1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include <linux/security.h>
30 #include <linux/fs_parser.h>
31 #include "messages.h"
32 #include "delayed-inode.h"
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "direct-io.h"
38 #include "props.h"
39 #include "xattr.h"
40 #include "bio.h"
41 #include "export.h"
42 #include "compression.h"
43 #include "dev-replace.h"
44 #include "free-space-cache.h"
45 #include "backref.h"
46 #include "space-info.h"
47 #include "sysfs.h"
48 #include "zoned.h"
49 #include "tests/btrfs-tests.h"
50 #include "block-group.h"
51 #include "discard.h"
52 #include "qgroup.h"
53 #include "raid56.h"
54 #include "fs.h"
55 #include "accessors.h"
56 #include "defrag.h"
57 #include "dir-item.h"
58 #include "ioctl.h"
59 #include "scrub.h"
60 #include "verity.h"
61 #include "super.h"
62 #include "extent-tree.h"
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/btrfs.h>
65 
66 static const struct super_operations btrfs_super_ops;
67 static struct file_system_type btrfs_fs_type;
68 
btrfs_put_super(struct super_block * sb)69 static void btrfs_put_super(struct super_block *sb)
70 {
71 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
72 
73 	btrfs_info(fs_info, "last unmount of filesystem %pU", fs_info->fs_devices->fsid);
74 	close_ctree(fs_info);
75 }
76 
77 /* Store the mount options related information. */
78 struct btrfs_fs_context {
79 	char *subvol_name;
80 	u64 subvol_objectid;
81 	u64 max_inline;
82 	u32 commit_interval;
83 	u32 metadata_ratio;
84 	u32 thread_pool_size;
85 	unsigned long long mount_opt;
86 	unsigned long compress_type:4;
87 	int compress_level;
88 	refcount_t refs;
89 };
90 
91 enum {
92 	Opt_acl,
93 	Opt_clear_cache,
94 	Opt_commit_interval,
95 	Opt_compress,
96 	Opt_compress_force,
97 	Opt_compress_force_type,
98 	Opt_compress_type,
99 	Opt_degraded,
100 	Opt_device,
101 	Opt_fatal_errors,
102 	Opt_flushoncommit,
103 	Opt_max_inline,
104 	Opt_barrier,
105 	Opt_datacow,
106 	Opt_datasum,
107 	Opt_defrag,
108 	Opt_discard,
109 	Opt_discard_mode,
110 	Opt_ratio,
111 	Opt_rescan_uuid_tree,
112 	Opt_skip_balance,
113 	Opt_space_cache,
114 	Opt_space_cache_version,
115 	Opt_ssd,
116 	Opt_ssd_spread,
117 	Opt_subvol,
118 	Opt_subvol_empty,
119 	Opt_subvolid,
120 	Opt_thread_pool,
121 	Opt_treelog,
122 	Opt_user_subvol_rm_allowed,
123 	Opt_norecovery,
124 
125 	/* Rescue options */
126 	Opt_rescue,
127 	Opt_usebackuproot,
128 	Opt_nologreplay,
129 
130 	/* Debugging options */
131 	Opt_enospc_debug,
132 #ifdef CONFIG_BTRFS_DEBUG
133 	Opt_fragment, Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
134 #endif
135 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
136 	Opt_ref_verify,
137 #endif
138 	Opt_err,
139 };
140 
141 enum {
142 	Opt_fatal_errors_panic,
143 	Opt_fatal_errors_bug,
144 };
145 
146 static const struct constant_table btrfs_parameter_fatal_errors[] = {
147 	{ "panic", Opt_fatal_errors_panic },
148 	{ "bug", Opt_fatal_errors_bug },
149 	{}
150 };
151 
152 enum {
153 	Opt_discard_sync,
154 	Opt_discard_async,
155 };
156 
157 static const struct constant_table btrfs_parameter_discard[] = {
158 	{ "sync", Opt_discard_sync },
159 	{ "async", Opt_discard_async },
160 	{}
161 };
162 
163 enum {
164 	Opt_space_cache_v1,
165 	Opt_space_cache_v2,
166 };
167 
168 static const struct constant_table btrfs_parameter_space_cache[] = {
169 	{ "v1", Opt_space_cache_v1 },
170 	{ "v2", Opt_space_cache_v2 },
171 	{}
172 };
173 
174 enum {
175 	Opt_rescue_usebackuproot,
176 	Opt_rescue_nologreplay,
177 	Opt_rescue_ignorebadroots,
178 	Opt_rescue_ignoredatacsums,
179 	Opt_rescue_ignoremetacsums,
180 	Opt_rescue_ignoresuperflags,
181 	Opt_rescue_parameter_all,
182 };
183 
184 static const struct constant_table btrfs_parameter_rescue[] = {
185 	{ "usebackuproot", Opt_rescue_usebackuproot },
186 	{ "nologreplay", Opt_rescue_nologreplay },
187 	{ "ignorebadroots", Opt_rescue_ignorebadroots },
188 	{ "ibadroots", Opt_rescue_ignorebadroots },
189 	{ "ignoredatacsums", Opt_rescue_ignoredatacsums },
190 	{ "ignoremetacsums", Opt_rescue_ignoremetacsums},
191 	{ "ignoresuperflags", Opt_rescue_ignoresuperflags},
192 	{ "idatacsums", Opt_rescue_ignoredatacsums },
193 	{ "imetacsums", Opt_rescue_ignoremetacsums},
194 	{ "isuperflags", Opt_rescue_ignoresuperflags},
195 	{ "all", Opt_rescue_parameter_all },
196 	{}
197 };
198 
199 #ifdef CONFIG_BTRFS_DEBUG
200 enum {
201 	Opt_fragment_parameter_data,
202 	Opt_fragment_parameter_metadata,
203 	Opt_fragment_parameter_all,
204 };
205 
206 static const struct constant_table btrfs_parameter_fragment[] = {
207 	{ "data", Opt_fragment_parameter_data },
208 	{ "metadata", Opt_fragment_parameter_metadata },
209 	{ "all", Opt_fragment_parameter_all },
210 	{}
211 };
212 #endif
213 
214 static const struct fs_parameter_spec btrfs_fs_parameters[] = {
215 	fsparam_flag_no("acl", Opt_acl),
216 	fsparam_flag_no("autodefrag", Opt_defrag),
217 	fsparam_flag_no("barrier", Opt_barrier),
218 	fsparam_flag("clear_cache", Opt_clear_cache),
219 	fsparam_u32("commit", Opt_commit_interval),
220 	fsparam_flag("compress", Opt_compress),
221 	fsparam_string("compress", Opt_compress_type),
222 	fsparam_flag("compress-force", Opt_compress_force),
223 	fsparam_string("compress-force", Opt_compress_force_type),
224 	fsparam_flag_no("datacow", Opt_datacow),
225 	fsparam_flag_no("datasum", Opt_datasum),
226 	fsparam_flag("degraded", Opt_degraded),
227 	fsparam_string("device", Opt_device),
228 	fsparam_flag_no("discard", Opt_discard),
229 	fsparam_enum("discard", Opt_discard_mode, btrfs_parameter_discard),
230 	fsparam_enum("fatal_errors", Opt_fatal_errors, btrfs_parameter_fatal_errors),
231 	fsparam_flag_no("flushoncommit", Opt_flushoncommit),
232 	fsparam_string("max_inline", Opt_max_inline),
233 	fsparam_u32("metadata_ratio", Opt_ratio),
234 	fsparam_flag("rescan_uuid_tree", Opt_rescan_uuid_tree),
235 	fsparam_flag("skip_balance", Opt_skip_balance),
236 	fsparam_flag_no("space_cache", Opt_space_cache),
237 	fsparam_enum("space_cache", Opt_space_cache_version, btrfs_parameter_space_cache),
238 	fsparam_flag_no("ssd", Opt_ssd),
239 	fsparam_flag_no("ssd_spread", Opt_ssd_spread),
240 	fsparam_string("subvol", Opt_subvol),
241 	fsparam_flag("subvol=", Opt_subvol_empty),
242 	fsparam_u64("subvolid", Opt_subvolid),
243 	fsparam_u32("thread_pool", Opt_thread_pool),
244 	fsparam_flag_no("treelog", Opt_treelog),
245 	fsparam_flag("user_subvol_rm_allowed", Opt_user_subvol_rm_allowed),
246 
247 	/* Rescue options. */
248 	fsparam_enum("rescue", Opt_rescue, btrfs_parameter_rescue),
249 	/* Deprecated, with alias rescue=nologreplay */
250 	__fsparam(NULL, "nologreplay", Opt_nologreplay, fs_param_deprecated, NULL),
251 	/* Deprecated, with alias rescue=usebackuproot */
252 	__fsparam(NULL, "usebackuproot", Opt_usebackuproot, fs_param_deprecated, NULL),
253 	/* For compatibility only, alias for "rescue=nologreplay". */
254 	fsparam_flag("norecovery", Opt_norecovery),
255 
256 	/* Debugging options. */
257 	fsparam_flag_no("enospc_debug", Opt_enospc_debug),
258 #ifdef CONFIG_BTRFS_DEBUG
259 	fsparam_enum("fragment", Opt_fragment, btrfs_parameter_fragment),
260 #endif
261 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
262 	fsparam_flag("ref_verify", Opt_ref_verify),
263 #endif
264 	{}
265 };
266 
267 /* No support for restricting writes to btrfs devices yet... */
btrfs_open_mode(struct fs_context * fc)268 static inline blk_mode_t btrfs_open_mode(struct fs_context *fc)
269 {
270 	return sb_open_mode(fc->sb_flags) & ~BLK_OPEN_RESTRICT_WRITES;
271 }
272 
btrfs_parse_param(struct fs_context * fc,struct fs_parameter * param)273 static int btrfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
274 {
275 	struct btrfs_fs_context *ctx = fc->fs_private;
276 	struct fs_parse_result result;
277 	int opt;
278 
279 	opt = fs_parse(fc, btrfs_fs_parameters, param, &result);
280 	if (opt < 0)
281 		return opt;
282 
283 	switch (opt) {
284 	case Opt_degraded:
285 		btrfs_set_opt(ctx->mount_opt, DEGRADED);
286 		break;
287 	case Opt_subvol_empty:
288 		/*
289 		 * This exists because we used to allow it on accident, so we're
290 		 * keeping it to maintain ABI.  See 37becec95ac3 ("Btrfs: allow
291 		 * empty subvol= again").
292 		 */
293 		break;
294 	case Opt_subvol:
295 		kfree(ctx->subvol_name);
296 		ctx->subvol_name = kstrdup(param->string, GFP_KERNEL);
297 		if (!ctx->subvol_name)
298 			return -ENOMEM;
299 		break;
300 	case Opt_subvolid:
301 		ctx->subvol_objectid = result.uint_64;
302 
303 		/* subvolid=0 means give me the original fs_tree. */
304 		if (!ctx->subvol_objectid)
305 			ctx->subvol_objectid = BTRFS_FS_TREE_OBJECTID;
306 		break;
307 	case Opt_device: {
308 		struct btrfs_device *device;
309 		blk_mode_t mode = btrfs_open_mode(fc);
310 
311 		mutex_lock(&uuid_mutex);
312 		device = btrfs_scan_one_device(param->string, mode, false);
313 		mutex_unlock(&uuid_mutex);
314 		if (IS_ERR(device))
315 			return PTR_ERR(device);
316 		break;
317 	}
318 	case Opt_datasum:
319 		if (result.negated) {
320 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
321 		} else {
322 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
323 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
324 		}
325 		break;
326 	case Opt_datacow:
327 		if (result.negated) {
328 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
329 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
330 			btrfs_set_opt(ctx->mount_opt, NODATACOW);
331 			btrfs_set_opt(ctx->mount_opt, NODATASUM);
332 		} else {
333 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
334 		}
335 		break;
336 	case Opt_compress_force:
337 	case Opt_compress_force_type:
338 		btrfs_set_opt(ctx->mount_opt, FORCE_COMPRESS);
339 		fallthrough;
340 	case Opt_compress:
341 	case Opt_compress_type:
342 		/*
343 		 * Provide the same semantics as older kernels that don't use fs
344 		 * context, specifying the "compress" option clears
345 		 * "force-compress" without the need to pass
346 		 * "compress-force=[no|none]" before specifying "compress".
