1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include <linux/fs_parser.h>
31 #include "messages.h"
32 #include "delayed-inode.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "direct-io.h"
38 #include "props.h"
39 #include "xattr.h"
40 #include "bio.h"
41 #include "export.h"
42 #include "compression.h"
43 #include "dev-replace.h"
44 #include "free-space-cache.h"
45 #include "backref.h"
46 #include "space-info.h"
47 #include "sysfs.h"
48 #include "zoned.h"
49 #include "tests/btrfs-tests.h"
50 #include "block-group.h"
51 #include "discard.h"
52 #include "qgroup.h"
53 #include "raid56.h"
54 #include "fs.h"
55 #include "accessors.h"
56 #include "defrag.h"
57 #include "dir-item.h"
58 #include "ioctl.h"
59 #include "scrub.h"
60 #include "verity.h"
61 #include "super.h"
62 #include "extent-tree.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68
btrfs_put_super(struct super_block * sb)69 static void btrfs_put_super(struct super_block *sb)
70 {
71 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
72
73 btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
74 close_ctree(fs_info);
75 }
76
77 /* Store the mount options related information. */
78 struct btrfs_fs_context {
79 char *subvol_name;
80 u64 subvol_objectid;
81 u64 max_inline;
82 u32 commit_interval;
83 u32 metadata_ratio;
84 u32 thread_pool_size;
85 unsigned long long mount_opt;
86 unsigned long compress_type:4;
87 int compress_level;
88 refcount_t refs;
89 };
90
91 enum {
92 Opt_acl,
93 Opt_clear_cache,
94 Opt_commit_interval,
95 Opt_compress,
96 Opt_compress_force,
97 Opt_compress_force_type,
98 Opt_compress_type,
99 Opt_degraded,
100 Opt_device,
101 Opt_fatal_errors,
102 Opt_flushoncommit,
103 Opt_max_inline,
104 Opt_barrier,
105 Opt_datacow,
106 Opt_datasum,
107 Opt_defrag,
108 Opt_discard,
109 Opt_discard_mode,
110 Opt_ratio,
111 Opt_rescan_uuid_tree,
112 Opt_skip_balance,
113 Opt_space_cache,
114 Opt_space_cache_version,
115 Opt_ssd,
116 Opt_ssd_spread,
117 Opt_subvol,
118 Opt_subvol_empty,
119 Opt_subvolid,
120 Opt_thread_pool,
121 Opt_treelog,
122 Opt_user_subvol_rm_allowed,
123 Opt_norecovery,
124
125 /* Rescue options */
126 Opt_rescue,
127 Opt_usebackuproot,
128 Opt_nologreplay,
129
130 /* Debugging options */
131 Opt_enospc_debug,
132 #ifdef CONFIG_BTRFS_DEBUG
133 Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
134 #endif
135 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
136 Opt_ref_verify,
137 #endif
138 Opt_err,
139 };
140
141 enum {
142 Opt_fatal_errors_panic,
143 Opt_fatal_errors_bug,
144 };
145
146 static const struct constant_table btrfs_parameter_fatal_errors[] = {
147 { "panic", Opt_fatal_errors_panic },
148 { "bug", Opt_fatal_errors_bug },
149 {}
150 };
151
152 enum {
153 Opt_discard_sync,
154 Opt_discard_async,
155 };
156
157 static const struct constant_table btrfs_parameter_discard[] = {
158 { "sync", Opt_discard_sync },
159 { "async", Opt_discard_async },
160 {}
161 };
162
163 enum {
164 Opt_space_cache_v1,
165 Opt_space_cache_v2,
166 };
167
168 static const struct constant_table btrfs_parameter_space_cache[] = {
169 { "v1", Opt_space_cache_v1 },
170 { "v2", Opt_space_cache_v2 },
171 {}
172 };
173
174 enum {
175 Opt_rescue_usebackuproot,
176 Opt_rescue_nologreplay,
177 Opt_rescue_ignorebadroots,
178 Opt_rescue_ignoredatacsums,
179 Opt_rescue_ignoremetacsums,
180 Opt_rescue_ignoresuperflags,
181 Opt_rescue_parameter_all,
182 };
183
184 static const struct constant_table btrfs_parameter_rescue[] = {
185 { "usebackuproot", Opt_rescue_usebackuproot },
186 { "nologreplay", Opt_rescue_nologreplay },
187 { "ignorebadroots", Opt_rescue_ignorebadroots },
188 { "ibadroots", Opt_rescue_ignorebadroots },
189 { "ignoredatacsums", Opt_rescue_ignoredatacsums },
190 { "ignoremetacsums", Opt_rescue_ignoremetacsums},
191 { "ignoresuperflags", Opt_rescue_ignoresuperflags},
192 { "idatacsums", Opt_rescue_ignoredatacsums },
193 { "imetacsums", Opt_rescue_ignoremetacsums},
194 { "isuperflags", Opt_rescue_ignoresuperflags},
195 { "all", Opt_rescue_parameter_all },
196 {}
197 };
198
199 #ifdef CONFIG_BTRFS_DEBUG
200 enum {
201 Opt_fragment_parameter_data,
202 Opt_fragment_parameter_metadata,
203 Opt_fragment_parameter_all,
204 };
205
206 static const struct constant_table btrfs_parameter_fragment[] = {
207 { "data", Opt_fragment_parameter_data },
208 { "metadata", Opt_fragment_parameter_metadata },
209 { "all", Opt_fragment_parameter_all },
210 {}
211 };
212 #endif
213
214 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
215 fsparam_flag_no("acl", Opt_acl),
216 fsparam_flag_no("autodefrag", Opt_defrag),
217 fsparam_flag_no("barrier", Opt_barrier),
218 fsparam_flag("clear_cache", Opt_clear_cache),
219 fsparam_u32("commit", Opt_commit_interval),
220 fsparam_flag("compress", Opt_compress),
221 fsparam_string("compress", Opt_compress_type),
222 fsparam_flag("compress-force", Opt_compress_force),
223 fsparam_string("compress-force", Opt_compress_force_type),
224 fsparam_flag_no("datacow", Opt_datacow),
225 fsparam_flag_no("datasum", Opt_datasum),
226 fsparam_flag("degraded", Opt_degraded),
227 fsparam_string("device", Opt_device),
228 fsparam_flag_no("discard", Opt_discard),
229 fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
230 fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
231 fsparam_flag_no("flushoncommit", Opt_flushoncommit),
232 fsparam_string("max_inline", Opt_max_inline),
233 fsparam_u32("metadata_ratio", Opt_ratio),
234 fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
235 fsparam_flag("skip_balance", Opt_skip_balance),
236 fsparam_flag_no("space_cache", Opt_space_cache),
237 fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
238 fsparam_flag_no("ssd", Opt_ssd),
239 fsparam_flag_no("ssd_spread", Opt_ssd_spread),
240 fsparam_string("subvol", Opt_subvol),
241 fsparam_flag("subvol=", Opt_subvol_empty),
242 fsparam_u64("subvolid", Opt_subvolid),
243 fsparam_u32("thread_pool", Opt_thread_pool),
244 fsparam_flag_no("treelog", Opt_treelog),
245 fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
246
247 /* Rescue options. */
248 fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
249 /* Deprecated, with alias rescue=nologreplay */
250 __fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
251 /* Deprecated, with alias rescue=usebackuproot */
252 __fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
253 /* For compatibility only, alias for "rescue=nologreplay". */
254 fsparam_flag("norecovery", Opt_norecovery),
255
256 /* Debugging options. */
257 fsparam_flag_no("enospc_debug", Opt_enospc_debug),
258 #ifdef CONFIG_BTRFS_DEBUG
259 fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
260 #endif
261 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
262 fsparam_flag("ref_verify", Opt_ref_verify),
263 #endif
264 {}
265 };
266
267 /* No support for restricting writes to btrfs devices yet... */
btrfs_open_mode(struct fs_context * fc)268 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
269 {
270 return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
271 }
272
btrfs_parse_param(struct fs_context * fc,struct fs_parameter * param)273 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
274 {
275 struct btrfs_fs_context *ctx = fc->fs_private;
276 struct fs_parse_result result;
277 int opt;
278
279 opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
280 if (opt < 0)
281 return opt;
282
283 switch (opt) {
284 case Opt_degraded:
285 btrfs_set_opt(ctx->mount_opt, DEGRADED);
286 break;
287 case Opt_subvol_empty:
288 /*
289 * This exists because we used to allow it on accident, so we're
290 * keeping it to maintain ABI. See 37becec95ac3 ("Btrfs: allow
291 * empty subvol= again").
292 */
293 break;
294 case Opt_subvol:
295 kfree(ctx->subvol_name);
296 ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
297 if (!ctx->subvol_name)
298 return -ENOMEM;
299 break;
300 case Opt_subvolid:
301 ctx->subvol_objectid = result.uint_64;
302
303 /* subvolid=0 means give me the original fs_tree. */
304 if (!ctx->subvol_objectid)
305 ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
306 break;
307 case Opt_device: {
308 struct btrfs_device *device;
309 blk_mode_t mode = btrfs_open_mode(fc);
310
311 mutex_lock(&uuid_mutex);
312 device = btrfs_scan_one_device(param->string, mode, false);
313 mutex_unlock(&uuid_mutex);
314 if (IS_ERR(device))
315 return PTR_ERR(device);
316 break;
317 }
318 case Opt_datasum:
319 if (result.negated) {
320 btrfs_set_opt(ctx->mount_opt, NODATASUM);
321 } else {
322 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
323 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
324 }
325 break;
326 case Opt_datacow:
327 if (result.negated) {
328 btrfs_clear_opt(ctx->mount_opt, COMPRESS);
329 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
330 btrfs_set_opt(ctx->mount_opt, NODATACOW);
331 btrfs_set_opt(ctx->mount_opt, NODATASUM);
332 } else {
333 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
334 }
335 break;
336 case Opt_compress_force:
337 case Opt_compress_force_type:
338 btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
339 fallthrough;
340 case Opt_compress:
341 case Opt_compress_type:
342 /*
343 * Provide the same semantics as older kernels that don't use fs
344 * context, specifying the "compress" option clears
345 * "force-compress" without the need to pass
346 * "compress-force=[no|none]" before specifying "compress".
