1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * bcachefs setup/teardown code, and some metadata io - read a superblock and
4 * figure out what to do with it.
5 *
6 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
7 * Copyright 2012 Google, Inc.
8 */
9
10 #include "bcachefs.h"
11 #include "alloc_background.h"
12 #include "alloc_foreground.h"
13 #include "bkey_sort.h"
14 #include "btree_cache.h"
15 #include "btree_gc.h"
16 #include "btree_journal_iter.h"
17 #include "btree_key_cache.h"
18 #include "btree_node_scan.h"
19 #include "btree_update_interior.h"
20 #include "btree_io.h"
21 #include "btree_write_buffer.h"
22 #include "buckets_waiting_for_journal.h"
23 #include "chardev.h"
24 #include "checksum.h"
25 #include "clock.h"
26 #include "compress.h"
27 #include "debug.h"
28 #include "disk_accounting.h"
29 #include "disk_groups.h"
30 #include "ec.h"
31 #include "errcode.h"
32 #include "error.h"
33 #include "fs.h"
34 #include "fs-io.h"
35 #include "fs-io-buffered.h"
36 #include "fs-io-direct.h"
37 #include "fsck.h"
38 #include "inode.h"
39 #include "io_read.h"
40 #include "io_write.h"
41 #include "journal.h"
42 #include "journal_reclaim.h"
43 #include "journal_seq_blacklist.h"
44 #include "move.h"
45 #include "migrate.h"
46 #include "movinggc.h"
47 #include "nocow_locking.h"
48 #include "quota.h"
49 #include "rebalance.h"
50 #include "recovery.h"
51 #include "replicas.h"
52 #include "sb-clean.h"
53 #include "sb-counters.h"
54 #include "sb-errors.h"
55 #include "sb-members.h"
56 #include "snapshot.h"
57 #include "subvolume.h"
58 #include "super.h"
59 #include "super-io.h"
60 #include "sysfs.h"
61 #include "thread_with_file.h"
62 #include "trace.h"
63
64 #include <linux/backing-dev.h>
65 #include <linux/blkdev.h>
66 #include <linux/debugfs.h>
67 #include <linux/device.h>
68 #include <linux/idr.h>
69 #include <linux/module.h>
70 #include <linux/percpu.h>
71 #include <linux/random.h>
72 #include <linux/sysfs.h>
73
74 MODULE_LICENSE("GPL");
75 MODULE_AUTHOR("Kent Overstreet <kent.overstreet@gmail.com>");
76 MODULE_DESCRIPTION("bcachefs filesystem");
77
78 const char * const bch2_fs_flag_strs[] = {
79 #define x(n) #n,
80 BCH_FS_FLAGS()
81 #undef x
82 NULL
83 };
84
bch2_print_str(struct bch_fs * c,const char * str)85 void bch2_print_str(struct bch_fs *c, const char *str)
86 {
87 #ifdef __KERNEL__
88 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
89
90 if (unlikely(stdio)) {
91 bch2_stdio_redirect_printf(stdio, true, "%s", str);
92 return;
93 }
94 #endif
95 bch2_print_string_as_lines(KERN_ERR, str);
96 }
97
98 __printf(2, 0)
bch2_print_maybe_redirect(struct stdio_redirect * stdio,const char * fmt,va_list args)99 static void bch2_print_maybe_redirect(struct stdio_redirect *stdio, const char *fmt, va_list args)
100 {
101 #ifdef __KERNEL__
102 if (unlikely(stdio)) {
103 if (fmt[0] == KERN_SOH[0])
104 fmt += 2;
105
106 bch2_stdio_redirect_vprintf(stdio, true, fmt, args);
107 return;
108 }
109 #endif
110 vprintk(fmt, args);
111 }
112
bch2_print_opts(struct bch_opts * opts,const char * fmt,...)113 void bch2_print_opts(struct bch_opts *opts, const char *fmt, ...)
114 {
115 struct stdio_redirect *stdio = (void *)(unsigned long)opts->stdio;
116
117 va_list args;
118 va_start(args, fmt);
119 bch2_print_maybe_redirect(stdio, fmt, args);
120 va_end(args);
121 }
122
__bch2_print(struct bch_fs * c,const char * fmt,...)123 void __bch2_print(struct bch_fs *c, const char *fmt, ...)
124 {
125 struct stdio_redirect *stdio = bch2_fs_stdio_redirect(c);
126
127 va_list args;
128 va_start(args, fmt);
129 bch2_print_maybe_redirect(stdio, fmt, args);
130 va_end(args);
131 }
132
133 #define KTYPE(type) \
134 static const struct attribute_group type ## _group = { \
135 .attrs = type ## _files \
136 }; \
137 \
138 static const struct attribute_group *type ## _groups[] = { \
139 &type ## _group, \
140 NULL \
141 }; \
142 \
143 static const struct kobj_type type ## _ktype = { \
144 .release = type ## _release, \
145 .sysfs_ops = &type ## _sysfs_ops, \
146 .default_groups = type ## _groups \
147 }
148
149 static void bch2_fs_release(struct kobject *);
150 static void bch2_dev_release(struct kobject *);
bch2_fs_counters_release(struct kobject * k)151 static void bch2_fs_counters_release(struct kobject *k)
152 {
153 }
154
bch2_fs_internal_release(struct kobject * k)155 static void bch2_fs_internal_release(struct kobject *k)
156 {
157 }
158
bch2_fs_opts_dir_release(struct kobject * k)159 static void bch2_fs_opts_dir_release(struct kobject *k)
160 {
161 }
162
bch2_fs_time_stats_release(struct kobject * k)163 static void bch2_fs_time_stats_release(struct kobject *k)
164 {
165 }
166
167 KTYPE(bch2_fs);
168 KTYPE(bch2_fs_counters);
169 KTYPE(bch2_fs_internal);
170 KTYPE(bch2_fs_opts_dir);
171 KTYPE(bch2_fs_time_stats);
172 KTYPE(bch2_dev);
173
174 static struct kset *bcachefs_kset;
175 static LIST_HEAD(bch_fs_list);
176 static DEFINE_MUTEX(bch_fs_list_lock);
177
178 DECLARE_WAIT_QUEUE_HEAD(bch2_read_only_wait);
179
180 static void bch2_dev_unlink(struct bch_dev *);
181 static void bch2_dev_free(struct bch_dev *);
182 static int bch2_dev_alloc(struct bch_fs *, unsigned);
183 static int bch2_dev_sysfs_online(struct bch_fs *, struct bch_dev *);
184 static void bch2_dev_io_ref_stop(struct bch_dev *, int);
185 static void __bch2_dev_read_only(struct bch_fs *, struct bch_dev *);
186
bch2_dev_to_fs(dev_t dev)187 struct bch_fs *bch2_dev_to_fs(dev_t dev)
188 {
189 struct bch_fs *c;
190
191 mutex_lock(&bch_fs_list_lock);
192 rcu_read_lock();
193
194 list_for_each_entry(c, &bch_fs_list, list)
195 for_each_member_device_rcu(c, ca, NULL)
196 if (ca->disk_sb.bdev && ca->disk_sb.bdev->bd_dev == dev) {
197 closure_get(&c->cl);
198 goto found;
199 }
200 c = NULL;
201 found:
202 rcu_read_unlock();
203 mutex_unlock(&bch_fs_list_lock);
204
205 return c;
206 }
207
__bch2_uuid_to_fs(__uuid_t uuid)208 static struct bch_fs *__bch2_uuid_to_fs(__uuid_t uuid)
209 {
210 struct bch_fs *c;
211
212 lockdep_assert_held(&bch_fs_list_lock);
213
214 list_for_each_entry(c, &bch_fs_list, list)
215 if (!memcmp(&c->disk_sb.sb->uuid, &uuid, sizeof(uuid)))
216 return c;
217
218 return NULL;
219 }
220
bch2_uuid_to_fs(__uuid_t uuid)221 struct bch_fs *bch2_uuid_to_fs(__uuid_t uuid)
222 {
223 struct bch_fs *c;
224
225 mutex_lock(&bch_fs_list_lock);
226 c = __bch2_uuid_to_fs(uuid);
227 if (c)
228 closure_get(&c->cl);
229 mutex_unlock(&bch_fs_list_lock);
230
231 return c;
232 }
233
234 /* Filesystem RO/RW: */
235
236 /*
237 * For startup/shutdown of RW stuff, the dependencies are:
238 *
239 * - foreground writes depend on copygc and rebalance (to free up space)
240 *
241 * - copygc and rebalance depend on mark and sweep gc (they actually probably
242 * don't because they either reserve ahead of time or don't block if
243 * allocations fail, but allocations can require mark and sweep gc to run
244 * because of generation number wraparound)
245 *
246 * - all of the above depends on the allocator threads
247 *
248 * - allocator depends on the journal (when it rewrites prios and gens)
249 */
250
__bch2_fs_read_only(struct bch_fs * c)251 static void __bch2_fs_read_only(struct bch_fs *c)
252 {
253 unsigned clean_passes = 0;
254 u64 seq = 0;
255
256 bch2_fs_ec_stop(c);
257 bch2_open_buckets_stop(c, NULL, true);
258 bch2_rebalance_stop(c);
259 bch2_copygc_stop(c);
260 bch2_fs_ec_flush(c);
261
262 bch_verbose(c, "flushing journal and stopping allocators, journal seq %llu",
263 journal_cur_seq(&c->journal));
264
265 do {
266 clean_passes++;
267
268 if (bch2_btree_interior_updates_flush(c) ||
269 bch2_btree_write_buffer_flush_going_ro(c) ||
270 bch2_journal_flush_all_pins(&c->journal) ||
271 bch2_btree_flush_all_writes(c) ||
272 seq != atomic64_read(&c->journal.seq)) {
273 seq = atomic64_read(&c->journal.seq);
274 clean_passes = 0;
275 }
276 } while (clean_passes < 2);
277
278 bch_verbose(c, "flushing journal and stopping allocators complete, journal seq %llu",
