1 // SPDX-License-Identifier: GPL-2.0
2 #ifndef NO_BCACHEFS_FS
3
4 #include "bcachefs.h"
5 #include "alloc_foreground.h"
6 #include "bkey_buf.h"
7 #include "fs-io.h"
8 #include "fs-io-buffered.h"
9 #include "fs-io-direct.h"
10 #include "fs-io-pagecache.h"
11 #include "io_read.h"
12 #include "io_write.h"
13
14 #include <linux/backing-dev.h>
15 #include <linux/pagemap.h>
16 #include <linux/writeback.h>
17
bio_full(struct bio * bio,unsigned len)18 static inline bool bio_full(struct bio *bio, unsigned len)
19 {
20 if (bio->bi_vcnt >= bio->bi_max_vecs)
21 return true;
22 if (bio->bi_iter.bi_size > UINT_MAX - len)
23 return true;
24 return false;
25 }
26
27 /* readpage(s): */
28
bch2_readpages_end_io(struct bio * bio)29 static void bch2_readpages_end_io(struct bio *bio)
30 {
31 struct folio_iter fi;
32
33 bio_for_each_folio_all(fi, bio)
34 folio_end_read(fi.folio, bio->bi_status == BLK_STS_OK);
35
36 bio_put(bio);
37 }
38
39 struct readpages_iter {
40 struct address_space *mapping;
41 unsigned idx;
42 folios folios;
43 };
44
readpages_iter_init(struct readpages_iter * iter,struct readahead_control * ractl)45 static int readpages_iter_init(struct readpages_iter *iter,
46 struct readahead_control *ractl)
47 {
48 struct folio *folio;
49
50 *iter = (struct readpages_iter) { ractl->mapping };
51
52 while ((folio = __readahead_folio(ractl))) {
53 if (!bch2_folio_create(folio, GFP_KERNEL) ||
54 darray_push(&iter->folios, folio)) {
55 bch2_folio_release(folio);
56 ractl->_nr_pages += folio_nr_pages(folio);
57 ractl->_index -= folio_nr_pages(folio);
58 return iter->folios.nr ? 0 : -ENOMEM;
59 }
60
61 folio_put(folio);
62 }
63
64 return 0;
65 }
66
readpage_iter_peek(struct readpages_iter * iter)67 static inline struct folio *readpage_iter_peek(struct readpages_iter *iter)
68 {
69 if (iter->idx >= iter->folios.nr)
70 return NULL;
71 return iter->folios.data[iter->idx];
72 }
73
readpage_iter_advance(struct readpages_iter * iter)74 static inline void readpage_iter_advance(struct readpages_iter *iter)
75 {
76 iter->idx++;
77 }
78
extent_partial_reads_expensive(struct bkey_s_c k)79 static bool extent_partial_reads_expensive(struct bkey_s_c k)
80 {
81 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
82 struct bch_extent_crc_unpacked crc;
83 const union bch_extent_entry *i;
84
85 bkey_for_each_crc(k.k, ptrs, crc, i)
86 if (crc.csum_type || crc.compression_type)
87 return true;
88 return false;
89 }
90
readpage_bio_extend(struct btree_trans * trans,struct readpages_iter * iter,struct bio * bio,unsigned sectors_this_extent,bool get_more)91 static int readpage_bio_extend(struct btree_trans *trans,
92 struct readpages_iter *iter,
93 struct bio *bio,
94 unsigned sectors_this_extent,
95 bool get_more)
96 {
97 /* Don't hold btree locks while allocating memory: */
98 bch2_trans_unlock(trans);
99
100 while (bio_sectors(bio) < sectors_this_extent &&
101 bio->bi_vcnt < bio->bi_max_vecs) {
102 struct folio *folio = readpage_iter_peek(iter);
103 int ret;
104
105 if (folio) {
106 readpage_iter_advance(iter);
107 } else {
108 pgoff_t folio_offset = bio_end_sector(bio) >> PAGE_SECTORS_SHIFT;
109
110 if (!get_more)
111 break;
112
113 unsigned sectors_remaining = sectors_this_extent - bio_sectors(bio);
114
115 if (sectors_remaining < PAGE_SECTORS << mapping_min_folio_order(iter->mapping))
116 break;
117
118 unsigned order = ilog2(rounddown_pow_of_two(sectors_remaining) / PAGE_SECTORS);
119
120 /* ensure proper alignment */
121 order = min(order, __ffs(folio_offset|BIT(31)));
122
123 folio = xa_load(&iter->mapping->i_pages, folio_offset);
124 if (folio && !xa_is_value(folio))
125 break;
126
127 folio = filemap_alloc_folio(readahead_gfp_mask(iter->mapping), order);
128 if (!folio)
129 break;
130
131 if (!__bch2_folio_create(folio, GFP_KERNEL)) {
132 folio_put(folio);
133 break;
134 }
135
136 ret = filemap_add_folio(iter->mapping, folio, folio_offset, GFP_KERNEL);
137 if (ret) {
138 __bch2_folio_release(folio);
139 folio_put(folio);
140 break;
141 }
142
143 folio_put(folio);
144 }
145
146 BUG_ON(folio_sector(folio) != bio_end_sector(bio));
147
148 BUG_ON(!bio_add_folio(bio, folio, folio_size(folio), 0));
149 }
150
151 return bch2_trans_relock(trans);
152 }
