1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/offload/types.h>
35 #include <linux/spi/spi.h>
36 #include <linux/spi/spi-mem.h>
37 #include <uapi/linux/sched/types.h>
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/spi.h>
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
42 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
43
44 #include "internals.h"
45
46 static DEFINE_IDR(spi_controller_idr);
47
spidev_release(struct device * dev)48 static void spidev_release(struct device *dev)
49 {
50 struct spi_device *spi = to_spi_device(dev);
51
52 spi_controller_put(spi->controller);
53 kfree(spi->driver_override);
54 free_percpu(spi->pcpu_statistics);
55 kfree(spi);
56 }
57
58 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)59 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
60 {
61 const struct spi_device *spi = to_spi_device(dev);
62 int len;
63
64 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
65 if (len != -ENODEV)
66 return len;
67
68 return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
69 }
70 static DEVICE_ATTR_RO(modalias);
71
driver_override_store(struct device * dev,struct device_attribute * a,const char * buf,size_t count)72 static ssize_t driver_override_store(struct device *dev,
73 struct device_attribute *a,
74 const char *buf, size_t count)
75 {
76 struct spi_device *spi = to_spi_device(dev);
77 int ret;
78
79 ret = driver_set_override(dev, &spi->driver_override, buf, count);
80 if (ret)
81 return ret;
82
83 return count;
84 }
85
driver_override_show(struct device * dev,struct device_attribute * a,char * buf)86 static ssize_t driver_override_show(struct device *dev,
87 struct device_attribute *a, char *buf)
88 {
89 const struct spi_device *spi = to_spi_device(dev);
90 ssize_t len;
91
92 device_lock(dev);
93 len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
94 device_unlock(dev);
95 return len;
96 }
97 static DEVICE_ATTR_RW(driver_override);
98
spi_alloc_pcpu_stats(struct device * dev)99 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
100 {
101 struct spi_statistics __percpu *pcpu_stats;
102
103 if (dev)
104 pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
105 else
106 pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
107
108 if (pcpu_stats) {
109 int cpu;
110
111 for_each_possible_cpu(cpu) {
112 struct spi_statistics *stat;
113
114 stat = per_cpu_ptr(pcpu_stats, cpu);
115 u64_stats_init(&stat->syncp);
116 }
117 }
118 return pcpu_stats;
119 }
120
spi_emit_pcpu_stats(struct spi_statistics __percpu * stat,char * buf,size_t offset)121 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
122 char *buf, size_t offset)
123 {
124 u64 val = 0;
125 int i;
126
127 for_each_possible_cpu(i) {
128 const struct spi_statistics *pcpu_stats;
129 u64_stats_t *field;
130 unsigned int start;
131 u64 inc;
132
133 pcpu_stats = per_cpu_ptr(stat, i);
134 field = (void *)pcpu_stats + offset;
135 do {
136 start = u64_stats_fetch_begin(&pcpu_stats->syncp);
137 inc = u64_stats_read(field);
138 } while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
139 val += inc;
140 }
141 return sysfs_emit(buf, "%llu\n", val);
142 }
143
144 #define SPI_STATISTICS_ATTRS(field, file) \
145 static ssize_t spi_controller_##field##_show(struct device *dev, \
146 struct device_attribute *attr, \
147 char *buf) \
148 { \
149 struct spi_controller *ctlr = container_of(dev, \
150 struct spi_controller, dev); \
151 return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
152 } \
153 static struct device_attribute dev_attr_spi_controller_##field = { \
154 .attr = { .name = file, .mode = 0444 }, \
155 .show = spi_controller_##field##_show, \
156 }; \
157 static ssize_t spi_device_##field##_show(struct device *dev, \
158 struct device_attribute *attr, \
159 char *buf) \
160 { \
161 struct spi_device *spi = to_spi_device(dev); \
162 return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
163 } \
164 static struct device_attribute dev_attr_spi_device_##field = { \
165 .attr = { .name = file, .mode = 0444 }, \
166 .show = spi_device_##field##_show, \
167 }
168
169 #define SPI_STATISTICS_SHOW_NAME(name, file, field) \
170 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
171 char *buf) \
172 { \
173 return spi_emit_pcpu_stats(stat, buf, \
174 offsetof(struct spi_statistics, field)); \
175 } \
176 SPI_STATISTICS_ATTRS(name, file)
177
178 #define SPI_STATISTICS_SHOW(field) \
179 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
180 field)
181
182 SPI_STATISTICS_SHOW(messages);
183 SPI_STATISTICS_SHOW(transfers);
184 SPI_STATISTICS_SHOW(errors);
185 SPI_STATISTICS_SHOW(timedout);
186
187 SPI_STATISTICS_SHOW(spi_sync);
188 SPI_STATISTICS_SHOW(spi_sync_immediate);
189 SPI_STATISTICS_SHOW(spi_async);
190
191 SPI_STATISTICS_SHOW(bytes);
192 SPI_STATISTICS_SHOW(bytes_rx);
193 SPI_STATISTICS_SHOW(bytes_tx);
194
195 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
196 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
197 "transfer_bytes_histo_" number, \
198 transfer_bytes_histo[index])
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
215 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
216
217 SPI_STATISTICS_SHOW(transfers_split_maxsize);
218
219 static struct attribute *spi_dev_attrs[] = {
220 &dev_attr_modalias.attr,
221 &dev_attr_driver_override.attr,
222 NULL,
223 };
224
225 static const struct attribute_group spi_dev_group = {
226 .attrs = spi_dev_attrs,
227 };
228
229 static struct attribute *spi_device_statistics_attrs[] = {
230 &dev_attr_spi_device_messages.attr,
231 &dev_attr_spi_device_transfers.attr,
232 &dev_attr_spi_device_errors.attr,
233 &dev_attr_spi_device_timedout.attr,
234 &dev_attr_spi_device_spi_sync.attr,
235 &dev_attr_spi_device_spi_sync_immediate.attr,
236 &dev_attr_spi_device_spi_async.attr,
237 &dev_attr_spi_device_bytes.attr,
238 &dev_attr_spi_device_bytes_rx.attr,
239 &dev_attr_spi_device_bytes_tx.attr,
240 &dev_attr_spi_device_transfer_bytes_histo0.attr,
241 &dev_attr_spi_device_transfer_bytes_histo1.attr,
242 &dev_attr_spi_device_transfer_bytes_histo2.attr,
243 &dev_attr_spi_device_transfer_bytes_histo3.attr,
244 &dev_attr_spi_device_transfer_bytes_histo4.attr,
245 &dev_attr_spi_device_transfer_bytes_histo5.attr,
246 &dev_attr_spi_device_transfer_bytes_histo6.attr,
247 &dev_attr_spi_device_transfer_bytes_histo7.attr,
248 &dev_attr_spi_device_transfer_bytes_histo8.attr,
249 &dev_attr_spi_device_transfer_bytes_histo9.attr,
250 &dev_attr_spi_device_transfer_bytes_histo10.attr,
251 &dev_attr_spi_device_transfer_bytes_histo11.attr,
252 &dev_attr_spi_device_transfer_bytes_histo12.attr,
253 &dev_attr_spi_device_transfer_bytes_histo13.attr,
254 &dev_attr_spi_device_transfer_bytes_histo14.attr,
255 &dev_attr_spi_device_transfer_bytes_histo15.attr,
256 &dev_attr_spi_device_transfer_bytes_histo16.attr,
257 &dev_attr_spi_device_transfers_split_maxsize.attr,
258 NULL,
259 };
260
261 static const struct attribute_group spi_device_statistics_group = {
262 .name = "statistics",
263 .attrs = spi_device_statistics_attrs,
264 };
265
266 static const struct attribute_group *spi_dev_groups[] = {
267 &spi_dev_group,
268 &spi_device_statistics_group,
269 NULL,
270 };
271
272 static struct attribute *spi_controller_statistics_attrs[] = {
273 &dev_attr_spi_controller_messages.attr,
274 &dev_attr_spi_controller_transfers.attr,
275 &dev_attr_spi_controller_errors.attr,
276 &dev_attr_spi_controller_timedout.attr,
277 &dev_attr_spi_controller_spi_sync.attr,
278 &dev_attr_spi_controller_spi_sync_immediate.attr,
279 &dev_attr_spi_controller_spi_async.attr,
280 &dev_attr_spi_controller_bytes.attr,
281 &dev_attr_spi_controller_bytes_rx.attr,
282 &dev_attr_spi_controller_bytes_tx.attr,
283 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
284 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
285 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
286 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
287 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
288 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
289 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
290 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
291 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
292 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
293 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
294 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
295 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
296 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
297 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
298 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
299 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
300 &dev_attr_spi_controller_transfers_split_maxsize.attr,
301 NULL,
302 };
303
304 static const struct attribute_group spi_controller_statistics_group = {
305 .name = "statistics",
306 .attrs = spi_controller_statistics_attrs,
307 };
308
309 static const struct attribute_group *spi_controller_groups[] = {
310 &spi_controller_statistics_group,
311 NULL,
312 };
313
spi_statistics_add_transfer_stats(struct spi_statistics __percpu * pcpu_stats,struct spi_transfer * xfer,struct spi_message * msg)314 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
315 struct spi_transfer *xfer,
316 struct spi_message *msg)
317 {
318 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
319 struct spi_statistics *stats;
320
321 if (l2len < 0)
322 l2len = 0;
323
324 get_cpu();
325 stats = this_cpu_ptr(pcpu_stats);
326 u64_stats_update_begin(&stats->syncp);
327
328 u64_stats_inc(&stats->transfers);
329 u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
330
331 u64_stats_add(&stats->bytes, xfer->len);
332 if (spi_valid_txbuf(msg, xfer))
333 u64_stats_add(&stats->bytes_tx, xfer->len);
334 if (spi_valid_rxbuf(msg, xfer))
335 u64_stats_add(&stats->bytes_rx, xfer->len);
336
337 u64_stats_update_end(&stats->syncp);
338 put_cpu();
339 }
340
341 /*
342 * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
343 * and the sysfs version makes coldplug work too.
344 */
spi_match_id(const struct spi_device_id * id,const char * name)345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
346 {
347 while (id->name[0]) {
348 if (!strcmp(name, id->name))
349 return id;
350 id++;
351 }
352 return NULL;
353 }
354
spi_get_device_id(const struct spi_device * sdev)355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
356 {
357 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
358
359 return spi_match_id(sdrv->id_table, sdev->modalias);
360 }
361 EXPORT_SYMBOL_GPL(spi_get_device_id);
362
spi_get_device_match_data(const struct spi_device * sdev)363 const void *spi_get_device_match_data(const struct spi_device *sdev)
364 {
365 const void *match;
366
367 match = device_get_match_data(&sdev->dev);
368 if (match)
369 return match;
370
371 return (const void *)spi_get_device_id(sdev)->driver_data;
372 }
373 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
374
spi_match_device(struct device * dev,const struct device_driver * drv)375 static int spi_match_device(struct device *dev, const struct device_driver *drv)
376 {
377 const struct spi_device *spi = to_spi_device(dev);
378 const struct spi_driver *sdrv = to_spi_driver(drv);
379
380 /* Check override first, and if set, only use the named driver */
381 if (spi->driver_override)
382 return strcmp(spi->driver_override, drv->name) == 0;
383
384 /* Attempt an OF style match */
385 if (of_driver_match_device(dev, drv))
386 return 1;
387
388 /* Then try ACPI */
389 if (acpi_driver_match_device(dev, drv))
390 return 1;
391
392 if (sdrv->id_table)
393 return !!spi_match_id(sdrv->id_table, spi->modalias);
394
395 return strcmp(spi->modalias, drv->name) == 0;
396 }
397
spi_uevent(const struct device * dev,struct kobj_uevent_env * env)398 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
399 {
400 const struct spi_device *spi = to_spi_device(dev);
401 int rc;
402
403 rc = acpi_device_uevent_modalias(dev, env);
404 if (rc != -ENODEV)
405 return rc;
406
407 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
408 }
409
spi_probe(struct device * dev)410 static int spi_probe(struct device *dev)
411 {
412 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
413 struct spi_device *spi = to_spi_device(dev);
414 struct fwnode_handle *fwnode = dev_fwnode(dev);
415 int ret;
416
417 ret = of_clk_set_defaults(dev->of_node, false);
418 if (ret)
419 return ret;
420
421 if (is_of_node(fwnode))
422 spi->irq = of_irq_get(dev->of_node, 0);
423 else if (is_acpi_device_node(fwnode) && spi->irq < 0)
424 spi->irq = acpi_dev_gpio_irq_get(to_acpi_device_node(fwnode), 0);
425 if (spi->irq == -EPROBE_DEFER)
426 return dev_err_probe(dev, spi->irq, "Failed to get irq\n");
427 if (spi->irq < 0)
428 spi->irq = 0;
429
430 ret = dev_pm_domain_attach(dev, true);
431 if (ret)
432 return ret;
433
434 if (sdrv->probe) {
435 ret = sdrv->probe(spi);
436 if (ret)
437 dev_pm_domain_detach(dev, true);
438 }
439
440 return ret;
441 }
442
spi_remove(struct device * dev)443 static void spi_remove(struct device *dev)
444 {
445 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
446
447 if (sdrv->remove)
448 sdrv->remove(to_spi_device(dev));
449
450 dev_pm_domain_detach(dev, true);
451 }
452
spi_shutdown(struct device * dev)453 static void spi_shutdown(struct device *dev)
454 {
455 if (dev->driver) {
456 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
457
458 if (sdrv->shutdown)
459 sdrv->shutdown(to_spi_device(dev));
460 }
461 }
462
463 const struct bus_type spi_bus_type = {
464 .name = "spi",
465 .dev_groups = spi_dev_groups,
466 .match = spi_match_device,
467 .uevent = spi_uevent,
468 .probe = spi_probe,
469 .remove = spi_remove,
470 .shutdown = spi_shutdown,
471 };
472 EXPORT_SYMBOL_GPL(spi_bus_type);
473
474 /**
475 * __spi_register_driver - register a SPI driver
476 * @owner: owner module of the driver to register
477 * @sdrv: the driver to register
478 * Context: can sleep
479 *
480 * Return: zero on success, else a negative error code.
481 */
__spi_register_driver(struct module * owner,struct spi_driver * sdrv)482 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
483 {
484 sdrv->driver.owner = owner;
485 sdrv->driver.bus = &spi_bus_type;
486
487 /*
488 * For Really Good Reasons we use spi: modaliases not of:
489 * modaliases for DT so module autoloading won't work if we
490 * don't have a spi_device_id as well as a compatible string.
491 */
492 if (sdrv->driver.of_match_table) {
493 const struct of_device_id *of_id;
494
495 for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
496 of_id++) {
497 const char *of_name;
498
499 /* Strip off any vendor prefix */
500 of_name = strnchr(of_id->compatible,
501 sizeof(of_id->compatible), ',');
502 if (of_name)
503 of_name++;
504 else
505 of_name = of_id->compatible;
506
507 if (sdrv->id_table) {
508 const struct spi_device_id *spi_id;
509
510 spi_id = spi_match_id(sdrv->id_table, of_name);
511 if (spi_id)
512 continue;
513 } else {
514 if (strcmp(sdrv->driver.name, of_name) == 0)
515 continue;
516 }
517
518 pr_warn("SPI driver %s has no spi_device_id for %s\n",
519 sdrv->driver.name, of_id->compatible);
520 }
521 }
522
523 return driver_register(&sdrv->driver);
524 }
525 EXPORT_SYMBOL_GPL(__spi_register_driver);
526
527 /*-------------------------------------------------------------------------*/
528
529 /*
530 * SPI devices should normally not be created by SPI device drivers; that
531 * would make them board-specific. Similarly with SPI controller drivers.
532 * Device registration normally goes into like arch/.../mach.../board-YYY.c
533 * with other readonly (flashable) information about mainboard devices.
534 */
535
536 struct boardinfo {
537 struct list_head list;
538 struct spi_board_info board_info;
539 };
540
541 static LIST_HEAD(board_list);
542 static LIST_HEAD(spi_controller_list);
543
544 /*
545 * Used to protect add/del operation for board_info list and
546 * spi_controller list, and their matching process also used
547 * to protect object of type struct idr.
548 */
549 static DEFINE_MUTEX(board_lock);
550
551 /**
552 * spi_alloc_device - Allocate a new SPI device
553 * @ctlr: Controller to which device is connected
554 * Context: can sleep
555 *
556 * Allows a driver to allocate and initialize a spi_device without
557 * registering it immediately. This allows a driver to directly
558 * fill the spi_device with device parameters before calling
559 * spi_add_device() on it.
560 *
561 * Caller is responsible to call spi_add_device() on the returned
562 * spi_device structure to add it to the SPI controller. If the caller
563 * needs to discard the spi_device without adding it, then it should
564 * call spi_dev_put() on it.
565 *
566 * Return: a pointer to the new device, or NULL.
567 */
spi_alloc_device(struct spi_controller * ctlr)568 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
569 {
570 struct spi_device *spi;
571
572 if (!spi_controller_get(ctlr))
573 return NULL;
574
575 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
576 if (!spi) {
577 spi_controller_put(ctlr);
578 return NULL;
579 }
580
581 spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
582 if (!spi->pcpu_statistics) {
583 kfree(spi);
584 spi_controller_put(ctlr);
585 return NULL;
586 }
587
588 spi->controller = ctlr;
589 spi->dev.parent = &ctlr->dev;
590 spi->dev.bus = &spi_bus_type;
591 spi->dev.release = spidev_release;
592 spi->mode = ctlr->buswidth_override_bits;
593
594 device_initialize(&spi->dev);
595 return spi;
596 }
597 EXPORT_SYMBOL_GPL(spi_alloc_device);
598
spi_dev_set_name(struct spi_device * spi)599 static void spi_dev_set_name(struct spi_device *spi)
600 {
601 struct device *dev = &spi->dev;
602 struct fwnode_handle *fwnode = dev_fwnode(dev);
603
604 if (is_acpi_device_node(fwnode)) {
605 dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
606 return;
607 }
608
609 if (is_software_node(fwnode)) {
610 dev_set_name(dev, "spi-%pfwP", fwnode);
611 return;
612 }
613
614 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
615 spi_get_chipselect(spi, 0));
616 }
617
618 /*
619 * Zero(0) is a valid physical CS value and can be located at any
620 * logical CS in the spi->chip_select[]. If all the physical CS
621 * are initialized to 0 then It would be difficult to differentiate
622 * between a valid physical CS 0 & an unused logical CS whose physical
623 * CS can be 0. As a solution to this issue initialize all the CS to -1.
624 * Now all the unused logical CS will have -1 physical CS value & can be
625 * ignored while performing physical CS validity checks.
