1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/jiffies.h>
12 #include <linux/pci.h>
13 #include <linux/iommu.h>
14 #include <linux/iopoll.h>
15 #include <linux/irq.h>
16 #include <linux/log2.h>
17 #include <linux/module.h>
18 #include <linux/moduleparam.h>
19 #include <linux/slab.h>
20 #include <linux/string_choices.h>
21 #include <linux/dmi.h>
22 #include <linux/dma-mapping.h>
23 
24 #include "xhci.h"
25 #include "xhci-trace.h"
26 #include "xhci-debugfs.h"
27 #include "xhci-dbgcap.h"
28 
29 #define DRIVER_AUTHOR "Sarah Sharp"
30 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
31 
32 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
33 
34 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
35 static int link_quirk;
36 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
37 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
38 
39 static unsigned long long quirks;
40 module_param(quirks, ullong, S_IRUGO);
41 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
42 
td_on_ring(struct xhci_td * td,struct xhci_ring * ring)43 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
44 {
45 	struct xhci_segment *seg;
46 
47 	if (!td || !td->start_seg)
48 		return false;
49 
50 	xhci_for_each_ring_seg(ring->first_seg, seg) {
51 		if (seg == td->start_seg)
52 			return true;
53 	}
54 
55 	return false;
56 }
57 
58 /*
59  * xhci_handshake - spin reading hc until handshake completes or fails
60  * @ptr: address of hc register to be read
61  * @mask: bits to look at in result of read
62  * @done: value of those bits when handshake succeeds
63  * @usec: timeout in microseconds
64  *
65  * Returns negative errno, or zero on success
66  *
67  * Success happens when the "mask" bits have the specified value (hardware
68  * handshake done).  There are two failure modes:  "usec" have passed (major
69  * hardware flakeout), or the register reads as all-ones (hardware removed).
70  */
xhci_handshake(void __iomem * ptr,u32 mask,u32 done,u64 timeout_us)71 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, u64 timeout_us)
72 {
73 	u32	result;
74 	int	ret;
75 
76 	ret = readl_poll_timeout_atomic(ptr, result,
77 					(result & mask) == done ||
78 					result == U32_MAX,
79 					1, timeout_us);
80 	if (result == U32_MAX)		/* card removed */
81 		return -ENODEV;
82 
83 	return ret;
84 }
85 
86 /*
87  * xhci_handshake_check_state - same as xhci_handshake but takes an additional
88  * exit_state parameter, and bails out with an error immediately when xhc_state
89  * has exit_state flag set.
90  */
xhci_handshake_check_state(struct xhci_hcd * xhci,void __iomem * ptr,u32 mask,u32 done,int usec,unsigned int exit_state)91 int xhci_handshake_check_state(struct xhci_hcd *xhci, void __iomem *ptr,
92 		u32 mask, u32 done, int usec, unsigned int exit_state)
93 {
94 	u32	result;
95 	int	ret;
96 
97 	ret = readl_poll_timeout_atomic(ptr, result,
98 				(result & mask) == done ||
99 				result == U32_MAX ||
100 				xhci->xhc_state & exit_state,
101 				1, usec);
102 
103 	if (result == U32_MAX || xhci->xhc_state & exit_state)
104 		return -ENODEV;
105 
106 	return ret;
107 }
108 
109 /*
110  * Disable interrupts and begin the xHCI halting process.
111  */
xhci_quiesce(struct xhci_hcd * xhci)112 void xhci_quiesce(struct xhci_hcd *xhci)
113 {
114 	u32 halted;
115 	u32 cmd;
116 	u32 mask;
117 
118 	mask = ~(XHCI_IRQS);
119 	halted = readl(&xhci->op_regs->status) & STS_HALT;
120 	if (!halted)
121 		mask &= ~CMD_RUN;
122 
123 	cmd = readl(&xhci->op_regs->command);
124 	cmd &= mask;
125 	writel(cmd, &xhci->op_regs->command);
126 }
127 
128 /*
129  * Force HC into halt state.
130  *
131  * Disable any IRQs and clear the run/stop bit.
132  * HC will complete any current and actively pipelined transactions, and
133  * should halt within 16 ms of the run/stop bit being cleared.
134  * Read HC Halted bit in the status register to see when the HC is finished.
135  */
xhci_halt(struct xhci_hcd * xhci)136 int xhci_halt(struct xhci_hcd *xhci)
137 {
138 	int ret;
139 
140 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
141 	xhci_quiesce(xhci);
142 
143 	ret = xhci_handshake(&xhci->op_regs->status,
144 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
145 	if (ret) {
146 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
147 		return ret;
148 	}
149 
150 	xhci->xhc_state |= XHCI_STATE_HALTED;
151 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
152 
153 	return ret;
154 }
155 
156 /*
157  * Set the run bit and wait for the host to be running.
158  */
xhci_start(struct xhci_hcd * xhci)159 int xhci_start(struct xhci_hcd *xhci)
160 {
161 	u32 temp;
162 	int ret;
163 
164 	temp = readl(&xhci->op_regs->command);
165 	temp |= (CMD_RUN);
166 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
167 			temp);
168 	writel(temp, &xhci->op_regs->command);
169 
170 	/*
171 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
172 	 * running.
173 	 */
174 	ret = xhci_handshake(&xhci->op_regs->status,
175 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
176 	if (ret == -ETIMEDOUT)
177 		xhci_err(xhci, "Host took too long to start, "
178 				"waited %u microseconds.\n",
179 				XHCI_MAX_HALT_USEC);
180 	if (!ret) {
181 		/* clear state flags. Including dying, halted or removing */
182 		xhci->xhc_state = 0;
183 		xhci->run_graceperiod = jiffies + msecs_to_jiffies(500);
184 	}
185 
186 	return ret;
187 }
188 
189 /*
190  * Reset a halted HC.
191  *
192  * This resets pipelines, timers, counters, state machines, etc.
193  * Transactions will be terminated immediately, and operational registers
194  * will be set to their defaults.
195  */
xhci_reset(struct xhci_hcd * xhci,u64 timeout_us)196 int xhci_reset(struct xhci_hcd *xhci, u64 timeout_us)
197 {
198 	u32 command;
199 	u32 state;
200 	int ret;
201 
202 	state = readl(&xhci->op_regs->status);
203 
204 	if (state == ~(u32)0) {
205 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
206 		return -ENODEV;
207 	}
208 
209 	if ((state & STS_HALT) == 0) {
210 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
211 		return 0;
212 	}
213 
214 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
215 	command = readl(&xhci->op_regs->command);
216 	command |= CMD_RESET;
217 	writel(command, &xhci->op_regs->command);
218 
219 	/* Existing Intel xHCI controllers require a delay of 1 mS,
220 	 * after setting the CMD_RESET bit, and before accessing any
221 	 * HC registers. This allows the HC to complete the
222 	 * reset operation and be ready for HC register access.
223 	 * Without this delay, the subsequent HC register access,
224 	 * may result in a system hang very rarely.
225 	 */
226 	if (xhci->quirks & XHCI_INTEL_HOST)
227 		udelay(1000);
228 
229 	ret = xhci_handshake_check_state(xhci, &xhci->op_regs->command,
230 				CMD_RESET, 0, timeout_us, XHCI_STATE_REMOVING);
231 	if (ret)
232 		return ret;
233 
234 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
235 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
236 
237 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
238 			 "Wait for controller to be ready for doorbell rings");
239 	/*
240 	 * xHCI cannot write to any doorbells or operational registers other
241 	 * than status until the "Controller Not Ready" flag is cleared.
242 	 */
243 	ret = xhci_handshake(&xhci->op_regs->status, STS_CNR, 0, timeout_us);
244 
245 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
246 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
247 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
248 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
249 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
250 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
251 
252 	return ret;
253 }
254 
xhci_zero_64b_regs(struct xhci_hcd * xhci)255 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
256 {
257 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
258 	struct iommu_domain *domain;
259 	int err, i;
260 	u64 val;
261 	u32 intrs;
262 
263 	/*
264 	 * Some Renesas controllers get into a weird state if they are
265 	 * reset while programmed with 64bit addresses (they will preserve
266 	 * the top half of the address in internal, non visible
267 	 * registers). You end up with half the address coming from the
268 	 * kernel, and the other half coming from the firmware. Also,
269 	 * changing the programming leads to extra accesses even if the
270 	 * controller is supposed to be halted. The controller ends up with
271 	 * a fatal fault, and is then ripe for being properly reset.
272 	 *
273 	 * Special care is taken to only apply this if the device is behind
274 	 * an iommu. Doing anything when there is no iommu is definitely
275 	 * unsafe...
276 	 */
277 	domain = iommu_get_domain_for_dev(dev);
278 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !domain ||
279 	    domain->type == IOMMU_DOMAIN_IDENTITY)
280 		return;
281 
282 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
283 
284 	/* Clear HSEIE so that faults do not get signaled */
285 	val = readl(&xhci->op_regs->command);
286 	val &= ~CMD_HSEIE;
287 	writel(val, &xhci->op_regs->command);
288 
289 	/* Clear HSE (aka FATAL) */
290 	val = readl(&xhci->op_regs->status);
291 	val |= STS_FATAL;
292 	writel(val, &xhci->op_regs->status);
293 
294 	/* Now zero the registers, and brace for impact */
295 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
296 	if (upper_32_bits(val))
297 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
298 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
299 	if (upper_32_bits(val))
300 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
301 
302 	intrs = min_t(u32, HCS_MAX_INTRS(xhci->hcs_params1),
303 		      ARRAY_SIZE(xhci->run_regs->ir_set));
304 
305 	for (i = 0; i < intrs; i++) {
306 		struct xhci_intr_reg __iomem *ir;
307 
308 		ir = &xhci->run_regs->ir_set[i];
309 		val = xhci_read_64(xhci, &ir->erst_base);
310 		if (upper_32_bits(val))
311 			xhci_write_64(xhci, 0, &ir->erst_base);
312 		val= xhci_read_64(xhci, &ir->erst_dequeue);
313 		if (upper_32_bits(val))
314 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
315 	}
316 
317 	/* Wait for the fault to appear. It will be cleared on reset */
318 	err = xhci_handshake(&xhci->op_regs->status,
319 			     STS_FATAL, STS_FATAL,
320 			     XHCI_MAX_HALT_USEC);
321 	if (!err)
322 		xhci_info(xhci, "Fault detected\n");
323 }
324 
xhci_enable_interrupter(struct xhci_interrupter * ir)325 int xhci_enable_interrupter(struct xhci_interrupter *ir)
326 {
327 	u32 iman;
328 
329 	if (!ir || !ir->ir_set)
330 		return -EINVAL;
331 
332 	iman = readl(&ir->ir_set->irq_pending);
333 	writel(ER_IRQ_ENABLE(iman), &ir->ir_set->irq_pending);
334 
335 	return 0;
336 }
337 
xhci_disable_interrupter(struct xhci_interrupter * ir)338 int xhci_disable_interrupter(struct xhci_interrupter *ir)
339 {
340 	u32 iman;
341 
342 	if (!ir || !ir->ir_set)
343 		return -EINVAL;
344 
345 	iman = readl(&ir->ir_set->irq_pending);
346 	writel(ER_IRQ_DISABLE(iman), &ir->ir_set->irq_pending);
347 
348 	return 0;
349 }
350 
351 /* interrupt moderation interval imod_interval in nanoseconds */
xhci_set_interrupter_moderation(struct xhci_interrupter * ir,u32 imod_interval)352 int xhci_set_interrupter_moderation(struct xhci_interrupter *ir,
353 				    u32 imod_interval)
354 {
355 	u32 imod;
356 
357 	if (!ir || !ir->ir_set || imod_interval > U16_MAX * 250)
358 		return -EINVAL;
359 
360 	imod = readl(&ir->ir_set->irq_control);
361 	imod &= ~ER_IRQ_INTERVAL_MASK;
362 	imod |= (imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
363 	writel(imod, &ir->ir_set->irq_control);
364 
365 	return 0;
366 }
367 
compliance_mode_recovery(struct timer_list * t)368 static void compliance_mode_recovery(struct timer_list *t)
369 {
370 	struct xhci_hcd *xhci;
371 	struct usb_hcd *hcd;
372 	struct xhci_hub *rhub;
373 	u32 temp;
374 	int i;
375 
376 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
377 	rhub = &xhci->usb3_rhub;
378 	hcd = rhub->hcd;
379 
380 	if (!hcd)
381 		return;
382 
383 	for (i = 0; i < rhub->num_ports; i++) {
384 		temp = readl(rhub->ports[i]->addr);
385 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
386 			/*
387 			 * Compliance Mode Detected. Letting USB Core
388 			 * handle the Warm Reset
389 			 */
390 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
391 					"Compliance mode detected->port %d",
392 					i + 1);
393 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
394 					"Attempting compliance mode recovery");
395 
396 			if (hcd->state == HC_STATE_SUSPENDED)
397 				usb_hcd_resume_root_hub(hcd);
398 
399 			usb_hcd_poll_rh_status(hcd);
400 		}
401 	}
402 
403 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
404 		mod_timer(&xhci->comp_mode_recovery_timer,
405 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
406 }
407 
408 /*
409  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
410  * that causes ports behind that hardware to enter compliance mode sometimes.
411  * The quirk creates a timer that polls every 2 seconds the link state of
412  * each host controller's port and recovers it by issuing a Warm reset
413  * if Compliance mode is detected, otherwise the port will become "dead" (no
414  * device connections or disconnections will be detected anymore). Becasue no
415  * status event is generated when entering compliance mode (per xhci spec),
416  * this quirk is needed on systems that have the failing hardware installed.
417  */
compliance_mode_recovery_timer_init(struct xhci_hcd * xhci)418 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
419 {
420 	xhci->port_status_u0 = 0;
421 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
422 		    0);
423 	xhci->comp_mode_recovery_timer.expires = jiffies +
424 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
425 
426 	add_timer(&xhci->comp_mode_recovery_timer);
427 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
428 			"Compliance mode recovery timer initialized");
429 }
430 
431 /*
432  * This function identifies the systems that have installed the SN65LVPE502CP
433  * USB3.0 re-driver and that need the Compliance Mode Quirk.
434  * Systems:
435  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
436  */
xhci_compliance_mode_recovery_timer_quirk_check(void)437 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
438 {
439 	const char *dmi_product_name, *dmi_sys_vendor;
440 
441 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
442 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
443 	if (!dmi_product_name || !dmi_sys_vendor)
444 		return false;
445 
446 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
447 		return false;
448 
449 	if (strstr(dmi_product_name, "Z420") ||
450 			strstr(dmi_product_name, "Z620") ||
451 			strstr(dmi_product_name, "Z820") ||
452 			strstr(dmi_product_name, "Z1 Workstation"))
453 		return true;
454 
455 	return false;
456 }
457 
xhci_all_ports_seen_u0(struct xhci_hcd * xhci)458 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
459 {
460 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
461 }
462 
463 
464 /*
465  * Initialize memory for HCD and xHC (one-time init).
466  *
467  * Program the PAGESIZE register, initialize the device context array, create
468  * device contexts (?), set up a command ring segment (or two?), create event
469  * ring (one for now).
470  */
xhci_init(struct usb_hcd * hcd)471 static int xhci_init(struct usb_hcd *hcd)
472 {
473 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
474 	int retval;
475 
476 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
477 	spin_lock_init(&xhci->lock);
478 
479 	retval = xhci_mem_init(xhci, GFP_KERNEL);
480 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
481 
482 	/* Initializing Compliance Mode Recovery Data If Needed */
483 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
484 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
485 		compliance_mode_recovery_timer_init(xhci);
486 	}
487 
488 	return retval;
489 }
490 
491 /*-------------------------------------------------------------------------*/
492 
xhci_run_finished(struct xhci_hcd * xhci)493 static int xhci_run_finished(struct xhci_hcd *xhci)
494 {
495 	struct xhci_interrupter *ir = xhci->interrupters[0];
496 	unsigned long	flags;
497 	u32		temp;
498 
499 	/*
500 	 * Enable interrupts before starting the host (xhci 4.2 and 5.5.2).
501 	 * Protect the short window before host is running with a lock
502 	 */
503 	spin_lock_irqsave(&xhci->lock, flags);
504 
505 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable interrupts");
506 	temp = readl(&xhci->op_regs->command);
507 	temp |= (CMD_EIE);
508 	writel(temp, &xhci->op_regs->command);
509 
510 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Enable primary interrupter");
511 	xhci_enable_interrupter(ir);
512 
513 	if (xhci_start(xhci)) {
514 		xhci_halt(xhci);
515 		spin_unlock_irqrestore(&xhci->lock, flags);
516 		return -ENODEV;
517 	}
518 
519 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
520 
521 	if (xhci->quirks & XHCI_NEC_HOST)
522 		xhci_ring_cmd_db(xhci);
523 
524 	spin_unlock_irqrestore(&xhci->lock, flags);
525 
526 	return 0;
527 }
528 
529 /*
530  * Start the HC after it was halted.
531  *
532  * This function is called by the USB core when the HC driver is added.
533  * Its opposite is xhci_stop().
534  *
535  * xhci_init() must be called once before this function can be called.
536  * Reset the HC, enable device slot contexts, program DCBAAP, and
537  * set command ring pointer and event ring pointer.
538  *
539  * Setup MSI-X vectors and enable interrupts.
540  */
xhci_run(struct usb_hcd * hcd)541 int xhci_run(struct usb_hcd *hcd)
542 {
543 	u64 temp_64;
544 	int ret;
545 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
546 	struct xhci_interrupter *ir = xhci->interrupters[0];
547 	/* Start the xHCI host controller running only after the USB 2.0 roothub
548 	 * is setup.
549 	 */
550 
551 	hcd->uses_new_polling = 1;
552 	if (hcd->msi_enabled)
553 		ir->ip_autoclear = true;
554 
555 	if (!usb_hcd_is_primary_hcd(hcd))
556 		return xhci_run_finished(xhci);
557 
558 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
559 
560 	temp_64 = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
561 	temp_64 &= ERST_PTR_MASK;
562 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
563 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
564 
565 	xhci_set_interrupter_moderation(ir, xhci->imod_interval);
566 
567 	if (xhci->quirks & XHCI_NEC_HOST) {
568 		struct xhci_command *command;
569 
570 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
571 		if (!command)
572 			return -ENOMEM;
573 
574 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
575 				TRB_TYPE(TRB_NEC_GET_FW));
576 		if (ret)
577 			xhci_free_command(xhci, command);
578 	}
579 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580 			"Finished %s for main hcd", __func__);
581 
582 	xhci_create_dbc_dev(xhci);
583 
584 	xhci_debugfs_init(xhci);
585 
586 	if (xhci_has_one_roothub(xhci))
587 		return xhci_run_finished(xhci);
588 
589 	set_bit(HCD_FLAG_DEFER_RH_REGISTER, &hcd->flags);
590 
591 	return 0;
592 }
593 EXPORT_SYMBOL_GPL(xhci_run);
594 
595 /*
596  * Stop xHCI driver.
597  *
598  * This function is called by the USB core when the HC driver is removed.
599  * Its opposite is xhci_run().
600  *
601  * Disable device contexts, disable IRQs, and quiesce the HC.
602  * Reset the HC, finish any completed transactions, and cleanup memory.
603  */
xhci_stop(struct usb_hcd * hcd)604 void xhci_stop(struct usb_hcd *hcd)
605 {
606 	u32 temp;
607 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
608 	struct xhci_interrupter *ir = xhci->interrupters[0];
609 
610 	mutex_lock(&xhci->mutex);
611 
612 	/* Only halt host and free memory after both hcds are removed */
613 	if (!usb_hcd_is_primary_hcd(hcd)) {
614 		mutex_unlock(&xhci->mutex);
615 		return;
616 	}
617 
618 	xhci_remove_dbc_dev(xhci);
619 
620 	spin_lock_irq(&xhci->lock);
621 	xhci->xhc_state |= XHCI_STATE_HALTED;
622 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
623 	xhci_halt(xhci);
624 	xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
625 	spin_unlock_irq(&xhci->lock);
626 
627 	/* Deleting Compliance Mode Recovery Timer */
628 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
629 			(!(xhci_all_ports_seen_u0(xhci)))) {
630 		timer_delete_sync(&xhci->comp_mode_recovery_timer);
631 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
632 				"%s: compliance mode recovery timer deleted",
633 				__func__);
634 	}
635 
636 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
637 		usb_amd_dev_put();
638 
639 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
640 			"// Disabling event ring interrupts");
641 	temp = readl(&xhci->op_regs->status);
642 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
643 	xhci_disable_interrupter(ir);
644 
645 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
646 	xhci_mem_cleanup(xhci);
647 	xhci_debugfs_exit(xhci);
648 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
649 			"xhci_stop completed - status = %x",
650 			readl(&xhci->op_regs->status));
651 	mutex_unlock(&xhci->mutex);
652 }
653 EXPORT_SYMBOL_GPL(xhci_stop);
654 
655 /*
656  * Shutdown HC (not bus-specific)
657  *
658  * This is called when the machine is rebooting or halting.  We assume that the
659  * machine will be powered off, and the HC's internal state will be reset.
660  * Don't bother to free memory.
661  *
662  * This will only ever be called with the main usb_hcd (the USB3 roothub).
663  */
xhci_shutdown(struct usb_hcd * hcd)664 void xhci_shutdown(struct usb_hcd *hcd)
665 {
666 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
667 
668 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
669 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
670 
671 	/* Don't poll the roothubs after shutdown. */
672 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
673 			__func__, hcd->self.busnum);
674 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
675 	timer_delete_sync(&hcd->rh_timer);
676 
677 	if (xhci->shared_hcd) {
678 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
679 		timer_delete_sync(&xhci->shared_hcd->rh_timer);
680 	}
681 
682 	spin_lock_irq(&xhci->lock);
683 	xhci_halt(xhci);
684 
685 	/*
686 	 * Workaround for spurious wakeps at shutdown with HSW, and for boot
687 	 * firmware delay in ADL-P PCH if port are left in U3 at shutdown
688 	 */
689 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP ||
690 	    xhci->quirks & XHCI_RESET_TO_DEFAULT)
691 		xhci_reset(xhci, XHCI_RESET_SHORT_USEC);
692 
693 	spin_unlock_irq(&xhci->lock);
694 
695 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
696 			"xhci_shutdown completed - status = %x",
697 			readl(&xhci->op_regs->status));
698 }
699 EXPORT_SYMBOL_GPL(xhci_shutdown);
700 
701 #ifdef CONFIG_PM
xhci_save_registers(struct xhci_hcd * xhci)702 static void xhci_save_registers(struct xhci_hcd *xhci)
703 {
704 	struct xhci_interrupter *ir;
705 	unsigned int i;
706 
707 	xhci->s3.command = readl(&xhci->op_regs->command);
708 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
709 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
710 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
711 
712 	/* save both primary and all secondary interrupters */
713 	/* fixme, shold we lock  to prevent race with remove secondary interrupter? */
714 	for (i = 0; i < xhci->max_interrupters; i++) {
715 		ir = xhci->interrupters[i];
716 		if (!ir)
717 			continue;
718 
719 		ir->s3_erst_size = readl(&ir->ir_set->erst_size);
720 		ir->s3_erst_base = xhci_read_64(xhci, &ir->ir_set->erst_base);
721 		ir->s3_erst_dequeue = xhci_read_64(xhci, &ir->ir_set->erst_dequeue);
722 		ir->s3_irq_pending = readl(&ir->ir_set->irq_pending);
723 		ir->s3_irq_control = readl(&ir->ir_set->irq_control);
724 	}
725 }
726 
xhci_restore_registers(struct xhci_hcd * xhci)727 static void xhci_restore_registers(struct xhci_hcd *xhci)
728 {
729 	struct xhci_interrupter *ir;
730 	unsigned int i;
731 
732 	writel(xhci->s3.command, &xhci->op_regs->command);
733 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
734 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
735 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
736 
737 	/* FIXME should we lock to protect against freeing of interrupters */
738 	for (i = 0; i < xhci->max_interrupters; i++) {
739 		ir = xhci->interrupters[i];
740 		if (!ir)
741 			continue;
742 
743 		writel(ir->s3_erst_size, &ir->ir_set->erst_size);
744 		xhci_write_64(xhci, ir->s3_erst_base, &ir->ir_set->erst_base);
745 		xhci_write_64(xhci, ir->s3_erst_dequeue, &ir->ir_set->erst_dequeue);
746 		writel(ir->s3_irq_pending, &ir->ir_set->irq_pending);
747 		writel(ir->s3_irq_control, &ir->ir_set->irq_control);
748 	}
749 }
750 
xhci_set_cmd_ring_deq(struct xhci_hcd * xhci)751 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
752 {
753 	u64	val_64;
754 
755 	/* step 2: initialize command ring buffer */
756 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
757 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
758 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
759 				      xhci->cmd_ring->dequeue) &
760 		 (u64) ~CMD_RING_RSVD_BITS) |
761 		xhci->cmd_ring->cycle_state;
762 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
763 			"// Setting command ring address to 0x%llx",
764 			(long unsigned long) val_64);
765 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
766 }
767 
768 /*
769  * The whole command ring must be cleared to zero when we suspend the host.