153
bchfs_read(struct btree_trans * trans,struct bch_read_bio * rbio,subvol_inum inum,struct readpages_iter * readpages_iter)154 static void bchfs_read(struct btree_trans *trans,
155 struct bch_read_bio *rbio,
156 subvol_inum inum,
157 struct readpages_iter *readpages_iter)
158 {
159 struct bch_fs *c = trans->c;
160 struct btree_iter iter;
161 struct bkey_buf sk;
162 int flags = BCH_READ_retry_if_stale|
163 BCH_READ_may_promote;
164 int ret = 0;
165
166 rbio->subvol = inum.subvol;
167
168 bch2_bkey_buf_init(&sk);
169 bch2_trans_begin(trans);
170 bch2_trans_iter_init(trans, &iter, BTREE_ID_extents,
171 POS(inum.inum, rbio->bio.bi_iter.bi_sector),
172 BTREE_ITER_slots);
173 while (1) {
174 struct bkey_s_c k;
175 unsigned bytes, sectors;
176 s64 offset_into_extent;
177 enum btree_id data_btree = BTREE_ID_extents;
178
179 bch2_trans_begin(trans);
180
181 u32 snapshot;
182 ret = bch2_subvolume_get_snapshot(trans, inum.subvol, &snapshot);
183 if (ret)
184 goto err;
185
186 bch2_btree_iter_set_snapshot(trans, &iter, snapshot);
187
188 bch2_btree_iter_set_pos(trans, &iter,
189 POS(inum.inum, rbio->bio.bi_iter.bi_sector));
190
191 k = bch2_btree_iter_peek_slot(trans, &iter);
192 ret = bkey_err(k);
193 if (ret)
194 goto err;
195
196 offset_into_extent = iter.pos.offset -
197 bkey_start_offset(k.k);
198 sectors = k.k->size - offset_into_extent;
199
200 bch2_bkey_buf_reassemble(&sk, c, k);
201
202 ret = bch2_read_indirect_extent(trans, &data_btree,
203 &offset_into_extent, &sk);
204 if (ret)
205 goto err;
206
207 k = bkey_i_to_s_c(sk.k);
208
209 sectors = min_t(unsigned, sectors, k.k->size - offset_into_extent);
210
211 if (readpages_iter) {
212 ret = readpage_bio_extend(trans, readpages_iter, &rbio->bio, sectors,
213 extent_partial_reads_expensive(k));
214 if (ret)
215 goto err;
216 }
217
218 bytes = min(sectors, bio_sectors(&rbio->bio)) << 9;
219 swap(rbio->bio.bi_iter.bi_size, bytes);
220
221 if (rbio->bio.bi_iter.bi_size == bytes)
222 flags |= BCH_READ_last_fragment;
223
224 bch2_bio_page_state_set(&rbio->bio, k);
225
226 bch2_read_extent(trans, rbio, iter.pos,
227 data_btree, k, offset_into_extent, flags);
228 /*
229 * Careful there's a landmine here if bch2_read_extent() ever
230 * starts returning transaction restarts here.
231 *
232 * We've changed rbio->bi_iter.bi_size to be "bytes we can read
233 * from this extent" with the swap call, and we restore it
234 * below. That restore needs to come before checking for
235 * errors.
236 *
237 * But unlike __bch2_read(), we use the rbio bvec iter, not one
238 * on the stack, so we can't do the restore right after the
239 * bch2_read_extent() call: we don't own that iterator anymore
240 * if BCH_READ_last_fragment is set, since we may have submitted
241 * that rbio instead of cloning it.
242 */
243
244 if (flags & BCH_READ_last_fragment)
245 break;
246
247 swap(rbio->bio.bi_iter.bi_size, bytes);
248 bio_advance(&rbio->bio, bytes);
249 err:
250 if (ret &&
251 !bch2_err_matches(ret, BCH_ERR_transaction_restart))
252 break;
253 }
254 bch2_trans_iter_exit(trans, &iter);
255
256 if (ret) {
257 struct printbuf buf = PRINTBUF;
258 lockrestart_do(trans,
259 bch2_inum_offset_err_msg_trans(trans, &buf, inum, iter.pos.offset << 9));
260 prt_printf(&buf, "read error %i from btree lookup", ret);
261 bch_err_ratelimited(c, "%s", buf.buf);
262 printbuf_exit(&buf);
263
264 rbio->bio.bi_status = BLK_STS_IOERR;
265 bio_endio(&rbio->bio);
266 }
267
268 bch2_bkey_buf_exit(&sk, c);
269 }
270
bch2_readahead(struct readahead_control * ractl)271 void bch2_readahead(struct readahead_control *ractl)
272 {
273 struct bch_inode_info *inode = to_bch_ei(ractl->mapping->host);
274 struct bch_fs *c = inode->v.i_sb->s_fs_info;
275 struct bch_io_opts opts;
276 struct folio *folio;
277 struct readpages_iter readpages_iter;
278 struct blk_plug plug;
279
280 bch2_inode_opts_get(&opts, c, &inode->ei_inode);
281
282 int ret = readpages_iter_init(&readpages_iter, ractl);
283 if (ret)
284 return;
285
286 /*
287 * Besides being a general performance optimization, plugging helps with
288 * avoiding btree transaction srcu warnings - submitting a bio can
289 * block, and we don't want todo that with the transaction locked.