279 journal_cur_seq(&c->journal));
280
281 if (test_bit(JOURNAL_replay_done, &c->journal.flags) &&
282 !test_bit(BCH_FS_emergency_ro, &c->flags))
283 set_bit(BCH_FS_clean_shutdown, &c->flags);
284
285 bch2_fs_journal_stop(&c->journal);
286
287 bch_info(c, "%sclean shutdown complete, journal seq %llu",
288 test_bit(BCH_FS_clean_shutdown, &c->flags) ? "" : "un",
289 c->journal.seq_ondisk);
290
291 /*
292 * After stopping journal:
293 */
294 for_each_member_device(c, ca) {
295 bch2_dev_io_ref_stop(ca, WRITE);
296 bch2_dev_allocator_remove(c, ca);
297 }
298 }
299
300 #ifndef BCH_WRITE_REF_DEBUG
bch2_writes_disabled(struct percpu_ref * writes)301 static void bch2_writes_disabled(struct percpu_ref *writes)
302 {
303 struct bch_fs *c = container_of(writes, struct bch_fs, writes);
304
305 set_bit(BCH_FS_write_disable_complete, &c->flags);
306 wake_up(&bch2_read_only_wait);
307 }
308 #endif
309
bch2_fs_read_only(struct bch_fs * c)310 void bch2_fs_read_only(struct bch_fs *c)
311 {
312 if (!test_bit(BCH_FS_rw, &c->flags)) {
313 bch2_journal_reclaim_stop(&c->journal);
314 return;
315 }
316
317 BUG_ON(test_bit(BCH_FS_write_disable_complete, &c->flags));
318
319 bch_verbose(c, "going read-only");
320
321 /*
322 * Block new foreground-end write operations from starting - any new
323 * writes will return -EROFS:
324 */
325 set_bit(BCH_FS_going_ro, &c->flags);
326 #ifndef BCH_WRITE_REF_DEBUG
327 percpu_ref_kill(&c->writes);
328 #else
329 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++)
330 bch2_write_ref_put(c, i);
331 #endif
332
333 /*
334 * If we're not doing an emergency shutdown, we want to wait on
335 * outstanding writes to complete so they don't see spurious errors due
336 * to shutting down the allocator:
337 *
338 * If we are doing an emergency shutdown outstanding writes may
339 * hang until we shutdown the allocator so we don't want to wait
340 * on outstanding writes before shutting everything down - but
341 * we do need to wait on them before returning and signalling
342 * that going RO is complete:
343 */
344 wait_event(bch2_read_only_wait,
345 test_bit(BCH_FS_write_disable_complete, &c->flags) ||
346 test_bit(BCH_FS_emergency_ro, &c->flags));
347
348 bool writes_disabled = test_bit(BCH_FS_write_disable_complete, &c->flags);
349 if (writes_disabled)
350 bch_verbose(c, "finished waiting for writes to stop");
351
352 __bch2_fs_read_only(c);
353
354 wait_event(bch2_read_only_wait,
355 test_bit(BCH_FS_write_disable_complete, &c->flags));
356
357 if (!writes_disabled)
358 bch_verbose(c, "finished waiting for writes to stop");
359
360 clear_bit(BCH_FS_write_disable_complete, &c->flags);
361 clear_bit(BCH_FS_going_ro, &c->flags);
362 clear_bit(BCH_FS_rw, &c->flags);
363
364 if (!bch2_journal_error(&c->journal) &&
365 !test_bit(BCH_FS_error, &c->flags) &&
366 !test_bit(BCH_FS_emergency_ro, &c->flags) &&
367 test_bit(BCH_FS_started, &c->flags) &&
368 test_bit(BCH_FS_clean_shutdown, &c->flags) &&
369 c->recovery_pass_done >= BCH_RECOVERY_PASS_journal_replay) {
370 BUG_ON(c->journal.last_empty_seq != journal_cur_seq(&c->journal));
371 BUG_ON(atomic_long_read(&c->btree_cache.nr_dirty));
372 BUG_ON(atomic_long_read(&c->btree_key_cache.nr_dirty));
373 BUG_ON(c->btree_write_buffer.inc.keys.nr);
374 BUG_ON(c->btree_write_buffer.flushing.keys.nr);
375 bch2_verify_accounting_clean(c);
376
377 bch_verbose(c, "marking filesystem clean");
378 bch2_fs_mark_clean(c);
379 } else {
380 /* Make sure error counts/counters are persisted */
381 mutex_lock(&c->sb_lock);
382 bch2_write_super(c);
383 mutex_unlock(&c->sb_lock);
384
385 bch_verbose(c, "done going read-only, filesystem not clean");
386 }
387 }
388
bch2_fs_read_only_work(struct work_struct * work)389 static void bch2_fs_read_only_work(struct work_struct *work)
390 {
391 struct bch_fs *c =
392 container_of(work, struct bch_fs, read_only_work);
393
394 down_write(&c->state_lock);
395 bch2_fs_read_only(c);
396 up_write(&c->state_lock);
397 }
398
bch2_fs_read_only_async(struct bch_fs * c)399 static void bch2_fs_read_only_async(struct bch_fs *c)
400 {
401 queue_work(system_long_wq, &c->read_only_work);
402 }
403
bch2_fs_emergency_read_only(struct bch_fs * c)404 bool bch2_fs_emergency_read_only(struct bch_fs *c)
405 {
406 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags);
407
408 bch2_journal_halt(&c->journal);
409 bch2_fs_read_only_async(c);
410
411 wake_up(&bch2_read_only_wait);
412 return ret;
413 }
414
bch2_fs_emergency_read_only_locked(struct bch_fs * c)415 bool bch2_fs_emergency_read_only_locked(struct bch_fs *c)
416 {
417 bool ret = !test_and_set_bit(BCH_FS_emergency_ro, &c->flags);
418
419 bch2_journal_halt_locked(&c->journal);
420 bch2_fs_read_only_async(c);
421
422 wake_up(&bch2_read_only_wait);
423 return ret;
424 }
425
__bch2_fs_read_write(struct bch_fs * c,bool early)426 static int __bch2_fs_read_write(struct bch_fs *c, bool early)
427 {
428 int ret;
429
430 BUG_ON(!test_bit(BCH_FS_may_go_rw, &c->flags));
431
432 if (test_bit(BCH_FS_initial_gc_unfixed, &c->flags)) {
433 bch_err(c, "cannot go rw, unfixed btree errors");
434 return -BCH_ERR_erofs_unfixed_errors;
435 }
436
437 if (test_bit(BCH_FS_rw, &c->flags))
438 return 0;
439
440 bch_info(c, "going read-write");
441
442 ret = bch2_sb_members_v2_init(c);
443 if (ret)
444 goto err;
445
446 clear_bit(BCH_FS_clean_shutdown, &c->flags);
447
448 __for_each_online_member(c, ca, BIT(BCH_MEMBER_STATE_rw), READ) {
449 bch2_dev_allocator_add(c, ca);
450 percpu_ref_reinit(&ca->io_ref[WRITE]);
451 }
452 bch2_recalc_capacity(c);
453
454 /*
455 * First journal write must be a flush write: after a clean shutdown we
456 * don't read the journal, so the first journal write may end up
457 * overwriting whatever was there previously, and there must always be
458 * at least one non-flush write in the journal or recovery will fail:
459 */
460 spin_lock(&c->journal.lock);
461 set_bit(JOURNAL_need_flush_write, &c->journal.flags);
462 set_bit(JOURNAL_running, &c->journal.flags);
463 bch2_journal_space_available(&c->journal);
464 spin_unlock(&c->journal.lock);
465
466 ret = bch2_fs_mark_dirty(c);
467 if (ret)
468 goto err;
469
470 ret = bch2_journal_reclaim_start(&c->journal);
471 if (ret)
472 goto err;
473
474 set_bit(BCH_FS_rw, &c->flags);
475 set_bit(BCH_FS_was_rw, &c->flags);
476
477 #ifndef BCH_WRITE_REF_DEBUG
478 percpu_ref_reinit(&c->writes);
479 #else
480 for (unsigned i = 0; i < BCH_WRITE_REF_NR; i++) {
481 BUG_ON(atomic_long_read(&c->writes[i]));
482 atomic_long_inc(&c->writes[i]);
483 }
484 #endif
485
486 ret = bch2_copygc_start(c);
487 if (ret) {
488 bch_err_msg(c, ret, "error starting copygc thread");
489 goto err;
490 }
491
492 ret = bch2_rebalance_start(c);
493 if (ret) {
494 bch_err_msg(c, ret, "error starting rebalance thread");
495 goto err;
496 }
497
498 bch2_do_discards(c);
499 bch2_do_invalidates(c);
500 bch2_do_stripe_deletes(c);
501 bch2_do_pending_node_rewrites(c);
502 return 0;
503 err:
504 if (test_bit(BCH_FS_rw, &c->flags))
505 bch2_fs_read_only(c);
506 else
507 __bch2_fs_read_only(c);
508 return ret;
509 }
510
bch2_fs_read_write(struct bch_fs * c)511 int bch2_fs_read_write(struct bch_fs *c)
512 {
513 if (c->opts.recovery_pass_last &&
514 c->opts.recovery_pass_last < BCH_RECOVERY_PASS_journal_replay)
515 return -BCH_ERR_erofs_norecovery;
516
517 if (c->opts.nochanges)
518 return -BCH_ERR_erofs_nochanges;
519
520 return __bch2_fs_read_write(c, false);
521 }
522
bch2_fs_read_write_early(struct bch_fs * c)523 int bch2_fs_read_write_early(struct bch_fs *c)
524 {
525 down_write(&c->state_lock);
526 int ret = __bch2_fs_read_write(c, true);
527 up_write(&c->state_lock);
528
529 return ret;
530 }
531
532 /* Filesystem startup/shutdown: */
533
__bch2_fs_free(struct bch_fs * c)534 static void __bch2_fs_free(struct bch_fs *c)
535 {
536 for (unsigned i = 0; i < BCH_TIME_STAT_NR; i++)
537 bch2_time_stats_exit(&c->times[i]);
538
