1 // SPDX-License-Identifier: GPL-2.0
2
3 /* erasure coding */
4
5 #include "bcachefs.h"
6 #include "alloc_background.h"
7 #include "alloc_foreground.h"
8 #include "backpointers.h"
9 #include "bkey_buf.h"
10 #include "bset.h"
11 #include "btree_gc.h"
12 #include "btree_update.h"
13 #include "btree_write_buffer.h"
14 #include "buckets.h"
15 #include "checksum.h"
16 #include "disk_accounting.h"
17 #include "disk_groups.h"
18 #include "ec.h"
19 #include "error.h"
20 #include "io_read.h"
21 #include "io_write.h"
22 #include "keylist.h"
23 #include "lru.h"
24 #include "recovery.h"
25 #include "replicas.h"
26 #include "super-io.h"
27 #include "util.h"
28
29 #include <linux/sort.h>
30 #include <linux/string_choices.h>
31
32 #ifdef __KERNEL__
33
34 #include <linux/raid/pq.h>
35 #include <linux/raid/xor.h>
36
raid5_recov(unsigned disks,unsigned failed_idx,size_t size,void ** data)37 static void raid5_recov(unsigned disks, unsigned failed_idx,
38 size_t size, void **data)
39 {
40 unsigned i = 2, nr;
41
42 BUG_ON(failed_idx >= disks);
43
44 swap(data[0], data[failed_idx]);
45 memcpy(data[0], data[1], size);
46
47 while (i < disks) {
48 nr = min_t(unsigned, disks - i, MAX_XOR_BLOCKS);
49 xor_blocks(nr, size, data[0], data + i);
50 i += nr;
51 }
52
53 swap(data[0], data[failed_idx]);
54 }
55
raid_gen(int nd,int np,size_t size,void ** v)56 static void raid_gen(int nd, int np, size_t size, void **v)
57 {
58 if (np >= 1)
59 raid5_recov(nd + np, nd, size, v);
60 if (np >= 2)
61 raid6_call.gen_syndrome(nd + np, size, v);
62 BUG_ON(np > 2);
63 }
64
raid_rec(int nr,int * ir,int nd,int np,size_t size,void ** v)65 static void raid_rec(int nr, int *ir, int nd, int np, size_t size, void **v)
66 {
67 switch (nr) {
68 case 0:
69 break;
70 case 1:
71 if (ir[0] < nd + 1)
72 raid5_recov(nd + 1, ir[0], size, v);
73 else
74 raid6_call.gen_syndrome(nd + np, size, v);
75 break;
76 case 2:
77 if (ir[1] < nd) {
78 /* data+data failure. */
79 raid6_2data_recov(nd + np, size, ir[0], ir[1], v);
80 } else if (ir[0] < nd) {
81 /* data + p/q failure */
82
83 if (ir[1] == nd) /* data + p failure */
84 raid6_datap_recov(nd + np, size, ir[0], v);
85 else { /* data + q failure */
86 raid5_recov(nd + 1, ir[0], size, v);
87 raid6_call.gen_syndrome(nd + np, size, v);
88 }
89 } else {
90 raid_gen(nd, np, size, v);
91 }
92 break;
93 default:
94 BUG();
95 }
96 }
97
98 #else
99
100 #include <raid/raid.h>
101
102 #endif
103
104 struct ec_bio {
105 struct bch_dev *ca;
106 struct ec_stripe_buf *buf;
107 size_t idx;
108 int rw;
109 u64 submit_time;
110 struct bio bio;
111 };
112
113 /* Stripes btree keys: */
114
bch2_stripe_validate(struct bch_fs * c,struct bkey_s_c k,struct bkey_validate_context from)115 int bch2_stripe_validate(struct bch_fs *c, struct bkey_s_c k,
116 struct bkey_validate_context from)
117 {
118 const struct bch_stripe *s = bkey_s_c_to_stripe(k).v;
119 int ret = 0;
120
121 bkey_fsck_err_on(bkey_eq(k.k->p, POS_MIN) ||
122 bpos_gt(k.k->p, POS(0, U32_MAX)),
123 c, stripe_pos_bad,
124 "stripe at bad pos");
125
126 bkey_fsck_err_on(bkey_val_u64s(k.k) < stripe_val_u64s(s),
127 c, stripe_val_size_bad,
128 "incorrect value size (%zu < %u)",
129 bkey_val_u64s(k.k), stripe_val_u64s(s));
130
131 bkey_fsck_err_on(s->csum_granularity_bits >= 64,
132 c, stripe_csum_granularity_bad,
133 "invalid csum granularity (%u >= 64)",
134 s->csum_granularity_bits);
135
136 ret = bch2_bkey_ptrs_validate(c, k, from);
137 fsck_err:
138 return ret;
139 }
140
bch2_stripe_to_text(struct printbuf * out,struct bch_fs * c,struct bkey_s_c k)141 void bch2_stripe_to_text(struct printbuf *out, struct bch_fs *c,
142 struct bkey_s_c k)
143 {
144 const struct bch_stripe *sp = bkey_s_c_to_stripe(k).v;
145 struct bch_stripe s = {};
146
147 memcpy(&s, sp, min(sizeof(s), bkey_val_bytes(k.k)));
148
149 unsigned nr_data = s.nr_blocks - s.nr_redundant;
150
151 prt_printf(out, "algo %u sectors %u blocks %u:%u csum ",
152 s.algorithm,
153 le16_to_cpu(s.sectors),
154 nr_data,
155 s.nr_redundant);
156 bch2_prt_csum_type(out, s.csum_type);
157 prt_str(out, " gran ");
158 if (s.csum_granularity_bits < 64)
159 prt_printf(out, "%llu", 1ULL << s.csum_granularity_bits);
160 else
161 prt_printf(out, "(invalid shift %u)", s.csum_granularity_bits);
162
163 if (s.disk_label) {
164 prt_str(out, " label");
165 bch2_disk_path_to_text(out, c, s.disk_label - 1);
166 }
167
168 for (unsigned i = 0; i < s.nr_blocks; i++) {
169 const struct bch_extent_ptr *ptr = sp->ptrs + i;
170
171 if ((void *) ptr >= bkey_val_end(k))
172 break;
173
174 prt_char(out, ' ');
175 bch2_extent_ptr_to_text(out, c, ptr);
176
177 if (s.csum_type < BCH_CSUM_NR &&
178 i < nr_data &&
179 stripe_blockcount_offset(&s, i) < bkey_val_bytes(k.k))
180 prt_printf(out, "#%u", stripe_blockcount_get(sp, i));
181 }
182 }
183
184 /* Triggers: */
185
__mark_stripe_bucket(struct btree_trans * trans,struct bch_dev * ca,struct bkey_s_c_stripe s,unsigned ptr_idx,bool deleting,struct bpos bucket,struct bch_alloc_v4 * a,enum btree_iter_update_trigger_flags flags)186 static int __mark_stripe_bucket(struct btree_trans *trans,
187 struct bch_dev *ca,
188 struct bkey_s_c_stripe s,
189 unsigned ptr_idx, bool deleting,
190 struct bpos bucket,
191 struct bch_alloc_v4 *a,
192 enum btree_iter_update_trigger_flags flags)
193 {
194 const struct bch_extent_ptr *ptr = s.v->ptrs + ptr_idx;
195 unsigned nr_data = s.v->nr_blocks - s.v->nr_redundant;
196 bool parity = ptr_idx >= nr_data;
197 enum bch_data_type data_type = parity ? BCH_DATA_parity : BCH_DATA_stripe;
198 s64 sectors = parity ? le16_to_cpu(s.v->sectors) : 0;
199 struct printbuf buf = PRINTBUF;
200 int ret = 0;
201
202 struct bch_fs *c = trans->c;
203 if (deleting)
204 sectors = -sectors;
205
206 if (!deleting) {
207 if (bch2_trans_inconsistent_on(a->stripe ||
208 a->stripe_redundancy, trans,
209 "bucket %llu:%llu gen %u data type %s dirty_sectors %u: multiple stripes using same bucket (%u, %llu)\n%s",
210 bucket.inode, bucket.offset, a->gen,
211 bch2_data_type_str(a->data_type),
212 a->dirty_sectors,
213 a->stripe, s.k->p.offset,
214 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) {
215 ret = -BCH_ERR_mark_stripe;
216 goto err;
217 }
218
219 if (bch2_trans_inconsistent_on(parity && bch2_bucket_sectors_total(*a), trans,
220 "bucket %llu:%llu gen %u data type %s dirty_sectors %u cached_sectors %u: data already in parity bucket\n%s",
221 bucket.inode, bucket.offset, a->gen,
222 bch2_data_type_str(a->data_type),
223 a->dirty_sectors,
224 a->cached_sectors,
225 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) {
226 ret = -BCH_ERR_mark_stripe;
227 goto err;
228 }
229 } else {
230 if (bch2_trans_inconsistent_on(a->stripe != s.k->p.offset ||
231 a->stripe_redundancy != s.v->nr_redundant, trans,
232 "bucket %llu:%llu gen %u: not marked as stripe when deleting stripe (got %u)\n%s",
233 bucket.inode, bucket.offset, a->gen,
234 a->stripe,
235 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) {
236 ret = -BCH_ERR_mark_stripe;
237 goto err;
238 }
239
240 if (bch2_trans_inconsistent_on(a->data_type != data_type, trans,
241 "bucket %llu:%llu gen %u data type %s: wrong data type when stripe, should be %s\n%s",
242 bucket.inode, bucket.offset, a->gen,
243 bch2_data_type_str(a->data_type),
244 bch2_data_type_str(data_type),
245 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) {
246 ret = -BCH_ERR_mark_stripe;
247 goto err;
248 }
249
250 if (bch2_trans_inconsistent_on(parity &&
251 (a->dirty_sectors != -sectors ||
252 a->cached_sectors), trans,
253 "bucket %llu:%llu gen %u dirty_sectors %u cached_sectors %u: wrong sectors when deleting parity block of stripe\n%s",
254 bucket.inode, bucket.offset, a->gen,
255 a->dirty_sectors,
256 a->cached_sectors,
257 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) {
258 ret = -BCH_ERR_mark_stripe;
259 goto err;
260 }
261 }
262
263 if (sectors) {
264 ret = bch2_bucket_ref_update(trans, ca, s.s_c, ptr, sectors, data_type,
265 a->gen, a->data_type, &a->dirty_sectors);
266 if (ret)
267 goto err;
268 }
269
270 if (!deleting) {
271 a->stripe = s.k->p.offset;
272 a->stripe_redundancy = s.v->nr_redundant;
273 alloc_data_type_set(a, data_type);
274 } else {
275 a->stripe = 0;
276 a->stripe_redundancy = 0;
277 alloc_data_type_set(a, BCH_DATA_user);
278 }
279 err:
280 printbuf_exit(&buf);
281 return ret;
282 }
283
mark_stripe_bucket(struct btree_trans * trans,struct bkey_s_c_stripe s,unsigned ptr_idx,bool deleting,enum btree_iter_update_trigger_flags flags)284 static int mark_stripe_bucket(struct btree_trans *trans,
285 struct bkey_s_c_stripe s,
286 unsigned ptr_idx, bool deleting,
287 enum btree_iter_update_trigger_flags flags)
288 {
289 struct bch_fs *c = trans->c;
290 const struct bch_extent_ptr *ptr = s.v->ptrs + ptr_idx;
291 struct printbuf buf = PRINTBUF;
292 int ret = 0;
293
294 struct bch_dev *ca = bch2_dev_tryget(c, ptr->dev);
295 if (unlikely(!ca)) {
296 if (ptr->dev != BCH_SB_MEMBER_INVALID && !(flags & BTREE_TRIGGER_overwrite))
297 ret = -BCH_ERR_mark_stripe;
298 goto err;
299 }
300
301 struct bpos bucket = PTR_BUCKET_POS(ca, ptr);
302
303 if (flags & BTREE_TRIGGER_transactional) {
304 struct extent_ptr_decoded p = {
305 .ptr = *ptr,
306 .crc = bch2_extent_crc_unpack(s.k, NULL),
307 };
308 struct bkey_i_backpointer bp;