347 		 */
348 		if (opt != Opt_compress_force && opt != Opt_compress_force_type)
349 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
350 
351 		if (opt == Opt_compress || opt == Opt_compress_force) {
352 			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
353 			ctx->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
354 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
355 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
356 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
357 		} else if (strncmp(param->string, "zlib", 4) == 0) {
358 			ctx->compress_type = BTRFS_COMPRESS_ZLIB;
359 			ctx->compress_level =
360 				btrfs_compress_str2level(BTRFS_COMPRESS_ZLIB,
361 							 param->string + 4);
362 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
363 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
364 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
365 		} else if (strncmp(param->string, "lzo", 3) == 0) {
366 			ctx->compress_type = BTRFS_COMPRESS_LZO;
367 			ctx->compress_level = 0;
368 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
369 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
370 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
371 		} else if (strncmp(param->string, "zstd", 4) == 0) {
372 			ctx->compress_type = BTRFS_COMPRESS_ZSTD;
373 			ctx->compress_level =
374 				btrfs_compress_str2level(BTRFS_COMPRESS_ZSTD,
375 							 param->string + 4);
376 			btrfs_set_opt(ctx->mount_opt, COMPRESS);
377 			btrfs_clear_opt(ctx->mount_opt, NODATACOW);
378 			btrfs_clear_opt(ctx->mount_opt, NODATASUM);
379 		} else if (strncmp(param->string, "no", 2) == 0) {
380 			ctx->compress_level = 0;
381 			ctx->compress_type = 0;
382 			btrfs_clear_opt(ctx->mount_opt, COMPRESS);
383 			btrfs_clear_opt(ctx->mount_opt, FORCE_COMPRESS);
384 		} else {
385 			btrfs_err(NULL, "unrecognized compression value %s",
386 				  param->string);
387 			return -EINVAL;
388 		}
389 		break;
390 	case Opt_ssd:
391 		if (result.negated) {
392 			btrfs_set_opt(ctx->mount_opt, NOSSD);
393 			btrfs_clear_opt(ctx->mount_opt, SSD);
394 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
395 		} else {
396 			btrfs_set_opt(ctx->mount_opt, SSD);
397 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
398 		}
399 		break;
400 	case Opt_ssd_spread:
401 		if (result.negated) {
402 			btrfs_clear_opt(ctx->mount_opt, SSD_SPREAD);
403 		} else {
404 			btrfs_set_opt(ctx->mount_opt, SSD);
405 			btrfs_set_opt(ctx->mount_opt, SSD_SPREAD);
406 			btrfs_clear_opt(ctx->mount_opt, NOSSD);
407 		}
408 		break;
409 	case Opt_barrier:
410 		if (result.negated)
411 			btrfs_set_opt(ctx->mount_opt, NOBARRIER);
412 		else
413 			btrfs_clear_opt(ctx->mount_opt, NOBARRIER);
414 		break;
415 	case Opt_thread_pool:
416 		if (result.uint_32 == 0) {
417 			btrfs_err(NULL, "invalid value 0 for thread_pool");
418 			return -EINVAL;
419 		}
420 		ctx->thread_pool_size = result.uint_32;
421 		break;
422 	case Opt_max_inline:
423 		ctx->max_inline = memparse(param->string, NULL);
424 		break;
425 	case Opt_acl:
426 		if (result.negated) {
427 			fc->sb_flags &= ~SB_POSIXACL;
428 		} else {
429 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
430 			fc->sb_flags |= SB_POSIXACL;
431 #else
432 			btrfs_err(NULL, "support for ACL not compiled in");
433 			return -EINVAL;
434 #endif
435 		}
436 		/*
437 		 * VFS limits the ability to toggle ACL on and off via remount,
438 		 * despite every file system allowing this.  This seems to be
439 		 * an oversight since we all do, but it'll fail if we're
440 		 * remounting.  So don't set the mask here, we'll check it in
441 		 * btrfs_reconfigure and do the toggling ourselves.
442 		 */
443 		if (fc->purpose != FS_CONTEXT_FOR_RECONFIGURE)
444 			fc->sb_flags_mask |= SB_POSIXACL;
445 		break;
446 	case Opt_treelog:
447 		if (result.negated)
448 			btrfs_set_opt(ctx->mount_opt, NOTREELOG);
449 		else
450 			btrfs_clear_opt(ctx->mount_opt, NOTREELOG);
451 		break;
452 	case Opt_nologreplay:
453 		btrfs_warn(NULL,
454 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
455 		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
456 		break;
457 	case Opt_norecovery:
458 		btrfs_info(NULL,
459 "'norecovery' is for compatibility only, recommended to use 'rescue=nologreplay'");
460 		btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
461 		break;
462 	case Opt_flushoncommit:
463 		if (result.negated)
464 			btrfs_clear_opt(ctx->mount_opt, FLUSHONCOMMIT);
465 		else
466 			btrfs_set_opt(ctx->mount_opt, FLUSHONCOMMIT);
467 		break;
468 	case Opt_ratio:
469 		ctx->metadata_ratio = result.uint_32;
470 		break;
471 	case Opt_discard:
472 		if (result.negated) {
473 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
474 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
475 			btrfs_set_opt(ctx->mount_opt, NODISCARD);
476 		} else {
477 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
478 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
479 		}
480 		break;
481 	case Opt_discard_mode:
482 		switch (result.uint_32) {
483 		case Opt_discard_sync:
484 			btrfs_clear_opt(ctx->mount_opt, DISCARD_ASYNC);
485 			btrfs_set_opt(ctx->mount_opt, DISCARD_SYNC);
486 			break;
487 		case Opt_discard_async:
488 			btrfs_clear_opt(ctx->mount_opt, DISCARD_SYNC);
489 			btrfs_set_opt(ctx->mount_opt, DISCARD_ASYNC);
490 			break;
491 		default:
492 			btrfs_err(NULL, "unrecognized discard mode value %s",
493 				  param->key);
494 			return -EINVAL;
495 		}
496 		btrfs_clear_opt(ctx->mount_opt, NODISCARD);
497 		break;
498 	case Opt_space_cache:
499 		if (result.negated) {
500 			btrfs_set_opt(ctx->mount_opt, NOSPACECACHE);
501 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
502 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
503 		} else {
504 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
505 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
506 		}
507 		break;
508 	case Opt_space_cache_version:
509 		switch (result.uint_32) {
510 		case Opt_space_cache_v1:
511 			btrfs_set_opt(ctx->mount_opt, SPACE_CACHE);
512 			btrfs_clear_opt(ctx->mount_opt, FREE_SPACE_TREE);
513 			break;
514 		case Opt_space_cache_v2:
515 			btrfs_clear_opt(ctx->mount_opt, SPACE_CACHE);
516 			btrfs_set_opt(ctx->mount_opt, FREE_SPACE_TREE);
517 			break;
518 		default:
519 			btrfs_err(NULL, "unrecognized space_cache value %s",
520 				  param->key);
521 			return -EINVAL;
522 		}
523 		break;
524 	case Opt_rescan_uuid_tree:
525 		btrfs_set_opt(ctx->mount_opt, RESCAN_UUID_TREE);
526 		break;
527 	case Opt_clear_cache:
528 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
529 		break;
530 	case Opt_user_subvol_rm_allowed:
531 		btrfs_set_opt(ctx->mount_opt, USER_SUBVOL_RM_ALLOWED);
532 		break;
533 	case Opt_enospc_debug:
534 		if (result.negated)
535 			btrfs_clear_opt(ctx->mount_opt, ENOSPC_DEBUG);
536 		else
537 			btrfs_set_opt(ctx->mount_opt, ENOSPC_DEBUG);
538 		break;
539 	case Opt_defrag:
540 		if (result.negated)
541 			btrfs_clear_opt(ctx->mount_opt, AUTO_DEFRAG);
542 		else
543 			btrfs_set_opt(ctx->mount_opt, AUTO_DEFRAG);
544 		break;
545 	case Opt_usebackuproot:
546 		btrfs_warn(NULL,
547 			   "'usebackuproot' is deprecated, use 'rescue=usebackuproot' instead");
548 		btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
549 
550 		/* If we're loading the backup roots we can't trust the space cache. */
551 		btrfs_set_opt(ctx->mount_opt, CLEAR_CACHE);
552 		break;
553 	case Opt_skip_balance:
554 		btrfs_set_opt(ctx->mount_opt, SKIP_BALANCE);
555 		break;
556 	case Opt_fatal_errors:
557 		switch (result.uint_32) {
558 		case Opt_fatal_errors_panic:
559 			btrfs_set_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
560 			break;
561 		case Opt_fatal_errors_bug:
562 			btrfs_clear_opt(ctx->mount_opt, PANIC_ON_FATAL_ERROR);
563 			break;
564 		default:
565 			btrfs_err(NULL, "unrecognized fatal_errors value %s",
566 				  param->key);
567 			return -EINVAL;
568 		}
569 		break;
570 	case Opt_commit_interval:
571 		ctx->commit_interval = result.uint_32;
572 		if (ctx->commit_interval > BTRFS_WARNING_COMMIT_INTERVAL) {
573 			btrfs_warn(NULL, "excessive commit interval %u, use with care",
574 				   ctx->commit_interval);
575 		}
576 		if (ctx->commit_interval == 0)
577 			ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
578 		break;
579 	case Opt_rescue:
580 		switch (result.uint_32) {
581 		case Opt_rescue_usebackuproot:
582 			btrfs_set_opt(ctx->mount_opt, USEBACKUPROOT);
583 			break;
584 		case Opt_rescue_nologreplay:
585 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
586 			break;
587 		case Opt_rescue_ignorebadroots:
588 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
589 			break;
590 		case Opt_rescue_ignoredatacsums:
591 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
592 			break;
593 		case Opt_rescue_ignoremetacsums:
594 			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
595 			break;
596 		case Opt_rescue_ignoresuperflags:
597 			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
598 			break;
599 		case Opt_rescue_parameter_all:
600 			btrfs_set_opt(ctx->mount_opt, IGNOREDATACSUMS);
601 			btrfs_set_opt(ctx->mount_opt, IGNOREMETACSUMS);
602 			btrfs_set_opt(ctx->mount_opt, IGNORESUPERFLAGS);
603 			btrfs_set_opt(ctx->mount_opt, IGNOREBADROOTS);
604 			btrfs_set_opt(ctx->mount_opt, NOLOGREPLAY);
605 			break;
606 		default:
607 			btrfs_info(NULL, "unrecognized rescue option '%s'",
608 				   param->key);
609 			return -EINVAL;
610 		}
611 		break;
612 #ifdef CONFIG_BTRFS_DEBUG
613 	case Opt_fragment:
614 		switch (result.uint_32) {
615 		case Opt_fragment_parameter_all:
616 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
617 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
618 			break;
619 		case Opt_fragment_parameter_metadata:
620 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_METADATA);
621 			break;
622 		case Opt_fragment_parameter_data:
623 			btrfs_set_opt(ctx->mount_opt, FRAGMENT_DATA);
624 			break;
625 		default:
626 			btrfs_info(NULL, "unrecognized fragment option '%s'",
627 				   param->key);
628 			return -EINVAL;
629 		}
630 		break;
631 #endif
632 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
633 	case Opt_ref_verify:
634 		btrfs_set_opt(ctx->mount_opt, REF_VERIFY);
635 		break;
636 #endif
637 	default:
638 		btrfs_err(NULL, "unrecognized mount option '%s'", param->key);
639 		return -EINVAL;
640 	}
641 
642 	return 0;
643 }
644 
645 /*
646  * Some options only have meaning at mount time and shouldn't persist across
647  * remounts, or be displayed. Clear these at the end of mount and remount code
648  * paths.
649  */
btrfs_clear_oneshot_options(struct btrfs_fs_info * fs_info)650 static void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
651 {
652 	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
653 	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
654 	btrfs_clear_opt(fs_info->mount_opt, NOSPACECACHE);
655 }
656 
check_ro_option(const struct btrfs_fs_info * fs_info,unsigned long long mount_opt,unsigned long long opt,const char * opt_name)657 static bool check_ro_option(const struct btrfs_fs_info *fs_info,
658 			    unsigned long long mount_opt, unsigned long long opt,
659 			    const char *opt_name)
660 {
661 	if (mount_opt & opt) {
662 		btrfs_err(fs_info, "%s must be used with ro mount option",
663 			  opt_name);
664 		return true;
665 	}
666 	return false;
667 }
668 
btrfs_check_options(const struct btrfs_fs_info * info,unsigned long long * mount_opt,unsigned long flags)669 bool btrfs_check_options(const struct btrfs_fs_info *info,
670 			 unsigned long long *mount_opt,
671 			 unsigned long flags)
672 {
673 	bool ret = true;
674 
675 	if (!(flags & SB_RDONLY) &&
676 	    (check_ro_option(info, *mount_opt, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
677 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
678 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums") ||
679 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNOREMETACSUMS, "ignoremetacsums") ||
680 	     check_ro_option(info, *mount_opt, BTRFS_MOUNT_IGNORESUPERFLAGS, "ignoresuperflags")))
681 		ret = false;
682 
683 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
684 	    !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE) &&
685 	    !btrfs_raw_test_opt(*mount_opt, CLEAR_CACHE)) {
686 		btrfs_err(info, "cannot disable free-space-tree");
687 		ret = false;
688 	}
689 	if (btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE) &&
690 	     !btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE)) {
691 		btrfs_err(info, "cannot disable free-space-tree with block-group-tree feature");
692 		ret = false;
693 	}
694 
695 	if (btrfs_check_mountopts_zoned(info, mount_opt))
696 		ret = false;
697 
698 	if (!test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state)) {
699 		if (btrfs_raw_test_opt(*mount_opt, SPACE_CACHE)) {
700 			btrfs_info(info, "disk space caching is enabled");
701 			btrfs_warn(info,
702 "space cache v1 is being deprecated and will be removed in a future release, please use -o space_cache=v2");
703 		}
704 		if (btrfs_raw_test_opt(*mount_opt, FREE_SPACE_TREE))
705 			btrfs_info(info, "using free-space-tree");
706 	}
707 
708 	return ret;
709 }
710 
711 /*
712  * This is subtle, we only call this during open_ctree().  We need to pre-load
713  * the mount options with the on-disk settings.  Before the new mount API took
714  * effect we would do this on mount and remount.  With the new mount API we'll
715  * only do this on the initial mount.