626 */
627 #define SPI_INVALID_CS ((s8)-1)
628
is_valid_cs(s8 chip_select)629 static inline bool is_valid_cs(s8 chip_select)
630 {
631 return chip_select != SPI_INVALID_CS;
632 }
633
spi_dev_check_cs(struct device * dev,struct spi_device * spi,u8 idx,struct spi_device * new_spi,u8 new_idx)634 static inline int spi_dev_check_cs(struct device *dev,
635 struct spi_device *spi, u8 idx,
636 struct spi_device *new_spi, u8 new_idx)
637 {
638 u8 cs, cs_new;
639 u8 idx_new;
640
641 cs = spi_get_chipselect(spi, idx);
642 for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
643 cs_new = spi_get_chipselect(new_spi, idx_new);
644 if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
645 dev_err(dev, "chipselect %u already in use\n", cs_new);
646 return -EBUSY;
647 }
648 }
649 return 0;
650 }
651
spi_dev_check(struct device * dev,void * data)652 static int spi_dev_check(struct device *dev, void *data)
653 {
654 struct spi_device *spi = to_spi_device(dev);
655 struct spi_device *new_spi = data;
656 int status, idx;
657
658 if (spi->controller == new_spi->controller) {
659 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
660 status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
661 if (status)
662 return status;
663 }
664 }
665 return 0;
666 }
667
spi_cleanup(struct spi_device * spi)668 static void spi_cleanup(struct spi_device *spi)
669 {
670 if (spi->controller->cleanup)
671 spi->controller->cleanup(spi);
672 }
673
__spi_add_device(struct spi_device * spi)674 static int __spi_add_device(struct spi_device *spi)
675 {
676 struct spi_controller *ctlr = spi->controller;
677 struct device *dev = ctlr->dev.parent;
678 int status, idx;
679 u8 cs;
680
681 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
682 /* Chipselects are numbered 0..max; validate. */
683 cs = spi_get_chipselect(spi, idx);
684 if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
685 dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
686 ctlr->num_chipselect);
687 return -EINVAL;
688 }
689 }
690
691 /*
692 * Make sure that multiple logical CS doesn't map to the same physical CS.
693 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
694 */
695 if (!spi_controller_is_target(ctlr)) {
696 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
697 status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
698 if (status)
699 return status;
700 }
701 }
702
703 /* Set the bus ID string */
704 spi_dev_set_name(spi);
705
706 /*
707 * We need to make sure there's no other device with this
708 * chipselect **BEFORE** we call setup(), else we'll trash
709 * its configuration.
710 */
711 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
712 if (status)
713 return status;
714
715 /* Controller may unregister concurrently */
716 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
717 !device_is_registered(&ctlr->dev)) {
718 return -ENODEV;
719 }
720
721 if (ctlr->cs_gpiods) {
722 u8 cs;
723
724 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
725 cs = spi_get_chipselect(spi, idx);
726 if (is_valid_cs(cs))
727 spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
728 }
729 }
730
731 /*
732 * Drivers may modify this initial i/o setup, but will
733 * normally rely on the device being setup. Devices
734 * using SPI_CS_HIGH can't coexist well otherwise...
735 */
736 status = spi_setup(spi);
737 if (status < 0) {
738 dev_err(dev, "can't setup %s, status %d\n",
739 dev_name(&spi->dev), status);
740 return status;
741 }
742
743 /* Device may be bound to an active driver when this returns */
744 status = device_add(&spi->dev);
745 if (status < 0) {
746 dev_err(dev, "can't add %s, status %d\n",
747 dev_name(&spi->dev), status);
748 spi_cleanup(spi);
749 } else {
750 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
751 }
752
753 return status;
754 }
755
756 /**
757 * spi_add_device - Add spi_device allocated with spi_alloc_device
758 * @spi: spi_device to register
759 *
760 * Companion function to spi_alloc_device. Devices allocated with
761 * spi_alloc_device can be added onto the SPI bus with this function.
762 *
763 * Return: 0 on success; negative errno on failure
764 */
spi_add_device(struct spi_device * spi)765 int spi_add_device(struct spi_device *spi)
766 {
767 struct spi_controller *ctlr = spi->controller;
768 int status;
769
770 /* Set the bus ID string */
771 spi_dev_set_name(spi);
772
773 mutex_lock(&ctlr->add_lock);
774 status = __spi_add_device(spi);
775 mutex_unlock(&ctlr->add_lock);
776 return status;
777 }
778 EXPORT_SYMBOL_GPL(spi_add_device);
779
spi_set_all_cs_unused(struct spi_device * spi)780 static void spi_set_all_cs_unused(struct spi_device *spi)
781 {
782 u8 idx;
783
784 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
785 spi_set_chipselect(spi, idx, SPI_INVALID_CS);
786 }
787
788 /**
789 * spi_new_device - instantiate one new SPI device
790 * @ctlr: Controller to which device is connected
791 * @chip: Describes the SPI device
792 * Context: can sleep
793 *
794 * On typical mainboards, this is purely internal; and it's not needed
795 * after board init creates the hard-wired devices. Some development
796 * platforms may not be able to use spi_register_board_info though, and
797 * this is exported so that for example a USB or parport based adapter
798 * driver could add devices (which it would learn about out-of-band).
799 *
800 * Return: the new device, or NULL.
801 */
spi_new_device(struct spi_controller * ctlr,struct spi_board_info * chip)802 struct spi_device *spi_new_device(struct spi_controller *ctlr,
803 struct spi_board_info *chip)
804 {
805 struct spi_device *proxy;
806 int status;
807
808 /*
809 * NOTE: caller did any chip->bus_num checks necessary.
810 *
811 * Also, unless we change the return value convention to use
812 * error-or-pointer (not NULL-or-pointer), troubleshootability
813 * suggests syslogged diagnostics are best here (ugh).
814 */
815
816 proxy = spi_alloc_device(ctlr);
817 if (!proxy)
818 return NULL;
819
820 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
821
822 /* Use provided chip-select for proxy device */
823 spi_set_all_cs_unused(proxy);
824 spi_set_chipselect(proxy, 0, chip->chip_select);
825
826 proxy->max_speed_hz = chip->max_speed_hz;
827 proxy->mode = chip->mode;
828 proxy->irq = chip->irq;
829 strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
830 proxy->dev.platform_data = (void *) chip->platform_data;
831 proxy->controller_data = chip->controller_data;
832 proxy->controller_state = NULL;
833 /*
834 * By default spi->chip_select[0] will hold the physical CS number,
835 * so set bit 0 in spi->cs_index_mask.
836 */
837 proxy->cs_index_mask = BIT(0);
838
839 if (chip->swnode) {
840 status = device_add_software_node(&proxy->dev, chip->swnode);
841 if (status) {
842 dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
843 chip->modalias, status);
844 goto err_dev_put;
845 }
846 }
847
848 status = spi_add_device(proxy);
849 if (status < 0)
850 goto err_dev_put;
851
852 return proxy;
853
854 err_dev_put:
855 device_remove_software_node(&proxy->dev);
856 spi_dev_put(proxy);
857 return NULL;
858 }
859 EXPORT_SYMBOL_GPL(spi_new_device);
860
861 /**
862 * spi_unregister_device - unregister a single SPI device
863 * @spi: spi_device to unregister
864 *
865 * Start making the passed SPI device vanish. Normally this would be handled
866 * by spi_unregister_controller().
867 */
spi_unregister_device(struct spi_device * spi)868 void spi_unregister_device(struct spi_device *spi)
869 {
870 struct fwnode_handle *fwnode;
871
872 if (!spi)
873 return;
874
875 fwnode = dev_fwnode(&spi->dev);
876 if (is_of_node(fwnode)) {
877 of_node_clear_flag(to_of_node(fwnode), OF_POPULATED);
878 of_node_put(to_of_node(fwnode));
879 } else if (is_acpi_device_node(fwnode)) {
880 acpi_device_clear_enumerated(to_acpi_device_node(fwnode));
881 }
882 device_remove_software_node(&spi->dev);
883 device_del(&spi->dev);
884 spi_cleanup(spi);
885 put_device(&spi->dev);
886 }
887 EXPORT_SYMBOL_GPL(spi_unregister_device);
888
spi_match_controller_to_boardinfo(struct spi_controller * ctlr,struct spi_board_info * bi)889 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
890 struct spi_board_info *bi)
891 {
892 struct spi_device *dev;
893
894 if (ctlr->bus_num != bi->bus_num)
895 return;
896
897 dev = spi_new_device(ctlr, bi);
898 if (!dev)
899 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
900 bi->modalias);
901 }
902
903 /**
904 * spi_register_board_info - register SPI devices for a given board
905 * @info: array of chip descriptors
906 * @n: how many descriptors are provided
907 * Context: can sleep
908 *
909 * Board-specific early init code calls this (probably during arch_initcall)
910 * with segments of the SPI device table. Any device nodes are created later,
911 * after the relevant parent SPI controller (bus_num) is defined. We keep
912 * this table of devices forever, so that reloading a controller driver will
913 * not make Linux forget about these hard-wired devices.
914 *
915 * Other code can also call this, e.g. a particular add-on board might provide
916 * SPI devices through its expansion connector, so code initializing that board
917 * would naturally declare its SPI devices.
918 *
919 * The board info passed can safely be __initdata ... but be careful of
920 * any embedded pointers (platform_data, etc), they're copied as-is.
921 *
922 * Return: zero on success, else a negative error code.
923 */
spi_register_board_info(struct spi_board_info const * info,unsigned n)924 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
925 {
926 struct boardinfo *bi;
927 int i;
928
929 if (!n)
930 return 0;
931
932 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
933 if (!bi)
934 return -ENOMEM;
935
936 for (i = 0; i < n; i++, bi++, info++) {
937 struct spi_controller *ctlr;
938
939 memcpy(&bi->board_info, info, sizeof(*info));
940
941 mutex_lock(&board_lock);
942 list_add_tail(&bi->list, &board_list);
943 list_for_each_entry(ctlr, &spi_controller_list, list)
944 spi_match_controller_to_boardinfo(ctlr,
945 &bi->board_info);
946 mutex_unlock(&board_lock);
947 }
948
949 return 0;
950 }
951
952 /*-------------------------------------------------------------------------*/
953
954 /* Core methods for SPI resource management */
955
956 /**
957 * spi_res_alloc - allocate a spi resource that is life-cycle managed
958 * during the processing of a spi_message while using
959 * spi_transfer_one
960 * @spi: the SPI device for which we allocate memory
961 * @release: the release code to execute for this resource
962 * @size: size to alloc and return
963 * @gfp: GFP allocation flags
964 *
965 * Return: the pointer to the allocated data
966 *
967 * This may get enhanced in the future to allocate from a memory pool
968 * of the @spi_device or @spi_controller to avoid repeated allocations.
969 */
spi_res_alloc(struct spi_device * spi,spi_res_release_t release,size_t size,gfp_t gfp)970 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
971 size_t size, gfp_t gfp)
972 {
973 struct spi_res *sres;
974
975 sres = kzalloc(sizeof(*sres) + size, gfp);
976 if (!sres)
977 return NULL;
978
979 INIT_LIST_HEAD(&sres->entry);
980 sres->release = release;
981
982 return sres->data;
983 }
984
985 /**
986 * spi_res_free - free an SPI resource
987 * @res: pointer to the custom data of a resource
988 */
spi_res_free(void * res)989 static void spi_res_free(void *res)
990 {
991 struct spi_res *sres = container_of(res, struct spi_res, data);
992
993 WARN_ON(!list_empty(&sres->entry));
994 kfree(sres);
995 }
996
997 /**
998 * spi_res_add - add a spi_res to the spi_message
999 * @message: the SPI message
1000 * @res: the spi_resource
1001 */
spi_res_add(struct spi_message * message,void * res)1002 static void spi_res_add(struct spi_message *message, void *res)
1003 {
1004 struct spi_res *sres = container_of(res, struct spi_res, data);
1005
1006 WARN_ON(!list_empty(&sres->entry));
1007 list_add_tail(&sres->entry, &message->resources);
1008 }
1009
1010 /**
1011 * spi_res_release - release all SPI resources for this message
1012 * @ctlr: the @spi_controller
1013 * @message: the @spi_message
1014 */
spi_res_release(struct spi_controller * ctlr,struct spi_message * message)1015 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1016 {
1017 struct spi_res *res, *tmp;
1018
1019 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1020 if (res->release)
1021 res->release(ctlr, message, res->data);
1022
1023 list_del(&res->entry);
1024
1025 kfree(res);
1026 }
1027 }
1028
1029 /*-------------------------------------------------------------------------*/
1030 #define spi_for_each_valid_cs(spi, idx) \
1031 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) \
1032 if (!(spi->cs_index_mask & BIT(idx))) {} else
1033
spi_is_last_cs(struct spi_device * spi)1034 static inline bool spi_is_last_cs(struct spi_device *spi)
1035 {
1036 u8 idx;
1037 bool last = false;
1038
1039 spi_for_each_valid_cs(spi, idx) {
1040 if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1041 last = true;
1042 }
1043 return last;
1044 }
1045
spi_toggle_csgpiod(struct spi_device * spi,u8 idx,bool enable,bool activate)1046 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1047 {
1048 /*
1049 * Historically ACPI has no means of the GPIO polarity and
1050 * thus the SPISerialBus() resource defines it on the per-chip
1051 * basis. In order to avoid a chain of negations, the GPIO
1052 * polarity is considered being Active High. Even for the cases
1053 * when _DSD() is involved (in the updated versions of ACPI)
1054 * the GPIO CS polarity must be defined Active High to avoid
1055 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1056 * into account.
1057 */
1058 if (is_acpi_device_node(dev_fwnode(&spi->dev)))
1059 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1060 else
1061 /* Polarity handled by GPIO library */
1062 gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1063
1064 if (activate)
1065 spi_delay_exec(&spi->cs_setup, NULL);
1066 else
1067 spi_delay_exec(&spi->cs_inactive, NULL);
1068 }
1069
spi_set_cs(struct spi_device * spi,bool enable,bool force)1070 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1071 {
1072 bool activate = enable;
1073 u8 idx;
1074
1075 /*
1076 * Avoid calling into the driver (or doing delays) if the chip select
1077 * isn't actually changing from the last time this was called.
1078 */
1079 if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1080 spi_is_last_cs(spi)) ||
1081 (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1082 !spi_is_last_cs(spi))) &&
1083 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1084 return;
1085
1086 trace_spi_set_cs(spi, activate);
1087
1088 spi->controller->last_cs_index_mask = spi->cs_index_mask;
1089 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1090 spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1091 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1092
1093 if (spi->mode & SPI_CS_HIGH)
1094 enable = !enable;
1095
1096 /*
1097 * Handle chip select delays for GPIO based CS or controllers without
1098 * programmable chip select timing.
1099 */
1100 if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1101 spi_delay_exec(&spi->cs_hold, NULL);
1102
1103 if (spi_is_csgpiod(spi)) {
1104 if (!(spi->mode & SPI_NO_CS)) {
1105 spi_for_each_valid_cs(spi, idx) {
1106 if (spi_get_csgpiod(spi, idx))
1107 spi_toggle_csgpiod(spi, idx, enable, activate);
1108 }
1109 }
1110 /* Some SPI controllers need both GPIO CS & ->set_cs() */
1111 if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1112 spi->controller->set_cs)
1113 spi->controller->set_cs(spi, !enable);
1114 } else if (spi->controller->set_cs) {
1115 spi->controller->set_cs(spi, !enable);
1116 }
1117
1118 if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1119 if (activate)
1120 spi_delay_exec(&spi->cs_setup, NULL);
1121 else
1122 spi_delay_exec(&spi->cs_inactive, NULL);
1123 }
1124 }
1125
1126 #ifdef CONFIG_HAS_DMA
spi_map_buf_attrs(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir,unsigned long attrs)1127 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1128 struct sg_table *sgt, void *buf, size_t len,
1129 enum dma_data_direction dir, unsigned long attrs)
1130 {
1131 const bool vmalloced_buf = is_vmalloc_addr(buf);
1132 unsigned int max_seg_size = dma_get_max_seg_size(dev);
1133 #ifdef CONFIG_HIGHMEM
1134 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1135 (unsigned long)buf < (PKMAP_BASE +
1136 (LAST_PKMAP * PAGE_SIZE)));
1137 #else
1138 const bool kmap_buf = false;
1139 #endif
1140 int desc_len;
1141 int sgs;
1142 struct page *vm_page;
1143 struct scatterlist *sg;
1144 void *sg_buf;
1145 size_t min;
1146 int i, ret;
1147
1148 if (vmalloced_buf || kmap_buf) {
1149 desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1150 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1151 } else if (virt_addr_valid(buf)) {
1152 desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1153 sgs = DIV_ROUND_UP(len, desc_len);
1154 } else {
1155 return -EINVAL;
1156 }
1157
1158 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1159 if (ret != 0)
1160 return ret;
1161
1162 sg = &sgt->sgl[0];
1163 for (i = 0; i < sgs; i++) {
1164
1165 if (vmalloced_buf || kmap_buf) {
1166 /*
1167 * Next scatterlist entry size is the minimum between
1168 * the desc_len and the remaining buffer length that
1169 * fits in a page.
1170 */
1171 min = min_t(size_t, desc_len,
1172 min_t(size_t, len,
1173 PAGE_SIZE - offset_in_page(buf)));
1174 if (vmalloced_buf)
1175 vm_page = vmalloc_to_page(buf);
1176 else
1177 vm_page = kmap_to_page(buf);
1178 if (!vm_page) {
1179 sg_free_table(sgt);
1180 return -ENOMEM;
1181 }
1182 sg_set_page(sg, vm_page,
1183 min, offset_in_page(buf));
1184 } else {
1185 min = min_t(size_t, len, desc_len);
1186 sg_buf = buf;
1187 sg_set_buf(sg, sg_buf, min);
1188 }
1189
1190 buf += min;
1191 len -= min;
1192 sg = sg_next(sg);
1193 }
1194
1195 ret = dma_map_sgtable(dev, sgt, dir, attrs);
1196 if (ret < 0) {
1197 sg_free_table(sgt);
1198 return ret;
1199 }
1200
1201 return 0;
1202 }
1203
spi_map_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)1204 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1205 struct sg_table *sgt, void *buf, size_t len,
1206 enum dma_data_direction dir)
1207 {
1208 return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1209 }
1210
spi_unmap_buf_attrs(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)1211 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1212 struct device *dev, struct sg_table *sgt,
1213 enum dma_data_direction dir,
1214 unsigned long attrs)
1215 {
1216 dma_unmap_sgtable(dev, sgt, dir, attrs);
1217 sg_free_table(sgt);
1218 sgt->orig_nents = 0;
1219 sgt->nents = 0;
1220 }
1221
spi_unmap_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)1222 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1223 struct sg_table *sgt, enum dma_data_direction dir)
1224 {
1225 spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1226 }
1227
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1228 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1229 {
1230 struct device *tx_dev, *rx_dev;
1231 struct spi_transfer *xfer;
1232 int ret;
1233
1234 if (!ctlr->can_dma)
1235 return 0;
1236
1237 if (ctlr->dma_tx)
1238 tx_dev = ctlr->dma_tx->device->dev;
1239 else if (ctlr->dma_map_dev)
1240 tx_dev = ctlr->dma_map_dev;
1241 else
1242 tx_dev = ctlr->dev.parent;
1243
1244 if (ctlr->dma_rx)
1245 rx_dev = ctlr->dma_rx->device->dev;
1246 else if (ctlr->dma_map_dev)
1247 rx_dev = ctlr->dma_map_dev;
1248 else
1249 rx_dev = ctlr->dev.parent;
1250
1251 ret = -ENOMSG;
1252 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1253 /* The sync is done before each transfer. */
1254 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1255
1256 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1257 continue;
1258
1259 if (xfer->tx_buf != NULL) {
1260 ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1261 (void *)xfer->tx_buf,
1262 xfer->len, DMA_TO_DEVICE,
1263 attrs);
1264 if (ret != 0)
1265 return ret;
1266
1267 xfer->tx_sg_mapped = true;
1268 }
1269
1270 if (xfer->rx_buf != NULL) {
1271 ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1272 xfer->rx_buf, xfer->len,
1273 DMA_FROM_DEVICE, attrs);
1274 if (ret != 0) {
1275 spi_unmap_buf_attrs(ctlr, tx_dev,
1276 &xfer->tx_sg, DMA_TO_DEVICE,
1277 attrs);
1278
1279 return ret;
1280 }
1281
1282 xfer->rx_sg_mapped = true;
1283 }
1284 }
1285 /* No transfer has been mapped, bail out with success */
1286 if (ret)
1287 return 0;
1288
1289 ctlr->cur_rx_dma_dev = rx_dev;
1290 ctlr->cur_tx_dma_dev = tx_dev;
1291
1292 return 0;
1293 }
1294
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1295 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1296 {
1297 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1298 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1299 struct spi_transfer *xfer;
1300
1301 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1302 /* The sync has already been done after each transfer. */
1303 unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1304
1305 if (xfer->rx_sg_mapped)
1306 spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1307 DMA_FROM_DEVICE, attrs);
1308 xfer->rx_sg_mapped = false;
1309
1310 if (xfer->tx_sg_mapped)
1311 spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1312 DMA_TO_DEVICE, attrs);
1313 xfer->tx_sg_mapped = false;
1314 }
1315
1316 return 0;
1317 }
1318
spi_dma_sync_for_device(struct spi_controller * ctlr,struct spi_transfer * xfer)1319 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1320 struct spi_transfer *xfer)
1321 {
1322 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1323 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1324
1325 if (xfer->tx_sg_mapped)
1326 dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1327 if (xfer->rx_sg_mapped)
1328 dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1329 }
1330
spi_dma_sync_for_cpu(struct spi_controller * ctlr,struct spi_transfer * xfer)1331 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1332 struct spi_transfer *xfer)
1333 {
1334 struct device *rx_dev = ctlr->cur_rx_dma_dev;
1335 struct device *tx_dev = ctlr->cur_tx_dma_dev;
1336
1337 if (xfer->rx_sg_mapped)
1338 dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1339 if (xfer->tx_sg_mapped)
1340 dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1341 }
1342 #else /* !CONFIG_HAS_DMA */
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1343 static inline int __spi_map_msg(struct spi_controller *ctlr,
1344 struct spi_message *msg)
1345 {
1346 return 0;
1347 }
1348
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1349 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1350 struct spi_message *msg)
1351 {
1352 return 0;
1353 }
1354
spi_dma_sync_for_device(struct spi_controller * ctrl,struct spi_transfer * xfer)1355 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1356 struct spi_transfer *xfer)
1357 {
1358 }
1359
spi_dma_sync_for_cpu(struct spi_controller * ctrl,struct spi_transfer * xfer)1360 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1361 struct spi_transfer *xfer)
1362 {
1363 }
1364 #endif /* !CONFIG_HAS_DMA */
1365
spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1366 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1367 struct spi_message *msg)
1368 {
1369 struct spi_transfer *xfer;
1370
1371 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1372 /*
1373 * Restore the original value of tx_buf or rx_buf if they are
1374 * NULL.