309 bch2_extent_ptr_to_bp(c, BTREE_ID_stripes, 0, s.s_c, p,
310 (const union bch_extent_entry *) ptr, &bp);
311
312 struct bkey_i_alloc_v4 *a =
313 bch2_trans_start_alloc_update(trans, bucket, 0);
314 ret = PTR_ERR_OR_ZERO(a) ?:
315 __mark_stripe_bucket(trans, ca, s, ptr_idx, deleting, bucket, &a->v, flags) ?:
316 bch2_bucket_backpointer_mod(trans, s.s_c, &bp,
317 !(flags & BTREE_TRIGGER_overwrite));
318 if (ret)
319 goto err;
320 }
321
322 if (flags & BTREE_TRIGGER_gc) {
323 struct bucket *g = gc_bucket(ca, bucket.offset);
324 if (bch2_fs_inconsistent_on(!g, c, "reference to invalid bucket on device %u\n%s",
325 ptr->dev,
326 (bch2_bkey_val_to_text(&buf, c, s.s_c), buf.buf))) {
327 ret = -BCH_ERR_mark_stripe;
328 goto err;
329 }
330
331 bucket_lock(g);
332 struct bch_alloc_v4 old = bucket_m_to_alloc(*g), new = old;
333 ret = __mark_stripe_bucket(trans, ca, s, ptr_idx, deleting, bucket, &new, flags);
334 alloc_to_bucket(g, new);
335 bucket_unlock(g);
336
337 if (!ret)
338 ret = bch2_alloc_key_to_dev_counters(trans, ca, &old, &new, flags);
339 }
340 err:
341 bch2_dev_put(ca);
342 printbuf_exit(&buf);
343 return ret;
344 }
345
mark_stripe_buckets(struct btree_trans * trans,struct bkey_s_c old,struct bkey_s_c new,enum btree_iter_update_trigger_flags flags)346 static int mark_stripe_buckets(struct btree_trans *trans,
347 struct bkey_s_c old, struct bkey_s_c new,
348 enum btree_iter_update_trigger_flags flags)
349 {
350 const struct bch_stripe *old_s = old.k->type == KEY_TYPE_stripe
351 ? bkey_s_c_to_stripe(old).v : NULL;
352 const struct bch_stripe *new_s = new.k->type == KEY_TYPE_stripe
353 ? bkey_s_c_to_stripe(new).v : NULL;
354
355 BUG_ON(old_s && new_s && old_s->nr_blocks != new_s->nr_blocks);
356
357 unsigned nr_blocks = new_s ? new_s->nr_blocks : old_s->nr_blocks;
358
359 for (unsigned i = 0; i < nr_blocks; i++) {
360 if (new_s && old_s &&
361 !memcmp(&new_s->ptrs[i],
362 &old_s->ptrs[i],
363 sizeof(new_s->ptrs[i])))
364 continue;
365
366 if (new_s) {
367 int ret = mark_stripe_bucket(trans,
368 bkey_s_c_to_stripe(new), i, false, flags);
369 if (ret)
370 return ret;
371 }
372
373 if (old_s) {
374 int ret = mark_stripe_bucket(trans,
375 bkey_s_c_to_stripe(old), i, true, flags);
376 if (ret)
377 return ret;
378 }
379 }
380
381 return 0;
382 }
383
bch2_trigger_stripe(struct btree_trans * trans,enum btree_id btree,unsigned level,struct bkey_s_c old,struct bkey_s _new,enum btree_iter_update_trigger_flags flags)384 int bch2_trigger_stripe(struct btree_trans *trans,
385 enum btree_id btree, unsigned level,
386 struct bkey_s_c old, struct bkey_s _new,
387 enum btree_iter_update_trigger_flags flags)
388 {
389 struct bkey_s_c new = _new.s_c;
390 struct bch_fs *c = trans->c;
391 u64 idx = new.k->p.offset;
392 const struct bch_stripe *old_s = old.k->type == KEY_TYPE_stripe
393 ? bkey_s_c_to_stripe(old).v : NULL;
394 const struct bch_stripe *new_s = new.k->type == KEY_TYPE_stripe
395 ? bkey_s_c_to_stripe(new).v : NULL;
396
397 if (unlikely(flags & BTREE_TRIGGER_check_repair))
398 return bch2_check_fix_ptrs(trans, btree, level, _new.s_c, flags);
399
400 BUG_ON(new_s && old_s &&
401 (new_s->nr_blocks != old_s->nr_blocks ||
402 new_s->nr_redundant != old_s->nr_redundant));
403
404 if (flags & BTREE_TRIGGER_transactional) {
405 int ret = bch2_lru_change(trans,
406 BCH_LRU_STRIPE_FRAGMENTATION,
407 idx,
408 stripe_lru_pos(old_s),
409 stripe_lru_pos(new_s));
410 if (ret)
411 return ret;
412 }
413
414 if (flags & (BTREE_TRIGGER_transactional|BTREE_TRIGGER_gc)) {
415 /*
416 * If the pointers aren't changing, we don't need to do anything:
417 */
418 if (new_s && old_s &&
419 new_s->nr_blocks == old_s->nr_blocks &&
420 new_s->nr_redundant == old_s->nr_redundant &&
421 !memcmp(old_s->ptrs, new_s->ptrs,
422 new_s->nr_blocks * sizeof(struct bch_extent_ptr)))
423 return 0;
424
425 struct gc_stripe *gc = NULL;
426 if (flags & BTREE_TRIGGER_gc) {
427 gc = genradix_ptr_alloc(&c->gc_stripes, idx, GFP_KERNEL);
428 if (!gc) {
429 bch_err(c, "error allocating memory for gc_stripes, idx %llu", idx);
430 return -BCH_ERR_ENOMEM_mark_stripe;
431 }
432
433 /*
434 * This will be wrong when we bring back runtime gc: we should
435 * be unmarking the old key and then marking the new key
436 *
437 * Also: when we bring back runtime gc, locking
438 */
439 gc->alive = true;
440 gc->sectors = le16_to_cpu(new_s->sectors);
441 gc->nr_blocks = new_s->nr_blocks;
442 gc->nr_redundant = new_s->nr_redundant;
443
444 for (unsigned i = 0; i < new_s->nr_blocks; i++)
445 gc->ptrs[i] = new_s->ptrs[i];
446
447 /*
448 * gc recalculates this field from stripe ptr
449 * references:
450 */
451 memset(gc->block_sectors, 0, sizeof(gc->block_sectors));
452 }
453
454 if (new_s) {
455 s64 sectors = (u64) le16_to_cpu(new_s->sectors) * new_s->nr_redundant;
456
457 struct disk_accounting_pos acc;
458 memset(&acc, 0, sizeof(acc));
459 acc.type = BCH_DISK_ACCOUNTING_replicas;
460 bch2_bkey_to_replicas(&acc.replicas, new);
461 int ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, gc);
462 if (ret)
463 return ret;
464
465 if (gc)
466 unsafe_memcpy(&gc->r.e, &acc.replicas,
467 replicas_entry_bytes(&acc.replicas), "VLA");
468 }
469
470 if (old_s) {
471 s64 sectors = -((s64) le16_to_cpu(old_s->sectors)) * old_s->nr_redundant;
472
473 struct disk_accounting_pos acc;
474 memset(&acc, 0, sizeof(acc));
475 acc.type = BCH_DISK_ACCOUNTING_replicas;
476 bch2_bkey_to_replicas(&acc.replicas, old);
477 int ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, gc);
478 if (ret)
479 return ret;
480 }
481
482 int ret = mark_stripe_buckets(trans, old, new, flags);
483 if (ret)
484 return ret;
485 }
486
487 return 0;
488 }
489
490 /* returns blocknr in stripe that we matched: */
bkey_matches_stripe(struct bch_stripe * s,struct bkey_s_c k,unsigned * block)491 static const struct bch_extent_ptr *bkey_matches_stripe(struct bch_stripe *s,
492 struct bkey_s_c k, unsigned *block)
493 {
494 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
495 unsigned i, nr_data = s->nr_blocks - s->nr_redundant;
496
497 bkey_for_each_ptr(ptrs, ptr)
498 for (i = 0; i < nr_data; i++)
499 if (__bch2_ptr_matches_stripe(&s->ptrs[i], ptr,
500 le16_to_cpu(s->sectors))) {
501 *block = i;
502 return ptr;
503 }
504
505 return NULL;
506 }
507
extent_has_stripe_ptr(struct bkey_s_c k,u64 idx)508 static bool extent_has_stripe_ptr(struct bkey_s_c k, u64 idx)
509 {
510 struct bkey_ptrs_c ptrs = bch2_bkey_ptrs_c(k);
511 const union bch_extent_entry *entry;
512
513 bkey_extent_entry_for_each(ptrs, entry)
514 if (extent_entry_type(entry) ==
515 BCH_EXTENT_ENTRY_stripe_ptr &&
516 entry->stripe_ptr.idx == idx)
517 return true;
518
519 return false;
520 }
521
522 /* Stripe bufs: */
523
ec_stripe_buf_exit(struct ec_stripe_buf * buf)524 static void ec_stripe_buf_exit(struct ec_stripe_buf *buf)
525 {
526 if (buf->key.k.type == KEY_TYPE_stripe) {
527 struct bkey_i_stripe *s = bkey_i_to_stripe(&buf->key);
528 unsigned i;
529
530 for (i = 0; i < s->v.nr_blocks; i++) {
531 kvfree(buf->data[i]);
532 buf->data[i] = NULL;
533 }
534 }
535 }
536
537 /* XXX: this is a non-mempoolified memory allocation: */
ec_stripe_buf_init(struct ec_stripe_buf * buf,unsigned offset,unsigned size)538 static int ec_stripe_buf_init(struct ec_stripe_buf *buf,
539 unsigned offset, unsigned size)
540 {
541 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v;
542 unsigned csum_granularity = 1U << v->csum_granularity_bits;
543 unsigned end = offset + size;
544 unsigned i;
545
546 BUG_ON(end > le16_to_cpu(v->sectors));
547
548 offset = round_down(offset, csum_granularity);
549 end = min_t(unsigned, le16_to_cpu(v->sectors),
550 round_up(end, csum_granularity));
551
552 buf->offset = offset;
553 buf->size = end - offset;
554
555 memset(buf->valid, 0xFF, sizeof(buf->valid));
556
557 for (i = 0; i < v->nr_blocks; i++) {
558 buf->data[i] = kvmalloc(buf->size << 9, GFP_KERNEL);
559 if (!buf->data[i])
560 goto err;
561 }
562
563 return 0;
564 err:
565 ec_stripe_buf_exit(buf);
566 return -BCH_ERR_ENOMEM_stripe_buf;
567 }
568
569 /* Checksumming: */
570
ec_block_checksum(struct ec_stripe_buf * buf,unsigned block,unsigned offset)571 static struct bch_csum ec_block_checksum(struct ec_stripe_buf *buf,
572 unsigned block, unsigned offset)
573 {
574 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v;
575 unsigned csum_granularity = 1 << v->csum_granularity_bits;
576 unsigned end = buf->offset + buf->size;
577 unsigned len = min(csum_granularity, end - offset);
578
579 BUG_ON(offset >= end);
580 BUG_ON(offset < buf->offset);
581 BUG_ON(offset & (csum_granularity - 1));
582 BUG_ON(offset + len != le16_to_cpu(v->sectors) &&
583 (len & (csum_granularity - 1)));
584
585 return bch2_checksum(NULL, v->csum_type,
586 null_nonce(),
587 buf->data[block] + ((offset - buf->offset) << 9),
588 len << 9);
589 }
590
ec_generate_checksums(struct ec_stripe_buf * buf)591 static void ec_generate_checksums(struct ec_stripe_buf *buf)
592 {
593 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v;
594 unsigned i, j, csums_per_device = stripe_csums_per_device(v);
595
596 if (!v->csum_type)
597 return;
598
599 BUG_ON(buf->offset);
600 BUG_ON(buf->size != le16_to_cpu(v->sectors));
601
602 for (i = 0; i < v->nr_blocks; i++)
603 for (j = 0; j < csums_per_device; j++)
604 stripe_csum_set(v, i, j,