539 #ifdef CONFIG_UNICODE
540 utf8_unload(c->cf_encoding);
541 #endif
542
543 bch2_find_btree_nodes_exit(&c->found_btree_nodes);
544 bch2_free_pending_node_rewrites(c);
545 bch2_free_fsck_errs(c);
546 bch2_fs_accounting_exit(c);
547 bch2_fs_sb_errors_exit(c);
548 bch2_fs_counters_exit(c);
549 bch2_fs_snapshots_exit(c);
550 bch2_fs_quota_exit(c);
551 bch2_fs_fs_io_direct_exit(c);
552 bch2_fs_fs_io_buffered_exit(c);
553 bch2_fs_fsio_exit(c);
554 bch2_fs_vfs_exit(c);
555 bch2_fs_ec_exit(c);
556 bch2_fs_encryption_exit(c);
557 bch2_fs_nocow_locking_exit(c);
558 bch2_fs_io_write_exit(c);
559 bch2_fs_io_read_exit(c);
560 bch2_fs_buckets_waiting_for_journal_exit(c);
561 bch2_fs_btree_interior_update_exit(c);
562 bch2_fs_btree_key_cache_exit(&c->btree_key_cache);
563 bch2_fs_btree_cache_exit(c);
564 bch2_fs_btree_iter_exit(c);
565 bch2_fs_replicas_exit(c);
566 bch2_fs_journal_exit(&c->journal);
567 bch2_io_clock_exit(&c->io_clock[WRITE]);
568 bch2_io_clock_exit(&c->io_clock[READ]);
569 bch2_fs_compress_exit(c);
570 bch2_fs_btree_gc_exit(c);
571 bch2_journal_keys_put_initial(c);
572 bch2_find_btree_nodes_exit(&c->found_btree_nodes);
573 BUG_ON(atomic_read(&c->journal_keys.ref));
574 bch2_fs_btree_write_buffer_exit(c);
575 percpu_free_rwsem(&c->mark_lock);
576 if (c->online_reserved) {
577 u64 v = percpu_u64_get(c->online_reserved);
578 WARN(v, "online_reserved not 0 at shutdown: %lli", v);
579 free_percpu(c->online_reserved);
580 }
581
582 darray_exit(&c->incompat_versions_requested);
583 darray_exit(&c->btree_roots_extra);
584 free_percpu(c->pcpu);
585 free_percpu(c->usage);
586 mempool_exit(&c->large_bkey_pool);
587 mempool_exit(&c->btree_bounce_pool);
588 bioset_exit(&c->btree_bio);
589 mempool_exit(&c->fill_iter);
590 #ifndef BCH_WRITE_REF_DEBUG
591 percpu_ref_exit(&c->writes);
592 #endif
593 kfree(rcu_dereference_protected(c->disk_groups, 1));
594 kfree(c->journal_seq_blacklist_table);
595
596 if (c->write_ref_wq)
597 destroy_workqueue(c->write_ref_wq);
598 if (c->btree_write_submit_wq)
599 destroy_workqueue(c->btree_write_submit_wq);
600 if (c->btree_read_complete_wq)
601 destroy_workqueue(c->btree_read_complete_wq);
602 if (c->copygc_wq)
603 destroy_workqueue(c->copygc_wq);
604 if (c->btree_io_complete_wq)
605 destroy_workqueue(c->btree_io_complete_wq);
606 if (c->btree_update_wq)
607 destroy_workqueue(c->btree_update_wq);
608
609 bch2_free_super(&c->disk_sb);
610 kvfree(c);
611 module_put(THIS_MODULE);
612 }
613
bch2_fs_release(struct kobject * kobj)614 static void bch2_fs_release(struct kobject *kobj)
615 {
616 struct bch_fs *c = container_of(kobj, struct bch_fs, kobj);
617
618 __bch2_fs_free(c);
619 }
620
__bch2_fs_stop(struct bch_fs * c)621 void __bch2_fs_stop(struct bch_fs *c)
622 {
623 bch_verbose(c, "shutting down");
624
625 set_bit(BCH_FS_stopping, &c->flags);
626
627 down_write(&c->state_lock);
628 bch2_fs_read_only(c);
629 up_write(&c->state_lock);
630
631 for_each_member_device(c, ca)
632 bch2_dev_unlink(ca);
633
634 if (c->kobj.state_in_sysfs)
635 kobject_del(&c->kobj);
636
637 bch2_fs_debug_exit(c);
638 bch2_fs_chardev_exit(c);
639
640 bch2_ro_ref_put(c);
641 wait_event(c->ro_ref_wait, !refcount_read(&c->ro_ref));
642
643 kobject_put(&c->counters_kobj);
644 kobject_put(&c->time_stats);
645 kobject_put(&c->opts_dir);
646 kobject_put(&c->internal);
647
648 /* btree prefetch might have kicked off reads in the background: */
649 bch2_btree_flush_all_reads(c);
650
651 for_each_member_device(c, ca)
652 cancel_work_sync(&ca->io_error_work);
653
654 cancel_work_sync(&c->read_only_work);
655 }
656
bch2_fs_free(struct bch_fs * c)657 void bch2_fs_free(struct bch_fs *c)
658 {
659 unsigned i;
660
661 mutex_lock(&bch_fs_list_lock);
662 list_del(&c->list);
663 mutex_unlock(&bch_fs_list_lock);
664
665 closure_sync(&c->cl);
666 closure_debug_destroy(&c->cl);
667
668 for (i = 0; i < c->sb.nr_devices; i++) {
669 struct bch_dev *ca = rcu_dereference_protected(c->devs[i], true);
670
671 if (ca) {
672 EBUG_ON(atomic_long_read(&ca->ref) != 1);
673 bch2_dev_io_ref_stop(ca, READ);
674 bch2_free_super(&ca->disk_sb);
675 bch2_dev_free(ca);
676 }
677 }
678
679 bch_verbose(c, "shutdown complete");
680
681 kobject_put(&c->kobj);
682 }
683
bch2_fs_stop(struct bch_fs * c)684 void bch2_fs_stop(struct bch_fs *c)
685 {
686 __bch2_fs_stop(c);
687 bch2_fs_free(c);
688 }
689
bch2_fs_online(struct bch_fs * c)690 static int bch2_fs_online(struct bch_fs *c)
691 {
692 int ret = 0;
693
694 lockdep_assert_held(&bch_fs_list_lock);
695
696 if (__bch2_uuid_to_fs(c->sb.uuid)) {
697 bch_err(c, "filesystem UUID already open");
698 return -EINVAL;
699 }
700
701 ret = bch2_fs_chardev_init(c);
702 if (ret) {
703 bch_err(c, "error creating character device");
704 return ret;
705 }
706
707 bch2_fs_debug_init(c);
708
709 ret = kobject_add(&c->kobj, NULL, "%pU", c->sb.user_uuid.b) ?:
710 kobject_add(&c->internal, &c->kobj, "internal") ?:
711 kobject_add(&c->opts_dir, &c->kobj, "options") ?:
712 #ifndef CONFIG_BCACHEFS_NO_LATENCY_ACCT
713 kobject_add(&c->time_stats, &c->kobj, "time_stats") ?:
714 #endif
715 kobject_add(&c->counters_kobj, &c->kobj, "counters") ?:
716 bch2_opts_create_sysfs_files(&c->opts_dir, OPT_FS);
717 if (ret) {
718 bch_err(c, "error creating sysfs objects");
719 return ret;
720 }
721
722 down_write(&c->state_lock);
723
724 for_each_member_device(c, ca) {
725 ret = bch2_dev_sysfs_online(c, ca);
726 if (ret) {
727 bch_err(c, "error creating sysfs objects");
728 bch2_dev_put(ca);
729 goto err;
730 }
731 }
732
733 BUG_ON(!list_empty(&c->list));
734 list_add(&c->list, &bch_fs_list);
735 err:
736 up_write(&c->state_lock);
737 return ret;
738 }
739
bch2_fs_alloc(struct bch_sb * sb,struct bch_opts opts)740 static struct bch_fs *bch2_fs_alloc(struct bch_sb *sb, struct bch_opts opts)
741 {
742 struct bch_fs *c;
743 struct printbuf name = PRINTBUF;
744 unsigned i, iter_size;
745 int ret = 0;
746
747 c = kvmalloc(sizeof(struct bch_fs), GFP_KERNEL|__GFP_ZERO);
748 if (!c) {
749 c = ERR_PTR(-BCH_ERR_ENOMEM_fs_alloc);
750 goto out;
751 }
752
753 c->stdio = (void *)(unsigned long) opts.stdio;
754
755 __module_get(THIS_MODULE);
756
757 closure_init(&c->cl, NULL);
758
759 c->kobj.kset = bcachefs_kset;
760 kobject_init(&c->kobj, &bch2_fs_ktype);
761 kobject_init(&c->internal, &bch2_fs_internal_ktype);
762 kobject_init(&c->opts_dir, &bch2_fs_opts_dir_ktype);
763 kobject_init(&c->time_stats, &bch2_fs_time_stats_ktype);
764 kobject_init(&c->counters_kobj, &bch2_fs_counters_ktype);
765
766 c->minor = -1;
767 c->disk_sb.fs_sb = true;
768
769 init_rwsem(&c->state_lock);
770 mutex_init(&c->sb_lock);
771 mutex_init(&c->replicas_gc_lock);
772 mutex_init(&c->btree_root_lock);
773 INIT_WORK(&c->read_only_work, bch2_fs_read_only_work);
774
775 refcount_set(&c->ro_ref, 1);
776 init_waitqueue_head(&c->ro_ref_wait);
777 spin_lock_init(&c->recovery_pass_lock);
778 sema_init(&c->online_fsck_mutex, 1);
779
780 for (i = 0; i < BCH_TIME_STAT_NR; i++)
781 bch2_time_stats_init(&c->times[i]);
782
783 bch2_fs_copygc_init(c);
784 bch2_fs_btree_key_cache_init_early(&c->btree_key_cache);
785 bch2_fs_btree_iter_init_early(c);
786 bch2_fs_btree_interior_update_init_early(c);
787 bch2_fs_journal_keys_init(c);
788 bch2_fs_allocator_background_init(c);
789 bch2_fs_allocator_foreground_init(c);
790 bch2_fs_rebalance_init(c);
791 bch2_fs_quota_init(c);
792 bch2_fs_ec_init_early(c);
793 bch2_fs_move_init(c);
794 bch2_fs_sb_errors_init_early(c);
795
796 INIT_LIST_HEAD(&c->list);
797
798 mutex_init(&c->bio_bounce_pages_lock);
799 mutex_init(&c->snapshot_table_lock);
800 init_rwsem(&c->snapshot_create_lock);
801
802 spin_lock_init(&c->btree_write_error_lock);
803
804 INIT_LIST_HEAD(&c->journal_iters);
805
806 INIT_LIST_HEAD(&c->fsck_error_msgs);
807 mutex_init(&c->fsck_error_msgs_lock);
808
809 seqcount_init(&c->usage_lock);
810
811 sema_init(&c->io_in_flight, 128);
812
813 INIT_LIST_HEAD(&c->vfs_inodes_list);
814 mutex_init(&c->vfs_inodes_lock);