770  *
771  * The host doesn't save the command ring pointer in the suspend well, so we
772  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
773  * aligned, because of the reserved bits in the command ring dequeue pointer
774  * register.  Therefore, we can't just set the dequeue pointer back in the
775  * middle of the ring (TRBs are 16-byte aligned).
776  */
xhci_clear_command_ring(struct xhci_hcd * xhci)777 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
778 {
779 	struct xhci_ring *ring;
780 	struct xhci_segment *seg;
781 
782 	ring = xhci->cmd_ring;
783 	xhci_for_each_ring_seg(ring->first_seg, seg) {
784 		/* erase all TRBs before the link */
785 		memset(seg->trbs, 0, sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
786 		/* clear link cycle bit */
787 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &= cpu_to_le32(~TRB_CYCLE);
788 	}
789 
790 	xhci_initialize_ring_info(ring);
791 	/*
792 	 * Reset the hardware dequeue pointer.
793 	 * Yes, this will need to be re-written after resume, but we're paranoid
794 	 * and want to make sure the hardware doesn't access bogus memory
795 	 * because, say, the BIOS or an SMI started the host without changing
796 	 * the command ring pointers.
797 	 */
798 	xhci_set_cmd_ring_deq(xhci);
799 }
800 
801 /*
802  * Disable port wake bits if do_wakeup is not set.
803  *
804  * Also clear a possible internal port wake state left hanging for ports that
805  * detected termination but never successfully enumerated (trained to 0U).
806  * Internal wake causes immediate xHCI wake after suspend. PORT_CSC write done
807  * at enumeration clears this wake, force one here as well for unconnected ports
808  */
809 
xhci_disable_hub_port_wake(struct xhci_hcd * xhci,struct xhci_hub * rhub,bool do_wakeup)810 static void xhci_disable_hub_port_wake(struct xhci_hcd *xhci,
811 				       struct xhci_hub *rhub,
812 				       bool do_wakeup)
813 {
814 	unsigned long flags;
815 	u32 t1, t2, portsc;
816 	int i;
817 
818 	spin_lock_irqsave(&xhci->lock, flags);
819 
820 	for (i = 0; i < rhub->num_ports; i++) {
821 		portsc = readl(rhub->ports[i]->addr);
822 		t1 = xhci_port_state_to_neutral(portsc);
823 		t2 = t1;
824 
825 		/* clear wake bits if do_wake is not set */
826 		if (!do_wakeup)
827 			t2 &= ~PORT_WAKE_BITS;
828 
829 		/* Don't touch csc bit if connected or connect change is set */
830 		if (!(portsc & (PORT_CSC | PORT_CONNECT)))
831 			t2 |= PORT_CSC;
832 
833 		if (t1 != t2) {
834 			writel(t2, rhub->ports[i]->addr);
835 			xhci_dbg(xhci, "config port %d-%d wake bits, portsc: 0x%x, write: 0x%x\n",
836 				 rhub->hcd->self.busnum, i + 1, portsc, t2);
837 		}
838 	}
839 	spin_unlock_irqrestore(&xhci->lock, flags);
840 }
841 
xhci_pending_portevent(struct xhci_hcd * xhci)842 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
843 {
844 	struct xhci_port	**ports;
845 	int			port_index;
846 	u32			status;
847 	u32			portsc;
848 
849 	status = readl(&xhci->op_regs->status);
850 	if (status & STS_EINT)
851 		return true;
852 	/*
853 	 * Checking STS_EINT is not enough as there is a lag between a change
854 	 * bit being set and the Port Status Change Event that it generated
855 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
856 	 */
857 
858 	port_index = xhci->usb2_rhub.num_ports;
859 	ports = xhci->usb2_rhub.ports;
860 	while (port_index--) {
861 		portsc = readl(ports[port_index]->addr);
862 		if (portsc & PORT_CHANGE_MASK ||
863 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
864 			return true;
865 	}
866 	port_index = xhci->usb3_rhub.num_ports;
867 	ports = xhci->usb3_rhub.ports;
868 	while (port_index--) {
869 		portsc = readl(ports[port_index]->addr);
870 		if (portsc & (PORT_CHANGE_MASK | PORT_CAS) ||
871 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
872 			return true;
873 	}
874 	return false;
875 }
876 
877 /*
878  * Stop HC (not bus-specific)
879  *
880  * This is called when the machine transition into S3/S4 mode.
881  *
882  */
xhci_suspend(struct xhci_hcd * xhci,bool do_wakeup)883 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
884 {
885 	int			rc = 0;
886 	unsigned int		delay = XHCI_MAX_HALT_USEC * 2;
887 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
888 	u32			command;
889 	u32			res;
890 
891 	if (!hcd->state)
892 		return 0;
893 
894 	if (hcd->state != HC_STATE_SUSPENDED ||
895 	    (xhci->shared_hcd && xhci->shared_hcd->state != HC_STATE_SUSPENDED))
896 		return -EINVAL;
897 
898 	/* Clear root port wake on bits if wakeup not allowed. */
899 	xhci_disable_hub_port_wake(xhci, &xhci->usb3_rhub, do_wakeup);
900 	xhci_disable_hub_port_wake(xhci, &xhci->usb2_rhub, do_wakeup);
901 
902 	if (!HCD_HW_ACCESSIBLE(hcd))
903 		return 0;
904 
905 	xhci_dbc_suspend(xhci);
906 
907 	/* Don't poll the roothubs on bus suspend. */
908 	xhci_dbg(xhci, "%s: stopping usb%d port polling.\n",
909 		 __func__, hcd->self.busnum);
910 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
911 	timer_delete_sync(&hcd->rh_timer);
912 	if (xhci->shared_hcd) {
913 		clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
914 		timer_delete_sync(&xhci->shared_hcd->rh_timer);
915 	}
916 
917 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
918 		usleep_range(1000, 1500);
919 
920 	spin_lock_irq(&xhci->lock);
921 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
922 	if (xhci->shared_hcd)
923 		clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
924 	/* step 1: stop endpoint */
925 	/* skipped assuming that port suspend has done */
926 
927 	/* step 2: clear Run/Stop bit */
928 	command = readl(&xhci->op_regs->command);
929 	command &= ~CMD_RUN;
930 	writel(command, &xhci->op_regs->command);
931 
932 	/* Some chips from Fresco Logic need an extraordinary delay */
933 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
934 
935 	if (xhci_handshake(&xhci->op_regs->status,
936 		      STS_HALT, STS_HALT, delay)) {
937 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
938 		spin_unlock_irq(&xhci->lock);
939 		return -ETIMEDOUT;
940 	}
941 	xhci_clear_command_ring(xhci);
942 
943 	/* step 3: save registers */
944 	xhci_save_registers(xhci);
945 
946 	/* step 4: set CSS flag */
947 	command = readl(&xhci->op_regs->command);
948 	command |= CMD_CSS;
949 	writel(command, &xhci->op_regs->command);
950 	xhci->broken_suspend = 0;
951 	if (xhci_handshake(&xhci->op_regs->status,
952 				STS_SAVE, 0, 20 * 1000)) {
953 	/*
954 	 * AMD SNPS xHC 3.0 occasionally does not clear the
955 	 * SSS bit of USBSTS and when driver tries to poll
956 	 * to see if the xHC clears BIT(8) which never happens
957 	 * and driver assumes that controller is not responding
958 	 * and times out. To workaround this, its good to check
959 	 * if SRE and HCE bits are not set (as per xhci
960 	 * Section 5.4.2) and bypass the timeout.
961 	 */
962 		res = readl(&xhci->op_regs->status);
963 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
964 		    (((res & STS_SRE) == 0) &&
965 				((res & STS_HCE) == 0))) {
966 			xhci->broken_suspend = 1;
967 		} else {
968 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
969 			spin_unlock_irq(&xhci->lock);
970 			return -ETIMEDOUT;
971 		}
972 	}
973 	spin_unlock_irq(&xhci->lock);
974 
975 	/*
976 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
977 	 * is about to be suspended.
978 	 */
979 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
980 			(!(xhci_all_ports_seen_u0(xhci)))) {
981 		timer_delete_sync(&xhci->comp_mode_recovery_timer);
982 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
983 				"%s: compliance mode recovery timer deleted",
984 				__func__);
985 	}
986 
987 	return rc;
988 }
989 EXPORT_SYMBOL_GPL(xhci_suspend);
990 
991 /*
992  * start xHC (not bus-specific)
993  *
994  * This is called when the machine transition from S3/S4 mode.
995  *
996  */
xhci_resume(struct xhci_hcd * xhci,bool power_lost,bool is_auto_resume)997 int xhci_resume(struct xhci_hcd *xhci, bool power_lost, bool is_auto_resume)
998 {
999 	u32			command, temp = 0;
1000 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1001 	int			retval = 0;
1002 	bool			comp_timer_running = false;
1003 	bool			pending_portevent = false;
1004 	bool			suspended_usb3_devs = false;
1005 
1006 	if (!hcd->state)
1007 		return 0;
1008 
1009 	/* Wait a bit if either of the roothubs need to settle from the
1010 	 * transition into bus suspend.
1011 	 */
1012 
1013 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1014 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1015 		msleep(100);
1016 
1017 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1018 	if (xhci->shared_hcd)
1019 		set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1020 
1021 	spin_lock_irq(&xhci->lock);
1022 
1023 	if (xhci->quirks & XHCI_RESET_ON_RESUME || xhci->broken_suspend)
1024 		power_lost = true;
1025 
1026 	if (!power_lost) {
1027 		/*
1028 		 * Some controllers might lose power during suspend, so wait
1029 		 * for controller not ready bit to clear, just as in xHC init.
1030 		 */
1031 		retval = xhci_handshake(&xhci->op_regs->status,
1032 					STS_CNR, 0, 10 * 1000 * 1000);
1033 		if (retval) {
1034 			xhci_warn(xhci, "Controller not ready at resume %d\n",
1035 				  retval);
1036 			spin_unlock_irq(&xhci->lock);
1037 			return retval;
1038 		}
1039 		/* step 1: restore register */
1040 		xhci_restore_registers(xhci);
1041 		/* step 2: initialize command ring buffer */
1042 		xhci_set_cmd_ring_deq(xhci);
1043 		/* step 3: restore state and start state*/
1044 		/* step 3: set CRS flag */
1045 		command = readl(&xhci->op_regs->command);
1046 		command |= CMD_CRS;
1047 		writel(command, &xhci->op_regs->command);
1048 		/*
1049 		 * Some controllers take up to 55+ ms to complete the controller
1050 		 * restore so setting the timeout to 100ms. Xhci specification
1051 		 * doesn't mention any timeout value.
1052 		 */
1053 		if (xhci_handshake(&xhci->op_regs->status,
1054 			      STS_RESTORE, 0, 100 * 1000)) {
1055 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1056 			spin_unlock_irq(&xhci->lock);
1057 			return -ETIMEDOUT;
1058 		}
1059 	}
1060 
1061 	temp = readl(&xhci->op_regs->status);
1062 
1063 	/* re-initialize the HC on Restore Error, or Host Controller Error */
1064 	if ((temp & (STS_SRE | STS_HCE)) &&
1065 	    !(xhci->xhc_state & XHCI_STATE_REMOVING)) {
1066 		if (!power_lost)
1067 			xhci_warn(xhci, "xHC error in resume, USBSTS 0x%x, Reinit\n", temp);
1068 		power_lost = true;
1069 	}
1070 
1071 	if (power_lost) {
1072 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1073 				!(xhci_all_ports_seen_u0(xhci))) {
1074 			timer_delete_sync(&xhci->comp_mode_recovery_timer);
1075 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1076 				"Compliance Mode Recovery Timer deleted!");
1077 		}
1078 
1079 		/* Let the USB core know _both_ roothubs lost power. */
1080 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1081 		if (xhci->shared_hcd)
1082 			usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1083 
1084 		xhci_dbg(xhci, "Stop HCD\n");
1085 		xhci_halt(xhci);
1086 		xhci_zero_64b_regs(xhci);
1087 		retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
1088 		spin_unlock_irq(&xhci->lock);
1089 		if (retval)
1090 			return retval;
1091 
1092 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1093 		temp = readl(&xhci->op_regs->status);
1094 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1095 		xhci_disable_interrupter(xhci->interrupters[0]);
1096 
1097 		xhci_dbg(xhci, "cleaning up memory\n");
1098 		xhci_mem_cleanup(xhci);
1099 		xhci_debugfs_exit(xhci);
1100 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1101 			    readl(&xhci->op_regs->status));
1102 
1103 		/* USB core calls the PCI reinit and start functions twice:
1104 		 * first with the primary HCD, and then with the secondary HCD.
1105 		 * If we don't do the same, the host will never be started.
1106 		 */
1107 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1108 		retval = xhci_init(hcd);
1109 		if (retval)
1110 			return retval;
1111 		comp_timer_running = true;
1112 
1113 		xhci_dbg(xhci, "Start the primary HCD\n");
1114 		retval = xhci_run(hcd);
1115 		if (!retval && xhci->shared_hcd) {
1116 			xhci_dbg(xhci, "Start the secondary HCD\n");
1117 			retval = xhci_run(xhci->shared_hcd);
1118 		}
1119 		if (retval)
1120 			return retval;
1121 		/*
1122 		 * Resume roothubs unconditionally as PORTSC change bits are not
1123 		 * immediately visible after xHC reset
1124 		 */
1125 		hcd->state = HC_STATE_SUSPENDED;
1126 
1127 		if (xhci->shared_hcd) {
1128 			xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1129 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1130 		}
1131 		usb_hcd_resume_root_hub(hcd);
1132 
1133 		goto done;
1134 	}
1135 
1136 	/* step 4: set Run/Stop bit */
1137 	command = readl(&xhci->op_regs->command);
1138 	command |= CMD_RUN;
1139 	writel(command, &xhci->op_regs->command);
1140 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1141 		  0, 250 * 1000);
1142 
1143 	/* step 5: walk topology and initialize portsc,
1144 	 * portpmsc and portli
1145 	 */
1146 	/* this is done in bus_resume */
1147 
1148 	/* step 6: restart each of the previously
1149 	 * Running endpoints by ringing their doorbells
1150 	 */
1151 
1152 	spin_unlock_irq(&xhci->lock);
1153 
1154 	xhci_dbc_resume(xhci);
1155 
1156 	if (retval == 0) {
1157 		/*
1158 		 * Resume roothubs only if there are pending events.
1159 		 * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1160 		 * the first wake signalling failed, give it that chance if
1161 		 * there are suspended USB 3 devices.
1162 		 */
1163 		if (xhci->usb3_rhub.bus_state.suspended_ports ||
1164 		    xhci->usb3_rhub.bus_state.bus_suspended)
1165 			suspended_usb3_devs = true;
1166 
1167 		pending_portevent = xhci_pending_portevent(xhci);
1168 
1169 		if (suspended_usb3_devs && !pending_portevent && is_auto_resume) {
1170 			msleep(120);
1171 			pending_portevent = xhci_pending_portevent(xhci);
1172 		}
1173 
1174 		if (pending_portevent) {
1175 			if (xhci->shared_hcd)
1176 				usb_hcd_resume_root_hub(xhci->shared_hcd);
1177 			usb_hcd_resume_root_hub(hcd);
1178 		}
1179 	}
1180 done:
1181 	/*
1182 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1183 	 * be re-initialized Always after a system resume. Ports are subject
1184 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1185 	 * ports have entered previously to U0 before system's suspension.
1186 	 */
1187 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1188 		compliance_mode_recovery_timer_init(xhci);
1189 
1190 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1191 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1192 
1193 	/* Re-enable port polling. */
1194 	xhci_dbg(xhci, "%s: starting usb%d port polling.\n",
1195 		 __func__, hcd->self.busnum);
1196 	if (xhci->shared_hcd) {
1197 		set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1198 		usb_hcd_poll_rh_status(xhci->shared_hcd);
1199 	}
1200 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1201 	usb_hcd_poll_rh_status(hcd);
1202 
1203 	return retval;
1204 }
1205 EXPORT_SYMBOL_GPL(xhci_resume);
1206 #endif	/* CONFIG_PM */
1207 
1208 /*-------------------------------------------------------------------------*/
1209 
xhci_map_temp_buffer(struct usb_hcd * hcd,struct urb * urb)1210 static int xhci_map_temp_buffer(struct usb_hcd *hcd, struct urb *urb)
1211 {
1212 	void *temp;
1213 	int ret = 0;
1214 	unsigned int buf_len;
1215 	enum dma_data_direction dir;
1216 
1217 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1218 	buf_len = urb->transfer_buffer_length;
1219 
1220 	temp = kzalloc_node(buf_len, GFP_ATOMIC,
1221 			    dev_to_node(hcd->self.sysdev));
1222 	if (!temp)
1223 		return -ENOMEM;
1224 
1225 	if (usb_urb_dir_out(urb))
1226 		sg_pcopy_to_buffer(urb->sg, urb->num_sgs,
1227 				   temp, buf_len, 0);
1228 
1229 	urb->transfer_buffer = temp;
1230 	urb->transfer_dma = dma_map_single(hcd->self.sysdev,
1231 					   urb->transfer_buffer,
1232 					   urb->transfer_buffer_length,
1233 					   dir);
1234 
1235 	if (dma_mapping_error(hcd->self.sysdev,
1236 			      urb->transfer_dma)) {
1237 		ret = -EAGAIN;
1238 		kfree(temp);
1239 	} else {
1240 		urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1241 	}
1242 
1243 	return ret;
1244 }
1245 
xhci_urb_temp_buffer_required(struct usb_hcd * hcd,struct urb * urb)1246 static bool xhci_urb_temp_buffer_required(struct usb_hcd *hcd,
1247 					  struct urb *urb)
1248 {
1249 	bool ret = false;
1250 	unsigned int i;
1251 	unsigned int len = 0;
1252 	unsigned int trb_size;
1253 	unsigned int max_pkt;
1254 	struct scatterlist *sg;
1255 	struct scatterlist *tail_sg;
1256 
1257 	tail_sg = urb->sg;
1258 	max_pkt = usb_endpoint_maxp(&urb->ep->desc);
1259 
1260 	if (!urb->num_sgs)
1261 		return ret;
1262 
1263 	if (urb->dev->speed >= USB_SPEED_SUPER)
1264 		trb_size = TRB_CACHE_SIZE_SS;
1265 	else
1266 		trb_size = TRB_CACHE_SIZE_HS;
1267 
1268 	if (urb->transfer_buffer_length != 0 &&
1269 	    !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1270 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
1271 			len = len + sg->length;
1272 			if (i > trb_size - 2) {
1273 				len = len - tail_sg->length;
1274 				if (len < max_pkt) {
1275 					ret = true;
1276 					break;
1277 				}
1278 
1279 				tail_sg = sg_next(tail_sg);
1280 			}
1281 		}
1282 	}
1283 	return ret;
1284 }
1285 
xhci_unmap_temp_buf(struct usb_hcd * hcd,struct urb * urb)1286 static void xhci_unmap_temp_buf(struct usb_hcd *hcd, struct urb *urb)
1287 {
1288 	unsigned int len;
1289 	unsigned int buf_len;
1290 	enum dma_data_direction dir;
1291 
1292 	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1293 
1294 	buf_len = urb->transfer_buffer_length;
1295 
1296 	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1297 	    (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1298 		dma_unmap_single(hcd->self.sysdev,
1299 				 urb->transfer_dma,
1300 				 urb->transfer_buffer_length,
1301 				 dir);
1302 
1303 	if (usb_urb_dir_in(urb)) {
1304 		len = sg_pcopy_from_buffer(urb->sg, urb->num_sgs,
1305 					   urb->transfer_buffer,
1306 					   buf_len,
1307 					   0);
1308 		if (len != buf_len) {
1309 			xhci_dbg(hcd_to_xhci(hcd),
1310 				 "Copy from tmp buf to urb sg list failed\n");
1311 			urb->actual_length = len;
1312 		}
1313 	}
1314 	urb->transfer_flags &= ~URB_DMA_MAP_SINGLE;
1315 	kfree(urb->transfer_buffer);
1316 	urb->transfer_buffer = NULL;
1317 }
1318 
1319 /*
1320  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1321  * we'll copy the actual data into the TRB address register. This is limited to
1322  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1323  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1324  */
xhci_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1325 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1326 				gfp_t mem_flags)
1327 {
1328 	struct xhci_hcd *xhci;
1329 
1330 	xhci = hcd_to_xhci(hcd);
1331 
1332 	if (xhci_urb_suitable_for_idt(urb))
1333 		return 0;
1334 
1335 	if (xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) {
1336 		if (xhci_urb_temp_buffer_required(hcd, urb))
1337 			return xhci_map_temp_buffer(hcd, urb);
1338 	}
1339 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1340 }
1341 
xhci_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1342 static void xhci_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1343 {
1344 	struct xhci_hcd *xhci;
1345 	bool unmap_temp_buf = false;
1346 
1347 	xhci = hcd_to_xhci(hcd);
1348 
1349 	if (urb->num_sgs && (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1350 		unmap_temp_buf = true;
1351 
1352 	if ((xhci->quirks & XHCI_SG_TRB_CACHE_SIZE_QUIRK) && unmap_temp_buf)
1353 		xhci_unmap_temp_buf(hcd, urb);
1354 	else
1355 		usb_hcd_unmap_urb_for_dma(hcd, urb);
1356 }
1357 
1358 /**
1359  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1360  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1361  * value to right shift 1 for the bitmask.
1362  *
1363  * Index  = (epnum * 2) + direction - 1,
1364  * where direction = 0 for OUT, 1 for IN.
1365  * For control endpoints, the IN index is used (OUT index is unused), so
1366  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1367  */
xhci_get_endpoint_index(struct usb_endpoint_descriptor * desc)1368 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1369 {
1370 	unsigned int index;
1371 	if (usb_endpoint_xfer_control(desc))
1372 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1373 	else
1374 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1375 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1376 	return index;
1377 }
1378 EXPORT_SYMBOL_GPL(xhci_get_endpoint_index);
1379 
1380 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1381  * address from the XHCI endpoint index.
1382  */
xhci_get_endpoint_address(unsigned int ep_index)1383 static unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1384 {
1385 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1386 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1387 	return direction | number;
1388 }
1389 
1390 /* Find the flag for this endpoint (for use in the control context).  Use the
1391  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1392  * bit 1, etc.
1393  */
xhci_get_endpoint_flag(struct usb_endpoint_descriptor * desc)1394 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1395 {
1396 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1397 }
1398 
1399 /* Compute the last valid endpoint context index.  Basically, this is the
1400  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1401  * we find the most significant bit set in the added contexts flags.