347 */
348 if (opt != Opt_compress_force && opt != Opt_compress_force_type)
349 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
350
351 if (opt == Opt_compress || opt == Opt_compress_force) {
352 ctx->compress_type = BTRFS_COMPRESS_ZLIB;
353 ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
354 btrfs_set_opt(ctx->mount_opt, COMPRESS);
355 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
356 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
357 } else if (strncmp(param->string, "zlib", 4) == 0) {
358 ctx->compress_type = BTRFS_COMPRESS_ZLIB;
359 ctx->compress_level =
360 btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
361 param->string + 4);
362 btrfs_set_opt(ctx->mount_opt, COMPRESS);
363 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
364 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
365 } else if (strncmp(param->string, "lzo", 3) == 0) {
366 ctx->compress_type = BTRFS_COMPRESS_LZO;
367 ctx->compress_level = 0;
368 btrfs_set_opt(ctx->mount_opt, COMPRESS);
369 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
370 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
371 } else if (strncmp(param->string, "zstd", 4) == 0) {
372 ctx->compress_type = BTRFS_COMPRESS_ZSTD;
373 ctx->compress_level =
374 btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
375 param->string + 4);
376 btrfs_set_opt(ctx->mount_opt, COMPRESS);
377 btrfs_clear_opt(ctx->mount_opt, NODATACOW);
378 btrfs_clear_opt(ctx->mount_opt, NODATASUM);
379 } else if (strncmp(param->string, "no", 2) == 0) {
380 ctx->compress_level = 0;
381 ctx->compress_type = 0;
382 btrfs_clear_opt(ctx->mount_opt, COMPRESS);
383 btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
384 } else {
385 btrfs_err(NULL, "unrecognized compression value %s",
386 param->string);
387 return -EINVAL;
388 }
389 break;
390 case Opt_ssd:
391 if (result.negated) {
392 btrfs_set_opt(ctx->mount_opt, NOSSD);
393 btrfs_clear_opt(ctx->mount_opt, SSD);
394 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
395 } else {
396 btrfs_set_opt(ctx->mount_opt, SSD);
397 btrfs_clear_opt(ctx->mount_opt, NOSSD);
398 }
399 break;
400 case Opt_ssd_spread:
401 if (result.negated) {
402 btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
403 } else {
404 btrfs_set_opt(ctx->mount_opt, SSD);
405 btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
406 btrfs_clear_opt(ctx->mount_opt, NOSSD);
407 }
408 break;
409 case Opt_barrier:
410 if (result.negated)
411 btrfs_set_opt(ctx->mount_opt, NOBARRIER);
412 else
413 btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
414 break;
415 case Opt_thread_pool:
416 if (result.uint_32 == 0) {
417 btrfs_err(NULL, "invalid value 0 for thread_pool");
418 return -EINVAL;
419 }
420 ctx->thread_pool_size = result.uint_32;
421 break;
422 case Opt_max_inline:
423 ctx->max_inline = memparse(param->string, NULL);
424 break;
425 case Opt_acl:
426 if (result.negated) {
427 fc->sb_flags &= ~SB_POSIXACL;
428 } else {
429 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
430 fc->sb_flags |= SB_POSIXACL;
431 #else
432 btrfs_err(NULL, "support for ACL not compiled in");
433 return -EINVAL;
434 #endif
435 }
436 /*
437 * VFS limits the ability to toggle ACL on and off via remount,
438 * despite every file system allowing this. This seems to be
439 * an oversight since we all do, but it'll fail if we're
440 * remounting. So don't set the mask here, we'll check it in
441 * btrfs_reconfigure and do the toggling ourselves.
442 */
443 if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
444 fc->sb_flags_mask |= SB_POSIXACL;
445 break;
446 case Opt_treelog:
447 if (result.negated)
448 btrfs_set_opt(ctx->mount_opt, NOTREELOG);
449 else
450 btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
451 break;
452 case Opt_nologreplay:
453 btrfs_warn(NULL,
454 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
455 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
456 break;
457 case Opt_norecovery:
458 btrfs_info(NULL,
459 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
460 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
461 break;
462 case Opt_flushoncommit:
463 if (result.negated)
464 btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
465 else
466 btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
467 break;
468 case Opt_ratio:
469 ctx->metadata_ratio = result.uint_32;
470 break;
471 case Opt_discard:
472 if (result.negated) {
473 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
474 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
475 btrfs_set_opt(ctx->mount_opt, NODISCARD);
476 } else {
477 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
478 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
479 }
480 break;
481 case Opt_discard_mode:
482 switch (result.uint_32) {
483 case Opt_discard_sync:
484 btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
485 btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
486 break;
487 case Opt_discard_async:
488 btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
489 btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
490 break;
491 default:
492 btrfs_err(NULL, "unrecognized discard mode value %s",
493 param->key);
494 return -EINVAL;
495 }
496 btrfs_clear_opt(ctx->mount_opt, NODISCARD);
497 break;
498 case Opt_space_cache:
499 if (result.negated) {
500 btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
501 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
502 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
503 } else {
504 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
505 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
506 }
507 break;
508 case Opt_space_cache_version:
509 switch (result.uint_32) {
510 case Opt_space_cache_v1:
511 btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
512 btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
513 break;
514 case Opt_space_cache_v2:
515 btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
516 btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
517 break;
518 default:
519 btrfs_err(NULL, "unrecognized space_cache value %s",
520 param->key);
521 return -EINVAL;
522 }
523 break;
524 case Opt_rescan_uuid_tree:
525 btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
526 break;
527 case Opt_clear_cache:
528 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
529 break;
530 case Opt_user_subvol_rm_allowed:
531 btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
532 break;
533 case Opt_enospc_debug:
534 if (result.negated)
535 btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
536 else
537 btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
538 break;
539 case Opt_defrag:
540 if (result.negated)
541 btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
542 else
543 btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
544 break;
545 case Opt_usebackuproot:
546 btrfs_warn(NULL,
547 "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
548 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
549
550 /* If we're loading the backup roots we can't trust the space cache. */
551 btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
552 break;
553 case Opt_skip_balance:
554 btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
555 break;
556 case Opt_fatal_errors:
557 switch (result.uint_32) {
558 case Opt_fatal_errors_panic:
559 btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
560 break;
561 case Opt_fatal_errors_bug:
562 btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
563 break;
564 default:
565 btrfs_err(NULL, "unrecognized fatal_errors value %s",
566 param->key);
567 return -EINVAL;
568 }
569 break;
570 case Opt_commit_interval:
571 ctx->commit_interval = result.uint_32;
572 if (ctx->commit_interval > BTRFS_WARNING_COMMIT_INTERVAL) {
573 btrfs_warn(NULL, "excessive commit interval %u, use with care",
574 ctx->commit_interval);
575 }
576 if (ctx->commit_interval == 0)
577 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
578 break;
579 case Opt_rescue:
580 switch (result.uint_32) {
581 case Opt_rescue_usebackuproot:
582 btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
583 break;
584 case Opt_rescue_nologreplay:
585 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
586 break;
587 case Opt_rescue_ignorebadroots:
588 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
589 break;
590 case Opt_rescue_ignoredatacsums:
591 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
592 break;
593 case Opt_rescue_ignoremetacsums:
594 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
595 break;
596 case Opt_rescue_ignoresuperflags:
597 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
598 break;
599 case Opt_rescue_parameter_all:
600 btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
601 btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
602 btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
603 btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
604 btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
605 break;
606 default:
607 btrfs_info(NULL, "unrecognized rescue option '%s'",
608 param->key);
609 return -EINVAL;
610 }
611 break;
612 #ifdef CONFIG_BTRFS_DEBUG
613 case Opt_fragment:
614 switch (result.uint_32) {
615 case Opt_fragment_parameter_all:
616 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
617 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
618 break;
619 case Opt_fragment_parameter_metadata:
620 btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
621 break;
622 case Opt_fragment_parameter_data:
623 btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
624 break;
625 default:
626 btrfs_info(NULL, "unrecognized fragment option '%s'",
627 param->key);
628 return -EINVAL;
629 }
630 break;
631 #endif
632 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
633 case Opt_ref_verify:
634 btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
635 break;
636 #endif
637 default:
638 btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
639 return -EINVAL;
640 }
641
642 return 0;
643 }
644
645 /*
646 * Some options only have meaning at mount time and shouldn't persist across
647 * remounts, or be displayed. Clear these at the end of mount and remount code
648 * paths.
649 */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)650 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
651 {
652 btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
653 btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
654 btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
655 }
656
check_ro_option(const struct btrfs_fs_info * fs_info,unsigned long long mount_opt,unsigned long long opt,const char * opt_name)657 static bool check_ro_option(const struct btrfs_fs_info *fs_info,
658 unsigned long long mount_opt, unsigned long long opt,
659 const char *opt_name)
660 {
661 if (mount_opt & opt) {
662 btrfs_err(fs_info, "%s must be used with ro mount option",
663 opt_name);
664 return true;
665 }
666 return false;
667 }
668
btrfs_check_options(const struct btrfs_fs_info * info,unsigned long long * mount_opt,unsigned long flags)669 bool btrfs_check_options(const struct btrfs_fs_info *info,
670 unsigned long long *mount_opt,
671 unsigned long flags)
672 {
673 bool ret = true;
674
675 if (!(flags & SB_RDONLY) &&
676 (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
677 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
678 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") ||
679 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") ||
680 check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags")))
681 ret = false;
682
683 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
684 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
685 !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
686 btrfs_err(info, "cannot disable free-space-tree");
687 ret = false;
688 }
689 if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
690 !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
691 btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
692 ret = false;
693 }
694
695 if (btrfs_check_mountopts_zoned(info, mount_opt))
696 ret = false;
697
698 if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
699 if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
700 btrfs_info(info, "disk space caching is enabled");
701 btrfs_warn(info,
702 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2");
703 }
704 if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
705 btrfs_info(info, "using free-space-tree");
706 }
707
708 return ret;
709 }
710
711 /*
712 * This is subtle, we only call this during open_ctree(). We need to pre-load
713 * the mount options with the on-disk settings. Before the new mount API took
714 * effect we would do this on mount and remount. With the new mount API we'll
715 * only do this on the initial mount.
716 *
717 * This isn't a change in behavior, because we're using the current state of the
718 * file system to set the current mount options. If you mounted with special
719 * options to disable these features and then remounted we wouldn't revert the
720 * settings, because mounting without these features cleared the on-disk
721 * settings, so this being called on re-mount is not needed.
722 */
btrfs_set_free_space_cache_settings(struct btrfs_fs_info * fs_info)723 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
724 {
725 if (fs_info->sectorsize < PAGE_SIZE) {
726 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
727 if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
728 btrfs_info(fs_info,
729 "forcing free space tree for sector size %u with page size %lu",
730 fs_info->sectorsize, PAGE_SIZE);
731 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
732 }
733 }
734
735 /*
736 * At this point our mount options are populated, so we only mess with
737 * these settings if we don't have any settings already.