1375 */
1376 if (xfer->tx_buf == ctlr->dummy_tx)
1377 xfer->tx_buf = NULL;
1378 if (xfer->rx_buf == ctlr->dummy_rx)
1379 xfer->rx_buf = NULL;
1380 }
1381
1382 return __spi_unmap_msg(ctlr, msg);
1383 }
1384
spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1385 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1386 {
1387 struct spi_transfer *xfer;
1388 void *tmp;
1389 unsigned int max_tx, max_rx;
1390
1391 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1392 && !(msg->spi->mode & SPI_3WIRE)) {
1393 max_tx = 0;
1394 max_rx = 0;
1395
1396 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1397 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1398 !xfer->tx_buf)
1399 max_tx = max(xfer->len, max_tx);
1400 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1401 !xfer->rx_buf)
1402 max_rx = max(xfer->len, max_rx);
1403 }
1404
1405 if (max_tx) {
1406 tmp = krealloc(ctlr->dummy_tx, max_tx,
1407 GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1408 if (!tmp)
1409 return -ENOMEM;
1410 ctlr->dummy_tx = tmp;
1411 }
1412
1413 if (max_rx) {
1414 tmp = krealloc(ctlr->dummy_rx, max_rx,
1415 GFP_KERNEL | GFP_DMA);
1416 if (!tmp)
1417 return -ENOMEM;
1418 ctlr->dummy_rx = tmp;
1419 }
1420
1421 if (max_tx || max_rx) {
1422 list_for_each_entry(xfer, &msg->transfers,
1423 transfer_list) {
1424 if (!xfer->len)
1425 continue;
1426 if (!xfer->tx_buf)
1427 xfer->tx_buf = ctlr->dummy_tx;
1428 if (!xfer->rx_buf)
1429 xfer->rx_buf = ctlr->dummy_rx;
1430 }
1431 }
1432 }
1433
1434 return __spi_map_msg(ctlr, msg);
1435 }
1436
spi_transfer_wait(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer * xfer)1437 static int spi_transfer_wait(struct spi_controller *ctlr,
1438 struct spi_message *msg,
1439 struct spi_transfer *xfer)
1440 {
1441 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1442 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1443 u32 speed_hz = xfer->speed_hz;
1444 unsigned long long ms;
1445
1446 if (spi_controller_is_target(ctlr)) {
1447 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1448 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1449 return -EINTR;
1450 }
1451 } else {
1452 if (!speed_hz)
1453 speed_hz = 100000;
1454
1455 /*
1456 * For each byte we wait for 8 cycles of the SPI clock.
1457 * Since speed is defined in Hz and we want milliseconds,
1458 * use respective multiplier, but before the division,
1459 * otherwise we may get 0 for short transfers.
1460 */
1461 ms = 8LL * MSEC_PER_SEC * xfer->len;
1462 do_div(ms, speed_hz);
1463
1464 /*
1465 * Increase it twice and add 200 ms tolerance, use
1466 * predefined maximum in case of overflow.
1467 */
1468 ms += ms + 200;
1469 if (ms > UINT_MAX)
1470 ms = UINT_MAX;
1471
1472 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1473 msecs_to_jiffies(ms));
1474
1475 if (ms == 0) {
1476 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1477 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1478 dev_err(&msg->spi->dev,
1479 "SPI transfer timed out\n");
1480 return -ETIMEDOUT;
1481 }
1482
1483 if (xfer->error & SPI_TRANS_FAIL_IO)
1484 return -EIO;
1485 }
1486
1487 return 0;
1488 }
1489
_spi_transfer_delay_ns(u32 ns)1490 static void _spi_transfer_delay_ns(u32 ns)
1491 {
1492 if (!ns)
1493 return;
1494 if (ns <= NSEC_PER_USEC) {
1495 ndelay(ns);
1496 } else {
1497 u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1498
1499 fsleep(us);
1500 }
1501 }
1502
spi_delay_to_ns(struct spi_delay * _delay,struct spi_transfer * xfer)1503 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1504 {
1505 u32 delay = _delay->value;
1506 u32 unit = _delay->unit;
1507 u32 hz;
1508
1509 if (!delay)
1510 return 0;
1511
1512 switch (unit) {
1513 case SPI_DELAY_UNIT_USECS:
1514 delay *= NSEC_PER_USEC;
1515 break;
1516 case SPI_DELAY_UNIT_NSECS:
1517 /* Nothing to do here */
1518 break;
1519 case SPI_DELAY_UNIT_SCK:
1520 /* Clock cycles need to be obtained from spi_transfer */
1521 if (!xfer)
1522 return -EINVAL;
1523 /*
1524 * If there is unknown effective speed, approximate it
1525 * by underestimating with half of the requested Hz.
1526 */
1527 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1528 if (!hz)
1529 return -EINVAL;
1530
1531 /* Convert delay to nanoseconds */
1532 delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1533 break;
1534 default:
1535 return -EINVAL;
1536 }
1537
1538 return delay;
1539 }
1540 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1541
spi_delay_exec(struct spi_delay * _delay,struct spi_transfer * xfer)1542 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1543 {
1544 int delay;
1545
1546 might_sleep();
1547
1548 if (!_delay)
1549 return -EINVAL;
1550
1551 delay = spi_delay_to_ns(_delay, xfer);
1552 if (delay < 0)
1553 return delay;
1554
1555 _spi_transfer_delay_ns(delay);
1556
1557 return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(spi_delay_exec);
1560
_spi_transfer_cs_change_delay(struct spi_message * msg,struct spi_transfer * xfer)1561 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1562 struct spi_transfer *xfer)
1563 {
1564 u32 default_delay_ns = 10 * NSEC_PER_USEC;
1565 u32 delay = xfer->cs_change_delay.value;
1566 u32 unit = xfer->cs_change_delay.unit;
1567 int ret;
1568
1569 /* Return early on "fast" mode - for everything but USECS */
1570 if (!delay) {
1571 if (unit == SPI_DELAY_UNIT_USECS)
1572 _spi_transfer_delay_ns(default_delay_ns);
1573 return;
1574 }
1575
1576 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1577 if (ret) {
1578 dev_err_once(&msg->spi->dev,
1579 "Use of unsupported delay unit %i, using default of %luus\n",
1580 unit, default_delay_ns / NSEC_PER_USEC);
1581 _spi_transfer_delay_ns(default_delay_ns);
1582 }
1583 }
1584
spi_transfer_cs_change_delay_exec(struct spi_message * msg,struct spi_transfer * xfer)1585 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1586 struct spi_transfer *xfer)
1587 {
1588 _spi_transfer_cs_change_delay(msg, xfer);
1589 }
1590 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1591
1592 /*
1593 * spi_transfer_one_message - Default implementation of transfer_one_message()
1594 *
1595 * This is a standard implementation of transfer_one_message() for
1596 * drivers which implement a transfer_one() operation. It provides
1597 * standard handling of delays and chip select management.
1598 */
spi_transfer_one_message(struct spi_controller * ctlr,struct spi_message * msg)1599 static int spi_transfer_one_message(struct spi_controller *ctlr,
1600 struct spi_message *msg)
1601 {
1602 struct spi_transfer *xfer;
1603 bool keep_cs = false;
1604 int ret = 0;
1605 struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1606 struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1607
1608 xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1609 spi_set_cs(msg->spi, !xfer->cs_off, false);
1610
1611 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1612 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1613
1614 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1615 trace_spi_transfer_start(msg, xfer);
1616
1617 spi_statistics_add_transfer_stats(statm, xfer, msg);
1618 spi_statistics_add_transfer_stats(stats, xfer, msg);
1619
1620 if (!ctlr->ptp_sts_supported) {
1621 xfer->ptp_sts_word_pre = 0;
1622 ptp_read_system_prets(xfer->ptp_sts);
1623 }
1624
1625 if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1626 reinit_completion(&ctlr->xfer_completion);
1627
1628 fallback_pio:
1629 spi_dma_sync_for_device(ctlr, xfer);
1630 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1631 if (ret < 0) {
1632 spi_dma_sync_for_cpu(ctlr, xfer);
1633
1634 if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) &&
1635 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1636 __spi_unmap_msg(ctlr, msg);
1637 ctlr->fallback = true;
1638 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1639 goto fallback_pio;
1640 }
1641
1642 SPI_STATISTICS_INCREMENT_FIELD(statm,
1643 errors);
1644 SPI_STATISTICS_INCREMENT_FIELD(stats,
1645 errors);
1646 dev_err(&msg->spi->dev,
1647 "SPI transfer failed: %d\n", ret);
1648 goto out;
1649 }
1650
1651 if (ret > 0) {
1652 ret = spi_transfer_wait(ctlr, msg, xfer);
1653 if (ret < 0)
1654 msg->status = ret;
1655 }
1656
1657 spi_dma_sync_for_cpu(ctlr, xfer);
1658 } else {
1659 if (xfer->len)
1660 dev_err(&msg->spi->dev,
1661 "Bufferless transfer has length %u\n",
1662 xfer->len);
1663 }
1664
1665 if (!ctlr->ptp_sts_supported) {
1666 ptp_read_system_postts(xfer->ptp_sts);
1667 xfer->ptp_sts_word_post = xfer->len;
1668 }
1669
1670 trace_spi_transfer_stop(msg, xfer);
1671
1672 if (msg->status != -EINPROGRESS)
1673 goto out;
1674
1675 spi_transfer_delay_exec(xfer);
1676
1677 if (xfer->cs_change) {
1678 if (list_is_last(&xfer->transfer_list,
1679 &msg->transfers)) {
1680 keep_cs = true;
1681 } else {
1682 if (!xfer->cs_off)
1683 spi_set_cs(msg->spi, false, false);
1684 _spi_transfer_cs_change_delay(msg, xfer);
1685 if (!list_next_entry(xfer, transfer_list)->cs_off)
1686 spi_set_cs(msg->spi, true, false);
1687 }
1688 } else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1689 xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1690 spi_set_cs(msg->spi, xfer->cs_off, false);
1691 }
1692
1693 msg->actual_length += xfer->len;
1694 }
1695
1696 out:
1697 if (ret != 0 || !keep_cs)
1698 spi_set_cs(msg->spi, false, false);
1699
1700 if (msg->status == -EINPROGRESS)
1701 msg->status = ret;
1702
1703 if (msg->status && ctlr->handle_err)
1704 ctlr->handle_err(ctlr, msg);
1705
1706 spi_finalize_current_message(ctlr);
1707
1708 return ret;
1709 }
1710
1711 /**
1712 * spi_finalize_current_transfer - report completion of a transfer
1713 * @ctlr: the controller reporting completion
1714 *
1715 * Called by SPI drivers using the core transfer_one_message()
1716 * implementation to notify it that the current interrupt driven
1717 * transfer has finished and the next one may be scheduled.
1718 */
spi_finalize_current_transfer(struct spi_controller * ctlr)1719 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1720 {
1721 complete(&ctlr->xfer_completion);
1722 }
1723 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1724
spi_idle_runtime_pm(struct spi_controller * ctlr)1725 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1726 {
1727 if (ctlr->auto_runtime_pm) {
1728 pm_runtime_mark_last_busy(ctlr->dev.parent);
1729 pm_runtime_put_autosuspend(ctlr->dev.parent);
1730 }
1731 }
1732
__spi_pump_transfer_message(struct spi_controller * ctlr,struct spi_message * msg,bool was_busy)1733 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1734 struct spi_message *msg, bool was_busy)
1735 {
1736 struct spi_transfer *xfer;
1737 int ret;
1738
1739 if (!was_busy && ctlr->auto_runtime_pm) {
1740 ret = pm_runtime_get_sync(ctlr->dev.parent);
1741 if (ret < 0) {
1742 pm_runtime_put_noidle(ctlr->dev.parent);
1743 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1744 ret);
1745
1746 msg->status = ret;
1747 spi_finalize_current_message(ctlr);
1748
1749 return ret;
1750 }
1751 }
1752
1753 if (!was_busy)
1754 trace_spi_controller_busy(ctlr);
1755
1756 if (!was_busy && ctlr->prepare_transfer_hardware) {
1757 ret = ctlr->prepare_transfer_hardware(ctlr);
1758 if (ret) {
1759 dev_err(&ctlr->dev,
1760 "failed to prepare transfer hardware: %d\n",
1761 ret);
1762
1763 if (ctlr->auto_runtime_pm)
1764 pm_runtime_put(ctlr->dev.parent);
1765
1766 msg->status = ret;
1767 spi_finalize_current_message(ctlr);
1768
1769 return ret;
1770 }
1771 }
1772
1773 trace_spi_message_start(msg);
1774
1775 if (ctlr->prepare_message) {
1776 ret = ctlr->prepare_message(ctlr, msg);
1777 if (ret) {
1778 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1779 ret);
1780 msg->status = ret;
1781 spi_finalize_current_message(ctlr);
1782 return ret;
1783 }
1784 msg->prepared = true;
1785 }
1786
1787 ret = spi_map_msg(ctlr, msg);
1788 if (ret) {
1789 msg->status = ret;
1790 spi_finalize_current_message(ctlr);
1791 return ret;
1792 }
1793
1794 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1795 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1796 xfer->ptp_sts_word_pre = 0;
1797 ptp_read_system_prets(xfer->ptp_sts);
1798 }
1799 }
1800
1801 /*
1802 * Drivers implementation of transfer_one_message() must arrange for
1803 * spi_finalize_current_message() to get called. Most drivers will do
1804 * this in the calling context, but some don't. For those cases, a
1805 * completion is used to guarantee that this function does not return
1806 * until spi_finalize_current_message() is done accessing
1807 * ctlr->cur_msg.
1808 * Use of the following two flags enable to opportunistically skip the
1809 * use of the completion since its use involves expensive spin locks.
1810 * In case of a race with the context that calls
1811 * spi_finalize_current_message() the completion will always be used,
1812 * due to strict ordering of these flags using barriers.
1813 */
1814 WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1815 WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1816 reinit_completion(&ctlr->cur_msg_completion);
1817 smp_wmb(); /* Make these available to spi_finalize_current_message() */
1818
1819 ret = ctlr->transfer_one_message(ctlr, msg);
1820 if (ret) {
1821 dev_err(&ctlr->dev,
1822 "failed to transfer one message from queue\n");
1823 return ret;
1824 }
1825
1826 WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1827 smp_mb(); /* See spi_finalize_current_message()... */
1828 if (READ_ONCE(ctlr->cur_msg_incomplete))
1829 wait_for_completion(&ctlr->cur_msg_completion);
1830
1831 return 0;
1832 }
1833
1834 /**
1835 * __spi_pump_messages - function which processes SPI message queue
1836 * @ctlr: controller to process queue for
1837 * @in_kthread: true if we are in the context of the message pump thread
1838 *
1839 * This function checks if there is any SPI message in the queue that
1840 * needs processing and if so call out to the driver to initialize hardware
1841 * and transfer each message.
1842 *
1843 * Note that it is called both from the kthread itself and also from
1844 * inside spi_sync(); the queue extraction handling at the top of the
1845 * function should deal with this safely.
1846 */
__spi_pump_messages(struct spi_controller * ctlr,bool in_kthread)1847 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1848 {
1849 struct spi_message *msg;
1850 bool was_busy = false;
1851 unsigned long flags;
1852 int ret;
1853
1854 /* Take the I/O mutex */
1855 mutex_lock(&ctlr->io_mutex);
1856
1857 /* Lock queue */
1858 spin_lock_irqsave(&ctlr->queue_lock, flags);
1859
1860 /* Make sure we are not already running a message */
1861 if (ctlr->cur_msg)
1862 goto out_unlock;
1863
1864 /* Check if the queue is idle */
1865 if (list_empty(&ctlr->queue) || !ctlr->running) {
1866 if (!ctlr->busy)
1867 goto out_unlock;
1868
1869 /* Defer any non-atomic teardown to the thread */
1870 if (!in_kthread) {
1871 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1872 !ctlr->unprepare_transfer_hardware) {
1873 spi_idle_runtime_pm(ctlr);
1874 ctlr->busy = false;
1875 ctlr->queue_empty = true;
1876 trace_spi_controller_idle(ctlr);
1877 } else {
1878 kthread_queue_work(ctlr->kworker,
1879 &ctlr->pump_messages);
1880 }
1881 goto out_unlock;
1882 }
1883
1884 ctlr->busy = false;
1885 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1886
1887 kfree(ctlr->dummy_rx);
1888 ctlr->dummy_rx = NULL;
1889 kfree(ctlr->dummy_tx);
1890 ctlr->dummy_tx = NULL;
1891 if (ctlr->unprepare_transfer_hardware &&
1892 ctlr->unprepare_transfer_hardware(ctlr))
1893 dev_err(&ctlr->dev,
1894 "failed to unprepare transfer hardware\n");
1895 spi_idle_runtime_pm(ctlr);
1896 trace_spi_controller_idle(ctlr);
1897
1898 spin_lock_irqsave(&ctlr->queue_lock, flags);
1899 ctlr->queue_empty = true;
1900 goto out_unlock;
1901 }
1902
1903 /* Extract head of queue */
1904 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1905 ctlr->cur_msg = msg;
1906
1907 list_del_init(&msg->queue);
1908 if (ctlr->busy)
1909 was_busy = true;
1910 else
1911 ctlr->busy = true;
1912 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1913
1914 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1915 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1916
1917 ctlr->cur_msg = NULL;
1918 ctlr->fallback = false;
1919
1920 mutex_unlock(&ctlr->io_mutex);
1921
1922 /* Prod the scheduler in case transfer_one() was busy waiting */
1923 if (!ret)
1924 cond_resched();
1925 return;
1926
1927 out_unlock:
1928 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1929 mutex_unlock(&ctlr->io_mutex);
1930 }
1931
1932 /**
1933 * spi_pump_messages - kthread work function which processes spi message queue
1934 * @work: pointer to kthread work struct contained in the controller struct
1935 */
spi_pump_messages(struct kthread_work * work)1936 static void spi_pump_messages(struct kthread_work *work)
1937 {
1938 struct spi_controller *ctlr =
1939 container_of(work, struct spi_controller, pump_messages);
1940
1941 __spi_pump_messages(ctlr, true);
1942 }
1943
1944 /**
1945 * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1946 * @ctlr: Pointer to the spi_controller structure of the driver
1947 * @xfer: Pointer to the transfer being timestamped
1948 * @progress: How many words (not bytes) have been transferred so far
1949 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1950 * transfer, for less jitter in time measurement. Only compatible
1951 * with PIO drivers. If true, must follow up with
1952 * spi_take_timestamp_post or otherwise system will crash.