605 ec_block_checksum(buf, i, j << v->csum_granularity_bits));
606 }
607
ec_validate_checksums(struct bch_fs * c,struct ec_stripe_buf * buf)608 static void ec_validate_checksums(struct bch_fs *c, struct ec_stripe_buf *buf)
609 {
610 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v;
611 unsigned csum_granularity = 1 << v->csum_granularity_bits;
612 unsigned i;
613
614 if (!v->csum_type)
615 return;
616
617 for (i = 0; i < v->nr_blocks; i++) {
618 unsigned offset = buf->offset;
619 unsigned end = buf->offset + buf->size;
620
621 if (!test_bit(i, buf->valid))
622 continue;
623
624 while (offset < end) {
625 unsigned j = offset >> v->csum_granularity_bits;
626 unsigned len = min(csum_granularity, end - offset);
627 struct bch_csum want = stripe_csum_get(v, i, j);
628 struct bch_csum got = ec_block_checksum(buf, i, offset);
629
630 if (bch2_crc_cmp(want, got)) {
631 struct bch_dev *ca = bch2_dev_tryget(c, v->ptrs[i].dev);
632 if (ca) {
633 struct printbuf err = PRINTBUF;
634
635 prt_str(&err, "stripe ");
636 bch2_csum_err_msg(&err, v->csum_type, want, got);
637 prt_printf(&err, " for %ps at %u of\n ", (void *) _RET_IP_, i);
638 bch2_bkey_val_to_text(&err, c, bkey_i_to_s_c(&buf->key));
639 bch_err_ratelimited(ca, "%s", err.buf);
640 printbuf_exit(&err);
641
642 bch2_io_error(ca, BCH_MEMBER_ERROR_checksum);
643 }
644
645 clear_bit(i, buf->valid);
646 break;
647 }
648
649 offset += len;
650 }
651 }
652 }
653
654 /* Erasure coding: */
655
ec_generate_ec(struct ec_stripe_buf * buf)656 static void ec_generate_ec(struct ec_stripe_buf *buf)
657 {
658 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v;
659 unsigned nr_data = v->nr_blocks - v->nr_redundant;
660 unsigned bytes = le16_to_cpu(v->sectors) << 9;
661
662 raid_gen(nr_data, v->nr_redundant, bytes, buf->data);
663 }
664
ec_nr_failed(struct ec_stripe_buf * buf)665 static unsigned ec_nr_failed(struct ec_stripe_buf *buf)
666 {
667 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v;
668
669 return v->nr_blocks - bitmap_weight(buf->valid, v->nr_blocks);
670 }
671
ec_do_recov(struct bch_fs * c,struct ec_stripe_buf * buf)672 static int ec_do_recov(struct bch_fs *c, struct ec_stripe_buf *buf)
673 {
674 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v;
675 unsigned i, failed[BCH_BKEY_PTRS_MAX], nr_failed = 0;
676 unsigned nr_data = v->nr_blocks - v->nr_redundant;
677 unsigned bytes = buf->size << 9;
678
679 if (ec_nr_failed(buf) > v->nr_redundant) {
680 bch_err_ratelimited(c,
681 "error doing reconstruct read: unable to read enough blocks");
682 return -1;
683 }
684
685 for (i = 0; i < nr_data; i++)
686 if (!test_bit(i, buf->valid))
687 failed[nr_failed++] = i;
688
689 raid_rec(nr_failed, failed, nr_data, v->nr_redundant, bytes, buf->data);
690 return 0;
691 }
692
693 /* IO: */
694
ec_block_endio(struct bio * bio)695 static void ec_block_endio(struct bio *bio)
696 {
697 struct ec_bio *ec_bio = container_of(bio, struct ec_bio, bio);
698 struct bch_stripe *v = &bkey_i_to_stripe(&ec_bio->buf->key)->v;
699 struct bch_extent_ptr *ptr = &v->ptrs[ec_bio->idx];
700 struct bch_dev *ca = ec_bio->ca;
701 struct closure *cl = bio->bi_private;
702 int rw = ec_bio->rw;
703
704 bch2_account_io_completion(ca, bio_data_dir(bio),
705 ec_bio->submit_time, !bio->bi_status);
706
707 if (bio->bi_status) {
708 bch_err_dev_ratelimited(ca, "erasure coding %s error: %s",
709 str_write_read(bio_data_dir(bio)),
710 bch2_blk_status_to_str(bio->bi_status));
711 clear_bit(ec_bio->idx, ec_bio->buf->valid);
712 }
713
714 int stale = dev_ptr_stale(ca, ptr);
715 if (stale) {
716 bch_err_ratelimited(ca->fs,
717 "error %s stripe: stale/invalid pointer (%i) after io",
718 bio_data_dir(bio) == READ ? "reading from" : "writing to",
719 stale);
720 clear_bit(ec_bio->idx, ec_bio->buf->valid);
721 }
722
723 bio_put(&ec_bio->bio);
724 percpu_ref_put(&ca->io_ref[rw]);
725 closure_put(cl);
726 }
727
ec_block_io(struct bch_fs * c,struct ec_stripe_buf * buf,blk_opf_t opf,unsigned idx,struct closure * cl)728 static void ec_block_io(struct bch_fs *c, struct ec_stripe_buf *buf,
729 blk_opf_t opf, unsigned idx, struct closure *cl)
730 {
731 struct bch_stripe *v = &bkey_i_to_stripe(&buf->key)->v;
732 unsigned offset = 0, bytes = buf->size << 9;
733 struct bch_extent_ptr *ptr = &v->ptrs[idx];
734 enum bch_data_type data_type = idx < v->nr_blocks - v->nr_redundant
735 ? BCH_DATA_user
736 : BCH_DATA_parity;
737 int rw = op_is_write(opf);
738
739 struct bch_dev *ca = bch2_dev_get_ioref(c, ptr->dev, rw);
740 if (!ca) {
741 clear_bit(idx, buf->valid);
742 return;
743 }
744
745 int stale = dev_ptr_stale(ca, ptr);
746 if (stale) {
747 bch_err_ratelimited(c,
748 "error %s stripe: stale pointer (%i)",
749 rw == READ ? "reading from" : "writing to",
750 stale);
751 clear_bit(idx, buf->valid);
752 return;
753 }
754
755
756 this_cpu_add(ca->io_done->sectors[rw][data_type], buf->size);
757
758 while (offset < bytes) {
759 unsigned nr_iovecs = min_t(size_t, BIO_MAX_VECS,
760 DIV_ROUND_UP(bytes, PAGE_SIZE));
761 unsigned b = min_t(size_t, bytes - offset,
762 nr_iovecs << PAGE_SHIFT);
763 struct ec_bio *ec_bio;
764
765 ec_bio = container_of(bio_alloc_bioset(ca->disk_sb.bdev,
766 nr_iovecs,
767 opf,
768 GFP_KERNEL,
769 &c->ec_bioset),
770 struct ec_bio, bio);
771
772 ec_bio->ca = ca;
773 ec_bio->buf = buf;
774 ec_bio->idx = idx;
775 ec_bio->rw = rw;
776 ec_bio->submit_time = local_clock();
777
778 ec_bio->bio.bi_iter.bi_sector = ptr->offset + buf->offset + (offset >> 9);
779 ec_bio->bio.bi_end_io = ec_block_endio;
780 ec_bio->bio.bi_private = cl;
781
782 bch2_bio_map(&ec_bio->bio, buf->data[idx] + offset, b);
783
784 closure_get(cl);
785 percpu_ref_get(&ca->io_ref[rw]);
786
787 submit_bio(&ec_bio->bio);
788
789 offset += b;
790 }
791
792 percpu_ref_put(&ca->io_ref[rw]);
793 }
794
get_stripe_key_trans(struct btree_trans * trans,u64 idx,struct ec_stripe_buf * stripe)795 static int get_stripe_key_trans(struct btree_trans *trans, u64 idx,
796 struct ec_stripe_buf *stripe)
797 {
798 struct btree_iter iter;
799 struct bkey_s_c k;
800 int ret;
801
802 k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_stripes,
803 POS(0, idx), BTREE_ITER_slots);
804 ret = bkey_err(k);
805 if (ret)
806 goto err;
807 if (k.k->type != KEY_TYPE_stripe) {
808 ret = -ENOENT;
809 goto err;
810 }
811 bkey_reassemble(&stripe->key, k);
812 err:
813 bch2_trans_iter_exit(trans, &iter);
814 return ret;
815 }
816
817 /* recovery read path: */
bch2_ec_read_extent(struct btree_trans * trans,struct bch_read_bio * rbio,struct bkey_s_c orig_k)818 int bch2_ec_read_extent(struct btree_trans *trans, struct bch_read_bio *rbio,
819 struct bkey_s_c orig_k)
820 {
821 struct bch_fs *c = trans->c;
822 struct ec_stripe_buf *buf = NULL;
823 struct closure cl;
824 struct bch_stripe *v;
825 unsigned i, offset;
826 const char *msg = NULL;
827 struct printbuf msgbuf = PRINTBUF;
828 int ret = 0;
829
830 closure_init_stack(&cl);
831
832 BUG_ON(!rbio->pick.has_ec);
833
834 buf = kzalloc(sizeof(*buf), GFP_NOFS);
835 if (!buf)
836 return -BCH_ERR_ENOMEM_ec_read_extent;
837
838 ret = lockrestart_do(trans, get_stripe_key_trans(trans, rbio->pick.ec.idx, buf));
839 if (ret) {
840 msg = "stripe not found";
841 goto err;
842 }
843
844 v = &bkey_i_to_stripe(&buf->key)->v;
845
846 if (!bch2_ptr_matches_stripe(v, rbio->pick)) {
847 msg = "pointer doesn't match stripe";
848 goto err;
849 }
850
851 offset = rbio->bio.bi_iter.bi_sector - v->ptrs[rbio->pick.ec.block].offset;
852 if (offset + bio_sectors(&rbio->bio) > le16_to_cpu(v->sectors)) {
853 msg = "read is bigger than stripe";
854 goto err;
855 }
856
857 ret = ec_stripe_buf_init(buf, offset, bio_sectors(&rbio->bio));
858 if (ret) {
859 msg = "-ENOMEM";
860 goto err;
861 }
862
863 for (i = 0; i < v->nr_blocks; i++)
864 ec_block_io(c, buf, REQ_OP_READ, i, &cl);
865
866 closure_sync(&cl);
867
868 if (ec_nr_failed(buf) > v->nr_redundant) {
869 msg = "unable to read enough blocks";
870 goto err;
871 }
872
873 ec_validate_checksums(c, buf);
874
875 ret = ec_do_recov(c, buf);
876 if (ret)
877 goto err;
878
879 memcpy_to_bio(&rbio->bio, rbio->bio.bi_iter,
880 buf->data[rbio->pick.ec.block] + ((offset - buf->offset) << 9));
881 out:
882 ec_stripe_buf_exit(buf);
883 kfree(buf);
884 return ret;
885 err:
886 bch2_bkey_val_to_text(&msgbuf, c, orig_k);
887 bch_err_ratelimited(c,
888 "error doing reconstruct read: %s\n %s", msg, msgbuf.buf);
889 printbuf_exit(&msgbuf);
890 ret = -BCH_ERR_stripe_reconstruct;
891 goto out;
892 }
893
894 /* stripe bucket accounting: */
895
__ec_stripe_mem_alloc(struct bch_fs * c,size_t idx,gfp_t gfp)896 static int __ec_stripe_mem_alloc(struct bch_fs *c, size_t idx, gfp_t gfp)
897 {
898 if (c->gc_pos.phase != GC_PHASE_not_running &&
899 !genradix_ptr_alloc(&c->gc_stripes, idx, gfp))
900 return -BCH_ERR_ENOMEM_ec_stripe_mem_alloc;
901
902 return 0;
903 }
904
ec_stripe_mem_alloc(struct btree_trans * trans,struct btree_iter * iter)905 static int ec_stripe_mem_alloc(struct btree_trans *trans,
906 struct btree_iter *iter)
907 {
908 return allocate_dropping_locks_errcode(trans,
909 __ec_stripe_mem_alloc(trans->c, iter->pos.offset, _gfp));
910 }
911
912 /*
913 * Hash table of open stripes:
914 * Stripes that are being created or modified are kept in a hash table, so that
915 * stripe deletion can skip them.
