 0) {
2050 		err = mpage_submit_folio(mpd, head->b_folio);
2051 		if (err < 0)
2052 			return err;
2053 		mpage_folio_done(mpd, head->b_folio);
2054 	}
2055 	if (lblk >= blocks) {
2056 		mpd->scanned_until_end = 1;
2057 		return 0;
2058 	}
2059 	return 1;
2060 }
2061 
2062 /*
2063  * mpage_process_folio - update folio buffers corresponding to changed extent
2064  *			 and may submit fully mapped page for IO
2065  * @mpd: description of extent to map, on return next extent to map
2066  * @folio: Contains these buffers.
2067  * @m_lblk: logical block mapping.
2068  * @m_pblk: corresponding physical mapping.
2069  * @map_bh: determines on return whether this page requires any further
2070  *		  mapping or not.
2071  *
2072  * Scan given folio buffers corresponding to changed extent and update buffer
2073  * state according to new extent state.
2074  * We map delalloc buffers to their physical location, clear unwritten bits.
2075  * If the given folio is not fully mapped, we update @mpd to the next extent in
2076  * the given folio that needs mapping & return @map_bh as true.
2077  */
mpage_process_folio(struct mpage_da_data * mpd,struct folio * folio,ext4_lblk_t * m_lblk,ext4_fsblk_t * m_pblk,bool * map_bh)2078 static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2079 			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2080 			      bool *map_bh)
2081 {
2082 	struct buffer_head *head, *bh;
2083 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2084 	ext4_lblk_t lblk = *m_lblk;
2085 	ext4_fsblk_t pblock = *m_pblk;
2086 	int err = 0;
2087 	int blkbits = mpd->inode->i_blkbits;
2088 	ssize_t io_end_size = 0;
2089 	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2090 
2091 	bh = head = folio_buffers(folio);
2092 	do {
2093 		if (lblk < mpd->map.m_lblk)
2094 			continue;
2095 		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2096 			/*
2097 			 * Buffer after end of mapped extent.
2098 			 * Find next buffer in the folio to map.
2099 			 */
2100 			mpd->map.m_len = 0;
2101 			mpd->map.m_flags = 0;
2102 			io_end_vec->size += io_end_size;
2103 
2104 			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2105 			if (err > 0)
2106 				err = 0;
2107 			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2108 				io_end_vec = ext4_alloc_io_end_vec(io_end);
2109 				if (IS_ERR(io_end_vec)) {
2110 					err = PTR_ERR(io_end_vec);
2111 					goto out;
2112 				}
2113 				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2114 			}
2115 			*map_bh = true;
2116 			goto out;
2117 		}
2118 		if (buffer_delay(bh)) {
2119 			clear_buffer_delay(bh);
2120 			bh->b_blocknr = pblock++;
2121 		}
2122 		clear_buffer_unwritten(bh);
2123 		io_end_size += (1 << blkbits);
2124 	} while (lblk++, (bh = bh->b_this_page) != head);
2125 
2126 	io_end_vec->size += io_end_size;
2127 	*map_bh = false;
2128 out:
2129 	*m_lblk = lblk;
2130 	*m_pblk = pblock;
2131 	return err;
2132 }
2133 
2134 /*
2135  * mpage_map_buffers - update buffers corresponding to changed extent and
2136  *		       submit fully mapped pages for IO
2137  *
2138  * @mpd - description of extent to map, on return next extent to map
2139  *
2140  * Scan buffers corresponding to changed extent (we expect corresponding pages
2141  * to be already locked) and update buffer state according to new extent state.
2142  * We map delalloc buffers to their physical location, clear unwritten bits,
2143  * and mark buffers as uninit when we perform writes to unwritten extents
2144  * and do extent conversion after IO is finished. If the last page is not fully
2145  * mapped, we update @map to the next extent in the last page that needs
2146  * mapping. Otherwise we submit the page for IO.
2147  */
mpage_map_and_submit_buffers(struct mpage_da_data * mpd)2148 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2149 {
2150 	struct folio_batch fbatch;
2151 	unsigned nr, i;
2152 	struct inode *inode = mpd->inode;
2153 	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2154 	pgoff_t start, end;
2155 	ext4_lblk_t lblk;
2156 	ext4_fsblk_t pblock;
2157 	int err;
2158 	bool map_bh = false;
2159 
2160 	start = mpd->map.m_lblk >> bpp_bits;
2161 	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2162 	lblk = start << bpp_bits;
2163 	pblock = mpd->map.m_pblk;
2164 
2165 	folio_batch_init(&fbatch);
2166 	while (start <= end) {
2167 		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2168 		if (nr == 0)
2169 			break;
2170 		for (i = 0; i < nr; i++) {
2171 			struct folio *folio = fbatch.folios[i];
2172 
2173 			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2174 						 &map_bh);
2175 			/*
2176 			 * If map_bh is true, means page may require further bh
2177 			 * mapping, or maybe the page was submitted for IO.
2178 			 * So we return to call further extent mapping.
2179 			 */
2180 			if (err < 0 || map_bh)
2181 				goto out;
2182 			/* Page fully mapped - let IO run! */
2183 			err = mpage_submit_folio(mpd, folio);
2184 			if (err < 0)
2185 				goto out;
2186 			mpage_folio_done(mpd, folio);
2187 		}
2188 		folio_batch_release(&fbatch);
2189 	}
2190 	/* Extent fully mapped and matches with page boundary. We are done. */
2191 	mpd->map.m_len = 0;
2192 	mpd->map.m_flags = 0;
2193 	return 0;
2194 out:
2195 	folio_batch_release(&fbatch);
2196 	return err;
2197 }
2198 
mpage_map_one_extent(handle_t * handle,struct mpage_da_data * mpd)2199 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2200 {
2201 	struct inode *inode = mpd->inode;
2202 	struct ext4_map_blocks *map = &mpd->map;
2203 	int get_blocks_flags;
2204 	int err, dioread_nolock;
2205 
2206 	trace_ext4_da_write_pages_extent(inode, map);
2207 	/*
2208 	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2209 	 * to convert an unwritten extent to be initialized (in the case
2210 	 * where we have written into one or more preallocated blocks).  It is
2211 	 * possible that we're going to need more metadata blocks than
2212 	 * previously reserved. However we must not fail because we're in
2213 	 * writeback and there is nothing we can do about it so it might result
2214 	 * in data loss.  So use reserved blocks to allocate metadata if
2215 	 * possible.
2216 	 */
2217 	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2218 			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2219 			   EXT4_GET_BLOCKS_IO_SUBMIT;
2220 	dioread_nolock = ext4_should_dioread_nolock(inode);
2221 	if (dioread_nolock)
2222 		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2223 
2224 	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2225 	if (err < 0)
2226 		return err;
2227 	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2228 		if (!mpd->io_submit.io_end->handle &&
2229 		    ext4_handle_valid(handle)) {
2230 			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2231 			handle->h_rsv_handle = NULL;
2232 		}
2233 		ext4_set_io_unwritten_flag(mpd->io_submit.io_end);
2234 	}
2235 
2236 	BUG_ON(map->m_len == 0);
2237 	return 0;
2238 }
2239 
2240 /*
2241  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2242  *				 mpd->len and submit pages underlying it for IO
2243  *
2244  * @handle - handle for journal operations
2245  * @mpd - extent to map
2246  * @give_up_on_write - we set this to true iff there is a fatal error and there
2247  *                     is no hope of writing the data. The caller should discard
2248  *                     dirty pages to avoid infinite loops.
2249  *
2250  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2251  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2252  * them to initialized or split the described range from larger unwritten
2253  * extent. Note that we need not map all the described range since allocation
2254  * can return less blocks or the range is covered by more unwritten extents. We
2255  * cannot map more because we are limited by reserved transaction credits. On
2256  * the other hand we always make sure that the last touched page is fully
2257  * mapped so that it can be written out (and thus forward progress is
2258  * guaranteed). After mapping we submit all mapped pages for IO.
2259  */
mpage_map_and_submit_extent(handle_t * handle,struct mpage_da_data * mpd,bool * give_up_on_write)2260 static int mpage_map_and_submit_extent(handle_t *handle,
2261 				       struct mpage_da_data *mpd,
2262 				       bool *give_up_on_write)
2263 {
2264 	struct inode *inode = mpd->inode;
2265 	struct ext4_map_blocks *map = &mpd->map;
2266 	int err;
2267 	loff_t disksize;
2268 	int progress = 0;
2269 	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2270 	struct ext4_io_end_vec *io_end_vec;
2271 
2272 	io_end_vec = ext4_alloc_io_end_vec(io_end);
2273 	if (IS_ERR(io_end_vec))
2274 		return PTR_ERR(io_end_vec);
2275 	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2276 	do {
2277 		err = mpage_map_one_extent(handle, mpd);
2278 		if (err < 0) {
2279 			struct super_block *sb = inode->i_sb;
2280 
2281 			if (ext4_emergency_state(sb))
2282 				goto invalidate_dirty_pages;
2283 			/*
2284 			 * Let the uper layers retry transient errors.
2285 			 * In the case of ENOSPC, if ext4_count_free_blocks()
2286 			 * is non-zero, a commit should free up blocks.
2287 			 */
2288 			if ((err == -ENOMEM) ||
2289 			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2290 				if (progress)
2291 					goto update_disksize;
2292 				return err;
2293 			}
2294 			ext4_msg(sb, KERN_CRIT,
2295 				 "Delayed block allocation failed for "
2296 				 "inode %lu at logical offset %llu with"
2297 				 " max blocks %u with error %d",
2298 				 inode->i_ino,
2299 				 (unsigned long long)map->m_lblk,
2300 				 (unsigned)map->m_len, -err);
2301 			ext4_msg(sb, KERN_CRIT,
2302 				 "This should not happen!! Data will "
2303 				 "be lost\n");
2304 			if (err == -ENOSPC)
2305 				ext4_print_free_blocks(inode);
2306 		invalidate_dirty_pages:
2307 			*give_up_on_write = true;
2308 			return err;
2309 		}
2310 		progress = 1;
2311 		/*
2312 		 * Update buffer state, submit mapped pages, and get us new
2313 		 * extent to map
2314 		 */
2315 		err = mpage_map_and_submit_buffers(mpd);
2316 		if (err < 0)
2317 			goto update_disksize;
2318 	} while (map->m_len);
2319 
2320 update_disksize:
2321 	/*
2322 	 * Update on-disk size after IO is submitted.  Races with
2323 	 * truncate are avoided by checking i_size under i_data_sem.
2324 	 */
2325 	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2326 	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2327 		int err2;
2328 		loff_t i_size;
2329 
2330 		down_write(&EXT4_I(inode)->i_data_sem);
2331 		i_size = i_size_read(inode);
2332 		if (disksize > i_size)
2333 			disksize = i_size;
2334 		if (disksize > EXT4_I(inode)->i_disksize)
2335 			EXT4_I(inode)->i_disksize = disksize;
2336 		up_write(&EXT4_I(inode)->i_data_sem);
2337 		err2 = ext4_mark_inode_dirty(handle, inode);
2338 		if (err2) {
2339 			ext4_error_err(inode->i_sb, -err2,
2340 				       "Failed to mark inode %lu dirty",
2341 				       inode->i_ino);
2342 		}
2343 		if (!err)
2344 			err = err2;
2345 	}
2346 	return err;
2347 }
2348 
2349 /*
2350  * Calculate the total number of credits to reserve for one writepages
2351  * iteration. This is called from ext4_writepages(). We map an extent of
2352  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2353  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2354  * bpp - 1 blocks in bpp different extents.
2355  */
ext4_da_writepages_trans_blocks(struct inode * inode)2356 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2357 {
2358 	int bpp = ext4_journal_blocks_per_page(inode);
2359 
2360 	return ext4_meta_trans_blocks(inode,
2361 				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2362 }
2363 
ext4_journal_folio_buffers(handle_t * handle,struct folio * folio,size_t len)2364 static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2365 				     size_t len)
2366 {
2367 	struct buffer_head *page_bufs = folio_buffers(folio);
2368 	struct inode *inode = folio->mapping->host;
2369 	int ret, err;
2370 
2371 	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2372 				     NULL, do_journal_get_write_access);
2373 	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2374 				     NULL, write_end_fn);
2375 	if (ret == 0)
2376 		ret = err;
2377 	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2378 	if (ret == 0)
2379 		ret = err;
2380 	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2381 
2382 	return ret;
2383 }
2384 
mpage_journal_page_buffers(handle_t * handle,struct mpage_da_data * mpd,struct folio * folio)2385 static int mpage_journal_page_buffers(handle_t *handle,
2386 				      struct mpage_da_data *mpd,
2387 				      struct folio *folio)
2388 {
2389 	struct inode *inode = mpd->inode;
2390 	loff_t size = i_size_read(inode);
2391 	size_t len = folio_size(folio);
2392 
2393 	folio_clear_checked(folio);
2394 	mpd->wbc->nr_to_write--;
2395 
2396 	if (folio_pos(folio) + len > size &&
2397 	    !ext4_verity_in_progress(inode))
2398 		len = size & (len - 1);
2399 
2400 	return ext4_journal_folio_buffers(handle, folio, len);
2401 }
2402 
2403 /*
2404  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2405  * 				 needing mapping, submit mapped pages
2406  *
2407  * @mpd - where to look for pages
2408  *
2409  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2410  * IO immediately. If we cannot map blocks, we submit just already mapped
2411  * buffers in the page for IO and keep page dirty. When we can map blocks and
2412  * we find a page which isn't mapped we start accumulating extent of buffers
2413  * underlying these pages that needs mapping (formed by either delayed or
2414  * unwritten buffers). We also lock the pages containing these buffers. The
2415  * extent found is returned in @mpd structure (starting at mpd->lblk with
2416  * length mpd->len blocks).
2417  *
2418  * Note that this function can attach bios to one io_end structure which are
2419  * neither logically nor physically contiguous. Although it may seem as an
2420  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2421  * case as we need to track IO to all buffers underlying a page in one io_end.
2422  */
mpage_prepare_extent_to_map(struct mpage_da_data * mpd)2423 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2424 {
2425 	struct address_space *mapping = mpd->inode->i_mapping;
2426 	struct folio_batch fbatch;
2427 	unsigned int nr_folios;
2428 	pgoff_t index = mpd->first_page;
2429 	pgoff_t end = mpd->last_page;
2430 	xa_mark_t tag;
2431 	int i, err = 0;
2432 	int blkbits = mpd->inode->i_blkbits;
2433 	ext4_lblk_t lblk;
2434 	struct buffer_head *head;
2435 	handle_t *handle = NULL;
2436 	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2437 
2438 	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2439 		tag = PAGECACHE_TAG_TOWRITE;
2440 	else
2441 		tag = PAGECACHE_TAG_DIRTY;
2442 
2443 	mpd->map.m_len = 0;
2444 	mpd->next_page = index;
2445 	if (ext4_should_journal_data(mpd->inode)) {
2446 		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2447 					    bpp);
2448 		if (IS_ERR(handle))
2449 			return PTR_ERR(handle);
2450 	}
2451 	folio_batch_init(&fbatch);
2452 	while (index <= end) {
2453 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2454 				tag, &fbatch);
2455 		if (nr_folios == 0)
2456 			break;
2457 
2458 		for (i = 0; i < nr_folios; i++) {
2459 			struct folio *folio = fbatch.folios[i];
2460 
2461 			/*
2462 			 * Accumulated enough dirty pages? This doesn't apply
2463 			 * to WB_SYNC_ALL mode. For integrity sync we have to
2464 			 * keep going because someone may be concurrently
2465 			 * dirtying pages, and we might have synced a lot of
2466 			 * newly appeared dirty pages, but have not synced all
2467 			 * of the old dirty pages.
2468 			 */
2469 			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2470 			    mpd->wbc->nr_to_write <=
2471 			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2472 				goto out;
2473 
2474 			/* If we can't merge this page, we are done. */
2475 			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2476 				goto out;
2477 
2478 			if (handle) {
2479 				err = ext4_journal_ensure_credits(handle, bpp,
2480 								  0);
2481 				if (err < 0)
2482 					goto out;
2483 			}
2484 
2485 			folio_lock(folio);
2486 			/*
2487 			 * If the page is no longer dirty, or its mapping no
2488 			 * longer corresponds to inode we are writing (which
2489 			 * means it has been truncated or invalidated), or the
2490 			 * page is already under writeback and we are not doing
2491 			 * a data integrity writeback, skip the page
2492 			 */
2493 			if (!folio_test_dirty(folio) ||
2494 			    (folio_test_writeback(folio) &&
2495 			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2496 			    unlikely(folio->mapping != mapping)) {
2497 				folio_unlock(folio);
2498 				continue;
2499 			}
2500 
2501 			folio_wait_writeback(folio);
2502 			BUG_ON(folio_test_writeback(folio));
2503 
2504 			/*
2505 			 * Should never happen but for buggy code in
2506 			 * other subsystems that call
2507 			 * set_page_dirty() without properly warning
2508 			 * the file system first.  See [1] for more
2509 			 * information.
2510 			 *
2511 			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2512 			 */
2513 			if (!folio_buffers(folio)) {
2514 				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2515 				folio_clear_dirty(folio);
2516 				folio_unlock(folio);
2517 				continue;
2518 			}
2519 
2520 			if (mpd->map.m_len == 0)
2521 				mpd->first_page = folio->index;
2522 			mpd->next_page = folio_next_index(folio);
2523 			/*
2524 			 * Writeout when we cannot modify metadata is simple.
2525 			 * Just submit the page. For data=journal mode we
2526 			 * first handle writeout of the page for checkpoint and
2527 			 * only after that handle delayed page dirtying. This
2528 			 * makes sure current data is checkpointed to the final
2529 			 * location before possibly journalling it again which
2530 			 * is desirable when the page is frequently dirtied
2531 			 * through a pin.
2532 			 */
2533 			if (!mpd->can_map) {
2534 				err = mpage_submit_folio(mpd, folio);
2535 				if (err < 0)
2536 					goto out;
2537 				/* Pending dirtying of journalled data? */
2538 				if (folio_test_checked(folio)) {
2539 					err = mpage_journal_page_buffers(handle,
2540 						mpd, folio);
2541 					if (err < 0)
2542 						goto out;
2543 					mpd->journalled_more_data = 1;
2544 				}
2545 				mpage_folio_done(mpd, folio);
2546 			} else {
2547 				/* Add all dirty buffers to mpd */
2548 				lblk = ((ext4_lblk_t)folio->index) <<
2549 					(PAGE_SHIFT - blkbits);
2550 				head = folio_buffers(folio);
2551 				err = mpage_process_page_bufs(mpd, head, head,
2552 						lblk);
2553 				if (err <= 0)
2554 					goto out;
2555 				err = 0;
2556 			}
2557 		}
2558 		folio_batch_release(&fbatch);
2559 		cond_resched();
2560 	}
2561 	mpd->scanned_until_end = 1;
2562 	if (handle)
2563 		ext4_journal_stop(handle);
2564 	return 0;
2565 out:
2566 	folio_batch_release(&fbatch);
2567 	if (handle)
2568 		ext4_journal_stop(handle);
2569 	return err;
2570 }
2571 
ext4_do_writepages(struct mpage_da_data * mpd)2572 static int ext4_do_writepages(struct mpage_da_data *mpd)
2573 {
2574 	struct writeback_control *wbc = mpd->wbc;
2575 	pgoff_t	writeback_index = 0;
2576 	long nr_to_write = wbc->nr_to_write;
2577 	int range_whole = 0;
2578 	int cycled = 1;
2579 	handle_t *handle = NULL;
2580 	struct inode *inode = mpd->inode;
2581 	struct address_space *mapping = inode->i_mapping;
2582 	int needed_blocks, rsv_blocks = 0, ret = 0;
2583 	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2584 	struct blk_plug plug;
2585 	bool give_up_on_write = false;
2586 
2587 	trace_ext4_writepages(inode, wbc);
2588 
2589 	/*
2590 	 * No pages to write? This is mainly a kludge to avoid starting
2591 	 * a transaction for special inodes like journal inode on last iput()
2592 	 * because that could violate lock ordering on umount
2593 	 */
2594 	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2595 		goto out_writepages;
2596 
2597 	/*
2598 	 * If the filesystem has aborted, it is read-only, so return
2599 	 * right away instead of dumping stack traces later on that
2600 	 * will obscure the real source of the problem.  We test
2601 	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2602 	 * the latter could be true if the filesystem is mounted
2603 	 * read-only, and in that case, ext4_writepages should
2604 	 * *never* be called, so if that ever happens, we would want
2605 	 * the stack trace.