815
816 c->journal.flush_write_time = &c->times[BCH_TIME_journal_flush_write];
817 c->journal.noflush_write_time = &c->times[BCH_TIME_journal_noflush_write];
818 c->journal.flush_seq_time = &c->times[BCH_TIME_journal_flush_seq];
819
820 bch2_fs_btree_cache_init_early(&c->btree_cache);
821
822 mutex_init(&c->sectors_available_lock);
823
824 ret = percpu_init_rwsem(&c->mark_lock);
825 if (ret)
826 goto err;
827
828 mutex_lock(&c->sb_lock);
829 ret = bch2_sb_to_fs(c, sb);
830 mutex_unlock(&c->sb_lock);
831
832 if (ret)
833 goto err;
834
835 pr_uuid(&name, c->sb.user_uuid.b);
836 ret = name.allocation_failure ? -BCH_ERR_ENOMEM_fs_name_alloc : 0;
837 if (ret)
838 goto err;
839
840 strscpy(c->name, name.buf, sizeof(c->name));
841 printbuf_exit(&name);
842
843 /* Compat: */
844 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
845 !BCH_SB_JOURNAL_FLUSH_DELAY(sb))
846 SET_BCH_SB_JOURNAL_FLUSH_DELAY(sb, 1000);
847
848 if (le16_to_cpu(sb->version) <= bcachefs_metadata_version_inode_v2 &&
849 !BCH_SB_JOURNAL_RECLAIM_DELAY(sb))
850 SET_BCH_SB_JOURNAL_RECLAIM_DELAY(sb, 100);
851
852 c->opts = bch2_opts_default;
853 ret = bch2_opts_from_sb(&c->opts, sb);
854 if (ret)
855 goto err;
856
857 bch2_opts_apply(&c->opts, opts);
858
859 c->btree_key_cache_btrees |= 1U << BTREE_ID_alloc;
860 if (c->opts.inodes_use_key_cache)
861 c->btree_key_cache_btrees |= 1U << BTREE_ID_inodes;
862 c->btree_key_cache_btrees |= 1U << BTREE_ID_logged_ops;
863
864 c->block_bits = ilog2(block_sectors(c));
865 c->btree_foreground_merge_threshold = BTREE_FOREGROUND_MERGE_THRESHOLD(c);
866
867 if (bch2_fs_init_fault("fs_alloc")) {
868 bch_err(c, "fs_alloc fault injected");
869 ret = -EFAULT;
870 goto err;
871 }
872
873 iter_size = sizeof(struct sort_iter) +
874 (btree_blocks(c) + 1) * 2 *
875 sizeof(struct sort_iter_set);
876
877 if (!(c->btree_update_wq = alloc_workqueue("bcachefs",
878 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_UNBOUND, 512)) ||
879 !(c->btree_io_complete_wq = alloc_workqueue("bcachefs_btree_io",
880 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
881 !(c->copygc_wq = alloc_workqueue("bcachefs_copygc",
882 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE, 1)) ||
883 !(c->btree_read_complete_wq = alloc_workqueue("bcachefs_btree_read_complete",
884 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 512)) ||
885 !(c->btree_write_submit_wq = alloc_workqueue("bcachefs_btree_write_sumit",
886 WQ_HIGHPRI|WQ_FREEZABLE|WQ_MEM_RECLAIM, 1)) ||
887 !(c->write_ref_wq = alloc_workqueue("bcachefs_write_ref",
888 WQ_FREEZABLE, 0)) ||
889 #ifndef BCH_WRITE_REF_DEBUG
890 percpu_ref_init(&c->writes, bch2_writes_disabled,
891 PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
892 #endif
893 mempool_init_kmalloc_pool(&c->fill_iter, 1, iter_size) ||
894 bioset_init(&c->btree_bio, 1,
895 max(offsetof(struct btree_read_bio, bio),
896 offsetof(struct btree_write_bio, wbio.bio)),
897 BIOSET_NEED_BVECS) ||
898 !(c->pcpu = alloc_percpu(struct bch_fs_pcpu)) ||
899 !(c->usage = alloc_percpu(struct bch_fs_usage_base)) ||
900 !(c->online_reserved = alloc_percpu(u64)) ||
901 mempool_init_kvmalloc_pool(&c->btree_bounce_pool, 1,
902 c->opts.btree_node_size) ||
903 mempool_init_kmalloc_pool(&c->large_bkey_pool, 1, 2048)) {
904 ret = -BCH_ERR_ENOMEM_fs_other_alloc;
905 goto err;
906 }
907
908 ret = bch2_fs_counters_init(c) ?:
909 bch2_fs_sb_errors_init(c) ?:
910 bch2_io_clock_init(&c->io_clock[READ]) ?:
911 bch2_io_clock_init(&c->io_clock[WRITE]) ?:
912 bch2_fs_journal_init(&c->journal) ?:
913 bch2_fs_btree_iter_init(c) ?:
914 bch2_fs_btree_cache_init(c) ?:
915 bch2_fs_btree_key_cache_init(&c->btree_key_cache) ?:
916 bch2_fs_btree_interior_update_init(c) ?:
917 bch2_fs_btree_gc_init(c) ?:
918 bch2_fs_buckets_waiting_for_journal_init(c) ?:
919 bch2_fs_btree_write_buffer_init(c) ?:
920 bch2_fs_subvolumes_init(c) ?:
921 bch2_fs_io_read_init(c) ?:
922 bch2_fs_io_write_init(c) ?:
923 bch2_fs_nocow_locking_init(c) ?:
924 bch2_fs_encryption_init(c) ?:
925 bch2_fs_compress_init(c) ?:
926 bch2_fs_ec_init(c) ?:
927 bch2_fs_vfs_init(c) ?:
928 bch2_fs_fsio_init(c) ?:
929 bch2_fs_fs_io_buffered_init(c) ?:
930 bch2_fs_fs_io_direct_init(c);
931 if (ret)
932 goto err;
933
934 #ifdef CONFIG_UNICODE
935 /* Default encoding until we can potentially have more as an option. */
936 c->cf_encoding = utf8_load(BCH_FS_DEFAULT_UTF8_ENCODING);
937 if (IS_ERR(c->cf_encoding)) {
938 printk(KERN_ERR "Cannot load UTF-8 encoding for filesystem. Version: %u.%u.%u",
939 unicode_major(BCH_FS_DEFAULT_UTF8_ENCODING),
940 unicode_minor(BCH_FS_DEFAULT_UTF8_ENCODING),
941 unicode_rev(BCH_FS_DEFAULT_UTF8_ENCODING));
942 ret = -EINVAL;
943 goto err;
944 }
945 bch_info(c, "Using encoding defined by superblock: utf8-%u.%u.%u",
946 unicode_major(BCH_FS_DEFAULT_UTF8_ENCODING),
947 unicode_minor(BCH_FS_DEFAULT_UTF8_ENCODING),
948 unicode_rev(BCH_FS_DEFAULT_UTF8_ENCODING));
949 #else
950 if (c->sb.features & BIT_ULL(BCH_FEATURE_casefolding)) {
951 printk(KERN_ERR "Cannot mount a filesystem with casefolding on a kernel without CONFIG_UNICODE\n");
952 ret = -EINVAL;
953 goto err;
954 }
955 #endif
956
957 for (i = 0; i < c->sb.nr_devices; i++) {
958 if (!bch2_member_exists(c->disk_sb.sb, i))
959 continue;
960 ret = bch2_dev_alloc(c, i);
961 if (ret)
962 goto err;
963 }
964
965 bch2_journal_entry_res_resize(&c->journal,
966 &c->btree_root_journal_res,
967 BTREE_ID_NR * (JSET_KEYS_U64s + BKEY_BTREE_PTR_U64s_MAX));
968 bch2_journal_entry_res_resize(&c->journal,
969 &c->clock_journal_res,
970 (sizeof(struct jset_entry_clock) / sizeof(u64)) * 2);
971
972 mutex_lock(&bch_fs_list_lock);
973 ret = bch2_fs_online(c);
974 mutex_unlock(&bch_fs_list_lock);
975
976 if (ret)
977 goto err;
978 out:
979 return c;
980 err:
981 bch2_fs_free(c);
982 c = ERR_PTR(ret);
983 goto out;
984 }
985
986 noinline_for_stack
print_mount_opts(struct bch_fs * c)987 static void print_mount_opts(struct bch_fs *c)
988 {
989 enum bch_opt_id i;
990 struct printbuf p = PRINTBUF;
991 bool first = true;
992
993 prt_str(&p, "starting version ");
994 bch2_version_to_text(&p, c->sb.version);
995
996 for (i = 0; i < bch2_opts_nr; i++) {
997 const struct bch_option *opt = &bch2_opt_table[i];
998 u64 v = bch2_opt_get_by_id(&c->opts, i);
999
1000 if (!(opt->flags & OPT_MOUNT))
1001 continue;
1002
1003 if (v == bch2_opt_get_by_id(&bch2_opts_default, i))
1004 continue;
1005
1006 prt_str(&p, first ? " opts=" : ",");
1007 first = false;
1008 bch2_opt_to_text(&p, c, c->disk_sb.sb, opt, v, OPT_SHOW_MOUNT_STYLE);
1009 }
1010
1011 if (c->sb.version_incompat_allowed != c->sb.version) {
1012 prt_printf(&p, "\n allowing incompatible features above ");
1013 bch2_version_to_text(&p, c->sb.version_incompat_allowed);
1014 }
1015
1016 bch_info(c, "%s", p.buf);
1017 printbuf_exit(&p);
1018 }
1019
bch2_fs_may_start(struct bch_fs * c)1020 static bool bch2_fs_may_start(struct bch_fs *c)
1021 {
1022 struct bch_dev *ca;
1023 unsigned i, flags = 0;
1024
1025 if (c->opts.very_degraded)
1026 flags |= BCH_FORCE_IF_DEGRADED|BCH_FORCE_IF_LOST;
1027
1028 if (c->opts.degraded)
1029 flags |= BCH_FORCE_IF_DEGRADED;
1030
1031 if (!c->opts.degraded &&
1032 !c->opts.very_degraded) {
1033 mutex_lock(&c->sb_lock);
1034
1035 for (i = 0; i < c->disk_sb.sb->nr_devices; i++) {
1036 if (!bch2_member_exists(c->disk_sb.sb, i))
1037 continue;
1038
1039 ca = bch2_dev_locked(c, i);
1040
1041 if (!bch2_dev_is_online(ca) &&
1042 (ca->mi.state == BCH_MEMBER_STATE_rw ||
1043 ca->mi.state == BCH_MEMBER_STATE_ro)) {
1044 mutex_unlock(&c->sb_lock);
1045 return false;
1046 }
1047 }
1048 mutex_unlock(&c->sb_lock);
1049 }
1050
1051 return bch2_have_enough_devs(c, bch2_online_devs(c), flags, true);
1052 }
1053
bch2_fs_start(struct bch_fs * c)1054 int bch2_fs_start(struct bch_fs *c)
1055 {
1056 time64_t now = ktime_get_real_seconds();
1057 int ret = 0;
1058
1059 print_mount_opts(c);
1060
1061 if (!bch2_fs_may_start(c))