916 */
917
__bch2_stripe_is_open(struct bch_fs * c,u64 idx)918 static bool __bch2_stripe_is_open(struct bch_fs *c, u64 idx)
919 {
920 unsigned hash = hash_64(idx, ilog2(ARRAY_SIZE(c->ec_stripes_new)));
921 struct ec_stripe_new *s;
922
923 hlist_for_each_entry(s, &c->ec_stripes_new[hash], hash)
924 if (s->idx == idx)
925 return true;
926 return false;
927 }
928
bch2_stripe_is_open(struct bch_fs * c,u64 idx)929 static bool bch2_stripe_is_open(struct bch_fs *c, u64 idx)
930 {
931 bool ret = false;
932
933 spin_lock(&c->ec_stripes_new_lock);
934 ret = __bch2_stripe_is_open(c, idx);
935 spin_unlock(&c->ec_stripes_new_lock);
936
937 return ret;
938 }
939
bch2_try_open_stripe(struct bch_fs * c,struct ec_stripe_new * s,u64 idx)940 static bool bch2_try_open_stripe(struct bch_fs *c,
941 struct ec_stripe_new *s,
942 u64 idx)
943 {
944 bool ret;
945
946 spin_lock(&c->ec_stripes_new_lock);
947 ret = !__bch2_stripe_is_open(c, idx);
948 if (ret) {
949 unsigned hash = hash_64(idx, ilog2(ARRAY_SIZE(c->ec_stripes_new)));
950
951 s->idx = idx;
952 hlist_add_head(&s->hash, &c->ec_stripes_new[hash]);
953 }
954 spin_unlock(&c->ec_stripes_new_lock);
955
956 return ret;
957 }
958
bch2_stripe_close(struct bch_fs * c,struct ec_stripe_new * s)959 static void bch2_stripe_close(struct bch_fs *c, struct ec_stripe_new *s)
960 {
961 BUG_ON(!s->idx);
962
963 spin_lock(&c->ec_stripes_new_lock);
964 hlist_del_init(&s->hash);
965 spin_unlock(&c->ec_stripes_new_lock);
966
967 s->idx = 0;
968 }
969
970 /* stripe deletion */
971
ec_stripe_delete(struct btree_trans * trans,u64 idx)972 static int ec_stripe_delete(struct btree_trans *trans, u64 idx)
973 {
974 struct btree_iter iter;
975 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter,
976 BTREE_ID_stripes, POS(0, idx),
977 BTREE_ITER_intent);
978 int ret = bkey_err(k);
979 if (ret)
980 goto err;
981
982 /*
983 * We expect write buffer races here
984 * Important: check stripe_is_open with stripe key locked:
985 */
986 if (k.k->type == KEY_TYPE_stripe &&
987 !bch2_stripe_is_open(trans->c, idx) &&
988 stripe_lru_pos(bkey_s_c_to_stripe(k).v) == 1)
989 ret = bch2_btree_delete_at(trans, &iter, 0);
990 err:
991 bch2_trans_iter_exit(trans, &iter);
992 return ret;
993 }
994
995 /*
996 * XXX
997 * can we kill this and delete stripes from the trigger?
998 */
ec_stripe_delete_work(struct work_struct * work)999 static void ec_stripe_delete_work(struct work_struct *work)
1000 {
1001 struct bch_fs *c =
1002 container_of(work, struct bch_fs, ec_stripe_delete_work);
1003
1004 bch2_trans_run(c,
1005 bch2_btree_write_buffer_tryflush(trans) ?:
1006 for_each_btree_key_max_commit(trans, lru_iter, BTREE_ID_lru,
1007 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 1, 0),
1008 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 1, LRU_TIME_MAX),
1009 0, lru_k,
1010 NULL, NULL,
1011 BCH_TRANS_COMMIT_no_enospc, ({
1012 ec_stripe_delete(trans, lru_k.k->p.offset);
1013 })));
1014 bch2_write_ref_put(c, BCH_WRITE_REF_stripe_delete);
1015 }
1016
bch2_do_stripe_deletes(struct bch_fs * c)1017 void bch2_do_stripe_deletes(struct bch_fs *c)
1018 {
1019 if (bch2_write_ref_tryget(c, BCH_WRITE_REF_stripe_delete) &&
1020 !queue_work(c->write_ref_wq, &c->ec_stripe_delete_work))
1021 bch2_write_ref_put(c, BCH_WRITE_REF_stripe_delete);
1022 }
1023
1024 /* stripe creation: */
1025
ec_stripe_key_update(struct btree_trans * trans,struct bkey_i_stripe * old,struct bkey_i_stripe * new)1026 static int ec_stripe_key_update(struct btree_trans *trans,
1027 struct bkey_i_stripe *old,
1028 struct bkey_i_stripe *new)
1029 {
1030 struct bch_fs *c = trans->c;
1031 bool create = !old;
1032
1033 struct btree_iter iter;
1034 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter, BTREE_ID_stripes,
1035 new->k.p, BTREE_ITER_intent);
1036 int ret = bkey_err(k);
1037 if (ret)
1038 goto err;
1039
1040 if (bch2_fs_inconsistent_on(k.k->type != (create ? KEY_TYPE_deleted : KEY_TYPE_stripe),
1041 c, "error %s stripe: got existing key type %s",
1042 create ? "creating" : "updating",
1043 bch2_bkey_types[k.k->type])) {
1044 ret = -EINVAL;
1045 goto err;
1046 }
1047
1048 if (k.k->type == KEY_TYPE_stripe) {
1049 const struct bch_stripe *v = bkey_s_c_to_stripe(k).v;
1050
1051 BUG_ON(old->v.nr_blocks != new->v.nr_blocks);
1052 BUG_ON(old->v.nr_blocks != v->nr_blocks);
1053
1054 for (unsigned i = 0; i < new->v.nr_blocks; i++) {
1055 unsigned sectors = stripe_blockcount_get(v, i);
1056
1057 if (!bch2_extent_ptr_eq(old->v.ptrs[i], new->v.ptrs[i]) && sectors) {
1058 struct printbuf buf = PRINTBUF;
1059
1060 prt_printf(&buf, "stripe changed nonempty block %u", i);
1061 prt_str(&buf, "\nold: ");
1062 bch2_bkey_val_to_text(&buf, c, k);
1063 prt_str(&buf, "\nnew: ");
1064 bch2_bkey_val_to_text(&buf, c, bkey_i_to_s_c(&new->k_i));
1065 bch2_fs_inconsistent(c, "%s", buf.buf);
1066 printbuf_exit(&buf);
1067 ret = -EINVAL;
1068 goto err;
1069 }
1070
1071 /*
1072 * If the stripe ptr changed underneath us, it must have
1073 * been dev_remove_stripes() -> * invalidate_stripe_to_dev()
1074 */
1075 if (!bch2_extent_ptr_eq(old->v.ptrs[i], v->ptrs[i])) {
1076 BUG_ON(v->ptrs[i].dev != BCH_SB_MEMBER_INVALID);
1077
1078 if (bch2_extent_ptr_eq(old->v.ptrs[i], new->v.ptrs[i]))
1079 new->v.ptrs[i].dev = BCH_SB_MEMBER_INVALID;
1080 }
1081
1082 stripe_blockcount_set(&new->v, i, sectors);
1083 }
1084 }
1085
1086 ret = bch2_trans_update(trans, &iter, &new->k_i, 0);
1087 err:
1088 bch2_trans_iter_exit(trans, &iter);
1089 return ret;
1090 }
1091
ec_stripe_update_extent(struct btree_trans * trans,struct bch_dev * ca,struct bpos bucket,u8 gen,struct ec_stripe_buf * s,struct bkey_s_c_backpointer bp,struct bkey_buf * last_flushed)1092 static int ec_stripe_update_extent(struct btree_trans *trans,
1093 struct bch_dev *ca,
1094 struct bpos bucket, u8 gen,
1095 struct ec_stripe_buf *s,
1096 struct bkey_s_c_backpointer bp,
1097 struct bkey_buf *last_flushed)
1098 {
1099 struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v;
1100 struct bch_fs *c = trans->c;
1101 struct btree_iter iter;
1102 struct bkey_s_c k;
1103 const struct bch_extent_ptr *ptr_c;
1104 struct bch_extent_ptr *ec_ptr = NULL;
1105 struct bch_extent_stripe_ptr stripe_ptr;
1106 struct bkey_i *n;
1107 int ret, dev, block;
1108
1109 if (bp.v->level) {
1110 struct printbuf buf = PRINTBUF;
1111 struct btree_iter node_iter;
1112 struct btree *b;
1113
1114 b = bch2_backpointer_get_node(trans, bp, &node_iter, last_flushed);
1115 bch2_trans_iter_exit(trans, &node_iter);
1116
1117 if (!b)
1118 return 0;
1119
1120 prt_printf(&buf, "found btree node in erasure coded bucket: b=%px\n", b);
1121 bch2_bkey_val_to_text(&buf, c, bp.s_c);
1122
1123 bch2_fs_inconsistent(c, "%s", buf.buf);
1124 printbuf_exit(&buf);
1125 return -BCH_ERR_erasure_coding_found_btree_node;
1126 }
1127
1128 k = bch2_backpointer_get_key(trans, bp, &iter, BTREE_ITER_intent, last_flushed);
1129 ret = bkey_err(k);
1130 if (ret)
1131 return ret;
1132 if (!k.k) {
1133 /*
1134 * extent no longer exists - we could flush the btree
1135 * write buffer and retry to verify, but no need:
1136 */
1137 return 0;
1138 }
1139
1140 if (extent_has_stripe_ptr(k, s->key.k.p.offset))
1141 goto out;
1142
1143 ptr_c = bkey_matches_stripe(v, k, &block);
1144 /*
1145 * It doesn't generally make sense to erasure code cached ptrs:
1146 * XXX: should we be incrementing a counter?