290 *
291 * However, plugged bios are submitted when we schedule; we ideally
292 * would have our own scheduler hook to call unlock_long() before
293 * scheduling.
294 */
295 blk_start_plug(&plug);
296 bch2_pagecache_add_get(inode);
297
298 struct btree_trans *trans = bch2_trans_get(c);
299 while ((folio = readpage_iter_peek(&readpages_iter))) {
300 unsigned n = min_t(unsigned,
301 readpages_iter.folios.nr -
302 readpages_iter.idx,
303 BIO_MAX_VECS);
304 struct bch_read_bio *rbio =
305 rbio_init(bio_alloc_bioset(NULL, n, REQ_OP_READ,
306 GFP_KERNEL, &c->bio_read),
307 c,
308 opts,
309 bch2_readpages_end_io);
310
311 readpage_iter_advance(&readpages_iter);
312
313 rbio->bio.bi_iter.bi_sector = folio_sector(folio);
314 BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0));
315
316 bchfs_read(trans, rbio, inode_inum(inode),
317 &readpages_iter);
318 bch2_trans_unlock(trans);
319 }
320 bch2_trans_put(trans);
321
322 bch2_pagecache_add_put(inode);
323 blk_finish_plug(&plug);
324 darray_exit(&readpages_iter.folios);
325 }
326
bch2_read_single_folio_end_io(struct bio * bio)327 static void bch2_read_single_folio_end_io(struct bio *bio)
328 {
329 complete(bio->bi_private);
330 }
331
bch2_read_single_folio(struct folio * folio,struct address_space * mapping)332 int bch2_read_single_folio(struct folio *folio, struct address_space *mapping)
333 {
334 struct bch_inode_info *inode = to_bch_ei(mapping->host);
335 struct bch_fs *c = inode->v.i_sb->s_fs_info;
336 struct bch_read_bio *rbio;
337 struct bch_io_opts opts;
338 struct blk_plug plug;
339 int ret;
340 DECLARE_COMPLETION_ONSTACK(done);
341
342 BUG_ON(folio_test_uptodate(folio));
343 BUG_ON(folio_test_dirty(folio));
344
345 if (!bch2_folio_create(folio, GFP_KERNEL))
346 return -ENOMEM;
347
348 bch2_inode_opts_get(&opts, c, &inode->ei_inode);
349
350 rbio = rbio_init(bio_alloc_bioset(NULL, 1, REQ_OP_READ, GFP_KERNEL, &c->bio_read),
351 c,
352 opts,
353 bch2_read_single_folio_end_io);
354 rbio->bio.bi_private = &done;
355 rbio->bio.bi_opf = REQ_OP_READ|REQ_SYNC;
356 rbio->bio.bi_iter.bi_sector = folio_sector(folio);
357 BUG_ON(!bio_add_folio(&rbio->bio, folio, folio_size(folio), 0));
358
359 blk_start_plug(&plug);
360 bch2_trans_run(c, (bchfs_read(trans, rbio, inode_inum(inode), NULL), 0));
361 blk_finish_plug(&plug);
362 wait_for_completion(&done);
363
364 ret = blk_status_to_errno(rbio->bio.bi_status);
365 bio_put(&rbio->bio);
366
367 if (ret < 0)
368 return ret;
369
370 folio_mark_uptodate(folio);
371 return 0;
372 }
373
bch2_read_folio(struct file * file,struct folio * folio)374 int bch2_read_folio(struct file *file, struct folio *folio)
375 {
376 int ret;
377
378 ret = bch2_read_single_folio(folio, folio->mapping);
379 folio_unlock(folio);
380 return bch2_err_class(ret);
381 }
382
383 /* writepages: */
384
385 struct bch_writepage_io {
386 struct bch_inode_info *inode;
387
388 /* must be last: */
389 struct bch_write_op op;
390 };
391
392 struct bch_writepage_state {
393 struct bch_writepage_io *io;
394 struct bch_io_opts opts;
395 struct bch_folio_sector *tmp;
396 unsigned tmp_sectors;
397 };
398
bch_writepage_state_init(struct bch_fs * c,struct bch_inode_info * inode)399 static inline struct bch_writepage_state bch_writepage_state_init(struct bch_fs *c,
400 struct bch_inode_info *inode)
401 {
402 struct bch_writepage_state ret = { 0 };
403
404 bch2_inode_opts_get(&ret.opts, c, &inode->ei_inode);
405 return ret;
406 }
407
408 /*
409 * Determine when a writepage io is full. We have to limit writepage bios to a
410 * single page per bvec (i.e. 1MB with 4k pages) because that is the limit to
411 * what the bounce path in bch2_write_extent() can handle. In theory we could
412 * loosen this restriction for non-bounce I/O, but we don't have that context
413 * here. Ideally, we can up this limit and make it configurable in the future
414 * when the bounce path can be enhanced to accommodate larger source bios.