716  *
717  * This isn't a change in behavior, because we're using the current state of the
718  * file system to set the current mount options.  If you mounted with special
719  * options to disable these features and then remounted we wouldn't revert the
720  * settings, because mounting without these features cleared the on-disk
721  * settings, so this being called on re-mount is not needed.
722  */
btrfs_set_free_space_cache_settings(struct btrfs_fs_info * fs_info)723 void btrfs_set_free_space_cache_settings(struct btrfs_fs_info *fs_info)
724 {
725 	if (fs_info->sectorsize < PAGE_SIZE) {
726 		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
727 		if (!btrfs_test_opt(fs_info, FREE_SPACE_TREE)) {
728 			btrfs_info(fs_info,
729 				   "forcing free space tree for sector size %u with page size %lu",
730 				   fs_info->sectorsize, PAGE_SIZE);
731 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
732 		}
733 	}
734 
735 	/*
736 	 * At this point our mount options are populated, so we only mess with
737 	 * these settings if we don't have any settings already.
738 	 */
739 	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE))
740 		return;
741 
742 	if (btrfs_is_zoned(fs_info) &&
743 	    btrfs_free_space_cache_v1_active(fs_info)) {
744 		btrfs_info(fs_info, "zoned: clearing existing space cache");
745 		btrfs_set_super_cache_generation(fs_info->super_copy, 0);
746 		return;
747 	}
748 
749 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
750 		return;
751 
752 	if (btrfs_test_opt(fs_info, NOSPACECACHE))
753 		return;
754 
755 	/*
756 	 * At this point we don't have explicit options set by the user, set
757 	 * them ourselves based on the state of the file system.
758 	 */
759 	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
760 		btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
761 	else if (btrfs_free_space_cache_v1_active(fs_info))
762 		btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
763 }
764 
set_device_specific_options(struct btrfs_fs_info * fs_info)765 static void set_device_specific_options(struct btrfs_fs_info *fs_info)
766 {
767 	if (!btrfs_test_opt(fs_info, NOSSD) &&
768 	    !fs_info->fs_devices->rotating)
769 		btrfs_set_opt(fs_info->mount_opt, SSD);
770 
771 	/*
772 	 * For devices supporting discard turn on discard=async automatically,
773 	 * unless it's already set or disabled. This could be turned off by
774 	 * nodiscard for the same mount.
775 	 *
776 	 * The zoned mode piggy backs on the discard functionality for
777 	 * resetting a zone. There is no reason to delay the zone reset as it is
778 	 * fast enough. So, do not enable async discard for zoned mode.
779 	 */
780 	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
781 	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
782 	      btrfs_test_opt(fs_info, NODISCARD)) &&
783 	    fs_info->fs_devices->discardable &&
784 	    !btrfs_is_zoned(fs_info))
785 		btrfs_set_opt(fs_info->mount_opt, DISCARD_ASYNC);
786 }
787 
btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info * fs_info,u64 subvol_objectid)788 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
789 					  u64 subvol_objectid)
790 {
791 	struct btrfs_root *root = fs_info->tree_root;
792 	struct btrfs_root *fs_root = NULL;
793 	struct btrfs_root_ref *root_ref;
794 	struct btrfs_inode_ref *inode_ref;
795 	struct btrfs_key key;
796 	struct btrfs_path *path = NULL;
797 	char *name = NULL, *ptr;
798 	u64 dirid;
799 	int len;
800 	int ret;
801 
802 	path = btrfs_alloc_path();
803 	if (!path) {
804 		ret = -ENOMEM;
805 		goto err;
806 	}
807 
808 	name = kmalloc(PATH_MAX, GFP_KERNEL);
809 	if (!name) {
810 		ret = -ENOMEM;
811 		goto err;
812 	}
813 	ptr = name + PATH_MAX - 1;
814 	ptr[0] = '\0';
815 
816 	/*
817 	 * Walk up the subvolume trees in the tree of tree roots by root
818 	 * backrefs until we hit the top-level subvolume.
819 	 */
820 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
821 		key.objectid = subvol_objectid;
822 		key.type = BTRFS_ROOT_BACKREF_KEY;
823 		key.offset = (u64)-1;
824 
825 		ret = btrfs_search_backwards(root, &key, path);
826 		if (ret < 0) {
827 			goto err;
828 		} else if (ret > 0) {
829 			ret = -ENOENT;
830 			goto err;
831 		}
832 
833 		subvol_objectid = key.offset;
834 
835 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
836 					  struct btrfs_root_ref);
837 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
838 		ptr -= len + 1;
839 		if (ptr < name) {
840 			ret = -ENAMETOOLONG;
841 			goto err;
842 		}
843 		read_extent_buffer(path->nodes[0], ptr + 1,
844 				   (unsigned long)(root_ref + 1), len);
845 		ptr[0] = '/';
846 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
847 		btrfs_release_path(path);
848 
849 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
850 		if (IS_ERR(fs_root)) {
851 			ret = PTR_ERR(fs_root);
852 			fs_root = NULL;
853 			goto err;
854 		}
855 
856 		/*
857 		 * Walk up the filesystem tree by inode refs until we hit the
858 		 * root directory.
859 		 */
860 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
861 			key.objectid = dirid;
862 			key.type = BTRFS_INODE_REF_KEY;
863 			key.offset = (u64)-1;
864 
865 			ret = btrfs_search_backwards(fs_root, &key, path);
866 			if (ret < 0) {
867 				goto err;
868 			} else if (ret > 0) {
869 				ret = -ENOENT;
870 				goto err;
871 			}
872 
873 			dirid = key.offset;
874 
875 			inode_ref = btrfs_item_ptr(path->nodes[0],
876 						   path->slots[0],
877 						   struct btrfs_inode_ref);
878 			len = btrfs_inode_ref_name_len(path->nodes[0],
879 						       inode_ref);
880 			ptr -= len + 1;
881 			if (ptr < name) {
882 				ret = -ENAMETOOLONG;
883 				goto err;
884 			}
885 			read_extent_buffer(path->nodes[0], ptr + 1,
886 					   (unsigned long)(inode_ref + 1), len);
887 			ptr[0] = '/';
888 			btrfs_release_path(path);
889 		}
890 		btrfs_put_root(fs_root);
891 		fs_root = NULL;
892 	}
893 
894 	btrfs_free_path(path);
895 	if (ptr == name + PATH_MAX - 1) {
896 		name[0] = '/';
897 		name[1] = '\0';
898 	} else {
899 		memmove(name, ptr, name + PATH_MAX - ptr);
900 	}
901 	return name;
902 
903 err:
904 	btrfs_put_root(fs_root);
905 	btrfs_free_path(path);
906 	kfree(name);
907 	return ERR_PTR(ret);
908 }
909 
get_default_subvol_objectid(struct btrfs_fs_info * fs_info,u64 * objectid)910 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
911 {
912 	struct btrfs_root *root = fs_info->tree_root;
913 	struct btrfs_dir_item *di;
914 	struct btrfs_path *path;
915 	struct btrfs_key location;
916 	struct fscrypt_str name = FSTR_INIT("default", 7);
917 	u64 dir_id;
918 
919 	path = btrfs_alloc_path();
920 	if (!path)
921 		return -ENOMEM;
922 
923 	/*
924 	 * Find the "default" dir item which points to the root item that we
925 	 * will mount by default if we haven't been given a specific subvolume
926 	 * to mount.
927 	 */
928 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
929 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
930 	if (IS_ERR(di)) {
931 		btrfs_free_path(path);
932 		return PTR_ERR(di);
933 	}
934 	if (!di) {
935 		/*
936 		 * Ok the default dir item isn't there.  This is weird since
937 		 * it's always been there, but don't freak out, just try and
938 		 * mount the top-level subvolume.
939 		 */
940 		btrfs_free_path(path);
941 		*objectid = BTRFS_FS_TREE_OBJECTID;
942 		return 0;
943 	}
944 
945 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
946 	btrfs_free_path(path);
947 	*objectid = location.objectid;
948 	return 0;
949 }
950 
btrfs_fill_super(struct super_block * sb,struct btrfs_fs_devices * fs_devices)951 static int btrfs_fill_super(struct super_block *sb,
952 			    struct btrfs_fs_devices *fs_devices)
953 {
954 	struct btrfs_inode *inode;
955 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
956 	int err;
957 
958 	sb->s_maxbytes = MAX_LFS_FILESIZE;
959 	sb->s_magic = BTRFS_SUPER_MAGIC;
960 	sb->s_op = &btrfs_super_ops;
961 	sb->s_d_op = &btrfs_dentry_operations;
962 	sb->s_export_op = &btrfs_export_ops;
963 #ifdef CONFIG_FS_VERITY
964 	sb->s_vop = &btrfs_verityops;
965 #endif
966 	sb->s_xattr = btrfs_xattr_handlers;
967 	sb->s_time_gran = 1;
968 	sb->s_iflags |= SB_I_CGROUPWB | SB_I_ALLOW_HSM;
969 
970 	err = super_setup_bdi(sb);
971 	if (err) {
972 		btrfs_err(fs_info, "super_setup_bdi failed");
973 		return err;
974 	}
975 
976 	err = open_ctree(sb, fs_devices);
977 	if (err) {
978 		btrfs_err(fs_info, "open_ctree failed: %d", err);
979 		return err;
980 	}
981 
982 	inode = btrfs_iget(BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
983 	if (IS_ERR(inode)) {
984 		err = PTR_ERR(inode);
985 		btrfs_handle_fs_error(fs_info, err, NULL);
986 		goto fail_close;
987 	}
988 
989 	sb->s_root = d_make_root(&inode->vfs_inode);
990 	if (!sb->s_root) {
991 		err = -ENOMEM;
992 		goto fail_close;
993 	}
994 
995 	sb->s_flags |= SB_ACTIVE;
996 	return 0;
997 
998 fail_close:
999 	close_ctree(fs_info);
1000 	return err;
1001 }
1002 
btrfs_sync_fs(struct super_block * sb,int wait)1003 int btrfs_sync_fs(struct super_block *sb, int wait)
1004 {
1005 	struct btrfs_trans_handle *trans;
1006 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1007 	struct btrfs_root *root = fs_info->tree_root;
1008 
1009 	trace_btrfs_sync_fs(fs_info, wait);
1010 
1011 	if (!wait) {
1012 		filemap_flush(fs_info->btree_inode->i_mapping);
1013 		return 0;
1014 	}
1015 
1016 	btrfs_wait_ordered_roots(fs_info, U64_MAX, NULL);
1017 
1018 	trans = btrfs_attach_transaction_barrier(root);
1019 	if (IS_ERR(trans)) {
1020 		/* no transaction, don't bother */
1021 		if (PTR_ERR(trans) == -ENOENT) {
1022 			/*
1023 			 * Exit unless we have some pending changes
1024 			 * that need to go through commit
1025 			 */
1026 			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1027 				      &fs_info->flags))
1028 				return 0;
1029 			/*
1030 			 * A non-blocking test if the fs is frozen. We must not
1031 			 * start a new transaction here otherwise a deadlock
1032 			 * happens. The pending operations are delayed to the
1033 			 * next commit after thawing.