1147 */
1148 if (!ptr_c || ptr_c->cached)
1149 goto out;
1150
1151 dev = v->ptrs[block].dev;
1152
1153 n = bch2_trans_kmalloc(trans, bkey_bytes(k.k) + sizeof(stripe_ptr));
1154 ret = PTR_ERR_OR_ZERO(n);
1155 if (ret)
1156 goto out;
1157
1158 bkey_reassemble(n, k);
1159
1160 bch2_bkey_drop_ptrs_noerror(bkey_i_to_s(n), ptr, ptr->dev != dev);
1161 ec_ptr = bch2_bkey_has_device(bkey_i_to_s(n), dev);
1162 BUG_ON(!ec_ptr);
1163
1164 stripe_ptr = (struct bch_extent_stripe_ptr) {
1165 .type = 1 << BCH_EXTENT_ENTRY_stripe_ptr,
1166 .block = block,
1167 .redundancy = v->nr_redundant,
1168 .idx = s->key.k.p.offset,
1169 };
1170
1171 __extent_entry_insert(n,
1172 (union bch_extent_entry *) ec_ptr,
1173 (union bch_extent_entry *) &stripe_ptr);
1174
1175 ret = bch2_trans_update(trans, &iter, n, 0);
1176 out:
1177 bch2_trans_iter_exit(trans, &iter);
1178 return ret;
1179 }
1180
ec_stripe_update_bucket(struct btree_trans * trans,struct ec_stripe_buf * s,unsigned block)1181 static int ec_stripe_update_bucket(struct btree_trans *trans, struct ec_stripe_buf *s,
1182 unsigned block)
1183 {
1184 struct bch_fs *c = trans->c;
1185 struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v;
1186 struct bch_extent_ptr ptr = v->ptrs[block];
1187 int ret = 0;
1188
1189 struct bch_dev *ca = bch2_dev_tryget(c, ptr.dev);
1190 if (!ca)
1191 return -BCH_ERR_ENOENT_dev_not_found;
1192
1193 struct bpos bucket_pos = PTR_BUCKET_POS(ca, &ptr);
1194
1195 struct bkey_buf last_flushed;
1196 bch2_bkey_buf_init(&last_flushed);
1197 bkey_init(&last_flushed.k->k);
1198
1199 ret = for_each_btree_key_max_commit(trans, bp_iter, BTREE_ID_backpointers,
1200 bucket_pos_to_bp_start(ca, bucket_pos),
1201 bucket_pos_to_bp_end(ca, bucket_pos), 0, bp_k,
1202 NULL, NULL,
1203 BCH_TRANS_COMMIT_no_check_rw|
1204 BCH_TRANS_COMMIT_no_enospc, ({
1205 if (bkey_ge(bp_k.k->p, bucket_pos_to_bp(ca, bpos_nosnap_successor(bucket_pos), 0)))
1206 break;
1207
1208 if (bp_k.k->type != KEY_TYPE_backpointer)
1209 continue;
1210
1211 struct bkey_s_c_backpointer bp = bkey_s_c_to_backpointer(bp_k);
1212 if (bp.v->btree_id == BTREE_ID_stripes)
1213 continue;
1214
1215 ec_stripe_update_extent(trans, ca, bucket_pos, ptr.gen, s,
1216 bp, &last_flushed);
1217 }));
1218
1219 bch2_bkey_buf_exit(&last_flushed, c);
1220 bch2_dev_put(ca);
1221 return ret;
1222 }
1223
ec_stripe_update_extents(struct bch_fs * c,struct ec_stripe_buf * s)1224 static int ec_stripe_update_extents(struct bch_fs *c, struct ec_stripe_buf *s)
1225 {
1226 struct btree_trans *trans = bch2_trans_get(c);
1227 struct bch_stripe *v = &bkey_i_to_stripe(&s->key)->v;
1228 unsigned nr_data = v->nr_blocks - v->nr_redundant;
1229
1230 int ret = bch2_btree_write_buffer_flush_sync(trans);
1231 if (ret)
1232 goto err;
1233
1234 for (unsigned i = 0; i < nr_data; i++) {
1235 ret = ec_stripe_update_bucket(trans, s, i);
1236 if (ret)
1237 break;
1238 }
1239 err:
1240 bch2_trans_put(trans);
1241 return ret;
1242 }
1243
zero_out_rest_of_ec_bucket(struct bch_fs * c,struct ec_stripe_new * s,unsigned block,struct open_bucket * ob)1244 static void zero_out_rest_of_ec_bucket(struct bch_fs *c,
1245 struct ec_stripe_new *s,
1246 unsigned block,
1247 struct open_bucket *ob)
1248 {
1249 struct bch_dev *ca = bch2_dev_get_ioref(c, ob->dev, WRITE);
1250 if (!ca) {
1251 s->err = -BCH_ERR_erofs_no_writes;
1252 return;
1253 }
1254
1255 unsigned offset = ca->mi.bucket_size - ob->sectors_free;
1256 memset(s->new_stripe.data[block] + (offset << 9),
1257 0,
1258 ob->sectors_free << 9);
1259
1260 int ret = blkdev_issue_zeroout(ca->disk_sb.bdev,
1261 ob->bucket * ca->mi.bucket_size + offset,
1262 ob->sectors_free,
1263 GFP_KERNEL, 0);
1264
1265 percpu_ref_put(&ca->io_ref[WRITE]);
1266
1267 if (ret)
1268 s->err = ret;
1269 }
1270
bch2_ec_stripe_new_free(struct bch_fs * c,struct ec_stripe_new * s)1271 void bch2_ec_stripe_new_free(struct bch_fs *c, struct ec_stripe_new *s)
1272 {
1273 if (s->idx)
1274 bch2_stripe_close(c, s);
1275 kfree(s);
1276 }
1277
1278 /*
1279 * data buckets of new stripe all written: create the stripe
1280 */
ec_stripe_create(struct ec_stripe_new * s)1281 static void ec_stripe_create(struct ec_stripe_new *s)
1282 {
1283 struct bch_fs *c = s->c;
1284 struct open_bucket *ob;
1285 struct bch_stripe *v = &bkey_i_to_stripe(&s->new_stripe.key)->v;
1286 unsigned i, nr_data = v->nr_blocks - v->nr_redundant;
1287 int ret;
1288
1289 BUG_ON(s->h->s == s);
1290
1291 closure_sync(&s->iodone);
1292
1293 if (!s->err) {
1294 for (i = 0; i < nr_data; i++)
1295 if (s->blocks[i]) {
1296 ob = c->open_buckets + s->blocks[i];
1297
1298 if (ob->sectors_free)
1299 zero_out_rest_of_ec_bucket(c, s, i, ob);
1300 }
1301 }
1302
1303 if (s->err) {
1304 if (!bch2_err_matches(s->err, EROFS))
1305 bch_err(c, "error creating stripe: error writing data buckets");
1306 ret = s->err;
1307 goto err;
1308 }
1309
1310 if (s->have_existing_stripe) {
1311 ec_validate_checksums(c, &s->existing_stripe);
1312
1313 if (ec_do_recov(c, &s->existing_stripe)) {
1314 bch_err(c, "error creating stripe: error reading existing stripe");
1315 ret = -BCH_ERR_ec_block_read;
1316 goto err;
1317 }
1318
1319 for (i = 0; i < nr_data; i++)
1320 if (stripe_blockcount_get(&bkey_i_to_stripe(&s->existing_stripe.key)->v, i))
1321 swap(s->new_stripe.data[i],
1322 s->existing_stripe.data[i]);
1323
1324 ec_stripe_buf_exit(&s->existing_stripe);
1325 }
1326
1327 BUG_ON(!s->allocated);
1328 BUG_ON(!s->idx);
1329
1330 ec_generate_ec(&s->new_stripe);
1331
1332 ec_generate_checksums(&s->new_stripe);
1333
1334 /* write p/q: */
1335 for (i = nr_data; i < v->nr_blocks; i++)
1336 ec_block_io(c, &s->new_stripe, REQ_OP_WRITE, i, &s->iodone);
1337 closure_sync(&s->iodone);
1338
1339 if (ec_nr_failed(&s->new_stripe)) {
1340 bch_err(c, "error creating stripe: error writing redundancy buckets");
1341 ret = -BCH_ERR_ec_block_write;
1342 goto err;
1343 }
1344
1345 ret = bch2_trans_commit_do(c, &s->res, NULL,
1346 BCH_TRANS_COMMIT_no_check_rw|
1347 BCH_TRANS_COMMIT_no_enospc,
1348 ec_stripe_key_update(trans,
1349 s->have_existing_stripe
1350 ? bkey_i_to_stripe(&s->existing_stripe.key)
1351 : NULL,
1352 bkey_i_to_stripe(&s->new_stripe.key)));
1353 bch_err_msg(c, ret, "creating stripe key");
1354 if (ret) {
1355 goto err;
1356 }
1357
1358 ret = ec_stripe_update_extents(c, &s->new_stripe);
1359 bch_err_msg(c, ret, "error updating extents");
1360 if (ret)
1361 goto err;
1362 err:
1363 trace_stripe_create(c, s->idx, ret);
1364
1365 bch2_disk_reservation_put(c, &s->res);
1366
1367 for (i = 0; i < v->nr_blocks; i++)
1368 if (s->blocks[i]) {
1369 ob = c->open_buckets + s->blocks[i];
1370
1371 if (i < nr_data) {
1372 ob->ec = NULL;
1373 __bch2_open_bucket_put(c, ob);
1374 } else {
1375 bch2_open_bucket_put(c, ob);
1376 }
1377 }
1378
1379 mutex_lock(&c->ec_stripe_new_lock);
1380 list_del(&s->list);
1381 mutex_unlock(&c->ec_stripe_new_lock);
1382 wake_up(&c->ec_stripe_new_wait);
1383
1384 ec_stripe_buf_exit(&s->existing_stripe);
1385 ec_stripe_buf_exit(&s->new_stripe);
1386 closure_debug_destroy(&s->iodone);
1387
1388 ec_stripe_new_put(c, s, STRIPE_REF_stripe);
1389 }
1390
get_pending_stripe(struct bch_fs * c)1391 static struct ec_stripe_new *get_pending_stripe(struct bch_fs *c)
1392 {
1393 struct ec_stripe_new *s;
1394
1395 mutex_lock(&c->ec_stripe_new_lock);
1396 list_for_each_entry(s, &c->ec_stripe_new_list, list)
1397 if (!atomic_read(&s->ref[STRIPE_REF_io]))
1398 goto out;
1399 s = NULL;
1400 out:
1401 mutex_unlock(&c->ec_stripe_new_lock);
1402
1403 return s;
1404 }
1405
ec_stripe_create_work(struct work_struct * work)1406 static void ec_stripe_create_work(struct work_struct *work)
1407 {
1408 struct bch_fs *c = container_of(work,
1409 struct bch_fs, ec_stripe_create_work);
1410 struct ec_stripe_new *s;
1411
1412 while ((s = get_pending_stripe(c)))
1413 ec_stripe_create(s);
1414
1415 bch2_write_ref_put(c, BCH_WRITE_REF_stripe_create);
1416 }
1417
bch2_ec_do_stripe_creates(struct bch_fs * c)1418 void bch2_ec_do_stripe_creates(struct bch_fs *c)
1419 {
1420 bch2_write_ref_get(c, BCH_WRITE_REF_stripe_create);
1421
1422 if (!queue_work(system_long_wq, &c->ec_stripe_create_work))
1423 bch2_write_ref_put(c, BCH_WRITE_REF_stripe_create);
1424 }
1425
ec_stripe_new_set_pending(struct bch_fs * c,struct ec_stripe_head * h)1426 static void ec_stripe_new_set_pending(struct bch_fs *c, struct ec_stripe_head *h)
1427 {
1428 struct ec_stripe_new *s = h->s;
1429
1430 lockdep_assert_held(&h->lock);
1431
1432 BUG_ON(!s->allocated && !s->err);
1433
1434 h->s = NULL;
1435 s->pending = true;
1436
1437 mutex_lock(&c->ec_stripe_new_lock);
1438 list_add(&s->list, &c->ec_stripe_new_list);
1439 mutex_unlock(&c->ec_stripe_new_lock);
1440
1441 ec_stripe_new_put(c, s, STRIPE_REF_io);
1442 }
1443
ec_stripe_new_cancel(struct bch_fs * c,struct ec_stripe_head * h,int err)1444 static void ec_stripe_new_cancel(struct bch_fs *c, struct ec_stripe_head *h, int err)
1445 {
1446 h->s->err = err;
1447 ec_stripe_new_set_pending(c, h);
1448 }
1449
bch2_ec_bucket_cancel(struct bch_fs * c,struct open_bucket * ob,int err)1450 void bch2_ec_bucket_cancel(struct bch_fs *c, struct open_bucket *ob, int err)