1953 * WARNING: for fully predictable results, the CPU frequency must
1954 * also be under control (governor).
1955 *
1956 * This is a helper for drivers to collect the beginning of the TX timestamp
1957 * for the requested byte from the SPI transfer. The frequency with which this
1958 * function must be called (once per word, once for the whole transfer, once
1959 * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1960 * greater than or equal to the requested byte at the time of the call. The
1961 * timestamp is only taken once, at the first such call. It is assumed that
1962 * the driver advances its @tx buffer pointer monotonically.
1963 */
spi_take_timestamp_pre(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)1964 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1965 struct spi_transfer *xfer,
1966 size_t progress, bool irqs_off)
1967 {
1968 if (!xfer->ptp_sts)
1969 return;
1970
1971 if (xfer->timestamped)
1972 return;
1973
1974 if (progress > xfer->ptp_sts_word_pre)
1975 return;
1976
1977 /* Capture the resolution of the timestamp */
1978 xfer->ptp_sts_word_pre = progress;
1979
1980 if (irqs_off) {
1981 local_irq_save(ctlr->irq_flags);
1982 preempt_disable();
1983 }
1984
1985 ptp_read_system_prets(xfer->ptp_sts);
1986 }
1987 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1988
1989 /**
1990 * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1991 * @ctlr: Pointer to the spi_controller structure of the driver
1992 * @xfer: Pointer to the transfer being timestamped
1993 * @progress: How many words (not bytes) have been transferred so far
1994 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1995 *
1996 * This is a helper for drivers to collect the end of the TX timestamp for
1997 * the requested byte from the SPI transfer. Can be called with an arbitrary
1998 * frequency: only the first call where @tx exceeds or is equal to the
1999 * requested word will be timestamped.
2000 */
spi_take_timestamp_post(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)2001 void spi_take_timestamp_post(struct spi_controller *ctlr,
2002 struct spi_transfer *xfer,
2003 size_t progress, bool irqs_off)
2004 {
2005 if (!xfer->ptp_sts)
2006 return;
2007
2008 if (xfer->timestamped)
2009 return;
2010
2011 if (progress < xfer->ptp_sts_word_post)
2012 return;
2013
2014 ptp_read_system_postts(xfer->ptp_sts);
2015
2016 if (irqs_off) {
2017 local_irq_restore(ctlr->irq_flags);
2018 preempt_enable();
2019 }
2020
2021 /* Capture the resolution of the timestamp */
2022 xfer->ptp_sts_word_post = progress;
2023
2024 xfer->timestamped = 1;
2025 }
2026 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2027
2028 /**
2029 * spi_set_thread_rt - set the controller to pump at realtime priority
2030 * @ctlr: controller to boost priority of
2031 *
2032 * This can be called because the controller requested realtime priority
2033 * (by setting the ->rt value before calling spi_register_controller()) or
2034 * because a device on the bus said that its transfers needed realtime
2035 * priority.
2036 *
2037 * NOTE: at the moment if any device on a bus says it needs realtime then
2038 * the thread will be at realtime priority for all transfers on that
2039 * controller. If this eventually becomes a problem we may see if we can
2040 * find a way to boost the priority only temporarily during relevant
2041 * transfers.
2042 */
spi_set_thread_rt(struct spi_controller * ctlr)2043 static void spi_set_thread_rt(struct spi_controller *ctlr)
2044 {
2045 dev_info(&ctlr->dev,
2046 "will run message pump with realtime priority\n");
2047 sched_set_fifo(ctlr->kworker->task);
2048 }
2049
spi_init_queue(struct spi_controller * ctlr)2050 static int spi_init_queue(struct spi_controller *ctlr)
2051 {
2052 ctlr->running = false;
2053 ctlr->busy = false;
2054 ctlr->queue_empty = true;
2055
2056 ctlr->kworker = kthread_run_worker(0, dev_name(&ctlr->dev));
2057 if (IS_ERR(ctlr->kworker)) {
2058 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2059 return PTR_ERR(ctlr->kworker);
2060 }
2061
2062 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2063
2064 /*
2065 * Controller config will indicate if this controller should run the
2066 * message pump with high (realtime) priority to reduce the transfer
2067 * latency on the bus by minimising the delay between a transfer
2068 * request and the scheduling of the message pump thread. Without this
2069 * setting the message pump thread will remain at default priority.
2070 */
2071 if (ctlr->rt)
2072 spi_set_thread_rt(ctlr);
2073
2074 return 0;
2075 }
2076
2077 /**
2078 * spi_get_next_queued_message() - called by driver to check for queued
2079 * messages
2080 * @ctlr: the controller to check for queued messages
2081 *
2082 * If there are more messages in the queue, the next message is returned from
2083 * this call.
2084 *
2085 * Return: the next message in the queue, else NULL if the queue is empty.
2086 */
spi_get_next_queued_message(struct spi_controller * ctlr)2087 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2088 {
2089 struct spi_message *next;
2090 unsigned long flags;
2091
2092 /* Get a pointer to the next message, if any */
2093 spin_lock_irqsave(&ctlr->queue_lock, flags);
2094 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2095 queue);
2096 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2097
2098 return next;
2099 }
2100 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2101
2102 /*
2103 * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2104 * and spi_maybe_unoptimize_message()
2105 * @msg: the message to unoptimize
2106 *
2107 * Peripheral drivers should use spi_unoptimize_message() and callers inside
2108 * core should use spi_maybe_unoptimize_message() rather than calling this
2109 * function directly.
2110 *
2111 * It is not valid to call this on a message that is not currently optimized.
2112 */
__spi_unoptimize_message(struct spi_message * msg)2113 static void __spi_unoptimize_message(struct spi_message *msg)
2114 {
2115 struct spi_controller *ctlr = msg->spi->controller;
2116
2117 if (ctlr->unoptimize_message)
2118 ctlr->unoptimize_message(msg);
2119
2120 spi_res_release(ctlr, msg);
2121
2122 msg->optimized = false;
2123 msg->opt_state = NULL;
2124 }
2125
2126 /*
2127 * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2128 * @msg: the message to unoptimize
2129 *
2130 * This function is used to unoptimize a message if and only if it was
2131 * optimized by the core (via spi_maybe_optimize_message()).
2132 */
spi_maybe_unoptimize_message(struct spi_message * msg)2133 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2134 {
2135 if (!msg->pre_optimized && msg->optimized &&
2136 !msg->spi->controller->defer_optimize_message)
2137 __spi_unoptimize_message(msg);
2138 }
2139
2140 /**
2141 * spi_finalize_current_message() - the current message is complete
2142 * @ctlr: the controller to return the message to
2143 *
2144 * Called by the driver to notify the core that the message in the front of the
2145 * queue is complete and can be removed from the queue.
2146 */
spi_finalize_current_message(struct spi_controller * ctlr)2147 void spi_finalize_current_message(struct spi_controller *ctlr)
2148 {
2149 struct spi_transfer *xfer;
2150 struct spi_message *mesg;
2151 int ret;
2152
2153 mesg = ctlr->cur_msg;
2154
2155 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2156 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2157 ptp_read_system_postts(xfer->ptp_sts);
2158 xfer->ptp_sts_word_post = xfer->len;
2159 }
2160 }
2161
2162 if (unlikely(ctlr->ptp_sts_supported))
2163 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2164 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2165
2166 spi_unmap_msg(ctlr, mesg);
2167
2168 if (mesg->prepared && ctlr->unprepare_message) {
2169 ret = ctlr->unprepare_message(ctlr, mesg);
2170 if (ret) {
2171 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2172 ret);
2173 }
2174 }
2175
2176 mesg->prepared = false;
2177
2178 spi_maybe_unoptimize_message(mesg);
2179
2180 WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2181 smp_mb(); /* See __spi_pump_transfer_message()... */
2182 if (READ_ONCE(ctlr->cur_msg_need_completion))
2183 complete(&ctlr->cur_msg_completion);
2184
2185 trace_spi_message_done(mesg);
2186
2187 mesg->state = NULL;
2188 if (mesg->complete)
2189 mesg->complete(mesg->context);
2190 }
2191 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2192
spi_start_queue(struct spi_controller * ctlr)2193 static int spi_start_queue(struct spi_controller *ctlr)
2194 {
2195 unsigned long flags;
2196
2197 spin_lock_irqsave(&ctlr->queue_lock, flags);
2198
2199 if (ctlr->running || ctlr->busy) {
2200 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2201 return -EBUSY;
2202 }
2203
2204 ctlr->running = true;
2205 ctlr->cur_msg = NULL;
2206 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2207
2208 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2209
2210 return 0;
2211 }
2212
spi_stop_queue(struct spi_controller * ctlr)2213 static int spi_stop_queue(struct spi_controller *ctlr)
2214 {
2215 unsigned int limit = 500;
2216 unsigned long flags;
2217
2218 /*
2219 * This is a bit lame, but is optimized for the common execution path.
2220 * A wait_queue on the ctlr->busy could be used, but then the common
2221 * execution path (pump_messages) would be required to call wake_up or
2222 * friends on every SPI message. Do this instead.
2223 */
2224 do {
2225 spin_lock_irqsave(&ctlr->queue_lock, flags);
2226 if (list_empty(&ctlr->queue) && !ctlr->busy) {
2227 ctlr->running = false;
2228 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2229 return 0;
2230 }
2231 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2232 usleep_range(10000, 11000);
2233 } while (--limit);
2234
2235 return -EBUSY;
2236 }
2237
spi_destroy_queue(struct spi_controller * ctlr)2238 static int spi_destroy_queue(struct spi_controller *ctlr)
2239 {
2240 int ret;
2241
2242 ret = spi_stop_queue(ctlr);
2243
2244 /*
2245 * kthread_flush_worker will block until all work is done.
2246 * If the reason that stop_queue timed out is that the work will never
2247 * finish, then it does no good to call flush/stop thread, so
2248 * return anyway.
2249 */
2250 if (ret) {
2251 dev_err(&ctlr->dev, "problem destroying queue\n");
2252 return ret;
2253 }
2254
2255 kthread_destroy_worker(ctlr->kworker);
2256
2257 return 0;
2258 }
2259
__spi_queued_transfer(struct spi_device * spi,struct spi_message * msg,bool need_pump)2260 static int __spi_queued_transfer(struct spi_device *spi,
2261 struct spi_message *msg,
2262 bool need_pump)
2263 {
2264 struct spi_controller *ctlr = spi->controller;
2265 unsigned long flags;
2266
2267 spin_lock_irqsave(&ctlr->queue_lock, flags);
2268
2269 if (!ctlr->running) {
2270 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2271 return -ESHUTDOWN;
2272 }
2273 msg->actual_length = 0;
2274 msg->status = -EINPROGRESS;
2275
2276 list_add_tail(&msg->queue, &ctlr->queue);
2277 ctlr->queue_empty = false;
2278 if (!ctlr->busy && need_pump)
2279 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2280
2281 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2282 return 0;
2283 }
2284
2285 /**
2286 * spi_queued_transfer - transfer function for queued transfers
2287 * @spi: SPI device which is requesting transfer
2288 * @msg: SPI message which is to handled is queued to driver queue
2289 *
2290 * Return: zero on success, else a negative error code.
2291 */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)2292 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2293 {
2294 return __spi_queued_transfer(spi, msg, true);
2295 }
2296
spi_controller_initialize_queue(struct spi_controller * ctlr)2297 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2298 {
2299 int ret;
2300
2301 ctlr->transfer = spi_queued_transfer;
2302 if (!ctlr->transfer_one_message)
2303 ctlr->transfer_one_message = spi_transfer_one_message;
2304
2305 /* Initialize and start queue */
2306 ret = spi_init_queue(ctlr);
2307 if (ret) {
2308 dev_err(&ctlr->dev, "problem initializing queue\n");
2309 goto err_init_queue;
2310 }
2311 ctlr->queued = true;
2312 ret = spi_start_queue(ctlr);
2313 if (ret) {
2314 dev_err(&ctlr->dev, "problem starting queue\n");
2315 goto err_start_queue;
2316 }
2317
2318 return 0;
2319
2320 err_start_queue:
2321 spi_destroy_queue(ctlr);
2322 err_init_queue:
2323 return ret;
2324 }
2325
2326 /**
2327 * spi_flush_queue - Send all pending messages in the queue from the callers'
2328 * context
2329 * @ctlr: controller to process queue for
2330 *
2331 * This should be used when one wants to ensure all pending messages have been
2332 * sent before doing something. Is used by the spi-mem code to make sure SPI
2333 * memory operations do not preempt regular SPI transfers that have been queued
2334 * before the spi-mem operation.
2335 */
spi_flush_queue(struct spi_controller * ctlr)2336 void spi_flush_queue(struct spi_controller *ctlr)
2337 {
2338 if (ctlr->transfer == spi_queued_transfer)
2339 __spi_pump_messages(ctlr, false);
2340 }
2341
2342 /*-------------------------------------------------------------------------*/
2343
2344 #if defined(CONFIG_OF)
of_spi_parse_dt_cs_delay(struct device_node * nc,struct spi_delay * delay,const char * prop)2345 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2346 struct spi_delay *delay, const char *prop)
2347 {
2348 u32 value;
2349
2350 if (!of_property_read_u32(nc, prop, &value)) {
2351 if (value > U16_MAX) {
2352 delay->value = DIV_ROUND_UP(value, 1000);
2353 delay->unit = SPI_DELAY_UNIT_USECS;
2354 } else {
2355 delay->value = value;
2356 delay->unit = SPI_DELAY_UNIT_NSECS;
2357 }
2358 }
2359 }
2360
of_spi_parse_dt(struct spi_controller * ctlr,struct spi_device * spi,struct device_node * nc)2361 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2362 struct device_node *nc)
2363 {
2364 u32 value, cs[SPI_CS_CNT_MAX];
2365 int rc, idx;
2366
2367 /* Mode (clock phase/polarity/etc.) */
2368 if (of_property_read_bool(nc, "spi-cpha"))
2369 spi->mode |= SPI_CPHA;
2370 if (of_property_read_bool(nc, "spi-cpol"))
2371 spi->mode |= SPI_CPOL;
2372 if (of_property_read_bool(nc, "spi-3wire"))
2373 spi->mode |= SPI_3WIRE;
2374 if (of_property_read_bool(nc, "spi-lsb-first"))
2375 spi->mode |= SPI_LSB_FIRST;
2376 if (of_property_read_bool(nc, "spi-cs-high"))
2377 spi->mode |= SPI_CS_HIGH;
2378
2379 /* Device DUAL/QUAD mode */
2380 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2381 switch (value) {
2382 case 0:
2383 spi->mode |= SPI_NO_TX;
2384 break;
2385 case 1:
2386 break;
2387 case 2:
2388 spi->mode |= SPI_TX_DUAL;
2389 break;
2390 case 4:
2391 spi->mode |= SPI_TX_QUAD;
2392 break;
2393 case 8:
2394 spi->mode |= SPI_TX_OCTAL;
2395 break;
2396 default:
2397 dev_warn(&ctlr->dev,
2398 "spi-tx-bus-width %d not supported\n",
2399 value);
2400 break;
2401 }
2402 }
2403
2404 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2405 switch (value) {
2406 case 0:
2407 spi->mode |= SPI_NO_RX;
2408 break;
2409 case 1:
2410 break;
2411 case 2:
2412 spi->mode |= SPI_RX_DUAL;
2413 break;
2414 case 4:
2415 spi->mode |= SPI_RX_QUAD;
2416 break;
2417 case 8:
2418 spi->mode |= SPI_RX_OCTAL;
2419 break;
2420 default:
2421 dev_warn(&ctlr->dev,
2422 "spi-rx-bus-width %d not supported\n",
2423 value);
2424 break;
2425 }
2426 }
2427
2428 if (spi_controller_is_target(ctlr)) {
2429 if (!of_node_name_eq(nc, "slave")) {
2430 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2431 nc);
2432 return -EINVAL;
2433 }
2434 return 0;
2435 }
2436
2437 if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2438 dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2439 return -EINVAL;
2440 }
2441
2442 spi_set_all_cs_unused(spi);
2443
2444 /* Device address */
2445 rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2446 SPI_CS_CNT_MAX);
2447 if (rc < 0) {
2448 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2449 nc, rc);
2450 return rc;
2451 }
2452 if (rc > ctlr->num_chipselect) {
2453 dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2454 nc, rc);
2455 return rc;
2456 }
2457 if ((of_property_present(nc, "parallel-memories")) &&
2458 (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2459 dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2460 return -EINVAL;
2461 }
2462 for (idx = 0; idx < rc; idx++)
2463 spi_set_chipselect(spi, idx, cs[idx]);
2464
2465 /*
2466 * By default spi->chip_select[0] will hold the physical CS number,
2467 * so set bit 0 in spi->cs_index_mask.
2468 */
2469 spi->cs_index_mask = BIT(0);
2470
2471 /* Device speed */
2472 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2473 spi->max_speed_hz = value;
2474
2475 /* Device CS delays */
2476 of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2477 of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2478 of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2479
2480 return 0;
2481 }
2482
2483 static struct spi_device *
of_register_spi_device(struct spi_controller * ctlr,struct device_node * nc)2484 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2485 {
2486 struct spi_device *spi;
2487 int rc;
2488
2489 /* Alloc an spi_device */
2490 spi = spi_alloc_device(ctlr);
2491 if (!spi) {
2492 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2493 rc = -ENOMEM;
2494 goto err_out;
2495 }
2496
2497 /* Select device driver */
2498 rc = of_alias_from_compatible(nc, spi->modalias,
2499 sizeof(spi->modalias));
2500 if (rc < 0) {
2501 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2502 goto err_out;
2503 }
2504
2505 rc = of_spi_parse_dt(ctlr, spi, nc);
2506 if (rc)
2507 goto err_out;
2508
2509 /* Store a pointer to the node in the device structure */
2510 of_node_get(nc);
2511
2512 device_set_node(&spi->dev, of_fwnode_handle(nc));
2513
2514 /* Register the new device */
2515 rc = spi_add_device(spi);
2516 if (rc) {
2517 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2518 goto err_of_node_put;
2519 }
2520
2521 return spi;
2522
2523 err_of_node_put:
2524 of_node_put(nc);
2525 err_out:
2526 spi_dev_put(spi);
2527 return ERR_PTR(rc);
2528 }
2529
2530 /**
2531 * of_register_spi_devices() - Register child devices onto the SPI bus
2532 * @ctlr: Pointer to spi_controller device
2533 *
2534 * Registers an spi_device for each child node of controller node which
2535 * represents a valid SPI target device.