1402  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1403  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1404  */
xhci_last_valid_endpoint(u32 added_ctxs)1405 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1406 {
1407 	return fls(added_ctxs) - 1;
1408 }
1409 
1410 /* Returns 1 if the arguments are OK;
1411  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1412  */
xhci_check_args(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep,int check_ep,bool check_virt_dev,const char * func)1413 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1414 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1415 		const char *func) {
1416 	struct xhci_hcd	*xhci;
1417 	struct xhci_virt_device	*virt_dev;
1418 
1419 	if (!hcd || (check_ep && !ep) || !udev) {
1420 		pr_debug("xHCI %s called with invalid args\n", func);
1421 		return -EINVAL;
1422 	}
1423 	if (!udev->parent) {
1424 		pr_debug("xHCI %s called for root hub\n", func);
1425 		return 0;
1426 	}
1427 
1428 	xhci = hcd_to_xhci(hcd);
1429 	if (check_virt_dev) {
1430 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1431 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1432 					func);
1433 			return -EINVAL;
1434 		}
1435 
1436 		virt_dev = xhci->devs[udev->slot_id];
1437 		if (virt_dev->udev != udev) {
1438 			xhci_dbg(xhci, "xHCI %s called with udev and "
1439 					  "virt_dev does not match\n", func);
1440 			return -EINVAL;
1441 		}
1442 	}
1443 
1444 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1445 		return -ENODEV;
1446 
1447 	return 1;
1448 }
1449 
1450 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1451 		struct usb_device *udev, struct xhci_command *command,
1452 		bool ctx_change, bool must_succeed);
1453 
1454 /*
1455  * Full speed devices may have a max packet size greater than 8 bytes, but the
1456  * USB core doesn't know that until it reads the first 8 bytes of the
1457  * descriptor.  If the usb_device's max packet size changes after that point,
1458  * we need to issue an evaluate context command and wait on it.
1459  */
xhci_check_ep0_maxpacket(struct xhci_hcd * xhci,struct xhci_virt_device * vdev)1460 static int xhci_check_ep0_maxpacket(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
1461 {
1462 	struct xhci_input_control_ctx *ctrl_ctx;
1463 	struct xhci_ep_ctx *ep_ctx;
1464 	struct xhci_command *command;
1465 	int max_packet_size;
1466 	int hw_max_packet_size;
1467 	int ret = 0;
1468 
1469 	ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, 0);
1470 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1471 	max_packet_size = usb_endpoint_maxp(&vdev->udev->ep0.desc);
1472 
1473 	if (hw_max_packet_size == max_packet_size)
1474 		return 0;
1475 
1476 	switch (max_packet_size) {
1477 	case 8: case 16: case 32: case 64: case 9:
1478 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1479 				"Max Packet Size for ep 0 changed.");
1480 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1481 				"Max packet size in usb_device = %d",
1482 				max_packet_size);
1483 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1484 				"Max packet size in xHCI HW = %d",
1485 				hw_max_packet_size);
1486 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1487 				"Issuing evaluate context command.");
1488 
1489 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1490 		if (!command)
1491 			return -ENOMEM;
1492 
1493 		command->in_ctx = vdev->in_ctx;
1494 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1495 		if (!ctrl_ctx) {
1496 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1497 					__func__);
1498 			ret = -ENOMEM;
1499 			break;
1500 		}
1501 		/* Set up the modified control endpoint 0 */
1502 		xhci_endpoint_copy(xhci, vdev->in_ctx, vdev->out_ctx, 0);
1503 
1504 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, 0);
1505 		ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1506 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1507 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1508 
1509 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1510 		ctrl_ctx->drop_flags = 0;
1511 
1512 		ret = xhci_configure_endpoint(xhci, vdev->udev, command,
1513 					      true, false);
1514 		/* Clean up the input context for later use by bandwidth functions */
1515 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1516 		break;
1517 	default:
1518 		dev_dbg(&vdev->udev->dev, "incorrect max packet size %d for ep0\n",
1519 			max_packet_size);
1520 		return -EINVAL;
1521 	}
1522 
1523 	kfree(command->completion);
1524 	kfree(command);
1525 
1526 	return ret;
1527 }
1528 
1529 /*
1530  * non-error returns are a promise to giveback() the urb later
1531  * we drop ownership so next owner (or urb unlink) can get it
1532  */
xhci_urb_enqueue(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1533 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1534 {
1535 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1536 	unsigned long flags;
1537 	int ret = 0;
1538 	unsigned int slot_id, ep_index;
1539 	unsigned int *ep_state;
1540 	struct urb_priv	*urb_priv;
1541 	int num_tds;
1542 
1543 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1544 
1545 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1546 		num_tds = urb->number_of_packets;
1547 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1548 	    urb->transfer_buffer_length > 0 &&
1549 	    urb->transfer_flags & URB_ZERO_PACKET &&
1550 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1551 		num_tds = 2;
1552 	else
1553 		num_tds = 1;
1554 
1555 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1556 	if (!urb_priv)
1557 		return -ENOMEM;
1558 
1559 	urb_priv->num_tds = num_tds;
1560 	urb_priv->num_tds_done = 0;
1561 	urb->hcpriv = urb_priv;
1562 
1563 	trace_xhci_urb_enqueue(urb);
1564 
1565 	spin_lock_irqsave(&xhci->lock, flags);
1566 
1567 	ret = xhci_check_args(hcd, urb->dev, urb->ep,
1568 			      true, true, __func__);
1569 	if (ret <= 0) {
1570 		ret = ret ? ret : -EINVAL;
1571 		goto free_priv;
1572 	}
1573 
1574 	slot_id = urb->dev->slot_id;
1575 
1576 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1577 		ret = -ESHUTDOWN;
1578 		goto free_priv;
1579 	}
1580 
1581 	if (xhci->devs[slot_id]->flags & VDEV_PORT_ERROR) {
1582 		xhci_dbg(xhci, "Can't queue urb, port error, link inactive\n");
1583 		ret = -ENODEV;
1584 		goto free_priv;
1585 	}
1586 
1587 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1588 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1589 			 urb->ep->desc.bEndpointAddress, urb);
1590 		ret = -ESHUTDOWN;
1591 		goto free_priv;
1592 	}
1593 
1594 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1595 
1596 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1597 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1598 			  *ep_state);
1599 		ret = -EINVAL;
1600 		goto free_priv;
1601 	}
1602 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1603 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1604 		ret = -EINVAL;
1605 		goto free_priv;
1606 	}
1607 
1608 	switch (usb_endpoint_type(&urb->ep->desc)) {
1609 
1610 	case USB_ENDPOINT_XFER_CONTROL:
1611 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1612 					 slot_id, ep_index);
1613 		break;
1614 	case USB_ENDPOINT_XFER_BULK:
1615 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1616 					 slot_id, ep_index);
1617 		break;
1618 	case USB_ENDPOINT_XFER_INT:
1619 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1620 				slot_id, ep_index);
1621 		break;
1622 	case USB_ENDPOINT_XFER_ISOC:
1623 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1624 				slot_id, ep_index);
1625 	}
1626 
1627 	if (ret) {
1628 free_priv:
1629 		xhci_urb_free_priv(urb_priv);
1630 		urb->hcpriv = NULL;
1631 	}
1632 	spin_unlock_irqrestore(&xhci->lock, flags);
1633 	return ret;
1634 }
1635 
1636 /*
1637  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1638  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1639  * should pick up where it left off in the TD, unless a Set Transfer Ring
1640  * Dequeue Pointer is issued.
1641  *
1642  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1643  * the ring.  Since the ring is a contiguous structure, they can't be physically
1644  * removed.  Instead, there are two options:
1645  *
1646  *  1) If the HC is in the middle of processing the URB to be canceled, we
1647  *     simply move the ring's dequeue pointer past those TRBs using the Set
1648  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1649  *     when drivers timeout on the last submitted URB and attempt to cancel.
1650  *
1651  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1652  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1653  *     HC will need to invalidate the any TRBs it has cached after the stop
1654  *     endpoint command, as noted in the xHCI 0.95 errata.
1655  *
1656  *  3) The TD may have completed by the time the Stop Endpoint Command
1657  *     completes, so software needs to handle that case too.
1658  *
1659  * This function should protect against the TD enqueueing code ringing the
1660  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1661  * It also needs to account for multiple cancellations on happening at the same
1662  * time for the same endpoint.
1663  *
1664  * Note that this function can be called in any context, or so says
1665  * usb_hcd_unlink_urb()
1666  */
xhci_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)1667 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1668 {
1669 	unsigned long flags;
1670 	int ret, i;
1671 	u32 temp;
1672 	struct xhci_hcd *xhci;
1673 	struct urb_priv	*urb_priv;
1674 	struct xhci_td *td;
1675 	unsigned int ep_index;
1676 	struct xhci_ring *ep_ring;
1677 	struct xhci_virt_ep *ep;
1678 	struct xhci_command *command;
1679 	struct xhci_virt_device *vdev;
1680 
1681 	xhci = hcd_to_xhci(hcd);
1682 	spin_lock_irqsave(&xhci->lock, flags);
1683 
1684 	trace_xhci_urb_dequeue(urb);
1685 
1686 	/* Make sure the URB hasn't completed or been unlinked already */
1687 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1688 	if (ret)
1689 		goto done;
1690 
1691 	/* give back URB now if we can't queue it for cancel */
1692 	vdev = xhci->devs[urb->dev->slot_id];
1693 	urb_priv = urb->hcpriv;
1694 	if (!vdev || !urb_priv)
1695 		goto err_giveback;
1696 
1697 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1698 	ep = &vdev->eps[ep_index];
1699 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1700 	if (!ep || !ep_ring)
1701 		goto err_giveback;
1702 
1703 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1704 	temp = readl(&xhci->op_regs->status);
1705 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1706 		xhci_hc_died(xhci);
1707 		goto done;
1708 	}
1709 
1710 	/*
1711 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1712 	 * make sure none of the ring related pointers in this URB private data
1713 	 * are touched, such as td_list, otherwise we overwrite freed data
1714 	 */
1715 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1716 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1717 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1718 			td = &urb_priv->td[i];
1719 			if (!list_empty(&td->cancelled_td_list))
1720 				list_del_init(&td->cancelled_td_list);
1721 		}
1722 		goto err_giveback;
1723 	}
1724 
1725 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1726 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1727 				"HC halted, freeing TD manually.");
1728 		for (i = urb_priv->num_tds_done;
1729 		     i < urb_priv->num_tds;
1730 		     i++) {
1731 			td = &urb_priv->td[i];
1732 			if (!list_empty(&td->td_list))
1733 				list_del_init(&td->td_list);
1734 			if (!list_empty(&td->cancelled_td_list))
1735 				list_del_init(&td->cancelled_td_list);
1736 		}
1737 		goto err_giveback;
1738 	}
1739 
1740 	i = urb_priv->num_tds_done;
1741 	if (i < urb_priv->num_tds)
1742 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1743 				"Cancel URB %p, dev %s, ep 0x%x, "
1744 				"starting at offset 0x%llx",
1745 				urb, urb->dev->devpath,
1746 				urb->ep->desc.bEndpointAddress,
1747 				(unsigned long long) xhci_trb_virt_to_dma(
1748 					urb_priv->td[i].start_seg,
1749 					urb_priv->td[i].start_trb));
1750 
1751 	for (; i < urb_priv->num_tds; i++) {
1752 		td = &urb_priv->td[i];
1753 		/* TD can already be on cancelled list if ep halted on it */
1754 		if (list_empty(&td->cancelled_td_list)) {
1755 			td->cancel_status = TD_DIRTY;
1756 			list_add_tail(&td->cancelled_td_list,
1757 				      &ep->cancelled_td_list);
1758 		}
1759 	}
1760 
1761 	/* These completion handlers will sort out cancelled TDs for us */
1762 	if (ep->ep_state & (EP_STOP_CMD_PENDING | EP_HALTED | SET_DEQ_PENDING)) {
1763 		xhci_dbg(xhci, "Not queuing Stop Endpoint on slot %d ep %d in state 0x%x\n",
1764 				urb->dev->slot_id, ep_index, ep->ep_state);
1765 		goto done;
1766 	}
1767 
1768 	/* In this case no commands are pending but the endpoint is stopped */
1769 	if (ep->ep_state & EP_CLEARING_TT) {
1770 		/* and cancelled TDs can be given back right away */
1771 		xhci_dbg(xhci, "Invalidating TDs instantly on slot %d ep %d in state 0x%x\n",
1772 				urb->dev->slot_id, ep_index, ep->ep_state);
1773 		xhci_process_cancelled_tds(ep);
1774 	} else {
1775 		/* Otherwise, queue a new Stop Endpoint command */
1776 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1777 		if (!command) {
1778 			ret = -ENOMEM;
1779 			goto done;
1780 		}
1781 		ep->stop_time = jiffies;
1782 		ep->ep_state |= EP_STOP_CMD_PENDING;
1783 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1784 					 ep_index, 0);
1785 		xhci_ring_cmd_db(xhci);
1786 	}
1787 done:
1788 	spin_unlock_irqrestore(&xhci->lock, flags);
1789 	return ret;
1790 
1791 err_giveback:
1792 	if (urb_priv)
1793 		xhci_urb_free_priv(urb_priv);
1794 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1795 	spin_unlock_irqrestore(&xhci->lock, flags);
1796 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1797 	return ret;
1798 }
1799 
1800 /* Drop an endpoint from a new bandwidth configuration for this device.
1801  * Only one call to this function is allowed per endpoint before
1802  * check_bandwidth() or reset_bandwidth() must be called.
1803  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1804  * add the endpoint to the schedule with possibly new parameters denoted by a
1805  * different endpoint descriptor in usb_host_endpoint.
1806  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1807  * not allowed.
1808  *
1809  * The USB core will not allow URBs to be queued to an endpoint that is being
1810  * disabled, so there's no need for mutual exclusion to protect
1811  * the xhci->devs[slot_id] structure.
1812  */
xhci_drop_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1813 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1814 		       struct usb_host_endpoint *ep)
1815 {
1816 	struct xhci_hcd *xhci;
1817 	struct xhci_container_ctx *in_ctx, *out_ctx;
1818 	struct xhci_input_control_ctx *ctrl_ctx;
1819 	unsigned int ep_index;
1820 	struct xhci_ep_ctx *ep_ctx;
1821 	u32 drop_flag;
1822 	u32 new_add_flags, new_drop_flags;
1823 	int ret;
1824 
1825 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1826 	if (ret <= 0)
1827 		return ret;
1828 	xhci = hcd_to_xhci(hcd);
1829 	if (xhci->xhc_state & XHCI_STATE_DYING)
1830 		return -ENODEV;
1831 
1832 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1833 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1834 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1835 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1836 				__func__, drop_flag);
1837 		return 0;
1838 	}
1839 
1840 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1841 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1842 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1843 	if (!ctrl_ctx) {
1844 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1845 				__func__);
1846 		return 0;
1847 	}
1848 
1849 	ep_index = xhci_get_endpoint_index(&ep->desc);
1850 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1851 	/* If the HC already knows the endpoint is disabled,
1852 	 * or the HCD has noted it is disabled, ignore this request
1853 	 */
1854 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1855 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1856 	    xhci_get_endpoint_flag(&ep->desc)) {
1857 		/* Do not warn when called after a usb_device_reset */
1858 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1859 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1860 				  __func__, ep);
1861 		return 0;
1862 	}
1863 
1864 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1865 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1866 
1867 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1868 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1869 
1870 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1871 
1872 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1873 
1874 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1875 			(unsigned int) ep->desc.bEndpointAddress,
1876 			udev->slot_id,
1877 			(unsigned int) new_drop_flags,
1878 			(unsigned int) new_add_flags);
1879 	return 0;
1880 }
1881 EXPORT_SYMBOL_GPL(xhci_drop_endpoint);
1882 
1883 /* Add an endpoint to a new possible bandwidth configuration for this device.
1884  * Only one call to this function is allowed per endpoint before
1885  * check_bandwidth() or reset_bandwidth() must be called.
1886  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1887  * add the endpoint to the schedule with possibly new parameters denoted by a
1888  * different endpoint descriptor in usb_host_endpoint.
1889  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1890  * not allowed.
1891  *
1892  * The USB core will not allow URBs to be queued to an endpoint until the
1893  * configuration or alt setting is installed in the device, so there's no need
1894  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1895  */
xhci_add_endpoint(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint * ep)1896 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1897 		      struct usb_host_endpoint *ep)
1898 {
1899 	struct xhci_hcd *xhci;
1900 	struct xhci_container_ctx *in_ctx;
1901 	unsigned int ep_index;
1902 	struct xhci_input_control_ctx *ctrl_ctx;
1903 	struct xhci_ep_ctx *ep_ctx;
1904 	u32 added_ctxs;
1905 	u32 new_add_flags, new_drop_flags;
1906 	struct xhci_virt_device *virt_dev;
1907 	int ret = 0;
1908 
1909 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1910 	if (ret <= 0) {
1911 		/* So we won't queue a reset ep command for a root hub */
1912 		ep->hcpriv = NULL;
1913 		return ret;
1914 	}
1915 	xhci = hcd_to_xhci(hcd);
1916 	if (xhci->xhc_state & XHCI_STATE_DYING)
1917 		return -ENODEV;
1918 
1919 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1920 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1921 		/* FIXME when we have to issue an evaluate endpoint command to
1922 		 * deal with ep0 max packet size changing once we get the
1923 		 * descriptors
1924 		 */
1925 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1926 				__func__, added_ctxs);
1927 		return 0;
1928 	}
1929 
1930 	virt_dev = xhci->devs[udev->slot_id];
1931 	in_ctx = virt_dev->in_ctx;
1932 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1933 	if (!ctrl_ctx) {
1934 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1935 				__func__);
1936 		return 0;
1937 	}
1938 
1939 	ep_index = xhci_get_endpoint_index(&ep->desc);
1940 	/* If this endpoint is already in use, and the upper layers are trying
1941 	 * to add it again without dropping it, reject the addition.
1942 	 */
1943 	if (virt_dev->eps[ep_index].ring &&
1944 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1945 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1946 				"without dropping it.\n",
1947 				(unsigned int) ep->desc.bEndpointAddress);
1948 		return -EINVAL;
1949 	}
1950 
1951 	/* If the HCD has already noted the endpoint is enabled,
1952 	 * ignore this request.
1953 	 */
1954 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1955 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1956 				__func__, ep);
1957 		return 0;
1958 	}
1959 
1960 	/*
1961 	 * Configuration and alternate setting changes must be done in
1962 	 * process context, not interrupt context (or so documenation
1963 	 * for usb_set_interface() and usb_set_configuration() claim).
1964 	 */
1965 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1966 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1967 				__func__, ep->desc.bEndpointAddress);
1968 		return -ENOMEM;
1969 	}
1970 
1971 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1972 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1973 
1974 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1975 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1976 	 * this re-adds a new state for the endpoint from the new endpoint
1977 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1978 	 * drop flags alone.
1979 	 */
1980 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1981 
1982 	/* Store the usb_device pointer for later use */
1983 	ep->hcpriv = udev;
1984 
1985 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1986 	trace_xhci_add_endpoint(ep_ctx);
1987 
1988 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1989 			(unsigned int) ep->desc.bEndpointAddress,
1990 			udev->slot_id,
1991 			(unsigned int) new_drop_flags,
1992 			(unsigned int) new_add_flags);
1993 	return 0;
1994 }
1995 EXPORT_SYMBOL_GPL(xhci_add_endpoint);
1996 
xhci_zero_in_ctx(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)1997 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1998 {
1999 	struct xhci_input_control_ctx *ctrl_ctx;
2000 	struct xhci_ep_ctx *ep_ctx;
2001 	struct xhci_slot_ctx *slot_ctx;
2002 	int i;
2003 
2004 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
2005 	if (!ctrl_ctx) {
2006 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2007 				__func__);
2008 		return;
2009 	}
2010 
2011 	/* When a device's add flag and drop flag are zero, any subsequent
2012 	 * configure endpoint command will leave that endpoint's state
2013 	 * untouched.  Make sure we don't leave any old state in the input
2014 	 * endpoint contexts.
2015 	 */
2016 	ctrl_ctx->drop_flags = 0;
2017 	ctrl_ctx->add_flags = 0;
2018 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2019 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2020 	/* Endpoint 0 is always valid */
2021 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
2022 	for (i = 1; i < 31; i++) {
2023 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
2024 		ep_ctx->ep_info = 0;
2025 		ep_ctx->ep_info2 = 0;
2026 		ep_ctx->deq = 0;
2027 		ep_ctx->tx_info = 0;
2028 	}
2029 }
2030 
xhci_configure_endpoint_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2031 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
2032 		struct usb_device *udev, u32 *cmd_status)
2033 {
2034 	int ret;
2035 
2036 	switch (*cmd_status) {
2037 	case COMP_COMMAND_ABORTED:
2038 	case COMP_COMMAND_RING_STOPPED:
2039 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
2040 		ret = -ETIME;
2041 		break;
2042 	case COMP_RESOURCE_ERROR:
2043 		dev_warn(&udev->dev,
2044 			 "Not enough host controller resources for new device state.\n");
2045 		ret = -ENOMEM;
2046 		/* FIXME: can we allocate more resources for the HC? */
2047 		break;
2048 	case COMP_BANDWIDTH_ERROR:
2049 	case COMP_SECONDARY_BANDWIDTH_ERROR:
2050 		dev_warn(&udev->dev,
2051 			 "Not enough bandwidth for new device state.\n");
2052 		ret = -ENOSPC;
2053 		/* FIXME: can we go back to the old state? */
2054 		break;
2055 	case COMP_TRB_ERROR:
2056 		/* the HCD set up something wrong */
2057 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
2058 				"add flag = 1, "
2059 				"and endpoint is not disabled.\n");
2060 		ret = -EINVAL;
2061 		break;
2062 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2063 		dev_warn(&udev->dev,
2064 			 "ERROR: Incompatible device for endpoint configure command.\n");
2065 		ret = -ENODEV;
2066 		break;
2067 	case COMP_SUCCESS:
2068 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2069 				"Successful Endpoint Configure command");
2070 		ret = 0;
2071 		break;
2072 	default:
2073 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2074 				*cmd_status);
2075 		ret = -EINVAL;
2076 		break;
2077 	}
2078 	return ret;
2079 }
2080 
xhci_evaluate_context_result(struct xhci_hcd * xhci,struct usb_device * udev,u32 * cmd_status)2081 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
2082 		struct usb_device *udev, u32 *cmd_status)
2083 {
2084 	int ret;
2085 
2086 	switch (*cmd_status) {
2087 	case COMP_COMMAND_ABORTED:
2088 	case COMP_COMMAND_RING_STOPPED:
2089 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2090 		ret = -ETIME;
2091 		break;
2092 	case COMP_PARAMETER_ERROR:
2093 		dev_warn(&udev->dev,
2094 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2095 		ret = -EINVAL;
2096 		break;
2097 	case COMP_SLOT_NOT_ENABLED_ERROR:
2098 		dev_warn(&udev->dev,
2099 			"WARN: slot not enabled for evaluate context command.\n");
2100 		ret = -EINVAL;
2101 		break;
2102 	case COMP_CONTEXT_STATE_ERROR:
2103 		dev_warn(&udev->dev,
2104 			"WARN: invalid context state for evaluate context command.\n");
2105 		ret = -EINVAL;
2106 		break;
2107 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2108 		dev_warn(&udev->dev,
2109 			"ERROR: Incompatible device for evaluate context command.\n");
2110 		ret = -ENODEV;
2111 		break;
2112 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2113 		/* Max Exit Latency too large error */
2114 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2115 		ret = -EINVAL;
2116 		break;
2117 	case COMP_SUCCESS:
2118 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2119 				"Successful evaluate context command");
2120 		ret = 0;
2121 		break;
2122 	default:
2123 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2124 			*cmd_status);
2125 		ret = -EINVAL;
2126 		break;
2127 	}
2128 	return ret;
2129 }
2130 
xhci_count_num_new_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2131 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2132 		struct xhci_input_control_ctx *ctrl_ctx)
2133 {
2134 	u32 valid_add_flags;
2135 	u32 valid_drop_flags;
2136 
2137 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2138 	 * (bit 1).  The default control endpoint is added during the Address
2139 	 * Device command and is never removed until the slot is disabled.