1451 {
1452 struct ec_stripe_new *s = ob->ec;
1453
1454 s->err = err;
1455 }
1456
bch2_writepoint_ec_buf(struct bch_fs * c,struct write_point * wp)1457 void *bch2_writepoint_ec_buf(struct bch_fs *c, struct write_point *wp)
1458 {
1459 struct open_bucket *ob = ec_open_bucket(c, &wp->ptrs);
1460 if (!ob)
1461 return NULL;
1462
1463 BUG_ON(!ob->ec->new_stripe.data[ob->ec_idx]);
1464
1465 struct bch_dev *ca = ob_dev(c, ob);
1466 unsigned offset = ca->mi.bucket_size - ob->sectors_free;
1467
1468 return ob->ec->new_stripe.data[ob->ec_idx] + (offset << 9);
1469 }
1470
unsigned_cmp(const void * _l,const void * _r)1471 static int unsigned_cmp(const void *_l, const void *_r)
1472 {
1473 unsigned l = *((const unsigned *) _l);
1474 unsigned r = *((const unsigned *) _r);
1475
1476 return cmp_int(l, r);
1477 }
1478
1479 /* pick most common bucket size: */
pick_blocksize(struct bch_fs * c,struct bch_devs_mask * devs)1480 static unsigned pick_blocksize(struct bch_fs *c,
1481 struct bch_devs_mask *devs)
1482 {
1483 unsigned nr = 0, sizes[BCH_SB_MEMBERS_MAX];
1484 struct {
1485 unsigned nr, size;
1486 } cur = { 0, 0 }, best = { 0, 0 };
1487
1488 for_each_member_device_rcu(c, ca, devs)
1489 sizes[nr++] = ca->mi.bucket_size;
1490
1491 sort(sizes, nr, sizeof(unsigned), unsigned_cmp, NULL);
1492
1493 for (unsigned i = 0; i < nr; i++) {
1494 if (sizes[i] != cur.size) {
1495 if (cur.nr > best.nr)
1496 best = cur;
1497
1498 cur.nr = 0;
1499 cur.size = sizes[i];
1500 }
1501
1502 cur.nr++;
1503 }
1504
1505 if (cur.nr > best.nr)
1506 best = cur;
1507
1508 return best.size;
1509 }
1510
may_create_new_stripe(struct bch_fs * c)1511 static bool may_create_new_stripe(struct bch_fs *c)
1512 {
1513 return false;
1514 }
1515
ec_stripe_key_init(struct bch_fs * c,struct bkey_i * k,unsigned nr_data,unsigned nr_parity,unsigned stripe_size,unsigned disk_label)1516 static void ec_stripe_key_init(struct bch_fs *c,
1517 struct bkey_i *k,
1518 unsigned nr_data,
1519 unsigned nr_parity,
1520 unsigned stripe_size,
1521 unsigned disk_label)
1522 {
1523 struct bkey_i_stripe *s = bkey_stripe_init(k);
1524 unsigned u64s;
1525
1526 s->v.sectors = cpu_to_le16(stripe_size);
1527 s->v.algorithm = 0;
1528 s->v.nr_blocks = nr_data + nr_parity;
1529 s->v.nr_redundant = nr_parity;
1530 s->v.csum_granularity_bits = ilog2(c->opts.encoded_extent_max >> 9);
1531 s->v.csum_type = BCH_CSUM_crc32c;
1532 s->v.disk_label = disk_label;
1533
1534 while ((u64s = stripe_val_u64s(&s->v)) > BKEY_VAL_U64s_MAX) {
1535 BUG_ON(1 << s->v.csum_granularity_bits >=
1536 le16_to_cpu(s->v.sectors) ||
1537 s->v.csum_granularity_bits == U8_MAX);
1538 s->v.csum_granularity_bits++;
1539 }
1540
1541 set_bkey_val_u64s(&s->k, u64s);
1542 }
1543
ec_new_stripe_alloc(struct bch_fs * c,struct ec_stripe_head * h)1544 static struct ec_stripe_new *ec_new_stripe_alloc(struct bch_fs *c, struct ec_stripe_head *h)
1545 {
1546 struct ec_stripe_new *s;
1547
1548 lockdep_assert_held(&h->lock);
1549
1550 s = kzalloc(sizeof(*s), GFP_KERNEL);
1551 if (!s)
1552 return NULL;
1553
1554 mutex_init(&s->lock);
1555 closure_init(&s->iodone, NULL);
1556 atomic_set(&s->ref[STRIPE_REF_stripe], 1);
1557 atomic_set(&s->ref[STRIPE_REF_io], 1);
1558 s->c = c;
1559 s->h = h;
1560 s->nr_data = min_t(unsigned, h->nr_active_devs,
1561 BCH_BKEY_PTRS_MAX) - h->redundancy;
1562 s->nr_parity = h->redundancy;
1563
1564 ec_stripe_key_init(c, &s->new_stripe.key,
1565 s->nr_data, s->nr_parity,
1566 h->blocksize, h->disk_label);
1567 return s;
1568 }
1569
ec_stripe_head_devs_update(struct bch_fs * c,struct ec_stripe_head * h)1570 static void ec_stripe_head_devs_update(struct bch_fs *c, struct ec_stripe_head *h)
1571 {
1572 struct bch_devs_mask devs = h->devs;
1573
1574 rcu_read_lock();
1575 h->devs = target_rw_devs(c, BCH_DATA_user, h->disk_label
1576 ? group_to_target(h->disk_label - 1)
1577 : 0);
1578 unsigned nr_devs = dev_mask_nr(&h->devs);
1579
1580 for_each_member_device_rcu(c, ca, &h->devs)
1581 if (!ca->mi.durability)
1582 __clear_bit(ca->dev_idx, h->devs.d);
1583 unsigned nr_devs_with_durability = dev_mask_nr(&h->devs);
1584
1585 h->blocksize = pick_blocksize(c, &h->devs);
1586
1587 h->nr_active_devs = 0;
1588 for_each_member_device_rcu(c, ca, &h->devs)
1589 if (ca->mi.bucket_size == h->blocksize)
1590 h->nr_active_devs++;
1591
1592 rcu_read_unlock();
1593
1594 /*
1595 * If we only have redundancy + 1 devices, we're better off with just
1596 * replication:
1597 */
1598 h->insufficient_devs = h->nr_active_devs < h->redundancy + 2;
1599
1600 if (h->insufficient_devs) {
1601 const char *err;
1602
1603 if (nr_devs < h->redundancy + 2)
1604 err = NULL;
1605 else if (nr_devs_with_durability < h->redundancy + 2)
1606 err = "cannot use durability=0 devices";
1607 else
1608 err = "mismatched bucket sizes";
1609
1610 if (err)
1611 bch_err(c, "insufficient devices available to create stripe (have %u, need %u): %s",
1612 h->nr_active_devs, h->redundancy + 2, err);
1613 }
1614
1615 struct bch_devs_mask devs_leaving;
1616 bitmap_andnot(devs_leaving.d, devs.d, h->devs.d, BCH_SB_MEMBERS_MAX);
1617
1618 if (h->s && !h->s->allocated && dev_mask_nr(&devs_leaving))
1619 ec_stripe_new_cancel(c, h, -EINTR);
1620
1621 h->rw_devs_change_count = c->rw_devs_change_count;
1622 }
1623
1624 static struct ec_stripe_head *
ec_new_stripe_head_alloc(struct bch_fs * c,unsigned disk_label,unsigned algo,unsigned redundancy,enum bch_watermark watermark)1625 ec_new_stripe_head_alloc(struct bch_fs *c, unsigned disk_label,
1626 unsigned algo, unsigned redundancy,
1627 enum bch_watermark watermark)
1628 {
1629 struct ec_stripe_head *h;
1630
1631 h = kzalloc(sizeof(*h), GFP_KERNEL);
1632 if (!h)
1633 return NULL;
1634
1635 mutex_init(&h->lock);
1636 BUG_ON(!mutex_trylock(&h->lock));
1637
1638 h->disk_label = disk_label;
1639 h->algo = algo;
1640 h->redundancy = redundancy;
1641 h->watermark = watermark;
1642
1643 list_add(&h->list, &c->ec_stripe_head_list);
1644 return h;
1645 }
1646
bch2_ec_stripe_head_put(struct bch_fs * c,struct ec_stripe_head * h)1647 void bch2_ec_stripe_head_put(struct bch_fs *c, struct ec_stripe_head *h)
1648 {
1649 if (h->s &&
1650 h->s->allocated &&
1651 bitmap_weight(h->s->blocks_allocated,
1652 h->s->nr_data) == h->s->nr_data)
1653 ec_stripe_new_set_pending(c, h);
1654
1655 mutex_unlock(&h->lock);
1656 }
1657
1658 static struct ec_stripe_head *
__bch2_ec_stripe_head_get(struct btree_trans * trans,unsigned disk_label,unsigned algo,unsigned redundancy,enum bch_watermark watermark)1659 __bch2_ec_stripe_head_get(struct btree_trans *trans,
1660 unsigned disk_label,
1661 unsigned algo,
1662 unsigned redundancy,
1663 enum bch_watermark watermark)
1664 {
1665 struct bch_fs *c = trans->c;
1666 struct ec_stripe_head *h;
1667 int ret;
1668
1669 if (!redundancy)
1670 return NULL;
1671
1672 ret = bch2_trans_mutex_lock(trans, &c->ec_stripe_head_lock);
1673 if (ret)
1674 return ERR_PTR(ret);
1675
1676 if (test_bit(BCH_FS_going_ro, &c->flags)) {
1677 h = ERR_PTR(-BCH_ERR_erofs_no_writes);
1678 goto err;
1679 }
1680
1681 list_for_each_entry(h, &c->ec_stripe_head_list, list)
1682 if (h->disk_label == disk_label &&
1683 h->algo == algo &&
1684 h->redundancy == redundancy &&
1685 h->watermark == watermark) {
1686 ret = bch2_trans_mutex_lock(trans, &h->lock);
1687 if (ret) {
1688 h = ERR_PTR(ret);
1689 goto err;
1690 }
1691 goto found;
1692 }
1693
1694 h = ec_new_stripe_head_alloc(c, disk_label, algo, redundancy, watermark);
1695 if (!h) {
1696 h = ERR_PTR(-BCH_ERR_ENOMEM_stripe_head_alloc);
1697 goto err;
1698 }
1699 found:
1700 if (h->rw_devs_change_count != c->rw_devs_change_count)
1701 ec_stripe_head_devs_update(c, h);
1702
1703 if (h->insufficient_devs) {
1704 mutex_unlock(&h->lock);
1705 h = NULL;
1706 }
1707 err:
1708 mutex_unlock(&c->ec_stripe_head_lock);
1709 return h;
1710 }
1711
new_stripe_alloc_buckets(struct btree_trans * trans,struct ec_stripe_head * h,struct ec_stripe_new * s,enum bch_watermark watermark,struct closure * cl)1712 static int new_stripe_alloc_buckets(struct btree_trans *trans,
1713 struct ec_stripe_head *h, struct ec_stripe_new *s,
1714 enum bch_watermark watermark, struct closure *cl)
1715 {
1716 struct bch_fs *c = trans->c;
1717 struct bch_devs_mask devs = h->devs;
1718 struct open_bucket *ob;
1719 struct open_buckets buckets;
1720 struct bch_stripe *v = &bkey_i_to_stripe(&s->new_stripe.key)->v;
1721 unsigned i, j, nr_have_parity = 0, nr_have_data = 0;
1722 bool have_cache = true;
1723 int ret = 0;
1724
1725 BUG_ON(v->nr_blocks != s->nr_data + s->nr_parity);
1726 BUG_ON(v->nr_redundant != s->nr_parity);
1727
1728 /* * We bypass the sector allocator which normally does this: */
1729 bitmap_and(devs.d, devs.d, c->rw_devs[BCH_DATA_user].d, BCH_SB_MEMBERS_MAX);
1730
1731 for_each_set_bit(i, s->blocks_gotten, v->nr_blocks) {
1732 /*
1733 * Note: we don't yet repair invalid blocks (failed/removed
1734 * devices) when reusing stripes - we still need a codepath to
1735 * walk backpointers and update all extents that point to that
1736 * block when updating the stripe