738 */
739 if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
740 return;
741
742 if (btrfs_is_zoned(fs_info) &&
743 btrfs_free_space_cache_v1_active(fs_info)) {
744 btrfs_info(fs_info, "zoned: clearing existing space cache");
745 btrfs_set_super_cache_generation(fs_info->super_copy, 0);
746 return;
747 }
748
749 if (btrfs_test_opt(fs_info, SPACE_CACHE))
750 return;
751
752 if (btrfs_test_opt(fs_info, NOSPACECACHE))
753 return;
754
755 /*
756 * At this point we don't have explicit options set by the user, set
757 * them ourselves based on the state of the file system.
758 */
759 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
760 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
761 else if (btrfs_free_space_cache_v1_active(fs_info))
762 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
763 }
764
set_device_specific_options(struct btrfs_fs_info * fs_info)765 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
766 {
767 if (!btrfs_test_opt(fs_info, NOSSD) &&
768 !fs_info->fs_devices->rotating)
769 btrfs_set_opt(fs_info->mount_opt, SSD);
770
771 /*
772 * For devices supporting discard turn on discard=async automatically,
773 * unless it's already set or disabled. This could be turned off by
774 * nodiscard for the same mount.
775 *
776 * The zoned mode piggy backs on the discard functionality for
777 * resetting a zone. There is no reason to delay the zone reset as it is
778 * fast enough. So, do not enable async discard for zoned mode.
779 */
780 if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
781 btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
782 btrfs_test_opt(fs_info, NODISCARD)) &&
783 fs_info->fs_devices->discardable &&
784 !btrfs_is_zoned(fs_info))
785 btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
786 }
787
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)788 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
789 u64 subvol_objectid)
790 {
791 struct btrfs_root *root = fs_info->tree_root;
792 struct btrfs_root *fs_root = NULL;
793 struct btrfs_root_ref *root_ref;
794 struct btrfs_inode_ref *inode_ref;
795 struct btrfs_key key;
796 struct btrfs_path *path = NULL;
797 char *name = NULL, *ptr;
798 u64 dirid;
799 int len;
800 int ret;
801
802 path = btrfs_alloc_path();
803 if (!path) {
804 ret = -ENOMEM;
805 goto err;
806 }
807
808 name = kmalloc(PATH_MAX, GFP_KERNEL);
809 if (!name) {
810 ret = -ENOMEM;
811 goto err;
812 }
813 ptr = name + PATH_MAX - 1;
814 ptr[0] = '\0';
815
816 /*
817 * Walk up the subvolume trees in the tree of tree roots by root
818 * backrefs until we hit the top-level subvolume.
819 */
820 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
821 key.objectid = subvol_objectid;
822 key.type = BTRFS_ROOT_BACKREF_KEY;
823 key.offset = (u64)-1;
824
825 ret = btrfs_search_backwards(root, &key, path);
826 if (ret < 0) {
827 goto err;
828 } else if (ret > 0) {
829 ret = -ENOENT;
830 goto err;
831 }
832
833 subvol_objectid = key.offset;
834
835 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
836 struct btrfs_root_ref);
837 len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
838 ptr -= len + 1;
839 if (ptr < name) {
840 ret = -ENAMETOOLONG;
841 goto err;
842 }
843 read_extent_buffer(path->nodes[0], ptr + 1,
844 (unsigned long)(root_ref + 1), len);
845 ptr[0] = '/';
846 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
847 btrfs_release_path(path);
848
849 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
850 if (IS_ERR(fs_root)) {
851 ret = PTR_ERR(fs_root);
852 fs_root = NULL;
853 goto err;
854 }
855
856 /*
857 * Walk up the filesystem tree by inode refs until we hit the
858 * root directory.
859 */
860 while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
861 key.objectid = dirid;
862 key.type = BTRFS_INODE_REF_KEY;
863 key.offset = (u64)-1;
864
865 ret = btrfs_search_backwards(fs_root, &key, path);
866 if (ret < 0) {
867 goto err;
868 } else if (ret > 0) {
869 ret = -ENOENT;
870 goto err;
871 }
872
873 dirid = key.offset;
874
875 inode_ref = btrfs_item_ptr(path->nodes[0],
876 path->slots[0],
877 struct btrfs_inode_ref);
878 len = btrfs_inode_ref_name_len(path->nodes[0],
879 inode_ref);
880 ptr -= len + 1;
881 if (ptr < name) {
882 ret = -ENAMETOOLONG;
883 goto err;
884 }
885 read_extent_buffer(path->nodes[0], ptr + 1,
886 (unsigned long)(inode_ref + 1), len);
887 ptr[0] = '/';
888 btrfs_release_path(path);
889 }
890 btrfs_put_root(fs_root);
891 fs_root = NULL;
892 }
893
894 btrfs_free_path(path);
895 if (ptr == name + PATH_MAX - 1) {
896 name[0] = '/';
897 name[1] = '\0';
898 } else {
899 memmove(name, ptr, name + PATH_MAX - ptr);
900 }
901 return name;
902
903 err:
904 btrfs_put_root(fs_root);
905 btrfs_free_path(path);
906 kfree(name);
907 return ERR_PTR(ret);
908 }
909
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)910 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
911 {
912 struct btrfs_root *root = fs_info->tree_root;
913 struct btrfs_dir_item *di;
914 struct btrfs_path *path;
915 struct btrfs_key location;
916 struct fscrypt_str name = FSTR_INIT("default", 7);
917 u64 dir_id;
918
919 path = btrfs_alloc_path();
920 if (!path)
921 return -ENOMEM;
922
923 /*
924 * Find the "default" dir item which points to the root item that we
925 * will mount by default if we haven't been given a specific subvolume
926 * to mount.
927 */
928 dir_id = btrfs_super_root_dir(fs_info->super_copy);
929 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
930 if (IS_ERR(di)) {
931 btrfs_free_path(path);
932 return PTR_ERR(di);
933 }
934 if (!di) {
935 /*
936 * Ok the default dir item isn't there. This is weird since
937 * it's always been there, but don't freak out, just try and
938 * mount the top-level subvolume.
939 */
940 btrfs_free_path(path);
941 *objectid = BTRFS_FS_TREE_OBJECTID;
942 return 0;
943 }
944
945 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
946 btrfs_free_path(path);
947 *objectid = location.objectid;
948 return 0;
949 }
950
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices)951 static int btrfs_fill_super(struct super_block *sb,
952 struct btrfs_fs_devices *fs_devices)
953 {
954 struct btrfs_inode *inode;
955 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
956 int err;
957
958 sb->s_maxbytes = MAX_LFS_FILESIZE;
959 sb->s_magic = BTRFS_SUPER_MAGIC;
960 sb->s_op = &btrfs_super_ops;
961 sb->s_d_op = &btrfs_dentry_operations;
962 sb->s_export_op = &btrfs_export_ops;
963 #ifdef CONFIG_FS_VERITY
964 sb->s_vop = &btrfs_verityops;
965 #endif
966 sb->s_xattr = btrfs_xattr_handlers;
967 sb->s_time_gran = 1;
968 sb->s_iflags |= SB_I_CGROUPWB | SB_I_ALLOW_HSM;
969
970 err = super_setup_bdi(sb);
971 if (err) {
972 btrfs_err(fs_info, "super_setup_bdi failed");
973 return err;
974 }
975
976 err = open_ctree(sb, fs_devices);
977 if (err) {
978 btrfs_err(fs_info, "open_ctree failed: %d", err);
979 return err;
980 }
981
982 inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
983 if (IS_ERR(inode)) {
984 err = PTR_ERR(inode);
985 btrfs_handle_fs_error(fs_info, err, NULL);
986 goto fail_close;
987 }
988
989 sb->s_root = d_make_root(&inode->vfs_inode);
990 if (!sb->s_root) {
991 err = -ENOMEM;
992 goto fail_close;
993 }
994
995 sb->s_flags |= SB_ACTIVE;
996 return 0;
997
998 fail_close:
999 close_ctree(fs_info);
1000 return err;
1001 }
1002
btrfs_sync_fs(struct super_block * sb,int wait)1003 int btrfs_sync_fs(struct super_block *sb, int wait)
1004 {
1005 struct btrfs_trans_handle *trans;
1006 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1007 struct btrfs_root *root = fs_info->tree_root;
1008
1009 trace_btrfs_sync_fs(fs_info, wait);
1010
1011 if (!wait) {
1012 filemap_flush(fs_info->btree_inode->i_mapping);
1013 return 0;
1014 }
1015
1016 btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
1017
1018 trans = btrfs_attach_transaction_barrier(root);
1019 if (IS_ERR(trans)) {
1020 /* no transaction, don't bother */
1021 if (PTR_ERR(trans) == -ENOENT) {
1022 /*
1023 * Exit unless we have some pending changes
1024 * that need to go through commit
1025 */
1026 if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1027 &fs_info->flags))
1028 return 0;
1029 /*
1030 * A non-blocking test if the fs is frozen. We must not
1031 * start a new transaction here otherwise a deadlock
1032 * happens. The pending operations are delayed to the
1033 * next commit after thawing.