415 */
bch_io_full(struct bch_writepage_io * io,unsigned len)416 static inline bool bch_io_full(struct bch_writepage_io *io, unsigned len)
417 {
418 struct bio *bio = &io->op.wbio.bio;
419 return bio_full(bio, len) ||
420 (bio->bi_iter.bi_size + len > BIO_MAX_VECS * PAGE_SIZE);
421 }
422
bch2_writepage_io_done(struct bch_write_op * op)423 static void bch2_writepage_io_done(struct bch_write_op *op)
424 {
425 struct bch_writepage_io *io =
426 container_of(op, struct bch_writepage_io, op);
427 struct bch_fs *c = io->op.c;
428 struct bio *bio = &io->op.wbio.bio;
429 struct folio_iter fi;
430 unsigned i;
431
432 if (io->op.error) {
433 set_bit(EI_INODE_ERROR, &io->inode->ei_flags);
434
435 bio_for_each_folio_all(fi, bio) {
436 struct bch_folio *s;
437
438 mapping_set_error(fi.folio->mapping, -EIO);
439
440 s = __bch2_folio(fi.folio);
441 spin_lock(&s->lock);
442 for (i = 0; i < folio_sectors(fi.folio); i++)
443 s->s[i].nr_replicas = 0;
444 spin_unlock(&s->lock);
445 }
446 }
447
448 if (io->op.flags & BCH_WRITE_wrote_data_inline) {
449 bio_for_each_folio_all(fi, bio) {
450 struct bch_folio *s;
451
452 s = __bch2_folio(fi.folio);
453 spin_lock(&s->lock);
454 for (i = 0; i < folio_sectors(fi.folio); i++)
455 s->s[i].nr_replicas = 0;
456 spin_unlock(&s->lock);
457 }
458 }
459
460 /*
461 * racing with fallocate can cause us to add fewer sectors than
462 * expected - but we shouldn't add more sectors than expected:
463 */
464 WARN_ON_ONCE(io->op.i_sectors_delta > 0);
465
466 /*
467 * (error (due to going RO) halfway through a page can screw that up
468 * slightly)
469 * XXX wtf?
470 BUG_ON(io->op.op.i_sectors_delta >= PAGE_SECTORS);
471 */
472
473 /*
474 * The writeback flag is effectively our ref on the inode -
475 * fixup i_blocks before calling folio_end_writeback:
476 */
477 bch2_i_sectors_acct(c, io->inode, NULL, io->op.i_sectors_delta);
478
479 bio_for_each_folio_all(fi, bio) {
480 struct bch_folio *s = __bch2_folio(fi.folio);
481
482 if (atomic_dec_and_test(&s->write_count))
483 folio_end_writeback(fi.folio);
484 }
485
486 bio_put(&io->op.wbio.bio);
487 }
488
bch2_writepage_do_io(struct bch_writepage_state * w)489 static void bch2_writepage_do_io(struct bch_writepage_state *w)
490 {
491 struct bch_writepage_io *io = w->io;
492
493 w->io = NULL;
494 closure_call(&io->op.cl, bch2_write, NULL, NULL);
495 }
496
497 /*
498 * Get a bch_writepage_io and add @page to it - appending to an existing one if
499 * possible, else allocating a new one:
500 */
bch2_writepage_io_alloc(struct bch_fs * c,struct writeback_control * wbc,struct bch_writepage_state * w,struct bch_inode_info * inode,u64 sector,unsigned nr_replicas)501 static void bch2_writepage_io_alloc(struct bch_fs *c,
502 struct writeback_control *wbc,
503 struct bch_writepage_state *w,
504 struct bch_inode_info *inode,
505 u64 sector,
506 unsigned nr_replicas)
507 {
508 struct bch_write_op *op;
509
510 w->io = container_of(bio_alloc_bioset(NULL, BIO_MAX_VECS,
511 REQ_OP_WRITE,
512 GFP_KERNEL,
513 &c->writepage_bioset),
514 struct bch_writepage_io, op.wbio.bio);
515
516 w->io->inode = inode;
517 op = &w->io->op;
518 bch2_write_op_init(op, c, w->opts);
519 op->target = w->opts.foreground_target;
520 op->nr_replicas = nr_replicas;
521 op->res.nr_replicas = nr_replicas;
522 op->write_point = writepoint_hashed(inode->ei_last_dirtied);
523 op->subvol = inode->ei_inum.subvol;
524 op->pos = POS(inode->v.i_ino, sector);
525 op->end_io = bch2_writepage_io_done;
526 op->devs_need_flush = &inode->ei_devs_need_flush;
527 op->wbio.bio.bi_iter.bi_sector = sector;
528 op->wbio.bio.bi_opf = wbc_to_write_flags(wbc);
529 }
530
__bch2_writepage(struct folio * folio,struct writeback_control * wbc,void * data)531 static int __bch2_writepage(struct folio *folio,
532 struct writeback_control *wbc,
533 void *data)
534 {
535 struct bch_inode_info *inode = to_bch_ei(folio->mapping->host);
536 struct bch_fs *c = inode->v.i_sb->s_fs_info;
537 struct bch_writepage_state *w = data;
538 struct bch_folio *s;
539 unsigned i, offset, f_sectors, nr_replicas_this_write = U32_MAX;
540 loff_t i_size = i_size_read(&inode->v);
541 int ret;
542
543 EBUG_ON(!folio_test_uptodate(folio));
544
545 /* Is the folio fully inside i_size? */
546 if (folio_end_pos(folio) <= i_size)
547 goto do_io;
548
549 /* Is the folio fully outside i_size? (truncate in progress) */
550 if (folio_pos(folio) >= i_size) {
551 folio_unlock(folio);
552 return 0;
553 }
554
555 /*
556 * The folio straddles i_size. It must be zeroed out on each and every
557 * writepage invocation because it may be mmapped. "A file is mapped
558 * in multiples of the folio size. For a file that is not a multiple of
559 * the folio size, the remaining memory is zeroed when mapped, and
560 * writes to that region are not written out to the file."