2140 	 */
2141 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2142 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2143 
2144 	/* Use hweight32 to count the number of ones in the add flags, or
2145 	 * number of endpoints added.  Don't count endpoints that are changed
2146 	 * (both added and dropped).
2147 	 */
2148 	return hweight32(valid_add_flags) -
2149 		hweight32(valid_add_flags & valid_drop_flags);
2150 }
2151 
xhci_count_num_dropped_endpoints(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2152 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2153 		struct xhci_input_control_ctx *ctrl_ctx)
2154 {
2155 	u32 valid_add_flags;
2156 	u32 valid_drop_flags;
2157 
2158 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2159 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2160 
2161 	return hweight32(valid_drop_flags) -
2162 		hweight32(valid_add_flags & valid_drop_flags);
2163 }
2164 
2165 /*
2166  * We need to reserve the new number of endpoints before the configure endpoint
2167  * command completes.  We can't subtract the dropped endpoints from the number
2168  * of active endpoints until the command completes because we can oversubscribe
2169  * the host in this case:
2170  *
2171  *  - the first configure endpoint command drops more endpoints than it adds
2172  *  - a second configure endpoint command that adds more endpoints is queued
2173  *  - the first configure endpoint command fails, so the config is unchanged
2174  *  - the second command may succeed, even though there isn't enough resources
2175  *
2176  * Must be called with xhci->lock held.
2177  */
xhci_reserve_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2178 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2179 		struct xhci_input_control_ctx *ctrl_ctx)
2180 {
2181 	u32 added_eps;
2182 
2183 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2184 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2185 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2186 				"Not enough ep ctxs: "
2187 				"%u active, need to add %u, limit is %u.",
2188 				xhci->num_active_eps, added_eps,
2189 				xhci->limit_active_eps);
2190 		return -ENOMEM;
2191 	}
2192 	xhci->num_active_eps += added_eps;
2193 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2194 			"Adding %u ep ctxs, %u now active.", added_eps,
2195 			xhci->num_active_eps);
2196 	return 0;
2197 }
2198 
2199 /*
2200  * The configure endpoint was failed by the xHC for some other reason, so we
2201  * need to revert the resources that failed configuration would have used.
2202  *
2203  * Must be called with xhci->lock held.
2204  */
xhci_free_host_resources(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2205 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2206 		struct xhci_input_control_ctx *ctrl_ctx)
2207 {
2208 	u32 num_failed_eps;
2209 
2210 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2211 	xhci->num_active_eps -= num_failed_eps;
2212 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2213 			"Removing %u failed ep ctxs, %u now active.",
2214 			num_failed_eps,
2215 			xhci->num_active_eps);
2216 }
2217 
2218 /*
2219  * Now that the command has completed, clean up the active endpoint count by
2220  * subtracting out the endpoints that were dropped (but not changed).
2221  *
2222  * Must be called with xhci->lock held.
2223  */
xhci_finish_resource_reservation(struct xhci_hcd * xhci,struct xhci_input_control_ctx * ctrl_ctx)2224 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2225 		struct xhci_input_control_ctx *ctrl_ctx)
2226 {
2227 	u32 num_dropped_eps;
2228 
2229 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2230 	xhci->num_active_eps -= num_dropped_eps;
2231 	if (num_dropped_eps)
2232 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2233 				"Removing %u dropped ep ctxs, %u now active.",
2234 				num_dropped_eps,
2235 				xhci->num_active_eps);
2236 }
2237 
xhci_get_block_size(struct usb_device * udev)2238 static unsigned int xhci_get_block_size(struct usb_device *udev)
2239 {
2240 	switch (udev->speed) {
2241 	case USB_SPEED_LOW:
2242 	case USB_SPEED_FULL:
2243 		return FS_BLOCK;
2244 	case USB_SPEED_HIGH:
2245 		return HS_BLOCK;
2246 	case USB_SPEED_SUPER:
2247 	case USB_SPEED_SUPER_PLUS:
2248 		return SS_BLOCK;
2249 	case USB_SPEED_UNKNOWN:
2250 	default:
2251 		/* Should never happen */
2252 		return 1;
2253 	}
2254 }
2255 
2256 static unsigned int
xhci_get_largest_overhead(struct xhci_interval_bw * interval_bw)2257 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2258 {
2259 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2260 		return LS_OVERHEAD;
2261 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2262 		return FS_OVERHEAD;
2263 	return HS_OVERHEAD;
2264 }
2265 
2266 /* If we are changing a LS/FS device under a HS hub,
2267  * make sure (if we are activating a new TT) that the HS bus has enough
2268  * bandwidth for this new TT.
2269  */
xhci_check_tt_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2270 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2271 		struct xhci_virt_device *virt_dev,
2272 		int old_active_eps)
2273 {
2274 	struct xhci_interval_bw_table *bw_table;
2275 	struct xhci_tt_bw_info *tt_info;
2276 
2277 	/* Find the bandwidth table for the root port this TT is attached to. */
2278 	bw_table = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum].bw_table;
2279 	tt_info = virt_dev->tt_info;
2280 	/* If this TT already had active endpoints, the bandwidth for this TT
2281 	 * has already been added.  Removing all periodic endpoints (and thus
2282 	 * making the TT enactive) will only decrease the bandwidth used.
2283 	 */
2284 	if (old_active_eps)
2285 		return 0;
2286 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2287 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2288 			return -ENOMEM;
2289 		return 0;
2290 	}
2291 	/* Not sure why we would have no new active endpoints...
2292 	 *
2293 	 * Maybe because of an Evaluate Context change for a hub update or a
2294 	 * control endpoint 0 max packet size change?
2295 	 * FIXME: skip the bandwidth calculation in that case.
2296 	 */
2297 	return 0;
2298 }
2299 
xhci_check_ss_bw(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev)2300 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2301 		struct xhci_virt_device *virt_dev)
2302 {
2303 	unsigned int bw_reserved;
2304 
2305 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2306 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2307 		return -ENOMEM;
2308 
2309 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2310 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2311 		return -ENOMEM;
2312 
2313 	return 0;
2314 }
2315 
2316 /*
2317  * This algorithm is a very conservative estimate of the worst-case scheduling
2318  * scenario for any one interval.  The hardware dynamically schedules the
2319  * packets, so we can't tell which microframe could be the limiting factor in
2320  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2321  *
2322  * Obviously, we can't solve an NP complete problem to find the minimum worst
2323  * case scenario.  Instead, we come up with an estimate that is no less than
2324  * the worst case bandwidth used for any one microframe, but may be an
2325  * over-estimate.
2326  *
2327  * We walk the requirements for each endpoint by interval, starting with the
2328  * smallest interval, and place packets in the schedule where there is only one
2329  * possible way to schedule packets for that interval.  In order to simplify
2330  * this algorithm, we record the largest max packet size for each interval, and
2331  * assume all packets will be that size.
2332  *
2333  * For interval 0, we obviously must schedule all packets for each interval.
2334  * The bandwidth for interval 0 is just the amount of data to be transmitted
2335  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2336  * the number of packets).
2337  *
2338  * For interval 1, we have two possible microframes to schedule those packets
2339  * in.  For this algorithm, if we can schedule the same number of packets for
2340  * each possible scheduling opportunity (each microframe), we will do so.  The
2341  * remaining number of packets will be saved to be transmitted in the gaps in
2342  * the next interval's scheduling sequence.
2343  *
2344  * As we move those remaining packets to be scheduled with interval 2 packets,
2345  * we have to double the number of remaining packets to transmit.  This is
2346  * because the intervals are actually powers of 2, and we would be transmitting
2347  * the previous interval's packets twice in this interval.  We also have to be
2348  * sure that when we look at the largest max packet size for this interval, we
2349  * also look at the largest max packet size for the remaining packets and take
2350  * the greater of the two.
2351  *
2352  * The algorithm continues to evenly distribute packets in each scheduling
2353  * opportunity, and push the remaining packets out, until we get to the last
2354  * interval.  Then those packets and their associated overhead are just added
2355  * to the bandwidth used.
2356  */
xhci_check_bw_table(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2357 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2358 		struct xhci_virt_device *virt_dev,
2359 		int old_active_eps)
2360 {
2361 	unsigned int bw_reserved;
2362 	unsigned int max_bandwidth;
2363 	unsigned int bw_used;
2364 	unsigned int block_size;
2365 	struct xhci_interval_bw_table *bw_table;
2366 	unsigned int packet_size = 0;
2367 	unsigned int overhead = 0;
2368 	unsigned int packets_transmitted = 0;
2369 	unsigned int packets_remaining = 0;
2370 	unsigned int i;
2371 
2372 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2373 		return xhci_check_ss_bw(xhci, virt_dev);
2374 
2375 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2376 		max_bandwidth = HS_BW_LIMIT;
2377 		/* Convert percent of bus BW reserved to blocks reserved */
2378 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2379 	} else {
2380 		max_bandwidth = FS_BW_LIMIT;
2381 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2382 	}
2383 
2384 	bw_table = virt_dev->bw_table;
2385 	/* We need to translate the max packet size and max ESIT payloads into
2386 	 * the units the hardware uses.
2387 	 */
2388 	block_size = xhci_get_block_size(virt_dev->udev);
2389 
2390 	/* If we are manipulating a LS/FS device under a HS hub, double check
2391 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2392 	 */
2393 	if (virt_dev->tt_info) {
2394 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2395 				"Recalculating BW for rootport %u",
2396 				virt_dev->rhub_port->hw_portnum + 1);
2397 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2398 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2399 					"newly activated TT.\n");
2400 			return -ENOMEM;
2401 		}
2402 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2403 				"Recalculating BW for TT slot %u port %u",
2404 				virt_dev->tt_info->slot_id,
2405 				virt_dev->tt_info->ttport);
2406 	} else {
2407 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2408 				"Recalculating BW for rootport %u",
2409 				virt_dev->rhub_port->hw_portnum + 1);
2410 	}
2411 
2412 	/* Add in how much bandwidth will be used for interval zero, or the
2413 	 * rounded max ESIT payload + number of packets * largest overhead.
2414 	 */
2415 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2416 		bw_table->interval_bw[0].num_packets *
2417 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2418 
2419 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2420 		unsigned int bw_added;
2421 		unsigned int largest_mps;
2422 		unsigned int interval_overhead;
2423 
2424 		/*
2425 		 * How many packets could we transmit in this interval?
2426 		 * If packets didn't fit in the previous interval, we will need
2427 		 * to transmit that many packets twice within this interval.
2428 		 */
2429 		packets_remaining = 2 * packets_remaining +
2430 			bw_table->interval_bw[i].num_packets;
2431 
2432 		/* Find the largest max packet size of this or the previous
2433 		 * interval.
2434 		 */
2435 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2436 			largest_mps = 0;
2437 		else {
2438 			struct xhci_virt_ep *virt_ep;
2439 			struct list_head *ep_entry;
2440 
2441 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2442 			virt_ep = list_entry(ep_entry,
2443 					struct xhci_virt_ep, bw_endpoint_list);
2444 			/* Convert to blocks, rounding up */
2445 			largest_mps = DIV_ROUND_UP(
2446 					virt_ep->bw_info.max_packet_size,
2447 					block_size);
2448 		}
2449 		if (largest_mps > packet_size)
2450 			packet_size = largest_mps;
2451 
2452 		/* Use the larger overhead of this or the previous interval. */
2453 		interval_overhead = xhci_get_largest_overhead(
2454 				&bw_table->interval_bw[i]);
2455 		if (interval_overhead > overhead)
2456 			overhead = interval_overhead;
2457 
2458 		/* How many packets can we evenly distribute across
2459 		 * (1 << (i + 1)) possible scheduling opportunities?
2460 		 */
2461 		packets_transmitted = packets_remaining >> (i + 1);
2462 
2463 		/* Add in the bandwidth used for those scheduled packets */
2464 		bw_added = packets_transmitted * (overhead + packet_size);
2465 
2466 		/* How many packets do we have remaining to transmit? */
2467 		packets_remaining = packets_remaining % (1 << (i + 1));
2468 
2469 		/* What largest max packet size should those packets have? */
2470 		/* If we've transmitted all packets, don't carry over the
2471 		 * largest packet size.
2472 		 */
2473 		if (packets_remaining == 0) {
2474 			packet_size = 0;
2475 			overhead = 0;
2476 		} else if (packets_transmitted > 0) {
2477 			/* Otherwise if we do have remaining packets, and we've
2478 			 * scheduled some packets in this interval, take the
2479 			 * largest max packet size from endpoints with this
2480 			 * interval.
2481 			 */
2482 			packet_size = largest_mps;
2483 			overhead = interval_overhead;
2484 		}
2485 		/* Otherwise carry over packet_size and overhead from the last
2486 		 * time we had a remainder.
2487 		 */
2488 		bw_used += bw_added;
2489 		if (bw_used > max_bandwidth) {
2490 			xhci_warn(xhci, "Not enough bandwidth. "
2491 					"Proposed: %u, Max: %u\n",
2492 				bw_used, max_bandwidth);
2493 			return -ENOMEM;
2494 		}
2495 	}
2496 	/*
2497 	 * Ok, we know we have some packets left over after even-handedly
2498 	 * scheduling interval 15.  We don't know which microframes they will
2499 	 * fit into, so we over-schedule and say they will be scheduled every
2500 	 * microframe.
2501 	 */
2502 	if (packets_remaining > 0)
2503 		bw_used += overhead + packet_size;
2504 
2505 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2506 		/* OK, we're manipulating a HS device attached to a
2507 		 * root port bandwidth domain.  Include the number of active TTs
2508 		 * in the bandwidth used.
2509 		 */
2510 		bw_used += TT_HS_OVERHEAD *
2511 			xhci->rh_bw[virt_dev->rhub_port->hw_portnum].num_active_tts;
2512 	}
2513 
2514 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2515 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2516 		"Available: %u " "percent",
2517 		bw_used, max_bandwidth, bw_reserved,
2518 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2519 		max_bandwidth);
2520 
2521 	bw_used += bw_reserved;
2522 	if (bw_used > max_bandwidth) {
2523 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2524 				bw_used, max_bandwidth);
2525 		return -ENOMEM;
2526 	}
2527 
2528 	bw_table->bw_used = bw_used;
2529 	return 0;
2530 }
2531 
xhci_is_async_ep(unsigned int ep_type)2532 static bool xhci_is_async_ep(unsigned int ep_type)
2533 {
2534 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2535 					ep_type != ISOC_IN_EP &&
2536 					ep_type != INT_IN_EP);
2537 }
2538 
xhci_is_sync_in_ep(unsigned int ep_type)2539 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2540 {
2541 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2542 }
2543 
xhci_get_ss_bw_consumed(struct xhci_bw_info * ep_bw)2544 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2545 {
2546 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2547 
2548 	if (ep_bw->ep_interval == 0)
2549 		return SS_OVERHEAD_BURST +
2550 			(ep_bw->mult * ep_bw->num_packets *
2551 					(SS_OVERHEAD + mps));
2552 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2553 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2554 				1 << ep_bw->ep_interval);
2555 
2556 }
2557 
xhci_drop_ep_from_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2558 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2559 		struct xhci_bw_info *ep_bw,
2560 		struct xhci_interval_bw_table *bw_table,
2561 		struct usb_device *udev,
2562 		struct xhci_virt_ep *virt_ep,
2563 		struct xhci_tt_bw_info *tt_info)
2564 {
2565 	struct xhci_interval_bw	*interval_bw;
2566 	int normalized_interval;
2567 
2568 	if (xhci_is_async_ep(ep_bw->type))
2569 		return;
2570 
2571 	if (udev->speed >= USB_SPEED_SUPER) {
2572 		if (xhci_is_sync_in_ep(ep_bw->type))
2573 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2574 				xhci_get_ss_bw_consumed(ep_bw);
2575 		else
2576 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2577 				xhci_get_ss_bw_consumed(ep_bw);
2578 		return;
2579 	}
2580 
2581 	/* SuperSpeed endpoints never get added to intervals in the table, so
2582 	 * this check is only valid for HS/FS/LS devices.
2583 	 */
2584 	if (list_empty(&virt_ep->bw_endpoint_list))
2585 		return;
2586 	/* For LS/FS devices, we need to translate the interval expressed in
2587 	 * microframes to frames.
2588 	 */
2589 	if (udev->speed == USB_SPEED_HIGH)
2590 		normalized_interval = ep_bw->ep_interval;
2591 	else
2592 		normalized_interval = ep_bw->ep_interval - 3;
2593 
2594 	if (normalized_interval == 0)
2595 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2596 	interval_bw = &bw_table->interval_bw[normalized_interval];
2597 	interval_bw->num_packets -= ep_bw->num_packets;
2598 	switch (udev->speed) {
2599 	case USB_SPEED_LOW:
2600 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2601 		break;
2602 	case USB_SPEED_FULL:
2603 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2604 		break;
2605 	case USB_SPEED_HIGH:
2606 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2607 		break;
2608 	default:
2609 		/* Should never happen because only LS/FS/HS endpoints will get
2610 		 * added to the endpoint list.
2611 		 */
2612 		return;
2613 	}
2614 	if (tt_info)
2615 		tt_info->active_eps -= 1;
2616 	list_del_init(&virt_ep->bw_endpoint_list);
2617 }
2618 
xhci_add_ep_to_interval_table(struct xhci_hcd * xhci,struct xhci_bw_info * ep_bw,struct xhci_interval_bw_table * bw_table,struct usb_device * udev,struct xhci_virt_ep * virt_ep,struct xhci_tt_bw_info * tt_info)2619 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2620 		struct xhci_bw_info *ep_bw,
2621 		struct xhci_interval_bw_table *bw_table,
2622 		struct usb_device *udev,
2623 		struct xhci_virt_ep *virt_ep,
2624 		struct xhci_tt_bw_info *tt_info)
2625 {
2626 	struct xhci_interval_bw	*interval_bw;
2627 	struct xhci_virt_ep *smaller_ep;
2628 	int normalized_interval;
2629 
2630 	if (xhci_is_async_ep(ep_bw->type))
2631 		return;
2632 
2633 	if (udev->speed == USB_SPEED_SUPER) {
2634 		if (xhci_is_sync_in_ep(ep_bw->type))
2635 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2636 				xhci_get_ss_bw_consumed(ep_bw);
2637 		else
2638 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2639 				xhci_get_ss_bw_consumed(ep_bw);
2640 		return;
2641 	}
2642 
2643 	/* For LS/FS devices, we need to translate the interval expressed in
2644 	 * microframes to frames.
2645 	 */
2646 	if (udev->speed == USB_SPEED_HIGH)
2647 		normalized_interval = ep_bw->ep_interval;
2648 	else
2649 		normalized_interval = ep_bw->ep_interval - 3;
2650 
2651 	if (normalized_interval == 0)
2652 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2653 	interval_bw = &bw_table->interval_bw[normalized_interval];
2654 	interval_bw->num_packets += ep_bw->num_packets;
2655 	switch (udev->speed) {
2656 	case USB_SPEED_LOW:
2657 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2658 		break;
2659 	case USB_SPEED_FULL:
2660 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2661 		break;
2662 	case USB_SPEED_HIGH:
2663 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2664 		break;
2665 	default:
2666 		/* Should never happen because only LS/FS/HS endpoints will get
2667 		 * added to the endpoint list.
2668 		 */
2669 		return;
2670 	}
2671 
2672 	if (tt_info)
2673 		tt_info->active_eps += 1;
2674 	/* Insert the endpoint into the list, largest max packet size first. */
2675 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2676 			bw_endpoint_list) {
2677 		if (ep_bw->max_packet_size >=
2678 				smaller_ep->bw_info.max_packet_size) {
2679 			/* Add the new ep before the smaller endpoint */
2680 			list_add_tail(&virt_ep->bw_endpoint_list,
2681 					&smaller_ep->bw_endpoint_list);
2682 			return;
2683 		}
2684 	}
2685 	/* Add the new endpoint at the end of the list. */
2686 	list_add_tail(&virt_ep->bw_endpoint_list,
2687 			&interval_bw->endpoints);
2688 }
2689 
xhci_update_tt_active_eps(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,int old_active_eps)2690 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2691 		struct xhci_virt_device *virt_dev,
2692 		int old_active_eps)
2693 {
2694 	struct xhci_root_port_bw_info *rh_bw_info;
2695 	if (!virt_dev->tt_info)
2696 		return;
2697 
2698 	rh_bw_info = &xhci->rh_bw[virt_dev->rhub_port->hw_portnum];
2699 	if (old_active_eps == 0 &&
2700 				virt_dev->tt_info->active_eps != 0) {
2701 		rh_bw_info->num_active_tts += 1;
2702 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2703 	} else if (old_active_eps != 0 &&
2704 				virt_dev->tt_info->active_eps == 0) {
2705 		rh_bw_info->num_active_tts -= 1;
2706 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2707 	}
2708 }
2709 
xhci_reserve_bandwidth(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,struct xhci_container_ctx * in_ctx)2710 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2711 		struct xhci_virt_device *virt_dev,
2712 		struct xhci_container_ctx *in_ctx)
2713 {
2714 	struct xhci_bw_info ep_bw_info[31];
2715 	int i;
2716 	struct xhci_input_control_ctx *ctrl_ctx;
2717 	int old_active_eps = 0;
2718 
2719 	if (virt_dev->tt_info)
2720 		old_active_eps = virt_dev->tt_info->active_eps;
2721 
2722 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2723 	if (!ctrl_ctx) {
2724 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2725 				__func__);
2726 		return -ENOMEM;
2727 	}
2728 
2729 	for (i = 0; i < 31; i++) {
2730 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2731 			continue;
2732 
2733 		/* Make a copy of the BW info in case we need to revert this */
2734 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2735 				sizeof(ep_bw_info[i]));
2736 		/* Drop the endpoint from the interval table if the endpoint is
2737 		 * being dropped or changed.
2738 		 */
2739 		if (EP_IS_DROPPED(ctrl_ctx, i))
2740 			xhci_drop_ep_from_interval_table(xhci,
2741 					&virt_dev->eps[i].bw_info,
2742 					virt_dev->bw_table,
2743 					virt_dev->udev,
2744 					&virt_dev->eps[i],
2745 					virt_dev->tt_info);
2746 	}
2747 	/* Overwrite the information stored in the endpoints' bw_info */
2748 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2749 	for (i = 0; i < 31; i++) {
2750 		/* Add any changed or added endpoints to the interval table */
2751 		if (EP_IS_ADDED(ctrl_ctx, i))
2752 			xhci_add_ep_to_interval_table(xhci,
2753 					&virt_dev->eps[i].bw_info,
2754 					virt_dev->bw_table,
2755 					virt_dev->udev,
2756 					&virt_dev->eps[i],
2757 					virt_dev->tt_info);
2758 	}
2759 
2760 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2761 		/* Ok, this fits in the bandwidth we have.
2762 		 * Update the number of active TTs.
2763 		 */
2764 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2765 		return 0;
2766 	}
2767 
2768 	/* We don't have enough bandwidth for this, revert the stored info. */
2769 	for (i = 0; i < 31; i++) {
2770 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2771 			continue;
2772 
2773 		/* Drop the new copies of any added or changed endpoints from
2774 		 * the interval table.