2606 	 */
2607 	ret = ext4_emergency_state(mapping->host->i_sb);
2608 	if (unlikely(ret))
2609 		goto out_writepages;
2610 
2611 	/*
2612 	 * If we have inline data and arrive here, it means that
2613 	 * we will soon create the block for the 1st page, so
2614 	 * we'd better clear the inline data here.
2615 	 */
2616 	if (ext4_has_inline_data(inode)) {
2617 		/* Just inode will be modified... */
2618 		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2619 		if (IS_ERR(handle)) {
2620 			ret = PTR_ERR(handle);
2621 			goto out_writepages;
2622 		}
2623 		BUG_ON(ext4_test_inode_state(inode,
2624 				EXT4_STATE_MAY_INLINE_DATA));
2625 		ext4_destroy_inline_data(handle, inode);
2626 		ext4_journal_stop(handle);
2627 	}
2628 
2629 	/*
2630 	 * data=journal mode does not do delalloc so we just need to writeout /
2631 	 * journal already mapped buffers. On the other hand we need to commit
2632 	 * transaction to make data stable. We expect all the data to be
2633 	 * already in the journal (the only exception are DMA pinned pages
2634 	 * dirtied behind our back) so we commit transaction here and run the
2635 	 * writeback loop to checkpoint them. The checkpointing is not actually
2636 	 * necessary to make data persistent *but* quite a few places (extent
2637 	 * shifting operations, fsverity, ...) depend on being able to drop
2638 	 * pagecache pages after calling filemap_write_and_wait() and for that
2639 	 * checkpointing needs to happen.
2640 	 */
2641 	if (ext4_should_journal_data(inode)) {
2642 		mpd->can_map = 0;
2643 		if (wbc->sync_mode == WB_SYNC_ALL)
2644 			ext4_fc_commit(sbi->s_journal,
2645 				       EXT4_I(inode)->i_datasync_tid);
2646 	}
2647 	mpd->journalled_more_data = 0;
2648 
2649 	if (ext4_should_dioread_nolock(inode)) {
2650 		/*
2651 		 * We may need to convert up to one extent per block in
2652 		 * the page and we may dirty the inode.
2653 		 */
2654 		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2655 						PAGE_SIZE >> inode->i_blkbits);
2656 	}
2657 
2658 	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2659 		range_whole = 1;
2660 
2661 	if (wbc->range_cyclic) {
2662 		writeback_index = mapping->writeback_index;
2663 		if (writeback_index)
2664 			cycled = 0;
2665 		mpd->first_page = writeback_index;
2666 		mpd->last_page = -1;
2667 	} else {
2668 		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2669 		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2670 	}
2671 
2672 	ext4_io_submit_init(&mpd->io_submit, wbc);
2673 retry:
2674 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2675 		tag_pages_for_writeback(mapping, mpd->first_page,
2676 					mpd->last_page);
2677 	blk_start_plug(&plug);
2678 
2679 	/*
2680 	 * First writeback pages that don't need mapping - we can avoid
2681 	 * starting a transaction unnecessarily and also avoid being blocked
2682 	 * in the block layer on device congestion while having transaction
2683 	 * started.
2684 	 */
2685 	mpd->do_map = 0;
2686 	mpd->scanned_until_end = 0;
2687 	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2688 	if (!mpd->io_submit.io_end) {
2689 		ret = -ENOMEM;
2690 		goto unplug;
2691 	}
2692 	ret = mpage_prepare_extent_to_map(mpd);
2693 	/* Unlock pages we didn't use */
2694 	mpage_release_unused_pages(mpd, false);
2695 	/* Submit prepared bio */
2696 	ext4_io_submit(&mpd->io_submit);
2697 	ext4_put_io_end_defer(mpd->io_submit.io_end);
2698 	mpd->io_submit.io_end = NULL;
2699 	if (ret < 0)
2700 		goto unplug;
2701 
2702 	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2703 		/* For each extent of pages we use new io_end */
2704 		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2705 		if (!mpd->io_submit.io_end) {
2706 			ret = -ENOMEM;
2707 			break;
2708 		}
2709 
2710 		WARN_ON_ONCE(!mpd->can_map);
2711 		/*
2712 		 * We have two constraints: We find one extent to map and we
2713 		 * must always write out whole page (makes a difference when
2714 		 * blocksize < pagesize) so that we don't block on IO when we
2715 		 * try to write out the rest of the page. Journalled mode is
2716 		 * not supported by delalloc.
2717 		 */
2718 		BUG_ON(ext4_should_journal_data(inode));
2719 		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2720 
2721 		/* start a new transaction */
2722 		handle = ext4_journal_start_with_reserve(inode,
2723 				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2724 		if (IS_ERR(handle)) {
2725 			ret = PTR_ERR(handle);
2726 			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2727 			       "%ld pages, ino %lu; err %d", __func__,
2728 				wbc->nr_to_write, inode->i_ino, ret);
2729 			/* Release allocated io_end */
2730 			ext4_put_io_end(mpd->io_submit.io_end);
2731 			mpd->io_submit.io_end = NULL;
2732 			break;
2733 		}
2734 		mpd->do_map = 1;
2735 
2736 		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2737 		ret = mpage_prepare_extent_to_map(mpd);
2738 		if (!ret && mpd->map.m_len)
2739 			ret = mpage_map_and_submit_extent(handle, mpd,
2740 					&give_up_on_write);
2741 		/*
2742 		 * Caution: If the handle is synchronous,
2743 		 * ext4_journal_stop() can wait for transaction commit
2744 		 * to finish which may depend on writeback of pages to
2745 		 * complete or on page lock to be released.  In that
2746 		 * case, we have to wait until after we have
2747 		 * submitted all the IO, released page locks we hold,
2748 		 * and dropped io_end reference (for extent conversion
2749 		 * to be able to complete) before stopping the handle.
2750 		 */
2751 		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2752 			ext4_journal_stop(handle);
2753 			handle = NULL;
2754 			mpd->do_map = 0;
2755 		}
2756 		/* Unlock pages we didn't use */
2757 		mpage_release_unused_pages(mpd, give_up_on_write);
2758 		/* Submit prepared bio */
2759 		ext4_io_submit(&mpd->io_submit);
2760 
2761 		/*
2762 		 * Drop our io_end reference we got from init. We have
2763 		 * to be careful and use deferred io_end finishing if
2764 		 * we are still holding the transaction as we can
2765 		 * release the last reference to io_end which may end
2766 		 * up doing unwritten extent conversion.
2767 		 */
2768 		if (handle) {
2769 			ext4_put_io_end_defer(mpd->io_submit.io_end);
2770 			ext4_journal_stop(handle);
2771 		} else
2772 			ext4_put_io_end(mpd->io_submit.io_end);
2773 		mpd->io_submit.io_end = NULL;
2774 
2775 		if (ret == -ENOSPC && sbi->s_journal) {
2776 			/*
2777 			 * Commit the transaction which would
2778 			 * free blocks released in the transaction
2779 			 * and try again
2780 			 */
2781 			jbd2_journal_force_commit_nested(sbi->s_journal);
2782 			ret = 0;
2783 			continue;
2784 		}
2785 		/* Fatal error - ENOMEM, EIO... */
2786 		if (ret)
2787 			break;
2788 	}
2789 unplug:
2790 	blk_finish_plug(&plug);
2791 	if (!ret && !cycled && wbc->nr_to_write > 0) {
2792 		cycled = 1;
2793 		mpd->last_page = writeback_index - 1;
2794 		mpd->first_page = 0;
2795 		goto retry;
2796 	}
2797 
2798 	/* Update index */
2799 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2800 		/*
2801 		 * Set the writeback_index so that range_cyclic
2802 		 * mode will write it back later
2803 		 */
2804 		mapping->writeback_index = mpd->first_page;
2805 
2806 out_writepages:
2807 	trace_ext4_writepages_result(inode, wbc, ret,
2808 				     nr_to_write - wbc->nr_to_write);
2809 	return ret;
2810 }
2811 
ext4_writepages(struct address_space * mapping,struct writeback_control * wbc)2812 static int ext4_writepages(struct address_space *mapping,
2813 			   struct writeback_control *wbc)
2814 {
2815 	struct super_block *sb = mapping->host->i_sb;
2816 	struct mpage_da_data mpd = {
2817 		.inode = mapping->host,
2818 		.wbc = wbc,
2819 		.can_map = 1,
2820 	};
2821 	int ret;
2822 	int alloc_ctx;
2823 
2824 	ret = ext4_emergency_state(sb);
2825 	if (unlikely(ret))
2826 		return ret;
2827 
2828 	alloc_ctx = ext4_writepages_down_read(sb);
2829 	ret = ext4_do_writepages(&mpd);
2830 	/*
2831 	 * For data=journal writeback we could have come across pages marked
2832 	 * for delayed dirtying (PageChecked) which were just added to the
2833 	 * running transaction. Try once more to get them to stable storage.
2834 	 */
2835 	if (!ret && mpd.journalled_more_data)
2836 		ret = ext4_do_writepages(&mpd);
2837 	ext4_writepages_up_read(sb, alloc_ctx);
2838 
2839 	return ret;
2840 }
2841 
ext4_normal_submit_inode_data_buffers(struct jbd2_inode * jinode)2842 int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2843 {
2844 	struct writeback_control wbc = {
2845 		.sync_mode = WB_SYNC_ALL,
2846 		.nr_to_write = LONG_MAX,
2847 		.range_start = jinode->i_dirty_start,
2848 		.range_end = jinode->i_dirty_end,
2849 	};
2850 	struct mpage_da_data mpd = {
2851 		.inode = jinode->i_vfs_inode,
2852 		.wbc = &wbc,
2853 		.can_map = 0,
2854 	};
2855 	return ext4_do_writepages(&mpd);
2856 }
2857 
ext4_dax_writepages(struct address_space * mapping,struct writeback_control * wbc)2858 static int ext4_dax_writepages(struct address_space *mapping,
2859 			       struct writeback_control *wbc)
2860 {
2861 	int ret;
2862 	long nr_to_write = wbc->nr_to_write;
2863 	struct inode *inode = mapping->host;
2864 	int alloc_ctx;
2865 
2866 	ret = ext4_emergency_state(inode->i_sb);
2867 	if (unlikely(ret))
2868 		return ret;
2869 
2870 	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2871 	trace_ext4_writepages(inode, wbc);
2872 
2873 	ret = dax_writeback_mapping_range(mapping,
2874 					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2875 	trace_ext4_writepages_result(inode, wbc, ret,
2876 				     nr_to_write - wbc->nr_to_write);
2877 	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2878 	return ret;
2879 }
2880 
ext4_nonda_switch(struct super_block * sb)2881 static int ext4_nonda_switch(struct super_block *sb)
2882 {
2883 	s64 free_clusters, dirty_clusters;
2884 	struct ext4_sb_info *sbi = EXT4_SB(sb);
2885 
2886 	/*
2887 	 * switch to non delalloc mode if we are running low
2888 	 * on free block. The free block accounting via percpu
2889 	 * counters can get slightly wrong with percpu_counter_batch getting
2890 	 * accumulated on each CPU without updating global counters
2891 	 * Delalloc need an accurate free block accounting. So switch
2892 	 * to non delalloc when we are near to error range.
2893 	 */
2894 	free_clusters =
2895 		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2896 	dirty_clusters =
2897 		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2898 	/*
2899 	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2900 	 */
2901 	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2902 		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2903 
2904 	if (2 * free_clusters < 3 * dirty_clusters ||
2905 	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2906 		/*
2907 		 * free block count is less than 150% of dirty blocks
2908 		 * or free blocks is less than watermark
2909 		 */
2910 		return 1;
2911 	}
2912 	return 0;
2913 }
2914 
ext4_da_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)2915 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2916 			       loff_t pos, unsigned len,
2917 			       struct folio **foliop, void **fsdata)
2918 {
2919 	int ret, retries = 0;
2920 	struct folio *folio;
2921 	pgoff_t index;
2922 	struct inode *inode = mapping->host;
2923 
2924 	ret = ext4_emergency_state(inode->i_sb);
2925 	if (unlikely(ret))
2926 		return ret;
2927 
2928 	index = pos >> PAGE_SHIFT;
2929 
2930 	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
2931 		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2932 		return ext4_write_begin(file, mapping, pos,
2933 					len, foliop, fsdata);
2934 	}
2935 	*fsdata = (void *)0;
2936 	trace_ext4_da_write_begin(inode, pos, len);
2937 
2938 	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2939 		ret = ext4_generic_write_inline_data(mapping, inode, pos, len,
2940 						     foliop, fsdata, true);
2941 		if (ret < 0)
2942 			return ret;
2943 		if (ret == 1)
2944 			return 0;
2945 	}
2946 
2947 retry:
2948 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2949 			mapping_gfp_mask(mapping));
2950 	if (IS_ERR(folio))
2951 		return PTR_ERR(folio);
2952 
2953 	ret = ext4_block_write_begin(NULL, folio, pos, len,
2954 				     ext4_da_get_block_prep);
2955 	if (ret < 0) {
2956 		folio_unlock(folio);
2957 		folio_put(folio);
2958 		/*
2959 		 * block_write_begin may have instantiated a few blocks
2960 		 * outside i_size.  Trim these off again. Don't need
2961 		 * i_size_read because we hold inode lock.
2962 		 */
2963 		if (pos + len > inode->i_size)
2964 			ext4_truncate_failed_write(inode);
2965 
2966 		if (ret == -ENOSPC &&
2967 		    ext4_should_retry_alloc(inode->i_sb, &retries))
2968 			goto retry;
2969 		return ret;
2970 	}
2971 
2972 	*foliop = folio;
2973 	return ret;
2974 }
2975 
2976 /*
2977  * Check if we should update i_disksize
2978  * when write to the end of file but not require block allocation
2979  */
ext4_da_should_update_i_disksize(struct folio * folio,unsigned long offset)2980 static int ext4_da_should_update_i_disksize(struct folio *folio,
2981 					    unsigned long offset)
2982 {
2983 	struct buffer_head *bh;
2984 	struct inode *inode = folio->mapping->host;
2985 	unsigned int idx;
2986 	int i;
2987 
2988 	bh = folio_buffers(folio);
2989 	idx = offset >> inode->i_blkbits;
2990 
2991 	for (i = 0; i < idx; i++)
2992 		bh = bh->b_this_page;
2993 
2994 	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2995 		return 0;
2996 	return 1;
2997 }
2998 
ext4_da_do_write_end(struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio)2999 static int ext4_da_do_write_end(struct address_space *mapping,
3000 			loff_t pos, unsigned len, unsigned copied,
3001 			struct folio *folio)
3002 {
3003 	struct inode *inode = mapping->host;
3004 	loff_t old_size = inode->i_size;
3005 	bool disksize_changed = false;
3006 	loff_t new_i_size, zero_len = 0;
3007 	handle_t *handle;
3008 
3009 	if (unlikely(!folio_buffers(folio))) {
3010 		folio_unlock(folio);
3011 		folio_put(folio);
3012 		return -EIO;
3013 	}
3014 	/*
3015 	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3016 	 * flag, which all that's needed to trigger page writeback.
3017 	 */
3018 	copied = block_write_end(NULL, mapping, pos, len, copied,
3019 			folio, NULL);
3020 	new_i_size = pos + copied;
3021 
3022 	/*
3023 	 * It's important to update i_size while still holding folio lock,
3024 	 * because folio writeout could otherwise come in and zero beyond
3025 	 * i_size.
3026 	 *
3027 	 * Since we are holding inode lock, we are sure i_disksize <=
3028 	 * i_size. We also know that if i_disksize < i_size, there are
3029 	 * delalloc writes pending in the range up to i_size. If the end of
3030 	 * the current write is <= i_size, there's no need to touch
3031 	 * i_disksize since writeback will push i_disksize up to i_size
3032 	 * eventually. If the end of the current write is > i_size and
3033 	 * inside an allocated block which ext4_da_should_update_i_disksize()
3034 	 * checked, we need to update i_disksize here as certain
3035 	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3036 	 */
3037 	if (new_i_size > inode->i_size) {
3038 		unsigned long end;
3039 
3040 		i_size_write(inode, new_i_size);
3041 		end = (new_i_size - 1) & (PAGE_SIZE - 1);
3042 		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3043 			ext4_update_i_disksize(inode, new_i_size);
3044 			disksize_changed = true;
3045 		}
3046 	}
3047 
3048 	folio_unlock(folio);
3049 	folio_put(folio);
3050 
3051 	if (pos > old_size) {
3052 		pagecache_isize_extended(inode, old_size, pos);
3053 		zero_len = pos - old_size;
3054 	}
3055 
3056 	if (!disksize_changed && !zero_len)
3057 		return copied;
3058 
3059 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3060 	if (IS_ERR(handle))
3061 		return PTR_ERR(handle);
3062 	if (zero_len)
3063 		ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3064 	ext4_mark_inode_dirty(handle, inode);
3065 	ext4_journal_stop(handle);
3066 
3067 	return copied;
3068 }
3069 
ext4_da_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)3070 static int ext4_da_write_end(struct file *file,
3071 			     struct address_space *mapping,
3072 			     loff_t pos, unsigned len, unsigned copied,
3073 			     struct folio *folio, void *fsdata)
3074 {
3075 	struct inode *inode = mapping->host;
3076 	int write_mode = (int)(unsigned long)fsdata;
3077 
3078 	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3079 		return ext4_write_end(file, mapping, pos,
3080 				      len, copied, folio, fsdata);
3081 
3082 	trace_ext4_da_write_end(inode, pos, len, copied);
3083 
3084 	if (write_mode != CONVERT_INLINE_DATA &&
3085 	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3086 	    ext4_has_inline_data(inode))
3087 		return ext4_write_inline_data_end(inode, pos, len, copied,
3088 						  folio);
3089 
3090 	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3091 		copied = 0;
3092 
3093 	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3094 }
3095 
3096 /*
3097  * Force all delayed allocation blocks to be allocated for a given inode.
3098  */
ext4_alloc_da_blocks(struct inode * inode)3099 int ext4_alloc_da_blocks(struct inode *inode)
3100 {
3101 	trace_ext4_alloc_da_blocks(inode);
3102 
3103 	if (!EXT4_I(inode)->i_reserved_data_blocks)
3104 		return 0;
3105 
3106 	/*
3107 	 * We do something simple for now.  The filemap_flush() will
3108 	 * also start triggering a write of the data blocks, which is
3109 	 * not strictly speaking necessary (and for users of
3110 	 * laptop_mode, not even desirable).  However, to do otherwise
3111 	 * would require replicating code paths in:
3112 	 *
3113 	 * ext4_writepages() ->
3114 	 *    write_cache_pages() ---> (via passed in callback function)
3115 	 *        __mpage_da_writepage() -->
3116 	 *           mpage_add_bh_to_extent()
3117 	 *           mpage_da_map_blocks()
3118 	 *
3119 	 * The problem is that write_cache_pages(), located in
3120 	 * mm/page-writeback.c, marks pages clean in preparation for
3121 	 * doing I/O, which is not desirable if we're not planning on
3122 	 * doing I/O at all.