2536 */
of_register_spi_devices(struct spi_controller * ctlr)2537 static void of_register_spi_devices(struct spi_controller *ctlr)
2538 {
2539 struct spi_device *spi;
2540 struct device_node *nc;
2541
2542 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2543 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2544 continue;
2545 spi = of_register_spi_device(ctlr, nc);
2546 if (IS_ERR(spi)) {
2547 dev_warn(&ctlr->dev,
2548 "Failed to create SPI device for %pOF\n", nc);
2549 of_node_clear_flag(nc, OF_POPULATED);
2550 }
2551 }
2552 }
2553 #else
of_register_spi_devices(struct spi_controller * ctlr)2554 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2555 #endif
2556
2557 /**
2558 * spi_new_ancillary_device() - Register ancillary SPI device
2559 * @spi: Pointer to the main SPI device registering the ancillary device
2560 * @chip_select: Chip Select of the ancillary device
2561 *
2562 * Register an ancillary SPI device; for example some chips have a chip-select
2563 * for normal device usage and another one for setup/firmware upload.
2564 *
2565 * This may only be called from main SPI device's probe routine.
2566 *
2567 * Return: 0 on success; negative errno on failure
2568 */
spi_new_ancillary_device(struct spi_device * spi,u8 chip_select)2569 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2570 u8 chip_select)
2571 {
2572 struct spi_controller *ctlr = spi->controller;
2573 struct spi_device *ancillary;
2574 int rc;
2575
2576 /* Alloc an spi_device */
2577 ancillary = spi_alloc_device(ctlr);
2578 if (!ancillary) {
2579 rc = -ENOMEM;
2580 goto err_out;
2581 }
2582
2583 strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2584
2585 /* Use provided chip-select for ancillary device */
2586 spi_set_all_cs_unused(ancillary);
2587 spi_set_chipselect(ancillary, 0, chip_select);
2588
2589 /* Take over SPI mode/speed from SPI main device */
2590 ancillary->max_speed_hz = spi->max_speed_hz;
2591 ancillary->mode = spi->mode;
2592 /*
2593 * By default spi->chip_select[0] will hold the physical CS number,
2594 * so set bit 0 in spi->cs_index_mask.
2595 */
2596 ancillary->cs_index_mask = BIT(0);
2597
2598 WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2599
2600 /* Register the new device */
2601 rc = __spi_add_device(ancillary);
2602 if (rc) {
2603 dev_err(&spi->dev, "failed to register ancillary device\n");
2604 goto err_out;
2605 }
2606
2607 return ancillary;
2608
2609 err_out:
2610 spi_dev_put(ancillary);
2611 return ERR_PTR(rc);
2612 }
2613 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2614
2615 #ifdef CONFIG_ACPI
2616 struct acpi_spi_lookup {
2617 struct spi_controller *ctlr;
2618 u32 max_speed_hz;
2619 u32 mode;
2620 int irq;
2621 u8 bits_per_word;
2622 u8 chip_select;
2623 int n;
2624 int index;
2625 };
2626
acpi_spi_count(struct acpi_resource * ares,void * data)2627 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2628 {
2629 struct acpi_resource_spi_serialbus *sb;
2630 int *count = data;
2631
2632 if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2633 return 1;
2634
2635 sb = &ares->data.spi_serial_bus;
2636 if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2637 return 1;
2638
2639 *count = *count + 1;
2640
2641 return 1;
2642 }
2643
2644 /**
2645 * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2646 * @adev: ACPI device
2647 *
2648 * Return: the number of SpiSerialBus resources in the ACPI-device's
2649 * resource-list; or a negative error code.
2650 */
acpi_spi_count_resources(struct acpi_device * adev)2651 int acpi_spi_count_resources(struct acpi_device *adev)
2652 {
2653 LIST_HEAD(r);
2654 int count = 0;
2655 int ret;
2656
2657 ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2658 if (ret < 0)
2659 return ret;
2660
2661 acpi_dev_free_resource_list(&r);
2662
2663 return count;
2664 }
2665 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2666
acpi_spi_parse_apple_properties(struct acpi_device * dev,struct acpi_spi_lookup * lookup)2667 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2668 struct acpi_spi_lookup *lookup)
2669 {
2670 const union acpi_object *obj;
2671
2672 if (!x86_apple_machine)
2673 return;
2674
2675 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2676 && obj->buffer.length >= 4)
2677 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2678
2679 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2680 && obj->buffer.length == 8)
2681 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2682
2683 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2684 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2685 lookup->mode |= SPI_LSB_FIRST;
2686
2687 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2688 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2689 lookup->mode |= SPI_CPOL;
2690
2691 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2692 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2693 lookup->mode |= SPI_CPHA;
2694 }
2695
acpi_spi_add_resource(struct acpi_resource * ares,void * data)2696 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2697 {
2698 struct acpi_spi_lookup *lookup = data;
2699 struct spi_controller *ctlr = lookup->ctlr;
2700
2701 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2702 struct acpi_resource_spi_serialbus *sb;
2703 acpi_handle parent_handle;
2704 acpi_status status;
2705
2706 sb = &ares->data.spi_serial_bus;
2707 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2708
2709 if (lookup->index != -1 && lookup->n++ != lookup->index)
2710 return 1;
2711
2712 status = acpi_get_handle(NULL,
2713 sb->resource_source.string_ptr,
2714 &parent_handle);
2715
2716 if (ACPI_FAILURE(status))
2717 return -ENODEV;
2718
2719 if (ctlr) {
2720 if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle))
2721 return -ENODEV;
2722 } else {
2723 struct acpi_device *adev;
2724
2725 adev = acpi_fetch_acpi_dev(parent_handle);
2726 if (!adev)
2727 return -ENODEV;
2728
2729 ctlr = acpi_spi_find_controller_by_adev(adev);
2730 if (!ctlr)
2731 return -EPROBE_DEFER;
2732
2733 lookup->ctlr = ctlr;
2734 }
2735
2736 /*
2737 * ACPI DeviceSelection numbering is handled by the
2738 * host controller driver in Windows and can vary
2739 * from driver to driver. In Linux we always expect
2740 * 0 .. max - 1 so we need to ask the driver to
2741 * translate between the two schemes.
2742 */
2743 if (ctlr->fw_translate_cs) {
2744 int cs = ctlr->fw_translate_cs(ctlr,
2745 sb->device_selection);
2746 if (cs < 0)
2747 return cs;
2748 lookup->chip_select = cs;
2749 } else {
2750 lookup->chip_select = sb->device_selection;
2751 }
2752
2753 lookup->max_speed_hz = sb->connection_speed;
2754 lookup->bits_per_word = sb->data_bit_length;
2755
2756 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2757 lookup->mode |= SPI_CPHA;
2758 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2759 lookup->mode |= SPI_CPOL;
2760 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2761 lookup->mode |= SPI_CS_HIGH;
2762 }
2763 } else if (lookup->irq < 0) {
2764 struct resource r;
2765
2766 if (acpi_dev_resource_interrupt(ares, 0, &r))
2767 lookup->irq = r.start;
2768 }
2769
2770 /* Always tell the ACPI core to skip this resource */
2771 return 1;
2772 }
2773
2774 /**
2775 * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2776 * @ctlr: controller to which the spi device belongs
2777 * @adev: ACPI Device for the spi device
2778 * @index: Index of the spi resource inside the ACPI Node
2779 *
2780 * This should be used to allocate a new SPI device from and ACPI Device node.
2781 * The caller is responsible for calling spi_add_device to register the SPI device.
2782 *
2783 * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2784 * using the resource.
2785 * If index is set to -1, index is not used.
2786 * Note: If index is -1, ctlr must be set.
2787 *
2788 * Return: a pointer to the new device, or ERR_PTR on error.
2789 */
acpi_spi_device_alloc(struct spi_controller * ctlr,struct acpi_device * adev,int index)2790 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2791 struct acpi_device *adev,
2792 int index)
2793 {
2794 acpi_handle parent_handle = NULL;
2795 struct list_head resource_list;
2796 struct acpi_spi_lookup lookup = {};
2797 struct spi_device *spi;
2798 int ret;
2799
2800 if (!ctlr && index == -1)
2801 return ERR_PTR(-EINVAL);
2802
2803 lookup.ctlr = ctlr;
2804 lookup.irq = -1;
2805 lookup.index = index;
2806 lookup.n = 0;
2807
2808 INIT_LIST_HEAD(&resource_list);
2809 ret = acpi_dev_get_resources(adev, &resource_list,
2810 acpi_spi_add_resource, &lookup);
2811 acpi_dev_free_resource_list(&resource_list);
2812
2813 if (ret < 0)
2814 /* Found SPI in _CRS but it points to another controller */
2815 return ERR_PTR(ret);
2816
2817 if (!lookup.max_speed_hz &&
2818 ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2819 device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) {
2820 /* Apple does not use _CRS but nested devices for SPI target devices */
2821 acpi_spi_parse_apple_properties(adev, &lookup);
2822 }
2823
2824 if (!lookup.max_speed_hz)
2825 return ERR_PTR(-ENODEV);
2826
2827 spi = spi_alloc_device(lookup.ctlr);
2828 if (!spi) {
2829 dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2830 dev_name(&adev->dev));
2831 return ERR_PTR(-ENOMEM);
2832 }
2833
2834 spi_set_all_cs_unused(spi);
2835 spi_set_chipselect(spi, 0, lookup.chip_select);
2836
2837 ACPI_COMPANION_SET(&spi->dev, adev);
2838 spi->max_speed_hz = lookup.max_speed_hz;
2839 spi->mode |= lookup.mode;
2840 spi->irq = lookup.irq;
2841 spi->bits_per_word = lookup.bits_per_word;
2842 /*
2843 * By default spi->chip_select[0] will hold the physical CS number,
2844 * so set bit 0 in spi->cs_index_mask.
2845 */
2846 spi->cs_index_mask = BIT(0);
2847
2848 return spi;
2849 }
2850 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2851
acpi_register_spi_device(struct spi_controller * ctlr,struct acpi_device * adev)2852 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2853 struct acpi_device *adev)
2854 {
2855 struct spi_device *spi;
2856
2857 if (acpi_bus_get_status(adev) || !adev->status.present ||
2858 acpi_device_enumerated(adev))
2859 return AE_OK;
2860
2861 spi = acpi_spi_device_alloc(ctlr, adev, -1);
2862 if (IS_ERR(spi)) {
2863 if (PTR_ERR(spi) == -ENOMEM)
2864 return AE_NO_MEMORY;
2865 else
2866 return AE_OK;
2867 }
2868
2869 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2870 sizeof(spi->modalias));
2871
2872 acpi_device_set_enumerated(adev);
2873
2874 adev->power.flags.ignore_parent = true;
2875 if (spi_add_device(spi)) {
2876 adev->power.flags.ignore_parent = false;
2877 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2878 dev_name(&adev->dev));
2879 spi_dev_put(spi);
2880 }
2881
2882 return AE_OK;
2883 }
2884
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)2885 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2886 void *data, void **return_value)
2887 {
2888 struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2889 struct spi_controller *ctlr = data;
2890
2891 if (!adev)
2892 return AE_OK;
2893
2894 return acpi_register_spi_device(ctlr, adev);
2895 }
2896
2897 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2898
acpi_register_spi_devices(struct spi_controller * ctlr)2899 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2900 {
2901 acpi_status status;
2902 acpi_handle handle;
2903
2904 handle = ACPI_HANDLE(ctlr->dev.parent);
2905 if (!handle)
2906 return;
2907
2908 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2909 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2910 acpi_spi_add_device, NULL, ctlr, NULL);
2911 if (ACPI_FAILURE(status))
2912 dev_warn(&ctlr->dev, "failed to enumerate SPI target devices\n");
2913 }
2914 #else
acpi_register_spi_devices(struct spi_controller * ctlr)2915 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2916 #endif /* CONFIG_ACPI */
2917
spi_controller_release(struct device * dev)2918 static void spi_controller_release(struct device *dev)
2919 {
2920 struct spi_controller *ctlr;
2921
2922 ctlr = container_of(dev, struct spi_controller, dev);
2923 kfree(ctlr);
2924 }
2925
2926 static const struct class spi_controller_class = {
2927 .name = "spi_master",
2928 .dev_release = spi_controller_release,
2929 .dev_groups = spi_controller_groups,
2930 };
2931
2932 #ifdef CONFIG_SPI_SLAVE
2933 /**
2934 * spi_target_abort - abort the ongoing transfer request on an SPI target controller
2935 * @spi: device used for the current transfer
2936 */
spi_target_abort(struct spi_device * spi)2937 int spi_target_abort(struct spi_device *spi)
2938 {
2939 struct spi_controller *ctlr = spi->controller;
2940
2941 if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2942 return ctlr->target_abort(ctlr);
2943
2944 return -ENOTSUPP;
2945 }
2946 EXPORT_SYMBOL_GPL(spi_target_abort);
2947
slave_show(struct device * dev,struct device_attribute * attr,char * buf)2948 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2949 char *buf)
2950 {
2951 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2952 dev);
2953 struct device *child;
2954 int ret;
2955
2956 child = device_find_any_child(&ctlr->dev);
2957 ret = sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2958 put_device(child);
2959
2960 return ret;
2961 }
2962
slave_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2963 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2964 const char *buf, size_t count)
2965 {
2966 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2967 dev);
2968 struct spi_device *spi;
2969 struct device *child;
2970 char name[32];
2971 int rc;
2972
2973 rc = sscanf(buf, "%31s", name);
2974 if (rc != 1 || !name[0])
2975 return -EINVAL;
2976
2977 child = device_find_any_child(&ctlr->dev);
2978 if (child) {
2979 /* Remove registered target device */
2980 device_unregister(child);
2981 put_device(child);
2982 }
2983
2984 if (strcmp(name, "(null)")) {
2985 /* Register new target device */
2986 spi = spi_alloc_device(ctlr);
2987 if (!spi)
2988 return -ENOMEM;
2989
2990 strscpy(spi->modalias, name, sizeof(spi->modalias));
2991
2992 rc = spi_add_device(spi);
2993 if (rc) {
2994 spi_dev_put(spi);
2995 return rc;
2996 }
2997 }
2998
2999 return count;
3000 }
3001
3002 static DEVICE_ATTR_RW(slave);
3003
3004 static struct attribute *spi_target_attrs[] = {
3005 &dev_attr_slave.attr,
3006 NULL,
3007 };
3008
3009 static const struct attribute_group spi_target_group = {
3010 .attrs = spi_target_attrs,
3011 };
3012
3013 static const struct attribute_group *spi_target_groups[] = {
3014 &spi_controller_statistics_group,
3015 &spi_target_group,
3016 NULL,
3017 };
3018
3019 static const struct class spi_target_class = {
3020 .name = "spi_slave",
3021 .dev_release = spi_controller_release,
3022 .dev_groups = spi_target_groups,
3023 };
3024 #else
3025 extern struct class spi_target_class; /* dummy */
3026 #endif
3027
3028 /**
3029 * __spi_alloc_controller - allocate an SPI host or target controller
3030 * @dev: the controller, possibly using the platform_bus
3031 * @size: how much zeroed driver-private data to allocate; the pointer to this
3032 * memory is in the driver_data field of the returned device, accessible
3033 * with spi_controller_get_devdata(); the memory is cacheline aligned;
3034 * drivers granting DMA access to portions of their private data need to
3035 * round up @size using ALIGN(size, dma_get_cache_alignment()).
3036 * @target: flag indicating whether to allocate an SPI host (false) or SPI target (true)
3037 * controller
3038 * Context: can sleep
3039 *
3040 * This call is used only by SPI controller drivers, which are the
3041 * only ones directly touching chip registers. It's how they allocate
3042 * an spi_controller structure, prior to calling spi_register_controller().
3043 *
3044 * This must be called from context that can sleep.
3045 *
3046 * The caller is responsible for assigning the bus number and initializing the
3047 * controller's methods before calling spi_register_controller(); and (after
3048 * errors adding the device) calling spi_controller_put() to prevent a memory
3049 * leak.
3050 *
3051 * Return: the SPI controller structure on success, else NULL.
3052 */
__spi_alloc_controller(struct device * dev,unsigned int size,bool target)3053 struct spi_controller *__spi_alloc_controller(struct device *dev,
3054 unsigned int size, bool target)
3055 {
3056 struct spi_controller *ctlr;
3057 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3058
3059 if (!dev)
3060 return NULL;
3061
3062 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3063 if (!ctlr)
3064 return NULL;
3065
3066 device_initialize(&ctlr->dev);
3067 INIT_LIST_HEAD(&ctlr->queue);
3068 spin_lock_init(&ctlr->queue_lock);
3069 spin_lock_init(&ctlr->bus_lock_spinlock);
3070 mutex_init(&ctlr->bus_lock_mutex);
3071 mutex_init(&ctlr->io_mutex);
3072 mutex_init(&ctlr->add_lock);
3073 ctlr->bus_num = -1;
3074 ctlr->num_chipselect = 1;
3075 ctlr->target = target;
3076 if (IS_ENABLED(CONFIG_SPI_SLAVE) && target)
3077 ctlr->dev.class = &spi_target_class;
3078 else
3079 ctlr->dev.class = &spi_controller_class;
3080 ctlr->dev.parent = dev;
3081 pm_suspend_ignore_children(&ctlr->dev, true);
3082 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3083
3084 return ctlr;
3085 }
3086 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3087
devm_spi_release_controller(struct device * dev,void * ctlr)3088 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3089 {
3090 spi_controller_put(*(struct spi_controller **)ctlr);
3091 }
3092
3093 /**
3094 * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3095 * @dev: physical device of SPI controller
3096 * @size: how much zeroed driver-private data to allocate
3097 * @target: whether to allocate an SPI host (false) or SPI target (true) controller
3098 * Context: can sleep
3099 *
3100 * Allocate an SPI controller and automatically release a reference on it
3101 * when @dev is unbound from its driver. Drivers are thus relieved from
3102 * having to call spi_controller_put().
3103 *
3104 * The arguments to this function are identical to __spi_alloc_controller().
3105 *
3106 * Return: the SPI controller structure on success, else NULL.