2775 		 */
2776 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2777 			xhci_drop_ep_from_interval_table(xhci,
2778 					&virt_dev->eps[i].bw_info,
2779 					virt_dev->bw_table,
2780 					virt_dev->udev,
2781 					&virt_dev->eps[i],
2782 					virt_dev->tt_info);
2783 		}
2784 		/* Revert the endpoint back to its old information */
2785 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2786 				sizeof(ep_bw_info[i]));
2787 		/* Add any changed or dropped endpoints back into the table */
2788 		if (EP_IS_DROPPED(ctrl_ctx, i))
2789 			xhci_add_ep_to_interval_table(xhci,
2790 					&virt_dev->eps[i].bw_info,
2791 					virt_dev->bw_table,
2792 					virt_dev->udev,
2793 					&virt_dev->eps[i],
2794 					virt_dev->tt_info);
2795 	}
2796 	return -ENOMEM;
2797 }
2798 
2799 /*
2800  * Synchronous XHCI stop endpoint helper.  Issues the stop endpoint command and
2801  * waits for the command completion before returning.  This does not call
2802  * xhci_handle_cmd_stop_ep(), which has additional handling for 'context error'
2803  * cases, along with transfer ring cleanup.
2804  *
2805  * xhci_stop_endpoint_sync() is intended to be utilized by clients that manage
2806  * their own transfer ring, such as offload situations.
2807  */
xhci_stop_endpoint_sync(struct xhci_hcd * xhci,struct xhci_virt_ep * ep,int suspend,gfp_t gfp_flags)2808 int xhci_stop_endpoint_sync(struct xhci_hcd *xhci, struct xhci_virt_ep *ep, int suspend,
2809 			    gfp_t gfp_flags)
2810 {
2811 	struct xhci_command *command;
2812 	unsigned long flags;
2813 	int ret;
2814 
2815 	command = xhci_alloc_command(xhci, true, gfp_flags);
2816 	if (!command)
2817 		return -ENOMEM;
2818 
2819 	spin_lock_irqsave(&xhci->lock, flags);
2820 	ret = xhci_queue_stop_endpoint(xhci, command, ep->vdev->slot_id,
2821 				       ep->ep_index, suspend);
2822 	if (ret < 0) {
2823 		spin_unlock_irqrestore(&xhci->lock, flags);
2824 		goto out;
2825 	}
2826 
2827 	xhci_ring_cmd_db(xhci);
2828 	spin_unlock_irqrestore(&xhci->lock, flags);
2829 
2830 	wait_for_completion(command->completion);
2831 
2832 	/* No handling for COMP_CONTEXT_STATE_ERROR done at command completion*/
2833 	if (command->status == COMP_COMMAND_ABORTED ||
2834 	    command->status == COMP_COMMAND_RING_STOPPED) {
2835 		xhci_warn(xhci, "Timeout while waiting for stop endpoint command\n");
2836 		ret = -ETIME;
2837 	}
2838 out:
2839 	xhci_free_command(xhci, command);
2840 
2841 	return ret;
2842 }
2843 EXPORT_SYMBOL_GPL(xhci_stop_endpoint_sync);
2844 
2845 /* Issue a configure endpoint command or evaluate context command
2846  * and wait for it to finish.
2847  */
xhci_configure_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct xhci_command * command,bool ctx_change,bool must_succeed)2848 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2849 		struct usb_device *udev,
2850 		struct xhci_command *command,
2851 		bool ctx_change, bool must_succeed)
2852 {
2853 	int ret;
2854 	unsigned long flags;
2855 	struct xhci_input_control_ctx *ctrl_ctx;
2856 	struct xhci_virt_device *virt_dev;
2857 	struct xhci_slot_ctx *slot_ctx;
2858 
2859 	if (!command)
2860 		return -EINVAL;
2861 
2862 	spin_lock_irqsave(&xhci->lock, flags);
2863 
2864 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2865 		spin_unlock_irqrestore(&xhci->lock, flags);
2866 		return -ESHUTDOWN;
2867 	}
2868 
2869 	virt_dev = xhci->devs[udev->slot_id];
2870 
2871 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2872 	if (!ctrl_ctx) {
2873 		spin_unlock_irqrestore(&xhci->lock, flags);
2874 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2875 				__func__);
2876 		return -ENOMEM;
2877 	}
2878 
2879 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2880 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2881 		spin_unlock_irqrestore(&xhci->lock, flags);
2882 		xhci_warn(xhci, "Not enough host resources, "
2883 				"active endpoint contexts = %u\n",
2884 				xhci->num_active_eps);
2885 		return -ENOMEM;
2886 	}
2887 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) && !ctx_change &&
2888 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2889 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2890 			xhci_free_host_resources(xhci, ctrl_ctx);
2891 		spin_unlock_irqrestore(&xhci->lock, flags);
2892 		xhci_warn(xhci, "Not enough bandwidth\n");
2893 		return -ENOMEM;
2894 	}
2895 
2896 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2897 
2898 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2899 	trace_xhci_configure_endpoint(slot_ctx);
2900 
2901 	if (!ctx_change)
2902 		ret = xhci_queue_configure_endpoint(xhci, command,
2903 				command->in_ctx->dma,
2904 				udev->slot_id, must_succeed);
2905 	else
2906 		ret = xhci_queue_evaluate_context(xhci, command,
2907 				command->in_ctx->dma,
2908 				udev->slot_id, must_succeed);
2909 	if (ret < 0) {
2910 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2911 			xhci_free_host_resources(xhci, ctrl_ctx);
2912 		spin_unlock_irqrestore(&xhci->lock, flags);
2913 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2914 				"FIXME allocate a new ring segment");
2915 		return -ENOMEM;
2916 	}
2917 	xhci_ring_cmd_db(xhci);
2918 	spin_unlock_irqrestore(&xhci->lock, flags);
2919 
2920 	/* Wait for the configure endpoint command to complete */
2921 	wait_for_completion(command->completion);
2922 
2923 	if (!ctx_change)
2924 		ret = xhci_configure_endpoint_result(xhci, udev,
2925 						     &command->status);
2926 	else
2927 		ret = xhci_evaluate_context_result(xhci, udev,
2928 						   &command->status);
2929 
2930 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2931 		spin_lock_irqsave(&xhci->lock, flags);
2932 		/* If the command failed, remove the reserved resources.
2933 		 * Otherwise, clean up the estimate to include dropped eps.
2934 		 */
2935 		if (ret)
2936 			xhci_free_host_resources(xhci, ctrl_ctx);
2937 		else
2938 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2939 		spin_unlock_irqrestore(&xhci->lock, flags);
2940 	}
2941 	return ret;
2942 }
2943 
xhci_check_bw_drop_ep_streams(struct xhci_hcd * xhci,struct xhci_virt_device * vdev,int i)2944 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2945 	struct xhci_virt_device *vdev, int i)
2946 {
2947 	struct xhci_virt_ep *ep = &vdev->eps[i];
2948 
2949 	if (ep->ep_state & EP_HAS_STREAMS) {
2950 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2951 				xhci_get_endpoint_address(i));
2952 		xhci_free_stream_info(xhci, ep->stream_info);
2953 		ep->stream_info = NULL;
2954 		ep->ep_state &= ~EP_HAS_STREAMS;
2955 	}
2956 }
2957 
2958 /* Called after one or more calls to xhci_add_endpoint() or
2959  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2960  * to call xhci_reset_bandwidth().
2961  *
2962  * Since we are in the middle of changing either configuration or
2963  * installing a new alt setting, the USB core won't allow URBs to be
2964  * enqueued for any endpoint on the old config or interface.  Nothing
2965  * else should be touching the xhci->devs[slot_id] structure, so we
2966  * don't need to take the xhci->lock for manipulating that.
2967  */
xhci_check_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)2968 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2969 {
2970 	int i;
2971 	int ret = 0;
2972 	struct xhci_hcd *xhci;
2973 	struct xhci_virt_device	*virt_dev;
2974 	struct xhci_input_control_ctx *ctrl_ctx;
2975 	struct xhci_slot_ctx *slot_ctx;
2976 	struct xhci_command *command;
2977 
2978 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2979 	if (ret <= 0)
2980 		return ret;
2981 	xhci = hcd_to_xhci(hcd);
2982 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2983 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2984 		return -ENODEV;
2985 
2986 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2987 	virt_dev = xhci->devs[udev->slot_id];
2988 
2989 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2990 	if (!command)
2991 		return -ENOMEM;
2992 
2993 	command->in_ctx = virt_dev->in_ctx;
2994 
2995 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2996 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2997 	if (!ctrl_ctx) {
2998 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2999 				__func__);
3000 		ret = -ENOMEM;
3001 		goto command_cleanup;
3002 	}
3003 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3004 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
3005 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
3006 
3007 	/* Don't issue the command if there's no endpoints to update. */
3008 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
3009 	    ctrl_ctx->drop_flags == 0) {
3010 		ret = 0;
3011 		goto command_cleanup;
3012 	}
3013 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
3014 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3015 	for (i = 31; i >= 1; i--) {
3016 		__le32 le32 = cpu_to_le32(BIT(i));
3017 
3018 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
3019 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
3020 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
3021 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
3022 			break;
3023 		}
3024 	}
3025 
3026 	ret = xhci_configure_endpoint(xhci, udev, command,
3027 			false, false);
3028 	if (ret)
3029 		/* Callee should call reset_bandwidth() */
3030 		goto command_cleanup;
3031 
3032 	/* Free any rings that were dropped, but not changed. */
3033 	for (i = 1; i < 31; i++) {
3034 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
3035 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
3036 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3037 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3038 		}
3039 	}
3040 	xhci_zero_in_ctx(xhci, virt_dev);
3041 	/*
3042 	 * Install any rings for completely new endpoints or changed endpoints,
3043 	 * and free any old rings from changed endpoints.
3044 	 */
3045 	for (i = 1; i < 31; i++) {
3046 		if (!virt_dev->eps[i].new_ring)
3047 			continue;
3048 		/* Only free the old ring if it exists.
3049 		 * It may not if this is the first add of an endpoint.
3050 		 */
3051 		if (virt_dev->eps[i].ring) {
3052 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3053 		}
3054 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
3055 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
3056 		virt_dev->eps[i].new_ring = NULL;
3057 		xhci_debugfs_create_endpoint(xhci, virt_dev, i);
3058 	}
3059 command_cleanup:
3060 	kfree(command->completion);
3061 	kfree(command);
3062 
3063 	return ret;
3064 }
3065 EXPORT_SYMBOL_GPL(xhci_check_bandwidth);
3066 
xhci_reset_bandwidth(struct usb_hcd * hcd,struct usb_device * udev)3067 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
3068 {
3069 	struct xhci_hcd *xhci;
3070 	struct xhci_virt_device	*virt_dev;
3071 	int i, ret;
3072 
3073 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3074 	if (ret <= 0)
3075 		return;
3076 	xhci = hcd_to_xhci(hcd);
3077 
3078 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
3079 	virt_dev = xhci->devs[udev->slot_id];
3080 	/* Free any rings allocated for added endpoints */
3081 	for (i = 0; i < 31; i++) {
3082 		if (virt_dev->eps[i].new_ring) {
3083 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3084 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
3085 			virt_dev->eps[i].new_ring = NULL;
3086 		}
3087 	}
3088 	xhci_zero_in_ctx(xhci, virt_dev);
3089 }
3090 EXPORT_SYMBOL_GPL(xhci_reset_bandwidth);
3091 
xhci_setup_input_ctx_for_config_ep(struct xhci_hcd * xhci,struct xhci_container_ctx * in_ctx,struct xhci_container_ctx * out_ctx,struct xhci_input_control_ctx * ctrl_ctx,u32 add_flags,u32 drop_flags)3092 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
3093 		struct xhci_container_ctx *in_ctx,
3094 		struct xhci_container_ctx *out_ctx,
3095 		struct xhci_input_control_ctx *ctrl_ctx,
3096 		u32 add_flags, u32 drop_flags)
3097 {
3098 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
3099 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
3100 	xhci_slot_copy(xhci, in_ctx, out_ctx);
3101 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
3102 }
3103 
xhci_endpoint_disable(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3104 static void xhci_endpoint_disable(struct usb_hcd *hcd,
3105 				  struct usb_host_endpoint *host_ep)
3106 {
3107 	struct xhci_hcd		*xhci;
3108 	struct xhci_virt_device	*vdev;
3109 	struct xhci_virt_ep	*ep;
3110 	struct usb_device	*udev;
3111 	unsigned long		flags;
3112 	unsigned int		ep_index;
3113 
3114 	xhci = hcd_to_xhci(hcd);
3115 rescan:
3116 	spin_lock_irqsave(&xhci->lock, flags);
3117 
3118 	udev = (struct usb_device *)host_ep->hcpriv;
3119 	if (!udev || !udev->slot_id)
3120 		goto done;
3121 
3122 	vdev = xhci->devs[udev->slot_id];
3123 	if (!vdev)
3124 		goto done;
3125 
3126 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3127 	ep = &vdev->eps[ep_index];
3128 
3129 	/* wait for hub_tt_work to finish clearing hub TT */
3130 	if (ep->ep_state & EP_CLEARING_TT) {
3131 		spin_unlock_irqrestore(&xhci->lock, flags);
3132 		schedule_timeout_uninterruptible(1);
3133 		goto rescan;
3134 	}
3135 
3136 	if (ep->ep_state)
3137 		xhci_dbg(xhci, "endpoint disable with ep_state 0x%x\n",
3138 			 ep->ep_state);
3139 done:
3140 	host_ep->hcpriv = NULL;
3141 	spin_unlock_irqrestore(&xhci->lock, flags);
3142 }
3143 
3144 /*
3145  * Called after usb core issues a clear halt control message.
3146  * The host side of the halt should already be cleared by a reset endpoint
3147  * command issued when the STALL event was received.
3148  *
3149  * The reset endpoint command may only be issued to endpoints in the halted
3150  * state. For software that wishes to reset the data toggle or sequence number
3151  * of an endpoint that isn't in the halted state this function will issue a
3152  * configure endpoint command with the Drop and Add bits set for the target
3153  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3154  *
3155  * vdev may be lost due to xHC restore error and re-initialization during S3/S4
3156  * resume. A new vdev will be allocated later by xhci_discover_or_reset_device()
3157  */
3158 
xhci_endpoint_reset(struct usb_hcd * hcd,struct usb_host_endpoint * host_ep)3159 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3160 		struct usb_host_endpoint *host_ep)
3161 {
3162 	struct xhci_hcd *xhci;
3163 	struct usb_device *udev;
3164 	struct xhci_virt_device *vdev;
3165 	struct xhci_virt_ep *ep;
3166 	struct xhci_input_control_ctx *ctrl_ctx;
3167 	struct xhci_command *stop_cmd, *cfg_cmd;
3168 	unsigned int ep_index;
3169 	unsigned long flags;
3170 	u32 ep_flag;
3171 	int err;
3172 
3173 	xhci = hcd_to_xhci(hcd);
3174 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3175 
3176 	/*
3177 	 * Usb core assumes a max packet value for ep0 on FS devices until the
3178 	 * real value is read from the descriptor. Core resets Ep0 if values
3179 	 * mismatch. Reconfigure the xhci ep0 endpoint context here in that case
3180 	 */
3181 	if (usb_endpoint_xfer_control(&host_ep->desc) && ep_index == 0) {
3182 
3183 		udev = container_of(host_ep, struct usb_device, ep0);
3184 		if (udev->speed != USB_SPEED_FULL || !udev->slot_id)
3185 			return;
3186 
3187 		vdev = xhci->devs[udev->slot_id];
3188 		if (!vdev || vdev->udev != udev)
3189 			return;
3190 
3191 		xhci_check_ep0_maxpacket(xhci, vdev);
3192 
3193 		/* Nothing else should be done here for ep0 during ep reset */
3194 		return;
3195 	}
3196 
3197 	if (!host_ep->hcpriv)
3198 		return;
3199 	udev = (struct usb_device *) host_ep->hcpriv;
3200 	vdev = xhci->devs[udev->slot_id];
3201 
3202 	if (!udev->slot_id || !vdev)
3203 		return;
3204 
3205 	ep = &vdev->eps[ep_index];
3206 
3207 	/* Bail out if toggle is already being cleared by a endpoint reset */
3208 	spin_lock_irqsave(&xhci->lock, flags);
3209 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3210 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3211 		spin_unlock_irqrestore(&xhci->lock, flags);
3212 		return;
3213 	}
3214 	spin_unlock_irqrestore(&xhci->lock, flags);
3215 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3216 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3217 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3218 		return;
3219 
3220 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3221 
3222 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3223 		return;
3224 
3225 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3226 	if (!stop_cmd)
3227 		return;
3228 
3229 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3230 	if (!cfg_cmd)
3231 		goto cleanup;
3232 
3233 	spin_lock_irqsave(&xhci->lock, flags);
3234 
3235 	/* block queuing new trbs and ringing ep doorbell */
3236 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3237 
3238 	/*
3239 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3240 	 * Driver is required to synchronously cancel all transfer request.
3241 	 * Stop the endpoint to force xHC to update the output context
3242 	 */
3243 
3244 	if (!list_empty(&ep->ring->td_list)) {
3245 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3246 		spin_unlock_irqrestore(&xhci->lock, flags);
3247 		xhci_free_command(xhci, cfg_cmd);
3248 		goto cleanup;
3249 	}
3250 
3251 	err = xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id,
3252 					ep_index, 0);
3253 	if (err < 0) {
3254 		spin_unlock_irqrestore(&xhci->lock, flags);
3255 		xhci_free_command(xhci, cfg_cmd);
3256 		xhci_dbg(xhci, "%s: Failed to queue stop ep command, %d ",
3257 				__func__, err);
3258 		goto cleanup;
3259 	}
3260 
3261 	xhci_ring_cmd_db(xhci);
3262 	spin_unlock_irqrestore(&xhci->lock, flags);
3263 
3264 	wait_for_completion(stop_cmd->completion);
3265 
3266 	spin_lock_irqsave(&xhci->lock, flags);
3267 
3268 	/* config ep command clears toggle if add and drop ep flags are set */
3269 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3270 	if (!ctrl_ctx) {
3271 		spin_unlock_irqrestore(&xhci->lock, flags);
3272 		xhci_free_command(xhci, cfg_cmd);
3273 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3274 				__func__);
3275 		goto cleanup;
3276 	}
3277 
3278 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3279 					   ctrl_ctx, ep_flag, ep_flag);
3280 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3281 
3282 	err = xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3283 				      udev->slot_id, false);
3284 	if (err < 0) {
3285 		spin_unlock_irqrestore(&xhci->lock, flags);
3286 		xhci_free_command(xhci, cfg_cmd);
3287 		xhci_dbg(xhci, "%s: Failed to queue config ep command, %d ",
3288 				__func__, err);
3289 		goto cleanup;
3290 	}
3291 
3292 	xhci_ring_cmd_db(xhci);
3293 	spin_unlock_irqrestore(&xhci->lock, flags);
3294 
3295 	wait_for_completion(cfg_cmd->completion);
3296 
3297 	xhci_free_command(xhci, cfg_cmd);
3298 cleanup:
3299 	xhci_free_command(xhci, stop_cmd);
3300 	spin_lock_irqsave(&xhci->lock, flags);
3301 	if (ep->ep_state & EP_SOFT_CLEAR_TOGGLE)
3302 		ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3303 	spin_unlock_irqrestore(&xhci->lock, flags);
3304 }
3305 
xhci_check_streams_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint * ep,unsigned int slot_id)3306 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3307 		struct usb_device *udev, struct usb_host_endpoint *ep,
3308 		unsigned int slot_id)
3309 {
3310 	int ret;
3311 	unsigned int ep_index;
3312 	unsigned int ep_state;
3313 
3314 	if (!ep)
3315 		return -EINVAL;
3316 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3317 	if (ret <= 0)
3318 		return ret ? ret : -EINVAL;
3319 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3320 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3321 				" descriptor for ep 0x%x does not support streams\n",
3322 				ep->desc.bEndpointAddress);
3323 		return -EINVAL;
3324 	}
3325 
3326 	ep_index = xhci_get_endpoint_index(&ep->desc);
3327 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3328 	if (ep_state & EP_HAS_STREAMS ||
3329 			ep_state & EP_GETTING_STREAMS) {
3330 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3331 				"already has streams set up.\n",
3332 				ep->desc.bEndpointAddress);
3333 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3334 				"dynamic stream context array reallocation.\n");
3335 		return -EINVAL;
3336 	}
3337 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3338 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3339 				"endpoint 0x%x; URBs are pending.\n",
3340 				ep->desc.bEndpointAddress);
3341 		return -EINVAL;
3342 	}
3343 	return 0;
3344 }
3345 
xhci_calculate_streams_entries(struct xhci_hcd * xhci,unsigned int * num_streams,unsigned int * num_stream_ctxs)3346 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3347 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3348 {
3349 	unsigned int max_streams;
3350 
3351 	/* The stream context array size must be a power of two */
3352 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3353 	/*
3354 	 * Find out how many primary stream array entries the host controller
3355 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3356 	 * level page entries), but that's an optional feature for xHCI host
3357 	 * controllers. xHCs must support at least 4 stream IDs.
3358 	 */
3359 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3360 	if (*num_stream_ctxs > max_streams) {
3361 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3362 				max_streams);
3363 		*num_stream_ctxs = max_streams;
3364 		*num_streams = max_streams;
3365 	}
3366 }
3367 
3368 /* Returns an error code if one of the endpoint already has streams.
3369  * This does not change any data structures, it only checks and gathers
3370  * information.
3371  */
xhci_calculate_streams_and_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int * num_streams,u32 * changed_ep_bitmask)3372 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3373 		struct usb_device *udev,
3374 		struct usb_host_endpoint **eps, unsigned int num_eps,
3375 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3376 {
3377 	unsigned int max_streams;
3378 	unsigned int endpoint_flag;
3379 	int i;
3380 	int ret;
3381 
3382 	for (i = 0; i < num_eps; i++) {
3383 		ret = xhci_check_streams_endpoint(xhci, udev,
3384 				eps[i], udev->slot_id);
3385 		if (ret < 0)
3386 			return ret;
3387 
3388 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3389 		if (max_streams < (*num_streams - 1)) {
3390 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3391 					eps[i]->desc.bEndpointAddress,
3392 					max_streams);
3393 			*num_streams = max_streams+1;
3394 		}
3395 
3396 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3397 		if (*changed_ep_bitmask & endpoint_flag)
3398 			return -EINVAL;
3399 		*changed_ep_bitmask |= endpoint_flag;
3400 	}
3401 	return 0;
3402 }
3403 
xhci_calculate_no_streams_bitmask(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps)3404 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3405 		struct usb_device *udev,
3406 		struct usb_host_endpoint **eps, unsigned int num_eps)
3407 {
3408 	u32 changed_ep_bitmask = 0;
3409 	unsigned int slot_id;
3410 	unsigned int ep_index;
3411 	unsigned int ep_state;
3412 	int i;
3413 
3414 	slot_id = udev->slot_id;
3415 	if (!xhci->devs[slot_id])
3416 		return 0;
3417 
3418 	for (i = 0; i < num_eps; i++) {
3419 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3420 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3421 		/* Are streams already being freed for the endpoint? */
3422 		if (ep_state & EP_GETTING_NO_STREAMS) {
3423 			xhci_warn(xhci, "WARN Can't disable streams for "
3424 					"endpoint 0x%x, "
3425 					"streams are being disabled already\n",
3426 					eps[i]->desc.bEndpointAddress);
3427 			return 0;
3428 		}
3429 		/* Are there actually any streams to free? */
3430 		if (!(ep_state & EP_HAS_STREAMS) &&
3431 				!(ep_state & EP_GETTING_STREAMS)) {
3432 			xhci_warn(xhci, "WARN Can't disable streams for "
3433 					"endpoint 0x%x, "
3434 					"streams are already disabled!\n",
3435 					eps[i]->desc.bEndpointAddress);
3436 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3437 					"with non-streams endpoint\n");
3438 			return 0;
3439 		}
3440 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3441 	}
3442 	return changed_ep_bitmask;
3443 }
3444 
3445 /*
3446  * The USB device drivers use this function (through the HCD interface in USB
3447  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3448  * coordinate mass storage command queueing across multiple endpoints (basically
3449  * a stream ID == a task ID).
3450  *
3451  * Setting up streams involves allocating the same size stream context array
3452  * for each endpoint and issuing a configure endpoint command for all endpoints.