3123 	 *
3124 	 * We could call write_cache_pages(), and then redirty all of
3125 	 * the pages by calling redirty_page_for_writepage() but that
3126 	 * would be ugly in the extreme.  So instead we would need to
3127 	 * replicate parts of the code in the above functions,
3128 	 * simplifying them because we wouldn't actually intend to
3129 	 * write out the pages, but rather only collect contiguous
3130 	 * logical block extents, call the multi-block allocator, and
3131 	 * then update the buffer heads with the block allocations.
3132 	 *
3133 	 * For now, though, we'll cheat by calling filemap_flush(),
3134 	 * which will map the blocks, and start the I/O, but not
3135 	 * actually wait for the I/O to complete.
3136 	 */
3137 	return filemap_flush(inode->i_mapping);
3138 }
3139 
3140 /*
3141  * bmap() is special.  It gets used by applications such as lilo and by
3142  * the swapper to find the on-disk block of a specific piece of data.
3143  *
3144  * Naturally, this is dangerous if the block concerned is still in the
3145  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3146  * filesystem and enables swap, then they may get a nasty shock when the
3147  * data getting swapped to that swapfile suddenly gets overwritten by
3148  * the original zero's written out previously to the journal and
3149  * awaiting writeback in the kernel's buffer cache.
3150  *
3151  * So, if we see any bmap calls here on a modified, data-journaled file,
3152  * take extra steps to flush any blocks which might be in the cache.
3153  */
ext4_bmap(struct address_space * mapping,sector_t block)3154 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3155 {
3156 	struct inode *inode = mapping->host;
3157 	sector_t ret = 0;
3158 
3159 	inode_lock_shared(inode);
3160 	/*
3161 	 * We can get here for an inline file via the FIBMAP ioctl
3162 	 */
3163 	if (ext4_has_inline_data(inode))
3164 		goto out;
3165 
3166 	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3167 	    (test_opt(inode->i_sb, DELALLOC) ||
3168 	     ext4_should_journal_data(inode))) {
3169 		/*
3170 		 * With delalloc or journalled data we want to sync the file so
3171 		 * that we can make sure we allocate blocks for file and data
3172 		 * is in place for the user to see it
3173 		 */
3174 		filemap_write_and_wait(mapping);
3175 	}
3176 
3177 	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
3178 
3179 out:
3180 	inode_unlock_shared(inode);
3181 	return ret;
3182 }
3183 
ext4_read_folio(struct file * file,struct folio * folio)3184 static int ext4_read_folio(struct file *file, struct folio *folio)
3185 {
3186 	int ret = -EAGAIN;
3187 	struct inode *inode = folio->mapping->host;
3188 
3189 	trace_ext4_read_folio(inode, folio);
3190 
3191 	if (ext4_has_inline_data(inode))
3192 		ret = ext4_readpage_inline(inode, folio);
3193 
3194 	if (ret == -EAGAIN)
3195 		return ext4_mpage_readpages(inode, NULL, folio);
3196 
3197 	return ret;
3198 }
3199 
ext4_readahead(struct readahead_control * rac)3200 static void ext4_readahead(struct readahead_control *rac)
3201 {
3202 	struct inode *inode = rac->mapping->host;
3203 
3204 	/* If the file has inline data, no need to do readahead. */
3205 	if (ext4_has_inline_data(inode))
3206 		return;
3207 
3208 	ext4_mpage_readpages(inode, rac, NULL);
3209 }
3210 
ext4_invalidate_folio(struct folio * folio,size_t offset,size_t length)3211 static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3212 				size_t length)
3213 {
3214 	trace_ext4_invalidate_folio(folio, offset, length);
3215 
3216 	/* No journalling happens on data buffers when this function is used */
3217 	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3218 
3219 	block_invalidate_folio(folio, offset, length);
3220 }
3221 
__ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3222 static int __ext4_journalled_invalidate_folio(struct folio *folio,
3223 					    size_t offset, size_t length)
3224 {
3225 	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3226 
3227 	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3228 
3229 	/*
3230 	 * If it's a full truncate we just forget about the pending dirtying
3231 	 */
3232 	if (offset == 0 && length == folio_size(folio))
3233 		folio_clear_checked(folio);
3234 
3235 	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3236 }
3237 
3238 /* Wrapper for aops... */
ext4_journalled_invalidate_folio(struct folio * folio,size_t offset,size_t length)3239 static void ext4_journalled_invalidate_folio(struct folio *folio,
3240 					   size_t offset,
3241 					   size_t length)
3242 {
3243 	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3244 }
3245 
ext4_release_folio(struct folio * folio,gfp_t wait)3246 static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3247 {
3248 	struct inode *inode = folio->mapping->host;
3249 	journal_t *journal = EXT4_JOURNAL(inode);
3250 
3251 	trace_ext4_release_folio(inode, folio);
3252 
3253 	/* Page has dirty journalled data -> cannot release */
3254 	if (folio_test_checked(folio))
3255 		return false;
3256 	if (journal)
3257 		return jbd2_journal_try_to_free_buffers(journal, folio);
3258 	else
3259 		return try_to_free_buffers(folio);
3260 }
3261 
ext4_inode_datasync_dirty(struct inode * inode)3262 static bool ext4_inode_datasync_dirty(struct inode *inode)
3263 {
3264 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3265 
3266 	if (journal) {
3267 		if (jbd2_transaction_committed(journal,
3268 			EXT4_I(inode)->i_datasync_tid))
3269 			return false;
3270 		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3271 			return !list_empty(&EXT4_I(inode)->i_fc_list);
3272 		return true;
3273 	}
3274 
3275 	/* Any metadata buffers to write? */
3276 	if (!list_empty(&inode->i_mapping->i_private_list))
3277 		return true;
3278 	return inode->i_state & I_DIRTY_DATASYNC;
3279 }
3280 
ext4_set_iomap(struct inode * inode,struct iomap * iomap,struct ext4_map_blocks * map,loff_t offset,loff_t length,unsigned int flags)3281 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3282 			   struct ext4_map_blocks *map, loff_t offset,
3283 			   loff_t length, unsigned int flags)
3284 {
3285 	u8 blkbits = inode->i_blkbits;
3286 
3287 	/*
3288 	 * Writes that span EOF might trigger an I/O size update on completion,
3289 	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3290 	 * there is no other metadata changes being made or are pending.
3291 	 */
3292 	iomap->flags = 0;
3293 	if (ext4_inode_datasync_dirty(inode) ||
3294 	    offset + length > i_size_read(inode))
3295 		iomap->flags |= IOMAP_F_DIRTY;
3296 
3297 	if (map->m_flags & EXT4_MAP_NEW)
3298 		iomap->flags |= IOMAP_F_NEW;
3299 
3300 	/* HW-offload atomics are always used */
3301 	if (flags & IOMAP_ATOMIC)
3302 		iomap->flags |= IOMAP_F_ATOMIC_BIO;
3303 
3304 	if (flags & IOMAP_DAX)
3305 		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3306 	else
3307 		iomap->bdev = inode->i_sb->s_bdev;
3308 	iomap->offset = (u64) map->m_lblk << blkbits;
3309 	iomap->length = (u64) map->m_len << blkbits;
3310 
3311 	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3312 	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3313 		iomap->flags |= IOMAP_F_MERGED;
3314 
3315 	/*
3316 	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3317 	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3318 	 * set. In order for any allocated unwritten extents to be converted
3319 	 * into written extents correctly within the ->end_io() handler, we
3320 	 * need to ensure that the iomap->type is set appropriately. Hence, the
3321 	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3322 	 * been set first.
3323 	 */
3324 	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3325 		iomap->type = IOMAP_UNWRITTEN;
3326 		iomap->addr = (u64) map->m_pblk << blkbits;
3327 		if (flags & IOMAP_DAX)
3328 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3329 	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3330 		iomap->type = IOMAP_MAPPED;
3331 		iomap->addr = (u64) map->m_pblk << blkbits;
3332 		if (flags & IOMAP_DAX)
3333 			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3334 	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3335 		iomap->type = IOMAP_DELALLOC;
3336 		iomap->addr = IOMAP_NULL_ADDR;
3337 	} else {
3338 		iomap->type = IOMAP_HOLE;
3339 		iomap->addr = IOMAP_NULL_ADDR;
3340 	}
3341 }
3342 
ext4_iomap_alloc(struct inode * inode,struct ext4_map_blocks * map,unsigned int flags)3343 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3344 			    unsigned int flags)
3345 {
3346 	handle_t *handle;
3347 	u8 blkbits = inode->i_blkbits;
3348 	int ret, dio_credits, m_flags = 0, retries = 0;
3349 
3350 	/*
3351 	 * Trim the mapping request to the maximum value that we can map at
3352 	 * once for direct I/O.
3353 	 */
3354 	if (map->m_len > DIO_MAX_BLOCKS)
3355 		map->m_len = DIO_MAX_BLOCKS;
3356 	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3357 
3358 retry:
3359 	/*
3360 	 * Either we allocate blocks and then don't get an unwritten extent, so
3361 	 * in that case we have reserved enough credits. Or, the blocks are
3362 	 * already allocated and unwritten. In that case, the extent conversion
3363 	 * fits into the credits as well.
3364 	 */
3365 	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3366 	if (IS_ERR(handle))
3367 		return PTR_ERR(handle);
3368 
3369 	/*
3370 	 * DAX and direct I/O are the only two operations that are currently
3371 	 * supported with IOMAP_WRITE.
3372 	 */
3373 	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3374 	if (flags & IOMAP_DAX)
3375 		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3376 	/*
3377 	 * We use i_size instead of i_disksize here because delalloc writeback
3378 	 * can complete at any point during the I/O and subsequently push the
3379 	 * i_disksize out to i_size. This could be beyond where direct I/O is
3380 	 * happening and thus expose allocated blocks to direct I/O reads.
3381 	 */
3382 	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3383 		m_flags = EXT4_GET_BLOCKS_CREATE;
3384 	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3385 		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3386 
3387 	ret = ext4_map_blocks(handle, inode, map, m_flags);
3388 
3389 	/*
3390 	 * We cannot fill holes in indirect tree based inodes as that could
3391 	 * expose stale data in the case of a crash. Use the magic error code
3392 	 * to fallback to buffered I/O.
3393 	 */
3394 	if (!m_flags && !ret)
3395 		ret = -ENOTBLK;
3396 
3397 	ext4_journal_stop(handle);
3398 	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3399 		goto retry;
3400 
3401 	return ret;
3402 }
3403 
3404 
ext4_iomap_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3405 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3406 		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3407 {
3408 	int ret;
3409 	struct ext4_map_blocks map;
3410 	u8 blkbits = inode->i_blkbits;
3411 
3412 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3413 		return -EINVAL;
3414 
3415 	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3416 		return -ERANGE;
3417 
3418 	/*
3419 	 * Calculate the first and last logical blocks respectively.
3420 	 */
3421 	map.m_lblk = offset >> blkbits;
3422 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3423 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3424 
3425 	if (flags & IOMAP_WRITE) {
3426 		/*
3427 		 * We check here if the blocks are already allocated, then we
3428 		 * don't need to start a journal txn and we can directly return
3429 		 * the mapping information. This could boost performance
3430 		 * especially in multi-threaded overwrite requests.
3431 		 */
3432 		if (offset + length <= i_size_read(inode)) {
3433 			ret = ext4_map_blocks(NULL, inode, &map, 0);
3434 			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3435 				goto out;
3436 		}
3437 		ret = ext4_iomap_alloc(inode, &map, flags);
3438 	} else {
3439 		ret = ext4_map_blocks(NULL, inode, &map, 0);
3440 	}
3441 
3442 	if (ret < 0)
3443 		return ret;
3444 out:
3445 	/*
3446 	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3447 	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3448 	 * limiting the length of the mapping returned.
3449 	 */
3450 	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3451 
3452 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3453 
3454 	return 0;
3455 }
3456 
ext4_iomap_overwrite_begin(struct inode * inode,loff_t offset,loff_t length,unsigned flags,struct iomap * iomap,struct iomap * srcmap)3457 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3458 		loff_t length, unsigned flags, struct iomap *iomap,
3459 		struct iomap *srcmap)
3460 {
3461 	int ret;
3462 
3463 	/*
3464 	 * Even for writes we don't need to allocate blocks, so just pretend
3465 	 * we are reading to save overhead of starting a transaction.
3466 	 */
3467 	flags &= ~IOMAP_WRITE;
3468 	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3469 	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3470 	return ret;
3471 }
3472 
ext4_want_directio_fallback(unsigned flags,ssize_t written)3473 static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written)
3474 {
3475 	/* must be a directio to fall back to buffered */
3476 	if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) !=
3477 		    (IOMAP_WRITE | IOMAP_DIRECT))
3478 		return false;
3479 
3480 	/* atomic writes are all-or-nothing */
3481 	if (flags & IOMAP_ATOMIC)
3482 		return false;
3483 
3484 	/* can only try again if we wrote nothing */
3485 	return written == 0;
3486 }
3487 
ext4_iomap_end(struct inode * inode,loff_t offset,loff_t length,ssize_t written,unsigned flags,struct iomap * iomap)3488 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3489 			  ssize_t written, unsigned flags, struct iomap *iomap)
3490 {
3491 	/*
3492 	 * Check to see whether an error occurred while writing out the data to
3493 	 * the allocated blocks. If so, return the magic error code for
3494 	 * non-atomic write so that we fallback to buffered I/O and attempt to
3495 	 * complete the remainder of the I/O.
3496 	 * For non-atomic writes, any blocks that may have been
3497 	 * allocated in preparation for the direct I/O will be reused during
3498 	 * buffered I/O. For atomic write, we never fallback to buffered-io.
3499 	 */
3500 	if (ext4_want_directio_fallback(flags, written))
3501 		return -ENOTBLK;
3502 
3503 	return 0;
3504 }
3505 
3506 const struct iomap_ops ext4_iomap_ops = {
3507 	.iomap_begin		= ext4_iomap_begin,
3508 	.iomap_end		= ext4_iomap_end,
3509 };
3510 
3511 const struct iomap_ops ext4_iomap_overwrite_ops = {
3512 	.iomap_begin		= ext4_iomap_overwrite_begin,
3513 	.iomap_end		= ext4_iomap_end,
3514 };
3515 
ext4_iomap_begin_report(struct inode * inode,loff_t offset,loff_t length,unsigned int flags,struct iomap * iomap,struct iomap * srcmap)3516 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3517 				   loff_t length, unsigned int flags,
3518 				   struct iomap *iomap, struct iomap *srcmap)
3519 {
3520 	int ret;
3521 	struct ext4_map_blocks map;
3522 	u8 blkbits = inode->i_blkbits;
3523 
3524 	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3525 		return -EINVAL;
3526 
3527 	if (ext4_has_inline_data(inode)) {
3528 		ret = ext4_inline_data_iomap(inode, iomap);
3529 		if (ret != -EAGAIN) {
3530 			if (ret == 0 && offset >= iomap->length)
3531 				ret = -ENOENT;
3532 			return ret;
3533 		}
3534 	}
3535 
3536 	/*
3537 	 * Calculate the first and last logical block respectively.
3538 	 */
3539 	map.m_lblk = offset >> blkbits;
3540 	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3541 			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3542 
3543 	/*
3544 	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3545 	 * So handle it here itself instead of querying ext4_map_blocks().
3546 	 * Since ext4_map_blocks() will warn about it and will return
3547 	 * -EIO error.
3548 	 */
3549 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3550 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3551 
3552 		if (offset >= sbi->s_bitmap_maxbytes) {
3553 			map.m_flags = 0;
3554 			goto set_iomap;
3555 		}
3556 	}
3557 
3558 	ret = ext4_map_blocks(NULL, inode, &map, 0);
3559 	if (ret < 0)
3560 		return ret;
3561 set_iomap:
3562 	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3563 
3564 	return 0;
3565 }
3566 
3567 const struct iomap_ops ext4_iomap_report_ops = {
3568 	.iomap_begin = ext4_iomap_begin_report,
3569 };
3570 
3571 /*
3572  * For data=journal mode, folio should be marked dirty only when it was
3573  * writeably mapped. When that happens, it was already attached to the
3574  * transaction and marked as jbddirty (we take care of this in
3575  * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3576  * so we should have nothing to do here, except for the case when someone
3577  * had the page pinned and dirtied the page through this pin (e.g. by doing
3578  * direct IO to it). In that case we'd need to attach buffers here to the
3579  * transaction but we cannot due to lock ordering.  We cannot just dirty the
3580  * folio and leave attached buffers clean, because the buffers' dirty state is
3581  * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3582  * the journalling code will explode.  So what we do is to mark the folio
3583  * "pending dirty" and next time ext4_writepages() is called, attach buffers
3584  * to the transaction appropriately.