1034 */
1035 if (sb_start_write_trylock(sb))
1036 sb_end_write(sb);
1037 else
1038 return 0;
1039 trans = btrfs_start_transaction(root, 0);
1040 }
1041 if (IS_ERR(trans))
1042 return PTR_ERR(trans);
1043 }
1044 return btrfs_commit_transaction(trans);
1045 }
1046
print_rescue_option(struct seq_file * seq,const char * s,bool * printed)1047 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1048 {
1049 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1050 *printed = true;
1051 }
1052
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1053 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1054 {
1055 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1056 const char *compress_type;
1057 const char *subvol_name;
1058 bool printed = false;
1059
1060 if (btrfs_test_opt(info, DEGRADED))
1061 seq_puts(seq, ",degraded");
1062 if (btrfs_test_opt(info, NODATASUM))
1063 seq_puts(seq, ",nodatasum");
1064 if (btrfs_test_opt(info, NODATACOW))
1065 seq_puts(seq, ",nodatacow");
1066 if (btrfs_test_opt(info, NOBARRIER))
1067 seq_puts(seq, ",nobarrier");
1068 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1069 seq_printf(seq, ",max_inline=%llu", info->max_inline);
1070 if (info->thread_pool_size != min_t(unsigned long,
1071 num_online_cpus() + 2, 8))
1072 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1073 if (btrfs_test_opt(info, COMPRESS)) {
1074 compress_type = btrfs_compress_type2str(info->compress_type);
1075 if (btrfs_test_opt(info, FORCE_COMPRESS))
1076 seq_printf(seq, ",compress-force=%s", compress_type);
1077 else
1078 seq_printf(seq, ",compress=%s", compress_type);
1079 if (info->compress_level)
1080 seq_printf(seq, ":%d", info->compress_level);
1081 }
1082 if (btrfs_test_opt(info, NOSSD))
1083 seq_puts(seq, ",nossd");
1084 if (btrfs_test_opt(info, SSD_SPREAD))
1085 seq_puts(seq, ",ssd_spread");
1086 else if (btrfs_test_opt(info, SSD))
1087 seq_puts(seq, ",ssd");
1088 if (btrfs_test_opt(info, NOTREELOG))
1089 seq_puts(seq, ",notreelog");
1090 if (btrfs_test_opt(info, NOLOGREPLAY))
1091 print_rescue_option(seq, "nologreplay", &printed);
1092 if (btrfs_test_opt(info, USEBACKUPROOT))
1093 print_rescue_option(seq, "usebackuproot", &printed);
1094 if (btrfs_test_opt(info, IGNOREBADROOTS))
1095 print_rescue_option(seq, "ignorebadroots", &printed);
1096 if (btrfs_test_opt(info, IGNOREDATACSUMS))
1097 print_rescue_option(seq, "ignoredatacsums", &printed);
1098 if (btrfs_test_opt(info, IGNOREMETACSUMS))
1099 print_rescue_option(seq, "ignoremetacsums", &printed);
1100 if (btrfs_test_opt(info, IGNORESUPERFLAGS))
1101 print_rescue_option(seq, "ignoresuperflags", &printed);
1102 if (btrfs_test_opt(info, FLUSHONCOMMIT))
1103 seq_puts(seq, ",flushoncommit");
1104 if (btrfs_test_opt(info, DISCARD_SYNC))
1105 seq_puts(seq, ",discard");
1106 if (btrfs_test_opt(info, DISCARD_ASYNC))
1107 seq_puts(seq, ",discard=async");
1108 if (!(info->sb->s_flags & SB_POSIXACL))
1109 seq_puts(seq, ",noacl");
1110 if (btrfs_free_space_cache_v1_active(info))
1111 seq_puts(seq, ",space_cache");
1112 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1113 seq_puts(seq, ",space_cache=v2");
1114 else
1115 seq_puts(seq, ",nospace_cache");
1116 if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1117 seq_puts(seq, ",rescan_uuid_tree");
1118 if (btrfs_test_opt(info, CLEAR_CACHE))
1119 seq_puts(seq, ",clear_cache");
1120 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1121 seq_puts(seq, ",user_subvol_rm_allowed");
1122 if (btrfs_test_opt(info, ENOSPC_DEBUG))
1123 seq_puts(seq, ",enospc_debug");
1124 if (btrfs_test_opt(info, AUTO_DEFRAG))
1125 seq_puts(seq, ",autodefrag");
1126 if (btrfs_test_opt(info, SKIP_BALANCE))
1127 seq_puts(seq, ",skip_balance");
1128 if (info->metadata_ratio)
1129 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1130 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1131 seq_puts(seq, ",fatal_errors=panic");
1132 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1133 seq_printf(seq, ",commit=%u", info->commit_interval);
1134 #ifdef CONFIG_BTRFS_DEBUG
1135 if (btrfs_test_opt(info, FRAGMENT_DATA))
1136 seq_puts(seq, ",fragment=data");
1137 if (btrfs_test_opt(info, FRAGMENT_METADATA))
1138 seq_puts(seq, ",fragment=metadata");
1139 #endif
1140 if (btrfs_test_opt(info, REF_VERIFY))
1141 seq_puts(seq, ",ref_verify");
1142 seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1143 subvol_name = btrfs_get_subvol_name_from_objectid(info,
1144 btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1145 if (!IS_ERR(subvol_name)) {
1146 seq_show_option(seq, "subvol", subvol_name);
1147 kfree(subvol_name);
1148 }
1149 return 0;
1150 }
1151
1152 /*
1153 * subvolumes are identified by ino 256
1154 */
is_subvolume_inode(struct inode * inode)1155 static inline int is_subvolume_inode(struct inode *inode)
1156 {
1157 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1158 return 1;
1159 return 0;
1160 }
1161
mount_subvol(const char * subvol_name,u64 subvol_objectid,struct vfsmount * mnt)1162 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1163 struct vfsmount *mnt)
1164 {
1165 struct dentry *root;
1166 int ret;
1167
1168 if (!subvol_name) {
1169 if (!subvol_objectid) {
1170 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1171 &subvol_objectid);
1172 if (ret) {
1173 root = ERR_PTR(ret);
1174 goto out;
1175 }
1176 }
1177 subvol_name = btrfs_get_subvol_name_from_objectid(
1178 btrfs_sb(mnt->mnt_sb), subvol_objectid);
1179 if (IS_ERR(subvol_name)) {
1180 root = ERR_CAST(subvol_name);
1181 subvol_name = NULL;
1182 goto out;
1183 }
1184
1185 }
1186
1187 root = mount_subtree(mnt, subvol_name);
1188 /* mount_subtree() drops our reference on the vfsmount. */
1189 mnt = NULL;
1190
1191 if (!IS_ERR(root)) {
1192 struct super_block *s = root->d_sb;
1193 struct btrfs_fs_info *fs_info = btrfs_sb(s);
1194 struct inode *root_inode = d_inode(root);
1195 u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1196
1197 ret = 0;
1198 if (!is_subvolume_inode(root_inode)) {
1199 btrfs_err(fs_info, "'%s' is not a valid subvolume",
1200 subvol_name);
1201 ret = -EINVAL;
1202 }
1203 if (subvol_objectid && root_objectid != subvol_objectid) {
1204 /*
1205 * This will also catch a race condition where a
1206 * subvolume which was passed by ID is renamed and
1207 * another subvolume is renamed over the old location.
1208 */
1209 btrfs_err(fs_info,
1210 "subvol '%s' does not match subvolid %llu",
1211 subvol_name, subvol_objectid);
1212 ret = -EINVAL;
1213 }
1214 if (ret) {
1215 dput(root);
1216 root = ERR_PTR(ret);
1217 deactivate_locked_super(s);
1218 }
1219 }
1220
1221 out:
1222 mntput(mnt);
1223 kfree(subvol_name);
1224 return root;
1225 }
1226
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,u32 new_pool_size,u32 old_pool_size)1227 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1228 u32 new_pool_size, u32 old_pool_size)
1229 {
1230 if (new_pool_size == old_pool_size)
1231 return;
1232
1233 fs_info->thread_pool_size = new_pool_size;
1234
1235 btrfs_info(fs_info, "resize thread pool %d -> %d",
1236 old_pool_size, new_pool_size);
1237
1238 btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1239 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1240 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1241 workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1242 workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1243 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1244 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1245 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1246 }
1247
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long long old_opts,int flags)1248 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1249 unsigned long long old_opts, int flags)
1250 {
1251 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1252 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1253 (flags & SB_RDONLY))) {
1254 /* wait for any defraggers to finish */
1255 wait_event(fs_info->transaction_wait,
1256 (atomic_read(&fs_info->defrag_running) == 0));
1257 if (flags & SB_RDONLY)
1258 sync_filesystem(fs_info->sb);
1259 }
1260 }
1261
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long long old_opts)1262 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1263 unsigned long long old_opts)
1264 {
1265 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1266
1267 /*
1268 * We need to cleanup all defragable inodes if the autodefragment is
1269 * close or the filesystem is read only.
1270 */
1271 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1272 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1273 btrfs_cleanup_defrag_inodes(fs_info);
1274 }
1275
1276 /* If we toggled discard async */
1277 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1278 btrfs_test_opt(fs_info, DISCARD_ASYNC))
1279 btrfs_discard_resume(fs_info);
1280 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1281 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1282 btrfs_discard_cleanup(fs_info);
1283
1284 /* If we toggled space cache */
1285 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1286 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1287 }
1288
btrfs_remount_rw(struct btrfs_fs_info * fs_info)1289 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1290 {
1291 int ret;
1292
1293 if (BTRFS_FS_ERROR(fs_info)) {
1294 btrfs_err(fs_info,
1295 "remounting read-write after error is not allowed");
1296 return -EINVAL;
1297 }
1298
1299 if (fs_info->fs_devices->rw_devices == 0)
1300 return -EACCES;
1301
1302 if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1303 btrfs_warn(fs_info,
1304 "too many missing devices, writable remount is not allowed");
1305 return -EACCES;
1306 }
1307
1308 if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1309 btrfs_warn(fs_info,
1310 "mount required to replay tree-log, cannot remount read-write");
1311 return -EINVAL;
1312 }
1313
1314 /*
1315 * NOTE: when remounting with a change that does writes, don't put it
1316 * anywhere above this point, as we are not sure to be safe to write
1317 * until we pass the above checks.
1318 */
1319 ret = btrfs_start_pre_rw_mount(fs_info);
1320 if (ret)
1321 return ret;
1322
1323 btrfs_clear_sb_rdonly(fs_info->sb);
1324
1325 set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1326
1327 /*
1328 * If we've gone from readonly -> read-write, we need to get our
1329 * sync/async discard lists in the right state.
1330 */
1331 btrfs_discard_resume(fs_info);
1332
1333 return 0;
1334 }
1335
btrfs_remount_ro(struct btrfs_fs_info * fs_info)1336 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1337 {
1338 /*
1339 * This also happens on 'umount -rf' or on shutdown, when the
1340 * filesystem is busy.
1341 */
1342 cancel_work_sync(&fs_info->async_reclaim_work);
1343 cancel_work_sync(&fs_info->async_data_reclaim_work);
1344
1345 btrfs_discard_cleanup(fs_info);
1346
1347 /* Wait for the uuid_scan task to finish */
1348 down(&fs_info->uuid_tree_rescan_sem);
1349 /* Avoid complains from lockdep et al. */
1350 up(&fs_info->uuid_tree_rescan_sem);
1351
1352 btrfs_set_sb_rdonly(fs_info->sb);
1353
1354 /*
1355 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1356 * loop if it's already active. If it's already asleep, we'll leave
1357 * unused block groups on disk until we're mounted read-write again
1358 * unless we clean them up here.