1737 */
1738 if (v->ptrs[i].dev != BCH_SB_MEMBER_INVALID)
1739 __clear_bit(v->ptrs[i].dev, devs.d);
1740
1741 if (i < s->nr_data)
1742 nr_have_data++;
1743 else
1744 nr_have_parity++;
1745 }
1746
1747 BUG_ON(nr_have_data > s->nr_data);
1748 BUG_ON(nr_have_parity > s->nr_parity);
1749
1750 buckets.nr = 0;
1751 if (nr_have_parity < s->nr_parity) {
1752 ret = bch2_bucket_alloc_set_trans(trans, &buckets,
1753 &h->parity_stripe,
1754 &devs,
1755 s->nr_parity,
1756 &nr_have_parity,
1757 &have_cache, 0,
1758 BCH_DATA_parity,
1759 watermark,
1760 cl);
1761
1762 open_bucket_for_each(c, &buckets, ob, i) {
1763 j = find_next_zero_bit(s->blocks_gotten,
1764 s->nr_data + s->nr_parity,
1765 s->nr_data);
1766 BUG_ON(j >= s->nr_data + s->nr_parity);
1767
1768 s->blocks[j] = buckets.v[i];
1769 v->ptrs[j] = bch2_ob_ptr(c, ob);
1770 __set_bit(j, s->blocks_gotten);
1771 }
1772
1773 if (ret)
1774 return ret;
1775 }
1776
1777 buckets.nr = 0;
1778 if (nr_have_data < s->nr_data) {
1779 ret = bch2_bucket_alloc_set_trans(trans, &buckets,
1780 &h->block_stripe,
1781 &devs,
1782 s->nr_data,
1783 &nr_have_data,
1784 &have_cache, 0,
1785 BCH_DATA_user,
1786 watermark,
1787 cl);
1788
1789 open_bucket_for_each(c, &buckets, ob, i) {
1790 j = find_next_zero_bit(s->blocks_gotten,
1791 s->nr_data, 0);
1792 BUG_ON(j >= s->nr_data);
1793
1794 s->blocks[j] = buckets.v[i];
1795 v->ptrs[j] = bch2_ob_ptr(c, ob);
1796 __set_bit(j, s->blocks_gotten);
1797 }
1798
1799 if (ret)
1800 return ret;
1801 }
1802
1803 return 0;
1804 }
1805
__get_existing_stripe(struct btree_trans * trans,struct ec_stripe_head * head,struct ec_stripe_buf * stripe,u64 idx)1806 static int __get_existing_stripe(struct btree_trans *trans,
1807 struct ec_stripe_head *head,
1808 struct ec_stripe_buf *stripe,
1809 u64 idx)
1810 {
1811 struct bch_fs *c = trans->c;
1812
1813 struct btree_iter iter;
1814 struct bkey_s_c k = bch2_bkey_get_iter(trans, &iter,
1815 BTREE_ID_stripes, POS(0, idx), 0);
1816 int ret = bkey_err(k);
1817 if (ret)
1818 goto err;
1819
1820 /* We expect write buffer races here */
1821 if (k.k->type != KEY_TYPE_stripe)
1822 goto out;
1823
1824 struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k);
1825 if (stripe_lru_pos(s.v) <= 1)
1826 goto out;
1827
1828 if (s.v->disk_label == head->disk_label &&
1829 s.v->algorithm == head->algo &&
1830 s.v->nr_redundant == head->redundancy &&
1831 le16_to_cpu(s.v->sectors) == head->blocksize &&
1832 bch2_try_open_stripe(c, head->s, idx)) {
1833 bkey_reassemble(&stripe->key, k);
1834 ret = 1;
1835 }
1836 out:
1837 bch2_set_btree_iter_dontneed(trans, &iter);
1838 err:
1839 bch2_trans_iter_exit(trans, &iter);
1840 return ret;
1841 }
1842
init_new_stripe_from_existing(struct bch_fs * c,struct ec_stripe_new * s)1843 static int init_new_stripe_from_existing(struct bch_fs *c, struct ec_stripe_new *s)
1844 {
1845 struct bch_stripe *new_v = &bkey_i_to_stripe(&s->new_stripe.key)->v;
1846 struct bch_stripe *existing_v = &bkey_i_to_stripe(&s->existing_stripe.key)->v;
1847 unsigned i;
1848
1849 BUG_ON(existing_v->nr_redundant != s->nr_parity);
1850 s->nr_data = existing_v->nr_blocks -
1851 existing_v->nr_redundant;
1852
1853 int ret = ec_stripe_buf_init(&s->existing_stripe, 0, le16_to_cpu(existing_v->sectors));
1854 if (ret) {
1855 bch2_stripe_close(c, s);
1856 return ret;
1857 }
1858
1859 BUG_ON(s->existing_stripe.size != le16_to_cpu(existing_v->sectors));
1860
1861 /*
1862 * Free buckets we initially allocated - they might conflict with
1863 * blocks from the stripe we're reusing:
1864 */
1865 for_each_set_bit(i, s->blocks_gotten, new_v->nr_blocks) {
1866 bch2_open_bucket_put(c, c->open_buckets + s->blocks[i]);
1867 s->blocks[i] = 0;
1868 }
1869 memset(s->blocks_gotten, 0, sizeof(s->blocks_gotten));
1870 memset(s->blocks_allocated, 0, sizeof(s->blocks_allocated));
1871
1872 for (unsigned i = 0; i < existing_v->nr_blocks; i++) {
1873 if (stripe_blockcount_get(existing_v, i)) {
1874 __set_bit(i, s->blocks_gotten);
1875 __set_bit(i, s->blocks_allocated);
1876 }
1877
1878 ec_block_io(c, &s->existing_stripe, READ, i, &s->iodone);
1879 }
1880
1881 bkey_copy(&s->new_stripe.key, &s->existing_stripe.key);
1882 s->have_existing_stripe = true;
1883
1884 return 0;
1885 }
1886
__bch2_ec_stripe_head_reuse(struct btree_trans * trans,struct ec_stripe_head * h,struct ec_stripe_new * s)1887 static int __bch2_ec_stripe_head_reuse(struct btree_trans *trans, struct ec_stripe_head *h,
1888 struct ec_stripe_new *s)
1889 {
1890 struct bch_fs *c = trans->c;
1891
1892 /*
1893 * If we can't allocate a new stripe, and there's no stripes with empty
1894 * blocks for us to reuse, that means we have to wait on copygc:
1895 */
1896 if (may_create_new_stripe(c))
1897 return -1;
1898
1899 struct btree_iter lru_iter;
1900 struct bkey_s_c lru_k;
1901 int ret = 0;
1902
1903 for_each_btree_key_max_norestart(trans, lru_iter, BTREE_ID_lru,
1904 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 2, 0),
1905 lru_pos(BCH_LRU_STRIPE_FRAGMENTATION, 2, LRU_TIME_MAX),
1906 0, lru_k, ret) {
1907 ret = __get_existing_stripe(trans, h, &s->existing_stripe, lru_k.k->p.offset);
1908 if (ret)
1909 break;
1910 }
1911 bch2_trans_iter_exit(trans, &lru_iter);
1912 if (!ret)
1913 ret = -BCH_ERR_stripe_alloc_blocked;
1914 if (ret == 1)
1915 ret = 0;
1916 if (ret)
1917 return ret;
1918
1919 return init_new_stripe_from_existing(c, s);
1920 }
1921
__bch2_ec_stripe_head_reserve(struct btree_trans * trans,struct ec_stripe_head * h,struct ec_stripe_new * s)1922 static int __bch2_ec_stripe_head_reserve(struct btree_trans *trans, struct ec_stripe_head *h,
1923 struct ec_stripe_new *s)
1924 {
1925 struct bch_fs *c = trans->c;
1926 struct btree_iter iter;
1927 struct bkey_s_c k;
1928 struct bpos min_pos = POS(0, 1);
1929 struct bpos start_pos = bpos_max(min_pos, POS(0, c->ec_stripe_hint));
1930 int ret;
1931
1932 if (!s->res.sectors) {
1933 ret = bch2_disk_reservation_get(c, &s->res,
1934 h->blocksize,
1935 s->nr_parity,
1936 BCH_DISK_RESERVATION_NOFAIL);
1937 if (ret)
1938 return ret;
1939 }
1940
1941 /*
1942 * Allocate stripe slot
1943 * XXX: we're going to need a bitrange btree of free stripes
1944 */
1945 for_each_btree_key_norestart(trans, iter, BTREE_ID_stripes, start_pos,
1946 BTREE_ITER_slots|BTREE_ITER_intent, k, ret) {
1947 if (bkey_gt(k.k->p, POS(0, U32_MAX))) {
1948 if (start_pos.offset) {
1949 start_pos = min_pos;
1950 bch2_btree_iter_set_pos(trans, &iter, start_pos);
1951 continue;
1952 }
1953
1954 ret = -BCH_ERR_ENOSPC_stripe_create;
1955 break;
1956 }
1957
1958 if (bkey_deleted(k.k) &&
1959 bch2_try_open_stripe(c, s, k.k->p.offset))
1960 break;
1961 }
1962
1963 c->ec_stripe_hint = iter.pos.offset;
1964
1965 if (ret)
1966 goto err;
1967
1968 ret = ec_stripe_mem_alloc(trans, &iter);
1969 if (ret) {
1970 bch2_stripe_close(c, s);
1971 goto err;
1972 }
1973
1974 s->new_stripe.key.k.p = iter.pos;
1975 out:
1976 bch2_trans_iter_exit(trans, &iter);
1977 return ret;
1978 err:
1979 bch2_disk_reservation_put(c, &s->res);
1980 goto out;
1981 }
1982
bch2_ec_stripe_head_get(struct btree_trans * trans,unsigned target,unsigned algo,unsigned redundancy,enum bch_watermark watermark,struct closure * cl)1983 struct ec_stripe_head *bch2_ec_stripe_head_get(struct btree_trans *trans,
1984 unsigned target,
1985 unsigned algo,
1986 unsigned redundancy,
1987 enum bch_watermark watermark,
1988 struct closure *cl)
1989 {
1990 struct bch_fs *c = trans->c;
1991 struct ec_stripe_head *h;
1992 bool waiting = false;
1993 unsigned disk_label = 0;
1994 struct target t = target_decode(target);
1995 int ret;
1996
1997 if (t.type == TARGET_GROUP) {
1998 if (t.group > U8_MAX) {
1999 bch_err(c, "cannot create a stripe when disk_label > U8_MAX");
2000 return NULL;
2001 }
2002 disk_label = t.group + 1; /* 0 == no label */
2003 }
2004
2005 h = __bch2_ec_stripe_head_get(trans, disk_label, algo, redundancy, watermark);
2006 if (IS_ERR_OR_NULL(h))
2007 return h;
2008
2009 if (!h->s) {
2010 h->s = ec_new_stripe_alloc(c, h);
2011 if (!h->s) {
2012 ret = -BCH_ERR_ENOMEM_ec_new_stripe_alloc;
2013 bch_err(c, "failed to allocate new stripe");
2014 goto err;
2015 }
2016
2017 h->nr_created++;
2018 }
2019
2020 struct ec_stripe_new *s = h->s;
2021
2022 if (s->allocated)
2023 goto allocated;
2024
2025 if (s->have_existing_stripe)
2026 goto alloc_existing;
2027
2028 /* First, try to allocate a full stripe: */
2029 ret = new_stripe_alloc_buckets(trans, h, s, BCH_WATERMARK_stripe, NULL) ?:
2030 __bch2_ec_stripe_head_reserve(trans, h, s);
2031 if (!ret)
2032 goto allocate_buf;
2033 if (bch2_err_matches(ret, BCH_ERR_transaction_restart) ||
2034 bch2_err_matches(ret, ENOMEM))
2035 goto err;
2036
2037 /*
2038 * Not enough buckets available for a full stripe: we must reuse an
2039 * existing stripe:
2040 */
2041 while (1) {
2042 ret = __bch2_ec_stripe_head_reuse(trans, h, s);
2043 if (!ret)
2044 break;
2045 if (waiting || !cl || ret != -BCH_ERR_stripe_alloc_blocked)
2046 goto err;
2047
2048 if (watermark == BCH_WATERMARK_copygc) {
2049 ret = new_stripe_alloc_buckets(trans, h, s, watermark, NULL) ?:
2050 __bch2_ec_stripe_head_reserve(trans, h, s);
2051 if (ret)
2052 goto err;
2053 goto allocate_buf;
2054 }
2055
2056 /* XXX freelist_wait? */
2057 closure_wait(&c->freelist_wait, cl);
2058 waiting = true;
2059 }
2060
2061 if (waiting)
2062 closure_wake_up(&c->freelist_wait);
2063 alloc_existing:
2064 /*
2065 * Retry allocating buckets, with the watermark for this
2066 * particular write:
2067 */
2068 ret = new_stripe_alloc_buckets(trans, h, s, watermark, cl);
2069 if (ret)
2070 goto err;
2071
2072 allocate_buf:
2073 ret = ec_stripe_buf_init(&s->new_stripe, 0, h->blocksize);
2074 if (ret)
2075 goto err;
2076
2077 s->allocated = true;
2078 allocated:
2079 BUG_ON(!s->idx);
2080 BUG_ON(!s->new_stripe.data[0]);
2081 BUG_ON(trans->restarted);
2082 return h;
2083 err:
2084 bch2_ec_stripe_head_put(c, h);
2085 return ERR_PTR(ret);
2086 }
2087
2088 /* device removal */
2089
bch2_invalidate_stripe_to_dev(struct btree_trans * trans,struct bkey_s_c k_a)2090 static int bch2_invalidate_stripe_to_dev(struct btree_trans *trans, struct bkey_s_c k_a)
2091 {
2092 struct bch_alloc_v4 a_convert;
2093 const struct bch_alloc_v4 *a = bch2_alloc_to_v4(k_a, &a_convert);
2094
2095 if (!a->stripe)
2096 return 0;
2097
2098 if (a->stripe_sectors) {
2099 bch_err(trans->c, "trying to invalidate device in stripe when bucket has stripe data");
2100 return -BCH_ERR_invalidate_stripe_to_dev;
2101 }
2102
2103 struct btree_iter iter;
2104 struct bkey_i_stripe *s =
2105 bch2_bkey_get_mut_typed(trans, &iter, BTREE_ID_stripes, POS(0, a->stripe),
2106 BTREE_ITER_slots, stripe);
2107 int ret = PTR_ERR_OR_ZERO(s);
2108 if (ret)
2109 return ret;
2110
2111 struct disk_accounting_pos acc;
2112
2113 s64 sectors = 0;
2114 for (unsigned i = 0; i < s->v.nr_blocks; i++)
2115 sectors -= stripe_blockcount_get(&s->v, i);
2116
2117 memset(&acc, 0, sizeof(acc));
2118 acc.type = BCH_DISK_ACCOUNTING_replicas;
2119 bch2_bkey_to_replicas(&acc.replicas, bkey_i_to_s_c(&s->k_i));
2120 acc.replicas.data_type = BCH_DATA_user;
2121 ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, false);
2122 if (ret)
2123 goto err;
2124
2125 struct bkey_ptrs ptrs = bch2_bkey_ptrs(bkey_i_to_s(&s->k_i));
2126 bkey_for_each_ptr(ptrs, ptr)
2127 if (ptr->dev == k_a.k->p.inode)
2128 ptr->dev = BCH_SB_MEMBER_INVALID;
2129
2130 sectors = -sectors;
2131
2132 memset(&acc, 0, sizeof(acc));
2133 acc.type = BCH_DISK_ACCOUNTING_replicas;
2134 bch2_bkey_to_replicas(&acc.replicas, bkey_i_to_s_c(&s->k_i));
2135 acc.replicas.data_type = BCH_DATA_user;
2136 ret = bch2_disk_accounting_mod(trans, &acc, §ors, 1, false);
2137 if (ret)
2138 goto err;
2139 err:
2140 bch2_trans_iter_exit(trans, &iter);
2141 return ret;
2142 }
2143
bch2_dev_remove_stripes(struct bch_fs * c,unsigned dev_idx)2144 int bch2_dev_remove_stripes(struct bch_fs *c, unsigned dev_idx)
2145 {
2146 return bch2_trans_run(c,
2147 for_each_btree_key_max_commit(trans, iter,
2148 BTREE_ID_alloc, POS(dev_idx, 0), POS(dev_idx, U64_MAX),
2149 BTREE_ITER_intent, k,
2150 NULL, NULL, 0, ({
2151 bch2_invalidate_stripe_to_dev(trans, k);
2152 })));
2153 }
2154
2155 /* startup/shutdown */
2156
__bch2_ec_stop(struct bch_fs * c,struct bch_dev * ca)2157 static void __bch2_ec_stop(struct bch_fs *c, struct bch_dev *ca)
2158 {
2159 struct ec_stripe_head *h;
2160 struct open_bucket *ob;
2161 unsigned i;
2162
2163 mutex_lock(&c->ec_stripe_head_lock);
2164 list_for_each_entry(h, &c->ec_stripe_head_list, list) {
2165 mutex_lock(&h->lock);
2166 if (!h->s)
2167 goto unlock;
2168
2169 if (!ca)
2170 goto found;
2171
2172 for (i = 0; i < bkey_i_to_stripe(&h->s->new_stripe.key)->v.nr_blocks; i++) {
2173 if (!h->s->blocks[i])
2174 continue;
2175
2176 ob = c->open_buckets + h->s->blocks[i];
2177 if (ob->dev == ca->dev_idx)
2178 goto found;
2179 }
2180 goto unlock;
2181 found:
2182 ec_stripe_new_cancel(c, h, -BCH_ERR_erofs_no_writes);
2183 unlock:
2184 mutex_unlock(&h->lock);
2185 }
2186 mutex_unlock(&c->ec_stripe_head_lock);
2187 }
2188
bch2_ec_stop_dev(struct bch_fs * c,struct bch_dev * ca)2189 void bch2_ec_stop_dev(struct bch_fs *c, struct bch_dev *ca)
2190 {
2191 __bch2_ec_stop(c, ca);
2192 }
2193
bch2_fs_ec_stop(struct bch_fs * c)2194 void bch2_fs_ec_stop(struct bch_fs *c)
2195 {
2196 __bch2_ec_stop(c, NULL);
2197 }
2198
bch2_fs_ec_flush_done(struct bch_fs * c)2199 static bool bch2_fs_ec_flush_done(struct bch_fs *c)
2200 {
2201 sched_annotate_sleep();
2202
2203 mutex_lock(&c->ec_stripe_new_lock);
2204 bool ret = list_empty(&c->ec_stripe_new_list);
2205 mutex_unlock(&c->ec_stripe_new_lock);
2206
2207 return ret;
2208 }
2209
bch2_fs_ec_flush(struct bch_fs * c)2210 void bch2_fs_ec_flush(struct bch_fs *c)
2211 {
2212 wait_event(c->ec_stripe_new_wait, bch2_fs_ec_flush_done(c));
2213 }
2214
bch2_stripes_read(struct bch_fs * c)2215 int bch2_stripes_read(struct bch_fs *c)
2216 {
2217 return 0;
2218 }
2219
bch2_new_stripe_to_text(struct printbuf * out,struct bch_fs * c,struct ec_stripe_new * s)2220 static void bch2_new_stripe_to_text(struct printbuf *out, struct bch_fs *c,
2221 struct ec_stripe_new *s)
2222 {
2223 prt_printf(out, "\tidx %llu blocks %u+%u allocated %u ref %u %u %s obs",
2224 s->idx, s->nr_data, s->nr_parity,
2225 bitmap_weight(s->blocks_allocated, s->nr_data),
2226 atomic_read(&s->ref[STRIPE_REF_io]),
2227 atomic_read(&s->ref[STRIPE_REF_stripe]),
2228 bch2_watermarks[s->h->watermark]);
2229
2230 struct bch_stripe *v = &bkey_i_to_stripe(&s->new_stripe.key)->v;
2231 unsigned i;
2232 for_each_set_bit(i, s->blocks_gotten, v->nr_blocks)
2233 prt_printf(out, " %u", s->blocks[i]);
2234 prt_newline(out);
2235 bch2_bkey_val_to_text(out, c, bkey_i_to_s_c(&s->new_stripe.key));
2236 prt_newline(out);
2237 }
2238
bch2_new_stripes_to_text(struct printbuf * out,struct bch_fs * c)2239 void bch2_new_stripes_to_text(struct printbuf *out, struct bch_fs *c)
2240 {
2241 struct ec_stripe_head *h;
2242 struct ec_stripe_new *s;
2243
2244 mutex_lock(&c->ec_stripe_head_lock);
2245 list_for_each_entry(h, &c->ec_stripe_head_list, list) {
2246 prt_printf(out, "disk label %u algo %u redundancy %u %s nr created %llu:\n",
2247 h->disk_label, h->algo, h->redundancy,
2248 bch2_watermarks[h->watermark],
2249 h->nr_created);
2250
2251 if (h->s)
2252 bch2_new_stripe_to_text(out, c, h->s);
2253 }
2254 mutex_unlock(&c->ec_stripe_head_lock);
2255
2256 prt_printf(out, "in flight:\n");
2257
2258 mutex_lock(&c->ec_stripe_new_lock);
2259 list_for_each_entry(s, &c->ec_stripe_new_list, list)
2260 bch2_new_stripe_to_text(out, c, s);
2261 mutex_unlock(&c->ec_stripe_new_lock);
2262 }
2263
bch2_fs_ec_exit(struct bch_fs * c)2264 void bch2_fs_ec_exit(struct bch_fs *c)
2265 {
2266 struct ec_stripe_head *h;
2267 unsigned i;
2268
2269 while (1) {
2270 mutex_lock(&c->ec_stripe_head_lock);
2271 h = list_pop_entry(&c->ec_stripe_head_list, struct ec_stripe_head, list);
2272 mutex_unlock(&c->ec_stripe_head_lock);
2273
2274 if (!h)
2275 break;
2276
2277 if (h->s) {
2278 for (i = 0; i < bkey_i_to_stripe(&h->s->new_stripe.key)->v.nr_blocks; i++)
2279 BUG_ON(h->s->blocks[i]);
2280
2281 kfree(h->s);
2282 }
2283 kfree(h);
2284 }
2285
2286 BUG_ON(!list_empty(&c->ec_stripe_new_list));
2287
2288 bioset_exit(&c->ec_bioset);
2289 }
2290
bch2_fs_ec_init_early(struct bch_fs * c)2291 void bch2_fs_ec_init_early(struct bch_fs *c)
2292 {
2293 spin_lock_init(&c->ec_stripes_new_lock);
2294
2295 INIT_LIST_HEAD(&c->ec_stripe_head_list);
2296 mutex_init(&c->ec_stripe_head_lock);
2297
2298 INIT_LIST_HEAD(&c->ec_stripe_new_list);
2299 mutex_init(&c->ec_stripe_new_lock);
2300 init_waitqueue_head(&c->ec_stripe_new_wait);
2301
2302 INIT_WORK(&c->ec_stripe_create_work, ec_stripe_create_work);
2303 INIT_WORK(&c->ec_stripe_delete_work, ec_stripe_delete_work);
2304 }
2305
bch2_fs_ec_init(struct bch_fs * c)2306 int bch2_fs_ec_init(struct bch_fs *c)
2307 {
2308 return bioset_init(&c->ec_bioset, 1, offsetof(struct ec_bio, bio),
2309 BIOSET_NEED_BVECS);
2310 }
2311
bch2_check_stripe_to_lru_ref(struct btree_trans * trans,struct bkey_s_c k,struct bkey_buf * last_flushed)2312 static int bch2_check_stripe_to_lru_ref(struct btree_trans *trans,
2313 struct bkey_s_c k,
2314 struct bkey_buf *last_flushed)
2315 {
2316 if (k.k->type != KEY_TYPE_stripe)
2317 return 0;
2318
2319 struct bkey_s_c_stripe s = bkey_s_c_to_stripe(k);
2320
2321 u64 lru_idx = stripe_lru_pos(s.v);
2322 if (lru_idx) {
2323 int ret = bch2_lru_check_set(trans, BCH_LRU_STRIPE_FRAGMENTATION,
2324 k.k->p.offset, lru_idx, k, last_flushed);
2325 if (ret)
2326 return ret;
2327 }
2328 return 0;
2329 }
2330
bch2_check_stripe_to_lru_refs(struct bch_fs * c)2331 int bch2_check_stripe_to_lru_refs(struct bch_fs *c)
2332 {
2333 struct bkey_buf last_flushed;
2334
2335 bch2_bkey_buf_init(&last_flushed);
2336 bkey_init(&last_flushed.k->k);
2337
2338 int ret = bch2_trans_run(c,
2339 for_each_btree_key_commit(trans, iter, BTREE_ID_stripes,
2340 POS_MIN, BTREE_ITER_prefetch, k,
2341 NULL, NULL, BCH_TRANS_COMMIT_no_enospc,
2342 bch2_check_stripe_to_lru_ref(trans, k, &last_flushed)));
2343
2344 bch2_bkey_buf_exit(&last_flushed, c);
2345 bch_err_fn(c, ret);
2346 return ret;
2347 }
2348