3585  */
ext4_journalled_dirty_folio(struct address_space * mapping,struct folio * folio)3586 static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3587 		struct folio *folio)
3588 {
3589 	WARN_ON_ONCE(!folio_buffers(folio));
3590 	if (folio_maybe_dma_pinned(folio))
3591 		folio_set_checked(folio);
3592 	return filemap_dirty_folio(mapping, folio);
3593 }
3594 
ext4_dirty_folio(struct address_space * mapping,struct folio * folio)3595 static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3596 {
3597 	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3598 	WARN_ON_ONCE(!folio_buffers(folio));
3599 	return block_dirty_folio(mapping, folio);
3600 }
3601 
ext4_iomap_swap_activate(struct swap_info_struct * sis,struct file * file,sector_t * span)3602 static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3603 				    struct file *file, sector_t *span)
3604 {
3605 	return iomap_swapfile_activate(sis, file, span,
3606 				       &ext4_iomap_report_ops);
3607 }
3608 
3609 static const struct address_space_operations ext4_aops = {
3610 	.read_folio		= ext4_read_folio,
3611 	.readahead		= ext4_readahead,
3612 	.writepages		= ext4_writepages,
3613 	.write_begin		= ext4_write_begin,
3614 	.write_end		= ext4_write_end,
3615 	.dirty_folio		= ext4_dirty_folio,
3616 	.bmap			= ext4_bmap,
3617 	.invalidate_folio	= ext4_invalidate_folio,
3618 	.release_folio		= ext4_release_folio,
3619 	.migrate_folio		= buffer_migrate_folio,
3620 	.is_partially_uptodate  = block_is_partially_uptodate,
3621 	.error_remove_folio	= generic_error_remove_folio,
3622 	.swap_activate		= ext4_iomap_swap_activate,
3623 };
3624 
3625 static const struct address_space_operations ext4_journalled_aops = {
3626 	.read_folio		= ext4_read_folio,
3627 	.readahead		= ext4_readahead,
3628 	.writepages		= ext4_writepages,
3629 	.write_begin		= ext4_write_begin,
3630 	.write_end		= ext4_journalled_write_end,
3631 	.dirty_folio		= ext4_journalled_dirty_folio,
3632 	.bmap			= ext4_bmap,
3633 	.invalidate_folio	= ext4_journalled_invalidate_folio,
3634 	.release_folio		= ext4_release_folio,
3635 	.migrate_folio		= buffer_migrate_folio_norefs,
3636 	.is_partially_uptodate  = block_is_partially_uptodate,
3637 	.error_remove_folio	= generic_error_remove_folio,
3638 	.swap_activate		= ext4_iomap_swap_activate,
3639 };
3640 
3641 static const struct address_space_operations ext4_da_aops = {
3642 	.read_folio		= ext4_read_folio,
3643 	.readahead		= ext4_readahead,
3644 	.writepages		= ext4_writepages,
3645 	.write_begin		= ext4_da_write_begin,
3646 	.write_end		= ext4_da_write_end,
3647 	.dirty_folio		= ext4_dirty_folio,
3648 	.bmap			= ext4_bmap,
3649 	.invalidate_folio	= ext4_invalidate_folio,
3650 	.release_folio		= ext4_release_folio,
3651 	.migrate_folio		= buffer_migrate_folio,
3652 	.is_partially_uptodate  = block_is_partially_uptodate,
3653 	.error_remove_folio	= generic_error_remove_folio,
3654 	.swap_activate		= ext4_iomap_swap_activate,
3655 };
3656 
3657 static const struct address_space_operations ext4_dax_aops = {
3658 	.writepages		= ext4_dax_writepages,
3659 	.dirty_folio		= noop_dirty_folio,
3660 	.bmap			= ext4_bmap,
3661 	.swap_activate		= ext4_iomap_swap_activate,
3662 };
3663 
ext4_set_aops(struct inode * inode)3664 void ext4_set_aops(struct inode *inode)
3665 {
3666 	switch (ext4_inode_journal_mode(inode)) {
3667 	case EXT4_INODE_ORDERED_DATA_MODE:
3668 	case EXT4_INODE_WRITEBACK_DATA_MODE:
3669 		break;
3670 	case EXT4_INODE_JOURNAL_DATA_MODE:
3671 		inode->i_mapping->a_ops = &ext4_journalled_aops;
3672 		return;
3673 	default:
3674 		BUG();
3675 	}
3676 	if (IS_DAX(inode))
3677 		inode->i_mapping->a_ops = &ext4_dax_aops;
3678 	else if (test_opt(inode->i_sb, DELALLOC))
3679 		inode->i_mapping->a_ops = &ext4_da_aops;
3680 	else
3681 		inode->i_mapping->a_ops = &ext4_aops;
3682 }
3683 
3684 /*
3685  * Here we can't skip an unwritten buffer even though it usually reads zero
3686  * because it might have data in pagecache (eg, if called from ext4_zero_range,
3687  * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3688  * racing writeback can come later and flush the stale pagecache to disk.
3689  */
__ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3690 static int __ext4_block_zero_page_range(handle_t *handle,
3691 		struct address_space *mapping, loff_t from, loff_t length)
3692 {
3693 	ext4_fsblk_t index = from >> PAGE_SHIFT;
3694 	unsigned offset = from & (PAGE_SIZE-1);
3695 	unsigned blocksize, pos;
3696 	ext4_lblk_t iblock;
3697 	struct inode *inode = mapping->host;
3698 	struct buffer_head *bh;
3699 	struct folio *folio;
3700 	int err = 0;
3701 
3702 	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3703 				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3704 				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3705 	if (IS_ERR(folio))
3706 		return PTR_ERR(folio);
3707 
3708 	blocksize = inode->i_sb->s_blocksize;
3709 
3710 	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3711 
3712 	bh = folio_buffers(folio);
3713 	if (!bh)
3714 		bh = create_empty_buffers(folio, blocksize, 0);
3715 
3716 	/* Find the buffer that contains "offset" */
3717 	pos = blocksize;
3718 	while (offset >= pos) {
3719 		bh = bh->b_this_page;
3720 		iblock++;
3721 		pos += blocksize;
3722 	}
3723 	if (buffer_freed(bh)) {
3724 		BUFFER_TRACE(bh, "freed: skip");
3725 		goto unlock;
3726 	}
3727 	if (!buffer_mapped(bh)) {
3728 		BUFFER_TRACE(bh, "unmapped");
3729 		ext4_get_block(inode, iblock, bh, 0);
3730 		/* unmapped? It's a hole - nothing to do */
3731 		if (!buffer_mapped(bh)) {
3732 			BUFFER_TRACE(bh, "still unmapped");
3733 			goto unlock;
3734 		}
3735 	}
3736 
3737 	/* Ok, it's mapped. Make sure it's up-to-date */
3738 	if (folio_test_uptodate(folio))
3739 		set_buffer_uptodate(bh);
3740 
3741 	if (!buffer_uptodate(bh)) {
3742 		err = ext4_read_bh_lock(bh, 0, true);
3743 		if (err)
3744 			goto unlock;
3745 		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
3746 			/* We expect the key to be set. */
3747 			BUG_ON(!fscrypt_has_encryption_key(inode));
3748 			err = fscrypt_decrypt_pagecache_blocks(folio,
3749 							       blocksize,
3750 							       bh_offset(bh));
3751 			if (err) {
3752 				clear_buffer_uptodate(bh);
3753 				goto unlock;
3754 			}
3755 		}
3756 	}
3757 	if (ext4_should_journal_data(inode)) {
3758 		BUFFER_TRACE(bh, "get write access");
3759 		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3760 						    EXT4_JTR_NONE);
3761 		if (err)
3762 			goto unlock;
3763 	}
3764 	folio_zero_range(folio, offset, length);
3765 	BUFFER_TRACE(bh, "zeroed end of block");
3766 
3767 	if (ext4_should_journal_data(inode)) {
3768 		err = ext4_dirty_journalled_data(handle, bh);
3769 	} else {
3770 		err = 0;
3771 		mark_buffer_dirty(bh);
3772 		if (ext4_should_order_data(inode))
3773 			err = ext4_jbd2_inode_add_write(handle, inode, from,
3774 					length);
3775 	}
3776 
3777 unlock:
3778 	folio_unlock(folio);
3779 	folio_put(folio);
3780 	return err;
3781 }
3782 
3783 /*
3784  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3785  * starting from file offset 'from'.  The range to be zero'd must
3786  * be contained with in one block.  If the specified range exceeds
3787  * the end of the block it will be shortened to end of the block
3788  * that corresponds to 'from'
3789  */
ext4_block_zero_page_range(handle_t * handle,struct address_space * mapping,loff_t from,loff_t length)3790 static int ext4_block_zero_page_range(handle_t *handle,
3791 		struct address_space *mapping, loff_t from, loff_t length)
3792 {
3793 	struct inode *inode = mapping->host;
3794 	unsigned offset = from & (PAGE_SIZE-1);
3795 	unsigned blocksize = inode->i_sb->s_blocksize;
3796 	unsigned max = blocksize - (offset & (blocksize - 1));
3797 
3798 	/*
3799 	 * correct length if it does not fall between
3800 	 * 'from' and the end of the block
3801 	 */
3802 	if (length > max || length < 0)
3803 		length = max;
3804 
3805 	if (IS_DAX(inode)) {
3806 		return dax_zero_range(inode, from, length, NULL,
3807 				      &ext4_iomap_ops);
3808 	}
3809 	return __ext4_block_zero_page_range(handle, mapping, from, length);
3810 }
3811 
3812 /*
3813  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3814  * up to the end of the block which corresponds to `from'.
3815  * This required during truncate. We need to physically zero the tail end
3816  * of that block so it doesn't yield old data if the file is later grown.
3817  */
ext4_block_truncate_page(handle_t * handle,struct address_space * mapping,loff_t from)3818 static int ext4_block_truncate_page(handle_t *handle,
3819 		struct address_space *mapping, loff_t from)
3820 {
3821 	unsigned offset = from & (PAGE_SIZE-1);
3822 	unsigned length;
3823 	unsigned blocksize;
3824 	struct inode *inode = mapping->host;
3825 
3826 	/* If we are processing an encrypted inode during orphan list handling */
3827 	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3828 		return 0;
3829 
3830 	blocksize = inode->i_sb->s_blocksize;
3831 	length = blocksize - (offset & (blocksize - 1));
3832 
3833 	return ext4_block_zero_page_range(handle, mapping, from, length);
3834 }
3835 
ext4_zero_partial_blocks(handle_t * handle,struct inode * inode,loff_t lstart,loff_t length)3836 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3837 			     loff_t lstart, loff_t length)
3838 {
3839 	struct super_block *sb = inode->i_sb;
3840 	struct address_space *mapping = inode->i_mapping;
3841 	unsigned partial_start, partial_end;
3842 	ext4_fsblk_t start, end;
3843 	loff_t byte_end = (lstart + length - 1);
3844 	int err = 0;
3845 
3846 	partial_start = lstart & (sb->s_blocksize - 1);
3847 	partial_end = byte_end & (sb->s_blocksize - 1);
3848 
3849 	start = lstart >> sb->s_blocksize_bits;
3850 	end = byte_end >> sb->s_blocksize_bits;
3851 
3852 	/* Handle partial zero within the single block */
3853 	if (start == end &&
3854 	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3855 		err = ext4_block_zero_page_range(handle, mapping,
3856 						 lstart, length);
3857 		return err;
3858 	}
3859 	/* Handle partial zero out on the start of the range */
3860 	if (partial_start) {
3861 		err = ext4_block_zero_page_range(handle, mapping,
3862 						 lstart, sb->s_blocksize);
3863 		if (err)
3864 			return err;
3865 	}
3866 	/* Handle partial zero out on the end of the range */
3867 	if (partial_end != sb->s_blocksize - 1)
3868 		err = ext4_block_zero_page_range(handle, mapping,
3869 						 byte_end - partial_end,
3870 						 partial_end + 1);
3871 	return err;
3872 }
3873 
ext4_can_truncate(struct inode * inode)3874 int ext4_can_truncate(struct inode *inode)
3875 {
3876 	if (S_ISREG(inode->i_mode))
3877 		return 1;
3878 	if (S_ISDIR(inode->i_mode))
3879 		return 1;
3880 	if (S_ISLNK(inode->i_mode))
3881 		return !ext4_inode_is_fast_symlink(inode);
3882 	return 0;
3883 }
3884 
3885 /*
3886  * We have to make sure i_disksize gets properly updated before we truncate
3887  * page cache due to hole punching or zero range. Otherwise i_disksize update
3888  * can get lost as it may have been postponed to submission of writeback but
3889  * that will never happen after we truncate page cache.
3890  */
ext4_update_disksize_before_punch(struct inode * inode,loff_t offset,loff_t len)3891 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3892 				      loff_t len)
3893 {
3894 	handle_t *handle;
3895 	int ret;
3896 
3897 	loff_t size = i_size_read(inode);
3898 
3899 	WARN_ON(!inode_is_locked(inode));
3900 	if (offset > size || offset + len < size)
3901 		return 0;
3902 
3903 	if (EXT4_I(inode)->i_disksize >= size)
3904 		return 0;
3905 
3906 	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3907 	if (IS_ERR(handle))
3908 		return PTR_ERR(handle);
3909 	ext4_update_i_disksize(inode, size);
3910 	ret = ext4_mark_inode_dirty(handle, inode);
3911 	ext4_journal_stop(handle);
3912 
3913 	return ret;
3914 }
3915 
ext4_truncate_folio(struct inode * inode,loff_t start,loff_t end)3916 static inline void ext4_truncate_folio(struct inode *inode,
3917 				       loff_t start, loff_t end)
3918 {
3919 	unsigned long blocksize = i_blocksize(inode);
3920 	struct folio *folio;
3921 
3922 	/* Nothing to be done if no complete block needs to be truncated. */
3923 	if (round_up(start, blocksize) >= round_down(end, blocksize))
3924 		return;
3925 
3926 	folio = filemap_lock_folio(inode->i_mapping, start >> PAGE_SHIFT);
3927 	if (IS_ERR(folio))
3928 		return;
3929 
3930 	if (folio_mkclean(folio))
3931 		folio_mark_dirty(folio);
3932 	folio_unlock(folio);
3933 	folio_put(folio);
3934 }
3935 
ext4_truncate_page_cache_block_range(struct inode * inode,loff_t start,loff_t end)3936 int ext4_truncate_page_cache_block_range(struct inode *inode,
3937 					 loff_t start, loff_t end)
3938 {
3939 	unsigned long blocksize = i_blocksize(inode);
3940 	int ret;
3941 
3942 	/*
3943 	 * For journalled data we need to write (and checkpoint) pages
3944 	 * before discarding page cache to avoid inconsitent data on disk
3945 	 * in case of crash before freeing or unwritten converting trans
3946 	 * is committed.
3947 	 */
3948 	if (ext4_should_journal_data(inode)) {
3949 		ret = filemap_write_and_wait_range(inode->i_mapping, start,
3950 						   end - 1);
3951 		if (ret)
3952 			return ret;
3953 		goto truncate_pagecache;
3954 	}
3955 
3956 	/*
3957 	 * If the block size is less than the page size, the file's mapped
3958 	 * blocks within one page could be freed or converted to unwritten.
3959 	 * So it's necessary to remove writable userspace mappings, and then
3960 	 * ext4_page_mkwrite() can be called during subsequent write access
3961 	 * to these partial folios.
3962 	 */
3963 	if (!IS_ALIGNED(start | end, PAGE_SIZE) &&
3964 	    blocksize < PAGE_SIZE && start < inode->i_size) {
3965 		loff_t page_boundary = round_up(start, PAGE_SIZE);
3966 
3967 		ext4_truncate_folio(inode, start, min(page_boundary, end));
3968 		if (end > page_boundary)
3969 			ext4_truncate_folio(inode,
3970 					    round_down(end, PAGE_SIZE), end);
3971 	}
3972 
3973 truncate_pagecache:
3974 	truncate_pagecache_range(inode, start, end - 1);
3975 	return 0;
3976 }
3977 
ext4_wait_dax_page(struct inode * inode)3978 static void ext4_wait_dax_page(struct inode *inode)
3979 {
3980 	filemap_invalidate_unlock(inode->i_mapping);
3981 	schedule();
3982 	filemap_invalidate_lock(inode->i_mapping);
3983 }
3984 
ext4_break_layouts(struct inode * inode)3985 int ext4_break_layouts(struct inode *inode)
3986 {
3987 	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3988 		return -EINVAL;
3989 
3990 	return dax_break_layout_inode(inode, ext4_wait_dax_page);
3991 }
3992 
3993 /*
3994  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3995  * associated with the given offset and length
3996  *
3997  * @inode:  File inode
3998  * @offset: The offset where the hole will begin
3999  * @len:    The length of the hole
4000  *
4001  * Returns: 0 on success or negative on failure
4002  */
4003 
ext4_punch_hole(struct file * file,loff_t offset,loff_t length)4004 int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
4005 {
4006 	struct inode *inode = file_inode(file);
4007 	struct super_block *sb = inode->i_sb;
4008 	ext4_lblk_t start_lblk, end_lblk;
4009 	loff_t max_end = EXT4_SB(sb)->s_bitmap_maxbytes - sb->s_blocksize;
4010 	loff_t end = offset + length;
4011 	handle_t *handle;
4012 	unsigned int credits;
4013 	int ret;
4014 
4015 	trace_ext4_punch_hole(inode, offset, length, 0);
4016 	WARN_ON_ONCE(!inode_is_locked(inode));
4017 
4018 	/* No need to punch hole beyond i_size */
4019 	if (offset >= inode->i_size)
4020 		return 0;
4021 
4022 	/*
4023 	 * If the hole extends beyond i_size, set the hole to end after
4024 	 * the page that contains i_size, and also make sure that the hole
4025 	 * within one block before last range.
4026 	 */
4027 	if (end > inode->i_size)
4028 		end = round_up(inode->i_size, PAGE_SIZE);
4029 	if (end > max_end)
4030 		end = max_end;
4031 	length = end - offset;
4032 
4033 	/*
4034 	 * Attach jinode to inode for jbd2 if we do any zeroing of partial
4035 	 * block.
4036 	 */
4037 	if (!IS_ALIGNED(offset | end, sb->s_blocksize)) {
4038 		ret = ext4_inode_attach_jinode(inode);
4039 		if (ret < 0)
4040 			return ret;
4041 	}
4042 
4043 
4044 	ret = ext4_update_disksize_before_punch(inode, offset, length);
4045 	if (ret)
4046 		return ret;
4047 
4048 	/* Now release the pages and zero block aligned part of pages*/
4049 	ret = ext4_truncate_page_cache_block_range(inode, offset, end);
4050 	if (ret)
4051 		return ret;
4052 
4053 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4054 		credits = ext4_writepage_trans_blocks(inode);
4055 	else
4056 		credits = ext4_blocks_for_truncate(inode);
4057 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4058 	if (IS_ERR(handle)) {
4059 		ret = PTR_ERR(handle);
4060 		ext4_std_error(sb, ret);
4061 		return ret;
4062 	}
4063 
4064 	ret = ext4_zero_partial_blocks(handle, inode, offset, length);
4065 	if (ret)
4066 		goto out_handle;
4067 
4068 	/* If there are blocks to remove, do it */
4069 	start_lblk = EXT4_B_TO_LBLK(inode, offset);
4070 	end_lblk = end >> inode->i_blkbits;
4071 
4072 	if (end_lblk > start_lblk) {
4073 		ext4_lblk_t hole_len = end_lblk - start_lblk;
4074 
4075 		down_write(&EXT4_I(inode)->i_data_sem);
4076 		ext4_discard_preallocations(inode);
4077 
4078 		ext4_es_remove_extent(inode, start_lblk, hole_len);
4079 
4080 		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4081 			ret = ext4_ext_remove_space(inode, start_lblk,
4082 						    end_lblk - 1);
4083 		else
4084 			ret = ext4_ind_remove_space(handle, inode, start_lblk,
4085 						    end_lblk);
4086 		if (ret) {
4087 			up_write(&EXT4_I(inode)->i_data_sem);
4088 			goto out_handle;
4089 		}
4090 
4091 		ext4_es_insert_extent(inode, start_lblk, hole_len, ~0,
4092 				      EXTENT_STATUS_HOLE, 0);
4093 		up_write(&EXT4_I(inode)->i_data_sem);
4094 	}
4095 	ext4_fc_track_range(handle, inode, start_lblk, end_lblk);
4096 
4097 	ret = ext4_mark_inode_dirty(handle, inode);
4098 	if (unlikely(ret))
4099 		goto out_handle;
4100 
4101 	ext4_update_inode_fsync_trans(handle, inode, 1);
4102 	if (IS_SYNC(inode))
4103 		ext4_handle_sync(handle);
4104 out_handle:
4105 	ext4_journal_stop(handle);
4106 	return ret;
4107 }
4108 
ext4_inode_attach_jinode(struct inode * inode)4109 int ext4_inode_attach_jinode(struct inode *inode)
4110 {
4111 	struct ext4_inode_info *ei = EXT4_I(inode);
4112 	struct jbd2_inode *jinode;
4113 
4114 	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4115 		return 0;
4116 
4117 	jinode = jbd2_alloc_inode(GFP_KERNEL);
4118 	spin_lock(&inode->i_lock);
4119 	if (!ei->jinode) {
4120 		if (!jinode) {
4121 			spin_unlock(&inode->i_lock);
4122 			return -ENOMEM;
4123 		}
4124 		ei->jinode = jinode;
4125 		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4126 		jinode = NULL;
4127 	}
4128 	spin_unlock(&inode->i_lock);
4129 	if (unlikely(jinode != NULL))
4130 		jbd2_free_inode(jinode);
4131 	return 0;
4132 }
4133 
4134 /*
4135  * ext4_truncate()
4136  *
4137  * We block out ext4_get_block() block instantiations across the entire
4138  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4139  * simultaneously on behalf of the same inode.