1034 			 */
1035 			if (sb_start_write_trylock(sb))
1036 				sb_end_write(sb);
1037 			else
1038 				return 0;
1039 			trans = btrfs_start_transaction(root, 0);
1040 		}
1041 		if (IS_ERR(trans))
1042 			return PTR_ERR(trans);
1043 	}
1044 	return btrfs_commit_transaction(trans);
1045 }
1046 
print_rescue_option(struct seq_file * seq,const char * s,bool * printed)1047 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1048 {
1049 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1050 	*printed = true;
1051 }
1052 
btrfs_show_options(struct seq_file * seq,struct dentry * dentry)1053 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1054 {
1055 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1056 	const char *compress_type;
1057 	const char *subvol_name;
1058 	bool printed = false;
1059 
1060 	if (btrfs_test_opt(info, DEGRADED))
1061 		seq_puts(seq, ",degraded");
1062 	if (btrfs_test_opt(info, NODATASUM))
1063 		seq_puts(seq, ",nodatasum");
1064 	if (btrfs_test_opt(info, NODATACOW))
1065 		seq_puts(seq, ",nodatacow");
1066 	if (btrfs_test_opt(info, NOBARRIER))
1067 		seq_puts(seq, ",nobarrier");
1068 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1069 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1070 	if (info->thread_pool_size !=  min_t(unsigned long,
1071 					     num_online_cpus() + 2, 8))
1072 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1073 	if (btrfs_test_opt(info, COMPRESS)) {
1074 		compress_type = btrfs_compress_type2str(info->compress_type);
1075 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1076 			seq_printf(seq, ",compress-force=%s", compress_type);
1077 		else
1078 			seq_printf(seq, ",compress=%s", compress_type);
1079 		if (info->compress_level)
1080 			seq_printf(seq, ":%d", info->compress_level);
1081 	}
1082 	if (btrfs_test_opt(info, NOSSD))
1083 		seq_puts(seq, ",nossd");
1084 	if (btrfs_test_opt(info, SSD_SPREAD))
1085 		seq_puts(seq, ",ssd_spread");
1086 	else if (btrfs_test_opt(info, SSD))
1087 		seq_puts(seq, ",ssd");
1088 	if (btrfs_test_opt(info, NOTREELOG))
1089 		seq_puts(seq, ",notreelog");
1090 	if (btrfs_test_opt(info, NOLOGREPLAY))
1091 		print_rescue_option(seq, "nologreplay", &printed);
1092 	if (btrfs_test_opt(info, USEBACKUPROOT))
1093 		print_rescue_option(seq, "usebackuproot", &printed);
1094 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1095 		print_rescue_option(seq, "ignorebadroots", &printed);
1096 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1097 		print_rescue_option(seq, "ignoredatacsums", &printed);
1098 	if (btrfs_test_opt(info, IGNOREMETACSUMS))
1099 		print_rescue_option(seq, "ignoremetacsums", &printed);
1100 	if (btrfs_test_opt(info, IGNORESUPERFLAGS))
1101 		print_rescue_option(seq, "ignoresuperflags", &printed);
1102 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1103 		seq_puts(seq, ",flushoncommit");
1104 	if (btrfs_test_opt(info, DISCARD_SYNC))
1105 		seq_puts(seq, ",discard");
1106 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1107 		seq_puts(seq, ",discard=async");
1108 	if (!(info->sb->s_flags & SB_POSIXACL))
1109 		seq_puts(seq, ",noacl");
1110 	if (btrfs_free_space_cache_v1_active(info))
1111 		seq_puts(seq, ",space_cache");
1112 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1113 		seq_puts(seq, ",space_cache=v2");
1114 	else
1115 		seq_puts(seq, ",nospace_cache");
1116 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1117 		seq_puts(seq, ",rescan_uuid_tree");
1118 	if (btrfs_test_opt(info, CLEAR_CACHE))
1119 		seq_puts(seq, ",clear_cache");
1120 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1121 		seq_puts(seq, ",user_subvol_rm_allowed");
1122 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1123 		seq_puts(seq, ",enospc_debug");
1124 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1125 		seq_puts(seq, ",autodefrag");
1126 	if (btrfs_test_opt(info, SKIP_BALANCE))
1127 		seq_puts(seq, ",skip_balance");
1128 	if (info->metadata_ratio)
1129 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1130 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1131 		seq_puts(seq, ",fatal_errors=panic");
1132 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1133 		seq_printf(seq, ",commit=%u", info->commit_interval);
1134 #ifdef CONFIG_BTRFS_DEBUG
1135 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1136 		seq_puts(seq, ",fragment=data");
1137 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1138 		seq_puts(seq, ",fragment=metadata");
1139 #endif
1140 	if (btrfs_test_opt(info, REF_VERIFY))
1141 		seq_puts(seq, ",ref_verify");
1142 	seq_printf(seq, ",subvolid=%llu", btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1143 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1144 			btrfs_root_id(BTRFS_I(d_inode(dentry))->root));
1145 	if (!IS_ERR(subvol_name)) {
1146 		seq_show_option(seq, "subvol", subvol_name);
1147 		kfree(subvol_name);
1148 	}
1149 	return 0;
1150 }
1151 
1152 /*
1153  * subvolumes are identified by ino 256
1154  */
is_subvolume_inode(struct inode * inode)1155 static inline int is_subvolume_inode(struct inode *inode)
1156 {
1157 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1158 		return 1;
1159 	return 0;
1160 }
1161 
mount_subvol(const char * subvol_name,u64 subvol_objectid,struct vfsmount * mnt)1162 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1163 				   struct vfsmount *mnt)
1164 {
1165 	struct dentry *root;
1166 	int ret;
1167 
1168 	if (!subvol_name) {
1169 		if (!subvol_objectid) {
1170 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1171 							  &subvol_objectid);
1172 			if (ret) {
1173 				root = ERR_PTR(ret);
1174 				goto out;
1175 			}
1176 		}
1177 		subvol_name = btrfs_get_subvol_name_from_objectid(
1178 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1179 		if (IS_ERR(subvol_name)) {
1180 			root = ERR_CAST(subvol_name);
1181 			subvol_name = NULL;
1182 			goto out;
1183 		}
1184 
1185 	}
1186 
1187 	root = mount_subtree(mnt, subvol_name);
1188 	/* mount_subtree() drops our reference on the vfsmount. */
1189 	mnt = NULL;
1190 
1191 	if (!IS_ERR(root)) {
1192 		struct super_block *s = root->d_sb;
1193 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1194 		struct inode *root_inode = d_inode(root);
1195 		u64 root_objectid = btrfs_root_id(BTRFS_I(root_inode)->root);
1196 
1197 		ret = 0;
1198 		if (!is_subvolume_inode(root_inode)) {
1199 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1200 			       subvol_name);
1201 			ret = -EINVAL;
1202 		}
1203 		if (subvol_objectid && root_objectid != subvol_objectid) {
1204 			/*
1205 			 * This will also catch a race condition where a
1206 			 * subvolume which was passed by ID is renamed and
1207 			 * another subvolume is renamed over the old location.
1208 			 */
1209 			btrfs_err(fs_info,
1210 				  "subvol '%s' does not match subvolid %llu",
1211 				  subvol_name, subvol_objectid);
1212 			ret = -EINVAL;
1213 		}
1214 		if (ret) {
1215 			dput(root);
1216 			root = ERR_PTR(ret);
1217 			deactivate_locked_super(s);
1218 		}
1219 	}
1220 
1221 out:
1222 	mntput(mnt);
1223 	kfree(subvol_name);
1224 	return root;
1225 }
1226 
btrfs_resize_thread_pool(struct btrfs_fs_info * fs_info,u32 new_pool_size,u32 old_pool_size)1227 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1228 				     u32 new_pool_size, u32 old_pool_size)
1229 {
1230 	if (new_pool_size == old_pool_size)
1231 		return;
1232 
1233 	fs_info->thread_pool_size = new_pool_size;
1234 
1235 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1236 	       old_pool_size, new_pool_size);
1237 
1238 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1239 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1240 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1241 	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1242 	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1243 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1244 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1245 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1246 }
1247 
btrfs_remount_begin(struct btrfs_fs_info * fs_info,unsigned long long old_opts,int flags)1248 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1249 				       unsigned long long old_opts, int flags)
1250 {
1251 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1252 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1253 	     (flags & SB_RDONLY))) {
1254 		/* wait for any defraggers to finish */
1255 		wait_event(fs_info->transaction_wait,
1256 			   (atomic_read(&fs_info->defrag_running) == 0));
1257 		if (flags & SB_RDONLY)
1258 			sync_filesystem(fs_info->sb);
1259 	}
1260 }
1261 
btrfs_remount_cleanup(struct btrfs_fs_info * fs_info,unsigned long long old_opts)1262 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1263 					 unsigned long long old_opts)
1264 {
1265 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1266 
1267 	/*
1268 	 * We need to cleanup all defragable inodes if the autodefragment is
1269 	 * close or the filesystem is read only.
1270 	 */
1271 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1272 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1273 		btrfs_cleanup_defrag_inodes(fs_info);
1274 	}
1275 
1276 	/* If we toggled discard async */
1277 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1278 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1279 		btrfs_discard_resume(fs_info);
1280 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1281 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1282 		btrfs_discard_cleanup(fs_info);
1283 
1284 	/* If we toggled space cache */
1285 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1286 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1287 }
1288 
btrfs_remount_rw(struct btrfs_fs_info * fs_info)1289 static int btrfs_remount_rw(struct btrfs_fs_info *fs_info)
1290 {
1291 	int ret;
1292 
1293 	if (BTRFS_FS_ERROR(fs_info)) {
1294 		btrfs_err(fs_info,
1295 			  "remounting read-write after error is not allowed");
1296 		return -EINVAL;
1297 	}
1298 
1299 	if (fs_info->fs_devices->rw_devices == 0)
1300 		return -EACCES;
1301 
1302 	if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1303 		btrfs_warn(fs_info,
1304 			   "too many missing devices, writable remount is not allowed");
1305 		return -EACCES;
1306 	}
1307 
1308 	if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1309 		btrfs_warn(fs_info,
1310 			   "mount required to replay tree-log, cannot remount read-write");
1311 		return -EINVAL;
1312 	}
1313 
1314 	/*
1315 	 * NOTE: when remounting with a change that does writes, don't put it
1316 	 * anywhere above this point, as we are not sure to be safe to write
1317 	 * until we pass the above checks.
1318 	 */
1319 	ret = btrfs_start_pre_rw_mount(fs_info);
1320 	if (ret)
1321 		return ret;
1322 
1323 	btrfs_clear_sb_rdonly(fs_info->sb);
1324 
1325 	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1326 
1327 	/*
1328 	 * If we've gone from readonly -> read-write, we need to get our
1329 	 * sync/async discard lists in the right state.
1330 	 */
1331 	btrfs_discard_resume(fs_info);
1332 
1333 	return 0;
1334 }
1335 
btrfs_remount_ro(struct btrfs_fs_info * fs_info)1336 static int btrfs_remount_ro(struct btrfs_fs_info *fs_info)
1337 {
1338 	/*
1339 	 * This also happens on 'umount -rf' or on shutdown, when the
1340 	 * filesystem is busy.
1341 	 */
1342 	cancel_work_sync(&fs_info->async_reclaim_work);
1343 	cancel_work_sync(&fs_info->async_data_reclaim_work);
1344 
1345 	btrfs_discard_cleanup(fs_info);
1346 
1347 	/* Wait for the uuid_scan task to finish */
1348 	down(&fs_info->uuid_tree_rescan_sem);
1349 	/* Avoid complains from lockdep et al. */
1350 	up(&fs_info->uuid_tree_rescan_sem);
1351 
1352 	btrfs_set_sb_rdonly(fs_info->sb);
1353 
1354 	/*
1355 	 * Setting SB_RDONLY will put the cleaner thread to sleep at the next
1356 	 * loop if it's already active.  If it's already asleep, we'll leave
1357 	 * unused block groups on disk until we're mounted read-write again
1358 	 * unless we clean them up here.
1359 	 */
1360 	btrfs_delete_unused_bgs(fs_info);
1361 
1362 	/*
1363 	 * The cleaner task could be already running before we set the flag
1364 	 * BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).  We must make
1365 	 * sure that after we finish the remount, i.e. after we call
1366 	 * btrfs_commit_super(), the cleaner can no longer start a transaction
1367 	 * - either because it was dropping a dead root, running delayed iputs
1368 	 *   or deleting an unused block group (the cleaner picked a block
1369 	 *   group from the list of unused block groups before we were able to
1370 	 *   in the previous call to btrfs_delete_unused_bgs()).
1371 	 */
1372 	wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, TASK_UNINTERRUPTIBLE);
1373 
1374 	/*
1375 	 * We've set the superblock to RO mode, so we might have made the
1376 	 * cleaner task sleep without running all pending delayed iputs. Go
1377 	 * through all the delayed iputs here, so that if an unmount happens
1378 	 * without remounting RW we don't end up at finishing close_ctree()
1379 	 * with a non-empty list of delayed iputs.