1062 return -BCH_ERR_insufficient_devices_to_start;
1063
1064 down_write(&c->state_lock);
1065 mutex_lock(&c->sb_lock);
1066
1067 BUG_ON(test_bit(BCH_FS_started, &c->flags));
1068
1069 if (!bch2_sb_field_get_minsize(&c->disk_sb, ext,
1070 sizeof(struct bch_sb_field_ext) / sizeof(u64))) {
1071 mutex_unlock(&c->sb_lock);
1072 up_write(&c->state_lock);
1073 ret = -BCH_ERR_ENOSPC_sb;
1074 goto err;
1075 }
1076
1077 ret = bch2_sb_members_v2_init(c);
1078 if (ret) {
1079 mutex_unlock(&c->sb_lock);
1080 up_write(&c->state_lock);
1081 goto err;
1082 }
1083
1084 for_each_online_member(c, ca)
1085 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount = cpu_to_le64(now);
1086
1087 mutex_unlock(&c->sb_lock);
1088
1089 for_each_rw_member(c, ca)
1090 bch2_dev_allocator_add(c, ca);
1091 bch2_recalc_capacity(c);
1092 up_write(&c->state_lock);
1093
1094 c->recovery_task = current;
1095 ret = BCH_SB_INITIALIZED(c->disk_sb.sb)
1096 ? bch2_fs_recovery(c)
1097 : bch2_fs_initialize(c);
1098 c->recovery_task = NULL;
1099
1100 if (ret)
1101 goto err;
1102
1103 ret = bch2_opts_check_may_set(c);
1104 if (ret)
1105 goto err;
1106
1107 if (bch2_fs_init_fault("fs_start")) {
1108 ret = -BCH_ERR_injected_fs_start;
1109 goto err;
1110 }
1111
1112 set_bit(BCH_FS_started, &c->flags);
1113 wake_up(&c->ro_ref_wait);
1114
1115 down_write(&c->state_lock);
1116 if (c->opts.read_only)
1117 bch2_fs_read_only(c);
1118 else if (!test_bit(BCH_FS_rw, &c->flags))
1119 ret = bch2_fs_read_write(c);
1120 up_write(&c->state_lock);
1121
1122 err:
1123 if (ret)
1124 bch_err_msg(c, ret, "starting filesystem");
1125 else
1126 bch_verbose(c, "done starting filesystem");
1127 return ret;
1128 }
1129
bch2_dev_may_add(struct bch_sb * sb,struct bch_fs * c)1130 static int bch2_dev_may_add(struct bch_sb *sb, struct bch_fs *c)
1131 {
1132 struct bch_member m = bch2_sb_member_get(sb, sb->dev_idx);
1133
1134 if (le16_to_cpu(sb->block_size) != block_sectors(c))
1135 return -BCH_ERR_mismatched_block_size;
1136
1137 if (le16_to_cpu(m.bucket_size) <
1138 BCH_SB_BTREE_NODE_SIZE(c->disk_sb.sb))
1139 return -BCH_ERR_bucket_size_too_small;
1140
1141 return 0;
1142 }
1143
bch2_dev_in_fs(struct bch_sb_handle * fs,struct bch_sb_handle * sb,struct bch_opts * opts)1144 static int bch2_dev_in_fs(struct bch_sb_handle *fs,
1145 struct bch_sb_handle *sb,
1146 struct bch_opts *opts)
1147 {
1148 if (fs == sb)
1149 return 0;
1150
1151 if (!uuid_equal(&fs->sb->uuid, &sb->sb->uuid))
1152 return -BCH_ERR_device_not_a_member_of_filesystem;
1153
1154 if (!bch2_member_exists(fs->sb, sb->sb->dev_idx))
1155 return -BCH_ERR_device_has_been_removed;
1156
1157 if (fs->sb->block_size != sb->sb->block_size)
1158 return -BCH_ERR_mismatched_block_size;
1159
1160 if (le16_to_cpu(fs->sb->version) < bcachefs_metadata_version_member_seq ||
1161 le16_to_cpu(sb->sb->version) < bcachefs_metadata_version_member_seq)
1162 return 0;
1163
1164 if (fs->sb->seq == sb->sb->seq &&
1165 fs->sb->write_time != sb->sb->write_time) {
1166 struct printbuf buf = PRINTBUF;
1167
1168 prt_str(&buf, "Split brain detected between ");
1169 prt_bdevname(&buf, sb->bdev);
1170 prt_str(&buf, " and ");
1171 prt_bdevname(&buf, fs->bdev);
1172 prt_char(&buf, ':');
1173 prt_newline(&buf);
1174 prt_printf(&buf, "seq=%llu but write_time different, got", le64_to_cpu(sb->sb->seq));
1175 prt_newline(&buf);
1176
1177 prt_bdevname(&buf, fs->bdev);
1178 prt_char(&buf, ' ');
1179 bch2_prt_datetime(&buf, le64_to_cpu(fs->sb->write_time));
1180 prt_newline(&buf);
1181
1182 prt_bdevname(&buf, sb->bdev);
1183 prt_char(&buf, ' ');
1184 bch2_prt_datetime(&buf, le64_to_cpu(sb->sb->write_time));
1185 prt_newline(&buf);
1186
1187 if (!opts->no_splitbrain_check)
1188 prt_printf(&buf, "Not using older sb");
1189
1190 pr_err("%s", buf.buf);
1191 printbuf_exit(&buf);
1192
1193 if (!opts->no_splitbrain_check)
1194 return -BCH_ERR_device_splitbrain;
1195 }
1196
1197 struct bch_member m = bch2_sb_member_get(fs->sb, sb->sb->dev_idx);
1198 u64 seq_from_fs = le64_to_cpu(m.seq);
1199 u64 seq_from_member = le64_to_cpu(sb->sb->seq);
1200
1201 if (seq_from_fs && seq_from_fs < seq_from_member) {
1202 struct printbuf buf = PRINTBUF;
1203
1204 prt_str(&buf, "Split brain detected between ");
1205 prt_bdevname(&buf, sb->bdev);
1206 prt_str(&buf, " and ");
1207 prt_bdevname(&buf, fs->bdev);
1208 prt_char(&buf, ':');
1209 prt_newline(&buf);
1210
1211 prt_bdevname(&buf, fs->bdev);
1212 prt_str(&buf, " believes seq of ");
1213 prt_bdevname(&buf, sb->bdev);
1214 prt_printf(&buf, " to be %llu, but ", seq_from_fs);
1215 prt_bdevname(&buf, sb->bdev);
1216 prt_printf(&buf, " has %llu\n", seq_from_member);
1217
1218 if (!opts->no_splitbrain_check) {
1219 prt_str(&buf, "Not using ");
1220 prt_bdevname(&buf, sb->bdev);
1221 }
1222
1223 pr_err("%s", buf.buf);
1224 printbuf_exit(&buf);
1225
1226 if (!opts->no_splitbrain_check)
1227 return -BCH_ERR_device_splitbrain;
1228 }
1229
1230 return 0;
1231 }
1232
1233 /* Device startup/shutdown: */
1234
bch2_dev_io_ref_stop(struct bch_dev * ca,int rw)1235 static void bch2_dev_io_ref_stop(struct bch_dev *ca, int rw)
1236 {
1237 if (!percpu_ref_is_zero(&ca->io_ref[rw])) {
1238 reinit_completion(&ca->io_ref_completion[rw]);
1239 percpu_ref_kill(&ca->io_ref[rw]);
1240 wait_for_completion(&ca->io_ref_completion[rw]);
1241 }
1242 }
1243
bch2_dev_release(struct kobject * kobj)1244 static void bch2_dev_release(struct kobject *kobj)
1245 {
1246 struct bch_dev *ca = container_of(kobj, struct bch_dev, kobj);
1247
1248 kfree(ca);
1249 }
1250
bch2_dev_free(struct bch_dev * ca)1251 static void bch2_dev_free(struct bch_dev *ca)
1252 {
1253 WARN_ON(!percpu_ref_is_zero(&ca->io_ref[WRITE]));
1254 WARN_ON(!percpu_ref_is_zero(&ca->io_ref[READ]));
1255
1256 cancel_work_sync(&ca->io_error_work);
1257
1258 bch2_dev_unlink(ca);
1259
1260 if (ca->kobj.state_in_sysfs)
1261 kobject_del(&ca->kobj);
1262
1263 bch2_free_super(&ca->disk_sb);
1264 bch2_dev_allocator_background_exit(ca);
1265 bch2_dev_journal_exit(ca);
1266
1267 free_percpu(ca->io_done);
1268 bch2_dev_buckets_free(ca);
1269 kfree(ca->sb_read_scratch);
1270
1271 bch2_time_stats_quantiles_exit(&ca->io_latency[WRITE]);
1272 bch2_time_stats_quantiles_exit(&ca->io_latency[READ]);
1273
1274 percpu_ref_exit(&ca->io_ref[WRITE]);
1275 percpu_ref_exit(&ca->io_ref[READ]);
1276 #ifndef CONFIG_BCACHEFS_DEBUG
1277 percpu_ref_exit(&ca->ref);
1278 #endif
1279 kobject_put(&ca->kobj);
1280 }
1281
__bch2_dev_offline(struct bch_fs * c,struct bch_dev * ca)1282 static void __bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca)
1283 {
1284
1285 lockdep_assert_held(&c->state_lock);
1286
1287 if (percpu_ref_is_zero(&ca->io_ref[READ]))
1288 return;
1289
1290 __bch2_dev_read_only(c, ca);
1291
1292 bch2_dev_io_ref_stop(ca, READ);
1293
1294 bch2_dev_unlink(ca);
1295
1296 bch2_free_super(&ca->disk_sb);
1297 bch2_dev_journal_exit(ca);
1298 }
1299
1300 #ifndef CONFIG_BCACHEFS_DEBUG
bch2_dev_ref_complete(struct percpu_ref * ref)1301 static void bch2_dev_ref_complete(struct percpu_ref *ref)
1302 {
1303 struct bch_dev *ca = container_of(ref, struct bch_dev, ref);
1304
1305 complete(&ca->ref_completion);
1306 }
1307 #endif
1308
bch2_dev_io_ref_read_complete(struct percpu_ref * ref)1309 static void bch2_dev_io_ref_read_complete(struct percpu_ref *ref)
1310 {
1311 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref[READ]);
1312
1313 complete(&ca->io_ref_completion[READ]);
1314 }
1315
bch2_dev_io_ref_write_complete(struct percpu_ref * ref)1316 static void bch2_dev_io_ref_write_complete(struct percpu_ref *ref)
1317 {
1318 struct bch_dev *ca = container_of(ref, struct bch_dev, io_ref[WRITE]);
1319
1320 complete(&ca->io_ref_completion[WRITE]);
1321 }
1322
bch2_dev_unlink(struct bch_dev * ca)1323 static void bch2_dev_unlink(struct bch_dev *ca)
1324 {
1325 struct kobject *b;
1326
1327 /*
1328 * This is racy w.r.t. the underlying block device being hot-removed,
1329 * which removes it from sysfs.