3453  *
3454  * Don't allow the call to succeed if one endpoint only supports one stream
3455  * (which means it doesn't support streams at all).
3456  *
3457  * Drivers may get less stream IDs than they asked for, if the host controller
3458  * hardware or endpoints claim they can't support the number of requested
3459  * stream IDs.
3460  */
xhci_alloc_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)3461 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3462 		struct usb_host_endpoint **eps, unsigned int num_eps,
3463 		unsigned int num_streams, gfp_t mem_flags)
3464 {
3465 	int i, ret;
3466 	struct xhci_hcd *xhci;
3467 	struct xhci_virt_device *vdev;
3468 	struct xhci_command *config_cmd;
3469 	struct xhci_input_control_ctx *ctrl_ctx;
3470 	unsigned int ep_index;
3471 	unsigned int num_stream_ctxs;
3472 	unsigned int max_packet;
3473 	unsigned long flags;
3474 	u32 changed_ep_bitmask = 0;
3475 
3476 	if (!eps)
3477 		return -EINVAL;
3478 
3479 	/* Add one to the number of streams requested to account for
3480 	 * stream 0 that is reserved for xHCI usage.
3481 	 */
3482 	num_streams += 1;
3483 	xhci = hcd_to_xhci(hcd);
3484 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3485 			num_streams);
3486 
3487 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3488 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3489 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3490 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3491 		return -ENOSYS;
3492 	}
3493 
3494 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3495 	if (!config_cmd)
3496 		return -ENOMEM;
3497 
3498 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3499 	if (!ctrl_ctx) {
3500 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3501 				__func__);
3502 		xhci_free_command(xhci, config_cmd);
3503 		return -ENOMEM;
3504 	}
3505 
3506 	/* Check to make sure all endpoints are not already configured for
3507 	 * streams.  While we're at it, find the maximum number of streams that
3508 	 * all the endpoints will support and check for duplicate endpoints.
3509 	 */
3510 	spin_lock_irqsave(&xhci->lock, flags);
3511 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3512 			num_eps, &num_streams, &changed_ep_bitmask);
3513 	if (ret < 0) {
3514 		xhci_free_command(xhci, config_cmd);
3515 		spin_unlock_irqrestore(&xhci->lock, flags);
3516 		return ret;
3517 	}
3518 	if (num_streams <= 1) {
3519 		xhci_warn(xhci, "WARN: endpoints can't handle "
3520 				"more than one stream.\n");
3521 		xhci_free_command(xhci, config_cmd);
3522 		spin_unlock_irqrestore(&xhci->lock, flags);
3523 		return -EINVAL;
3524 	}
3525 	vdev = xhci->devs[udev->slot_id];
3526 	/* Mark each endpoint as being in transition, so
3527 	 * xhci_urb_enqueue() will reject all URBs.
3528 	 */
3529 	for (i = 0; i < num_eps; i++) {
3530 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3531 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3532 	}
3533 	spin_unlock_irqrestore(&xhci->lock, flags);
3534 
3535 	/* Setup internal data structures and allocate HW data structures for
3536 	 * streams (but don't install the HW structures in the input context
3537 	 * until we're sure all memory allocation succeeded).
3538 	 */
3539 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3540 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3541 			num_stream_ctxs, num_streams);
3542 
3543 	for (i = 0; i < num_eps; i++) {
3544 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3545 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3546 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3547 				num_stream_ctxs,
3548 				num_streams,
3549 				max_packet, mem_flags);
3550 		if (!vdev->eps[ep_index].stream_info)
3551 			goto cleanup;
3552 		/* Set maxPstreams in endpoint context and update deq ptr to
3553 		 * point to stream context array. FIXME
3554 		 */
3555 	}
3556 
3557 	/* Set up the input context for a configure endpoint command. */
3558 	for (i = 0; i < num_eps; i++) {
3559 		struct xhci_ep_ctx *ep_ctx;
3560 
3561 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3562 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3563 
3564 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3565 				vdev->out_ctx, ep_index);
3566 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3567 				vdev->eps[ep_index].stream_info);
3568 	}
3569 	/* Tell the HW to drop its old copy of the endpoint context info
3570 	 * and add the updated copy from the input context.
3571 	 */
3572 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3573 			vdev->out_ctx, ctrl_ctx,
3574 			changed_ep_bitmask, changed_ep_bitmask);
3575 
3576 	/* Issue and wait for the configure endpoint command */
3577 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3578 			false, false);
3579 
3580 	/* xHC rejected the configure endpoint command for some reason, so we
3581 	 * leave the old ring intact and free our internal streams data
3582 	 * structure.
3583 	 */
3584 	if (ret < 0)
3585 		goto cleanup;
3586 
3587 	spin_lock_irqsave(&xhci->lock, flags);
3588 	for (i = 0; i < num_eps; i++) {
3589 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3590 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3591 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3592 			 udev->slot_id, ep_index);
3593 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3594 	}
3595 	xhci_free_command(xhci, config_cmd);
3596 	spin_unlock_irqrestore(&xhci->lock, flags);
3597 
3598 	for (i = 0; i < num_eps; i++) {
3599 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3600 		xhci_debugfs_create_stream_files(xhci, vdev, ep_index);
3601 	}
3602 	/* Subtract 1 for stream 0, which drivers can't use */
3603 	return num_streams - 1;
3604 
3605 cleanup:
3606 	/* If it didn't work, free the streams! */
3607 	for (i = 0; i < num_eps; i++) {
3608 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3609 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3610 		vdev->eps[ep_index].stream_info = NULL;
3611 		/* FIXME Unset maxPstreams in endpoint context and
3612 		 * update deq ptr to point to normal string ring.
3613 		 */
3614 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3615 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3616 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3617 	}
3618 	xhci_free_command(xhci, config_cmd);
3619 	return -ENOMEM;
3620 }
3621 
3622 /* Transition the endpoint from using streams to being a "normal" endpoint
3623  * without streams.
3624  *
3625  * Modify the endpoint context state, submit a configure endpoint command,
3626  * and free all endpoint rings for streams if that completes successfully.
3627  */
xhci_free_streams(struct usb_hcd * hcd,struct usb_device * udev,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)3628 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3629 		struct usb_host_endpoint **eps, unsigned int num_eps,
3630 		gfp_t mem_flags)
3631 {
3632 	int i, ret;
3633 	struct xhci_hcd *xhci;
3634 	struct xhci_virt_device *vdev;
3635 	struct xhci_command *command;
3636 	struct xhci_input_control_ctx *ctrl_ctx;
3637 	unsigned int ep_index;
3638 	unsigned long flags;
3639 	u32 changed_ep_bitmask;
3640 
3641 	xhci = hcd_to_xhci(hcd);
3642 	vdev = xhci->devs[udev->slot_id];
3643 
3644 	/* Set up a configure endpoint command to remove the streams rings */
3645 	spin_lock_irqsave(&xhci->lock, flags);
3646 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3647 			udev, eps, num_eps);
3648 	if (changed_ep_bitmask == 0) {
3649 		spin_unlock_irqrestore(&xhci->lock, flags);
3650 		return -EINVAL;
3651 	}
3652 
3653 	/* Use the xhci_command structure from the first endpoint.  We may have
3654 	 * allocated too many, but the driver may call xhci_free_streams() for
3655 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3656 	 */
3657 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3658 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3659 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3660 	if (!ctrl_ctx) {
3661 		spin_unlock_irqrestore(&xhci->lock, flags);
3662 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3663 				__func__);
3664 		return -EINVAL;
3665 	}
3666 
3667 	for (i = 0; i < num_eps; i++) {
3668 		struct xhci_ep_ctx *ep_ctx;
3669 
3670 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3671 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3672 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3673 			EP_GETTING_NO_STREAMS;
3674 
3675 		xhci_endpoint_copy(xhci, command->in_ctx,
3676 				vdev->out_ctx, ep_index);
3677 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3678 				&vdev->eps[ep_index]);
3679 	}
3680 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3681 			vdev->out_ctx, ctrl_ctx,
3682 			changed_ep_bitmask, changed_ep_bitmask);
3683 	spin_unlock_irqrestore(&xhci->lock, flags);
3684 
3685 	/* Issue and wait for the configure endpoint command,
3686 	 * which must succeed.
3687 	 */
3688 	ret = xhci_configure_endpoint(xhci, udev, command,
3689 			false, true);
3690 
3691 	/* xHC rejected the configure endpoint command for some reason, so we
3692 	 * leave the streams rings intact.
3693 	 */
3694 	if (ret < 0)
3695 		return ret;
3696 
3697 	spin_lock_irqsave(&xhci->lock, flags);
3698 	for (i = 0; i < num_eps; i++) {
3699 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3700 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3701 		vdev->eps[ep_index].stream_info = NULL;
3702 		/* FIXME Unset maxPstreams in endpoint context and
3703 		 * update deq ptr to point to normal string ring.
3704 		 */
3705 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3706 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3707 	}
3708 	spin_unlock_irqrestore(&xhci->lock, flags);
3709 
3710 	return 0;
3711 }
3712 
3713 /*
3714  * Deletes endpoint resources for endpoints that were active before a Reset
3715  * Device command, or a Disable Slot command.  The Reset Device command leaves
3716  * the control endpoint intact, whereas the Disable Slot command deletes it.
3717  *
3718  * Must be called with xhci->lock held.
3719  */
xhci_free_device_endpoint_resources(struct xhci_hcd * xhci,struct xhci_virt_device * virt_dev,bool drop_control_ep)3720 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3721 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3722 {
3723 	int i;
3724 	unsigned int num_dropped_eps = 0;
3725 	unsigned int drop_flags = 0;
3726 
3727 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3728 		if (virt_dev->eps[i].ring) {
3729 			drop_flags |= 1 << i;
3730 			num_dropped_eps++;
3731 		}
3732 	}
3733 	xhci->num_active_eps -= num_dropped_eps;
3734 	if (num_dropped_eps)
3735 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3736 				"Dropped %u ep ctxs, flags = 0x%x, "
3737 				"%u now active.",
3738 				num_dropped_eps, drop_flags,
3739 				xhci->num_active_eps);
3740 }
3741 
3742 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev);
3743 
3744 /*
3745  * This submits a Reset Device Command, which will set the device state to 0,
3746  * set the device address to 0, and disable all the endpoints except the default
3747  * control endpoint.  The USB core should come back and call
3748  * xhci_address_device(), and then re-set up the configuration.  If this is
3749  * called because of a usb_reset_and_verify_device(), then the old alternate
3750  * settings will be re-installed through the normal bandwidth allocation
3751  * functions.
3752  *
3753  * Wait for the Reset Device command to finish.  Remove all structures
3754  * associated with the endpoints that were disabled.  Clear the input device
3755  * structure? Reset the control endpoint 0 max packet size?
3756  *
3757  * If the virt_dev to be reset does not exist or does not match the udev,
3758  * it means the device is lost, possibly due to the xHC restore error and
3759  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3760  * re-allocate the device.
3761  */
xhci_discover_or_reset_device(struct usb_hcd * hcd,struct usb_device * udev)3762 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3763 		struct usb_device *udev)
3764 {
3765 	int ret, i;
3766 	unsigned long flags;
3767 	struct xhci_hcd *xhci;
3768 	unsigned int slot_id;
3769 	struct xhci_virt_device *virt_dev;
3770 	struct xhci_command *reset_device_cmd;
3771 	struct xhci_slot_ctx *slot_ctx;
3772 	int old_active_eps = 0;
3773 
3774 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3775 	if (ret <= 0)
3776 		return ret;
3777 	xhci = hcd_to_xhci(hcd);
3778 	slot_id = udev->slot_id;
3779 	virt_dev = xhci->devs[slot_id];
3780 	if (!virt_dev) {
3781 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3782 				"not exist. Re-allocate the device\n", slot_id);
3783 		ret = xhci_alloc_dev(hcd, udev);
3784 		if (ret == 1)
3785 			return 0;
3786 		else
3787 			return -EINVAL;
3788 	}
3789 
3790 	if (virt_dev->tt_info)
3791 		old_active_eps = virt_dev->tt_info->active_eps;
3792 
3793 	if (virt_dev->udev != udev) {
3794 		/* If the virt_dev and the udev does not match, this virt_dev
3795 		 * may belong to another udev.
3796 		 * Re-allocate the device.
3797 		 */
3798 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3799 				"not match the udev. Re-allocate the device\n",
3800 				slot_id);
3801 		ret = xhci_alloc_dev(hcd, udev);
3802 		if (ret == 1)
3803 			return 0;
3804 		else
3805 			return -EINVAL;
3806 	}
3807 
3808 	/* If device is not setup, there is no point in resetting it */
3809 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3810 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3811 						SLOT_STATE_DISABLED)
3812 		return 0;
3813 
3814 	if (xhci->quirks & XHCI_ETRON_HOST) {
3815 		/*
3816 		 * Obtaining a new device slot to inform the xHCI host that
3817 		 * the USB device has been reset.
3818 		 */
3819 		ret = xhci_disable_slot(xhci, udev->slot_id);
3820 		xhci_free_virt_device(xhci, udev->slot_id);
3821 		if (!ret) {
3822 			ret = xhci_alloc_dev(hcd, udev);
3823 			if (ret == 1)
3824 				ret = 0;
3825 			else
3826 				ret = -EINVAL;
3827 		}
3828 		return ret;
3829 	}
3830 
3831 	trace_xhci_discover_or_reset_device(slot_ctx);
3832 
3833 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3834 	/* Allocate the command structure that holds the struct completion.
3835 	 * Assume we're in process context, since the normal device reset
3836 	 * process has to wait for the device anyway.  Storage devices are
3837 	 * reset as part of error handling, so use GFP_NOIO instead of
3838 	 * GFP_KERNEL.
3839 	 */
3840 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3841 	if (!reset_device_cmd) {
3842 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3843 		return -ENOMEM;
3844 	}
3845 
3846 	/* Attempt to submit the Reset Device command to the command ring */
3847 	spin_lock_irqsave(&xhci->lock, flags);
3848 
3849 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3850 	if (ret) {
3851 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3852 		spin_unlock_irqrestore(&xhci->lock, flags);
3853 		goto command_cleanup;
3854 	}
3855 	xhci_ring_cmd_db(xhci);
3856 	spin_unlock_irqrestore(&xhci->lock, flags);
3857 
3858 	/* Wait for the Reset Device command to finish */
3859 	wait_for_completion(reset_device_cmd->completion);
3860 
3861 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3862 	 * unless we tried to reset a slot ID that wasn't enabled,
3863 	 * or the device wasn't in the addressed or configured state.
3864 	 */
3865 	ret = reset_device_cmd->status;
3866 	switch (ret) {
3867 	case COMP_COMMAND_ABORTED:
3868 	case COMP_COMMAND_RING_STOPPED:
3869 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3870 		ret = -ETIME;
3871 		goto command_cleanup;
3872 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3873 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3874 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3875 				slot_id,
3876 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3877 		xhci_dbg(xhci, "Not freeing device rings.\n");
3878 		/* Don't treat this as an error.  May change my mind later. */
3879 		ret = 0;
3880 		goto command_cleanup;
3881 	case COMP_SUCCESS:
3882 		xhci_dbg(xhci, "Successful reset device command.\n");
3883 		break;
3884 	default:
3885 		if (xhci_is_vendor_info_code(xhci, ret))
3886 			break;
3887 		xhci_warn(xhci, "Unknown completion code %u for "
3888 				"reset device command.\n", ret);
3889 		ret = -EINVAL;
3890 		goto command_cleanup;
3891 	}
3892 
3893 	/* Free up host controller endpoint resources */
3894 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3895 		spin_lock_irqsave(&xhci->lock, flags);
3896 		/* Don't delete the default control endpoint resources */
3897 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3898 		spin_unlock_irqrestore(&xhci->lock, flags);
3899 	}
3900 
3901 	/* Everything but endpoint 0 is disabled, so free the rings. */
3902 	for (i = 1; i < 31; i++) {
3903 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3904 
3905 		if (ep->ep_state & EP_HAS_STREAMS) {
3906 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3907 					xhci_get_endpoint_address(i));
3908 			xhci_free_stream_info(xhci, ep->stream_info);
3909 			ep->stream_info = NULL;
3910 			ep->ep_state &= ~EP_HAS_STREAMS;
3911 		}
3912 
3913 		if (ep->ring) {
3914 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3915 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3916 		}
3917 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3918 			xhci_drop_ep_from_interval_table(xhci,
3919 					&virt_dev->eps[i].bw_info,
3920 					virt_dev->bw_table,
3921 					udev,
3922 					&virt_dev->eps[i],
3923 					virt_dev->tt_info);
3924 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3925 	}
3926 	/* If necessary, update the number of active TTs on this root port */
3927 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3928 	virt_dev->flags = 0;
3929 	ret = 0;
3930 
3931 command_cleanup:
3932 	xhci_free_command(xhci, reset_device_cmd);
3933 	return ret;
3934 }
3935 
3936 /*
3937  * At this point, the struct usb_device is about to go away, the device has
3938  * disconnected, and all traffic has been stopped and the endpoints have been
3939  * disabled.  Free any HC data structures associated with that device.
3940  */
xhci_free_dev(struct usb_hcd * hcd,struct usb_device * udev)3941 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3942 {
3943 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3944 	struct xhci_virt_device *virt_dev;
3945 	struct xhci_slot_ctx *slot_ctx;
3946 	unsigned long flags;
3947 	int i, ret;
3948 
3949 	/*
3950 	 * We called pm_runtime_get_noresume when the device was attached.
3951 	 * Decrement the counter here to allow controller to runtime suspend
3952 	 * if no devices remain.
3953 	 */
3954 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3955 		pm_runtime_put_noidle(hcd->self.controller);
3956 
3957 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3958 	/* If the host is halted due to driver unload, we still need to free the
3959 	 * device.
3960 	 */
3961 	if (ret <= 0 && ret != -ENODEV)
3962 		return;
3963 
3964 	virt_dev = xhci->devs[udev->slot_id];
3965 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3966 	trace_xhci_free_dev(slot_ctx);
3967 
3968 	/* Stop any wayward timer functions (which may grab the lock) */
3969 	for (i = 0; i < 31; i++)
3970 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3971 	virt_dev->udev = NULL;
3972 	xhci_disable_slot(xhci, udev->slot_id);
3973 
3974 	spin_lock_irqsave(&xhci->lock, flags);
3975 	xhci_free_virt_device(xhci, udev->slot_id);
3976 	spin_unlock_irqrestore(&xhci->lock, flags);
3977 
3978 }
3979 
xhci_disable_slot(struct xhci_hcd * xhci,u32 slot_id)3980 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3981 {
3982 	struct xhci_command *command;
3983 	unsigned long flags;
3984 	u32 state;
3985 	int ret;
3986 
3987 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3988 	if (!command)
3989 		return -ENOMEM;
3990 
3991 	xhci_debugfs_remove_slot(xhci, slot_id);
3992 
3993 	spin_lock_irqsave(&xhci->lock, flags);
3994 	/* Don't disable the slot if the host controller is dead. */
3995 	state = readl(&xhci->op_regs->status);
3996 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3997 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3998 		spin_unlock_irqrestore(&xhci->lock, flags);
3999 		kfree(command);
4000 		return -ENODEV;
4001 	}
4002 
4003 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
4004 				slot_id);
4005 	if (ret) {
4006 		spin_unlock_irqrestore(&xhci->lock, flags);
4007 		kfree(command);
4008 		return ret;
4009 	}
4010 	xhci_ring_cmd_db(xhci);
4011 	spin_unlock_irqrestore(&xhci->lock, flags);
4012 
4013 	wait_for_completion(command->completion);
4014 
4015 	if (command->status != COMP_SUCCESS)
4016 		xhci_warn(xhci, "Unsuccessful disable slot %u command, status %d\n",
4017 			  slot_id, command->status);
4018 
4019 	xhci_free_command(xhci, command);
4020 
4021 	return 0;
4022 }
4023 
4024 /*
4025  * Checks if we have enough host controller resources for the default control
4026  * endpoint.
4027  *
4028  * Must be called with xhci->lock held.
4029  */
xhci_reserve_host_control_ep_resources(struct xhci_hcd * xhci)4030 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
4031 {
4032 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
4033 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4034 				"Not enough ep ctxs: "
4035 				"%u active, need to add 1, limit is %u.",
4036 				xhci->num_active_eps, xhci->limit_active_eps);
4037 		return -ENOMEM;
4038 	}
4039 	xhci->num_active_eps += 1;
4040 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
4041 			"Adding 1 ep ctx, %u now active.",
4042 			xhci->num_active_eps);
4043 	return 0;
4044 }
4045 
4046 
4047 /*
4048  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
4049  * timed out, or allocating memory failed.  Returns 1 on success.
4050  */
xhci_alloc_dev(struct usb_hcd * hcd,struct usb_device * udev)4051 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
4052 {
4053 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4054 	struct xhci_virt_device *vdev;
4055 	struct xhci_slot_ctx *slot_ctx;
4056 	unsigned long flags;
4057 	int ret, slot_id;
4058 	struct xhci_command *command;
4059 
4060 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4061 	if (!command)
4062 		return 0;
4063 
4064 	spin_lock_irqsave(&xhci->lock, flags);
4065 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
4066 	if (ret) {
4067 		spin_unlock_irqrestore(&xhci->lock, flags);
4068 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
4069 		xhci_free_command(xhci, command);
4070 		return 0;
4071 	}
4072 	xhci_ring_cmd_db(xhci);
4073 	spin_unlock_irqrestore(&xhci->lock, flags);
4074 
4075 	wait_for_completion(command->completion);
4076 	slot_id = command->slot_id;
4077 
4078 	if (!slot_id || command->status != COMP_SUCCESS) {
4079 		xhci_err(xhci, "Error while assigning device slot ID: %s\n",
4080 			 xhci_trb_comp_code_string(command->status));
4081 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
4082 				HCS_MAX_SLOTS(
4083 					readl(&xhci->cap_regs->hcs_params1)));
4084 		xhci_free_command(xhci, command);
4085 		return 0;
4086 	}
4087 
4088 	xhci_free_command(xhci, command);
4089 
4090 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
4091 		spin_lock_irqsave(&xhci->lock, flags);
4092 		ret = xhci_reserve_host_control_ep_resources(xhci);
4093 		if (ret) {
4094 			spin_unlock_irqrestore(&xhci->lock, flags);
4095 			xhci_warn(xhci, "Not enough host resources, "
4096 					"active endpoint contexts = %u\n",
4097 					xhci->num_active_eps);
4098 			goto disable_slot;
4099 		}
4100 		spin_unlock_irqrestore(&xhci->lock, flags);
4101 	}
4102 	/* Use GFP_NOIO, since this function can be called from
4103 	 * xhci_discover_or_reset_device(), which may be called as part of
4104 	 * mass storage driver error handling.
4105 	 */
4106 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
4107 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
4108 		goto disable_slot;
4109 	}
4110 	vdev = xhci->devs[slot_id];
4111 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
4112 	trace_xhci_alloc_dev(slot_ctx);
4113 
4114 	udev->slot_id = slot_id;
4115 
4116 	xhci_debugfs_create_slot(xhci, slot_id);
4117 
4118 	/*
4119 	 * If resetting upon resume, we can't put the controller into runtime
4120 	 * suspend if there is a device attached.
4121 	 */
4122 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
4123 		pm_runtime_get_noresume(hcd->self.controller);
4124 
4125 	/* Is this a LS or FS device under a HS hub? */
4126 	/* Hub or peripherial? */
4127 	return 1;
4128 
4129 disable_slot:
4130 	xhci_disable_slot(xhci, udev->slot_id);
4131 	xhci_free_virt_device(xhci, udev->slot_id);
4132 
4133 	return 0;
4134 }
4135 
4136 /**
4137  * xhci_setup_device - issues an Address Device command to assign a unique
4138  *			USB bus address.
4139  * @hcd: USB host controller data structure.