1359 */
1360 btrfs_delete_unused_bgs(fs_info);
1361
1362 /*
1363 * The cleaner task could be already running before we set the flag
1364 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). We must make
1365 * sure that after we finish the remount, i.e. after we call
1366 * btrfs_commit_super(), the cleaner can no longer start a transaction
1367 * - either because it was dropping a dead root, running delayed iputs
1368 * or deleting an unused block group (the cleaner picked a block
1369 * group from the list of unused block groups before we were able to
1370 * in the previous call to btrfs_delete_unused_bgs()).
1371 */
1372 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1373
1374 /*
1375 * We've set the superblock to RO mode, so we might have made the
1376 * cleaner task sleep without running all pending delayed iputs. Go
1377 * through all the delayed iputs here, so that if an unmount happens
1378 * without remounting RW we don't end up at finishing close_ctree()
1379 * with a non-empty list of delayed iputs.
1380 */
1381 btrfs_run_delayed_iputs(fs_info);
1382
1383 btrfs_dev_replace_suspend_for_unmount(fs_info);
1384 btrfs_scrub_cancel(fs_info);
1385 btrfs_pause_balance(fs_info);
1386
1387 /*
1388 * Pause the qgroup rescan worker if it is running. We don't want it to
1389 * be still running after we are in RO mode, as after that, by the time
1390 * we unmount, it might have left a transaction open, so we would leak
1391 * the transaction and/or crash.
1392 */
1393 btrfs_qgroup_wait_for_completion(fs_info, false);
1394
1395 return btrfs_commit_super(fs_info);
1396 }
1397
btrfs_ctx_to_info(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1398 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1399 {
1400 fs_info->max_inline = ctx->max_inline;
1401 fs_info->commit_interval = ctx->commit_interval;
1402 fs_info->metadata_ratio = ctx->metadata_ratio;
1403 fs_info->thread_pool_size = ctx->thread_pool_size;
1404 fs_info->mount_opt = ctx->mount_opt;
1405 fs_info->compress_type = ctx->compress_type;
1406 fs_info->compress_level = ctx->compress_level;
1407 }
1408
btrfs_info_to_ctx(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1409 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1410 {
1411 ctx->max_inline = fs_info->max_inline;
1412 ctx->commit_interval = fs_info->commit_interval;
1413 ctx->metadata_ratio = fs_info->metadata_ratio;
1414 ctx->thread_pool_size = fs_info->thread_pool_size;
1415 ctx->mount_opt = fs_info->mount_opt;
1416 ctx->compress_type = fs_info->compress_type;
1417 ctx->compress_level = fs_info->compress_level;
1418 }
1419
1420 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...) \
1421 do { \
1422 if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \
1423 btrfs_raw_test_opt(fs_info->mount_opt, opt)) \
1424 btrfs_info(fs_info, fmt, ##args); \
1425 } while (0)
1426
1427 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...) \
1428 do { \
1429 if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) && \
1430 !btrfs_raw_test_opt(fs_info->mount_opt, opt)) \
1431 btrfs_info(fs_info, fmt, ##args); \
1432 } while (0)
1433
btrfs_emit_options(struct btrfs_fs_info * info,struct btrfs_fs_context * old)1434 static void btrfs_emit_options(struct btrfs_fs_info *info,
1435 struct btrfs_fs_context *old)
1436 {
1437 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1438 btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1439 btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1440 btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1441 btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1442 btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1443 btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1444 btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1445 btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1446 btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1447 btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1448 btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1449 btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1450 btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1451 btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1452 btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1453 btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1454 btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1455 btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1456 btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1457 btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1458 btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums");
1459 btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags");
1460
1461 btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1462 btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1463 btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1464 btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1465 btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1466 btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1467 btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1468 btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1469 btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1470
1471 /* Did the compression settings change? */
1472 if (btrfs_test_opt(info, COMPRESS) &&
1473 (!old ||
1474 old->compress_type != info->compress_type ||
1475 old->compress_level != info->compress_level ||
1476 (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1477 btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1478 const char *compress_type = btrfs_compress_type2str(info->compress_type);
1479
1480 btrfs_info(info, "%s %s compression, level %d",
1481 btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1482 compress_type, info->compress_level);
1483 }
1484
1485 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1486 btrfs_info(info, "max_inline set to %llu", info->max_inline);
1487 }
1488
btrfs_reconfigure(struct fs_context * fc)1489 static int btrfs_reconfigure(struct fs_context *fc)
1490 {
1491 struct super_block *sb = fc->root->d_sb;
1492 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1493 struct btrfs_fs_context *ctx = fc->fs_private;
1494 struct btrfs_fs_context old_ctx;
1495 int ret = 0;
1496 bool mount_reconfigure = (fc->s_fs_info != NULL);
1497
1498 btrfs_info_to_ctx(fs_info, &old_ctx);
1499
1500 /*
1501 * This is our "bind mount" trick, we don't want to allow the user to do
1502 * anything other than mount a different ro/rw and a different subvol,
1503 * all of the mount options should be maintained.
1504 */
1505 if (mount_reconfigure)
1506 ctx->mount_opt = old_ctx.mount_opt;
1507
1508 sync_filesystem(sb);
1509 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1510
1511 if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1512 return -EINVAL;
1513
1514 ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1515 if (ret < 0)
1516 return ret;
1517
1518 btrfs_ctx_to_info(fs_info, ctx);
1519 btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1520 btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1521 old_ctx.thread_pool_size);
1522
1523 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1524 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1525 (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1526 btrfs_warn(fs_info,
1527 "remount supports changing free space tree only from RO to RW");
1528 /* Make sure free space cache options match the state on disk. */
1529 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1530 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1531 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1532 }
1533 if (btrfs_free_space_cache_v1_active(fs_info)) {
1534 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1535 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1536 }
1537 }
1538
1539 ret = 0;
1540 if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1541 ret = btrfs_remount_ro(fs_info);
1542 else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1543 ret = btrfs_remount_rw(fs_info);
1544 if (ret)
1545 goto restore;
1546
1547 /*
1548 * If we set the mask during the parameter parsing VFS would reject the
1549 * remount. Here we can set the mask and the value will be updated
1550 * appropriately.
1551 */
1552 if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1553 fc->sb_flags_mask |= SB_POSIXACL;
1554
1555 btrfs_emit_options(fs_info, &old_ctx);
1556 wake_up_process(fs_info->transaction_kthread);
1557 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1558 btrfs_clear_oneshot_options(fs_info);
1559 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1560
1561 return 0;
1562 restore:
1563 btrfs_ctx_to_info(fs_info, &old_ctx);
1564 btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1565 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1566 return ret;
1567 }
1568
1569 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * a,const void * b)1570 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1571 {
1572 const struct btrfs_device_info *dev_info1 = a;
1573 const struct btrfs_device_info *dev_info2 = b;
1574
1575 if (dev_info1->max_avail > dev_info2->max_avail)
1576 return -1;
1577 else if (dev_info1->max_avail < dev_info2->max_avail)
1578 return 1;
1579 return 0;
1580 }
1581
1582 /*
1583 * sort the devices by max_avail, in which max free extent size of each device
1584 * is stored.(Descending Sort)
1585 */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)1586 static inline void btrfs_descending_sort_devices(
1587 struct btrfs_device_info *devices,
1588 size_t nr_devices)
1589 {
1590 sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1591 btrfs_cmp_device_free_bytes, NULL);
1592 }
1593
1594 /*
1595 * The helper to calc the free space on the devices that can be used to store
1596 * file data.
1597 */
btrfs_calc_avail_data_space(struct btrfs_fs_info * fs_info,u64 * free_bytes)1598 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1599 u64 *free_bytes)
1600 {
1601 struct btrfs_device_info *devices_info;
1602 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1603 struct btrfs_device *device;
1604 u64 type;
1605 u64 avail_space;
1606 u64 min_stripe_size;
1607 int num_stripes = 1;
1608 int i = 0, nr_devices;
1609 const struct btrfs_raid_attr *rattr;
1610
1611 /*
1612 * We aren't under the device list lock, so this is racy-ish, but good
1613 * enough for our purposes.
1614 */
1615 nr_devices = fs_info->fs_devices->open_devices;
1616 if (!nr_devices) {
1617 smp_mb();
1618 nr_devices = fs_info->fs_devices->open_devices;
1619 ASSERT(nr_devices);
1620 if (!nr_devices) {
1621 *free_bytes = 0;
1622 return 0;
1623 }
1624 }
1625
1626 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1627 GFP_KERNEL);
1628 if (!devices_info)
1629 return -ENOMEM;
1630
1631 /* calc min stripe number for data space allocation */
1632 type = btrfs_data_alloc_profile(fs_info);
1633 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1634
1635 if (type & BTRFS_BLOCK_GROUP_RAID0)
1636 num_stripes = nr_devices;
1637 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1638 num_stripes = rattr->ncopies;
1639 else if (type & BTRFS_BLOCK_GROUP_RAID10)
1640 num_stripes = 4;
1641
1642 /* Adjust for more than 1 stripe per device */
1643 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1644
1645 rcu_read_lock();
1646 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1647 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1648 &device->dev_state) ||
1649 !device->bdev ||
1650 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1651 continue;
1652
1653 if (i >= nr_devices)
1654 break;
1655
1656 avail_space = device->total_bytes - device->bytes_used;
1657
1658 /* align with stripe_len */
1659 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1660
1661 /*
1662 * Ensure we have at least min_stripe_size on top of the
1663 * reserved space on the device.
1664 */
1665 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1666 continue;
1667
1668 avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1669
1670 devices_info[i].dev = device;
1671 devices_info[i].max_avail = avail_space;
1672
1673 i++;
1674 }
1675 rcu_read_unlock();
1676
1677 nr_devices = i;
1678
1679 btrfs_descending_sort_devices(devices_info, nr_devices);
1680
1681 i = nr_devices - 1;
1682 avail_space = 0;
1683 while (nr_devices >= rattr->devs_min) {
1684 num_stripes = min(num_stripes, nr_devices);
1685
1686 if (devices_info[i].max_avail >= min_stripe_size) {
1687 int j;
1688 u64 alloc_size;
1689
1690 avail_space += devices_info[i].max_avail * num_stripes;
1691 alloc_size = devices_info[i].max_avail;
1692 for (j = i + 1 - num_stripes; j <= i; j++)
1693 devices_info[j].max_avail -= alloc_size;
1694 }
1695 i--;
1696 nr_devices--;
1697 }
1698
1699 kfree(devices_info);
1700 *free_bytes = avail_space;
1701 return 0;
1702 }
1703
1704 /*
1705 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1706 *
1707 * If there's a redundant raid level at DATA block groups, use the respective
1708 * multiplier to scale the sizes.