561 */
562 folio_zero_segment(folio,
563 i_size - folio_pos(folio),
564 folio_size(folio));
565 do_io:
566 f_sectors = folio_sectors(folio);
567 s = bch2_folio(folio);
568
569 if (f_sectors > w->tmp_sectors) {
570 kfree(w->tmp);
571 w->tmp = kcalloc(f_sectors, sizeof(struct bch_folio_sector), GFP_NOFS|__GFP_NOFAIL);
572 w->tmp_sectors = f_sectors;
573 }
574
575 /*
576 * Things get really hairy with errors during writeback:
577 */
578 ret = bch2_get_folio_disk_reservation(c, inode, folio, false);
579 BUG_ON(ret);
580
581 /* Before unlocking the page, get copy of reservations: */
582 spin_lock(&s->lock);
583 memcpy(w->tmp, s->s, sizeof(struct bch_folio_sector) * f_sectors);
584
585 for (i = 0; i < f_sectors; i++) {
586 if (s->s[i].state < SECTOR_dirty)
587 continue;
588
589 nr_replicas_this_write =
590 min_t(unsigned, nr_replicas_this_write,
591 s->s[i].nr_replicas +
592 s->s[i].replicas_reserved);
593 }
594
595 for (i = 0; i < f_sectors; i++) {
596 if (s->s[i].state < SECTOR_dirty)
597 continue;
598
599 s->s[i].nr_replicas = w->opts.compression
600 ? 0 : nr_replicas_this_write;
601
602 s->s[i].replicas_reserved = 0;
603 bch2_folio_sector_set(folio, s, i, SECTOR_allocated);
604 }
605 spin_unlock(&s->lock);
606
607 BUG_ON(atomic_read(&s->write_count));
608 atomic_set(&s->write_count, 1);
609
610 BUG_ON(folio_test_writeback(folio));
611 folio_start_writeback(folio);
612
613 folio_unlock(folio);
614
615 offset = 0;
616 while (1) {
617 unsigned sectors = 0, dirty_sectors = 0, reserved_sectors = 0;
618 u64 sector;
619
620 while (offset < f_sectors &&
621 w->tmp[offset].state < SECTOR_dirty)
622 offset++;
623
624 if (offset == f_sectors)
625 break;
626
627 while (offset + sectors < f_sectors &&
628 w->tmp[offset + sectors].state >= SECTOR_dirty) {
629 reserved_sectors += w->tmp[offset + sectors].replicas_reserved;
630 dirty_sectors += w->tmp[offset + sectors].state == SECTOR_dirty;
631 sectors++;
632 }
633 BUG_ON(!sectors);
634
635 sector = folio_sector(folio) + offset;
636
637 if (w->io &&
638 (w->io->op.res.nr_replicas != nr_replicas_this_write ||
639 bch_io_full(w->io, sectors << 9) ||
640 bio_end_sector(&w->io->op.wbio.bio) != sector))
641 bch2_writepage_do_io(w);
642
643 if (!w->io)
644 bch2_writepage_io_alloc(c, wbc, w, inode, sector,
645 nr_replicas_this_write);
646
647 atomic_inc(&s->write_count);
648
649 BUG_ON(inode != w->io->inode);
650 BUG_ON(!bio_add_folio(&w->io->op.wbio.bio, folio,
651 sectors << 9, offset << 9));
652
653 w->io->op.res.sectors += reserved_sectors;
654 w->io->op.i_sectors_delta -= dirty_sectors;
655 w->io->op.new_i_size = i_size;
656
657 offset += sectors;
658 }
659
660 if (atomic_dec_and_test(&s->write_count))
661 folio_end_writeback(folio);
662
663 return 0;
664 }
665
bch2_writepages(struct address_space * mapping,struct writeback_control * wbc)666 int bch2_writepages(struct address_space *mapping, struct writeback_control *wbc)
667 {
668 struct bch_fs *c = mapping->host->i_sb->s_fs_info;
669 struct bch_writepage_state w =
670 bch_writepage_state_init(c, to_bch_ei(mapping->host));
671 struct blk_plug plug;
672 int ret;
673
674 blk_start_plug(&plug);
675 ret = write_cache_pages(mapping, wbc, __bch2_writepage, &w);
676 if (w.io)
677 bch2_writepage_do_io(&w);
678 blk_finish_plug(&plug);
679 kfree(w.tmp);
680 return bch2_err_class(ret);
681 }
682
683 /* buffered writes: */
684
bch2_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,struct folio ** foliop,void ** fsdata)685 int bch2_write_begin(struct file *file, struct address_space *mapping,
686 loff_t pos, unsigned len,
687 struct folio **foliop, void **fsdata)
688 {
689 struct bch_inode_info *inode = to_bch_ei(mapping->host);
690 struct bch_fs *c = inode->v.i_sb->s_fs_info;
691 struct bch2_folio_reservation *res;