4140  *
4141  * As we work through the truncate and commit bits of it to the journal there
4142  * is one core, guiding principle: the file's tree must always be consistent on
4143  * disk.  We must be able to restart the truncate after a crash.
4144  *
4145  * The file's tree may be transiently inconsistent in memory (although it
4146  * probably isn't), but whenever we close off and commit a journal transaction,
4147  * the contents of (the filesystem + the journal) must be consistent and
4148  * restartable.  It's pretty simple, really: bottom up, right to left (although
4149  * left-to-right works OK too).
4150  *
4151  * Note that at recovery time, journal replay occurs *before* the restart of
4152  * truncate against the orphan inode list.
4153  *
4154  * The committed inode has the new, desired i_size (which is the same as
4155  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4156  * that this inode's truncate did not complete and it will again call
4157  * ext4_truncate() to have another go.  So there will be instantiated blocks
4158  * to the right of the truncation point in a crashed ext4 filesystem.  But
4159  * that's fine - as long as they are linked from the inode, the post-crash
4160  * ext4_truncate() run will find them and release them.
4161  */
ext4_truncate(struct inode * inode)4162 int ext4_truncate(struct inode *inode)
4163 {
4164 	struct ext4_inode_info *ei = EXT4_I(inode);
4165 	unsigned int credits;
4166 	int err = 0, err2;
4167 	handle_t *handle;
4168 	struct address_space *mapping = inode->i_mapping;
4169 
4170 	/*
4171 	 * There is a possibility that we're either freeing the inode
4172 	 * or it's a completely new inode. In those cases we might not
4173 	 * have i_rwsem locked because it's not necessary.
4174 	 */
4175 	if (!(inode->i_state & (I_NEW|I_FREEING)))
4176 		WARN_ON(!inode_is_locked(inode));
4177 	trace_ext4_truncate_enter(inode);
4178 
4179 	if (!ext4_can_truncate(inode))
4180 		goto out_trace;
4181 
4182 	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4183 		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4184 
4185 	if (ext4_has_inline_data(inode)) {
4186 		int has_inline = 1;
4187 
4188 		err = ext4_inline_data_truncate(inode, &has_inline);
4189 		if (err || has_inline)
4190 			goto out_trace;
4191 	}
4192 
4193 	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4194 	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4195 		err = ext4_inode_attach_jinode(inode);
4196 		if (err)
4197 			goto out_trace;
4198 	}
4199 
4200 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4201 		credits = ext4_writepage_trans_blocks(inode);
4202 	else
4203 		credits = ext4_blocks_for_truncate(inode);
4204 
4205 	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4206 	if (IS_ERR(handle)) {
4207 		err = PTR_ERR(handle);
4208 		goto out_trace;
4209 	}
4210 
4211 	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4212 		ext4_block_truncate_page(handle, mapping, inode->i_size);
4213 
4214 	/*
4215 	 * We add the inode to the orphan list, so that if this
4216 	 * truncate spans multiple transactions, and we crash, we will
4217 	 * resume the truncate when the filesystem recovers.  It also
4218 	 * marks the inode dirty, to catch the new size.
4219 	 *
4220 	 * Implication: the file must always be in a sane, consistent
4221 	 * truncatable state while each transaction commits.
4222 	 */
4223 	err = ext4_orphan_add(handle, inode);
4224 	if (err)
4225 		goto out_stop;
4226 
4227 	down_write(&EXT4_I(inode)->i_data_sem);
4228 
4229 	ext4_discard_preallocations(inode);
4230 
4231 	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4232 		err = ext4_ext_truncate(handle, inode);
4233 	else
4234 		ext4_ind_truncate(handle, inode);
4235 
4236 	up_write(&ei->i_data_sem);
4237 	if (err)
4238 		goto out_stop;
4239 
4240 	if (IS_SYNC(inode))
4241 		ext4_handle_sync(handle);
4242 
4243 out_stop:
4244 	/*
4245 	 * If this was a simple ftruncate() and the file will remain alive,
4246 	 * then we need to clear up the orphan record which we created above.
4247 	 * However, if this was a real unlink then we were called by
4248 	 * ext4_evict_inode(), and we allow that function to clean up the
4249 	 * orphan info for us.
4250 	 */
4251 	if (inode->i_nlink)
4252 		ext4_orphan_del(handle, inode);
4253 
4254 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4255 	err2 = ext4_mark_inode_dirty(handle, inode);
4256 	if (unlikely(err2 && !err))
4257 		err = err2;
4258 	ext4_journal_stop(handle);
4259 
4260 out_trace:
4261 	trace_ext4_truncate_exit(inode);
4262 	return err;
4263 }
4264 
ext4_inode_peek_iversion(const struct inode * inode)4265 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4266 {
4267 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4268 		return inode_peek_iversion_raw(inode);
4269 	else
4270 		return inode_peek_iversion(inode);
4271 }
4272 
ext4_inode_blocks_set(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4273 static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4274 				 struct ext4_inode_info *ei)
4275 {
4276 	struct inode *inode = &(ei->vfs_inode);
4277 	u64 i_blocks = READ_ONCE(inode->i_blocks);
4278 	struct super_block *sb = inode->i_sb;
4279 
4280 	if (i_blocks <= ~0U) {
4281 		/*
4282 		 * i_blocks can be represented in a 32 bit variable
4283 		 * as multiple of 512 bytes
4284 		 */
4285 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4286 		raw_inode->i_blocks_high = 0;
4287 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4288 		return 0;
4289 	}
4290 
4291 	/*
4292 	 * This should never happen since sb->s_maxbytes should not have
4293 	 * allowed this, sb->s_maxbytes was set according to the huge_file
4294 	 * feature in ext4_fill_super().
4295 	 */
4296 	if (!ext4_has_feature_huge_file(sb))
4297 		return -EFSCORRUPTED;
4298 
4299 	if (i_blocks <= 0xffffffffffffULL) {
4300 		/*
4301 		 * i_blocks can be represented in a 48 bit variable
4302 		 * as multiple of 512 bytes
4303 		 */
4304 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4305 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4306 		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4307 	} else {
4308 		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4309 		/* i_block is stored in file system block size */
4310 		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4311 		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4312 		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4313 	}
4314 	return 0;
4315 }
4316 
ext4_fill_raw_inode(struct inode * inode,struct ext4_inode * raw_inode)4317 static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4318 {
4319 	struct ext4_inode_info *ei = EXT4_I(inode);
4320 	uid_t i_uid;
4321 	gid_t i_gid;
4322 	projid_t i_projid;
4323 	int block;
4324 	int err;
4325 
4326 	err = ext4_inode_blocks_set(raw_inode, ei);
4327 
4328 	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4329 	i_uid = i_uid_read(inode);
4330 	i_gid = i_gid_read(inode);
4331 	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4332 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4333 		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4334 		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4335 		/*
4336 		 * Fix up interoperability with old kernels. Otherwise,
4337 		 * old inodes get re-used with the upper 16 bits of the
4338 		 * uid/gid intact.
4339 		 */
4340 		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4341 			raw_inode->i_uid_high = 0;
4342 			raw_inode->i_gid_high = 0;
4343 		} else {
4344 			raw_inode->i_uid_high =
4345 				cpu_to_le16(high_16_bits(i_uid));
4346 			raw_inode->i_gid_high =
4347 				cpu_to_le16(high_16_bits(i_gid));
4348 		}
4349 	} else {
4350 		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4351 		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4352 		raw_inode->i_uid_high = 0;
4353 		raw_inode->i_gid_high = 0;
4354 	}
4355 	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4356 
4357 	EXT4_INODE_SET_CTIME(inode, raw_inode);
4358 	EXT4_INODE_SET_MTIME(inode, raw_inode);
4359 	EXT4_INODE_SET_ATIME(inode, raw_inode);
4360 	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4361 
4362 	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4363 	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4364 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4365 		raw_inode->i_file_acl_high =
4366 			cpu_to_le16(ei->i_file_acl >> 32);
4367 	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4368 	ext4_isize_set(raw_inode, ei->i_disksize);
4369 
4370 	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4371 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4372 		if (old_valid_dev(inode->i_rdev)) {
4373 			raw_inode->i_block[0] =
4374 				cpu_to_le32(old_encode_dev(inode->i_rdev));
4375 			raw_inode->i_block[1] = 0;
4376 		} else {
4377 			raw_inode->i_block[0] = 0;
4378 			raw_inode->i_block[1] =
4379 				cpu_to_le32(new_encode_dev(inode->i_rdev));
4380 			raw_inode->i_block[2] = 0;
4381 		}
4382 	} else if (!ext4_has_inline_data(inode)) {
4383 		for (block = 0; block < EXT4_N_BLOCKS; block++)
4384 			raw_inode->i_block[block] = ei->i_data[block];
4385 	}
4386 
4387 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4388 		u64 ivers = ext4_inode_peek_iversion(inode);
4389 
4390 		raw_inode->i_disk_version = cpu_to_le32(ivers);
4391 		if (ei->i_extra_isize) {
4392 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4393 				raw_inode->i_version_hi =
4394 					cpu_to_le32(ivers >> 32);
4395 			raw_inode->i_extra_isize =
4396 				cpu_to_le16(ei->i_extra_isize);
4397 		}
4398 	}
4399 
4400 	if (i_projid != EXT4_DEF_PROJID &&
4401 	    !ext4_has_feature_project(inode->i_sb))
4402 		err = err ?: -EFSCORRUPTED;
4403 
4404 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4405 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4406 		raw_inode->i_projid = cpu_to_le32(i_projid);
4407 
4408 	ext4_inode_csum_set(inode, raw_inode, ei);
4409 	return err;
4410 }
4411 
4412 /*
4413  * ext4_get_inode_loc returns with an extra refcount against the inode's
4414  * underlying buffer_head on success. If we pass 'inode' and it does not
4415  * have in-inode xattr, we have all inode data in memory that is needed
4416  * to recreate the on-disk version of this inode.
4417  */
__ext4_get_inode_loc(struct super_block * sb,unsigned long ino,struct inode * inode,struct ext4_iloc * iloc,ext4_fsblk_t * ret_block)4418 static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4419 				struct inode *inode, struct ext4_iloc *iloc,
4420 				ext4_fsblk_t *ret_block)
4421 {
4422 	struct ext4_group_desc	*gdp;
4423 	struct buffer_head	*bh;
4424 	ext4_fsblk_t		block;
4425 	struct blk_plug		plug;
4426 	int			inodes_per_block, inode_offset;
4427 
4428 	iloc->bh = NULL;
4429 	if (ino < EXT4_ROOT_INO ||
4430 	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4431 		return -EFSCORRUPTED;
4432 
4433 	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4434 	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4435 	if (!gdp)
4436 		return -EIO;
4437 
4438 	/*
4439 	 * Figure out the offset within the block group inode table
4440 	 */
4441 	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4442 	inode_offset = ((ino - 1) %
4443 			EXT4_INODES_PER_GROUP(sb));
4444 	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4445 
4446 	block = ext4_inode_table(sb, gdp);
4447 	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4448 	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4449 		ext4_error(sb, "Invalid inode table block %llu in "
4450 			   "block_group %u", block, iloc->block_group);
4451 		return -EFSCORRUPTED;
4452 	}
4453 	block += (inode_offset / inodes_per_block);
4454 
4455 	bh = sb_getblk(sb, block);
4456 	if (unlikely(!bh))
4457 		return -ENOMEM;
4458 	if (ext4_buffer_uptodate(bh))
4459 		goto has_buffer;
4460 
4461 	lock_buffer(bh);
4462 	if (ext4_buffer_uptodate(bh)) {
4463 		/* Someone brought it uptodate while we waited */
4464 		unlock_buffer(bh);
4465 		goto has_buffer;
4466 	}
4467 
4468 	/*
4469 	 * If we have all information of the inode in memory and this
4470 	 * is the only valid inode in the block, we need not read the
4471 	 * block.
4472 	 */
4473 	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4474 		struct buffer_head *bitmap_bh;
4475 		int i, start;
4476 
4477 		start = inode_offset & ~(inodes_per_block - 1);
4478 
4479 		/* Is the inode bitmap in cache? */
4480 		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4481 		if (unlikely(!bitmap_bh))
4482 			goto make_io;
4483 
4484 		/*
4485 		 * If the inode bitmap isn't in cache then the
4486 		 * optimisation may end up performing two reads instead
4487 		 * of one, so skip it.
4488 		 */
4489 		if (!buffer_uptodate(bitmap_bh)) {
4490 			brelse(bitmap_bh);
4491 			goto make_io;
4492 		}
4493 		for (i = start; i < start + inodes_per_block; i++) {
4494 			if (i == inode_offset)
4495 				continue;
4496 			if (ext4_test_bit(i, bitmap_bh->b_data))
4497 				break;
4498 		}
4499 		brelse(bitmap_bh);
4500 		if (i == start + inodes_per_block) {
4501 			struct ext4_inode *raw_inode =
4502 				(struct ext4_inode *) (bh->b_data + iloc->offset);
4503 
4504 			/* all other inodes are free, so skip I/O */
4505 			memset(bh->b_data, 0, bh->b_size);
4506 			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4507 				ext4_fill_raw_inode(inode, raw_inode);
4508 			set_buffer_uptodate(bh);
4509 			unlock_buffer(bh);
4510 			goto has_buffer;
4511 		}
4512 	}
4513 
4514 make_io:
4515 	/*
4516 	 * If we need to do any I/O, try to pre-readahead extra
4517 	 * blocks from the inode table.
4518 	 */
4519 	blk_start_plug(&plug);
4520 	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4521 		ext4_fsblk_t b, end, table;
4522 		unsigned num;
4523 		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4524 
4525 		table = ext4_inode_table(sb, gdp);
4526 		/* s_inode_readahead_blks is always a power of 2 */
4527 		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4528 		if (table > b)
4529 			b = table;
4530 		end = b + ra_blks;
4531 		num = EXT4_INODES_PER_GROUP(sb);
4532 		if (ext4_has_group_desc_csum(sb))
4533 			num -= ext4_itable_unused_count(sb, gdp);
4534 		table += num / inodes_per_block;
4535 		if (end > table)
4536 			end = table;
4537 		while (b <= end)
4538 			ext4_sb_breadahead_unmovable(sb, b++);
4539 	}
4540 
4541 	/*
4542 	 * There are other valid inodes in the buffer, this inode
4543 	 * has in-inode xattrs, or we don't have this inode in memory.
4544 	 * Read the block from disk.
4545 	 */
4546 	trace_ext4_load_inode(sb, ino);
4547 	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4548 			    ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4549 	blk_finish_plug(&plug);
4550 	wait_on_buffer(bh);
4551 	if (!buffer_uptodate(bh)) {
4552 		if (ret_block)
4553 			*ret_block = block;
4554 		brelse(bh);
4555 		return -EIO;
4556 	}
4557 has_buffer:
4558 	iloc->bh = bh;
4559 	return 0;
4560 }
4561 
__ext4_get_inode_loc_noinmem(struct inode * inode,struct ext4_iloc * iloc)4562 static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4563 					struct ext4_iloc *iloc)
4564 {
4565 	ext4_fsblk_t err_blk = 0;
4566 	int ret;
4567 
4568 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4569 					&err_blk);
4570 
4571 	if (ret == -EIO)
4572 		ext4_error_inode_block(inode, err_blk, EIO,
4573 					"unable to read itable block");
4574 
4575 	return ret;
4576 }
4577 
ext4_get_inode_loc(struct inode * inode,struct ext4_iloc * iloc)4578 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4579 {
4580 	ext4_fsblk_t err_blk = 0;
4581 	int ret;
4582 
4583 	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4584 					&err_blk);
4585 
4586 	if (ret == -EIO)
4587 		ext4_error_inode_block(inode, err_blk, EIO,
4588 					"unable to read itable block");
4589 
4590 	return ret;
4591 }
4592 
4593 
ext4_get_fc_inode_loc(struct super_block * sb,unsigned long ino,struct ext4_iloc * iloc)4594 int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4595 			  struct ext4_iloc *iloc)
4596 {
4597 	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4598 }
4599 
ext4_should_enable_dax(struct inode * inode)4600 static bool ext4_should_enable_dax(struct inode *inode)
4601 {
4602 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4603 
4604 	if (test_opt2(inode->i_sb, DAX_NEVER))
4605 		return false;
4606 	if (!S_ISREG(inode->i_mode))
4607 		return false;
4608 	if (ext4_should_journal_data(inode))
4609 		return false;
4610 	if (ext4_has_inline_data(inode))
4611 		return false;
4612 	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4613 		return false;
4614 	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4615 		return false;
4616 	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4617 		return false;
4618 	if (test_opt(inode->i_sb, DAX_ALWAYS))
4619 		return true;
4620 
4621 	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4622 }
4623 
ext4_set_inode_flags(struct inode * inode,bool init)4624 void ext4_set_inode_flags(struct inode *inode, bool init)
4625 {
4626 	unsigned int flags = EXT4_I(inode)->i_flags;
4627 	unsigned int new_fl = 0;
4628 
4629 	WARN_ON_ONCE(IS_DAX(inode) && init);
4630 
4631 	if (flags & EXT4_SYNC_FL)
4632 		new_fl |= S_SYNC;
4633 	if (flags & EXT4_APPEND_FL)
4634 		new_fl |= S_APPEND;
4635 	if (flags & EXT4_IMMUTABLE_FL)
4636 		new_fl |= S_IMMUTABLE;
4637 	if (flags & EXT4_NOATIME_FL)
4638 		new_fl |= S_NOATIME;
4639 	if (flags & EXT4_DIRSYNC_FL)
4640 		new_fl |= S_DIRSYNC;
4641 
4642 	/* Because of the way inode_set_flags() works we must preserve S_DAX
4643 	 * here if already set. */
4644 	new_fl |= (inode->i_flags & S_DAX);
4645 	if (init && ext4_should_enable_dax(inode))
4646 		new_fl |= S_DAX;
4647 
4648 	if (flags & EXT4_ENCRYPT_FL)
4649 		new_fl |= S_ENCRYPTED;
4650 	if (flags & EXT4_CASEFOLD_FL)
4651 		new_fl |= S_CASEFOLD;
4652 	if (flags & EXT4_VERITY_FL)
4653 		new_fl |= S_VERITY;
4654 	inode_set_flags(inode, new_fl,
4655 			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4656 			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4657 }
4658 
ext4_inode_blocks(struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4659 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4660 				  struct ext4_inode_info *ei)
4661 {
4662 	blkcnt_t i_blocks ;
4663 	struct inode *inode = &(ei->vfs_inode);
4664 	struct super_block *sb = inode->i_sb;
4665 
4666 	if (ext4_has_feature_huge_file(sb)) {
4667 		/* we are using combined 48 bit field */
4668 		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4669 					le32_to_cpu(raw_inode->i_blocks_lo);
4670 		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4671 			/* i_blocks represent file system block size */
4672 			return i_blocks  << (inode->i_blkbits - 9);
4673 		} else {
4674 			return i_blocks;
4675 		}
4676 	} else {
4677 		return le32_to_cpu(raw_inode->i_blocks_lo);
4678 	}
4679 }
4680 
ext4_iget_extra_inode(struct inode * inode,struct ext4_inode * raw_inode,struct ext4_inode_info * ei)4681 static inline int ext4_iget_extra_inode(struct inode *inode,
4682 					 struct ext4_inode *raw_inode,
4683 					 struct ext4_inode_info *ei)
4684 {
4685 	__le32 *magic = (void *)raw_inode +
4686 			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4687 
4688 	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4689 	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4690 		int err;
4691 
4692 		err = xattr_check_inode(inode, IHDR(inode, raw_inode),
4693 					ITAIL(inode, raw_inode));
4694 		if (err)
4695 			return err;
4696 
4697 		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4698 		err = ext4_find_inline_data_nolock(inode);
4699 		if (!err && ext4_has_inline_data(inode))
4700 			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4701 		return err;
4702 	} else
4703 		EXT4_I(inode)->i_inline_off = 0;
4704 	return 0;
4705 }
4706 
ext4_get_projid(struct inode * inode,kprojid_t * projid)4707 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4708 {
4709 	if (!ext4_has_feature_project(inode->i_sb))
4710 		return -EOPNOTSUPP;
4711 	*projid = EXT4_I(inode)->i_projid;
4712 	return 0;
4713 }
4714 
4715 /*
4716  * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4717  * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4718  * set.