1380 	 */
1381 	btrfs_run_delayed_iputs(fs_info);
1382 
1383 	btrfs_dev_replace_suspend_for_unmount(fs_info);
1384 	btrfs_scrub_cancel(fs_info);
1385 	btrfs_pause_balance(fs_info);
1386 
1387 	/*
1388 	 * Pause the qgroup rescan worker if it is running. We don't want it to
1389 	 * be still running after we are in RO mode, as after that, by the time
1390 	 * we unmount, it might have left a transaction open, so we would leak
1391 	 * the transaction and/or crash.
1392 	 */
1393 	btrfs_qgroup_wait_for_completion(fs_info, false);
1394 
1395 	return btrfs_commit_super(fs_info);
1396 }
1397 
btrfs_ctx_to_info(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1398 static void btrfs_ctx_to_info(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1399 {
1400 	fs_info->max_inline = ctx->max_inline;
1401 	fs_info->commit_interval = ctx->commit_interval;
1402 	fs_info->metadata_ratio = ctx->metadata_ratio;
1403 	fs_info->thread_pool_size = ctx->thread_pool_size;
1404 	fs_info->mount_opt = ctx->mount_opt;
1405 	fs_info->compress_type = ctx->compress_type;
1406 	fs_info->compress_level = ctx->compress_level;
1407 }
1408 
btrfs_info_to_ctx(struct btrfs_fs_info * fs_info,struct btrfs_fs_context * ctx)1409 static void btrfs_info_to_ctx(struct btrfs_fs_info *fs_info, struct btrfs_fs_context *ctx)
1410 {
1411 	ctx->max_inline = fs_info->max_inline;
1412 	ctx->commit_interval = fs_info->commit_interval;
1413 	ctx->metadata_ratio = fs_info->metadata_ratio;
1414 	ctx->thread_pool_size = fs_info->thread_pool_size;
1415 	ctx->mount_opt = fs_info->mount_opt;
1416 	ctx->compress_type = fs_info->compress_type;
1417 	ctx->compress_level = fs_info->compress_level;
1418 }
1419 
1420 #define btrfs_info_if_set(fs_info, old_ctx, opt, fmt, args...)			\
1421 do {										\
1422 	if ((!old_ctx || !btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1423 	    btrfs_raw_test_opt(fs_info->mount_opt, opt))			\
1424 		btrfs_info(fs_info, fmt, ##args);				\
1425 } while (0)
1426 
1427 #define btrfs_info_if_unset(fs_info, old_ctx, opt, fmt, args...)	\
1428 do {									\
1429 	if ((old_ctx && btrfs_raw_test_opt(old_ctx->mount_opt, opt)) &&	\
1430 	    !btrfs_raw_test_opt(fs_info->mount_opt, opt))		\
1431 		btrfs_info(fs_info, fmt, ##args);			\
1432 } while (0)
1433 
btrfs_emit_options(struct btrfs_fs_info * info,struct btrfs_fs_context * old)1434 static void btrfs_emit_options(struct btrfs_fs_info *info,
1435 			       struct btrfs_fs_context *old)
1436 {
1437 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1438 	btrfs_info_if_set(info, old, DEGRADED, "allowing degraded mounts");
1439 	btrfs_info_if_set(info, old, NODATASUM, "setting nodatasum");
1440 	btrfs_info_if_set(info, old, SSD, "enabling ssd optimizations");
1441 	btrfs_info_if_set(info, old, SSD_SPREAD, "using spread ssd allocation scheme");
1442 	btrfs_info_if_set(info, old, NOBARRIER, "turning off barriers");
1443 	btrfs_info_if_set(info, old, NOTREELOG, "disabling tree log");
1444 	btrfs_info_if_set(info, old, NOLOGREPLAY, "disabling log replay at mount time");
1445 	btrfs_info_if_set(info, old, FLUSHONCOMMIT, "turning on flush-on-commit");
1446 	btrfs_info_if_set(info, old, DISCARD_SYNC, "turning on sync discard");
1447 	btrfs_info_if_set(info, old, DISCARD_ASYNC, "turning on async discard");
1448 	btrfs_info_if_set(info, old, FREE_SPACE_TREE, "enabling free space tree");
1449 	btrfs_info_if_set(info, old, SPACE_CACHE, "enabling disk space caching");
1450 	btrfs_info_if_set(info, old, CLEAR_CACHE, "force clearing of disk cache");
1451 	btrfs_info_if_set(info, old, AUTO_DEFRAG, "enabling auto defrag");
1452 	btrfs_info_if_set(info, old, FRAGMENT_DATA, "fragmenting data");
1453 	btrfs_info_if_set(info, old, FRAGMENT_METADATA, "fragmenting metadata");
1454 	btrfs_info_if_set(info, old, REF_VERIFY, "doing ref verification");
1455 	btrfs_info_if_set(info, old, USEBACKUPROOT, "trying to use backup root at mount time");
1456 	btrfs_info_if_set(info, old, IGNOREBADROOTS, "ignoring bad roots");
1457 	btrfs_info_if_set(info, old, IGNOREDATACSUMS, "ignoring data csums");
1458 	btrfs_info_if_set(info, old, IGNOREMETACSUMS, "ignoring meta csums");
1459 	btrfs_info_if_set(info, old, IGNORESUPERFLAGS, "ignoring unknown super block flags");
1460 
1461 	btrfs_info_if_unset(info, old, NODATACOW, "setting datacow");
1462 	btrfs_info_if_unset(info, old, SSD, "not using ssd optimizations");
1463 	btrfs_info_if_unset(info, old, SSD_SPREAD, "not using spread ssd allocation scheme");
1464 	btrfs_info_if_unset(info, old, NOBARRIER, "turning off barriers");
1465 	btrfs_info_if_unset(info, old, NOTREELOG, "enabling tree log");
1466 	btrfs_info_if_unset(info, old, SPACE_CACHE, "disabling disk space caching");
1467 	btrfs_info_if_unset(info, old, FREE_SPACE_TREE, "disabling free space tree");
1468 	btrfs_info_if_unset(info, old, AUTO_DEFRAG, "disabling auto defrag");
1469 	btrfs_info_if_unset(info, old, COMPRESS, "use no compression");
1470 
1471 	/* Did the compression settings change? */
1472 	if (btrfs_test_opt(info, COMPRESS) &&
1473 	    (!old ||
1474 	     old->compress_type != info->compress_type ||
1475 	     old->compress_level != info->compress_level ||
1476 	     (!btrfs_raw_test_opt(old->mount_opt, FORCE_COMPRESS) &&
1477 	      btrfs_raw_test_opt(info->mount_opt, FORCE_COMPRESS)))) {
1478 		const char *compress_type = btrfs_compress_type2str(info->compress_type);
1479 
1480 		btrfs_info(info, "%s %s compression, level %d",
1481 			   btrfs_test_opt(info, FORCE_COMPRESS) ? "force" : "use",
1482 			   compress_type, info->compress_level);
1483 	}
1484 
1485 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1486 		btrfs_info(info, "max_inline set to %llu", info->max_inline);
1487 }
1488 
btrfs_reconfigure(struct fs_context * fc)1489 static int btrfs_reconfigure(struct fs_context *fc)
1490 {
1491 	struct super_block *sb = fc->root->d_sb;
1492 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1493 	struct btrfs_fs_context *ctx = fc->fs_private;
1494 	struct btrfs_fs_context old_ctx;
1495 	int ret = 0;
1496 	bool mount_reconfigure = (fc->s_fs_info != NULL);
1497 
1498 	btrfs_info_to_ctx(fs_info, &old_ctx);
1499 
1500 	/*
1501 	 * This is our "bind mount" trick, we don't want to allow the user to do
1502 	 * anything other than mount a different ro/rw and a different subvol,
1503 	 * all of the mount options should be maintained.
1504 	 */
1505 	if (mount_reconfigure)
1506 		ctx->mount_opt = old_ctx.mount_opt;
1507 
1508 	sync_filesystem(sb);
1509 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1510 
1511 	if (!btrfs_check_options(fs_info, &ctx->mount_opt, fc->sb_flags))
1512 		return -EINVAL;
1513 
1514 	ret = btrfs_check_features(fs_info, !(fc->sb_flags & SB_RDONLY));
1515 	if (ret < 0)
1516 		return ret;
1517 
1518 	btrfs_ctx_to_info(fs_info, ctx);
1519 	btrfs_remount_begin(fs_info, old_ctx.mount_opt, fc->sb_flags);
1520 	btrfs_resize_thread_pool(fs_info, fs_info->thread_pool_size,
1521 				 old_ctx.thread_pool_size);
1522 
1523 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1524 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1525 	    (!sb_rdonly(sb) || (fc->sb_flags & SB_RDONLY))) {
1526 		btrfs_warn(fs_info,
1527 		"remount supports changing free space tree only from RO to RW");
1528 		/* Make sure free space cache options match the state on disk. */
1529 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1530 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1531 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1532 		}
1533 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1534 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1535 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1536 		}
1537 	}
1538 
1539 	ret = 0;
1540 	if (!sb_rdonly(sb) && (fc->sb_flags & SB_RDONLY))
1541 		ret = btrfs_remount_ro(fs_info);
1542 	else if (sb_rdonly(sb) && !(fc->sb_flags & SB_RDONLY))
1543 		ret = btrfs_remount_rw(fs_info);
1544 	if (ret)
1545 		goto restore;
1546 
1547 	/*
1548 	 * If we set the mask during the parameter parsing VFS would reject the
1549 	 * remount.  Here we can set the mask and the value will be updated
1550 	 * appropriately.
1551 	 */
1552 	if ((fc->sb_flags & SB_POSIXACL) != (sb->s_flags & SB_POSIXACL))
1553 		fc->sb_flags_mask |= SB_POSIXACL;
1554 
1555 	btrfs_emit_options(fs_info, &old_ctx);
1556 	wake_up_process(fs_info->transaction_kthread);
1557 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1558 	btrfs_clear_oneshot_options(fs_info);
1559 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1560 
1561 	return 0;
1562 restore:
1563 	btrfs_ctx_to_info(fs_info, &old_ctx);
1564 	btrfs_remount_cleanup(fs_info, old_ctx.mount_opt);
1565 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1566 	return ret;
1567 }
1568 
1569 /* Used to sort the devices by max_avail(descending sort) */
btrfs_cmp_device_free_bytes(const void * a,const void * b)1570 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1571 {
1572 	const struct btrfs_device_info *dev_info1 = a;
1573 	const struct btrfs_device_info *dev_info2 = b;
1574 
1575 	if (dev_info1->max_avail > dev_info2->max_avail)
1576 		return -1;
1577 	else if (dev_info1->max_avail < dev_info2->max_avail)
1578 		return 1;
1579 	return 0;
1580 }
1581 
1582 /*
1583  * sort the devices by max_avail, in which max free extent size of each device
1584  * is stored.(Descending Sort)
1585  */
btrfs_descending_sort_devices(struct btrfs_device_info * devices,size_t nr_devices)1586 static inline void btrfs_descending_sort_devices(
1587 					struct btrfs_device_info *devices,
1588 					size_t nr_devices)
1589 {
1590 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1591 	     btrfs_cmp_device_free_bytes, NULL);
1592 }
1593 
1594 /*
1595  * The helper to calc the free space on the devices that can be used to store
1596  * file data.
1597  */
btrfs_calc_avail_data_space(struct btrfs_fs_info * fs_info,u64 * free_bytes)1598 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1599 					      u64 *free_bytes)
1600 {
1601 	struct btrfs_device_info *devices_info;
1602 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1603 	struct btrfs_device *device;
1604 	u64 type;
1605 	u64 avail_space;
1606 	u64 min_stripe_size;
1607 	int num_stripes = 1;
1608 	int i = 0, nr_devices;
1609 	const struct btrfs_raid_attr *rattr;
1610 
1611 	/*
1612 	 * We aren't under the device list lock, so this is racy-ish, but good
1613 	 * enough for our purposes.