1709 *
1710 * Unused device space usage is based on simulating the chunk allocator
1711 * algorithm that respects the device sizes and order of allocations. This is
1712 * a close approximation of the actual use but there are other factors that may
1713 * change the result (like a new metadata chunk).
1714 *
1715 * If metadata is exhausted, f_bavail will be 0.
1716 */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)1717 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1718 {
1719 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1720 struct btrfs_super_block *disk_super = fs_info->super_copy;
1721 struct btrfs_space_info *found;
1722 u64 total_used = 0;
1723 u64 total_free_data = 0;
1724 u64 total_free_meta = 0;
1725 u32 bits = fs_info->sectorsize_bits;
1726 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1727 unsigned factor = 1;
1728 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1729 int ret;
1730 u64 thresh = 0;
1731 int mixed = 0;
1732
1733 list_for_each_entry(found, &fs_info->space_info, list) {
1734 if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1735 int i;
1736
1737 total_free_data += found->disk_total - found->disk_used;
1738 total_free_data -=
1739 btrfs_account_ro_block_groups_free_space(found);
1740
1741 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1742 if (!list_empty(&found->block_groups[i]))
1743 factor = btrfs_bg_type_to_factor(
1744 btrfs_raid_array[i].bg_flag);
1745 }
1746 }
1747
1748 /*
1749 * Metadata in mixed block group profiles are accounted in data
1750 */
1751 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1752 if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1753 mixed = 1;
1754 else
1755 total_free_meta += found->disk_total -
1756 found->disk_used;
1757 }
1758
1759 total_used += found->disk_used;
1760 }
1761
1762 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1763 buf->f_blocks >>= bits;
1764 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1765
1766 /* Account global block reserve as used, it's in logical size already */
1767 spin_lock(&block_rsv->lock);
1768 /* Mixed block groups accounting is not byte-accurate, avoid overflow */
1769 if (buf->f_bfree >= block_rsv->size >> bits)
1770 buf->f_bfree -= block_rsv->size >> bits;
1771 else
1772 buf->f_bfree = 0;
1773 spin_unlock(&block_rsv->lock);
1774
1775 buf->f_bavail = div_u64(total_free_data, factor);
1776 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1777 if (ret)
1778 return ret;
1779 buf->f_bavail += div_u64(total_free_data, factor);
1780 buf->f_bavail = buf->f_bavail >> bits;
1781
1782 /*
1783 * We calculate the remaining metadata space minus global reserve. If
1784 * this is (supposedly) smaller than zero, there's no space. But this
1785 * does not hold in practice, the exhausted state happens where's still
1786 * some positive delta. So we apply some guesswork and compare the
1787 * delta to a 4M threshold. (Practically observed delta was ~2M.)
1788 *
1789 * We probably cannot calculate the exact threshold value because this
1790 * depends on the internal reservations requested by various
1791 * operations, so some operations that consume a few metadata will
1792 * succeed even if the Avail is zero. But this is better than the other
1793 * way around.
1794 */
1795 thresh = SZ_4M;
1796
1797 /*
1798 * We only want to claim there's no available space if we can no longer
1799 * allocate chunks for our metadata profile and our global reserve will
1800 * not fit in the free metadata space. If we aren't ->full then we
1801 * still can allocate chunks and thus are fine using the currently
1802 * calculated f_bavail.
1803 */
1804 if (!mixed && block_rsv->space_info->full &&
1805 (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1806 buf->f_bavail = 0;
1807
1808 buf->f_type = BTRFS_SUPER_MAGIC;
1809 buf->f_bsize = fs_info->sectorsize;
1810 buf->f_namelen = BTRFS_NAME_LEN;
1811
1812 /* We treat it as constant endianness (it doesn't matter _which_)
1813 because we want the fsid to come out the same whether mounted
1814 on a big-endian or little-endian host */
1815 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1816 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1817 /* Mask in the root object ID too, to disambiguate subvols */
1818 buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1819 buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1820
1821 return 0;
1822 }
1823
btrfs_fc_test_super(struct super_block * sb,struct fs_context * fc)1824 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1825 {
1826 struct btrfs_fs_info *p = fc->s_fs_info;
1827 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1828
1829 return fs_info->fs_devices == p->fs_devices;
1830 }
1831
btrfs_get_tree_super(struct fs_context * fc)1832 static int btrfs_get_tree_super(struct fs_context *fc)
1833 {
1834 struct btrfs_fs_info *fs_info = fc->s_fs_info;
1835 struct btrfs_fs_context *ctx = fc->fs_private;
1836 struct btrfs_fs_devices *fs_devices = NULL;
1837 struct block_device *bdev;
1838 struct btrfs_device *device;
1839 struct super_block *sb;
1840 blk_mode_t mode = btrfs_open_mode(fc);
1841 int ret;
1842
1843 btrfs_ctx_to_info(fs_info, ctx);
1844 mutex_lock(&uuid_mutex);
1845
1846 /*
1847 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1848 * either a valid device or an error.
1849 */
1850 device = btrfs_scan_one_device(fc->source, mode, true);
1851 ASSERT(device != NULL);
1852 if (IS_ERR(device)) {
1853 mutex_unlock(&uuid_mutex);
1854 return PTR_ERR(device);
1855 }
1856
1857 fs_devices = device->fs_devices;
1858 fs_info->fs_devices = fs_devices;
1859
1860 ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1861 mutex_unlock(&uuid_mutex);
1862 if (ret)
1863 return ret;
1864
1865 if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1866 ret = -EACCES;
1867 goto error;
1868 }
1869
1870 bdev = fs_devices->latest_dev->bdev;
1871
1872 /*
1873 * From now on the error handling is not straightforward.
1874 *
1875 * If successful, this will transfer the fs_info into the super block,
1876 * and fc->s_fs_info will be NULL. However if there's an existing
1877 * super, we'll still have fc->s_fs_info populated. If we error
1878 * completely out it'll be cleaned up when we drop the fs_context,
1879 * otherwise it's tied to the lifetime of the super_block.
1880 */
1881 sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1882 if (IS_ERR(sb)) {
1883 ret = PTR_ERR(sb);
1884 goto error;
1885 }
1886
1887 set_device_specific_options(fs_info);
1888
1889 if (sb->s_root) {
1890 btrfs_close_devices(fs_devices);
1891 /*
1892 * At this stage we may have RO flag mismatch between
1893 * fc->sb_flags and sb->s_flags. Caller should detect such
1894 * mismatch and reconfigure with sb->s_umount rwsem held if
1895 * needed.
1896 */
1897 } else {
1898 snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1899 shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1900 btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1901 ret = btrfs_fill_super(sb, fs_devices);
1902 if (ret) {
1903 deactivate_locked_super(sb);
1904 return ret;
1905 }
1906 }
1907
1908 btrfs_clear_oneshot_options(fs_info);
1909
1910 fc->root = dget(sb->s_root);
1911 return 0;
1912
1913 error:
1914 btrfs_close_devices(fs_devices);
1915 return ret;
1916 }
1917
1918 /*
1919 * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1920 * with different ro/rw options") the following works:
1921 *
1922 * (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1923 * (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1924 *
1925 * which looks nice and innocent but is actually pretty intricate and deserves
1926 * a long comment.
1927 *
1928 * On another filesystem a subvolume mount is close to something like:
1929 *
1930 * (iii) # create rw superblock + initial mount
1931 * mount -t xfs /dev/sdb /opt/
1932 *
1933 * # create ro bind mount
1934 * mount --bind -o ro /opt/foo /mnt/foo
1935 *
1936 * # unmount initial mount
1937 * umount /opt
1938 *
1939 * Of course, there's some special subvolume sauce and there's the fact that the
1940 * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1941 * it's very close and will help us understand the issue.
1942 *
1943 * The old mount API didn't cleanly distinguish between a mount being made ro
1944 * and a superblock being made ro. The only way to change the ro state of
1945 * either object was by passing ms_rdonly. If a new mount was created via
1946 * mount(2) such as:
1947 *
1948 * mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1949 *
1950 * the MS_RDONLY flag being specified had two effects:
1951 *
1952 * (1) MNT_READONLY was raised -> the resulting mount got
1953 * @mnt->mnt_flags |= MNT_READONLY raised.
1954 *
1955 * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1956 * made the superblock ro. Note, how SB_RDONLY has the same value as
1957 * ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1958 *
1959 * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1960 * subtree mounted ro.
1961 *
1962 * But consider the effect on the old mount API on btrfs subvolume mounting
1963 * which combines the distinct step in (iii) into a single step.
1964 *
1965 * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1966 * is issued the superblock is ro and thus even if the mount created for (ii) is
1967 * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1968 * to rw for (ii) which it did using an internal remount call.
1969 *
1970 * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1971 * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1972 * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1973 * passed by mount(8) to mount(2).
1974 *
1975 * Enter the new mount API. The new mount API disambiguates making a mount ro
1976 * and making a superblock ro.
1977 *
1978 * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1979 * fsmount() or mount_setattr() this is a pure VFS level change for a
1980 * specific mount or mount tree that is never seen by the filesystem itself.
1981 *
1982 * (4) To turn a superblock ro the "ro" flag must be used with
1983 * fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1984 * in fc->sb_flags.
1985 *
1986 * But, currently the util-linux mount command already utilizes the new mount
1987 * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's
1988 * btrfs or not, setting the whole super block RO. To make per-subvolume mounting
1989 * work with different options work we need to keep backward compatibility.
1990 */
btrfs_reconfigure_for_mount(struct fs_context * fc,struct vfsmount * mnt)1991 static int btrfs_reconfigure_for_mount(struct fs_context *fc, struct vfsmount *mnt)
1992 {
1993 int ret = 0;
1994
1995 if (fc->sb_flags & SB_RDONLY)
1996 return ret;
1997
1998 down_write(&mnt->mnt_sb->s_umount);
1999 if (!(fc->sb_flags & SB_RDONLY) && (mnt->mnt_sb->s_flags & SB_RDONLY))
2000 ret = btrfs_reconfigure(fc);
2001 up_write(&mnt->mnt_sb->s_umount);
2002 return ret;
2003 }
2004
btrfs_get_tree_subvol(struct fs_context * fc)2005 static int btrfs_get_tree_subvol(struct fs_context *fc)
2006 {
2007 struct btrfs_fs_info *fs_info = NULL;
2008 struct btrfs_fs_context *ctx = fc->fs_private;
2009 struct fs_context *dup_fc;
2010 struct dentry *dentry;
2011 struct vfsmount *mnt;
2012 int ret = 0;
2013
2014 /*
2015 * Setup a dummy root and fs_info for test/set super. This is because
2016 * we don't actually fill this stuff out until open_ctree, but we need
2017 * then open_ctree will properly initialize the file system specific
2018 * settings later. btrfs_init_fs_info initializes the static elements
2019 * of the fs_info (locks and such) to make cleanup easier if we find a
2020 * superblock with our given fs_devices later on at sget() time.