4140  * @udev: USB dev structure representing the connected device.
4141  * @setup: Enum specifying setup mode: address only or with context.
4142  * @timeout_ms: Max wait time (ms) for the command operation to complete.
4143  *
4144  * Return: 0 if successful; otherwise, negative error code.
4145  */
xhci_setup_device(struct usb_hcd * hcd,struct usb_device * udev,enum xhci_setup_dev setup,unsigned int timeout_ms)4146 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
4147 			     enum xhci_setup_dev setup, unsigned int timeout_ms)
4148 {
4149 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
4150 	unsigned long flags;
4151 	struct xhci_virt_device *virt_dev;
4152 	int ret = 0;
4153 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4154 	struct xhci_slot_ctx *slot_ctx;
4155 	struct xhci_input_control_ctx *ctrl_ctx;
4156 	u64 temp_64;
4157 	struct xhci_command *command = NULL;
4158 
4159 	mutex_lock(&xhci->mutex);
4160 
4161 	if (xhci->xhc_state) {	/* dying, removing or halted */
4162 		ret = -ESHUTDOWN;
4163 		goto out;
4164 	}
4165 
4166 	if (!udev->slot_id) {
4167 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4168 				"Bad Slot ID %d", udev->slot_id);
4169 		ret = -EINVAL;
4170 		goto out;
4171 	}
4172 
4173 	virt_dev = xhci->devs[udev->slot_id];
4174 
4175 	if (WARN_ON(!virt_dev)) {
4176 		/*
4177 		 * In plug/unplug torture test with an NEC controller,
4178 		 * a zero-dereference was observed once due to virt_dev = 0.
4179 		 * Print useful debug rather than crash if it is observed again!
4180 		 */
4181 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
4182 			udev->slot_id);
4183 		ret = -EINVAL;
4184 		goto out;
4185 	}
4186 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4187 	trace_xhci_setup_device_slot(slot_ctx);
4188 
4189 	if (setup == SETUP_CONTEXT_ONLY) {
4190 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4191 		    SLOT_STATE_DEFAULT) {
4192 			xhci_dbg(xhci, "Slot already in default state\n");
4193 			goto out;
4194 		}
4195 	}
4196 
4197 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4198 	if (!command) {
4199 		ret = -ENOMEM;
4200 		goto out;
4201 	}
4202 
4203 	command->in_ctx = virt_dev->in_ctx;
4204 	command->timeout_ms = timeout_ms;
4205 
4206 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4207 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4208 	if (!ctrl_ctx) {
4209 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4210 				__func__);
4211 		ret = -EINVAL;
4212 		goto out;
4213 	}
4214 	/*
4215 	 * If this is the first Set Address since device plug-in or
4216 	 * virt_device realloaction after a resume with an xHCI power loss,
4217 	 * then set up the slot context.
4218 	 */
4219 	if (!slot_ctx->dev_info)
4220 		xhci_setup_addressable_virt_dev(xhci, udev);
4221 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4222 	else
4223 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4224 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4225 	ctrl_ctx->drop_flags = 0;
4226 
4227 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4228 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4229 
4230 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4231 	spin_lock_irqsave(&xhci->lock, flags);
4232 	trace_xhci_setup_device(virt_dev);
4233 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4234 					udev->slot_id, setup);
4235 	if (ret) {
4236 		spin_unlock_irqrestore(&xhci->lock, flags);
4237 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4238 				"FIXME: allocate a command ring segment");
4239 		goto out;
4240 	}
4241 	xhci_ring_cmd_db(xhci);
4242 	spin_unlock_irqrestore(&xhci->lock, flags);
4243 
4244 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4245 	wait_for_completion(command->completion);
4246 
4247 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4248 	 * the SetAddress() "recovery interval" required by USB and aborting the
4249 	 * command on a timeout.
4250 	 */
4251 	switch (command->status) {
4252 	case COMP_COMMAND_ABORTED:
4253 	case COMP_COMMAND_RING_STOPPED:
4254 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4255 		ret = -ETIME;
4256 		break;
4257 	case COMP_CONTEXT_STATE_ERROR:
4258 	case COMP_SLOT_NOT_ENABLED_ERROR:
4259 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4260 			 act, udev->slot_id);
4261 		ret = -EINVAL;
4262 		break;
4263 	case COMP_USB_TRANSACTION_ERROR:
4264 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4265 
4266 		mutex_unlock(&xhci->mutex);
4267 		ret = xhci_disable_slot(xhci, udev->slot_id);
4268 		xhci_free_virt_device(xhci, udev->slot_id);
4269 		if (!ret) {
4270 			if (xhci_alloc_dev(hcd, udev) == 1)
4271 				xhci_setup_addressable_virt_dev(xhci, udev);
4272 		}
4273 		kfree(command->completion);
4274 		kfree(command);
4275 		return -EPROTO;
4276 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4277 		dev_warn(&udev->dev,
4278 			 "ERROR: Incompatible device for setup %s command\n", act);
4279 		ret = -ENODEV;
4280 		break;
4281 	case COMP_SUCCESS:
4282 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4283 			       "Successful setup %s command", act);
4284 		break;
4285 	default:
4286 		xhci_err(xhci,
4287 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4288 			 act, command->status);
4289 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4290 		ret = -EINVAL;
4291 		break;
4292 	}
4293 	if (ret)
4294 		goto out;
4295 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4296 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4297 			"Op regs DCBAA ptr = %#016llx", temp_64);
4298 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4299 		"Slot ID %d dcbaa entry @%p = %#016llx",
4300 		udev->slot_id,
4301 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4302 		(unsigned long long)
4303 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4304 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4305 			"Output Context DMA address = %#08llx",
4306 			(unsigned long long)virt_dev->out_ctx->dma);
4307 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4308 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4309 	/*
4310 	 * USB core uses address 1 for the roothubs, so we add one to the
4311 	 * address given back to us by the HC.
4312 	 */
4313 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4314 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4315 	/* Zero the input context control for later use */
4316 	ctrl_ctx->add_flags = 0;
4317 	ctrl_ctx->drop_flags = 0;
4318 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4319 	udev->devaddr = (u8)(le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4320 
4321 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4322 		       "Internal device address = %d",
4323 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4324 out:
4325 	mutex_unlock(&xhci->mutex);
4326 	if (command) {
4327 		kfree(command->completion);
4328 		kfree(command);
4329 	}
4330 	return ret;
4331 }
4332 
xhci_address_device(struct usb_hcd * hcd,struct usb_device * udev,unsigned int timeout_ms)4333 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev,
4334 			       unsigned int timeout_ms)
4335 {
4336 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS, timeout_ms);
4337 }
4338 
xhci_enable_device(struct usb_hcd * hcd,struct usb_device * udev)4339 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4340 {
4341 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY,
4342 				 XHCI_CMD_DEFAULT_TIMEOUT);
4343 }
4344 
4345 /*
4346  * Transfer the port index into real index in the HW port status
4347  * registers. Caculate offset between the port's PORTSC register
4348  * and port status base. Divide the number of per port register
4349  * to get the real index. The raw port number bases 1.
4350  */
xhci_find_raw_port_number(struct usb_hcd * hcd,int port1)4351 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4352 {
4353 	struct xhci_hub *rhub;
4354 
4355 	rhub = xhci_get_rhub(hcd);
4356 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4357 }
4358 
4359 /*
4360  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4361  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4362  */
xhci_change_max_exit_latency(struct xhci_hcd * xhci,struct usb_device * udev,u16 max_exit_latency)4363 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4364 			struct usb_device *udev, u16 max_exit_latency)
4365 {
4366 	struct xhci_virt_device *virt_dev;
4367 	struct xhci_command *command;
4368 	struct xhci_input_control_ctx *ctrl_ctx;
4369 	struct xhci_slot_ctx *slot_ctx;
4370 	unsigned long flags;
4371 	int ret;
4372 
4373 	command = xhci_alloc_command_with_ctx(xhci, true, GFP_KERNEL);
4374 	if (!command)
4375 		return -ENOMEM;
4376 
4377 	spin_lock_irqsave(&xhci->lock, flags);
4378 
4379 	virt_dev = xhci->devs[udev->slot_id];
4380 
4381 	/*
4382 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4383 	 * xHC was re-initialized. Exit latency will be set later after
4384 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4385 	 */
4386 
4387 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4388 		spin_unlock_irqrestore(&xhci->lock, flags);
4389 		xhci_free_command(xhci, command);
4390 		return 0;
4391 	}
4392 
4393 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4394 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4395 	if (!ctrl_ctx) {
4396 		spin_unlock_irqrestore(&xhci->lock, flags);
4397 		xhci_free_command(xhci, command);
4398 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4399 				__func__);
4400 		return -ENOMEM;
4401 	}
4402 
4403 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4404 	spin_unlock_irqrestore(&xhci->lock, flags);
4405 
4406 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4407 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4408 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4409 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4410 	slot_ctx->dev_state = 0;
4411 
4412 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4413 			"Set up evaluate context for LPM MEL change.");
4414 
4415 	/* Issue and wait for the evaluate context command. */
4416 	ret = xhci_configure_endpoint(xhci, udev, command,
4417 			true, true);
4418 
4419 	if (!ret) {
4420 		spin_lock_irqsave(&xhci->lock, flags);
4421 		virt_dev->current_mel = max_exit_latency;
4422 		spin_unlock_irqrestore(&xhci->lock, flags);
4423 	}
4424 
4425 	xhci_free_command(xhci, command);
4426 
4427 	return ret;
4428 }
4429 
4430 #ifdef CONFIG_PM
4431 
4432 /* BESL to HIRD Encoding array for USB2 LPM */
4433 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4434 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4435 
4436 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
xhci_calculate_hird_besl(struct xhci_hcd * xhci,struct usb_device * udev)4437 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4438 					struct usb_device *udev)
4439 {
4440 	int u2del, besl, besl_host;
4441 	int besl_device = 0;
4442 	u32 field;
4443 
4444 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4445 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4446 
4447 	if (field & USB_BESL_SUPPORT) {
4448 		for (besl_host = 0; besl_host < 16; besl_host++) {
4449 			if (xhci_besl_encoding[besl_host] >= u2del)
4450 				break;
4451 		}
4452 		/* Use baseline BESL value as default */
4453 		if (field & USB_BESL_BASELINE_VALID)
4454 			besl_device = USB_GET_BESL_BASELINE(field);
4455 		else if (field & USB_BESL_DEEP_VALID)
4456 			besl_device = USB_GET_BESL_DEEP(field);
4457 	} else {
4458 		if (u2del <= 50)
4459 			besl_host = 0;
4460 		else
4461 			besl_host = (u2del - 51) / 75 + 1;
4462 	}
4463 
4464 	besl = besl_host + besl_device;
4465 	if (besl > 15)
4466 		besl = 15;
4467 
4468 	return besl;
4469 }
4470 
4471 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
xhci_calculate_usb2_hw_lpm_params(struct usb_device * udev)4472 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4473 {
4474 	u32 field;
4475 	int l1;
4476 	int besld = 0;
4477 	int hirdm = 0;
4478 
4479 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4480 
4481 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4482 	l1 = udev->l1_params.timeout / 256;
4483 
4484 	/* device has preferred BESLD */
4485 	if (field & USB_BESL_DEEP_VALID) {
4486 		besld = USB_GET_BESL_DEEP(field);
4487 		hirdm = 1;
4488 	}
4489 
4490 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4491 }
4492 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)4493 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4494 			struct usb_device *udev, int enable)
4495 {
4496 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4497 	struct xhci_port **ports;
4498 	__le32 __iomem	*pm_addr, *hlpm_addr;
4499 	u32		pm_val, hlpm_val, field;
4500 	unsigned int	port_num;
4501 	unsigned long	flags;
4502 	int		hird, exit_latency;
4503 	int		ret;
4504 
4505 	if (xhci->quirks & XHCI_HW_LPM_DISABLE)
4506 		return -EPERM;
4507 
4508 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4509 			!udev->lpm_capable)
4510 		return -EPERM;
4511 
4512 	if (!udev->parent || udev->parent->parent ||
4513 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4514 		return -EPERM;
4515 
4516 	if (udev->usb2_hw_lpm_capable != 1)
4517 		return -EPERM;
4518 
4519 	spin_lock_irqsave(&xhci->lock, flags);
4520 
4521 	ports = xhci->usb2_rhub.ports;
4522 	port_num = udev->portnum - 1;
4523 	pm_addr = ports[port_num]->addr + PORTPMSC;
4524 	pm_val = readl(pm_addr);
4525 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4526 
4527 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4528 		 str_enable_disable(enable), port_num + 1);
4529 
4530 	if (enable) {
4531 		/* Host supports BESL timeout instead of HIRD */
4532 		if (udev->usb2_hw_lpm_besl_capable) {
4533 			/* if device doesn't have a preferred BESL value use a
4534 			 * default one which works with mixed HIRD and BESL
4535 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4536 			 */
4537 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4538 			if ((field & USB_BESL_SUPPORT) &&
4539 			    (field & USB_BESL_BASELINE_VALID))
4540 				hird = USB_GET_BESL_BASELINE(field);
4541 			else
4542 				hird = udev->l1_params.besl;
4543 
4544 			exit_latency = xhci_besl_encoding[hird];
4545 			spin_unlock_irqrestore(&xhci->lock, flags);
4546 
4547 			ret = xhci_change_max_exit_latency(xhci, udev,
4548 							   exit_latency);
4549 			if (ret < 0)
4550 				return ret;
4551 			spin_lock_irqsave(&xhci->lock, flags);
4552 
4553 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4554 			writel(hlpm_val, hlpm_addr);
4555 			/* flush write */
4556 			readl(hlpm_addr);
4557 		} else {
4558 			hird = xhci_calculate_hird_besl(xhci, udev);
4559 		}
4560 
4561 		pm_val &= ~PORT_HIRD_MASK;
4562 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4563 		writel(pm_val, pm_addr);
4564 		pm_val = readl(pm_addr);
4565 		pm_val |= PORT_HLE;
4566 		writel(pm_val, pm_addr);
4567 		/* flush write */
4568 		readl(pm_addr);
4569 	} else {
4570 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4571 		writel(pm_val, pm_addr);
4572 		/* flush write */
4573 		readl(pm_addr);
4574 		if (udev->usb2_hw_lpm_besl_capable) {
4575 			spin_unlock_irqrestore(&xhci->lock, flags);
4576 			xhci_change_max_exit_latency(xhci, udev, 0);
4577 			readl_poll_timeout(ports[port_num]->addr, pm_val,
4578 					   (pm_val & PORT_PLS_MASK) == XDEV_U0,
4579 					   100, 10000);
4580 			return 0;
4581 		}
4582 	}
4583 
4584 	spin_unlock_irqrestore(&xhci->lock, flags);
4585 	return 0;
4586 }
4587 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)4588 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4589 {
4590 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4591 	struct xhci_port *port;
4592 	u32 capability;
4593 
4594 	/* Check if USB3 device at root port is tunneled over USB4 */
4595 	if (hcd->speed >= HCD_USB3 && !udev->parent->parent) {
4596 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
4597 
4598 		udev->tunnel_mode = xhci_port_is_tunneled(xhci, port);
4599 		if (udev->tunnel_mode == USB_LINK_UNKNOWN)
4600 			dev_dbg(&udev->dev, "link tunnel state unknown\n");
4601 		else if (udev->tunnel_mode == USB_LINK_TUNNELED)
4602 			dev_dbg(&udev->dev, "tunneled over USB4 link\n");
4603 		else if (udev->tunnel_mode == USB_LINK_NATIVE)
4604 			dev_dbg(&udev->dev, "native USB 3.x link\n");
4605 		return 0;
4606 	}
4607 
4608 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable || !xhci->hw_lpm_support)
4609 		return 0;
4610 
4611 	/* we only support lpm for non-hub device connected to root hub yet */
4612 	if (!udev->parent || udev->parent->parent ||
4613 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4614 		return 0;
4615 
4616 	port = xhci->usb2_rhub.ports[udev->portnum - 1];
4617 	capability = port->port_cap->protocol_caps;
4618 
4619 	if (capability & XHCI_HLC) {
4620 		udev->usb2_hw_lpm_capable = 1;
4621 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4622 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4623 		if (capability & XHCI_BLC)
4624 			udev->usb2_hw_lpm_besl_capable = 1;
4625 	}
4626 
4627 	return 0;
4628 }
4629 
4630 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4631 
4632 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
xhci_service_interval_to_ns(struct usb_endpoint_descriptor * desc)4633 static unsigned long long xhci_service_interval_to_ns(
4634 		struct usb_endpoint_descriptor *desc)
4635 {
4636 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4637 }
4638 
xhci_get_timeout_no_hub_lpm(struct usb_device * udev,enum usb3_link_state state)4639 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4640 		enum usb3_link_state state)
4641 {
4642 	unsigned long long sel;
4643 	unsigned long long pel;
4644 	unsigned int max_sel_pel;
4645 	char *state_name;
4646 
4647 	switch (state) {
4648 	case USB3_LPM_U1:
4649 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4650 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4651 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4652 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4653 		state_name = "U1";
4654 		break;
4655 	case USB3_LPM_U2:
4656 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4657 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4658 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4659 		state_name = "U2";
4660 		break;
4661 	default:
4662 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4663 				__func__);
4664 		return USB3_LPM_DISABLED;
4665 	}
4666 
4667 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4668 		return USB3_LPM_DEVICE_INITIATED;
4669 
4670 	if (sel > max_sel_pel)
4671 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4672 				"due to long SEL %llu ms\n",
4673 				state_name, sel);
4674 	else
4675 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4676 				"due to long PEL %llu ms\n",
4677 				state_name, pel);
4678 	return USB3_LPM_DISABLED;
4679 }
4680 
4681 /* The U1 timeout should be the maximum of the following values:
4682  *  - For control endpoints, U1 system exit latency (SEL) * 3
4683  *  - For bulk endpoints, U1 SEL * 5
4684  *  - For interrupt endpoints:
4685  *    - Notification EPs, U1 SEL * 3
4686  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4687  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4688  */
xhci_calculate_intel_u1_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4689 static unsigned long long xhci_calculate_intel_u1_timeout(
4690 		struct usb_device *udev,
4691 		struct usb_endpoint_descriptor *desc)
4692 {
4693 	unsigned long long timeout_ns;
4694 	int ep_type;
4695 	int intr_type;
4696 
4697 	ep_type = usb_endpoint_type(desc);
4698 	switch (ep_type) {
4699 	case USB_ENDPOINT_XFER_CONTROL:
4700 		timeout_ns = udev->u1_params.sel * 3;
4701 		break;
4702 	case USB_ENDPOINT_XFER_BULK:
4703 		timeout_ns = udev->u1_params.sel * 5;
4704 		break;
4705 	case USB_ENDPOINT_XFER_INT:
4706 		intr_type = usb_endpoint_interrupt_type(desc);
4707 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4708 			timeout_ns = udev->u1_params.sel * 3;
4709 			break;
4710 		}
4711 		/* Otherwise the calculation is the same as isoc eps */
4712 		fallthrough;
4713 	case USB_ENDPOINT_XFER_ISOC:
4714 		timeout_ns = xhci_service_interval_to_ns(desc);
4715 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4716 		if (timeout_ns < udev->u1_params.sel * 2)
4717 			timeout_ns = udev->u1_params.sel * 2;
4718 		break;
4719 	default:
4720 		return 0;
4721 	}
4722 
4723 	return timeout_ns;
4724 }
4725 
4726 /* Returns the hub-encoded U1 timeout value. */
xhci_calculate_u1_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4727 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4728 		struct usb_device *udev,
4729 		struct usb_endpoint_descriptor *desc)
4730 {
4731 	unsigned long long timeout_ns;
4732 
4733 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4734 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4735 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4736 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4737 			return USB3_LPM_DISABLED;
4738 		}
4739 	}
4740 
4741 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4742 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4743 	else
4744 		timeout_ns = udev->u1_params.sel;
4745 
4746 	/* The U1 timeout is encoded in 1us intervals.
4747 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4748 	 */
4749 	if (timeout_ns == USB3_LPM_DISABLED)
4750 		timeout_ns = 1;
4751 	else
4752 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4753 
4754 	/* If the necessary timeout value is bigger than what we can set in the
4755 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4756 	 */
4757 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4758 		return timeout_ns;
4759 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled due to long timeout %lluus\n",
4760 		timeout_ns);
4761 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4762 }
4763 
4764 /* The U2 timeout should be the maximum of:
4765  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4766  *  - largest bInterval of any active periodic endpoint (to avoid going
4767  *    into lower power link states between intervals).
4768  *  - the U2 Exit Latency of the device
4769  */
xhci_calculate_intel_u2_timeout(struct usb_device * udev,struct usb_endpoint_descriptor * desc)4770 static unsigned long long xhci_calculate_intel_u2_timeout(
4771 		struct usb_device *udev,
4772 		struct usb_endpoint_descriptor *desc)
4773 {
4774 	unsigned long long timeout_ns;
4775 	unsigned long long u2_del_ns;
4776 
4777 	timeout_ns = 10 * 1000 * 1000;
4778 
4779 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4780 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4781 		timeout_ns = xhci_service_interval_to_ns(desc);
4782 
4783 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4784 	if (u2_del_ns > timeout_ns)
4785 		timeout_ns = u2_del_ns;
4786 
4787 	return timeout_ns;
4788 }
4789 
4790 /* Returns the hub-encoded U2 timeout value. */
xhci_calculate_u2_timeout(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc)4791 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4792 		struct usb_device *udev,
4793 		struct usb_endpoint_descriptor *desc)
4794 {
4795 	unsigned long long timeout_ns;
4796 
4797 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4798 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4799 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4800 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4801 			return USB3_LPM_DISABLED;
4802 		}
4803 	}
4804 
4805 	if (xhci->quirks & (XHCI_INTEL_HOST | XHCI_ZHAOXIN_HOST))
4806 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4807 	else
4808 		timeout_ns = udev->u2_params.sel;
4809 
4810 	/* The U2 timeout is encoded in 256us intervals */
4811 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4812 	/* If the necessary timeout value is bigger than what we can set in the
4813 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4814 	 */
4815 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4816 		return timeout_ns;
4817 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled due to long timeout %lluus\n",
4818 		timeout_ns * 256);
4819 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4820 }
4821 
xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4822 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4823 		struct usb_device *udev,
4824 		struct usb_endpoint_descriptor *desc,
4825 		enum usb3_link_state state,
4826 		u16 *timeout)
4827 {
4828 	if (state == USB3_LPM_U1)
4829 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4830 	else if (state == USB3_LPM_U2)
4831 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4832 
4833 	return USB3_LPM_DISABLED;
4834 }
4835 
xhci_update_timeout_for_endpoint(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_endpoint_descriptor * desc,enum usb3_link_state state,u16 * timeout)4836 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4837 		struct usb_device *udev,
4838 		struct usb_endpoint_descriptor *desc,
4839 		enum usb3_link_state state,
4840 		u16 *timeout)
4841 {
4842 	u16 alt_timeout;
4843 
4844 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4845 		desc, state, timeout);
4846 
4847 	/* If we found we can't enable hub-initiated LPM, and
4848 	 * the U1 or U2 exit latency was too high to allow
4849 	 * device-initiated LPM as well, then we will disable LPM
4850 	 * for this device, so stop searching any further.