1614 	 */
1615 	nr_devices = fs_info->fs_devices->open_devices;
1616 	if (!nr_devices) {
1617 		smp_mb();
1618 		nr_devices = fs_info->fs_devices->open_devices;
1619 		ASSERT(nr_devices);
1620 		if (!nr_devices) {
1621 			*free_bytes = 0;
1622 			return 0;
1623 		}
1624 	}
1625 
1626 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1627 			       GFP_KERNEL);
1628 	if (!devices_info)
1629 		return -ENOMEM;
1630 
1631 	/* calc min stripe number for data space allocation */
1632 	type = btrfs_data_alloc_profile(fs_info);
1633 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1634 
1635 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1636 		num_stripes = nr_devices;
1637 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1638 		num_stripes = rattr->ncopies;
1639 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1640 		num_stripes = 4;
1641 
1642 	/* Adjust for more than 1 stripe per device */
1643 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1644 
1645 	rcu_read_lock();
1646 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1647 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1648 						&device->dev_state) ||
1649 		    !device->bdev ||
1650 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1651 			continue;
1652 
1653 		if (i >= nr_devices)
1654 			break;
1655 
1656 		avail_space = device->total_bytes - device->bytes_used;
1657 
1658 		/* align with stripe_len */
1659 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1660 
1661 		/*
1662 		 * Ensure we have at least min_stripe_size on top of the
1663 		 * reserved space on the device.
1664 		 */
1665 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1666 			continue;
1667 
1668 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1669 
1670 		devices_info[i].dev = device;
1671 		devices_info[i].max_avail = avail_space;
1672 
1673 		i++;
1674 	}
1675 	rcu_read_unlock();
1676 
1677 	nr_devices = i;
1678 
1679 	btrfs_descending_sort_devices(devices_info, nr_devices);
1680 
1681 	i = nr_devices - 1;
1682 	avail_space = 0;
1683 	while (nr_devices >= rattr->devs_min) {
1684 		num_stripes = min(num_stripes, nr_devices);
1685 
1686 		if (devices_info[i].max_avail >= min_stripe_size) {
1687 			int j;
1688 			u64 alloc_size;
1689 
1690 			avail_space += devices_info[i].max_avail * num_stripes;
1691 			alloc_size = devices_info[i].max_avail;
1692 			for (j = i + 1 - num_stripes; j <= i; j++)
1693 				devices_info[j].max_avail -= alloc_size;
1694 		}
1695 		i--;
1696 		nr_devices--;
1697 	}
1698 
1699 	kfree(devices_info);
1700 	*free_bytes = avail_space;
1701 	return 0;
1702 }
1703 
1704 /*
1705  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
1706  *
1707  * If there's a redundant raid level at DATA block groups, use the respective
1708  * multiplier to scale the sizes.
1709  *
1710  * Unused device space usage is based on simulating the chunk allocator
1711  * algorithm that respects the device sizes and order of allocations.  This is
1712  * a close approximation of the actual use but there are other factors that may
1713  * change the result (like a new metadata chunk).
1714  *
1715  * If metadata is exhausted, f_bavail will be 0.
1716  */
btrfs_statfs(struct dentry * dentry,struct kstatfs * buf)1717 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1718 {
1719 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1720 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1721 	struct btrfs_space_info *found;
1722 	u64 total_used = 0;
1723 	u64 total_free_data = 0;
1724 	u64 total_free_meta = 0;
1725 	u32 bits = fs_info->sectorsize_bits;
1726 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
1727 	unsigned factor = 1;
1728 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
1729 	int ret;
1730 	u64 thresh = 0;
1731 	int mixed = 0;
1732 
1733 	list_for_each_entry(found, &fs_info->space_info, list) {
1734 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1735 			int i;
1736 
1737 			total_free_data += found->disk_total - found->disk_used;
1738 			total_free_data -=
1739 				btrfs_account_ro_block_groups_free_space(found);
1740 
1741 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
1742 				if (!list_empty(&found->block_groups[i]))
1743 					factor = btrfs_bg_type_to_factor(
1744 						btrfs_raid_array[i].bg_flag);
1745 			}
1746 		}
1747 
1748 		/*
1749 		 * Metadata in mixed block group profiles are accounted in data
1750 		 */
1751 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
1752 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
1753 				mixed = 1;
1754 			else
1755 				total_free_meta += found->disk_total -
1756 					found->disk_used;
1757 		}
1758 
1759 		total_used += found->disk_used;
1760 	}
1761 
1762 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
1763 	buf->f_blocks >>= bits;
1764 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
1765 
1766 	/* Account global block reserve as used, it's in logical size already */
1767 	spin_lock(&block_rsv->lock);
1768 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
1769 	if (buf->f_bfree >= block_rsv->size >> bits)
1770 		buf->f_bfree -= block_rsv->size >> bits;
1771 	else
1772 		buf->f_bfree = 0;
1773 	spin_unlock(&block_rsv->lock);
1774 
1775 	buf->f_bavail = div_u64(total_free_data, factor);
1776 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
1777 	if (ret)
1778 		return ret;
1779 	buf->f_bavail += div_u64(total_free_data, factor);
1780 	buf->f_bavail = buf->f_bavail >> bits;
1781 
1782 	/*
1783 	 * We calculate the remaining metadata space minus global reserve. If
1784 	 * this is (supposedly) smaller than zero, there's no space. But this
1785 	 * does not hold in practice, the exhausted state happens where's still
1786 	 * some positive delta. So we apply some guesswork and compare the
1787 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
1788 	 *
1789 	 * We probably cannot calculate the exact threshold value because this
1790 	 * depends on the internal reservations requested by various
1791 	 * operations, so some operations that consume a few metadata will
1792 	 * succeed even if the Avail is zero. But this is better than the other
1793 	 * way around.
1794 	 */
1795 	thresh = SZ_4M;
1796 
1797 	/*
1798 	 * We only want to claim there's no available space if we can no longer
1799 	 * allocate chunks for our metadata profile and our global reserve will
1800 	 * not fit in the free metadata space.  If we aren't ->full then we
1801 	 * still can allocate chunks and thus are fine using the currently
1802 	 * calculated f_bavail.
1803 	 */
1804 	if (!mixed && block_rsv->space_info->full &&
1805 	    (total_free_meta < thresh || total_free_meta - thresh < block_rsv->size))
1806 		buf->f_bavail = 0;
1807 
1808 	buf->f_type = BTRFS_SUPER_MAGIC;
1809 	buf->f_bsize = fs_info->sectorsize;
1810 	buf->f_namelen = BTRFS_NAME_LEN;
1811 
1812 	/* We treat it as constant endianness (it doesn't matter _which_)
1813 	   because we want the fsid to come out the same whether mounted
1814 	   on a big-endian or little-endian host */
1815 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1816 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1817 	/* Mask in the root object ID too, to disambiguate subvols */
1818 	buf->f_fsid.val[0] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root) >> 32;
1819 	buf->f_fsid.val[1] ^= btrfs_root_id(BTRFS_I(d_inode(dentry))->root);
1820 
1821 	return 0;
1822 }
1823 
btrfs_fc_test_super(struct super_block * sb,struct fs_context * fc)1824 static int btrfs_fc_test_super(struct super_block *sb, struct fs_context *fc)
1825 {
1826 	struct btrfs_fs_info *p = fc->s_fs_info;
1827 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1828 
1829 	return fs_info->fs_devices == p->fs_devices;
1830 }
1831 
btrfs_get_tree_super(struct fs_context * fc)1832 static int btrfs_get_tree_super(struct fs_context *fc)
1833 {
1834 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
1835 	struct btrfs_fs_context *ctx = fc->fs_private;
1836 	struct btrfs_fs_devices *fs_devices = NULL;
1837 	struct block_device *bdev;
1838 	struct btrfs_device *device;
1839 	struct super_block *sb;
1840 	blk_mode_t mode = btrfs_open_mode(fc);
1841 	int ret;
1842 
1843 	btrfs_ctx_to_info(fs_info, ctx);
1844 	mutex_lock(&uuid_mutex);
1845 
1846 	/*
1847 	 * With 'true' passed to btrfs_scan_one_device() (mount time) we expect
1848 	 * either a valid device or an error.
1849 	 */
1850 	device = btrfs_scan_one_device(fc->source, mode, true);
1851 	ASSERT(device != NULL);
1852 	if (IS_ERR(device)) {
1853 		mutex_unlock(&uuid_mutex);
1854 		return PTR_ERR(device);
1855 	}
1856 
1857 	fs_devices = device->fs_devices;
1858 	fs_info->fs_devices = fs_devices;
1859 
1860 	ret = btrfs_open_devices(fs_devices, mode, &btrfs_fs_type);
1861 	mutex_unlock(&uuid_mutex);
1862 	if (ret)
1863 		return ret;
1864 
1865 	if (!(fc->sb_flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1866 		ret = -EACCES;
1867 		goto error;
1868 	}
1869 
1870 	bdev = fs_devices->latest_dev->bdev;
1871 
1872 	/*
1873 	 * From now on the error handling is not straightforward.
1874 	 *
1875 	 * If successful, this will transfer the fs_info into the super block,
1876 	 * and fc->s_fs_info will be NULL.  However if there's an existing
1877 	 * super, we'll still have fc->s_fs_info populated.  If we error
1878 	 * completely out it'll be cleaned up when we drop the fs_context,
1879 	 * otherwise it's tied to the lifetime of the super_block.
1880 	 */
1881 	sb = sget_fc(fc, btrfs_fc_test_super, set_anon_super_fc);
1882 	if (IS_ERR(sb)) {
1883 		ret = PTR_ERR(sb);
1884 		goto error;
1885 	}
1886 
1887 	set_device_specific_options(fs_info);
1888 
1889 	if (sb->s_root) {
1890 		btrfs_close_devices(fs_devices);
1891 		/*
1892 		 * At this stage we may have RO flag mismatch between
1893 		 * fc->sb_flags and sb->s_flags.  Caller should detect such
1894 		 * mismatch and reconfigure with sb->s_umount rwsem held if
1895 		 * needed.
1896 		 */
1897 	} else {
1898 		snprintf(sb->s_id, sizeof(sb->s_id), "%pg", bdev);
1899 		shrinker_debugfs_rename(sb->s_shrink, "sb-btrfs:%s", sb->s_id);
1900 		btrfs_sb(sb)->bdev_holder = &btrfs_fs_type;
1901 		ret = btrfs_fill_super(sb, fs_devices);
1902 		if (ret) {
1903 			deactivate_locked_super(sb);
1904 			return ret;
1905 		}
1906 	}
1907 
1908 	btrfs_clear_oneshot_options(fs_info);
1909 
1910 	fc->root = dget(sb->s_root);
1911 	return 0;
1912 
1913 error:
1914 	btrfs_close_devices(fs_devices);
1915 	return ret;
1916 }
1917 
1918 /*
1919  * Ever since commit 0723a0473fb4 ("btrfs: allow mounting btrfs subvolumes
1920  * with different ro/rw options") the following works:
1921  *
1922  *        (i) mount /dev/sda3 -o subvol=foo,ro /mnt/foo
1923  *       (ii) mount /dev/sda3 -o subvol=bar,rw /mnt/bar
1924  *
1925  * which looks nice and innocent but is actually pretty intricate and deserves
1926  * a long comment.
1927  *
1928  * On another filesystem a subvolume mount is close to something like:
1929  *
1930  *	(iii) # create rw superblock + initial mount
1931  *	      mount -t xfs /dev/sdb /opt/
1932  *
1933  *	      # create ro bind mount
1934  *	      mount --bind -o ro /opt/foo /mnt/foo
1935  *
1936  *	      # unmount initial mount
1937  *	      umount /opt
1938  *
1939  * Of course, there's some special subvolume sauce and there's the fact that the
1940  * sb->s_root dentry is really swapped after mount_subtree(). But conceptually
1941  * it's very close and will help us understand the issue.
1942  *
1943  * The old mount API didn't cleanly distinguish between a mount being made ro
1944  * and a superblock being made ro.  The only way to change the ro state of
1945  * either object was by passing ms_rdonly. If a new mount was created via
1946  * mount(2) such as:
1947  *
1948  *      mount("/dev/sdb", "/mnt", "xfs", ms_rdonly, null);
1949  *
1950  * the MS_RDONLY flag being specified had two effects:
1951  *
1952  * (1) MNT_READONLY was raised -> the resulting mount got
1953  *     @mnt->mnt_flags |= MNT_READONLY raised.
1954  *
1955  * (2) MS_RDONLY was passed to the filesystem's mount method and the filesystems
1956  *     made the superblock ro. Note, how SB_RDONLY has the same value as
1957  *     ms_rdonly and is raised whenever MS_RDONLY is passed through mount(2).
1958  *
1959  * Creating a subtree mount via (iii) ends up leaving a rw superblock with a
1960  * subtree mounted ro.
1961  *
1962  * But consider the effect on the old mount API on btrfs subvolume mounting
1963  * which combines the distinct step in (iii) into a single step.
1964  *
1965  * By issuing (i) both the mount and the superblock are turned ro. Now when (ii)
1966  * is issued the superblock is ro and thus even if the mount created for (ii) is
1967  * rw it wouldn't help. Hence, btrfs needed to transition the superblock from ro
1968  * to rw for (ii) which it did using an internal remount call.