3107 */
__devm_spi_alloc_controller(struct device * dev,unsigned int size,bool target)3108 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3109 unsigned int size,
3110 bool target)
3111 {
3112 struct spi_controller **ptr, *ctlr;
3113
3114 ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3115 GFP_KERNEL);
3116 if (!ptr)
3117 return NULL;
3118
3119 ctlr = __spi_alloc_controller(dev, size, target);
3120 if (ctlr) {
3121 ctlr->devm_allocated = true;
3122 *ptr = ctlr;
3123 devres_add(dev, ptr);
3124 } else {
3125 devres_free(ptr);
3126 }
3127
3128 return ctlr;
3129 }
3130 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3131
3132 /**
3133 * spi_get_gpio_descs() - grab chip select GPIOs for the controller
3134 * @ctlr: The SPI controller to grab GPIO descriptors for
3135 */
spi_get_gpio_descs(struct spi_controller * ctlr)3136 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3137 {
3138 int nb, i;
3139 struct gpio_desc **cs;
3140 struct device *dev = &ctlr->dev;
3141 unsigned long native_cs_mask = 0;
3142 unsigned int num_cs_gpios = 0;
3143
3144 nb = gpiod_count(dev, "cs");
3145 if (nb < 0) {
3146 /* No GPIOs at all is fine, else return the error */
3147 if (nb == -ENOENT)
3148 return 0;
3149 return nb;
3150 }
3151
3152 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3153
3154 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3155 GFP_KERNEL);
3156 if (!cs)
3157 return -ENOMEM;
3158 ctlr->cs_gpiods = cs;
3159
3160 for (i = 0; i < nb; i++) {
3161 /*
3162 * Most chipselects are active low, the inverted
3163 * semantics are handled by special quirks in gpiolib,
3164 * so initializing them GPIOD_OUT_LOW here means
3165 * "unasserted", in most cases this will drive the physical
3166 * line high.
3167 */
3168 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3169 GPIOD_OUT_LOW);
3170 if (IS_ERR(cs[i]))
3171 return PTR_ERR(cs[i]);
3172
3173 if (cs[i]) {
3174 /*
3175 * If we find a CS GPIO, name it after the device and
3176 * chip select line.
3177 */
3178 char *gpioname;
3179
3180 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3181 dev_name(dev), i);
3182 if (!gpioname)
3183 return -ENOMEM;
3184 gpiod_set_consumer_name(cs[i], gpioname);
3185 num_cs_gpios++;
3186 continue;
3187 }
3188
3189 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3190 dev_err(dev, "Invalid native chip select %d\n", i);
3191 return -EINVAL;
3192 }
3193 native_cs_mask |= BIT(i);
3194 }
3195
3196 ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3197
3198 if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3199 ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3200 dev_err(dev, "No unused native chip select available\n");
3201 return -EINVAL;
3202 }
3203
3204 return 0;
3205 }
3206
spi_controller_check_ops(struct spi_controller * ctlr)3207 static int spi_controller_check_ops(struct spi_controller *ctlr)
3208 {
3209 /*
3210 * The controller may implement only the high-level SPI-memory like
3211 * operations if it does not support regular SPI transfers, and this is
3212 * valid use case.
3213 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3214 * one of the ->transfer_xxx() method be implemented.
3215 */
3216 if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3217 if (!ctlr->transfer && !ctlr->transfer_one &&
3218 !ctlr->transfer_one_message) {
3219 return -EINVAL;
3220 }
3221 }
3222
3223 return 0;
3224 }
3225
3226 /* Allocate dynamic bus number using Linux idr */
spi_controller_id_alloc(struct spi_controller * ctlr,int start,int end)3227 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3228 {
3229 int id;
3230
3231 mutex_lock(&board_lock);
3232 id = idr_alloc(&spi_controller_idr, ctlr, start, end, GFP_KERNEL);
3233 mutex_unlock(&board_lock);
3234 if (WARN(id < 0, "couldn't get idr"))
3235 return id == -ENOSPC ? -EBUSY : id;
3236 ctlr->bus_num = id;
3237 return 0;
3238 }
3239
3240 /**
3241 * spi_register_controller - register SPI host or target controller
3242 * @ctlr: initialized controller, originally from spi_alloc_host() or
3243 * spi_alloc_target()
3244 * Context: can sleep
3245 *
3246 * SPI controllers connect to their drivers using some non-SPI bus,
3247 * such as the platform bus. The final stage of probe() in that code
3248 * includes calling spi_register_controller() to hook up to this SPI bus glue.
3249 *
3250 * SPI controllers use board specific (often SOC specific) bus numbers,
3251 * and board-specific addressing for SPI devices combines those numbers
3252 * with chip select numbers. Since SPI does not directly support dynamic
3253 * device identification, boards need configuration tables telling which
3254 * chip is at which address.
3255 *
3256 * This must be called from context that can sleep. It returns zero on
3257 * success, else a negative error code (dropping the controller's refcount).
3258 * After a successful return, the caller is responsible for calling
3259 * spi_unregister_controller().
3260 *
3261 * Return: zero on success, else a negative error code.
3262 */
spi_register_controller(struct spi_controller * ctlr)3263 int spi_register_controller(struct spi_controller *ctlr)
3264 {
3265 struct device *dev = ctlr->dev.parent;
3266 struct boardinfo *bi;
3267 int first_dynamic;
3268 int status;
3269 int idx;
3270
3271 if (!dev)
3272 return -ENODEV;
3273
3274 /*
3275 * Make sure all necessary hooks are implemented before registering
3276 * the SPI controller.
3277 */
3278 status = spi_controller_check_ops(ctlr);
3279 if (status)
3280 return status;
3281
3282 if (ctlr->bus_num < 0)
3283 ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3284 if (ctlr->bus_num >= 0) {
3285 /* Devices with a fixed bus num must check-in with the num */
3286 status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3287 if (status)
3288 return status;
3289 }
3290 if (ctlr->bus_num < 0) {
3291 first_dynamic = of_alias_get_highest_id("spi");
3292 if (first_dynamic < 0)
3293 first_dynamic = 0;
3294 else
3295 first_dynamic++;
3296
3297 status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3298 if (status)
3299 return status;
3300 }
3301 ctlr->bus_lock_flag = 0;
3302 init_completion(&ctlr->xfer_completion);
3303 init_completion(&ctlr->cur_msg_completion);
3304 if (!ctlr->max_dma_len)
3305 ctlr->max_dma_len = INT_MAX;
3306
3307 /*
3308 * Register the device, then userspace will see it.
3309 * Registration fails if the bus ID is in use.
3310 */
3311 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3312
3313 if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) {
3314 status = spi_get_gpio_descs(ctlr);
3315 if (status)
3316 goto free_bus_id;
3317 /*
3318 * A controller using GPIO descriptors always
3319 * supports SPI_CS_HIGH if need be.
3320 */
3321 ctlr->mode_bits |= SPI_CS_HIGH;
3322 }
3323
3324 /*
3325 * Even if it's just one always-selected device, there must
3326 * be at least one chipselect.
3327 */
3328 if (!ctlr->num_chipselect) {
3329 status = -EINVAL;
3330 goto free_bus_id;
3331 }
3332
3333 /* Setting last_cs to SPI_INVALID_CS means no chip selected */
3334 for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3335 ctlr->last_cs[idx] = SPI_INVALID_CS;
3336
3337 status = device_add(&ctlr->dev);
3338 if (status < 0)
3339 goto free_bus_id;
3340 dev_dbg(dev, "registered %s %s\n",
3341 spi_controller_is_target(ctlr) ? "target" : "host",
3342 dev_name(&ctlr->dev));
3343
3344 /*
3345 * If we're using a queued driver, start the queue. Note that we don't
3346 * need the queueing logic if the driver is only supporting high-level
3347 * memory operations.
3348 */
3349 if (ctlr->transfer) {
3350 dev_info(dev, "controller is unqueued, this is deprecated\n");
3351 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3352 status = spi_controller_initialize_queue(ctlr);
3353 if (status) {
3354 device_del(&ctlr->dev);
3355 goto free_bus_id;
3356 }
3357 }
3358 /* Add statistics */
3359 ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3360 if (!ctlr->pcpu_statistics) {
3361 dev_err(dev, "Error allocating per-cpu statistics\n");
3362 status = -ENOMEM;
3363 goto destroy_queue;
3364 }
3365
3366 mutex_lock(&board_lock);
3367 list_add_tail(&ctlr->list, &spi_controller_list);
3368 list_for_each_entry(bi, &board_list, list)
3369 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3370 mutex_unlock(&board_lock);
3371
3372 /* Register devices from the device tree and ACPI */
3373 of_register_spi_devices(ctlr);
3374 acpi_register_spi_devices(ctlr);
3375 return status;
3376
3377 destroy_queue:
3378 spi_destroy_queue(ctlr);
3379 free_bus_id:
3380 mutex_lock(&board_lock);
3381 idr_remove(&spi_controller_idr, ctlr->bus_num);
3382 mutex_unlock(&board_lock);
3383 return status;
3384 }
3385 EXPORT_SYMBOL_GPL(spi_register_controller);
3386
devm_spi_unregister(struct device * dev,void * res)3387 static void devm_spi_unregister(struct device *dev, void *res)
3388 {
3389 spi_unregister_controller(*(struct spi_controller **)res);
3390 }
3391
3392 /**
3393 * devm_spi_register_controller - register managed SPI host or target controller
3394 * @dev: device managing SPI controller
3395 * @ctlr: initialized controller, originally from spi_alloc_host() or
3396 * spi_alloc_target()
3397 * Context: can sleep
3398 *
3399 * Register a SPI device as with spi_register_controller() which will
3400 * automatically be unregistered and freed.
3401 *
3402 * Return: zero on success, else a negative error code.
3403 */
devm_spi_register_controller(struct device * dev,struct spi_controller * ctlr)3404 int devm_spi_register_controller(struct device *dev,
3405 struct spi_controller *ctlr)
3406 {
3407 struct spi_controller **ptr;
3408 int ret;
3409
3410 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3411 if (!ptr)
3412 return -ENOMEM;
3413
3414 ret = spi_register_controller(ctlr);
3415 if (!ret) {
3416 *ptr = ctlr;
3417 devres_add(dev, ptr);
3418 } else {
3419 devres_free(ptr);
3420 }
3421
3422 return ret;
3423 }
3424 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3425
__unregister(struct device * dev,void * null)3426 static int __unregister(struct device *dev, void *null)
3427 {
3428 spi_unregister_device(to_spi_device(dev));
3429 return 0;
3430 }
3431
3432 /**
3433 * spi_unregister_controller - unregister SPI host or target controller
3434 * @ctlr: the controller being unregistered
3435 * Context: can sleep
3436 *
3437 * This call is used only by SPI controller drivers, which are the
3438 * only ones directly touching chip registers.
3439 *
3440 * This must be called from context that can sleep.
3441 *
3442 * Note that this function also drops a reference to the controller.
3443 */
spi_unregister_controller(struct spi_controller * ctlr)3444 void spi_unregister_controller(struct spi_controller *ctlr)
3445 {
3446 struct spi_controller *found;
3447 int id = ctlr->bus_num;
3448
3449 /* Prevent addition of new devices, unregister existing ones */
3450 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3451 mutex_lock(&ctlr->add_lock);
3452
3453 device_for_each_child(&ctlr->dev, NULL, __unregister);
3454
3455 /* First make sure that this controller was ever added */
3456 mutex_lock(&board_lock);
3457 found = idr_find(&spi_controller_idr, id);
3458 mutex_unlock(&board_lock);
3459 if (ctlr->queued) {
3460 if (spi_destroy_queue(ctlr))
3461 dev_err(&ctlr->dev, "queue remove failed\n");
3462 }
3463 mutex_lock(&board_lock);
3464 list_del(&ctlr->list);
3465 mutex_unlock(&board_lock);
3466
3467 device_del(&ctlr->dev);
3468
3469 /* Free bus id */
3470 mutex_lock(&board_lock);
3471 if (found == ctlr)
3472 idr_remove(&spi_controller_idr, id);
3473 mutex_unlock(&board_lock);
3474
3475 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3476 mutex_unlock(&ctlr->add_lock);
3477
3478 /*
3479 * Release the last reference on the controller if its driver
3480 * has not yet been converted to devm_spi_alloc_host/target().
3481 */
3482 if (!ctlr->devm_allocated)
3483 put_device(&ctlr->dev);
3484 }
3485 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3486
__spi_check_suspended(const struct spi_controller * ctlr)3487 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3488 {
3489 return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3490 }
3491
__spi_mark_suspended(struct spi_controller * ctlr)3492 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3493 {
3494 mutex_lock(&ctlr->bus_lock_mutex);
3495 ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3496 mutex_unlock(&ctlr->bus_lock_mutex);
3497 }
3498
__spi_mark_resumed(struct spi_controller * ctlr)3499 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3500 {
3501 mutex_lock(&ctlr->bus_lock_mutex);
3502 ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3503 mutex_unlock(&ctlr->bus_lock_mutex);
3504 }
3505
spi_controller_suspend(struct spi_controller * ctlr)3506 int spi_controller_suspend(struct spi_controller *ctlr)
3507 {
3508 int ret = 0;
3509
3510 /* Basically no-ops for non-queued controllers */
3511 if (ctlr->queued) {
3512 ret = spi_stop_queue(ctlr);
3513 if (ret)
3514 dev_err(&ctlr->dev, "queue stop failed\n");
3515 }
3516
3517 __spi_mark_suspended(ctlr);
3518 return ret;
3519 }
3520 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3521
spi_controller_resume(struct spi_controller * ctlr)3522 int spi_controller_resume(struct spi_controller *ctlr)
3523 {
3524 int ret = 0;
3525
3526 __spi_mark_resumed(ctlr);
3527
3528 if (ctlr->queued) {
3529 ret = spi_start_queue(ctlr);
3530 if (ret)
3531 dev_err(&ctlr->dev, "queue restart failed\n");
3532 }
3533 return ret;
3534 }
3535 EXPORT_SYMBOL_GPL(spi_controller_resume);
3536
3537 /*-------------------------------------------------------------------------*/
3538
3539 /* Core methods for spi_message alterations */
3540
__spi_replace_transfers_release(struct spi_controller * ctlr,struct spi_message * msg,void * res)3541 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3542 struct spi_message *msg,
3543 void *res)
3544 {
3545 struct spi_replaced_transfers *rxfer = res;
3546 size_t i;
3547
3548 /* Call extra callback if requested */
3549 if (rxfer->release)
3550 rxfer->release(ctlr, msg, res);
3551
3552 /* Insert replaced transfers back into the message */
3553 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3554
3555 /* Remove the formerly inserted entries */
3556 for (i = 0; i < rxfer->inserted; i++)
3557 list_del(&rxfer->inserted_transfers[i].transfer_list);
3558 }
3559
3560 /**
3561 * spi_replace_transfers - replace transfers with several transfers
3562 * and register change with spi_message.resources
3563 * @msg: the spi_message we work upon
3564 * @xfer_first: the first spi_transfer we want to replace
3565 * @remove: number of transfers to remove
3566 * @insert: the number of transfers we want to insert instead
3567 * @release: extra release code necessary in some circumstances
3568 * @extradatasize: extra data to allocate (with alignment guarantees
3569 * of struct @spi_transfer)
3570 * @gfp: gfp flags
3571 *
3572 * Returns: pointer to @spi_replaced_transfers,
3573 * PTR_ERR(...) in case of errors.
3574 */
spi_replace_transfers(struct spi_message * msg,struct spi_transfer * xfer_first,size_t remove,size_t insert,spi_replaced_release_t release,size_t extradatasize,gfp_t gfp)3575 static struct spi_replaced_transfers *spi_replace_transfers(
3576 struct spi_message *msg,
3577 struct spi_transfer *xfer_first,
3578 size_t remove,
3579 size_t insert,
3580 spi_replaced_release_t release,
3581 size_t extradatasize,
3582 gfp_t gfp)
3583 {
3584 struct spi_replaced_transfers *rxfer;
3585 struct spi_transfer *xfer;
3586 size_t i;
3587
3588 /* Allocate the structure using spi_res */
3589 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3590 struct_size(rxfer, inserted_transfers, insert)
3591 + extradatasize,
3592 gfp);
3593 if (!rxfer)
3594 return ERR_PTR(-ENOMEM);
3595
3596 /* The release code to invoke before running the generic release */
3597 rxfer->release = release;
3598
3599 /* Assign extradata */
3600 if (extradatasize)
3601 rxfer->extradata =
3602 &rxfer->inserted_transfers[insert];
3603
3604 /* Init the replaced_transfers list */
3605 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3606
3607 /*
3608 * Assign the list_entry after which we should reinsert
3609 * the @replaced_transfers - it may be spi_message.messages!
3610 */
3611 rxfer->replaced_after = xfer_first->transfer_list.prev;
3612
3613 /* Remove the requested number of transfers */
3614 for (i = 0; i < remove; i++) {
3615 /*
3616 * If the entry after replaced_after it is msg->transfers
3617 * then we have been requested to remove more transfers
3618 * than are in the list.
3619 */
3620 if (rxfer->replaced_after->next == &msg->transfers) {
3621 dev_err(&msg->spi->dev,
3622 "requested to remove more spi_transfers than are available\n");
3623 /* Insert replaced transfers back into the message */
3624 list_splice(&rxfer->replaced_transfers,
3625 rxfer->replaced_after);
3626
3627 /* Free the spi_replace_transfer structure... */
3628 spi_res_free(rxfer);
3629
3630 /* ...and return with an error */
3631 return ERR_PTR(-EINVAL);
3632 }
3633
3634 /*
3635 * Remove the entry after replaced_after from list of
3636 * transfers and add it to list of replaced_transfers.
3637 */
3638 list_move_tail(rxfer->replaced_after->next,
3639 &rxfer->replaced_transfers);
3640 }
3641
3642 /*
3643 * Create copy of the given xfer with identical settings
3644 * based on the first transfer to get removed.
3645 */
3646 for (i = 0; i < insert; i++) {
3647 /* We need to run in reverse order */
3648 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3649
3650 /* Copy all spi_transfer data */
3651 memcpy(xfer, xfer_first, sizeof(*xfer));
3652
3653 /* Add to list */
3654 list_add(&xfer->transfer_list, rxfer->replaced_after);
3655
3656 /* Clear cs_change and delay for all but the last */
3657 if (i) {
3658 xfer->cs_change = false;
3659 xfer->delay.value = 0;
3660 }
3661 }
3662
3663 /* Set up inserted... */
3664 rxfer->inserted = insert;
3665
3666 /* ...and register it with spi_res/spi_message */
3667 spi_res_add(msg, rxfer);
3668
3669 return rxfer;
3670 }
3671
__spi_split_transfer_maxsize(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer ** xferp,size_t maxsize)3672 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3673 struct spi_message *msg,
3674 struct spi_transfer **xferp,
3675 size_t maxsize)
3676 {
3677 struct spi_transfer *xfer = *xferp, *xfers;
3678 struct spi_replaced_transfers *srt;
3679 size_t offset;
3680 size_t count, i;
3681
3682 /* Calculate how many we have to replace */
3683 count = DIV_ROUND_UP(xfer->len, maxsize);
3684
3685 /* Create replacement */
3686 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3687 if (IS_ERR(srt))
3688 return PTR_ERR(srt);
3689 xfers = srt->inserted_transfers;
3690
3691 /*
3692 * Now handle each of those newly inserted spi_transfers.
3693 * Note that the replacements spi_transfers all are preset
3694 * to the same values as *xferp, so tx_buf, rx_buf and len
3695 * are all identical (as well as most others)
3696 * so we just have to fix up len and the pointers.
3697 */
3698
3699 /*
3700 * The first transfer just needs the length modified, so we
3701 * run it outside the loop.
3702 */
3703 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3704
3705 /* All the others need rx_buf/tx_buf also set */
3706 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3707 /* Update rx_buf, tx_buf and DMA */
3708 if (xfers[i].rx_buf)
3709 xfers[i].rx_buf += offset;
3710 if (xfers[i].tx_buf)
3711 xfers[i].tx_buf += offset;
3712
3713 /* Update length */
3714 xfers[i].len = min(maxsize, xfers[i].len - offset);
3715 }
3716
3717 /*
3718 * We set up xferp to the last entry we have inserted,
3719 * so that we skip those already split transfers.