1330 *
1331 * It'd be lovely if we had a way to handle this race, but the sysfs
1332 * code doesn't appear to provide a good method and block/holder.c is
1333 * susceptible as well:
1334 */
1335 if (ca->kobj.state_in_sysfs &&
1336 ca->disk_sb.bdev &&
1337 (b = bdev_kobj(ca->disk_sb.bdev))->state_in_sysfs) {
1338 sysfs_remove_link(b, "bcachefs");
1339 sysfs_remove_link(&ca->kobj, "block");
1340 }
1341 }
1342
bch2_dev_sysfs_online(struct bch_fs * c,struct bch_dev * ca)1343 static int bch2_dev_sysfs_online(struct bch_fs *c, struct bch_dev *ca)
1344 {
1345 int ret;
1346
1347 if (!c->kobj.state_in_sysfs)
1348 return 0;
1349
1350 if (!ca->kobj.state_in_sysfs) {
1351 ret = kobject_add(&ca->kobj, &c->kobj, "dev-%u", ca->dev_idx) ?:
1352 bch2_opts_create_sysfs_files(&ca->kobj, OPT_DEVICE);
1353 if (ret)
1354 return ret;
1355 }
1356
1357 if (ca->disk_sb.bdev) {
1358 struct kobject *block = bdev_kobj(ca->disk_sb.bdev);
1359
1360 ret = sysfs_create_link(block, &ca->kobj, "bcachefs");
1361 if (ret)
1362 return ret;
1363
1364 ret = sysfs_create_link(&ca->kobj, block, "block");
1365 if (ret)
1366 return ret;
1367 }
1368
1369 return 0;
1370 }
1371
__bch2_dev_alloc(struct bch_fs * c,struct bch_member * member)1372 static struct bch_dev *__bch2_dev_alloc(struct bch_fs *c,
1373 struct bch_member *member)
1374 {
1375 struct bch_dev *ca;
1376 unsigned i;
1377
1378 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
1379 if (!ca)
1380 return NULL;
1381
1382 kobject_init(&ca->kobj, &bch2_dev_ktype);
1383 init_completion(&ca->ref_completion);
1384 init_completion(&ca->io_ref_completion[READ]);
1385 init_completion(&ca->io_ref_completion[WRITE]);
1386
1387 INIT_WORK(&ca->io_error_work, bch2_io_error_work);
1388
1389 bch2_time_stats_quantiles_init(&ca->io_latency[READ]);
1390 bch2_time_stats_quantiles_init(&ca->io_latency[WRITE]);
1391
1392 ca->mi = bch2_mi_to_cpu(member);
1393
1394 for (i = 0; i < ARRAY_SIZE(member->errors); i++)
1395 atomic64_set(&ca->errors[i], le64_to_cpu(member->errors[i]));
1396
1397 ca->uuid = member->uuid;
1398
1399 ca->nr_btree_reserve = DIV_ROUND_UP(BTREE_NODE_RESERVE,
1400 ca->mi.bucket_size / btree_sectors(c));
1401
1402 #ifndef CONFIG_BCACHEFS_DEBUG
1403 if (percpu_ref_init(&ca->ref, bch2_dev_ref_complete, 0, GFP_KERNEL))
1404 goto err;
1405 #else
1406 atomic_long_set(&ca->ref, 1);
1407 #endif
1408
1409 bch2_dev_allocator_background_init(ca);
1410
1411 if (percpu_ref_init(&ca->io_ref[READ], bch2_dev_io_ref_read_complete,
1412 PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1413 percpu_ref_init(&ca->io_ref[WRITE], bch2_dev_io_ref_write_complete,
1414 PERCPU_REF_INIT_DEAD, GFP_KERNEL) ||
1415 !(ca->sb_read_scratch = kmalloc(BCH_SB_READ_SCRATCH_BUF_SIZE, GFP_KERNEL)) ||
1416 bch2_dev_buckets_alloc(c, ca) ||
1417 !(ca->io_done = alloc_percpu(*ca->io_done)))
1418 goto err;
1419
1420 return ca;
1421 err:
1422 bch2_dev_free(ca);
1423 return NULL;
1424 }
1425
bch2_dev_attach(struct bch_fs * c,struct bch_dev * ca,unsigned dev_idx)1426 static void bch2_dev_attach(struct bch_fs *c, struct bch_dev *ca,
1427 unsigned dev_idx)
1428 {
1429 ca->dev_idx = dev_idx;
1430 __set_bit(ca->dev_idx, ca->self.d);
1431 scnprintf(ca->name, sizeof(ca->name), "dev-%u", dev_idx);
1432
1433 ca->fs = c;
1434 rcu_assign_pointer(c->devs[ca->dev_idx], ca);
1435
1436 if (bch2_dev_sysfs_online(c, ca))
1437 pr_warn("error creating sysfs objects");
1438 }
1439
bch2_dev_alloc(struct bch_fs * c,unsigned dev_idx)1440 static int bch2_dev_alloc(struct bch_fs *c, unsigned dev_idx)
1441 {
1442 struct bch_member member = bch2_sb_member_get(c->disk_sb.sb, dev_idx);
1443 struct bch_dev *ca = NULL;
1444
1445 if (bch2_fs_init_fault("dev_alloc"))
1446 goto err;
1447
1448 ca = __bch2_dev_alloc(c, &member);
1449 if (!ca)
1450 goto err;
1451
1452 ca->fs = c;
1453
1454 bch2_dev_attach(c, ca, dev_idx);
1455 return 0;
1456 err:
1457 return -BCH_ERR_ENOMEM_dev_alloc;
1458 }
1459
__bch2_dev_attach_bdev(struct bch_dev * ca,struct bch_sb_handle * sb)1460 static int __bch2_dev_attach_bdev(struct bch_dev *ca, struct bch_sb_handle *sb)
1461 {
1462 unsigned ret;
1463
1464 if (bch2_dev_is_online(ca)) {
1465 bch_err(ca, "already have device online in slot %u",
1466 sb->sb->dev_idx);
1467 return -BCH_ERR_device_already_online;
1468 }
1469
1470 if (get_capacity(sb->bdev->bd_disk) <
1471 ca->mi.bucket_size * ca->mi.nbuckets) {
1472 bch_err(ca, "cannot online: device too small");
1473 return -BCH_ERR_device_size_too_small;
1474 }
1475
1476 BUG_ON(!percpu_ref_is_zero(&ca->io_ref[READ]));
1477 BUG_ON(!percpu_ref_is_zero(&ca->io_ref[WRITE]));
1478
1479 ret = bch2_dev_journal_init(ca, sb->sb);
1480 if (ret)
1481 return ret;
1482
1483 /* Commit: */
1484 ca->disk_sb = *sb;
1485 memset(sb, 0, sizeof(*sb));
1486
1487 /*
1488 * Stash pointer to the filesystem for blk_holder_ops - note that once
1489 * attached to a filesystem, we will always close the block device
1490 * before tearing down the filesystem object.
1491 */
1492 ca->disk_sb.holder->c = ca->fs;
1493
1494 ca->dev = ca->disk_sb.bdev->bd_dev;
1495
1496 percpu_ref_reinit(&ca->io_ref[READ]);
1497
1498 return 0;
1499 }
1500
bch2_dev_attach_bdev(struct bch_fs * c,struct bch_sb_handle * sb)1501 static int bch2_dev_attach_bdev(struct bch_fs *c, struct bch_sb_handle *sb)
1502 {
1503 struct bch_dev *ca;
1504 int ret;
1505
1506 lockdep_assert_held(&c->state_lock);
1507
1508 if (le64_to_cpu(sb->sb->seq) >
1509 le64_to_cpu(c->disk_sb.sb->seq))
1510 bch2_sb_to_fs(c, sb->sb);
1511
1512 BUG_ON(!bch2_dev_exists(c, sb->sb->dev_idx));
1513
1514 ca = bch2_dev_locked(c, sb->sb->dev_idx);
1515
1516 ret = __bch2_dev_attach_bdev(ca, sb);
1517 if (ret)
1518 return ret;
1519
1520 bch2_dev_sysfs_online(c, ca);
1521
1522 struct printbuf name = PRINTBUF;
1523 prt_bdevname(&name, ca->disk_sb.bdev);
1524
1525 if (c->sb.nr_devices == 1)
1526 strscpy(c->name, name.buf, sizeof(c->name));
1527 strscpy(ca->name, name.buf, sizeof(ca->name));
1528
1529 printbuf_exit(&name);
1530
1531 bch2_rebalance_wakeup(c);
1532 return 0;
1533 }
1534
1535 /* Device management: */
1536
1537 /*
1538 * Note: this function is also used by the error paths - when a particular
1539 * device sees an error, we call it to determine whether we can just set the
1540 * device RO, or - if this function returns false - we'll set the whole
1541 * filesystem RO:
1542 *
1543 * XXX: maybe we should be more explicit about whether we're changing state
1544 * because we got an error or what have you?
1545 */
bch2_dev_state_allowed(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1546 bool bch2_dev_state_allowed(struct bch_fs *c, struct bch_dev *ca,
1547 enum bch_member_state new_state, int flags)
1548 {
1549 struct bch_devs_mask new_online_devs;
1550 int nr_rw = 0, required;
1551
1552 lockdep_assert_held(&c->state_lock);
1553
1554 switch (new_state) {
1555 case BCH_MEMBER_STATE_rw:
1556 return true;
1557 case BCH_MEMBER_STATE_ro:
1558 if (ca->mi.state != BCH_MEMBER_STATE_rw)
1559 return true;
1560
1561 /* do we have enough devices to write to? */
1562 for_each_member_device(c, ca2)
1563 if (ca2 != ca)
1564 nr_rw += ca2->mi.state == BCH_MEMBER_STATE_rw;
1565
1566 required = max(!(flags & BCH_FORCE_IF_METADATA_DEGRADED)
1567 ? c->opts.metadata_replicas
1568 : metadata_replicas_required(c),
1569 !(flags & BCH_FORCE_IF_DATA_DEGRADED)
1570 ? c->opts.data_replicas
1571 : data_replicas_required(c));
1572
1573 return nr_rw >= required;
1574 case BCH_MEMBER_STATE_failed:
1575 case BCH_MEMBER_STATE_spare:
1576 if (ca->mi.state != BCH_MEMBER_STATE_rw &&
1577 ca->mi.state != BCH_MEMBER_STATE_ro)
1578 return true;
1579
1580 /* do we have enough devices to read from? */
1581 new_online_devs = bch2_online_devs(c);
1582 __clear_bit(ca->dev_idx, new_online_devs.d);
1583
1584 return bch2_have_enough_devs(c, new_online_devs, flags, false);
1585 default:
1586 BUG();
1587 }
1588 }
1589
__bch2_dev_read_only(struct bch_fs * c,struct bch_dev * ca)1590 static void __bch2_dev_read_only(struct bch_fs *c, struct bch_dev *ca)
1591 {
1592 bch2_dev_io_ref_stop(ca, WRITE);
1593
1594 /*
1595 * The allocator thread itself allocates btree nodes, so stop it first:
1596 */
1597 bch2_dev_allocator_remove(c, ca);
1598 bch2_recalc_capacity(c);
1599 bch2_dev_journal_stop(&c->journal, ca);
1600 }
1601
__bch2_dev_read_write(struct bch_fs * c,struct bch_dev * ca)1602 static void __bch2_dev_read_write(struct bch_fs *c, struct bch_dev *ca)
1603 {
1604 lockdep_assert_held(&c->state_lock);
1605
1606 BUG_ON(ca->mi.state != BCH_MEMBER_STATE_rw);
1607
1608 bch2_dev_allocator_add(c, ca);
1609 bch2_recalc_capacity(c);
1610
1611 if (percpu_ref_is_zero(&ca->io_ref[WRITE]))
1612 percpu_ref_reinit(&ca->io_ref[WRITE]);
1613
1614 bch2_dev_do_discards(ca);
1615 }
1616
__bch2_dev_set_state(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1617 int __bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1618 enum bch_member_state new_state, int flags)
1619 {
1620 struct bch_member *m;