4851 	 */
4852 	if (alt_timeout == USB3_LPM_DISABLED) {
4853 		*timeout = alt_timeout;
4854 		return -E2BIG;
4855 	}
4856 	if (alt_timeout > *timeout)
4857 		*timeout = alt_timeout;
4858 	return 0;
4859 }
4860 
xhci_update_timeout_for_interface(struct xhci_hcd * xhci,struct usb_device * udev,struct usb_host_interface * alt,enum usb3_link_state state,u16 * timeout)4861 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4862 		struct usb_device *udev,
4863 		struct usb_host_interface *alt,
4864 		enum usb3_link_state state,
4865 		u16 *timeout)
4866 {
4867 	int j;
4868 
4869 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4870 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4871 					&alt->endpoint[j].desc, state, timeout))
4872 			return -E2BIG;
4873 	}
4874 	return 0;
4875 }
4876 
xhci_check_tier_policy(struct xhci_hcd * xhci,struct usb_device * udev,enum usb3_link_state state)4877 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4878 		struct usb_device *udev,
4879 		enum usb3_link_state state)
4880 {
4881 	struct usb_device *parent = udev->parent;
4882 	int tier = 1; /* roothub is tier1 */
4883 
4884 	while (parent) {
4885 		parent = parent->parent;
4886 		tier++;
4887 	}
4888 
4889 	if (xhci->quirks & XHCI_INTEL_HOST && tier > 3)
4890 		goto fail;
4891 	if (xhci->quirks & XHCI_ZHAOXIN_HOST && tier > 2)
4892 		goto fail;
4893 
4894 	return 0;
4895 fail:
4896 	dev_dbg(&udev->dev, "Tier policy prevents U1/U2 LPM states for devices at tier %d\n",
4897 			tier);
4898 	return -E2BIG;
4899 }
4900 
4901 /* Returns the U1 or U2 timeout that should be enabled.
4902  * If the tier check or timeout setting functions return with a non-zero exit
4903  * code, that means the timeout value has been finalized and we shouldn't look
4904  * at any more endpoints.
4905  */
xhci_calculate_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)4906 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4907 			struct usb_device *udev, enum usb3_link_state state)
4908 {
4909 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4910 	struct usb_host_config *config;
4911 	char *state_name;
4912 	int i;
4913 	u16 timeout = USB3_LPM_DISABLED;
4914 
4915 	if (state == USB3_LPM_U1)
4916 		state_name = "U1";
4917 	else if (state == USB3_LPM_U2)
4918 		state_name = "U2";
4919 	else {
4920 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4921 				state);
4922 		return timeout;
4923 	}
4924 
4925 	/* Gather some information about the currently installed configuration
4926 	 * and alternate interface settings.
4927 	 */
4928 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4929 			state, &timeout))
4930 		return timeout;
4931 
4932 	config = udev->actconfig;
4933 	if (!config)
4934 		return timeout;
4935 
4936 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4937 		struct usb_driver *driver;
4938 		struct usb_interface *intf = config->interface[i];
4939 
4940 		if (!intf)
4941 			continue;
4942 
4943 		/* Check if any currently bound drivers want hub-initiated LPM
4944 		 * disabled.
4945 		 */
4946 		if (intf->dev.driver) {
4947 			driver = to_usb_driver(intf->dev.driver);
4948 			if (driver && driver->disable_hub_initiated_lpm) {
4949 				dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4950 					state_name, driver->name);
4951 				timeout = xhci_get_timeout_no_hub_lpm(udev,
4952 								      state);
4953 				if (timeout == USB3_LPM_DISABLED)
4954 					return timeout;
4955 			}
4956 		}
4957 
4958 		/* Not sure how this could happen... */
4959 		if (!intf->cur_altsetting)
4960 			continue;
4961 
4962 		if (xhci_update_timeout_for_interface(xhci, udev,
4963 					intf->cur_altsetting,
4964 					state, &timeout))
4965 			return timeout;
4966 	}
4967 	return timeout;
4968 }
4969 
calculate_max_exit_latency(struct usb_device * udev,enum usb3_link_state state_changed,u16 hub_encoded_timeout)4970 static int calculate_max_exit_latency(struct usb_device *udev,
4971 		enum usb3_link_state state_changed,
4972 		u16 hub_encoded_timeout)
4973 {
4974 	unsigned long long u1_mel_us = 0;
4975 	unsigned long long u2_mel_us = 0;
4976 	unsigned long long mel_us = 0;
4977 	bool disabling_u1;
4978 	bool disabling_u2;
4979 	bool enabling_u1;
4980 	bool enabling_u2;
4981 
4982 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4983 			hub_encoded_timeout == USB3_LPM_DISABLED);
4984 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4985 			hub_encoded_timeout == USB3_LPM_DISABLED);
4986 
4987 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4988 			hub_encoded_timeout != USB3_LPM_DISABLED);
4989 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4990 			hub_encoded_timeout != USB3_LPM_DISABLED);
4991 
4992 	/* If U1 was already enabled and we're not disabling it,
4993 	 * or we're going to enable U1, account for the U1 max exit latency.
4994 	 */
4995 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4996 			enabling_u1)
4997 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4998 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4999 			enabling_u2)
5000 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
5001 
5002 	mel_us = max(u1_mel_us, u2_mel_us);
5003 
5004 	/* xHCI host controller max exit latency field is only 16 bits wide. */
5005 	if (mel_us > MAX_EXIT) {
5006 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
5007 				"is too big.\n", mel_us);
5008 		return -E2BIG;
5009 	}
5010 	return mel_us;
5011 }
5012 
5013 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5014 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5015 			struct usb_device *udev, enum usb3_link_state state)
5016 {
5017 	struct xhci_hcd	*xhci;
5018 	struct xhci_port *port;
5019 	u16 hub_encoded_timeout;
5020 	int mel;
5021 	int ret;
5022 
5023 	xhci = hcd_to_xhci(hcd);
5024 	/* The LPM timeout values are pretty host-controller specific, so don't
5025 	 * enable hub-initiated timeouts unless the vendor has provided
5026 	 * information about their timeout algorithm.
5027 	 */
5028 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5029 			!xhci->devs[udev->slot_id])
5030 		return USB3_LPM_DISABLED;
5031 
5032 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
5033 		return USB3_LPM_DISABLED;
5034 
5035 	/* If connected to root port then check port can handle lpm */
5036 	if (udev->parent && !udev->parent->parent) {
5037 		port = xhci->usb3_rhub.ports[udev->portnum - 1];
5038 		if (port->lpm_incapable)
5039 			return USB3_LPM_DISABLED;
5040 	}
5041 
5042 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
5043 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
5044 	if (mel < 0) {
5045 		/* Max Exit Latency is too big, disable LPM. */
5046 		hub_encoded_timeout = USB3_LPM_DISABLED;
5047 		mel = 0;
5048 	}
5049 
5050 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
5051 	if (ret)
5052 		return ret;
5053 	return hub_encoded_timeout;
5054 }
5055 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5056 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5057 			struct usb_device *udev, enum usb3_link_state state)
5058 {
5059 	struct xhci_hcd	*xhci;
5060 	u16 mel;
5061 
5062 	xhci = hcd_to_xhci(hcd);
5063 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
5064 			!xhci->devs[udev->slot_id])
5065 		return 0;
5066 
5067 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
5068 	return xhci_change_max_exit_latency(xhci, udev, mel);
5069 }
5070 #else /* CONFIG_PM */
5071 
xhci_set_usb2_hardware_lpm(struct usb_hcd * hcd,struct usb_device * udev,int enable)5072 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
5073 				struct usb_device *udev, int enable)
5074 {
5075 	return 0;
5076 }
5077 
xhci_update_device(struct usb_hcd * hcd,struct usb_device * udev)5078 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
5079 {
5080 	return 0;
5081 }
5082 
xhci_enable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5083 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
5084 			struct usb_device *udev, enum usb3_link_state state)
5085 {
5086 	return USB3_LPM_DISABLED;
5087 }
5088 
xhci_disable_usb3_lpm_timeout(struct usb_hcd * hcd,struct usb_device * udev,enum usb3_link_state state)5089 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
5090 			struct usb_device *udev, enum usb3_link_state state)
5091 {
5092 	return 0;
5093 }
5094 #endif	/* CONFIG_PM */
5095 
5096 /*-------------------------------------------------------------------------*/
5097 
5098 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
5099  * internal data structures for the device.
5100  */
xhci_update_hub_device(struct usb_hcd * hcd,struct usb_device * hdev,struct usb_tt * tt,gfp_t mem_flags)5101 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
5102 			struct usb_tt *tt, gfp_t mem_flags)
5103 {
5104 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5105 	struct xhci_virt_device *vdev;
5106 	struct xhci_command *config_cmd;
5107 	struct xhci_input_control_ctx *ctrl_ctx;
5108 	struct xhci_slot_ctx *slot_ctx;
5109 	unsigned long flags;
5110 	unsigned think_time;
5111 	int ret;
5112 
5113 	/* Ignore root hubs */
5114 	if (!hdev->parent)
5115 		return 0;
5116 
5117 	vdev = xhci->devs[hdev->slot_id];
5118 	if (!vdev) {
5119 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
5120 		return -EINVAL;
5121 	}
5122 
5123 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
5124 	if (!config_cmd)
5125 		return -ENOMEM;
5126 
5127 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
5128 	if (!ctrl_ctx) {
5129 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
5130 				__func__);
5131 		xhci_free_command(xhci, config_cmd);
5132 		return -ENOMEM;
5133 	}
5134 
5135 	spin_lock_irqsave(&xhci->lock, flags);
5136 	if (hdev->speed == USB_SPEED_HIGH &&
5137 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
5138 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
5139 		xhci_free_command(xhci, config_cmd);
5140 		spin_unlock_irqrestore(&xhci->lock, flags);
5141 		return -ENOMEM;
5142 	}
5143 
5144 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
5145 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
5146 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
5147 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
5148 	/*
5149 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
5150 	 * but it may be already set to 1 when setup an xHCI virtual
5151 	 * device, so clear it anyway.
5152 	 */
5153 	if (tt->multi)
5154 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
5155 	else if (hdev->speed == USB_SPEED_FULL)
5156 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
5157 
5158 	if (xhci->hci_version > 0x95) {
5159 		xhci_dbg(xhci, "xHCI version %x needs hub "
5160 				"TT think time and number of ports\n",
5161 				(unsigned int) xhci->hci_version);
5162 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
5163 		/* Set TT think time - convert from ns to FS bit times.
5164 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
5165 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
5166 		 *
5167 		 * xHCI 1.0: this field shall be 0 if the device is not a
5168 		 * High-spped hub.
5169 		 */
5170 		think_time = tt->think_time;
5171 		if (think_time != 0)
5172 			think_time = (think_time / 666) - 1;
5173 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
5174 			slot_ctx->tt_info |=
5175 				cpu_to_le32(TT_THINK_TIME(think_time));
5176 	} else {
5177 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
5178 				"TT think time or number of ports\n",
5179 				(unsigned int) xhci->hci_version);
5180 	}
5181 	slot_ctx->dev_state = 0;
5182 	spin_unlock_irqrestore(&xhci->lock, flags);
5183 
5184 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5185 			(xhci->hci_version > 0x95) ?
5186 			"configure endpoint" : "evaluate context");
5187 
5188 	/* Issue and wait for the configure endpoint or
5189 	 * evaluate context command.
5190 	 */
5191 	if (xhci->hci_version > 0x95)
5192 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5193 				false, false);
5194 	else
5195 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5196 				true, false);
5197 
5198 	xhci_free_command(xhci, config_cmd);
5199 	return ret;
5200 }
5201 EXPORT_SYMBOL_GPL(xhci_update_hub_device);
5202 
xhci_get_frame(struct usb_hcd * hcd)5203 static int xhci_get_frame(struct usb_hcd *hcd)
5204 {
5205 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5206 	/* EHCI mods by the periodic size.  Why? */
5207 	return readl(&xhci->run_regs->microframe_index) >> 3;
5208 }
5209 
xhci_hcd_init_usb2_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5210 static void xhci_hcd_init_usb2_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5211 {
5212 	xhci->usb2_rhub.hcd = hcd;
5213 	hcd->speed = HCD_USB2;
5214 	hcd->self.root_hub->speed = USB_SPEED_HIGH;
5215 	/*
5216 	 * USB 2.0 roothub under xHCI has an integrated TT,
5217 	 * (rate matching hub) as opposed to having an OHCI/UHCI
5218 	 * companion controller.
5219 	 */
5220 	hcd->has_tt = 1;
5221 }
5222 
xhci_hcd_init_usb3_data(struct xhci_hcd * xhci,struct usb_hcd * hcd)5223 static void xhci_hcd_init_usb3_data(struct xhci_hcd *xhci, struct usb_hcd *hcd)
5224 {
5225 	unsigned int minor_rev;
5226 
5227 	/*
5228 	 * Early xHCI 1.1 spec did not mention USB 3.1 capable hosts
5229 	 * should return 0x31 for sbrn, or that the minor revision
5230 	 * is a two digit BCD containig minor and sub-minor numbers.
5231 	 * This was later clarified in xHCI 1.2.
5232 	 *
5233 	 * Some USB 3.1 capable hosts therefore have sbrn 0x30, and
5234 	 * minor revision set to 0x1 instead of 0x10.
5235 	 */
5236 	if (xhci->usb3_rhub.min_rev == 0x1)
5237 		minor_rev = 1;
5238 	else
5239 		minor_rev = xhci->usb3_rhub.min_rev / 0x10;
5240 
5241 	switch (minor_rev) {
5242 	case 2:
5243 		hcd->speed = HCD_USB32;
5244 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5245 		hcd->self.root_hub->rx_lanes = 2;
5246 		hcd->self.root_hub->tx_lanes = 2;
5247 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x2;
5248 		break;
5249 	case 1:
5250 		hcd->speed = HCD_USB31;
5251 		hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5252 		hcd->self.root_hub->ssp_rate = USB_SSP_GEN_2x1;
5253 		break;
5254 	}
5255 	xhci_info(xhci, "Host supports USB 3.%x %sSuperSpeed\n",
5256 		  minor_rev, minor_rev ? "Enhanced " : "");
5257 
5258 	xhci->usb3_rhub.hcd = hcd;
5259 }
5260 
xhci_gen_setup(struct usb_hcd * hcd,xhci_get_quirks_t get_quirks)5261 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5262 {
5263 	struct xhci_hcd		*xhci;
5264 	/*
5265 	 * TODO: Check with DWC3 clients for sysdev according to
5266 	 * quirks
5267 	 */
5268 	struct device		*dev = hcd->self.sysdev;
5269 	int			retval;
5270 
5271 	/* Accept arbitrarily long scatter-gather lists */
5272 	hcd->self.sg_tablesize = ~0;
5273 
5274 	/* support to build packet from discontinuous buffers */
5275 	hcd->self.no_sg_constraint = 1;
5276 
5277 	/* XHCI controllers don't stop the ep queue on short packets :| */
5278 	hcd->self.no_stop_on_short = 1;
5279 
5280 	xhci = hcd_to_xhci(hcd);
5281 
5282 	if (!usb_hcd_is_primary_hcd(hcd)) {
5283 		xhci_hcd_init_usb3_data(xhci, hcd);
5284 		return 0;
5285 	}
5286 
5287 	mutex_init(&xhci->mutex);
5288 	xhci->main_hcd = hcd;
5289 	xhci->cap_regs = hcd->regs;
5290 	xhci->op_regs = hcd->regs +
5291 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5292 	xhci->run_regs = hcd->regs +
5293 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5294 	/* Cache read-only capability registers */
5295 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5296 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5297 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5298 	xhci->hci_version = HC_VERSION(readl(&xhci->cap_regs->hc_capbase));
5299 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5300 	if (xhci->hci_version > 0x100)
5301 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5302 
5303 	/* xhci-plat or xhci-pci might have set max_interrupters already */
5304 	if ((!xhci->max_interrupters) ||
5305 	    xhci->max_interrupters > HCS_MAX_INTRS(xhci->hcs_params1))
5306 		xhci->max_interrupters = HCS_MAX_INTRS(xhci->hcs_params1);
5307 
5308 	xhci->quirks |= quirks;
5309 
5310 	if (get_quirks)
5311 		get_quirks(dev, xhci);
5312 
5313 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5314 	 * success event after a short transfer. This quirk will ignore such
5315 	 * spurious event.
5316 	 */
5317 	if (xhci->hci_version > 0x96)
5318 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5319 
5320 	if (xhci->hci_version == 0x95 && link_quirk) {
5321 		xhci_dbg(xhci, "QUIRK: Not clearing Link TRB chain bits");
5322 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
5323 	}
5324 
5325 	/* Make sure the HC is halted. */
5326 	retval = xhci_halt(xhci);
5327 	if (retval)
5328 		return retval;
5329 
5330 	xhci_zero_64b_regs(xhci);
5331 
5332 	xhci_dbg(xhci, "Resetting HCD\n");
5333 	/* Reset the internal HC memory state and registers. */
5334 	retval = xhci_reset(xhci, XHCI_RESET_LONG_USEC);
5335 	if (retval)
5336 		return retval;
5337 	xhci_dbg(xhci, "Reset complete\n");
5338 
5339 	/*
5340 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5341 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5342 	 * address memory pointers actually. So, this driver clears the AC64
5343 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5344 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5345 	 */
5346 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5347 		xhci->hcc_params &= ~BIT(0);
5348 
5349 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5350 	 * if xHC supports 64-bit addressing */
5351 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5352 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5353 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5354 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5355 	} else {
5356 		/*
5357 		 * This is to avoid error in cases where a 32-bit USB
5358 		 * controller is used on a 64-bit capable system.
5359 		 */
5360 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5361 		if (retval)
5362 			return retval;
5363 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5364 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5365 	}
5366 
5367 	xhci_dbg(xhci, "Calling HCD init\n");
5368 	/* Initialize HCD and host controller data structures. */
5369 	retval = xhci_init(hcd);
5370 	if (retval)
5371 		return retval;
5372 	xhci_dbg(xhci, "Called HCD init\n");
5373 
5374 	if (xhci_hcd_is_usb3(hcd))
5375 		xhci_hcd_init_usb3_data(xhci, hcd);
5376 	else
5377 		xhci_hcd_init_usb2_data(xhci, hcd);
5378 
5379 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5380 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5381 
5382 	return 0;
5383 }
5384 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5385 
xhci_clear_tt_buffer_complete(struct usb_hcd * hcd,struct usb_host_endpoint * ep)5386 static void xhci_clear_tt_buffer_complete(struct usb_hcd *hcd,
5387 		struct usb_host_endpoint *ep)
5388 {
5389 	struct xhci_hcd *xhci;
5390 	struct usb_device *udev;
5391 	unsigned int slot_id;
5392 	unsigned int ep_index;
5393 	unsigned long flags;
5394 
5395 	xhci = hcd_to_xhci(hcd);
5396 
5397 	spin_lock_irqsave(&xhci->lock, flags);
5398 	udev = (struct usb_device *)ep->hcpriv;
5399 	slot_id = udev->slot_id;
5400 	ep_index = xhci_get_endpoint_index(&ep->desc);
5401 
5402 	xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_CLEARING_TT;
5403 	xhci_ring_doorbell_for_active_rings(xhci, slot_id, ep_index);
5404 	spin_unlock_irqrestore(&xhci->lock, flags);
5405 }
5406 
5407 static const struct hc_driver xhci_hc_driver = {
5408 	.description =		"xhci-hcd",
5409 	.product_desc =		"xHCI Host Controller",
5410 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5411 
5412 	/*
5413 	 * generic hardware linkage
5414 	 */
5415 	.irq =			xhci_irq,
5416 	.flags =		HCD_MEMORY | HCD_DMA | HCD_USB3 | HCD_SHARED |
5417 				HCD_BH,
5418 
5419 	/*
5420 	 * basic lifecycle operations
5421 	 */
5422 	.reset =		NULL, /* set in xhci_init_driver() */
5423 	.start =		xhci_run,
5424 	.stop =			xhci_stop,
5425 	.shutdown =		xhci_shutdown,
5426 
5427 	/*
5428 	 * managing i/o requests and associated device resources
5429 	 */
5430 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5431 	.unmap_urb_for_dma =    xhci_unmap_urb_for_dma,
5432 	.urb_enqueue =		xhci_urb_enqueue,
5433 	.urb_dequeue =		xhci_urb_dequeue,
5434 	.alloc_dev =		xhci_alloc_dev,
5435 	.free_dev =		xhci_free_dev,
5436 	.alloc_streams =	xhci_alloc_streams,
5437 	.free_streams =		xhci_free_streams,
5438 	.add_endpoint =		xhci_add_endpoint,
5439 	.drop_endpoint =	xhci_drop_endpoint,
5440 	.endpoint_disable =	xhci_endpoint_disable,
5441 	.endpoint_reset =	xhci_endpoint_reset,
5442 	.check_bandwidth =	xhci_check_bandwidth,
5443 	.reset_bandwidth =	xhci_reset_bandwidth,
5444 	.address_device =	xhci_address_device,
5445 	.enable_device =	xhci_enable_device,
5446 	.update_hub_device =	xhci_update_hub_device,
5447 	.reset_device =		xhci_discover_or_reset_device,
5448 
5449 	/*
5450 	 * scheduling support
5451 	 */
5452 	.get_frame_number =	xhci_get_frame,
5453 
5454 	/*
5455 	 * root hub support
5456 	 */
5457 	.hub_control =		xhci_hub_control,
5458 	.hub_status_data =	xhci_hub_status_data,
5459 	.bus_suspend =		xhci_bus_suspend,
5460 	.bus_resume =		xhci_bus_resume,
5461 	.get_resuming_ports =	xhci_get_resuming_ports,
5462 
5463 	/*
5464 	 * call back when device connected and addressed
5465 	 */
5466 	.update_device =        xhci_update_device,
5467 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5468 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5469 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5470 	.find_raw_port_number =	xhci_find_raw_port_number,
5471 	.clear_tt_buffer_complete = xhci_clear_tt_buffer_complete,
5472 };
5473 
xhci_init_driver(struct hc_driver * drv,const struct xhci_driver_overrides * over)5474 void xhci_init_driver(struct hc_driver *drv,
5475 		      const struct xhci_driver_overrides *over)
5476 {
5477 	BUG_ON(!over);
5478 
5479 	/* Copy the generic table to drv then apply the overrides */
5480 	*drv = xhci_hc_driver;
5481 
5482 	if (over) {
5483 		drv->hcd_priv_size += over->extra_priv_size;
5484 		if (over->reset)
5485 			drv->reset = over->reset;
5486 		if (over->start)
5487 			drv->start = over->start;
5488 		if (over->add_endpoint)
5489 			drv->add_endpoint = over->add_endpoint;
5490 		if (over->drop_endpoint)
5491 			drv->drop_endpoint = over->drop_endpoint;
5492 		if (over->check_bandwidth)
5493 			drv->check_bandwidth = over->check_bandwidth;
5494 		if (over->reset_bandwidth)
5495 			drv->reset_bandwidth = over->reset_bandwidth;
5496 		if (over->update_hub_device)
5497 			drv->update_hub_device = over->update_hub_device;
5498 		if (over->hub_control)
5499 			drv->hub_control = over->hub_control;
5500 	}
5501 }
5502 EXPORT_SYMBOL_GPL(xhci_init_driver);
5503 
5504 MODULE_DESCRIPTION(DRIVER_DESC);
5505 MODULE_AUTHOR(DRIVER_AUTHOR);
5506 MODULE_LICENSE("GPL");
5507 
xhci_hcd_init(void)5508 static int __init xhci_hcd_init(void)
5509 {
5510 	/*
5511 	 * Check the compiler generated sizes of structures that must be laid
5512 	 * out in specific ways for hardware access.
5513 	 */
5514 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5515 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5516 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5517 	/* xhci_device_control has eight fields, and also
5518 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5519 	 */
5520 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5521 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5522 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5523 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5524 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5525 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5526 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5527 
5528 	if (usb_disabled())
5529 		return -ENODEV;
5530 
5531 	xhci_debugfs_create_root();
5532 	xhci_dbc_init();
5533 
5534 	return 0;
5535 }
5536 
5537 /*
5538  * If an init function is provided, an exit function must also be provided
5539  * to allow module unload.
5540  */
xhci_hcd_fini(void)5541 static void __exit xhci_hcd_fini(void)
5542 {
5543 	xhci_debugfs_remove_root();
5544 	xhci_dbc_exit();
5545 }
5546 
5547 module_init(xhci_hcd_init);
5548 module_exit(xhci_hcd_fini);
5549