692 struct folio *folio;
693 unsigned offset;
694 int ret = -ENOMEM;
695
696 res = kmalloc(sizeof(*res), GFP_KERNEL);
697 if (!res)
698 return -ENOMEM;
699
700 bch2_folio_reservation_init(c, inode, res);
701 *fsdata = res;
702
703 bch2_pagecache_add_get(inode);
704
705 folio = __filemap_get_folio(mapping, pos >> PAGE_SHIFT,
706 FGP_WRITEBEGIN | fgf_set_order(len),
707 mapping_gfp_mask(mapping));
708 if (IS_ERR(folio))
709 goto err_unlock;
710
711 offset = pos - folio_pos(folio);
712 len = min_t(size_t, len, folio_end_pos(folio) - pos);
713
714 if (folio_test_uptodate(folio))
715 goto out;
716
717 /* If we're writing entire folio, don't need to read it in first: */
718 if (!offset && len == folio_size(folio))
719 goto out;
720
721 if (!offset && pos + len >= inode->v.i_size) {
722 folio_zero_segment(folio, len, folio_size(folio));
723 flush_dcache_folio(folio);
724 goto out;
725 }
726
727 if (folio_pos(folio) >= inode->v.i_size) {
728 folio_zero_segments(folio, 0, offset, offset + len, folio_size(folio));
729 flush_dcache_folio(folio);
730 goto out;
731 }
732 readpage:
733 ret = bch2_read_single_folio(folio, mapping);
734 if (ret)
735 goto err;
736 out:
737 ret = bch2_folio_set(c, inode_inum(inode), &folio, 1);
738 if (ret)
739 goto err;
740
741 ret = bch2_folio_reservation_get(c, inode, folio, res, offset, len);
742 if (ret) {
743 if (!folio_test_uptodate(folio)) {
744 /*
745 * If the folio hasn't been read in, we won't know if we
746 * actually need a reservation - we don't actually need
747 * to read here, we just need to check if the folio is
748 * fully backed by uncompressed data:
749 */
750 goto readpage;
751 }
752
753 goto err;
754 }
755
756 *foliop = folio;
757 return 0;
758 err:
759 folio_unlock(folio);
760 folio_put(folio);
761 err_unlock:
762 bch2_pagecache_add_put(inode);
763 kfree(res);
764 *fsdata = NULL;
765 return bch2_err_class(ret);
766 }
767
bch2_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct folio * folio,void * fsdata)768 int bch2_write_end(struct file *file, struct address_space *mapping,
769 loff_t pos, unsigned len, unsigned copied,
770 struct folio *folio, void *fsdata)
771 {
772 struct bch_inode_info *inode = to_bch_ei(mapping->host);
773 struct bch_fs *c = inode->v.i_sb->s_fs_info;
774 struct bch2_folio_reservation *res = fsdata;
775 unsigned offset = pos - folio_pos(folio);
776
777 lockdep_assert_held(&inode->v.i_rwsem);
778 BUG_ON(offset + copied > folio_size(folio));
779
780 if (unlikely(copied < len && !folio_test_uptodate(folio))) {
781 /*
782 * The folio needs to be read in, but that would destroy
783 * our partial write - simplest thing is to just force
784 * userspace to redo the write:
785 */
786 folio_zero_range(folio, 0, folio_size(folio));
787 flush_dcache_folio(folio);
788 copied = 0;
789 }
790
791 spin_lock(&inode->v.i_lock);
792 if (pos + copied > inode->v.i_size)
793 i_size_write(&inode->v, pos + copied);
794 spin_unlock(&inode->v.i_lock);
795
796 if (copied) {
797 if (!folio_test_uptodate(folio))
798 folio_mark_uptodate(folio);
799
800 bch2_set_folio_dirty(c, inode, folio, res, offset, copied);
801
802 inode->ei_last_dirtied = (unsigned long) current;
803 }
804
805 folio_unlock(folio);
806 folio_put(folio);
807 bch2_pagecache_add_put(inode);
808
809 bch2_folio_reservation_put(c, inode, res);
810 kfree(res);
811
812 return copied;
813 }
814
folios_trunc(folios * fs,struct folio ** fi)815 static noinline void folios_trunc(folios *fs, struct folio **fi)
816 {
817 while (fs->data + fs->nr > fi) {
818 struct folio *f = darray_pop(fs);
819
820 folio_unlock(f);
821 folio_put(f);
822 }
823 }
824
__bch2_buffered_write(struct bch_inode_info * inode,struct address_space * mapping,struct iov_iter * iter,loff_t pos,unsigned len)825 static int __bch2_buffered_write(struct bch_inode_info *inode,
826 struct address_space *mapping,