2021 */
2022 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2023 if (!fs_info)
2024 return -ENOMEM;
2025
2026 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2027 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2028 if (!fs_info->super_copy || !fs_info->super_for_commit) {
2029 btrfs_free_fs_info(fs_info);
2030 return -ENOMEM;
2031 }
2032 btrfs_init_fs_info(fs_info);
2033
2034 dup_fc = vfs_dup_fs_context(fc);
2035 if (IS_ERR(dup_fc)) {
2036 btrfs_free_fs_info(fs_info);
2037 return PTR_ERR(dup_fc);
2038 }
2039
2040 /*
2041 * When we do the sget_fc this gets transferred to the sb, so we only
2042 * need to set it on the dup_fc as this is what creates the super block.
2043 */
2044 dup_fc->s_fs_info = fs_info;
2045
2046 /*
2047 * We'll do the security settings in our btrfs_get_tree_super() mount
2048 * loop, they were duplicated into dup_fc, we can drop the originals
2049 * here.
2050 */
2051 security_free_mnt_opts(&fc->security);
2052 fc->security = NULL;
2053
2054 mnt = fc_mount(dup_fc);
2055 if (IS_ERR(mnt)) {
2056 put_fs_context(dup_fc);
2057 return PTR_ERR(mnt);
2058 }
2059 ret = btrfs_reconfigure_for_mount(dup_fc, mnt);
2060 put_fs_context(dup_fc);
2061 if (ret) {
2062 mntput(mnt);
2063 return ret;
2064 }
2065
2066 /*
2067 * This free's ->subvol_name, because if it isn't set we have to
2068 * allocate a buffer to hold the subvol_name, so we just drop our
2069 * reference to it here.
2070 */
2071 dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2072 ctx->subvol_name = NULL;
2073 if (IS_ERR(dentry))
2074 return PTR_ERR(dentry);
2075
2076 fc->root = dentry;
2077 return 0;
2078 }
2079
btrfs_get_tree(struct fs_context * fc)2080 static int btrfs_get_tree(struct fs_context *fc)
2081 {
2082 /*
2083 * Since we use mount_subtree to mount the default/specified subvol, we
2084 * have to do mounts in two steps.
2085 *
2086 * First pass through we call btrfs_get_tree_subvol(), this is just a
2087 * wrapper around fc_mount() to call back into here again, and this time
2088 * we'll call btrfs_get_tree_super(). This will do the open_ctree() and
2089 * everything to open the devices and file system. Then we return back
2090 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2091 * from there we can do our mount_subvol() call, which will lookup
2092 * whichever subvol we're mounting and setup this fc with the
2093 * appropriate dentry for the subvol.
2094 */
2095 if (fc->s_fs_info)
2096 return btrfs_get_tree_super(fc);
2097 return btrfs_get_tree_subvol(fc);
2098 }
2099
btrfs_kill_super(struct super_block * sb)2100 static void btrfs_kill_super(struct super_block *sb)
2101 {
2102 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2103 kill_anon_super(sb);
2104 btrfs_free_fs_info(fs_info);
2105 }
2106
btrfs_free_fs_context(struct fs_context * fc)2107 static void btrfs_free_fs_context(struct fs_context *fc)
2108 {
2109 struct btrfs_fs_context *ctx = fc->fs_private;
2110 struct btrfs_fs_info *fs_info = fc->s_fs_info;
2111
2112 if (fs_info)
2113 btrfs_free_fs_info(fs_info);
2114
2115 if (ctx && refcount_dec_and_test(&ctx->refs)) {
2116 kfree(ctx->subvol_name);
2117 kfree(ctx);
2118 }
2119 }
2120
btrfs_dup_fs_context(struct fs_context * fc,struct fs_context * src_fc)2121 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2122 {
2123 struct btrfs_fs_context *ctx = src_fc->fs_private;
2124
2125 /*
2126 * Give a ref to our ctx to this dup, as we want to keep it around for
2127 * our original fc so we can have the subvolume name or objectid.
2128 *
2129 * We unset ->source in the original fc because the dup needs it for
2130 * mounting, and then once we free the dup it'll free ->source, so we
2131 * need to make sure we're only pointing to it in one fc.
2132 */
2133 refcount_inc(&ctx->refs);
2134 fc->fs_private = ctx;
2135 fc->source = src_fc->source;
2136 src_fc->source = NULL;
2137 return 0;
2138 }
2139
2140 static const struct fs_context_operations btrfs_fs_context_ops = {
2141 .parse_param = btrfs_parse_param,
2142 .reconfigure = btrfs_reconfigure,
2143 .get_tree = btrfs_get_tree,
2144 .dup = btrfs_dup_fs_context,
2145 .free = btrfs_free_fs_context,
2146 };
2147
btrfs_init_fs_context(struct fs_context * fc)2148 static int btrfs_init_fs_context(struct fs_context *fc)
2149 {
2150 struct btrfs_fs_context *ctx;
2151
2152 ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2153 if (!ctx)
2154 return -ENOMEM;
2155
2156 refcount_set(&ctx->refs, 1);
2157 fc->fs_private = ctx;
2158 fc->ops = &btrfs_fs_context_ops;
2159
2160 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2161 btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2162 } else {
2163 ctx->thread_pool_size =
2164 min_t(unsigned long, num_online_cpus() + 2, 8);
2165 ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2166 ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2167 }
2168
2169 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2170 fc->sb_flags |= SB_POSIXACL;
2171 #endif
2172 fc->sb_flags |= SB_I_VERSION;
2173
2174 return 0;
2175 }
2176
2177 static struct file_system_type btrfs_fs_type = {
2178 .owner = THIS_MODULE,
2179 .name = "btrfs",
2180 .init_fs_context = btrfs_init_fs_context,
2181 .parameters = btrfs_fs_parameters,
2182 .kill_sb = btrfs_kill_super,
2183 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA |
2184 FS_ALLOW_IDMAP | FS_MGTIME,
2185 };
2186
2187 MODULE_ALIAS_FS("btrfs");
2188
btrfs_control_open(struct inode * inode,struct file * file)2189 static int btrfs_control_open(struct inode *inode, struct file *file)
2190 {
2191 /*
2192 * The control file's private_data is used to hold the
2193 * transaction when it is started and is used to keep
2194 * track of whether a transaction is already in progress.
2195 */
2196 file->private_data = NULL;
2197 return 0;
2198 }
2199
2200 /*
2201 * Used by /dev/btrfs-control for devices ioctls.
2202 */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2203 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2204 unsigned long arg)
2205 {
2206 struct btrfs_ioctl_vol_args *vol;
2207 struct btrfs_device *device = NULL;
2208 dev_t devt = 0;
2209 int ret = -ENOTTY;
2210
2211 if (!capable(CAP_SYS_ADMIN))
2212 return -EPERM;
2213
2214 vol = memdup_user((void __user *)arg, sizeof(*vol));
2215 if (IS_ERR(vol))
2216 return PTR_ERR(vol);
2217 ret = btrfs_check_ioctl_vol_args_path(vol);
2218 if (ret < 0)
2219 goto out;
2220
2221 switch (cmd) {
2222 case BTRFS_IOC_SCAN_DEV:
2223 mutex_lock(&uuid_mutex);
2224 /*
2225 * Scanning outside of mount can return NULL which would turn
2226 * into 0 error code.
2227 */
2228 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2229 ret = PTR_ERR_OR_ZERO(device);
2230 mutex_unlock(&uuid_mutex);
2231 break;
2232 case BTRFS_IOC_FORGET_DEV:
2233 if (vol->name[0] != 0) {
2234 ret = lookup_bdev(vol->name, &devt);
2235 if (ret)
2236 break;
2237 }
2238 ret = btrfs_forget_devices(devt);
2239 break;
2240 case BTRFS_IOC_DEVICES_READY:
2241 mutex_lock(&uuid_mutex);
2242 /*
2243 * Scanning outside of mount can return NULL which would turn
2244 * into 0 error code.
2245 */
2246 device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2247 if (IS_ERR_OR_NULL(device)) {
2248 mutex_unlock(&uuid_mutex);
2249 if (IS_ERR(device))
2250 ret = PTR_ERR(device);
2251 else
2252 ret = 0;
2253 break;
2254 }
2255 ret = !(device->fs_devices->num_devices ==
2256 device->fs_devices->total_devices);
2257 mutex_unlock(&uuid_mutex);
2258 break;
2259 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2260 ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2261 break;
2262 }
2263
2264 out:
2265 kfree(vol);
2266 return ret;
2267 }
2268
btrfs_freeze(struct super_block * sb)2269 static int btrfs_freeze(struct super_block *sb)
2270 {
2271 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2272
2273 set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2274 /*
2275 * We don't need a barrier here, we'll wait for any transaction that
2276 * could be in progress on other threads (and do delayed iputs that
2277 * we want to avoid on a frozen filesystem), or do the commit
2278 * ourselves.
2279 */
2280 return btrfs_commit_current_transaction(fs_info->tree_root);
2281 }
2282
check_dev_super(struct btrfs_device * dev)2283 static int check_dev_super(struct btrfs_device *dev)
2284 {
2285 struct btrfs_fs_info *fs_info = dev->fs_info;
2286 struct btrfs_super_block *sb;
2287 u64 last_trans;
2288 u16 csum_type;
2289 int ret = 0;
2290
2291 /* This should be called with fs still frozen. */
2292 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2293
2294 /* Missing dev, no need to check. */
2295 if (!dev->bdev)
2296 return 0;
2297
2298 /* Only need to check the primary super block. */
2299 sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2300 if (IS_ERR(sb))
2301 return PTR_ERR(sb);
2302
2303 /* Verify the checksum. */
2304 csum_type = btrfs_super_csum_type(sb);
2305 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2306 btrfs_err(fs_info, "csum type changed, has %u expect %u",
2307 csum_type, btrfs_super_csum_type(fs_info->super_copy));
2308 ret = -EUCLEAN;
2309 goto out;
2310 }
2311
2312 if (btrfs_check_super_csum(fs_info, sb)) {
2313 btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2314 ret = -EUCLEAN;
2315 goto out;
2316 }
2317
2318 /* Btrfs_validate_super() includes fsid check against super->fsid. */
2319 ret = btrfs_validate_super(fs_info, sb, 0);
2320 if (ret < 0)
2321 goto out;
2322
2323 last_trans = btrfs_get_last_trans_committed(fs_info);
2324 if (btrfs_super_generation(sb) != last_trans) {
2325 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2326 btrfs_super_generation(sb), last_trans);
2327 ret = -EUCLEAN;
2328 goto out;
2329 }
2330 out:
2331 btrfs_release_disk_super(sb);
2332 return ret;
2333 }
2334
btrfs_unfreeze(struct super_block * sb)2335 static int btrfs_unfreeze(struct super_block *sb)
2336 {
2337 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2338 struct btrfs_device *device;
2339 int ret = 0;
2340
2341 /*
2342 * Make sure the fs is not changed by accident (like hibernation then
2343 * modified by other OS).