3720 */
3721 *xferp = &xfers[count - 1];
3722
3723 /* Increment statistics counters */
3724 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3725 transfers_split_maxsize);
3726 SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3727 transfers_split_maxsize);
3728
3729 return 0;
3730 }
3731
3732 /**
3733 * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3734 * when an individual transfer exceeds a
3735 * certain size
3736 * @ctlr: the @spi_controller for this transfer
3737 * @msg: the @spi_message to transform
3738 * @maxsize: the maximum when to apply this
3739 *
3740 * This function allocates resources that are automatically freed during the
3741 * spi message unoptimize phase so this function should only be called from
3742 * optimize_message callbacks.
3743 *
3744 * Return: status of transformation
3745 */
spi_split_transfers_maxsize(struct spi_controller * ctlr,struct spi_message * msg,size_t maxsize)3746 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3747 struct spi_message *msg,
3748 size_t maxsize)
3749 {
3750 struct spi_transfer *xfer;
3751 int ret;
3752
3753 /*
3754 * Iterate over the transfer_list,
3755 * but note that xfer is advanced to the last transfer inserted
3756 * to avoid checking sizes again unnecessarily (also xfer does
3757 * potentially belong to a different list by the time the
3758 * replacement has happened).
3759 */
3760 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3761 if (xfer->len > maxsize) {
3762 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3763 maxsize);
3764 if (ret)
3765 return ret;
3766 }
3767 }
3768
3769 return 0;
3770 }
3771 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3772
3773
3774 /**
3775 * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3776 * when an individual transfer exceeds a
3777 * certain number of SPI words
3778 * @ctlr: the @spi_controller for this transfer
3779 * @msg: the @spi_message to transform
3780 * @maxwords: the number of words to limit each transfer to
3781 *
3782 * This function allocates resources that are automatically freed during the
3783 * spi message unoptimize phase so this function should only be called from
3784 * optimize_message callbacks.
3785 *
3786 * Return: status of transformation
3787 */
spi_split_transfers_maxwords(struct spi_controller * ctlr,struct spi_message * msg,size_t maxwords)3788 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3789 struct spi_message *msg,
3790 size_t maxwords)
3791 {
3792 struct spi_transfer *xfer;
3793
3794 /*
3795 * Iterate over the transfer_list,
3796 * but note that xfer is advanced to the last transfer inserted
3797 * to avoid checking sizes again unnecessarily (also xfer does
3798 * potentially belong to a different list by the time the
3799 * replacement has happened).
3800 */
3801 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3802 size_t maxsize;
3803 int ret;
3804
3805 maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3806 if (xfer->len > maxsize) {
3807 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3808 maxsize);
3809 if (ret)
3810 return ret;
3811 }
3812 }
3813
3814 return 0;
3815 }
3816 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3817
3818 /*-------------------------------------------------------------------------*/
3819
3820 /*
3821 * Core methods for SPI controller protocol drivers. Some of the
3822 * other core methods are currently defined as inline functions.
3823 */
3824
__spi_validate_bits_per_word(struct spi_controller * ctlr,u8 bits_per_word)3825 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3826 u8 bits_per_word)
3827 {
3828 if (ctlr->bits_per_word_mask) {
3829 /* Only 32 bits fit in the mask */
3830 if (bits_per_word > 32)
3831 return -EINVAL;
3832 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3833 return -EINVAL;
3834 }
3835
3836 return 0;
3837 }
3838
3839 /**
3840 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3841 * @spi: the device that requires specific CS timing configuration
3842 *
3843 * Return: zero on success, else a negative error code.
3844 */
spi_set_cs_timing(struct spi_device * spi)3845 static int spi_set_cs_timing(struct spi_device *spi)
3846 {
3847 struct device *parent = spi->controller->dev.parent;
3848 int status = 0;
3849
3850 if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3851 if (spi->controller->auto_runtime_pm) {
3852 status = pm_runtime_get_sync(parent);
3853 if (status < 0) {
3854 pm_runtime_put_noidle(parent);
3855 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3856 status);
3857 return status;
3858 }
3859
3860 status = spi->controller->set_cs_timing(spi);
3861 pm_runtime_mark_last_busy(parent);
3862 pm_runtime_put_autosuspend(parent);
3863 } else {
3864 status = spi->controller->set_cs_timing(spi);
3865 }
3866 }
3867 return status;
3868 }
3869
3870 /**
3871 * spi_setup - setup SPI mode and clock rate
3872 * @spi: the device whose settings are being modified
3873 * Context: can sleep, and no requests are queued to the device
3874 *
3875 * SPI protocol drivers may need to update the transfer mode if the
3876 * device doesn't work with its default. They may likewise need
3877 * to update clock rates or word sizes from initial values. This function
3878 * changes those settings, and must be called from a context that can sleep.
3879 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3880 * effect the next time the device is selected and data is transferred to
3881 * or from it. When this function returns, the SPI device is deselected.
3882 *
3883 * Note that this call will fail if the protocol driver specifies an option
3884 * that the underlying controller or its driver does not support. For
3885 * example, not all hardware supports wire transfers using nine bit words,
3886 * LSB-first wire encoding, or active-high chipselects.
3887 *
3888 * Return: zero on success, else a negative error code.
3889 */
spi_setup(struct spi_device * spi)3890 int spi_setup(struct spi_device *spi)
3891 {
3892 unsigned bad_bits, ugly_bits;
3893 int status;
3894
3895 /*
3896 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3897 * are set at the same time.
3898 */
3899 if ((hweight_long(spi->mode &
3900 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3901 (hweight_long(spi->mode &
3902 (SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3903 dev_err(&spi->dev,
3904 "setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3905 return -EINVAL;
3906 }
3907 /* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3908 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3909 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3910 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3911 return -EINVAL;
3912 /* Check against conflicting MOSI idle configuration */
3913 if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) {
3914 dev_err(&spi->dev,
3915 "setup: MOSI configured to idle low and high at the same time.\n");
3916 return -EINVAL;
3917 }
3918 /*
3919 * Help drivers fail *cleanly* when they need options
3920 * that aren't supported with their current controller.
3921 * SPI_CS_WORD has a fallback software implementation,
3922 * so it is ignored here.
3923 */
3924 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3925 SPI_NO_TX | SPI_NO_RX);
3926 ugly_bits = bad_bits &
3927 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3928 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3929 if (ugly_bits) {
3930 dev_warn(&spi->dev,
3931 "setup: ignoring unsupported mode bits %x\n",
3932 ugly_bits);
3933 spi->mode &= ~ugly_bits;
3934 bad_bits &= ~ugly_bits;
3935 }
3936 if (bad_bits) {
3937 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3938 bad_bits);
3939 return -EINVAL;
3940 }
3941
3942 if (!spi->bits_per_word) {
3943 spi->bits_per_word = 8;
3944 } else {
3945 /*
3946 * Some controllers may not support the default 8 bits-per-word
3947 * so only perform the check when this is explicitly provided.
3948 */
3949 status = __spi_validate_bits_per_word(spi->controller,
3950 spi->bits_per_word);
3951 if (status)
3952 return status;
3953 }
3954
3955 if (spi->controller->max_speed_hz &&
3956 (!spi->max_speed_hz ||
3957 spi->max_speed_hz > spi->controller->max_speed_hz))
3958 spi->max_speed_hz = spi->controller->max_speed_hz;
3959
3960 mutex_lock(&spi->controller->io_mutex);
3961
3962 if (spi->controller->setup) {
3963 status = spi->controller->setup(spi);
3964 if (status) {
3965 mutex_unlock(&spi->controller->io_mutex);
3966 dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3967 status);
3968 return status;
3969 }
3970 }
3971
3972 status = spi_set_cs_timing(spi);
3973 if (status) {
3974 mutex_unlock(&spi->controller->io_mutex);
3975 return status;
3976 }
3977
3978 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3979 status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3980 if (status < 0) {
3981 mutex_unlock(&spi->controller->io_mutex);
3982 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3983 status);
3984 return status;
3985 }
3986
3987 /*
3988 * We do not want to return positive value from pm_runtime_get,
3989 * there are many instances of devices calling spi_setup() and
3990 * checking for a non-zero return value instead of a negative
3991 * return value.
3992 */
3993 status = 0;
3994
3995 spi_set_cs(spi, false, true);
3996 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3997 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3998 } else {
3999 spi_set_cs(spi, false, true);
4000 }
4001
4002 mutex_unlock(&spi->controller->io_mutex);
4003
4004 if (spi->rt && !spi->controller->rt) {
4005 spi->controller->rt = true;
4006 spi_set_thread_rt(spi->controller);
4007 }
4008
4009 trace_spi_setup(spi, status);
4010
4011 dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4012 spi->mode & SPI_MODE_X_MASK,
4013 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4014 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4015 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
4016 (spi->mode & SPI_LOOP) ? "loopback, " : "",
4017 spi->bits_per_word, spi->max_speed_hz,
4018 status);
4019
4020 return status;
4021 }
4022 EXPORT_SYMBOL_GPL(spi_setup);
4023
_spi_xfer_word_delay_update(struct spi_transfer * xfer,struct spi_device * spi)4024 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4025 struct spi_device *spi)
4026 {
4027 int delay1, delay2;
4028
4029 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4030 if (delay1 < 0)
4031 return delay1;
4032
4033 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4034 if (delay2 < 0)
4035 return delay2;
4036
4037 if (delay1 < delay2)
4038 memcpy(&xfer->word_delay, &spi->word_delay,
4039 sizeof(xfer->word_delay));
4040
4041 return 0;
4042 }
4043
__spi_validate(struct spi_device * spi,struct spi_message * message)4044 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4045 {
4046 struct spi_controller *ctlr = spi->controller;
4047 struct spi_transfer *xfer;
4048 int w_size;
4049
4050 if (list_empty(&message->transfers))
4051 return -EINVAL;
4052
4053 message->spi = spi;
4054
4055 /*
4056 * Half-duplex links include original MicroWire, and ones with
4057 * only one data pin like SPI_3WIRE (switches direction) or where
4058 * either MOSI or MISO is missing. They can also be caused by
4059 * software limitations.
4060 */
4061 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4062 (spi->mode & SPI_3WIRE)) {
4063 unsigned flags = ctlr->flags;
4064
4065 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4066 if (xfer->rx_buf && xfer->tx_buf)
4067 return -EINVAL;
4068 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4069 return -EINVAL;
4070 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4071 return -EINVAL;
4072 }
4073 }
4074
4075 /*
4076 * Set transfer bits_per_word and max speed as spi device default if
4077 * it is not set for this transfer.
4078 * Set transfer tx_nbits and rx_nbits as single transfer default
4079 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4080 * Ensure transfer word_delay is at least as long as that required by
4081 * device itself.
4082 */
4083 message->frame_length = 0;
4084 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4085 xfer->effective_speed_hz = 0;
4086 message->frame_length += xfer->len;
4087 if (!xfer->bits_per_word)
4088 xfer->bits_per_word = spi->bits_per_word;
4089
4090 if (!xfer->speed_hz)
4091 xfer->speed_hz = spi->max_speed_hz;
4092
4093 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4094 xfer->speed_hz = ctlr->max_speed_hz;
4095
4096 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4097 return -EINVAL;
4098
4099 /*
4100 * SPI transfer length should be multiple of SPI word size
4101 * where SPI word size should be power-of-two multiple.
4102 */
4103 if (xfer->bits_per_word <= 8)
4104 w_size = 1;
4105 else if (xfer->bits_per_word <= 16)
4106 w_size = 2;
4107 else
4108 w_size = 4;
4109
4110 /* No partial transfers accepted */
4111 if (xfer->len % w_size)
4112 return -EINVAL;
4113
4114 if (xfer->speed_hz && ctlr->min_speed_hz &&
4115 xfer->speed_hz < ctlr->min_speed_hz)
4116 return -EINVAL;
4117
4118 if (xfer->tx_buf && !xfer->tx_nbits)
4119 xfer->tx_nbits = SPI_NBITS_SINGLE;
4120 if (xfer->rx_buf && !xfer->rx_nbits)
4121 xfer->rx_nbits = SPI_NBITS_SINGLE;
4122 /*
4123 * Check transfer tx/rx_nbits:
4124 * 1. check the value matches one of single, dual and quad
4125 * 2. check tx/rx_nbits match the mode in spi_device
4126 */
4127 if (xfer->tx_buf) {
4128 if (spi->mode & SPI_NO_TX)
4129 return -EINVAL;
4130 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4131 xfer->tx_nbits != SPI_NBITS_DUAL &&
4132 xfer->tx_nbits != SPI_NBITS_QUAD &&
4133 xfer->tx_nbits != SPI_NBITS_OCTAL)
4134 return -EINVAL;
4135 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4136 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4137 return -EINVAL;
4138 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4139 !(spi->mode & SPI_TX_QUAD))
4140 return -EINVAL;
4141 }
4142 /* Check transfer rx_nbits */
4143 if (xfer->rx_buf) {
4144 if (spi->mode & SPI_NO_RX)
4145 return -EINVAL;
4146 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4147 xfer->rx_nbits != SPI_NBITS_DUAL &&
4148 xfer->rx_nbits != SPI_NBITS_QUAD &&
4149 xfer->rx_nbits != SPI_NBITS_OCTAL)
4150 return -EINVAL;
4151 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4152 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4153 return -EINVAL;
4154 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4155 !(spi->mode & SPI_RX_QUAD))
4156 return -EINVAL;
4157 }
4158
4159 if (_spi_xfer_word_delay_update(xfer, spi))
4160 return -EINVAL;
4161
4162 /* Make sure controller supports required offload features. */
4163 if (xfer->offload_flags) {
4164 if (!message->offload)
4165 return -EINVAL;
4166
4167 if (xfer->offload_flags & ~message->offload->xfer_flags)
4168 return -EINVAL;
4169 }
4170 }
4171
4172 message->status = -EINPROGRESS;
4173
4174 return 0;
4175 }
4176
4177 /*
4178 * spi_split_transfers - generic handling of transfer splitting
4179 * @msg: the message to split
4180 *
4181 * Under certain conditions, a SPI controller may not support arbitrary
4182 * transfer sizes or other features required by a peripheral. This function
4183 * will split the transfers in the message into smaller transfers that are
4184 * supported by the controller.
4185 *
4186 * Controllers with special requirements not covered here can also split
4187 * transfers in the optimize_message() callback.
4188 *
4189 * Context: can sleep
4190 * Return: zero on success, else a negative error code
4191 */
spi_split_transfers(struct spi_message * msg)4192 static int spi_split_transfers(struct spi_message *msg)
4193 {
4194 struct spi_controller *ctlr = msg->spi->controller;
4195 struct spi_transfer *xfer;
4196 int ret;
4197
4198 /*
4199 * If an SPI controller does not support toggling the CS line on each
4200 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4201 * for the CS line, we can emulate the CS-per-word hardware function by
4202 * splitting transfers into one-word transfers and ensuring that
4203 * cs_change is set for each transfer.
4204 */
4205 if ((msg->spi->mode & SPI_CS_WORD) &&
4206 (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4207 ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4208 if (ret)
4209 return ret;
4210
4211 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4212 /* Don't change cs_change on the last entry in the list */
4213 if (list_is_last(&xfer->transfer_list, &msg->transfers))
4214 break;
4215
4216 xfer->cs_change = 1;
4217 }
4218 } else {
4219 ret = spi_split_transfers_maxsize(ctlr, msg,
4220 spi_max_transfer_size(msg->spi));
4221 if (ret)
4222 return ret;
4223 }
4224
4225 return 0;
4226 }
4227
4228 /*
4229 * __spi_optimize_message - shared implementation for spi_optimize_message()
4230 * and spi_maybe_optimize_message()
4231 * @spi: the device that will be used for the message
4232 * @msg: the message to optimize
4233 *
4234 * Peripheral drivers will call spi_optimize_message() and the spi core will
4235 * call spi_maybe_optimize_message() instead of calling this directly.
4236 *
4237 * It is not valid to call this on a message that has already been optimized.
4238 *
4239 * Return: zero on success, else a negative error code
4240 */
__spi_optimize_message(struct spi_device * spi,struct spi_message * msg)4241 static int __spi_optimize_message(struct spi_device *spi,
4242 struct spi_message *msg)
4243 {
4244 struct spi_controller *ctlr = spi->controller;
4245 int ret;
4246
4247 ret = __spi_validate(spi, msg);
4248 if (ret)
4249 return ret;
4250
4251 ret = spi_split_transfers(msg);
4252 if (ret)
4253 return ret;
4254
4255 if (ctlr->optimize_message) {
4256 ret = ctlr->optimize_message(msg);
4257 if (ret) {
4258 spi_res_release(ctlr, msg);
4259 return ret;
4260 }
4261 }
4262
4263 msg->optimized = true;
4264
4265 return 0;
4266 }
4267
4268 /*
4269 * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4270 * @spi: the device that will be used for the message
4271 * @msg: the message to optimize
4272 * Return: zero on success, else a negative error code
4273 */
spi_maybe_optimize_message(struct spi_device * spi,struct spi_message * msg)4274 static int spi_maybe_optimize_message(struct spi_device *spi,
4275 struct spi_message *msg)
4276 {
4277 if (spi->controller->defer_optimize_message) {
4278 msg->spi = spi;
4279 return 0;
4280 }
4281
4282 if (msg->pre_optimized)
4283 return 0;
4284
4285 return __spi_optimize_message(spi, msg);
4286 }
4287
4288 /**
4289 * spi_optimize_message - do any one-time validation and setup for a SPI message
4290 * @spi: the device that will be used for the message
4291 * @msg: the message to optimize
4292 *
4293 * Peripheral drivers that reuse the same message repeatedly may call this to
4294 * perform as much message prep as possible once, rather than repeating it each
4295 * time a message transfer is performed to improve throughput and reduce CPU
4296 * usage.
4297 *
4298 * Once a message has been optimized, it cannot be modified with the exception
4299 * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4300 * only the data in the memory it points to).
4301 *
4302 * Calls to this function must be balanced with calls to spi_unoptimize_message()
4303 * to avoid leaking resources.
4304 *
4305 * Context: can sleep
4306 * Return: zero on success, else a negative error code
4307 */
spi_optimize_message(struct spi_device * spi,struct spi_message * msg)4308 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4309 {
4310 int ret;
4311
4312 /*
4313 * Pre-optimization is not supported and optimization is deferred e.g.
4314 * when using spi-mux.
4315 */
4316 if (spi->controller->defer_optimize_message)
4317 return 0;
4318
4319 ret = __spi_optimize_message(spi, msg);
4320 if (ret)
4321 return ret;
4322
4323 /*
4324 * This flag indicates that the peripheral driver called spi_optimize_message()
4325 * and therefore we shouldn't unoptimize message automatically when finalizing
4326 * the message but rather wait until spi_unoptimize_message() is called
4327 * by the peripheral driver.
4328 */
4329 msg->pre_optimized = true;
4330
4331 return 0;
4332 }
4333 EXPORT_SYMBOL_GPL(spi_optimize_message);
4334
4335 /**
4336 * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4337 * @msg: the message to unoptimize
4338 *
4339 * Calls to this function must be balanced with calls to spi_optimize_message().
4340 *
4341 * Context: can sleep
4342 */
spi_unoptimize_message(struct spi_message * msg)4343 void spi_unoptimize_message(struct spi_message *msg)
4344 {
4345 if (msg->spi->controller->defer_optimize_message)
4346 return;
4347
4348 __spi_unoptimize_message(msg);
4349 msg->pre_optimized = false;
4350 }
4351 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4352
__spi_async(struct spi_device * spi,struct spi_message * message)4353 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4354 {
4355 struct spi_controller *ctlr = spi->controller;
4356 struct spi_transfer *xfer;
4357
4358 /*
4359 * Some controllers do not support doing regular SPI transfers. Return
4360 * ENOTSUPP when this is the case.