4719  */
ext4_inode_set_iversion_queried(struct inode * inode,u64 val)4720 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4721 {
4722 	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4723 		inode_set_iversion_raw(inode, val);
4724 	else
4725 		inode_set_iversion_queried(inode, val);
4726 }
4727 
check_igot_inode(struct inode * inode,ext4_iget_flags flags,const char * function,unsigned int line)4728 static int check_igot_inode(struct inode *inode, ext4_iget_flags flags,
4729 			    const char *function, unsigned int line)
4730 {
4731 	const char *err_str;
4732 
4733 	if (flags & EXT4_IGET_EA_INODE) {
4734 		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
4735 			err_str = "missing EA_INODE flag";
4736 			goto error;
4737 		}
4738 		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4739 		    EXT4_I(inode)->i_file_acl) {
4740 			err_str = "ea_inode with extended attributes";
4741 			goto error;
4742 		}
4743 	} else {
4744 		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
4745 			/*
4746 			 * open_by_handle_at() could provide an old inode number
4747 			 * that has since been reused for an ea_inode; this does
4748 			 * not indicate filesystem corruption
4749 			 */
4750 			if (flags & EXT4_IGET_HANDLE)
4751 				return -ESTALE;
4752 			err_str = "unexpected EA_INODE flag";
4753 			goto error;
4754 		}
4755 	}
4756 	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD)) {
4757 		err_str = "unexpected bad inode w/o EXT4_IGET_BAD";
4758 		goto error;
4759 	}
4760 	return 0;
4761 
4762 error:
4763 	ext4_error_inode(inode, function, line, 0, err_str);
4764 	return -EFSCORRUPTED;
4765 }
4766 
__ext4_iget(struct super_block * sb,unsigned long ino,ext4_iget_flags flags,const char * function,unsigned int line)4767 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4768 			  ext4_iget_flags flags, const char *function,
4769 			  unsigned int line)
4770 {
4771 	struct ext4_iloc iloc;
4772 	struct ext4_inode *raw_inode;
4773 	struct ext4_inode_info *ei;
4774 	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4775 	struct inode *inode;
4776 	journal_t *journal = EXT4_SB(sb)->s_journal;
4777 	long ret;
4778 	loff_t size;
4779 	int block;
4780 	uid_t i_uid;
4781 	gid_t i_gid;
4782 	projid_t i_projid;
4783 
4784 	if ((!(flags & EXT4_IGET_SPECIAL) &&
4785 	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4786 	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4787 	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4788 	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4789 	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4790 	    (ino < EXT4_ROOT_INO) ||
4791 	    (ino > le32_to_cpu(es->s_inodes_count))) {
4792 		if (flags & EXT4_IGET_HANDLE)
4793 			return ERR_PTR(-ESTALE);
4794 		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4795 			     "inode #%lu: comm %s: iget: illegal inode #",
4796 			     ino, current->comm);
4797 		return ERR_PTR(-EFSCORRUPTED);
4798 	}
4799 
4800 	inode = iget_locked(sb, ino);
4801 	if (!inode)
4802 		return ERR_PTR(-ENOMEM);
4803 	if (!(inode->i_state & I_NEW)) {
4804 		ret = check_igot_inode(inode, flags, function, line);
4805 		if (ret) {
4806 			iput(inode);
4807 			return ERR_PTR(ret);
4808 		}
4809 		return inode;
4810 	}
4811 
4812 	ei = EXT4_I(inode);
4813 	iloc.bh = NULL;
4814 
4815 	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4816 	if (ret < 0)
4817 		goto bad_inode;
4818 	raw_inode = ext4_raw_inode(&iloc);
4819 
4820 	if ((flags & EXT4_IGET_HANDLE) &&
4821 	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4822 		ret = -ESTALE;
4823 		goto bad_inode;
4824 	}
4825 
4826 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4827 		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4828 		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4829 			EXT4_INODE_SIZE(inode->i_sb) ||
4830 		    (ei->i_extra_isize & 3)) {
4831 			ext4_error_inode(inode, function, line, 0,
4832 					 "iget: bad extra_isize %u "
4833 					 "(inode size %u)",
4834 					 ei->i_extra_isize,
4835 					 EXT4_INODE_SIZE(inode->i_sb));
4836 			ret = -EFSCORRUPTED;
4837 			goto bad_inode;
4838 		}
4839 	} else
4840 		ei->i_extra_isize = 0;
4841 
4842 	/* Precompute checksum seed for inode metadata */
4843 	if (ext4_has_feature_metadata_csum(sb)) {
4844 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4845 		__u32 csum;
4846 		__le32 inum = cpu_to_le32(inode->i_ino);
4847 		__le32 gen = raw_inode->i_generation;
4848 		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4849 				   sizeof(inum));
4850 		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4851 					      sizeof(gen));
4852 	}
4853 
4854 	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4855 	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4856 	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4857 		ext4_error_inode_err(inode, function, line, 0,
4858 				EFSBADCRC, "iget: checksum invalid");
4859 		ret = -EFSBADCRC;
4860 		goto bad_inode;
4861 	}
4862 
4863 	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4864 	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4865 	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4866 	if (ext4_has_feature_project(sb) &&
4867 	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4868 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4869 		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4870 	else
4871 		i_projid = EXT4_DEF_PROJID;
4872 
4873 	if (!(test_opt(inode->i_sb, NO_UID32))) {
4874 		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4875 		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4876 	}
4877 	i_uid_write(inode, i_uid);
4878 	i_gid_write(inode, i_gid);
4879 	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4880 	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4881 
4882 	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4883 	ei->i_inline_off = 0;
4884 	ei->i_dir_start_lookup = 0;
4885 	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4886 	/* We now have enough fields to check if the inode was active or not.
4887 	 * This is needed because nfsd might try to access dead inodes
4888 	 * the test is that same one that e2fsck uses
4889 	 * NeilBrown 1999oct15
4890 	 */
4891 	if (inode->i_nlink == 0) {
4892 		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4893 		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4894 		    ino != EXT4_BOOT_LOADER_INO) {
4895 			/* this inode is deleted or unallocated */
4896 			if (flags & EXT4_IGET_SPECIAL) {
4897 				ext4_error_inode(inode, function, line, 0,
4898 						 "iget: special inode unallocated");
4899 				ret = -EFSCORRUPTED;
4900 			} else
4901 				ret = -ESTALE;
4902 			goto bad_inode;
4903 		}
4904 		/* The only unlinked inodes we let through here have
4905 		 * valid i_mode and are being read by the orphan
4906 		 * recovery code: that's fine, we're about to complete
4907 		 * the process of deleting those.
4908 		 * OR it is the EXT4_BOOT_LOADER_INO which is
4909 		 * not initialized on a new filesystem. */
4910 	}
4911 	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4912 	ext4_set_inode_flags(inode, true);
4913 	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4914 	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4915 	if (ext4_has_feature_64bit(sb))
4916 		ei->i_file_acl |=
4917 			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4918 	inode->i_size = ext4_isize(sb, raw_inode);
4919 	if ((size = i_size_read(inode)) < 0) {
4920 		ext4_error_inode(inode, function, line, 0,
4921 				 "iget: bad i_size value: %lld", size);
4922 		ret = -EFSCORRUPTED;
4923 		goto bad_inode;
4924 	}
4925 	/*
4926 	 * If dir_index is not enabled but there's dir with INDEX flag set,
4927 	 * we'd normally treat htree data as empty space. But with metadata
4928 	 * checksumming that corrupts checksums so forbid that.
4929 	 */
4930 	if (!ext4_has_feature_dir_index(sb) &&
4931 	    ext4_has_feature_metadata_csum(sb) &&
4932 	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4933 		ext4_error_inode(inode, function, line, 0,
4934 			 "iget: Dir with htree data on filesystem without dir_index feature.");
4935 		ret = -EFSCORRUPTED;
4936 		goto bad_inode;
4937 	}
4938 	ei->i_disksize = inode->i_size;
4939 #ifdef CONFIG_QUOTA
4940 	ei->i_reserved_quota = 0;
4941 #endif
4942 	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4943 	ei->i_block_group = iloc.block_group;
4944 	ei->i_last_alloc_group = ~0;
4945 	/*
4946 	 * NOTE! The in-memory inode i_data array is in little-endian order
4947 	 * even on big-endian machines: we do NOT byteswap the block numbers!
4948 	 */
4949 	for (block = 0; block < EXT4_N_BLOCKS; block++)
4950 		ei->i_data[block] = raw_inode->i_block[block];
4951 	INIT_LIST_HEAD(&ei->i_orphan);
4952 	ext4_fc_init_inode(&ei->vfs_inode);
4953 
4954 	/*
4955 	 * Set transaction id's of transactions that have to be committed
4956 	 * to finish f[data]sync. We set them to currently running transaction
4957 	 * as we cannot be sure that the inode or some of its metadata isn't
4958 	 * part of the transaction - the inode could have been reclaimed and
4959 	 * now it is reread from disk.
4960 	 */
4961 	if (journal) {
4962 		transaction_t *transaction;
4963 		tid_t tid;
4964 
4965 		read_lock(&journal->j_state_lock);
4966 		if (journal->j_running_transaction)
4967 			transaction = journal->j_running_transaction;
4968 		else
4969 			transaction = journal->j_committing_transaction;
4970 		if (transaction)
4971 			tid = transaction->t_tid;
4972 		else
4973 			tid = journal->j_commit_sequence;
4974 		read_unlock(&journal->j_state_lock);
4975 		ei->i_sync_tid = tid;
4976 		ei->i_datasync_tid = tid;
4977 	}
4978 
4979 	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4980 		if (ei->i_extra_isize == 0) {
4981 			/* The extra space is currently unused. Use it. */
4982 			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4983 			ei->i_extra_isize = sizeof(struct ext4_inode) -
4984 					    EXT4_GOOD_OLD_INODE_SIZE;
4985 		} else {
4986 			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4987 			if (ret)
4988 				goto bad_inode;
4989 		}
4990 	}
4991 
4992 	EXT4_INODE_GET_CTIME(inode, raw_inode);
4993 	EXT4_INODE_GET_ATIME(inode, raw_inode);
4994 	EXT4_INODE_GET_MTIME(inode, raw_inode);
4995 	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4996 
4997 	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4998 		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4999 
5000 		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5001 			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5002 				ivers |=
5003 		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5004 		}
5005 		ext4_inode_set_iversion_queried(inode, ivers);
5006 	}
5007 
5008 	ret = 0;
5009 	if (ei->i_file_acl &&
5010 	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
5011 		ext4_error_inode(inode, function, line, 0,
5012 				 "iget: bad extended attribute block %llu",
5013 				 ei->i_file_acl);
5014 		ret = -EFSCORRUPTED;
5015 		goto bad_inode;
5016 	} else if (!ext4_has_inline_data(inode)) {
5017 		/* validate the block references in the inode */
5018 		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
5019 			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5020 			(S_ISLNK(inode->i_mode) &&
5021 			!ext4_inode_is_fast_symlink(inode)))) {
5022 			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5023 				ret = ext4_ext_check_inode(inode);
5024 			else
5025 				ret = ext4_ind_check_inode(inode);
5026 		}
5027 	}
5028 	if (ret)
5029 		goto bad_inode;
5030 
5031 	if (S_ISREG(inode->i_mode)) {
5032 		inode->i_op = &ext4_file_inode_operations;
5033 		inode->i_fop = &ext4_file_operations;
5034 		ext4_set_aops(inode);
5035 	} else if (S_ISDIR(inode->i_mode)) {
5036 		inode->i_op = &ext4_dir_inode_operations;
5037 		inode->i_fop = &ext4_dir_operations;
5038 	} else if (S_ISLNK(inode->i_mode)) {
5039 		/* VFS does not allow setting these so must be corruption */
5040 		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5041 			ext4_error_inode(inode, function, line, 0,
5042 					 "iget: immutable or append flags "
5043 					 "not allowed on symlinks");
5044 			ret = -EFSCORRUPTED;
5045 			goto bad_inode;
5046 		}
5047 		if (IS_ENCRYPTED(inode)) {
5048 			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5049 		} else if (ext4_inode_is_fast_symlink(inode)) {
5050 			inode->i_op = &ext4_fast_symlink_inode_operations;
5051 			if (inode->i_size == 0 ||
5052 			    inode->i_size >= sizeof(ei->i_data) ||
5053 			    strnlen((char *)ei->i_data, inode->i_size + 1) !=
5054 								inode->i_size) {
5055 				ext4_error_inode(inode, function, line, 0,
5056 					"invalid fast symlink length %llu",
5057 					 (unsigned long long)inode->i_size);
5058 				ret = -EFSCORRUPTED;
5059 				goto bad_inode;
5060 			}
5061 			inode_set_cached_link(inode, (char *)ei->i_data,
5062 					      inode->i_size);
5063 		} else {
5064 			inode->i_op = &ext4_symlink_inode_operations;
5065 		}
5066 	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5067 	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5068 		inode->i_op = &ext4_special_inode_operations;
5069 		if (raw_inode->i_block[0])
5070 			init_special_inode(inode, inode->i_mode,
5071 			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5072 		else
5073 			init_special_inode(inode, inode->i_mode,
5074 			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5075 	} else if (ino == EXT4_BOOT_LOADER_INO) {
5076 		make_bad_inode(inode);
5077 	} else {
5078 		ret = -EFSCORRUPTED;
5079 		ext4_error_inode(inode, function, line, 0,
5080 				 "iget: bogus i_mode (%o)", inode->i_mode);
5081 		goto bad_inode;
5082 	}
5083 	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5084 		ext4_error_inode(inode, function, line, 0,
5085 				 "casefold flag without casefold feature");
5086 		ret = -EFSCORRUPTED;
5087 		goto bad_inode;
5088 	}
5089 	ret = check_igot_inode(inode, flags, function, line);
5090 	/*
5091 	 * -ESTALE here means there is nothing inherently wrong with the inode,
5092 	 * it's just not an inode we can return for an fhandle lookup.
5093 	 */
5094 	if (ret == -ESTALE) {
5095 		brelse(iloc.bh);
5096 		unlock_new_inode(inode);
5097 		iput(inode);
5098 		return ERR_PTR(-ESTALE);
5099 	}
5100 	if (ret)
5101 		goto bad_inode;
5102 	brelse(iloc.bh);
5103 
5104 	unlock_new_inode(inode);
5105 	return inode;
5106 
5107 bad_inode:
5108 	brelse(iloc.bh);
5109 	iget_failed(inode);
5110 	return ERR_PTR(ret);
5111 }
5112 
__ext4_update_other_inode_time(struct super_block * sb,unsigned long orig_ino,unsigned long ino,struct ext4_inode * raw_inode)5113 static void __ext4_update_other_inode_time(struct super_block *sb,
5114 					   unsigned long orig_ino,
5115 					   unsigned long ino,
5116 					   struct ext4_inode *raw_inode)
5117 {
5118 	struct inode *inode;
5119 
5120 	inode = find_inode_by_ino_rcu(sb, ino);
5121 	if (!inode)
5122 		return;
5123 
5124 	if (!inode_is_dirtytime_only(inode))
5125 		return;
5126 
5127 	spin_lock(&inode->i_lock);
5128 	if (inode_is_dirtytime_only(inode)) {
5129 		struct ext4_inode_info	*ei = EXT4_I(inode);
5130 
5131 		inode->i_state &= ~I_DIRTY_TIME;
5132 		spin_unlock(&inode->i_lock);
5133 
5134 		spin_lock(&ei->i_raw_lock);
5135 		EXT4_INODE_SET_CTIME(inode, raw_inode);
5136 		EXT4_INODE_SET_MTIME(inode, raw_inode);
5137 		EXT4_INODE_SET_ATIME(inode, raw_inode);
5138 		ext4_inode_csum_set(inode, raw_inode, ei);
5139 		spin_unlock(&ei->i_raw_lock);
5140 		trace_ext4_other_inode_update_time(inode, orig_ino);
5141 		return;
5142 	}
5143 	spin_unlock(&inode->i_lock);
5144 }
5145 
5146 /*
5147  * Opportunistically update the other time fields for other inodes in
5148  * the same inode table block.
5149  */
ext4_update_other_inodes_time(struct super_block * sb,unsigned long orig_ino,char * buf)5150 static void ext4_update_other_inodes_time(struct super_block *sb,
5151 					  unsigned long orig_ino, char *buf)
5152 {
5153 	unsigned long ino;
5154 	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5155 	int inode_size = EXT4_INODE_SIZE(sb);
5156 
5157 	/*
5158 	 * Calculate the first inode in the inode table block.  Inode
5159 	 * numbers are one-based.  That is, the first inode in a block
5160 	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5161 	 */
5162 	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5163 	rcu_read_lock();
5164 	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5165 		if (ino == orig_ino)
5166 			continue;
5167 		__ext4_update_other_inode_time(sb, orig_ino, ino,
5168 					       (struct ext4_inode *)buf);
5169 	}
5170 	rcu_read_unlock();
5171 }
5172 
5173 /*
5174  * Post the struct inode info into an on-disk inode location in the
5175  * buffer-cache.  This gobbles the caller's reference to the
5176  * buffer_head in the inode location struct.
5177  *
5178  * The caller must have write access to iloc->bh.
5179  */
ext4_do_update_inode(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5180 static int ext4_do_update_inode(handle_t *handle,
5181 				struct inode *inode,
5182 				struct ext4_iloc *iloc)
5183 {
5184 	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5185 	struct ext4_inode_info *ei = EXT4_I(inode);
5186 	struct buffer_head *bh = iloc->bh;
5187 	struct super_block *sb = inode->i_sb;
5188 	int err;
5189 	int need_datasync = 0, set_large_file = 0;
5190 
5191 	spin_lock(&ei->i_raw_lock);
5192 
5193 	/*
5194 	 * For fields not tracked in the in-memory inode, initialise them
5195 	 * to zero for new inodes.
5196 	 */
5197 	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5198 		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5199 
5200 	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
5201 		need_datasync = 1;
5202 	if (ei->i_disksize > 0x7fffffffULL) {
5203 		if (!ext4_has_feature_large_file(sb) ||
5204 		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
5205 			set_large_file = 1;
5206 	}
5207 
5208 	err = ext4_fill_raw_inode(inode, raw_inode);
5209 	spin_unlock(&ei->i_raw_lock);
5210 	if (err) {
5211 		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5212 		goto out_brelse;
5213 	}
5214 
5215 	if (inode->i_sb->s_flags & SB_LAZYTIME)
5216 		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5217 					      bh->b_data);
5218 
5219 	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5220 	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5221 	if (err)
5222 		goto out_error;
5223 	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5224 	if (set_large_file) {
5225 		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5226 		err = ext4_journal_get_write_access(handle, sb,
5227 						    EXT4_SB(sb)->s_sbh,
5228 						    EXT4_JTR_NONE);
5229 		if (err)
5230 			goto out_error;
5231 		lock_buffer(EXT4_SB(sb)->s_sbh);
5232 		ext4_set_feature_large_file(sb);
5233 		ext4_superblock_csum_set(sb);
5234 		unlock_buffer(EXT4_SB(sb)->s_sbh);
5235 		ext4_handle_sync(handle);
5236 		err = ext4_handle_dirty_metadata(handle, NULL,
5237 						 EXT4_SB(sb)->s_sbh);
5238 	}
5239 	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5240 out_error:
5241 	ext4_std_error(inode->i_sb, err);
5242 out_brelse:
5243 	brelse(bh);
5244 	return err;
5245 }
5246 
5247 /*
5248  * ext4_write_inode()
5249  *
5250  * We are called from a few places:
5251  *
5252  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5253  *   Here, there will be no transaction running. We wait for any running
5254  *   transaction to commit.