1969  *
1970  * IOW, subvolume mounting was inherently complicated due to the ambiguity of
1971  * MS_RDONLY in mount(2). Note, this ambiguity has mount(8) always translate
1972  * "ro" to MS_RDONLY. IOW, in both (i) and (ii) "ro" becomes MS_RDONLY when
1973  * passed by mount(8) to mount(2).
1974  *
1975  * Enter the new mount API. The new mount API disambiguates making a mount ro
1976  * and making a superblock ro.
1977  *
1978  * (3) To turn a mount ro the MOUNT_ATTR_ONLY flag can be used with either
1979  *     fsmount() or mount_setattr() this is a pure VFS level change for a
1980  *     specific mount or mount tree that is never seen by the filesystem itself.
1981  *
1982  * (4) To turn a superblock ro the "ro" flag must be used with
1983  *     fsconfig(FSCONFIG_SET_FLAG, "ro"). This option is seen by the filesystem
1984  *     in fc->sb_flags.
1985  *
1986  * But, currently the util-linux mount command already utilizes the new mount
1987  * API and is still setting fsconfig(FSCONFIG_SET_FLAG, "ro") no matter if it's
1988  * btrfs or not, setting the whole super block RO.  To make per-subvolume mounting
1989  * work with different options work we need to keep backward compatibility.
1990  */
btrfs_reconfigure_for_mount(struct fs_context * fc,struct vfsmount * mnt)1991 static int btrfs_reconfigure_for_mount(struct fs_context *fc, struct vfsmount *mnt)
1992 {
1993 	int ret = 0;
1994 
1995 	if (fc->sb_flags & SB_RDONLY)
1996 		return ret;
1997 
1998 	down_write(&mnt->mnt_sb->s_umount);
1999 	if (!(fc->sb_flags & SB_RDONLY) && (mnt->mnt_sb->s_flags & SB_RDONLY))
2000 		ret = btrfs_reconfigure(fc);
2001 	up_write(&mnt->mnt_sb->s_umount);
2002 	return ret;
2003 }
2004 
btrfs_get_tree_subvol(struct fs_context * fc)2005 static int btrfs_get_tree_subvol(struct fs_context *fc)
2006 {
2007 	struct btrfs_fs_info *fs_info = NULL;
2008 	struct btrfs_fs_context *ctx = fc->fs_private;
2009 	struct fs_context *dup_fc;
2010 	struct dentry *dentry;
2011 	struct vfsmount *mnt;
2012 	int ret = 0;
2013 
2014 	/*
2015 	 * Setup a dummy root and fs_info for test/set super.  This is because
2016 	 * we don't actually fill this stuff out until open_ctree, but we need
2017 	 * then open_ctree will properly initialize the file system specific
2018 	 * settings later.  btrfs_init_fs_info initializes the static elements
2019 	 * of the fs_info (locks and such) to make cleanup easier if we find a
2020 	 * superblock with our given fs_devices later on at sget() time.
2021 	 */
2022 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
2023 	if (!fs_info)
2024 		return -ENOMEM;
2025 
2026 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2027 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
2028 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
2029 		btrfs_free_fs_info(fs_info);
2030 		return -ENOMEM;
2031 	}
2032 	btrfs_init_fs_info(fs_info);
2033 
2034 	dup_fc = vfs_dup_fs_context(fc);
2035 	if (IS_ERR(dup_fc)) {
2036 		btrfs_free_fs_info(fs_info);
2037 		return PTR_ERR(dup_fc);
2038 	}
2039 
2040 	/*
2041 	 * When we do the sget_fc this gets transferred to the sb, so we only
2042 	 * need to set it on the dup_fc as this is what creates the super block.
2043 	 */
2044 	dup_fc->s_fs_info = fs_info;
2045 
2046 	/*
2047 	 * We'll do the security settings in our btrfs_get_tree_super() mount
2048 	 * loop, they were duplicated into dup_fc, we can drop the originals
2049 	 * here.
2050 	 */
2051 	security_free_mnt_opts(&fc->security);
2052 	fc->security = NULL;
2053 
2054 	mnt = fc_mount(dup_fc);
2055 	if (IS_ERR(mnt)) {
2056 		put_fs_context(dup_fc);
2057 		return PTR_ERR(mnt);
2058 	}
2059 	ret = btrfs_reconfigure_for_mount(dup_fc, mnt);
2060 	put_fs_context(dup_fc);
2061 	if (ret) {
2062 		mntput(mnt);
2063 		return ret;
2064 	}
2065 
2066 	/*
2067 	 * This free's ->subvol_name, because if it isn't set we have to
2068 	 * allocate a buffer to hold the subvol_name, so we just drop our
2069 	 * reference to it here.
2070 	 */
2071 	dentry = mount_subvol(ctx->subvol_name, ctx->subvol_objectid, mnt);
2072 	ctx->subvol_name = NULL;
2073 	if (IS_ERR(dentry))
2074 		return PTR_ERR(dentry);
2075 
2076 	fc->root = dentry;
2077 	return 0;
2078 }
2079 
btrfs_get_tree(struct fs_context * fc)2080 static int btrfs_get_tree(struct fs_context *fc)
2081 {
2082 	/*
2083 	 * Since we use mount_subtree to mount the default/specified subvol, we
2084 	 * have to do mounts in two steps.
2085 	 *
2086 	 * First pass through we call btrfs_get_tree_subvol(), this is just a
2087 	 * wrapper around fc_mount() to call back into here again, and this time
2088 	 * we'll call btrfs_get_tree_super().  This will do the open_ctree() and
2089 	 * everything to open the devices and file system.  Then we return back
2090 	 * with a fully constructed vfsmount in btrfs_get_tree_subvol(), and
2091 	 * from there we can do our mount_subvol() call, which will lookup
2092 	 * whichever subvol we're mounting and setup this fc with the
2093 	 * appropriate dentry for the subvol.
2094 	 */
2095 	if (fc->s_fs_info)
2096 		return btrfs_get_tree_super(fc);
2097 	return btrfs_get_tree_subvol(fc);
2098 }
2099 
btrfs_kill_super(struct super_block * sb)2100 static void btrfs_kill_super(struct super_block *sb)
2101 {
2102 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2103 	kill_anon_super(sb);
2104 	btrfs_free_fs_info(fs_info);
2105 }
2106 
btrfs_free_fs_context(struct fs_context * fc)2107 static void btrfs_free_fs_context(struct fs_context *fc)
2108 {
2109 	struct btrfs_fs_context *ctx = fc->fs_private;
2110 	struct btrfs_fs_info *fs_info = fc->s_fs_info;
2111 
2112 	if (fs_info)
2113 		btrfs_free_fs_info(fs_info);
2114 
2115 	if (ctx && refcount_dec_and_test(&ctx->refs)) {
2116 		kfree(ctx->subvol_name);
2117 		kfree(ctx);
2118 	}
2119 }
2120 
btrfs_dup_fs_context(struct fs_context * fc,struct fs_context * src_fc)2121 static int btrfs_dup_fs_context(struct fs_context *fc, struct fs_context *src_fc)
2122 {
2123 	struct btrfs_fs_context *ctx = src_fc->fs_private;
2124 
2125 	/*
2126 	 * Give a ref to our ctx to this dup, as we want to keep it around for
2127 	 * our original fc so we can have the subvolume name or objectid.
2128 	 *
2129 	 * We unset ->source in the original fc because the dup needs it for
2130 	 * mounting, and then once we free the dup it'll free ->source, so we
2131 	 * need to make sure we're only pointing to it in one fc.
2132 	 */
2133 	refcount_inc(&ctx->refs);
2134 	fc->fs_private = ctx;
2135 	fc->source = src_fc->source;
2136 	src_fc->source = NULL;
2137 	return 0;
2138 }
2139 
2140 static const struct fs_context_operations btrfs_fs_context_ops = {
2141 	.parse_param	= btrfs_parse_param,
2142 	.reconfigure	= btrfs_reconfigure,
2143 	.get_tree	= btrfs_get_tree,
2144 	.dup		= btrfs_dup_fs_context,
2145 	.free		= btrfs_free_fs_context,
2146 };
2147 
btrfs_init_fs_context(struct fs_context * fc)2148 static int btrfs_init_fs_context(struct fs_context *fc)
2149 {
2150 	struct btrfs_fs_context *ctx;
2151 
2152 	ctx = kzalloc(sizeof(struct btrfs_fs_context), GFP_KERNEL);
2153 	if (!ctx)
2154 		return -ENOMEM;
2155 
2156 	refcount_set(&ctx->refs, 1);
2157 	fc->fs_private = ctx;
2158 	fc->ops = &btrfs_fs_context_ops;
2159 
2160 	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2161 		btrfs_info_to_ctx(btrfs_sb(fc->root->d_sb), ctx);
2162 	} else {
2163 		ctx->thread_pool_size =
2164 			min_t(unsigned long, num_online_cpus() + 2, 8);
2165 		ctx->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2166 		ctx->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2167 	}
2168 
2169 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
2170 	fc->sb_flags |= SB_POSIXACL;
2171 #endif
2172 	fc->sb_flags |= SB_I_VERSION;
2173 
2174 	return 0;
2175 }
2176 
2177 static struct file_system_type btrfs_fs_type = {
2178 	.owner			= THIS_MODULE,
2179 	.name			= "btrfs",
2180 	.init_fs_context	= btrfs_init_fs_context,
2181 	.parameters		= btrfs_fs_parameters,
2182 	.kill_sb		= btrfs_kill_super,
2183 	.fs_flags		= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA |
2184 				  FS_ALLOW_IDMAP | FS_MGTIME,
2185  };
2186 
2187 MODULE_ALIAS_FS("btrfs");
2188 
btrfs_control_open(struct inode * inode,struct file * file)2189 static int btrfs_control_open(struct inode *inode, struct file *file)
2190 {
2191 	/*
2192 	 * The control file's private_data is used to hold the
2193 	 * transaction when it is started and is used to keep
2194 	 * track of whether a transaction is already in progress.
2195 	 */
2196 	file->private_data = NULL;
2197 	return 0;
2198 }
2199 
2200 /*
2201  * Used by /dev/btrfs-control for devices ioctls.
2202  */
btrfs_control_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2203 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2204 				unsigned long arg)
2205 {
2206 	struct btrfs_ioctl_vol_args *vol;
2207 	struct btrfs_device *device = NULL;
2208 	dev_t devt = 0;
2209 	int ret = -ENOTTY;
2210 
2211 	if (!capable(CAP_SYS_ADMIN))
2212 		return -EPERM;
2213 
2214 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2215 	if (IS_ERR(vol))
2216 		return PTR_ERR(vol);
2217 	ret = btrfs_check_ioctl_vol_args_path(vol);
2218 	if (ret < 0)
2219 		goto out;
2220 
2221 	switch (cmd) {
2222 	case BTRFS_IOC_SCAN_DEV:
2223 		mutex_lock(&uuid_mutex);
2224 		/*
2225 		 * Scanning outside of mount can return NULL which would turn
2226 		 * into 0 error code.
2227 		 */
2228 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2229 		ret = PTR_ERR_OR_ZERO(device);
2230 		mutex_unlock(&uuid_mutex);
2231 		break;
2232 	case BTRFS_IOC_FORGET_DEV:
2233 		if (vol->name[0] != 0) {
2234 			ret = lookup_bdev(vol->name, &devt);
2235 			if (ret)
2236 				break;
2237 		}
2238 		ret = btrfs_forget_devices(devt);
2239 		break;
2240 	case BTRFS_IOC_DEVICES_READY:
2241 		mutex_lock(&uuid_mutex);
2242 		/*
2243 		 * Scanning outside of mount can return NULL which would turn
2244 		 * into 0 error code.
2245 		 */
2246 		device = btrfs_scan_one_device(vol->name, BLK_OPEN_READ, false);
2247 		if (IS_ERR_OR_NULL(device)) {
2248 			mutex_unlock(&uuid_mutex);
2249 			if (IS_ERR(device))
2250 				ret = PTR_ERR(device);
2251 			else
2252 				ret = 0;
2253 			break;
2254 		}
2255 		ret = !(device->fs_devices->num_devices ==
2256 			device->fs_devices->total_devices);
2257 		mutex_unlock(&uuid_mutex);
2258 		break;
2259 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2260 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2261 		break;
2262 	}
2263 
2264 out:
2265 	kfree(vol);
2266 	return ret;
2267 }
2268 
btrfs_freeze(struct super_block * sb)2269 static int btrfs_freeze(struct super_block *sb)
2270 {
2271 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2272 
2273 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2274 	/*
2275 	 * We don't need a barrier here, we'll wait for any transaction that
2276 	 * could be in progress on other threads (and do delayed iputs that
2277 	 * we want to avoid on a frozen filesystem), or do the commit
2278 	 * ourselves.