827 struct iov_iter *iter,
828 loff_t pos, unsigned len)
829 {
830 struct bch_fs *c = inode->v.i_sb->s_fs_info;
831 struct bch2_folio_reservation res;
832 folios fs;
833 struct folio *f;
834 unsigned copied = 0, f_offset, f_copied;
835 u64 end = pos + len, f_pos, f_len;
836 loff_t last_folio_pos = inode->v.i_size;
837 int ret = 0;
838
839 BUG_ON(!len);
840
841 bch2_folio_reservation_init(c, inode, &res);
842 darray_init(&fs);
843
844 ret = bch2_filemap_get_contig_folios_d(mapping, pos, end,
845 FGP_WRITEBEGIN | fgf_set_order(len),
846 mapping_gfp_mask(mapping), &fs);
847 if (ret)
848 goto out;
849
850 BUG_ON(!fs.nr);
851
852 f = darray_first(fs);
853 if (pos != folio_pos(f) && !folio_test_uptodate(f)) {
854 ret = bch2_read_single_folio(f, mapping);
855 if (ret)
856 goto out;
857 }
858
859 f = darray_last(fs);
860 end = min(end, folio_end_pos(f));
861 last_folio_pos = folio_pos(f);
862 if (end != folio_end_pos(f) && !folio_test_uptodate(f)) {
863 if (end >= inode->v.i_size) {
864 folio_zero_range(f, 0, folio_size(f));
865 } else {
866 ret = bch2_read_single_folio(f, mapping);
867 if (ret)
868 goto out;
869 }
870 }
871
872 ret = bch2_folio_set(c, inode_inum(inode), fs.data, fs.nr);
873 if (ret)
874 goto out;
875
876 f_pos = pos;
877 f_offset = pos - folio_pos(darray_first(fs));
878 darray_for_each(fs, fi) {
879 ssize_t f_reserved;
880
881 f = *fi;
882 f_len = min(end, folio_end_pos(f)) - f_pos;
883 f_reserved = bch2_folio_reservation_get_partial(c, inode, f, &res, f_offset, f_len);
884
885 if (unlikely(f_reserved != f_len)) {
886 if (f_reserved < 0) {
887 if (f == darray_first(fs)) {
888 ret = f_reserved;
889 goto out;
890 }
891
892 folios_trunc(&fs, fi);
893 end = min(end, folio_end_pos(darray_last(fs)));
894 } else {
895 if (!folio_test_uptodate(f)) {
896 ret = bch2_read_single_folio(f, mapping);
897 if (ret)
898 goto out;
899 }
900
901 folios_trunc(&fs, fi + 1);
902 end = f_pos + f_reserved;
903 }
904
905 break;
906 }
907
908 f_pos = folio_end_pos(f);
909 f_offset = 0;
910 }
911
912 if (mapping_writably_mapped(mapping))
913 darray_for_each(fs, fi)
914 flush_dcache_folio(*fi);
915
916 f_pos = pos;
917 f_offset = pos - folio_pos(darray_first(fs));
918 darray_for_each(fs, fi) {
919 f = *fi;
920 f_len = min(end, folio_end_pos(f)) - f_pos;
921 f_copied = copy_folio_from_iter_atomic(f, f_offset, f_len, iter);
922 if (!f_copied) {
923 folios_trunc(&fs, fi);
924 break;
925 }
926
927 if (!folio_test_uptodate(f) &&
928 f_copied != folio_size(f) &&
929 pos + copied + f_copied < inode->v.i_size) {
930 iov_iter_revert(iter, f_copied);
931 folio_zero_range(f, 0, folio_size(f));
932 folios_trunc(&fs, fi);
933 break;
934 }
935
936 flush_dcache_folio(f);
937 copied += f_copied;
938
939 if (f_copied != f_len) {
940 folios_trunc(&fs, fi + 1);
941 break;
942 }
943
944 f_pos = folio_end_pos(f);
945 f_offset = 0;
946 }
947
948 if (!copied)
949 goto out;
950
951 end = pos + copied;
952
953 spin_lock(&inode->v.i_lock);
954 if (end > inode->v.i_size)
955 i_size_write(&inode->v, end);
956 spin_unlock(&inode->v.i_lock);
957
958 f_pos = pos;
959 f_offset = pos - folio_pos(darray_first(fs));
960 darray_for_each(fs, fi) {
961 f = *fi;
962 f_len = min(end, folio_end_pos(f)) - f_pos;
963
964 if (!folio_test_uptodate(f))
965 folio_mark_uptodate(f);
966
967 bch2_set_folio_dirty(c, inode, f, &res, f_offset, f_len);
968
969 f_pos = folio_end_pos(f);
970 f_offset = 0;
971 }
972
973 inode->ei_last_dirtied = (unsigned long) current;
974 out:
975 darray_for_each(fs, fi) {
976 folio_unlock(*fi);
977 folio_put(*fi);
978 }
979
980 /*
981 * If the last folio added to the mapping starts beyond current EOF, we
982 * performed a short write but left around at least one post-EOF folio.