2344 * If we found anything wrong, we mark the fs error immediately.
2345 *
2346 * And since the fs is frozen, no one can modify the fs yet, thus
2347 * we don't need to hold device_list_mutex.
2348 */
2349 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2350 ret = check_dev_super(device);
2351 if (ret < 0) {
2352 btrfs_handle_fs_error(fs_info, ret,
2353 "super block on devid %llu got modified unexpectedly",
2354 device->devid);
2355 break;
2356 }
2357 }
2358 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2359
2360 /*
2361 * We still return 0, to allow VFS layer to unfreeze the fs even the
2362 * above checks failed. Since the fs is either fine or read-only, we're
2363 * safe to continue, without causing further damage.
2364 */
2365 return 0;
2366 }
2367
btrfs_show_devname(struct seq_file * m,struct dentry * root)2368 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2369 {
2370 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2371
2372 /*
2373 * There should be always a valid pointer in latest_dev, it may be stale
2374 * for a short moment in case it's being deleted but still valid until
2375 * the end of RCU grace period.
2376 */
2377 rcu_read_lock();
2378 seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2379 rcu_read_unlock();
2380
2381 return 0;
2382 }
2383
btrfs_nr_cached_objects(struct super_block * sb,struct shrink_control * sc)2384 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2385 {
2386 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2387 const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2388
2389 trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2390
2391 return nr;
2392 }
2393
btrfs_free_cached_objects(struct super_block * sb,struct shrink_control * sc)2394 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2395 {
2396 const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2397 struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2398
2399 btrfs_free_extent_maps(fs_info, nr_to_scan);
2400
2401 /* The extent map shrinker runs asynchronously, so always return 0. */
2402 return 0;
2403 }
2404
2405 static const struct super_operations btrfs_super_ops = {
2406 .drop_inode = btrfs_drop_inode,
2407 .evict_inode = btrfs_evict_inode,
2408 .put_super = btrfs_put_super,
2409 .sync_fs = btrfs_sync_fs,
2410 .show_options = btrfs_show_options,
2411 .show_devname = btrfs_show_devname,
2412 .alloc_inode = btrfs_alloc_inode,
2413 .destroy_inode = btrfs_destroy_inode,
2414 .free_inode = btrfs_free_inode,
2415 .statfs = btrfs_statfs,
2416 .freeze_fs = btrfs_freeze,
2417 .unfreeze_fs = btrfs_unfreeze,
2418 .nr_cached_objects = btrfs_nr_cached_objects,
2419 .free_cached_objects = btrfs_free_cached_objects,
2420 };
2421
2422 static const struct file_operations btrfs_ctl_fops = {
2423 .open = btrfs_control_open,
2424 .unlocked_ioctl = btrfs_control_ioctl,
2425 .compat_ioctl = compat_ptr_ioctl,
2426 .owner = THIS_MODULE,
2427 .llseek = noop_llseek,
2428 };
2429
2430 static struct miscdevice btrfs_misc = {
2431 .minor = BTRFS_MINOR,
2432 .name = "btrfs-control",
2433 .fops = &btrfs_ctl_fops
2434 };
2435
2436 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2437 MODULE_ALIAS("devname:btrfs-control");
2438
btrfs_interface_init(void)2439 static int __init btrfs_interface_init(void)
2440 {
2441 return misc_register(&btrfs_misc);
2442 }
2443
btrfs_interface_exit(void)2444 static __cold void btrfs_interface_exit(void)
2445 {
2446 misc_deregister(&btrfs_misc);
2447 }
2448
btrfs_print_mod_info(void)2449 static int __init btrfs_print_mod_info(void)
2450 {
2451 static const char options[] = ""
2452 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2453 ", experimental=on"
2454 #endif
2455 #ifdef CONFIG_BTRFS_DEBUG
2456 ", debug=on"
2457 #endif
2458 #ifdef CONFIG_BTRFS_ASSERT
2459 ", assert=on"
2460 #endif
2461 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2462 ", ref-verify=on"
2463 #endif
2464 #ifdef CONFIG_BLK_DEV_ZONED
2465 ", zoned=yes"
2466 #else
2467 ", zoned=no"
2468 #endif
2469 #ifdef CONFIG_FS_VERITY
2470 ", fsverity=yes"
2471 #else
2472 ", fsverity=no"
2473 #endif
2474 ;
2475
2476 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2477 if (btrfs_get_mod_read_policy() == NULL)
2478 pr_info("Btrfs loaded%s\n", options);
2479 else
2480 pr_info("Btrfs loaded%s, read_policy=%s\n",
2481 options, btrfs_get_mod_read_policy());
2482 #else
2483 pr_info("Btrfs loaded%s\n", options);
2484 #endif
2485
2486 return 0;
2487 }
2488
register_btrfs(void)2489 static int register_btrfs(void)
2490 {
2491 return register_filesystem(&btrfs_fs_type);
2492 }
2493
unregister_btrfs(void)2494 static void unregister_btrfs(void)
2495 {
2496 unregister_filesystem(&btrfs_fs_type);
2497 }
2498
2499 /* Helper structure for long init/exit functions. */
2500 struct init_sequence {
2501 int (*init_func)(void);
2502 /* Can be NULL if the init_func doesn't need cleanup. */
2503 void (*exit_func)(void);
2504 };
2505
2506 static const struct init_sequence mod_init_seq[] = {
2507 {
2508 .init_func = btrfs_props_init,
2509 .exit_func = NULL,
2510 }, {
2511 .init_func = btrfs_init_sysfs,
2512 .exit_func = btrfs_exit_sysfs,
2513 }, {
2514 .init_func = btrfs_init_compress,
2515 .exit_func = btrfs_exit_compress,
2516 }, {
2517 .init_func = btrfs_init_cachep,
2518 .exit_func = btrfs_destroy_cachep,
2519 }, {
2520 .init_func = btrfs_init_dio,
2521 .exit_func = btrfs_destroy_dio,
2522 }, {
2523 .init_func = btrfs_transaction_init,
2524 .exit_func = btrfs_transaction_exit,
2525 }, {
2526 .init_func = btrfs_ctree_init,
2527 .exit_func = btrfs_ctree_exit,
2528 }, {
2529 .init_func = btrfs_free_space_init,
2530 .exit_func = btrfs_free_space_exit,
2531 }, {
2532 .init_func = extent_state_init_cachep,
2533 .exit_func = extent_state_free_cachep,
2534 }, {
2535 .init_func = extent_buffer_init_cachep,
2536 .exit_func = extent_buffer_free_cachep,
2537 }, {
2538 .init_func = btrfs_bioset_init,
2539 .exit_func = btrfs_bioset_exit,
2540 }, {
2541 .init_func = extent_map_init,
2542 .exit_func = extent_map_exit,
2543 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2544 }, {
2545 .init_func = btrfs_read_policy_init,
2546 .exit_func = NULL,
2547 #endif
2548 }, {
2549 .init_func = ordered_data_init,
2550 .exit_func = ordered_data_exit,
2551 }, {
2552 .init_func = btrfs_delayed_inode_init,
2553 .exit_func = btrfs_delayed_inode_exit,
2554 }, {
2555 .init_func = btrfs_auto_defrag_init,
2556 .exit_func = btrfs_auto_defrag_exit,
2557 }, {
2558 .init_func = btrfs_delayed_ref_init,
2559 .exit_func = btrfs_delayed_ref_exit,
2560 }, {
2561 .init_func = btrfs_prelim_ref_init,
2562 .exit_func = btrfs_prelim_ref_exit,
2563 }, {
2564 .init_func = btrfs_interface_init,
2565 .exit_func = btrfs_interface_exit,
2566 }, {
2567 .init_func = btrfs_print_mod_info,
2568 .exit_func = NULL,
2569 }, {
2570 .init_func = btrfs_run_sanity_tests,
2571 .exit_func = NULL,
2572 }, {
2573 .init_func = register_btrfs,
2574 .exit_func = unregister_btrfs,
2575 }
2576 };
2577
2578 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2579
btrfs_exit_btrfs_fs(void)2580 static __always_inline void btrfs_exit_btrfs_fs(void)
2581 {
2582 int i;
2583
2584 for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2585 if (!mod_init_result[i])
2586 continue;
2587 if (mod_init_seq[i].exit_func)
2588 mod_init_seq[i].exit_func();
2589 mod_init_result[i] = false;
2590 }
2591 }
2592
exit_btrfs_fs(void)2593 static void __exit exit_btrfs_fs(void)
2594 {
2595 btrfs_exit_btrfs_fs();
2596 btrfs_cleanup_fs_uuids();
2597 }
2598
init_btrfs_fs(void)2599 static int __init init_btrfs_fs(void)
2600 {
2601 int ret;
2602 int i;
2603
2604 for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2605 ASSERT(!mod_init_result[i]);
2606 ret = mod_init_seq[i].init_func();
2607 if (ret < 0) {
2608 btrfs_exit_btrfs_fs();
2609 return ret;
2610 }
2611 mod_init_result[i] = true;
2612 }
2613 return 0;
2614 }
2615
2616 late_initcall(init_btrfs_fs);
2617 module_exit(exit_btrfs_fs)
2618
2619 MODULE_DESCRIPTION("B-Tree File System (BTRFS)");
2620 MODULE_LICENSE("GPL");
2621 MODULE_SOFTDEP("pre: crc32c");
2622 MODULE_SOFTDEP("pre: xxhash64");
2623 MODULE_SOFTDEP("pre: sha256");
2624 MODULE_SOFTDEP("pre: blake2b-256");
2625