2279 	 */
2280 	return btrfs_commit_current_transaction(fs_info->tree_root);
2281 }
2282 
check_dev_super(struct btrfs_device * dev)2283 static int check_dev_super(struct btrfs_device *dev)
2284 {
2285 	struct btrfs_fs_info *fs_info = dev->fs_info;
2286 	struct btrfs_super_block *sb;
2287 	u64 last_trans;
2288 	u16 csum_type;
2289 	int ret = 0;
2290 
2291 	/* This should be called with fs still frozen. */
2292 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2293 
2294 	/* Missing dev, no need to check. */
2295 	if (!dev->bdev)
2296 		return 0;
2297 
2298 	/* Only need to check the primary super block. */
2299 	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2300 	if (IS_ERR(sb))
2301 		return PTR_ERR(sb);
2302 
2303 	/* Verify the checksum. */
2304 	csum_type = btrfs_super_csum_type(sb);
2305 	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2306 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2307 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2308 		ret = -EUCLEAN;
2309 		goto out;
2310 	}
2311 
2312 	if (btrfs_check_super_csum(fs_info, sb)) {
2313 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2314 		ret = -EUCLEAN;
2315 		goto out;
2316 	}
2317 
2318 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2319 	ret = btrfs_validate_super(fs_info, sb, 0);
2320 	if (ret < 0)
2321 		goto out;
2322 
2323 	last_trans = btrfs_get_last_trans_committed(fs_info);
2324 	if (btrfs_super_generation(sb) != last_trans) {
2325 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2326 			  btrfs_super_generation(sb), last_trans);
2327 		ret = -EUCLEAN;
2328 		goto out;
2329 	}
2330 out:
2331 	btrfs_release_disk_super(sb);
2332 	return ret;
2333 }
2334 
btrfs_unfreeze(struct super_block * sb)2335 static int btrfs_unfreeze(struct super_block *sb)
2336 {
2337 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2338 	struct btrfs_device *device;
2339 	int ret = 0;
2340 
2341 	/*
2342 	 * Make sure the fs is not changed by accident (like hibernation then
2343 	 * modified by other OS).
2344 	 * If we found anything wrong, we mark the fs error immediately.
2345 	 *
2346 	 * And since the fs is frozen, no one can modify the fs yet, thus
2347 	 * we don't need to hold device_list_mutex.
2348 	 */
2349 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2350 		ret = check_dev_super(device);
2351 		if (ret < 0) {
2352 			btrfs_handle_fs_error(fs_info, ret,
2353 				"super block on devid %llu got modified unexpectedly",
2354 				device->devid);
2355 			break;
2356 		}
2357 	}
2358 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2359 
2360 	/*
2361 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2362 	 * above checks failed. Since the fs is either fine or read-only, we're
2363 	 * safe to continue, without causing further damage.
2364 	 */
2365 	return 0;
2366 }
2367 
btrfs_show_devname(struct seq_file * m,struct dentry * root)2368 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2369 {
2370 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2371 
2372 	/*
2373 	 * There should be always a valid pointer in latest_dev, it may be stale
2374 	 * for a short moment in case it's being deleted but still valid until
2375 	 * the end of RCU grace period.
2376 	 */
2377 	rcu_read_lock();
2378 	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2379 	rcu_read_unlock();
2380 
2381 	return 0;
2382 }
2383 
btrfs_nr_cached_objects(struct super_block * sb,struct shrink_control * sc)2384 static long btrfs_nr_cached_objects(struct super_block *sb, struct shrink_control *sc)
2385 {
2386 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2387 	const s64 nr = percpu_counter_sum_positive(&fs_info->evictable_extent_maps);
2388 
2389 	trace_btrfs_extent_map_shrinker_count(fs_info, nr);
2390 
2391 	return nr;
2392 }
2393 
btrfs_free_cached_objects(struct super_block * sb,struct shrink_control * sc)2394 static long btrfs_free_cached_objects(struct super_block *sb, struct shrink_control *sc)
2395 {
2396 	const long nr_to_scan = min_t(unsigned long, LONG_MAX, sc->nr_to_scan);
2397 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2398 
2399 	btrfs_free_extent_maps(fs_info, nr_to_scan);
2400 
2401 	/* The extent map shrinker runs asynchronously, so always return 0. */
2402 	return 0;
2403 }
2404 
2405 static const struct super_operations btrfs_super_ops = {
2406 	.drop_inode	= btrfs_drop_inode,
2407 	.evict_inode	= btrfs_evict_inode,
2408 	.put_super	= btrfs_put_super,
2409 	.sync_fs	= btrfs_sync_fs,
2410 	.show_options	= btrfs_show_options,
2411 	.show_devname	= btrfs_show_devname,
2412 	.alloc_inode	= btrfs_alloc_inode,
2413 	.destroy_inode	= btrfs_destroy_inode,
2414 	.free_inode	= btrfs_free_inode,
2415 	.statfs		= btrfs_statfs,
2416 	.freeze_fs	= btrfs_freeze,
2417 	.unfreeze_fs	= btrfs_unfreeze,
2418 	.nr_cached_objects = btrfs_nr_cached_objects,
2419 	.free_cached_objects = btrfs_free_cached_objects,
2420 };
2421 
2422 static const struct file_operations btrfs_ctl_fops = {
2423 	.open = btrfs_control_open,
2424 	.unlocked_ioctl	 = btrfs_control_ioctl,
2425 	.compat_ioctl = compat_ptr_ioctl,
2426 	.owner	 = THIS_MODULE,
2427 	.llseek = noop_llseek,
2428 };
2429 
2430 static struct miscdevice btrfs_misc = {
2431 	.minor		= BTRFS_MINOR,
2432 	.name		= "btrfs-control",
2433 	.fops		= &btrfs_ctl_fops
2434 };
2435 
2436 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2437 MODULE_ALIAS("devname:btrfs-control");
2438 
btrfs_interface_init(void)2439 static int __init btrfs_interface_init(void)
2440 {
2441 	return misc_register(&btrfs_misc);
2442 }
2443 
btrfs_interface_exit(void)2444 static __cold void btrfs_interface_exit(void)
2445 {
2446 	misc_deregister(&btrfs_misc);
2447 }
2448 
btrfs_print_mod_info(void)2449 static int __init btrfs_print_mod_info(void)
2450 {
2451 	static const char options[] = ""
2452 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2453 			", experimental=on"
2454 #endif
2455 #ifdef CONFIG_BTRFS_DEBUG
2456 			", debug=on"
2457 #endif
2458 #ifdef CONFIG_BTRFS_ASSERT
2459 			", assert=on"
2460 #endif
2461 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2462 			", ref-verify=on"
2463 #endif
2464 #ifdef CONFIG_BLK_DEV_ZONED
2465 			", zoned=yes"
2466 #else
2467 			", zoned=no"
2468 #endif
2469 #ifdef CONFIG_FS_VERITY
2470 			", fsverity=yes"
2471 #else
2472 			", fsverity=no"
2473 #endif
2474 			;
2475 
2476 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2477 	if (btrfs_get_mod_read_policy() == NULL)
2478 		pr_info("Btrfs loaded%s\n", options);
2479 	else
2480 		pr_info("Btrfs loaded%s, read_policy=%s\n",
2481 			 options, btrfs_get_mod_read_policy());
2482 #else
2483 	pr_info("Btrfs loaded%s\n", options);
2484 #endif
2485 
2486 	return 0;
2487 }
2488 
register_btrfs(void)2489 static int register_btrfs(void)
2490 {
2491 	return register_filesystem(&btrfs_fs_type);
2492 }
2493 
unregister_btrfs(void)2494 static void unregister_btrfs(void)
2495 {
2496 	unregister_filesystem(&btrfs_fs_type);
2497 }
2498 
2499 /* Helper structure for long init/exit functions. */
2500 struct init_sequence {
2501 	int (*init_func)(void);
2502 	/* Can be NULL if the init_func doesn't need cleanup. */
2503 	void (*exit_func)(void);
2504 };
2505 
2506 static const struct init_sequence mod_init_seq[] = {
2507 	{
2508 		.init_func = btrfs_props_init,
2509 		.exit_func = NULL,
2510 	}, {
2511 		.init_func = btrfs_init_sysfs,
2512 		.exit_func = btrfs_exit_sysfs,
2513 	}, {
2514 		.init_func = btrfs_init_compress,
2515 		.exit_func = btrfs_exit_compress,
2516 	}, {
2517 		.init_func = btrfs_init_cachep,
2518 		.exit_func = btrfs_destroy_cachep,
2519 	}, {
2520 		.init_func = btrfs_init_dio,
2521 		.exit_func = btrfs_destroy_dio,
2522 	}, {
2523 		.init_func = btrfs_transaction_init,
2524 		.exit_func = btrfs_transaction_exit,
2525 	}, {
2526 		.init_func = btrfs_ctree_init,
2527 		.exit_func = btrfs_ctree_exit,
2528 	}, {
2529 		.init_func = btrfs_free_space_init,
2530 		.exit_func = btrfs_free_space_exit,
2531 	}, {
2532 		.init_func = extent_state_init_cachep,
2533 		.exit_func = extent_state_free_cachep,
2534 	}, {
2535 		.init_func = extent_buffer_init_cachep,
2536 		.exit_func = extent_buffer_free_cachep,
2537 	}, {
2538 		.init_func = btrfs_bioset_init,
2539 		.exit_func = btrfs_bioset_exit,
2540 	}, {
2541 		.init_func = extent_map_init,
2542 		.exit_func = extent_map_exit,
2543 #ifdef CONFIG_BTRFS_EXPERIMENTAL
2544 	}, {
2545 		.init_func = btrfs_read_policy_init,
2546 		.exit_func = NULL,
2547 #endif
2548 	}, {
2549 		.init_func = ordered_data_init,
2550 		.exit_func = ordered_data_exit,
2551 	}, {
2552 		.init_func = btrfs_delayed_inode_init,
2553 		.exit_func = btrfs_delayed_inode_exit,
2554 	}, {
2555 		.init_func = btrfs_auto_defrag_init,
2556 		.exit_func = btrfs_auto_defrag_exit,
2557 	}, {
2558 		.init_func = btrfs_delayed_ref_init,
2559 		.exit_func = btrfs_delayed_ref_exit,
2560 	}, {
2561 		.init_func = btrfs_prelim_ref_init,
2562 		.exit_func = btrfs_prelim_ref_exit,
2563 	}, {
2564 		.init_func = btrfs_interface_init,
2565 		.exit_func = btrfs_interface_exit,
2566 	}, {
2567 		.init_func = btrfs_print_mod_info,
2568 		.exit_func = NULL,
2569 	}, {
2570 		.init_func = btrfs_run_sanity_tests,
2571 		.exit_func = NULL,
2572 	}, {
2573 		.init_func = register_btrfs,
2574 		.exit_func = unregister_btrfs,
2575 	}
2576 };
2577 
2578 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2579 
btrfs_exit_btrfs_fs(void)2580 static __always_inline void btrfs_exit_btrfs_fs(void)
2581 {
2582 	int i;
2583 
2584 	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2585 		if (!mod_init_result[i])
2586 			continue;
2587 		if (mod_init_seq[i].exit_func)
2588 			mod_init_seq[i].exit_func();
2589 		mod_init_result[i] = false;
2590 	}
2591 }
2592 
exit_btrfs_fs(void)2593 static void __exit exit_btrfs_fs(void)
2594 {
2595 	btrfs_exit_btrfs_fs();
2596 	btrfs_cleanup_fs_uuids();
2597 }
2598 
init_btrfs_fs(void)2599 static int __init init_btrfs_fs(void)
2600 {
2601 	int ret;
2602 	int i;
2603 
2604 	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2605 		ASSERT(!mod_init_result[i]);
2606 		ret = mod_init_seq[i].init_func();
2607 		if (ret < 0) {
2608 			btrfs_exit_btrfs_fs();
2609 			return ret;
2610 		}
2611 		mod_init_result[i] = true;
2612 	}
2613 	return 0;
2614 }
2615 
2616 late_initcall(init_btrfs_fs);
2617 module_exit(exit_btrfs_fs)
2618 
2619 MODULE_DESCRIPTION("B-Tree File System (BTRFS)");
2620 MODULE_LICENSE("GPL");
2621 MODULE_SOFTDEP("pre: crc32c");
2622 MODULE_SOFTDEP("pre: xxhash64");
2623 MODULE_SOFTDEP("pre: sha256");
2624 MODULE_SOFTDEP("pre: blake2b-256");
2625