983 * Clean up the mapping before we return.
984 */
985 if (last_folio_pos >= inode->v.i_size)
986 truncate_pagecache(&inode->v, inode->v.i_size);
987
988 darray_exit(&fs);
989 bch2_folio_reservation_put(c, inode, &res);
990
991 return copied ?: ret;
992 }
993
bch2_buffered_write(struct kiocb * iocb,struct iov_iter * iter)994 static ssize_t bch2_buffered_write(struct kiocb *iocb, struct iov_iter *iter)
995 {
996 struct file *file = iocb->ki_filp;
997 struct address_space *mapping = file->f_mapping;
998 struct bch_inode_info *inode = file_bch_inode(file);
999 loff_t pos = iocb->ki_pos;
1000 ssize_t written = 0;
1001 int ret = 0;
1002
1003 bch2_pagecache_add_get(inode);
1004
1005 do {
1006 unsigned offset = pos & (PAGE_SIZE - 1);
1007 unsigned bytes = iov_iter_count(iter);
1008 again:
1009 /*
1010 * Bring in the user page that we will copy from _first_.
1011 * Otherwise there's a nasty deadlock on copying from the
1012 * same page as we're writing to, without it being marked
1013 * up-to-date.
1014 *
1015 * Not only is this an optimisation, but it is also required
1016 * to check that the address is actually valid, when atomic
1017 * usercopies are used, below.
1018 */
1019 if (unlikely(fault_in_iov_iter_readable(iter, bytes))) {
1020 bytes = min_t(unsigned long, iov_iter_count(iter),
1021 PAGE_SIZE - offset);
1022
1023 if (unlikely(fault_in_iov_iter_readable(iter, bytes))) {
1024 ret = -EFAULT;
1025 break;
1026 }
1027 }
1028
1029 if (unlikely(fatal_signal_pending(current))) {
1030 ret = -EINTR;
1031 break;
1032 }
1033
1034 ret = __bch2_buffered_write(inode, mapping, iter, pos, bytes);
1035 if (unlikely(ret < 0))
1036 break;
1037
1038 cond_resched();
1039
1040 if (unlikely(ret == 0)) {
1041 /*
1042 * If we were unable to copy any data at all, we must
1043 * fall back to a single segment length write.
1044 *
1045 * If we didn't fallback here, we could livelock
1046 * because not all segments in the iov can be copied at
1047 * once without a pagefault.
1048 */
1049 bytes = min_t(unsigned long, PAGE_SIZE - offset,
1050 iov_iter_single_seg_count(iter));
1051 goto again;
1052 }
1053 pos += ret;
1054 written += ret;
1055 ret = 0;
1056
1057 balance_dirty_pages_ratelimited(mapping);
1058 } while (iov_iter_count(iter));
1059
1060 bch2_pagecache_add_put(inode);
1061
1062 return written ? written : ret;
1063 }
1064
bch2_write_iter(struct kiocb * iocb,struct iov_iter * from)1065 ssize_t bch2_write_iter(struct kiocb *iocb, struct iov_iter *from)
1066 {
1067 struct file *file = iocb->ki_filp;
1068 struct bch_inode_info *inode = file_bch_inode(file);
1069 ssize_t ret;
1070
1071 if (iocb->ki_flags & IOCB_DIRECT) {
1072 ret = bch2_direct_write(iocb, from);
1073 goto out;
1074 }
1075
1076 inode_lock(&inode->v);
1077
1078 ret = generic_write_checks(iocb, from);
1079 if (ret <= 0)
1080 goto unlock;
1081
1082 ret = file_remove_privs(file);
1083 if (ret)
1084 goto unlock;
1085
1086 ret = file_update_time(file);
1087 if (ret)
1088 goto unlock;
1089
1090 ret = bch2_buffered_write(iocb, from);
1091 if (likely(ret > 0))
1092 iocb->ki_pos += ret;
1093 unlock:
1094 inode_unlock(&inode->v);
1095
1096 if (ret > 0)
1097 ret = generic_write_sync(iocb, ret);
1098 out:
1099 return bch2_err_class(ret);
1100 }
1101
bch2_fs_fs_io_buffered_exit(struct bch_fs * c)1102 void bch2_fs_fs_io_buffered_exit(struct bch_fs *c)
1103 {
1104 bioset_exit(&c->writepage_bioset);
1105 }
1106
bch2_fs_fs_io_buffered_init(struct bch_fs * c)1107 int bch2_fs_fs_io_buffered_init(struct bch_fs *c)
1108 {
1109 if (bioset_init(&c->writepage_bioset,
1110 4, offsetof(struct bch_writepage_io, op.wbio.bio),
1111 BIOSET_NEED_BVECS))
1112 return -BCH_ERR_ENOMEM_writepage_bioset_init;
1113
1114 return 0;
1115 }
1116
1117 #endif /* NO_BCACHEFS_FS */
1118