4361 */
4362 if (!ctlr->transfer)
4363 return -ENOTSUPP;
4364
4365 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4366 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4367
4368 trace_spi_message_submit(message);
4369
4370 if (!ctlr->ptp_sts_supported) {
4371 list_for_each_entry(xfer, &message->transfers, transfer_list) {
4372 xfer->ptp_sts_word_pre = 0;
4373 ptp_read_system_prets(xfer->ptp_sts);
4374 }
4375 }
4376
4377 return ctlr->transfer(spi, message);
4378 }
4379
devm_spi_unoptimize_message(void * msg)4380 static void devm_spi_unoptimize_message(void *msg)
4381 {
4382 spi_unoptimize_message(msg);
4383 }
4384
4385 /**
4386 * devm_spi_optimize_message - managed version of spi_optimize_message()
4387 * @dev: the device that manages @msg (usually @spi->dev)
4388 * @spi: the device that will be used for the message
4389 * @msg: the message to optimize
4390 * Return: zero on success, else a negative error code
4391 *
4392 * spi_unoptimize_message() will automatically be called when the device is
4393 * removed.
4394 */
devm_spi_optimize_message(struct device * dev,struct spi_device * spi,struct spi_message * msg)4395 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi,
4396 struct spi_message *msg)
4397 {
4398 int ret;
4399
4400 ret = spi_optimize_message(spi, msg);
4401 if (ret)
4402 return ret;
4403
4404 return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg);
4405 }
4406 EXPORT_SYMBOL_GPL(devm_spi_optimize_message);
4407
4408 /**
4409 * spi_async - asynchronous SPI transfer
4410 * @spi: device with which data will be exchanged
4411 * @message: describes the data transfers, including completion callback
4412 * Context: any (IRQs may be blocked, etc)
4413 *
4414 * This call may be used in_irq and other contexts which can't sleep,
4415 * as well as from task contexts which can sleep.
4416 *
4417 * The completion callback is invoked in a context which can't sleep.
4418 * Before that invocation, the value of message->status is undefined.
4419 * When the callback is issued, message->status holds either zero (to
4420 * indicate complete success) or a negative error code. After that
4421 * callback returns, the driver which issued the transfer request may
4422 * deallocate the associated memory; it's no longer in use by any SPI
4423 * core or controller driver code.
4424 *
4425 * Note that although all messages to a spi_device are handled in
4426 * FIFO order, messages may go to different devices in other orders.
4427 * Some device might be higher priority, or have various "hard" access
4428 * time requirements, for example.
4429 *
4430 * On detection of any fault during the transfer, processing of
4431 * the entire message is aborted, and the device is deselected.
4432 * Until returning from the associated message completion callback,
4433 * no other spi_message queued to that device will be processed.
4434 * (This rule applies equally to all the synchronous transfer calls,
4435 * which are wrappers around this core asynchronous primitive.)
4436 *
4437 * Return: zero on success, else a negative error code.
4438 */
spi_async(struct spi_device * spi,struct spi_message * message)4439 int spi_async(struct spi_device *spi, struct spi_message *message)
4440 {
4441 struct spi_controller *ctlr = spi->controller;
4442 int ret;
4443 unsigned long flags;
4444
4445 ret = spi_maybe_optimize_message(spi, message);
4446 if (ret)
4447 return ret;
4448
4449 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4450
4451 if (ctlr->bus_lock_flag)
4452 ret = -EBUSY;
4453 else
4454 ret = __spi_async(spi, message);
4455
4456 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4457
4458 return ret;
4459 }
4460 EXPORT_SYMBOL_GPL(spi_async);
4461
__spi_transfer_message_noqueue(struct spi_controller * ctlr,struct spi_message * msg)4462 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4463 {
4464 bool was_busy;
4465 int ret;
4466
4467 mutex_lock(&ctlr->io_mutex);
4468
4469 was_busy = ctlr->busy;
4470
4471 ctlr->cur_msg = msg;
4472 ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4473 if (ret)
4474 dev_err(&ctlr->dev, "noqueue transfer failed\n");
4475 ctlr->cur_msg = NULL;
4476 ctlr->fallback = false;
4477
4478 if (!was_busy) {
4479 kfree(ctlr->dummy_rx);
4480 ctlr->dummy_rx = NULL;
4481 kfree(ctlr->dummy_tx);
4482 ctlr->dummy_tx = NULL;
4483 if (ctlr->unprepare_transfer_hardware &&
4484 ctlr->unprepare_transfer_hardware(ctlr))
4485 dev_err(&ctlr->dev,
4486 "failed to unprepare transfer hardware\n");
4487 spi_idle_runtime_pm(ctlr);
4488 }
4489
4490 mutex_unlock(&ctlr->io_mutex);
4491 }
4492
4493 /*-------------------------------------------------------------------------*/
4494
4495 /*
4496 * Utility methods for SPI protocol drivers, layered on
4497 * top of the core. Some other utility methods are defined as
4498 * inline functions.
4499 */
4500
spi_complete(void * arg)4501 static void spi_complete(void *arg)
4502 {
4503 complete(arg);
4504 }
4505
__spi_sync(struct spi_device * spi,struct spi_message * message)4506 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4507 {
4508 DECLARE_COMPLETION_ONSTACK(done);
4509 unsigned long flags;
4510 int status;
4511 struct spi_controller *ctlr = spi->controller;
4512
4513 if (__spi_check_suspended(ctlr)) {
4514 dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4515 return -ESHUTDOWN;
4516 }
4517
4518 status = spi_maybe_optimize_message(spi, message);
4519 if (status)
4520 return status;
4521
4522 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4523 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4524
4525 /*
4526 * Checking queue_empty here only guarantees async/sync message
4527 * ordering when coming from the same context. It does not need to
4528 * guard against reentrancy from a different context. The io_mutex
4529 * will catch those cases.
4530 */
4531 if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4532 message->actual_length = 0;
4533 message->status = -EINPROGRESS;
4534
4535 trace_spi_message_submit(message);
4536
4537 SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4538 SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4539
4540 __spi_transfer_message_noqueue(ctlr, message);
4541
4542 return message->status;
4543 }
4544
4545 /*
4546 * There are messages in the async queue that could have originated
4547 * from the same context, so we need to preserve ordering.
4548 * Therefor we send the message to the async queue and wait until they
4549 * are completed.
4550 */
4551 message->complete = spi_complete;
4552 message->context = &done;
4553
4554 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4555 status = __spi_async(spi, message);
4556 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4557
4558 if (status == 0) {
4559 wait_for_completion(&done);
4560 status = message->status;
4561 }
4562 message->complete = NULL;
4563 message->context = NULL;
4564
4565 return status;
4566 }
4567
4568 /**
4569 * spi_sync - blocking/synchronous SPI data transfers
4570 * @spi: device with which data will be exchanged
4571 * @message: describes the data transfers
4572 * Context: can sleep
4573 *
4574 * This call may only be used from a context that may sleep. The sleep
4575 * is non-interruptible, and has no timeout. Low-overhead controller
4576 * drivers may DMA directly into and out of the message buffers.
4577 *
4578 * Note that the SPI device's chip select is active during the message,
4579 * and then is normally disabled between messages. Drivers for some
4580 * frequently-used devices may want to minimize costs of selecting a chip,
4581 * by leaving it selected in anticipation that the next message will go
4582 * to the same chip. (That may increase power usage.)
4583 *
4584 * Also, the caller is guaranteeing that the memory associated with the
4585 * message will not be freed before this call returns.
4586 *
4587 * Return: zero on success, else a negative error code.
4588 */
spi_sync(struct spi_device * spi,struct spi_message * message)4589 int spi_sync(struct spi_device *spi, struct spi_message *message)
4590 {
4591 int ret;
4592
4593 mutex_lock(&spi->controller->bus_lock_mutex);
4594 ret = __spi_sync(spi, message);
4595 mutex_unlock(&spi->controller->bus_lock_mutex);
4596
4597 return ret;
4598 }
4599 EXPORT_SYMBOL_GPL(spi_sync);
4600
4601 /**
4602 * spi_sync_locked - version of spi_sync with exclusive bus usage
4603 * @spi: device with which data will be exchanged
4604 * @message: describes the data transfers
4605 * Context: can sleep
4606 *
4607 * This call may only be used from a context that may sleep. The sleep
4608 * is non-interruptible, and has no timeout. Low-overhead controller
4609 * drivers may DMA directly into and out of the message buffers.
4610 *
4611 * This call should be used by drivers that require exclusive access to the
4612 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4613 * be released by a spi_bus_unlock call when the exclusive access is over.
4614 *
4615 * Return: zero on success, else a negative error code.
4616 */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)4617 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4618 {
4619 return __spi_sync(spi, message);
4620 }
4621 EXPORT_SYMBOL_GPL(spi_sync_locked);
4622
4623 /**
4624 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4625 * @ctlr: SPI bus controller that should be locked for exclusive bus access
4626 * Context: can sleep
4627 *
4628 * This call may only be used from a context that may sleep. The sleep
4629 * is non-interruptible, and has no timeout.
4630 *
4631 * This call should be used by drivers that require exclusive access to the
4632 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4633 * exclusive access is over. Data transfer must be done by spi_sync_locked
4634 * and spi_async_locked calls when the SPI bus lock is held.
4635 *
4636 * Return: always zero.
4637 */
spi_bus_lock(struct spi_controller * ctlr)4638 int spi_bus_lock(struct spi_controller *ctlr)
4639 {
4640 unsigned long flags;
4641
4642 mutex_lock(&ctlr->bus_lock_mutex);
4643
4644 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4645 ctlr->bus_lock_flag = 1;
4646 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4647
4648 /* Mutex remains locked until spi_bus_unlock() is called */
4649
4650 return 0;
4651 }
4652 EXPORT_SYMBOL_GPL(spi_bus_lock);
4653
4654 /**
4655 * spi_bus_unlock - release the lock for exclusive SPI bus usage
4656 * @ctlr: SPI bus controller that was locked for exclusive bus access
4657 * Context: can sleep
4658 *
4659 * This call may only be used from a context that may sleep. The sleep
4660 * is non-interruptible, and has no timeout.
4661 *
4662 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4663 * call.
4664 *
4665 * Return: always zero.
4666 */
spi_bus_unlock(struct spi_controller * ctlr)4667 int spi_bus_unlock(struct spi_controller *ctlr)
4668 {
4669 ctlr->bus_lock_flag = 0;
4670
4671 mutex_unlock(&ctlr->bus_lock_mutex);
4672
4673 return 0;
4674 }
4675 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4676
4677 /* Portable code must never pass more than 32 bytes */
4678 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
4679
4680 static u8 *buf;
4681
4682 /**
4683 * spi_write_then_read - SPI synchronous write followed by read
4684 * @spi: device with which data will be exchanged
4685 * @txbuf: data to be written (need not be DMA-safe)
4686 * @n_tx: size of txbuf, in bytes
4687 * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4688 * @n_rx: size of rxbuf, in bytes
4689 * Context: can sleep
4690 *
4691 * This performs a half duplex MicroWire style transaction with the
4692 * device, sending txbuf and then reading rxbuf. The return value
4693 * is zero for success, else a negative errno status code.
4694 * This call may only be used from a context that may sleep.
4695 *
4696 * Parameters to this routine are always copied using a small buffer.
4697 * Performance-sensitive or bulk transfer code should instead use
4698 * spi_{async,sync}() calls with DMA-safe buffers.
4699 *
4700 * Return: zero on success, else a negative error code.
4701 */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)4702 int spi_write_then_read(struct spi_device *spi,
4703 const void *txbuf, unsigned n_tx,
4704 void *rxbuf, unsigned n_rx)
4705 {
4706 static DEFINE_MUTEX(lock);
4707
4708 int status;
4709 struct spi_message message;
4710 struct spi_transfer x[2];
4711 u8 *local_buf;
4712
4713 /*
4714 * Use preallocated DMA-safe buffer if we can. We can't avoid
4715 * copying here, (as a pure convenience thing), but we can
4716 * keep heap costs out of the hot path unless someone else is
4717 * using the pre-allocated buffer or the transfer is too large.
4718 */
4719 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4720 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4721 GFP_KERNEL | GFP_DMA);
4722 if (!local_buf)
4723 return -ENOMEM;
4724 } else {
4725 local_buf = buf;
4726 }
4727
4728 spi_message_init(&message);
4729 memset(x, 0, sizeof(x));
4730 if (n_tx) {
4731 x[0].len = n_tx;
4732 spi_message_add_tail(&x[0], &message);
4733 }
4734 if (n_rx) {
4735 x[1].len = n_rx;
4736 spi_message_add_tail(&x[1], &message);
4737 }
4738
4739 memcpy(local_buf, txbuf, n_tx);
4740 x[0].tx_buf = local_buf;
4741 x[1].rx_buf = local_buf + n_tx;
4742
4743 /* Do the I/O */
4744 status = spi_sync(spi, &message);
4745 if (status == 0)
4746 memcpy(rxbuf, x[1].rx_buf, n_rx);
4747
4748 if (x[0].tx_buf == buf)
4749 mutex_unlock(&lock);
4750 else
4751 kfree(local_buf);
4752
4753 return status;
4754 }
4755 EXPORT_SYMBOL_GPL(spi_write_then_read);
4756
4757 /*-------------------------------------------------------------------------*/
4758
4759 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4760 /* Must call put_device() when done with returned spi_device device */
of_find_spi_device_by_node(struct device_node * node)4761 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4762 {
4763 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4764
4765 return dev ? to_spi_device(dev) : NULL;
4766 }
4767
4768 /* The spi controllers are not using spi_bus, so we find it with another way */
of_find_spi_controller_by_node(struct device_node * node)4769 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4770 {
4771 struct device *dev;
4772
4773 dev = class_find_device_by_of_node(&spi_controller_class, node);
4774 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4775 dev = class_find_device_by_of_node(&spi_target_class, node);
4776 if (!dev)
4777 return NULL;
4778
4779 /* Reference got in class_find_device */
4780 return container_of(dev, struct spi_controller, dev);
4781 }
4782
of_spi_notify(struct notifier_block * nb,unsigned long action,void * arg)4783 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4784 void *arg)
4785 {
4786 struct of_reconfig_data *rd = arg;
4787 struct spi_controller *ctlr;
4788 struct spi_device *spi;
4789
4790 switch (of_reconfig_get_state_change(action, arg)) {
4791 case OF_RECONFIG_CHANGE_ADD:
4792 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4793 if (ctlr == NULL)
4794 return NOTIFY_OK; /* Not for us */
4795
4796 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4797 put_device(&ctlr->dev);
4798 return NOTIFY_OK;
4799 }
4800
4801 /*
4802 * Clear the flag before adding the device so that fw_devlink
4803 * doesn't skip adding consumers to this device.
4804 */
4805 rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4806 spi = of_register_spi_device(ctlr, rd->dn);
4807 put_device(&ctlr->dev);
4808
4809 if (IS_ERR(spi)) {
4810 pr_err("%s: failed to create for '%pOF'\n",
4811 __func__, rd->dn);
4812 of_node_clear_flag(rd->dn, OF_POPULATED);
4813 return notifier_from_errno(PTR_ERR(spi));
4814 }
4815 break;
4816
4817 case OF_RECONFIG_CHANGE_REMOVE:
4818 /* Already depopulated? */
4819 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4820 return NOTIFY_OK;
4821
4822 /* Find our device by node */
4823 spi = of_find_spi_device_by_node(rd->dn);
4824 if (spi == NULL)
4825 return NOTIFY_OK; /* No? not meant for us */
4826
4827 /* Unregister takes one ref away */
4828 spi_unregister_device(spi);
4829
4830 /* And put the reference of the find */
4831 put_device(&spi->dev);
4832 break;
4833 }
4834
4835 return NOTIFY_OK;
4836 }
4837
4838 static struct notifier_block spi_of_notifier = {
4839 .notifier_call = of_spi_notify,
4840 };
4841 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4842 extern struct notifier_block spi_of_notifier;
4843 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4844
4845 #if IS_ENABLED(CONFIG_ACPI)
spi_acpi_controller_match(struct device * dev,const void * data)4846 static int spi_acpi_controller_match(struct device *dev, const void *data)
4847 {
4848 return device_match_acpi_dev(dev->parent, data);
4849 }
4850
acpi_spi_find_controller_by_adev(struct acpi_device * adev)4851 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4852 {
4853 struct device *dev;
4854
4855 dev = class_find_device(&spi_controller_class, NULL, adev,
4856 spi_acpi_controller_match);
4857 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4858 dev = class_find_device(&spi_target_class, NULL, adev,
4859 spi_acpi_controller_match);
4860 if (!dev)
4861 return NULL;
4862
4863 return container_of(dev, struct spi_controller, dev);
4864 }
4865 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4866
acpi_spi_find_device_by_adev(struct acpi_device * adev)4867 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4868 {
4869 struct device *dev;
4870
4871 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4872 return to_spi_device(dev);
4873 }
4874
acpi_spi_notify(struct notifier_block * nb,unsigned long value,void * arg)4875 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4876 void *arg)
4877 {
4878 struct acpi_device *adev = arg;
4879 struct spi_controller *ctlr;
4880 struct spi_device *spi;
4881
4882 switch (value) {
4883 case ACPI_RECONFIG_DEVICE_ADD:
4884 ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4885 if (!ctlr)
4886 break;
4887
4888 acpi_register_spi_device(ctlr, adev);
4889 put_device(&ctlr->dev);
4890 break;
4891 case ACPI_RECONFIG_DEVICE_REMOVE:
4892 if (!acpi_device_enumerated(adev))
4893 break;
4894
4895 spi = acpi_spi_find_device_by_adev(adev);
4896 if (!spi)
4897 break;
4898
4899 spi_unregister_device(spi);
4900 put_device(&spi->dev);
4901 break;
4902 }
4903
4904 return NOTIFY_OK;
4905 }
4906
4907 static struct notifier_block spi_acpi_notifier = {
4908 .notifier_call = acpi_spi_notify,
4909 };
4910 #else
4911 extern struct notifier_block spi_acpi_notifier;
4912 #endif
4913
spi_init(void)4914 static int __init spi_init(void)
4915 {
4916 int status;
4917
4918 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4919 if (!buf) {
4920 status = -ENOMEM;
4921 goto err0;
4922 }
4923
4924 status = bus_register(&spi_bus_type);
4925 if (status < 0)
4926 goto err1;
4927
4928 status = class_register(&spi_controller_class);
4929 if (status < 0)
4930 goto err2;
4931
4932 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4933 status = class_register(&spi_target_class);
4934 if (status < 0)
4935 goto err3;
4936 }
4937
4938 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4939 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4940 if (IS_ENABLED(CONFIG_ACPI))
4941 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4942
4943 return 0;
4944
4945 err3:
4946 class_unregister(&spi_controller_class);
4947 err2:
4948 bus_unregister(&spi_bus_type);
4949 err1:
4950 kfree(buf);
4951 buf = NULL;
4952 err0:
4953 return status;
4954 }
4955
4956 /*
4957 * A board_info is normally registered in arch_initcall(),
4958 * but even essential drivers wait till later.
4959 *
4960 * REVISIT only boardinfo really needs static linking. The rest (device and
4961 * driver registration) _could_ be dynamically linked (modular) ... Costs
4962 * include needing to have boardinfo data structures be much more public.
4963 */
4964 postcore_initcall(spi_init);
4965