1621 int ret = 0;
1622
1623 if (ca->mi.state == new_state)
1624 return 0;
1625
1626 if (!bch2_dev_state_allowed(c, ca, new_state, flags))
1627 return -BCH_ERR_device_state_not_allowed;
1628
1629 if (new_state != BCH_MEMBER_STATE_rw)
1630 __bch2_dev_read_only(c, ca);
1631
1632 bch_notice(ca, "%s", bch2_member_states[new_state]);
1633
1634 mutex_lock(&c->sb_lock);
1635 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
1636 SET_BCH_MEMBER_STATE(m, new_state);
1637 bch2_write_super(c);
1638 mutex_unlock(&c->sb_lock);
1639
1640 if (new_state == BCH_MEMBER_STATE_rw)
1641 __bch2_dev_read_write(c, ca);
1642
1643 bch2_rebalance_wakeup(c);
1644
1645 return ret;
1646 }
1647
bch2_dev_set_state(struct bch_fs * c,struct bch_dev * ca,enum bch_member_state new_state,int flags)1648 int bch2_dev_set_state(struct bch_fs *c, struct bch_dev *ca,
1649 enum bch_member_state new_state, int flags)
1650 {
1651 int ret;
1652
1653 down_write(&c->state_lock);
1654 ret = __bch2_dev_set_state(c, ca, new_state, flags);
1655 up_write(&c->state_lock);
1656
1657 return ret;
1658 }
1659
1660 /* Device add/removal: */
1661
bch2_dev_remove(struct bch_fs * c,struct bch_dev * ca,int flags)1662 int bch2_dev_remove(struct bch_fs *c, struct bch_dev *ca, int flags)
1663 {
1664 struct bch_member *m;
1665 unsigned dev_idx = ca->dev_idx, data;
1666 int ret;
1667
1668 down_write(&c->state_lock);
1669
1670 /*
1671 * We consume a reference to ca->ref, regardless of whether we succeed
1672 * or fail:
1673 */
1674 bch2_dev_put(ca);
1675
1676 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1677 bch_err(ca, "Cannot remove without losing data");
1678 ret = -BCH_ERR_device_state_not_allowed;
1679 goto err;
1680 }
1681
1682 __bch2_dev_read_only(c, ca);
1683
1684 ret = bch2_dev_data_drop(c, ca->dev_idx, flags);
1685 bch_err_msg(ca, ret, "bch2_dev_data_drop()");
1686 if (ret)
1687 goto err;
1688
1689 ret = bch2_dev_remove_alloc(c, ca);
1690 bch_err_msg(ca, ret, "bch2_dev_remove_alloc()");
1691 if (ret)
1692 goto err;
1693
1694 /*
1695 * We need to flush the entire journal to get rid of keys that reference
1696 * the device being removed before removing the superblock entry
1697 */
1698 bch2_journal_flush_all_pins(&c->journal);
1699
1700 /*
1701 * this is really just needed for the bch2_replicas_gc_(start|end)
1702 * calls, and could be cleaned up:
1703 */
1704 ret = bch2_journal_flush_device_pins(&c->journal, ca->dev_idx);
1705 bch_err_msg(ca, ret, "bch2_journal_flush_device_pins()");
1706 if (ret)
1707 goto err;
1708
1709 ret = bch2_journal_flush(&c->journal);
1710 bch_err_msg(ca, ret, "bch2_journal_flush()");
1711 if (ret)
1712 goto err;
1713
1714 ret = bch2_replicas_gc2(c);
1715 bch_err_msg(ca, ret, "bch2_replicas_gc2()");
1716 if (ret)
1717 goto err;
1718
1719 data = bch2_dev_has_data(c, ca);
1720 if (data) {
1721 struct printbuf data_has = PRINTBUF;
1722
1723 prt_bitflags(&data_has, __bch2_data_types, data);
1724 bch_err(ca, "Remove failed, still has data (%s)", data_has.buf);
1725 printbuf_exit(&data_has);
1726 ret = -EBUSY;
1727 goto err;
1728 }
1729
1730 __bch2_dev_offline(c, ca);
1731
1732 mutex_lock(&c->sb_lock);
1733 rcu_assign_pointer(c->devs[ca->dev_idx], NULL);
1734 mutex_unlock(&c->sb_lock);
1735
1736 #ifndef CONFIG_BCACHEFS_DEBUG
1737 percpu_ref_kill(&ca->ref);
1738 #else
1739 ca->dying = true;
1740 bch2_dev_put(ca);
1741 #endif
1742 wait_for_completion(&ca->ref_completion);
1743
1744 bch2_dev_free(ca);
1745
1746 /*
1747 * Free this device's slot in the bch_member array - all pointers to
1748 * this device must be gone:
1749 */
1750 mutex_lock(&c->sb_lock);
1751 m = bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx);
1752 memset(&m->uuid, 0, sizeof(m->uuid));
1753
1754 bch2_write_super(c);
1755
1756 mutex_unlock(&c->sb_lock);
1757 up_write(&c->state_lock);
1758 return 0;
1759 err:
1760 if (test_bit(BCH_FS_rw, &c->flags) &&
1761 ca->mi.state == BCH_MEMBER_STATE_rw &&
1762 !percpu_ref_is_zero(&ca->io_ref[READ]))
1763 __bch2_dev_read_write(c, ca);
1764 up_write(&c->state_lock);
1765 return ret;
1766 }
1767
1768 /* Add new device to running filesystem: */
bch2_dev_add(struct bch_fs * c,const char * path)1769 int bch2_dev_add(struct bch_fs *c, const char *path)
1770 {
1771 struct bch_opts opts = bch2_opts_empty();
1772 struct bch_sb_handle sb;
1773 struct bch_dev *ca = NULL;
1774 struct printbuf errbuf = PRINTBUF;
1775 struct printbuf label = PRINTBUF;
1776 int ret;
1777
1778 ret = bch2_read_super(path, &opts, &sb);
1779 bch_err_msg(c, ret, "reading super");
1780 if (ret)
1781 goto err;
1782
1783 struct bch_member dev_mi = bch2_sb_member_get(sb.sb, sb.sb->dev_idx);
1784
1785 if (BCH_MEMBER_GROUP(&dev_mi)) {
1786 bch2_disk_path_to_text_sb(&label, sb.sb, BCH_MEMBER_GROUP(&dev_mi) - 1);
1787 if (label.allocation_failure) {
1788 ret = -ENOMEM;
1789 goto err;
1790 }
1791 }
1792
1793 ret = bch2_dev_may_add(sb.sb, c);
1794 if (ret)
1795 goto err;
1796
1797 ca = __bch2_dev_alloc(c, &dev_mi);
1798 if (!ca) {
1799 ret = -ENOMEM;
1800 goto err;
1801 }
1802
1803 ret = __bch2_dev_attach_bdev(ca, &sb);
1804 if (ret)
1805 goto err;
1806
1807 down_write(&c->state_lock);
1808 mutex_lock(&c->sb_lock);
1809
1810 ret = bch2_sb_from_fs(c, ca);
1811 bch_err_msg(c, ret, "setting up new superblock");
1812 if (ret)
1813 goto err_unlock;
1814
1815 if (dynamic_fault("bcachefs:add:no_slot"))
1816 goto err_unlock;
1817
1818 ret = bch2_sb_member_alloc(c);
1819 if (ret < 0) {
1820 bch_err_msg(c, ret, "setting up new superblock");
1821 goto err_unlock;
1822 }
1823 unsigned dev_idx = ret;
1824
1825 /* success: */
1826
1827 dev_mi.last_mount = cpu_to_le64(ktime_get_real_seconds());
1828 *bch2_members_v2_get_mut(c->disk_sb.sb, dev_idx) = dev_mi;
1829
1830 ca->disk_sb.sb->dev_idx = dev_idx;
1831 bch2_dev_attach(c, ca, dev_idx);
1832
1833 if (BCH_MEMBER_GROUP(&dev_mi)) {
1834 ret = __bch2_dev_group_set(c, ca, label.buf);
1835 bch_err_msg(c, ret, "creating new label");
1836 if (ret)
1837 goto err_unlock;
1838 }
1839
1840 bch2_write_super(c);
1841 mutex_unlock(&c->sb_lock);
1842
1843 ret = bch2_dev_usage_init(ca, false);
1844 if (ret)
1845 goto err_late;
1846
1847 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1848 bch_err_msg(ca, ret, "marking new superblock");
1849 if (ret)
1850 goto err_late;
1851
1852 ret = bch2_fs_freespace_init(c);
1853 bch_err_msg(ca, ret, "initializing free space");
1854 if (ret)
1855 goto err_late;
1856
1857 if (ca->mi.state == BCH_MEMBER_STATE_rw)
1858 __bch2_dev_read_write(c, ca);
1859
1860 ret = bch2_dev_journal_alloc(ca, false);
1861 bch_err_msg(c, ret, "allocating journal");
1862 if (ret)
1863 goto err_late;
1864
1865 up_write(&c->state_lock);
1866 out:
1867 printbuf_exit(&label);
1868 printbuf_exit(&errbuf);
1869 bch_err_fn(c, ret);
1870 return ret;
1871
1872 err_unlock:
1873 mutex_unlock(&c->sb_lock);
1874 up_write(&c->state_lock);
1875 err:
1876 if (ca)
1877 bch2_dev_free(ca);
1878 bch2_free_super(&sb);
1879 goto out;
1880 err_late:
1881 up_write(&c->state_lock);
1882 ca = NULL;
1883 goto err;
1884 }
1885
1886 /* Hot add existing device to running filesystem: */
bch2_dev_online(struct bch_fs * c,const char * path)1887 int bch2_dev_online(struct bch_fs *c, const char *path)
1888 {
1889 struct bch_opts opts = bch2_opts_empty();
1890 struct bch_sb_handle sb = { NULL };
1891 struct bch_dev *ca;
1892 unsigned dev_idx;
1893 int ret;
1894
1895 down_write(&c->state_lock);
1896
1897 ret = bch2_read_super(path, &opts, &sb);
1898 if (ret) {
1899 up_write(&c->state_lock);
1900 return ret;
1901 }
1902
1903 dev_idx = sb.sb->dev_idx;
1904
1905 ret = bch2_dev_in_fs(&c->disk_sb, &sb, &c->opts);
1906 bch_err_msg(c, ret, "bringing %s online", path);
1907 if (ret)
1908 goto err;
1909
1910 ret = bch2_dev_attach_bdev(c, &sb);
1911 if (ret)
1912 goto err;
1913
1914 ca = bch2_dev_locked(c, dev_idx);
1915
1916 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
1917 bch_err_msg(c, ret, "bringing %s online: error from bch2_trans_mark_dev_sb", path);
1918 if (ret)
1919 goto err;
1920
1921 if (ca->mi.state == BCH_MEMBER_STATE_rw)
1922 __bch2_dev_read_write(c, ca);
1923
1924 if (!ca->mi.freespace_initialized) {
1925 ret = bch2_dev_freespace_init(c, ca, 0, ca->mi.nbuckets);
1926 bch_err_msg(ca, ret, "initializing free space");
1927 if (ret)
1928 goto err;
1929 }
1930
1931 if (!ca->journal.nr) {
1932 ret = bch2_dev_journal_alloc(ca, false);
1933 bch_err_msg(ca, ret, "allocating journal");
1934 if (ret)
1935 goto err;
1936 }
1937
1938 mutex_lock(&c->sb_lock);
1939 bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx)->last_mount =
1940 cpu_to_le64(ktime_get_real_seconds());
1941 bch2_write_super(c);
1942 mutex_unlock(&c->sb_lock);
1943
1944 up_write(&c->state_lock);
1945 return 0;
1946 err:
1947 up_write(&c->state_lock);
1948 bch2_free_super(&sb);
1949 return ret;
1950 }
1951
bch2_dev_offline(struct bch_fs * c,struct bch_dev * ca,int flags)1952 int bch2_dev_offline(struct bch_fs *c, struct bch_dev *ca, int flags)
1953 {