5255  *
5256  * - Within flush work (sys_sync(), kupdate and such).
5257  *   We wait on commit, if told to.
5258  *
5259  * - Within iput_final() -> write_inode_now()
5260  *   We wait on commit, if told to.
5261  *
5262  * In all cases it is actually safe for us to return without doing anything,
5263  * because the inode has been copied into a raw inode buffer in
5264  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5265  * writeback.
5266  *
5267  * Note that we are absolutely dependent upon all inode dirtiers doing the
5268  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5269  * which we are interested.
5270  *
5271  * It would be a bug for them to not do this.  The code:
5272  *
5273  *	mark_inode_dirty(inode)
5274  *	stuff();
5275  *	inode->i_size = expr;
5276  *
5277  * is in error because write_inode() could occur while `stuff()' is running,
5278  * and the new i_size will be lost.  Plus the inode will no longer be on the
5279  * superblock's dirty inode list.
5280  */
ext4_write_inode(struct inode * inode,struct writeback_control * wbc)5281 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5282 {
5283 	int err;
5284 
5285 	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5286 		return 0;
5287 
5288 	err = ext4_emergency_state(inode->i_sb);
5289 	if (unlikely(err))
5290 		return err;
5291 
5292 	if (EXT4_SB(inode->i_sb)->s_journal) {
5293 		if (ext4_journal_current_handle()) {
5294 			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5295 			dump_stack();
5296 			return -EIO;
5297 		}
5298 
5299 		/*
5300 		 * No need to force transaction in WB_SYNC_NONE mode. Also
5301 		 * ext4_sync_fs() will force the commit after everything is
5302 		 * written.
5303 		 */
5304 		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5305 			return 0;
5306 
5307 		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5308 						EXT4_I(inode)->i_sync_tid);
5309 	} else {
5310 		struct ext4_iloc iloc;
5311 
5312 		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5313 		if (err)
5314 			return err;
5315 		/*
5316 		 * sync(2) will flush the whole buffer cache. No need to do
5317 		 * it here separately for each inode.
5318 		 */
5319 		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5320 			sync_dirty_buffer(iloc.bh);
5321 		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5322 			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5323 					       "IO error syncing inode");
5324 			err = -EIO;
5325 		}
5326 		brelse(iloc.bh);
5327 	}
5328 	return err;
5329 }
5330 
5331 /*
5332  * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5333  * buffers that are attached to a folio straddling i_size and are undergoing
5334  * commit. In that case we have to wait for commit to finish and try again.
5335  */
ext4_wait_for_tail_page_commit(struct inode * inode)5336 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5337 {
5338 	unsigned offset;
5339 	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5340 	tid_t commit_tid;
5341 	int ret;
5342 	bool has_transaction;
5343 
5344 	offset = inode->i_size & (PAGE_SIZE - 1);
5345 	/*
5346 	 * If the folio is fully truncated, we don't need to wait for any commit
5347 	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5348 	 * strip all buffers from the folio but keep the folio dirty which can then
5349 	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5350 	 * buffers). Also we don't need to wait for any commit if all buffers in
5351 	 * the folio remain valid. This is most beneficial for the common case of
5352 	 * blocksize == PAGESIZE.
5353 	 */
5354 	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5355 		return;
5356 	while (1) {
5357 		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5358 				      inode->i_size >> PAGE_SHIFT);
5359 		if (IS_ERR(folio))
5360 			return;
5361 		ret = __ext4_journalled_invalidate_folio(folio, offset,
5362 						folio_size(folio) - offset);
5363 		folio_unlock(folio);
5364 		folio_put(folio);
5365 		if (ret != -EBUSY)
5366 			return;
5367 		has_transaction = false;
5368 		read_lock(&journal->j_state_lock);
5369 		if (journal->j_committing_transaction) {
5370 			commit_tid = journal->j_committing_transaction->t_tid;
5371 			has_transaction = true;
5372 		}
5373 		read_unlock(&journal->j_state_lock);
5374 		if (has_transaction)
5375 			jbd2_log_wait_commit(journal, commit_tid);
5376 	}
5377 }
5378 
5379 /*
5380  * ext4_setattr()
5381  *
5382  * Called from notify_change.
5383  *
5384  * We want to trap VFS attempts to truncate the file as soon as
5385  * possible.  In particular, we want to make sure that when the VFS
5386  * shrinks i_size, we put the inode on the orphan list and modify
5387  * i_disksize immediately, so that during the subsequent flushing of
5388  * dirty pages and freeing of disk blocks, we can guarantee that any
5389  * commit will leave the blocks being flushed in an unused state on
5390  * disk.  (On recovery, the inode will get truncated and the blocks will
5391  * be freed, so we have a strong guarantee that no future commit will
5392  * leave these blocks visible to the user.)
5393  *
5394  * Another thing we have to assure is that if we are in ordered mode
5395  * and inode is still attached to the committing transaction, we must
5396  * we start writeout of all the dirty pages which are being truncated.
5397  * This way we are sure that all the data written in the previous
5398  * transaction are already on disk (truncate waits for pages under
5399  * writeback).
5400  *
5401  * Called with inode->i_rwsem down.
5402  */
ext4_setattr(struct mnt_idmap * idmap,struct dentry * dentry,struct iattr * attr)5403 int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5404 		 struct iattr *attr)
5405 {
5406 	struct inode *inode = d_inode(dentry);
5407 	int error, rc = 0;
5408 	int orphan = 0;
5409 	const unsigned int ia_valid = attr->ia_valid;
5410 	bool inc_ivers = true;
5411 
5412 	error = ext4_emergency_state(inode->i_sb);
5413 	if (unlikely(error))
5414 		return error;
5415 
5416 	if (unlikely(IS_IMMUTABLE(inode)))
5417 		return -EPERM;
5418 
5419 	if (unlikely(IS_APPEND(inode) &&
5420 		     (ia_valid & (ATTR_MODE | ATTR_UID |
5421 				  ATTR_GID | ATTR_TIMES_SET))))
5422 		return -EPERM;
5423 
5424 	error = setattr_prepare(idmap, dentry, attr);
5425 	if (error)
5426 		return error;
5427 
5428 	error = fscrypt_prepare_setattr(dentry, attr);
5429 	if (error)
5430 		return error;
5431 
5432 	error = fsverity_prepare_setattr(dentry, attr);
5433 	if (error)
5434 		return error;
5435 
5436 	if (is_quota_modification(idmap, inode, attr)) {
5437 		error = dquot_initialize(inode);
5438 		if (error)
5439 			return error;
5440 	}
5441 
5442 	if (i_uid_needs_update(idmap, attr, inode) ||
5443 	    i_gid_needs_update(idmap, attr, inode)) {
5444 		handle_t *handle;
5445 
5446 		/* (user+group)*(old+new) structure, inode write (sb,
5447 		 * inode block, ? - but truncate inode update has it) */
5448 		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5449 			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5450 			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5451 		if (IS_ERR(handle)) {
5452 			error = PTR_ERR(handle);
5453 			goto err_out;
5454 		}
5455 
5456 		/* dquot_transfer() calls back ext4_get_inode_usage() which
5457 		 * counts xattr inode references.
5458 		 */
5459 		down_read(&EXT4_I(inode)->xattr_sem);
5460 		error = dquot_transfer(idmap, inode, attr);
5461 		up_read(&EXT4_I(inode)->xattr_sem);
5462 
5463 		if (error) {
5464 			ext4_journal_stop(handle);
5465 			return error;
5466 		}
5467 		/* Update corresponding info in inode so that everything is in
5468 		 * one transaction */
5469 		i_uid_update(idmap, attr, inode);
5470 		i_gid_update(idmap, attr, inode);
5471 		error = ext4_mark_inode_dirty(handle, inode);
5472 		ext4_journal_stop(handle);
5473 		if (unlikely(error)) {
5474 			return error;
5475 		}
5476 	}
5477 
5478 	if (attr->ia_valid & ATTR_SIZE) {
5479 		handle_t *handle;
5480 		loff_t oldsize = inode->i_size;
5481 		loff_t old_disksize;
5482 		int shrink = (attr->ia_size < inode->i_size);
5483 
5484 		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5485 			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5486 
5487 			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5488 				return -EFBIG;
5489 			}
5490 		}
5491 		if (!S_ISREG(inode->i_mode)) {
5492 			return -EINVAL;
5493 		}
5494 
5495 		if (attr->ia_size == inode->i_size)
5496 			inc_ivers = false;
5497 
5498 		if (shrink) {
5499 			if (ext4_should_order_data(inode)) {
5500 				error = ext4_begin_ordered_truncate(inode,
5501 							    attr->ia_size);
5502 				if (error)
5503 					goto err_out;
5504 			}
5505 			/*
5506 			 * Blocks are going to be removed from the inode. Wait
5507 			 * for dio in flight.
5508 			 */
5509 			inode_dio_wait(inode);
5510 		}
5511 
5512 		filemap_invalidate_lock(inode->i_mapping);
5513 
5514 		rc = ext4_break_layouts(inode);
5515 		if (rc) {
5516 			filemap_invalidate_unlock(inode->i_mapping);
5517 			goto err_out;
5518 		}
5519 
5520 		if (attr->ia_size != inode->i_size) {
5521 			/* attach jbd2 jinode for EOF folio tail zeroing */
5522 			if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5523 			    oldsize & (inode->i_sb->s_blocksize - 1)) {
5524 				error = ext4_inode_attach_jinode(inode);
5525 				if (error)
5526 					goto out_mmap_sem;
5527 			}
5528 
5529 			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5530 			if (IS_ERR(handle)) {
5531 				error = PTR_ERR(handle);
5532 				goto out_mmap_sem;
5533 			}
5534 			if (ext4_handle_valid(handle) && shrink) {
5535 				error = ext4_orphan_add(handle, inode);
5536 				orphan = 1;
5537 			}
5538 			/*
5539 			 * Update c/mtime and tail zero the EOF folio on
5540 			 * truncate up. ext4_truncate() handles the shrink case
5541 			 * below.
5542 			 */
5543 			if (!shrink) {
5544 				inode_set_mtime_to_ts(inode,
5545 						      inode_set_ctime_current(inode));
5546 				if (oldsize & (inode->i_sb->s_blocksize - 1))
5547 					ext4_block_truncate_page(handle,
5548 							inode->i_mapping, oldsize);
5549 			}
5550 
5551 			if (shrink)
5552 				ext4_fc_track_range(handle, inode,
5553 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5554 					inode->i_sb->s_blocksize_bits,
5555 					EXT_MAX_BLOCKS - 1);
5556 			else
5557 				ext4_fc_track_range(
5558 					handle, inode,
5559 					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5560 					inode->i_sb->s_blocksize_bits,
5561 					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5562 					inode->i_sb->s_blocksize_bits);
5563 
5564 			down_write(&EXT4_I(inode)->i_data_sem);
5565 			old_disksize = EXT4_I(inode)->i_disksize;
5566 			EXT4_I(inode)->i_disksize = attr->ia_size;
5567 			rc = ext4_mark_inode_dirty(handle, inode);
5568 			if (!error)
5569 				error = rc;
5570 			/*
5571 			 * We have to update i_size under i_data_sem together
5572 			 * with i_disksize to avoid races with writeback code
5573 			 * running ext4_wb_update_i_disksize().
5574 			 */
5575 			if (!error)
5576 				i_size_write(inode, attr->ia_size);
5577 			else
5578 				EXT4_I(inode)->i_disksize = old_disksize;
5579 			up_write(&EXT4_I(inode)->i_data_sem);
5580 			ext4_journal_stop(handle);
5581 			if (error)
5582 				goto out_mmap_sem;
5583 			if (!shrink) {
5584 				pagecache_isize_extended(inode, oldsize,
5585 							 inode->i_size);
5586 			} else if (ext4_should_journal_data(inode)) {
5587 				ext4_wait_for_tail_page_commit(inode);
5588 			}
5589 		}
5590 
5591 		/*
5592 		 * Truncate pagecache after we've waited for commit
5593 		 * in data=journal mode to make pages freeable.
5594 		 */
5595 		truncate_pagecache(inode, inode->i_size);
5596 		/*
5597 		 * Call ext4_truncate() even if i_size didn't change to
5598 		 * truncate possible preallocated blocks.
5599 		 */
5600 		if (attr->ia_size <= oldsize) {
5601 			rc = ext4_truncate(inode);
5602 			if (rc)
5603 				error = rc;
5604 		}
5605 out_mmap_sem:
5606 		filemap_invalidate_unlock(inode->i_mapping);
5607 	}
5608 
5609 	if (!error) {
5610 		if (inc_ivers)
5611 			inode_inc_iversion(inode);
5612 		setattr_copy(idmap, inode, attr);
5613 		mark_inode_dirty(inode);
5614 	}
5615 
5616 	/*
5617 	 * If the call to ext4_truncate failed to get a transaction handle at
5618 	 * all, we need to clean up the in-core orphan list manually.
5619 	 */
5620 	if (orphan && inode->i_nlink)
5621 		ext4_orphan_del(NULL, inode);
5622 
5623 	if (!error && (ia_valid & ATTR_MODE))
5624 		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5625 
5626 err_out:
5627 	if  (error)
5628 		ext4_std_error(inode->i_sb, error);
5629 	if (!error)
5630 		error = rc;
5631 	return error;
5632 }
5633 
ext4_dio_alignment(struct inode * inode)5634 u32 ext4_dio_alignment(struct inode *inode)
5635 {
5636 	if (fsverity_active(inode))
5637 		return 0;
5638 	if (ext4_should_journal_data(inode))
5639 		return 0;
5640 	if (ext4_has_inline_data(inode))
5641 		return 0;
5642 	if (IS_ENCRYPTED(inode)) {
5643 		if (!fscrypt_dio_supported(inode))
5644 			return 0;
5645 		return i_blocksize(inode);
5646 	}
5647 	return 1; /* use the iomap defaults */
5648 }
5649 
ext4_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5650 int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5651 		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5652 {
5653 	struct inode *inode = d_inode(path->dentry);
5654 	struct ext4_inode *raw_inode;
5655 	struct ext4_inode_info *ei = EXT4_I(inode);
5656 	unsigned int flags;
5657 
5658 	if ((request_mask & STATX_BTIME) &&
5659 	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5660 		stat->result_mask |= STATX_BTIME;
5661 		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5662 		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5663 	}
5664 
5665 	/*
5666 	 * Return the DIO alignment restrictions if requested.  We only return
5667 	 * this information when requested, since on encrypted files it might
5668 	 * take a fair bit of work to get if the file wasn't opened recently.
5669 	 */
5670 	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5671 		u32 dio_align = ext4_dio_alignment(inode);
5672 
5673 		stat->result_mask |= STATX_DIOALIGN;
5674 		if (dio_align == 1) {
5675 			struct block_device *bdev = inode->i_sb->s_bdev;
5676 
5677 			/* iomap defaults */
5678 			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5679 			stat->dio_offset_align = bdev_logical_block_size(bdev);
5680 		} else {
5681 			stat->dio_mem_align = dio_align;
5682 			stat->dio_offset_align = dio_align;
5683 		}
5684 	}
5685 
5686 	if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
5687 		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5688 		unsigned int awu_min = 0, awu_max = 0;
5689 
5690 		if (ext4_inode_can_atomic_write(inode)) {
5691 			awu_min = sbi->s_awu_min;
5692 			awu_max = sbi->s_awu_max;
5693 		}
5694 
5695 		generic_fill_statx_atomic_writes(stat, awu_min, awu_max);
5696 	}
5697 
5698 	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5699 	if (flags & EXT4_APPEND_FL)
5700 		stat->attributes |= STATX_ATTR_APPEND;
5701 	if (flags & EXT4_COMPR_FL)
5702 		stat->attributes |= STATX_ATTR_COMPRESSED;
5703 	if (flags & EXT4_ENCRYPT_FL)
5704 		stat->attributes |= STATX_ATTR_ENCRYPTED;
5705 	if (flags & EXT4_IMMUTABLE_FL)
5706 		stat->attributes |= STATX_ATTR_IMMUTABLE;
5707 	if (flags & EXT4_NODUMP_FL)
5708 		stat->attributes |= STATX_ATTR_NODUMP;
5709 	if (flags & EXT4_VERITY_FL)
5710 		stat->attributes |= STATX_ATTR_VERITY;
5711 
5712 	stat->attributes_mask |= (STATX_ATTR_APPEND |
5713 				  STATX_ATTR_COMPRESSED |
5714 				  STATX_ATTR_ENCRYPTED |
5715 				  STATX_ATTR_IMMUTABLE |
5716 				  STATX_ATTR_NODUMP |
5717 				  STATX_ATTR_VERITY);
5718 
5719 	generic_fillattr(idmap, request_mask, inode, stat);
5720 	return 0;
5721 }
5722 
ext4_file_getattr(struct mnt_idmap * idmap,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)5723 int ext4_file_getattr(struct mnt_idmap *idmap,
5724 		      const struct path *path, struct kstat *stat,
5725 		      u32 request_mask, unsigned int query_flags)
5726 {
5727 	struct inode *inode = d_inode(path->dentry);
5728 	u64 delalloc_blocks;
5729 
5730 	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5731 
5732 	/*
5733 	 * If there is inline data in the inode, the inode will normally not
5734 	 * have data blocks allocated (it may have an external xattr block).
5735 	 * Report at least one sector for such files, so tools like tar, rsync,
5736 	 * others don't incorrectly think the file is completely sparse.
5737 	 */
5738 	if (unlikely(ext4_has_inline_data(inode)))
5739 		stat->blocks += (stat->size + 511) >> 9;
5740 
5741 	/*
5742 	 * We can't update i_blocks if the block allocation is delayed
5743 	 * otherwise in the case of system crash before the real block
5744 	 * allocation is done, we will have i_blocks inconsistent with
5745 	 * on-disk file blocks.
5746 	 * We always keep i_blocks updated together with real
5747 	 * allocation. But to not confuse with user, stat
5748 	 * will return the blocks that include the delayed allocation
5749 	 * blocks for this file.
5750 	 */
5751 	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5752 				   EXT4_I(inode)->i_reserved_data_blocks);
5753 	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5754 	return 0;
5755 }
5756 
ext4_index_trans_blocks(struct inode * inode,int lblocks,int pextents)5757 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5758 				   int pextents)
5759 {
5760 	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5761 		return ext4_ind_trans_blocks(inode, lblocks);
5762 	return ext4_ext_index_trans_blocks(inode, pextents);
5763 }
5764 
5765 /*
5766  * Account for index blocks, block groups bitmaps and block group
5767  * descriptor blocks if modify datablocks and index blocks
5768  * worse case, the indexs blocks spread over different block groups
5769  *
5770  * If datablocks are discontiguous, they are possible to spread over
5771  * different block groups too. If they are contiguous, with flexbg,
5772  * they could still across block group boundary.
5773  *
5774  * Also account for superblock, inode, quota and xattr blocks
5775  */
ext4_meta_trans_blocks(struct inode * inode,int lblocks,int pextents)5776 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5777 				  int pextents)
5778 {
5779 	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5780 	int gdpblocks;
5781 	int idxblocks;
5782 	int ret;
5783 
5784 	/*
5785 	 * How many index blocks need to touch to map @lblocks logical blocks
5786 	 * to @pextents physical extents?
5787 	 */
5788 	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5789 
5790 	ret = idxblocks;
5791 
5792 	/*
5793 	 * Now let's see how many group bitmaps and group descriptors need
5794 	 * to account
5795 	 */
5796 	groups = idxblocks + pextents;
5797 	gdpblocks = groups;
5798 	if (groups > ngroups)
5799 		groups = ngroups;
5800 	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5801 		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5802 
5803 	/* bitmaps and block group descriptor blocks */
5804 	ret += groups + gdpblocks;
5805 
5806 	/* Blocks for super block, inode, quota and xattr blocks */
5807 	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5808 
5809 	return ret;
5810 }
5811 
5812 /*
5813  * Calculate the total number of credits to reserve to fit
5814  * the modification of a single pages into a single transaction,
5815  * which may include multiple chunks of block allocations.
5816  *
5817  * This could be called via ext4_write_begin()
5818  *
5819  * We need to consider the worse case, when
5820  * one new block per extent.
5821  */
ext4_writepage_trans_blocks(struct inode * inode)5822 int ext4_writepage_trans_blocks(struct inode *inode)
5823 {
5824 	int bpp = ext4_journal_blocks_per_page(inode);
5825 	int ret;
5826 
5827 	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5828 
5829 	/* Account for data blocks for journalled mode */
5830 	if (ext4_should_journal_data(inode))
5831 		ret += bpp;
5832 	return ret;
5833 }
5834 
5835 /*
5836  * Calculate the journal credits for a chunk of data modification.
5837  *
5838  * This is called from DIO, fallocate or whoever calling
5839  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5840  *
5841  * journal buffers for data blocks are not included here, as DIO
5842  * and fallocate do no need to journal data buffers.
5843  */
ext4_chunk_trans_blocks(struct inode * inode,int nrblocks)5844 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5845 {
5846 	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5847 }
5848 
5849 /*
5850  * The caller must have previously called ext4_reserve_inode_write().
5851  * Give this, we know that the caller already has write access to iloc->bh.
5852  */
ext4_mark_iloc_dirty(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5853 int ext4_mark_iloc_dirty(handle_t *handle,
5854 			 struct inode *inode, struct ext4_iloc *iloc)
5855 {
5856 	int err = 0;
5857 
5858 	err = ext4_emergency_state(inode->i_sb);
5859 	if (unlikely(err)) {
5860 		put_bh(iloc->bh);
5861 		return err;
5862 	}
5863 	ext4_fc_track_inode(handle, inode);
5864 
5865 	/* the do_update_inode consumes one bh->b_count */
5866 	get_bh(iloc->bh);
5867 
5868 	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5869 	err = ext4_do_update_inode(handle, inode, iloc);
5870 	put_bh(iloc->bh);
5871 	return err;
5872 }
5873 
5874 /*
5875  * On success, We end up with an outstanding reference count against
5876  * iloc->bh.  This _must_ be cleaned up later.
5877  */
5878 
5879 int
ext4_reserve_inode_write(handle_t * handle,struct inode * inode,struct ext4_iloc * iloc)5880 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5881 			 struct ext4_iloc *iloc)
5882 {
5883 	int err;
5884 
5885 	err = ext4_emergency_state(inode->i_sb);
5886 	if (unlikely(err))
5887 		return err;
5888 
5889 	err = ext4_get_inode_loc(inode, iloc);
5890 	if (!err) {
5891 		BUFFER_TRACE(iloc->bh, "get_write_access");
5892 		err = ext4_journal_get_write_access(handle, inode->i_sb,
5893 						    iloc->bh, EXT4_JTR_NONE);
5894 		if (err) {
5895 			brelse(iloc->bh);
5896 			iloc->bh = NULL;
5897 		}
5898 	}
5899 	ext4_std_error(inode->i_sb, err);
5900 	return err;
5901 }
5902 
__ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc,handle_t * handle,int * no_expand)5903 static int __ext4_expand_extra_isize(struct inode *inode,
5904 				     unsigned int new_extra_isize,
5905 				     struct ext4_iloc *iloc,
5906 				     handle_t *handle, int *no_expand)
5907 {
5908 	struct ext4_inode *raw_inode;
5909 	struct ext4_xattr_ibody_header *header;
5910 	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5911 	struct ext4_inode_info *ei = EXT4_I(inode);
5912 	int error;
5913 
5914 	/* this was checked at iget time, but double check for good measure */
5915 	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5916 	    (ei->i_extra_isize & 3)) {
5917 		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5918 				 ei->i_extra_isize,
5919 				 EXT4_INODE_SIZE(inode->i_sb));
5920 		return -EFSCORRUPTED;
5921 	}
5922 	if ((new_extra_isize < ei->i_extra_isize) ||
5923 	    (new_extra_isize < 4) ||
5924 	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5925 		return -EINVAL;	/* Should never happen */
5926 
5927 	raw_inode = ext4_raw_inode(iloc);
5928 
5929 	header = IHDR(inode, raw_inode);
5930 
5931 	/* No extended attributes present */
5932 	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5933 	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5934 		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5935 		       EXT4_I(inode)->i_extra_isize, 0,
5936 		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5937 		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5938 		return 0;
5939 	}
5940 
5941 	/*
5942 	 * We may need to allocate external xattr block so we need quotas
5943 	 * initialized. Here we can be called with various locks held so we
5944 	 * cannot affort to initialize quotas ourselves. So just bail.
5945 	 */
5946 	if (dquot_initialize_needed(inode))
5947 		return -EAGAIN;
5948 
5949 	/* try to expand with EAs present */
5950 	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5951 					   raw_inode, handle);
5952 	if (error) {
5953 		/*
5954 		 * Inode size expansion failed; don't try again
5955 		 */
5956 		*no_expand = 1;
5957 	}
5958 
5959 	return error;
5960 }
5961 
5962 /*
5963  * Expand an inode by new_extra_isize bytes.
5964  * Returns 0 on success or negative error number on failure.
5965  */
ext4_try_to_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc iloc,handle_t * handle)5966 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5967 					  unsigned int new_extra_isize,
5968 					  struct ext4_iloc iloc,
5969 					  handle_t *handle)
5970 {
5971 	int no_expand;
5972 	int error;
5973 
5974 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5975 		return -EOVERFLOW;
5976 
5977 	/*
5978 	 * In nojournal mode, we can immediately attempt to expand
5979 	 * the inode.  When journaled, we first need to obtain extra
5980 	 * buffer credits since we may write into the EA block
5981 	 * with this same handle. If journal_extend fails, then it will
5982 	 * only result in a minor loss of functionality for that inode.
5983 	 * If this is felt to be critical, then e2fsck should be run to
5984 	 * force a large enough s_min_extra_isize.
5985 	 */
5986 	if (ext4_journal_extend(handle,
5987 				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5988 		return -ENOSPC;
5989 
5990 	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5991 		return -EBUSY;
5992 
5993 	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5994 					  handle, &no_expand);
5995 	ext4_write_unlock_xattr(inode, &no_expand);
5996 
5997 	return error;
5998 }
5999 
ext4_expand_extra_isize(struct inode * inode,unsigned int new_extra_isize,struct ext4_iloc * iloc)6000 int ext4_expand_extra_isize(struct inode *inode,
6001 			    unsigned int new_extra_isize,
6002 			    struct ext4_iloc *iloc)
6003 {
6004 	handle_t *handle;
6005 	int no_expand;
6006 	int error, rc;
6007 
6008 	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
6009 		brelse(iloc->bh);
6010 		return -EOVERFLOW;
6011 	}
6012 
6013 	handle = ext4_journal_start(inode, EXT4_HT_INODE,
6014 				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
6015 	if (IS_ERR(handle)) {
6016 		error = PTR_ERR(handle);
6017 		brelse(iloc->bh);
6018 		return error;
6019 	}
6020 
6021 	ext4_write_lock_xattr(inode, &no_expand);
6022 
6023 	BUFFER_TRACE(iloc->bh, "get_write_access");
6024 	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
6025 					      EXT4_JTR_NONE);
6026 	if (error) {
6027 		brelse(iloc->bh);
6028 		goto out_unlock;
6029 	}
6030 
6031 	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6032 					  handle, &no_expand);
6033 
6034 	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6035 	if (!error)
6036 		error = rc;
6037 
6038 out_unlock:
6039 	ext4_write_unlock_xattr(inode, &no_expand);
6040 	ext4_journal_stop(handle);
6041 	return error;
6042 }
6043 
6044 /*
6045  * What we do here is to mark the in-core inode as clean with respect to inode
6046  * dirtiness (it may still be data-dirty).
6047  * This means that the in-core inode may be reaped by prune_icache
6048  * without having to perform any I/O.  This is a very good thing,
6049  * because *any* task may call prune_icache - even ones which
6050  * have a transaction open against a different journal.
6051  *
6052  * Is this cheating?  Not really.  Sure, we haven't written the
6053  * inode out, but prune_icache isn't a user-visible syncing function.
6054  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6055  * we start and wait on commits.
6056  */
__ext4_mark_inode_dirty(handle_t * handle,struct inode * inode,const char * func,unsigned int line)6057 int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
6058 				const char *func, unsigned int line)
6059 {
6060 	struct ext4_iloc iloc;
6061 	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6062 	int err;
6063 
6064 	might_sleep();
6065 	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6066 	err = ext4_reserve_inode_write(handle, inode, &iloc);
6067 	if (err)
6068 		goto out;
6069 
6070 	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6071 		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6072 					       iloc, handle);
6073 
6074 	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6075 out:
6076 	if (unlikely(err))
6077 		ext4_error_inode_err(inode, func, line, 0, err,
6078 					"mark_inode_dirty error");
6079 	return err;
6080 }
6081 
6082 /*
6083  * ext4_dirty_inode() is called from __mark_inode_dirty()
6084  *
6085  * We're really interested in the case where a file is being extended.
6086  * i_size has been changed by generic_commit_write() and we thus need
6087  * to include the updated inode in the current transaction.
6088  *
6089  * Also, dquot_alloc_block() will always dirty the inode when blocks
6090  * are allocated to the file.
6091  *
6092  * If the inode is marked synchronous, we don't honour that here - doing
6093  * so would cause a commit on atime updates, which we don't bother doing.
6094  * We handle synchronous inodes at the highest possible level.
6095  */
ext4_dirty_inode(struct inode * inode,int flags)6096 void ext4_dirty_inode(struct inode *inode, int flags)
6097 {
6098 	handle_t *handle;
6099 
6100 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6101 	if (IS_ERR(handle))
6102 		return;
6103 	ext4_mark_inode_dirty(handle, inode);
6104 	ext4_journal_stop(handle);
6105 }
6106 
ext4_change_inode_journal_flag(struct inode * inode,int val)6107 int ext4_change_inode_journal_flag(struct inode *inode, int val)
6108 {
6109 	journal_t *journal;
6110 	handle_t *handle;
6111 	int err;
6112 	int alloc_ctx;
6113 
6114 	/*
6115 	 * We have to be very careful here: changing a data block's
6116 	 * journaling status dynamically is dangerous.  If we write a
6117 	 * data block to the journal, change the status and then delete
6118 	 * that block, we risk forgetting to revoke the old log record
6119 	 * from the journal and so a subsequent replay can corrupt data.
6120 	 * So, first we make sure that the journal is empty and that
6121 	 * nobody is changing anything.
6122 	 */
6123 
6124 	journal = EXT4_JOURNAL(inode);
6125 	if (!journal)
6126 		return 0;
6127 	if (is_journal_aborted(journal))
6128 		return -EROFS;
6129 
6130 	/* Wait for all existing dio workers */
6131 	inode_dio_wait(inode);
6132 
6133 	/*
6134 	 * Before flushing the journal and switching inode's aops, we have
6135 	 * to flush all dirty data the inode has. There can be outstanding
6136 	 * delayed allocations, there can be unwritten extents created by
6137 	 * fallocate or buffered writes in dioread_nolock mode covered by
6138 	 * dirty data which can be converted only after flushing the dirty
6139 	 * data (and journalled aops don't know how to handle these cases).
6140 	 */
6141 	if (val) {
6142 		filemap_invalidate_lock(inode->i_mapping);
6143 		err = filemap_write_and_wait(inode->i_mapping);
6144 		if (err < 0) {
6145 			filemap_invalidate_unlock(inode->i_mapping);
6146 			return err;
6147 		}
6148 	}
6149 
6150 	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6151 	jbd2_journal_lock_updates(journal);
6152 
6153 	/*
6154 	 * OK, there are no updates running now, and all cached data is
6155 	 * synced to disk.  We are now in a completely consistent state
6156 	 * which doesn't have anything in the journal, and we know that
6157 	 * no filesystem updates are running, so it is safe to modify
6158 	 * the inode's in-core data-journaling state flag now.
6159 	 */
6160 
6161 	if (val)
6162 		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6163 	else {
6164 		err = jbd2_journal_flush(journal, 0);
6165 		if (err < 0) {
6166 			jbd2_journal_unlock_updates(journal);
6167 			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6168 			return err;
6169 		}
6170 		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6171 	}
6172 	ext4_set_aops(inode);
6173 
6174 	jbd2_journal_unlock_updates(journal);
6175 	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6176 
6177 	if (val)
6178 		filemap_invalidate_unlock(inode->i_mapping);
6179 
6180 	/* Finally we can mark the inode as dirty. */
6181 
6182 	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6183 	if (IS_ERR(handle))
6184 		return PTR_ERR(handle);
6185 
6186 	ext4_fc_mark_ineligible(inode->i_sb,
6187 		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6188 	err = ext4_mark_inode_dirty(handle, inode);
6189 	ext4_handle_sync(handle);
6190 	ext4_journal_stop(handle);
6191 	ext4_std_error(inode->i_sb, err);
6192 
6193 	return err;
6194 }
6195 
ext4_bh_unmapped(handle_t * handle,struct inode * inode,struct buffer_head * bh)6196 static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6197 			    struct buffer_head *bh)
6198 {
6199 	return !buffer_mapped(bh);
6200 }
6201 
ext4_page_mkwrite(struct vm_fault * vmf)6202 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6203 {
6204 	struct vm_area_struct *vma = vmf->vma;
6205 	struct folio *folio = page_folio(vmf->page);
6206 	loff_t size;
6207 	unsigned long len;
6208 	int err;
6209 	vm_fault_t ret;
6210 	struct file *file = vma->vm_file;
6211 	struct inode *inode = file_inode(file);
6212 	struct address_space *mapping = inode->i_mapping;
6213 	handle_t *handle;
6214 	get_block_t *get_block;
6215 	int retries = 0;
6216 
6217 	if (unlikely(IS_IMMUTABLE(inode)))
6218 		return VM_FAULT_SIGBUS;
6219 
6220 	sb_start_pagefault(inode->i_sb);
6221 	file_update_time(vma->vm_file);
6222 
6223 	filemap_invalidate_lock_shared(mapping);
6224 
6225 	err = ext4_convert_inline_data(inode);
6226 	if (err)
6227 		goto out_ret;
6228 
6229 	/*
6230 	 * On data journalling we skip straight to the transaction handle:
6231 	 * there's no delalloc; page truncated will be checked later; the
6232 	 * early return w/ all buffers mapped (calculates size/len) can't
6233 	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6234 	 */
6235 	if (ext4_should_journal_data(inode))
6236 		goto retry_alloc;
6237 
6238 	/* Delalloc case is easy... */
6239 	if (test_opt(inode->i_sb, DELALLOC) &&
6240 	    !ext4_nonda_switch(inode->i_sb)) {
6241 		do {
6242 			err = block_page_mkwrite(vma, vmf,
6243 						   ext4_da_get_block_prep);
6244 		} while (err == -ENOSPC &&
6245 		       ext4_should_retry_alloc(inode->i_sb, &retries));
6246 		goto out_ret;
6247 	}
6248 
6249 	folio_lock(folio);
6250 	size = i_size_read(inode);
6251 	/* Page got truncated from under us? */
6252 	if (folio->mapping != mapping || folio_pos(folio) > size) {
6253 		folio_unlock(folio);
6254 		ret = VM_FAULT_NOPAGE;
6255 		goto out;
6256 	}
6257 
6258 	len = folio_size(folio);
6259 	if (folio_pos(folio) + len > size)
6260 		len = size - folio_pos(folio);
6261 	/*
6262 	 * Return if we have all the buffers mapped. This avoids the need to do
6263 	 * journal_start/journal_stop which can block and take a long time
6264 	 *
6265 	 * This cannot be done for data journalling, as we have to add the
6266 	 * inode to the transaction's list to writeprotect pages on commit.
6267 	 */
6268 	if (folio_buffers(folio)) {
6269 		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6270 					    0, len, NULL,
6271 					    ext4_bh_unmapped)) {
6272 			/* Wait so that we don't change page under IO */
6273 			folio_wait_stable(folio);
6274 			ret = VM_FAULT_LOCKED;
6275 			goto out;
6276 		}
6277 	}
6278 	folio_unlock(folio);
6279 	/* OK, we need to fill the hole... */
6280 	if (ext4_should_dioread_nolock(inode))
6281 		get_block = ext4_get_block_unwritten;
6282 	else
6283 		get_block = ext4_get_block;
6284 retry_alloc:
6285 	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6286 				    ext4_writepage_trans_blocks(inode));
6287 	if (IS_ERR(handle)) {
6288 		ret = VM_FAULT_SIGBUS;
6289 		goto out;
6290 	}
6291 	/*
6292 	 * Data journalling can't use block_page_mkwrite() because it
6293 	 * will set_buffer_dirty() before do_journal_get_write_access()
6294 	 * thus might hit warning messages for dirty metadata buffers.
6295 	 */
6296 	if (!ext4_should_journal_data(inode)) {
6297 		err = block_page_mkwrite(vma, vmf, get_block);
6298 	} else {
6299 		folio_lock(folio);
6300 		size = i_size_read(inode);
6301 		/* Page got truncated from under us? */
6302 		if (folio->mapping != mapping || folio_pos(folio) > size) {
6303 			ret = VM_FAULT_NOPAGE;
6304 			goto out_error;
6305 		}
6306 
6307 		len = folio_size(folio);
6308 		if (folio_pos(folio) + len > size)
6309 			len = size - folio_pos(folio);
6310 
6311 		err = ext4_block_write_begin(handle, folio, 0, len,
6312 					     ext4_get_block);
6313 		if (!err) {
6314 			ret = VM_FAULT_SIGBUS;
6315 			if (ext4_journal_folio_buffers(handle, folio, len))
6316 				goto out_error;
6317 		} else {
6318 			folio_unlock(folio);
6319 		}
6320 	}
6321 	ext4_journal_stop(handle);
6322 	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6323 		goto retry_alloc;
6324 out_ret:
6325 	ret = vmf_fs_error(err);
6326 out:
6327 	filemap_invalidate_unlock_shared(mapping);
6328 	sb_end_pagefault(inode->i_sb);
6329 	return ret;
6330 out_error:
6331 	folio_unlock(folio);
6332 	ext4_journal_stop(handle);
6333 	goto out;
6334 }
6335