1954 down_write(&c->state_lock);
1955
1956 if (!bch2_dev_is_online(ca)) {
1957 bch_err(ca, "Already offline");
1958 up_write(&c->state_lock);
1959 return 0;
1960 }
1961
1962 if (!bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, flags)) {
1963 bch_err(ca, "Cannot offline required disk");
1964 up_write(&c->state_lock);
1965 return -BCH_ERR_device_state_not_allowed;
1966 }
1967
1968 __bch2_dev_offline(c, ca);
1969
1970 up_write(&c->state_lock);
1971 return 0;
1972 }
1973
bch2_dev_resize(struct bch_fs * c,struct bch_dev * ca,u64 nbuckets)1974 int bch2_dev_resize(struct bch_fs *c, struct bch_dev *ca, u64 nbuckets)
1975 {
1976 struct bch_member *m;
1977 u64 old_nbuckets;
1978 int ret = 0;
1979
1980 down_write(&c->state_lock);
1981 old_nbuckets = ca->mi.nbuckets;
1982
1983 if (nbuckets < ca->mi.nbuckets) {
1984 bch_err(ca, "Cannot shrink yet");
1985 ret = -EINVAL;
1986 goto err;
1987 }
1988
1989 if (nbuckets > BCH_MEMBER_NBUCKETS_MAX) {
1990 bch_err(ca, "New device size too big (%llu greater than max %u)",
1991 nbuckets, BCH_MEMBER_NBUCKETS_MAX);
1992 ret = -BCH_ERR_device_size_too_big;
1993 goto err;
1994 }
1995
1996 if (bch2_dev_is_online(ca) &&
1997 get_capacity(ca->disk_sb.bdev->bd_disk) <
1998 ca->mi.bucket_size * nbuckets) {
1999 bch_err(ca, "New size larger than device");
2000 ret = -BCH_ERR_device_size_too_small;
2001 goto err;
2002 }
2003
2004 ret = bch2_dev_buckets_resize(c, ca, nbuckets);
2005 bch_err_msg(ca, ret, "resizing buckets");
2006 if (ret)
2007 goto err;
2008
2009 ret = bch2_trans_mark_dev_sb(c, ca, BTREE_TRIGGER_transactional);
2010 if (ret)
2011 goto err;
2012
2013 mutex_lock(&c->sb_lock);
2014 m = bch2_members_v2_get_mut(c->disk_sb.sb, ca->dev_idx);
2015 m->nbuckets = cpu_to_le64(nbuckets);
2016
2017 bch2_write_super(c);
2018 mutex_unlock(&c->sb_lock);
2019
2020 if (ca->mi.freespace_initialized) {
2021 u64 v[3] = { nbuckets - old_nbuckets, 0, 0 };
2022
2023 ret = bch2_trans_commit_do(ca->fs, NULL, NULL, 0,
2024 bch2_disk_accounting_mod2(trans, false, v, dev_data_type,
2025 .dev = ca->dev_idx,
2026 .data_type = BCH_DATA_free)) ?:
2027 bch2_dev_freespace_init(c, ca, old_nbuckets, nbuckets);
2028 if (ret)
2029 goto err;
2030 }
2031
2032 bch2_recalc_capacity(c);
2033 err:
2034 up_write(&c->state_lock);
2035 return ret;
2036 }
2037
2038 /* return with ref on ca->ref: */
bch2_dev_lookup(struct bch_fs * c,const char * name)2039 struct bch_dev *bch2_dev_lookup(struct bch_fs *c, const char *name)
2040 {
2041 if (!strncmp(name, "/dev/", strlen("/dev/")))
2042 name += strlen("/dev/");
2043
2044 for_each_member_device(c, ca)
2045 if (!strcmp(name, ca->name))
2046 return ca;
2047 return ERR_PTR(-BCH_ERR_ENOENT_dev_not_found);
2048 }
2049
2050 /* blk_holder_ops: */
2051
bdev_get_fs(struct block_device * bdev)2052 static struct bch_fs *bdev_get_fs(struct block_device *bdev)
2053 __releases(&bdev->bd_holder_lock)
2054 {
2055 struct bch_sb_handle_holder *holder = bdev->bd_holder;
2056 struct bch_fs *c = holder->c;
2057
2058 if (c && !bch2_ro_ref_tryget(c))
2059 c = NULL;
2060
2061 mutex_unlock(&bdev->bd_holder_lock);
2062
2063 if (c)
2064 wait_event(c->ro_ref_wait, test_bit(BCH_FS_started, &c->flags));
2065 return c;
2066 }
2067
2068 /* returns with ref on ca->ref */
bdev_to_bch_dev(struct bch_fs * c,struct block_device * bdev)2069 static struct bch_dev *bdev_to_bch_dev(struct bch_fs *c, struct block_device *bdev)
2070 {
2071 for_each_member_device(c, ca)
2072 if (ca->disk_sb.bdev == bdev)
2073 return ca;
2074 return NULL;
2075 }
2076
bch2_fs_bdev_mark_dead(struct block_device * bdev,bool surprise)2077 static void bch2_fs_bdev_mark_dead(struct block_device *bdev, bool surprise)
2078 {
2079 struct bch_fs *c = bdev_get_fs(bdev);
2080 if (!c)
2081 return;
2082
2083 struct super_block *sb = c->vfs_sb;
2084 if (sb) {
2085 /*
2086 * Not necessary, c->ro_ref guards against the filesystem being
2087 * unmounted - we only take this to avoid a warning in
2088 * sync_filesystem:
2089 */
2090 down_read(&sb->s_umount);
2091 }
2092
2093 down_write(&c->state_lock);
2094 struct bch_dev *ca = bdev_to_bch_dev(c, bdev);
2095 if (!ca)
2096 goto unlock;
2097
2098 if (bch2_dev_state_allowed(c, ca, BCH_MEMBER_STATE_failed, BCH_FORCE_IF_DEGRADED)) {
2099 __bch2_dev_offline(c, ca);
2100 } else {
2101 if (sb) {
2102 if (!surprise)
2103 sync_filesystem(sb);
2104 shrink_dcache_sb(sb);
2105 evict_inodes(sb);
2106 }
2107
2108 bch2_journal_flush(&c->journal);
2109 bch2_fs_emergency_read_only(c);
2110 }
2111
2112 bch2_dev_put(ca);
2113 unlock:
2114 if (sb)
2115 up_read(&sb->s_umount);
2116 up_write(&c->state_lock);
2117 bch2_ro_ref_put(c);
2118 }
2119
bch2_fs_bdev_sync(struct block_device * bdev)2120 static void bch2_fs_bdev_sync(struct block_device *bdev)
2121 {
2122 struct bch_fs *c = bdev_get_fs(bdev);
2123 if (!c)
2124 return;
2125
2126 struct super_block *sb = c->vfs_sb;
2127 if (sb) {
2128 /*
2129 * Not necessary, c->ro_ref guards against the filesystem being
2130 * unmounted - we only take this to avoid a warning in
2131 * sync_filesystem:
2132 */
2133 down_read(&sb->s_umount);
2134 sync_filesystem(sb);
2135 up_read(&sb->s_umount);
2136 }
2137
2138 bch2_ro_ref_put(c);
2139 }
2140
2141 const struct blk_holder_ops bch2_sb_handle_bdev_ops = {
2142 .mark_dead = bch2_fs_bdev_mark_dead,
2143 .sync = bch2_fs_bdev_sync,
2144 };
2145
2146 /* Filesystem open: */
2147
sb_cmp(struct bch_sb * l,struct bch_sb * r)2148 static inline int sb_cmp(struct bch_sb *l, struct bch_sb *r)
2149 {
2150 return cmp_int(le64_to_cpu(l->seq), le64_to_cpu(r->seq)) ?:
2151 cmp_int(le64_to_cpu(l->write_time), le64_to_cpu(r->write_time));
2152 }
2153
bch2_fs_open(char * const * devices,unsigned nr_devices,struct bch_opts opts)2154 struct bch_fs *bch2_fs_open(char * const *devices, unsigned nr_devices,
2155 struct bch_opts opts)
2156 {
2157 DARRAY(struct bch_sb_handle) sbs = { 0 };
2158 struct bch_fs *c = NULL;
2159 struct bch_sb_handle *best = NULL;
2160 struct printbuf errbuf = PRINTBUF;
2161 int ret = 0;
2162
2163 if (!try_module_get(THIS_MODULE))
2164 return ERR_PTR(-ENODEV);
2165
2166 if (!nr_devices) {
2167 ret = -EINVAL;
2168 goto err;
2169 }
2170
2171 ret = darray_make_room(&sbs, nr_devices);
2172 if (ret)
2173 goto err;
2174
2175 for (unsigned i = 0; i < nr_devices; i++) {
2176 struct bch_sb_handle sb = { NULL };
2177
2178 ret = bch2_read_super(devices[i], &opts, &sb);
2179 if (ret)
2180 goto err;
2181
2182 BUG_ON(darray_push(&sbs, sb));
2183 }
2184
2185 if (opts.nochanges && !opts.read_only) {
2186 ret = -BCH_ERR_erofs_nochanges;
2187 goto err_print;
2188 }
2189
2190 darray_for_each(sbs, sb)
2191 if (!best || sb_cmp(sb->sb, best->sb) > 0)
2192 best = sb;
2193
2194 darray_for_each_reverse(sbs, sb) {
2195 ret = bch2_dev_in_fs(best, sb, &opts);
2196
2197 if (ret == -BCH_ERR_device_has_been_removed ||
2198 ret == -BCH_ERR_device_splitbrain) {
2199 bch2_free_super(sb);
2200 darray_remove_item(&sbs, sb);
2201 best -= best > sb;
2202 ret = 0;
2203 continue;
2204 }
2205
2206 if (ret)
2207 goto err_print;
2208 }
2209
2210 c = bch2_fs_alloc(best->sb, opts);
2211 ret = PTR_ERR_OR_ZERO(c);
2212 if (ret)
2213 goto err;
2214
2215 down_write(&c->state_lock);
2216 darray_for_each(sbs, sb) {
2217 ret = bch2_dev_attach_bdev(c, sb);
2218 if (ret) {
2219 up_write(&c->state_lock);
2220 goto err;
2221 }
2222 }
2223 up_write(&c->state_lock);
2224
2225 if (!c->opts.nostart) {
2226 ret = bch2_fs_start(c);
2227 if (ret)
2228 goto err;
2229 }
2230 out:
2231 darray_for_each(sbs, sb)
2232 bch2_free_super(sb);
2233 darray_exit(&sbs);
2234 printbuf_exit(&errbuf);
2235 module_put(THIS_MODULE);
2236 return c;
2237 err_print:
2238 pr_err("bch_fs_open err opening %s: %s",
2239 devices[0], bch2_err_str(ret));
2240 err:
2241 if (!IS_ERR_OR_NULL(c))
2242 bch2_fs_stop(c);
2243 c = ERR_PTR(ret);
2244 goto out;
2245 }
2246
2247 /* Global interfaces/init */
2248
bcachefs_exit(void)2249 static void bcachefs_exit(void)
2250 {
2251 bch2_debug_exit();
2252 bch2_vfs_exit();
2253 bch2_chardev_exit();
2254 bch2_btree_key_cache_exit();
2255 if (bcachefs_kset)
2256 kset_unregister(bcachefs_kset);
2257 }
2258
bcachefs_init(void)2259 static int __init bcachefs_init(void)
2260 {
2261 bch2_bkey_pack_test();
2262
2263 if (!(bcachefs_kset = kset_create_and_add("bcachefs", NULL, fs_kobj)) ||
2264 bch2_btree_key_cache_init() ||
2265 bch2_chardev_init() ||
2266 bch2_vfs_init() ||
2267 bch2_debug_init())
2268 goto err;
2269
2270 return 0;
2271 err:
2272 bcachefs_exit();
2273 return -ENOMEM;
2274 }
2275
2276 #define BCH_DEBUG_PARAM(name, description) \
2277 bool bch2_##name; \
2278 module_param_named(name, bch2_##name, bool, 0644); \
2279 MODULE_PARM_DESC(name, description);
2280 BCH_DEBUG_PARAMS()
2281 #undef BCH_DEBUG_PARAM
2282
2283 __maybe_unused
2284 static unsigned bch2_metadata_version = bcachefs_metadata_version_current;
2285 module_param_named(version, bch2_metadata_version, uint, 0444);
2286
2287 module_exit(bcachefs_exit);
2288 module_init(bcachefs_init);
2289