1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
6 
7 #include <linux/acpi.h>
8 #include <linux/cache.h>
9 #include <linux/clk/clk-conf.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/export.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/highmem.h>
17 #include <linux/idr.h>
18 #include <linux/init.h>
19 #include <linux/ioport.h>
20 #include <linux/kernel.h>
21 #include <linux/kthread.h>
22 #include <linux/mod_devicetable.h>
23 #include <linux/mutex.h>
24 #include <linux/of_device.h>
25 #include <linux/of_irq.h>
26 #include <linux/percpu.h>
27 #include <linux/platform_data/x86/apple.h>
28 #include <linux/pm_domain.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/property.h>
31 #include <linux/ptp_clock_kernel.h>
32 #include <linux/sched/rt.h>
33 #include <linux/slab.h>
34 #include <linux/spi/offload/types.h>
35 #include <linux/spi/spi.h>
36 #include <linux/spi/spi-mem.h>
37 #include <uapi/linux/sched/types.h>
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/spi.h>
41 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
42 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
43 
44 #include "internals.h"
45 
46 static DEFINE_IDR(spi_controller_idr);
47 
spidev_release(struct device * dev)48 static void spidev_release(struct device *dev)
49 {
50 	struct spi_device	*spi = to_spi_device(dev);
51 
52 	spi_controller_put(spi->controller);
53 	kfree(spi->driver_override);
54 	free_percpu(spi->pcpu_statistics);
55 	kfree(spi);
56 }
57 
58 static ssize_t
modalias_show(struct device * dev,struct device_attribute * a,char * buf)59 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
60 {
61 	const struct spi_device	*spi = to_spi_device(dev);
62 	int len;
63 
64 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
65 	if (len != -ENODEV)
66 		return len;
67 
68 	return sysfs_emit(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
69 }
70 static DEVICE_ATTR_RO(modalias);
71 
driver_override_store(struct device * dev,struct device_attribute * a,const char * buf,size_t count)72 static ssize_t driver_override_store(struct device *dev,
73 				     struct device_attribute *a,
74 				     const char *buf, size_t count)
75 {
76 	struct spi_device *spi = to_spi_device(dev);
77 	int ret;
78 
79 	ret = driver_set_override(dev, &spi->driver_override, buf, count);
80 	if (ret)
81 		return ret;
82 
83 	return count;
84 }
85 
driver_override_show(struct device * dev,struct device_attribute * a,char * buf)86 static ssize_t driver_override_show(struct device *dev,
87 				    struct device_attribute *a, char *buf)
88 {
89 	const struct spi_device *spi = to_spi_device(dev);
90 	ssize_t len;
91 
92 	device_lock(dev);
93 	len = sysfs_emit(buf, "%s\n", spi->driver_override ? : "");
94 	device_unlock(dev);
95 	return len;
96 }
97 static DEVICE_ATTR_RW(driver_override);
98 
spi_alloc_pcpu_stats(struct device * dev)99 static struct spi_statistics __percpu *spi_alloc_pcpu_stats(struct device *dev)
100 {
101 	struct spi_statistics __percpu *pcpu_stats;
102 
103 	if (dev)
104 		pcpu_stats = devm_alloc_percpu(dev, struct spi_statistics);
105 	else
106 		pcpu_stats = alloc_percpu_gfp(struct spi_statistics, GFP_KERNEL);
107 
108 	if (pcpu_stats) {
109 		int cpu;
110 
111 		for_each_possible_cpu(cpu) {
112 			struct spi_statistics *stat;
113 
114 			stat = per_cpu_ptr(pcpu_stats, cpu);
115 			u64_stats_init(&stat->syncp);
116 		}
117 	}
118 	return pcpu_stats;
119 }
120 
spi_emit_pcpu_stats(struct spi_statistics __percpu * stat,char * buf,size_t offset)121 static ssize_t spi_emit_pcpu_stats(struct spi_statistics __percpu *stat,
122 				   char *buf, size_t offset)
123 {
124 	u64 val = 0;
125 	int i;
126 
127 	for_each_possible_cpu(i) {
128 		const struct spi_statistics *pcpu_stats;
129 		u64_stats_t *field;
130 		unsigned int start;
131 		u64 inc;
132 
133 		pcpu_stats = per_cpu_ptr(stat, i);
134 		field = (void *)pcpu_stats + offset;
135 		do {
136 			start = u64_stats_fetch_begin(&pcpu_stats->syncp);
137 			inc = u64_stats_read(field);
138 		} while (u64_stats_fetch_retry(&pcpu_stats->syncp, start));
139 		val += inc;
140 	}
141 	return sysfs_emit(buf, "%llu\n", val);
142 }
143 
144 #define SPI_STATISTICS_ATTRS(field, file)				\
145 static ssize_t spi_controller_##field##_show(struct device *dev,	\
146 					     struct device_attribute *attr, \
147 					     char *buf)			\
148 {									\
149 	struct spi_controller *ctlr = container_of(dev,			\
150 					 struct spi_controller, dev);	\
151 	return spi_statistics_##field##_show(ctlr->pcpu_statistics, buf); \
152 }									\
153 static struct device_attribute dev_attr_spi_controller_##field = {	\
154 	.attr = { .name = file, .mode = 0444 },				\
155 	.show = spi_controller_##field##_show,				\
156 };									\
157 static ssize_t spi_device_##field##_show(struct device *dev,		\
158 					 struct device_attribute *attr,	\
159 					char *buf)			\
160 {									\
161 	struct spi_device *spi = to_spi_device(dev);			\
162 	return spi_statistics_##field##_show(spi->pcpu_statistics, buf); \
163 }									\
164 static struct device_attribute dev_attr_spi_device_##field = {		\
165 	.attr = { .name = file, .mode = 0444 },				\
166 	.show = spi_device_##field##_show,				\
167 }
168 
169 #define SPI_STATISTICS_SHOW_NAME(name, file, field)			\
170 static ssize_t spi_statistics_##name##_show(struct spi_statistics __percpu *stat, \
171 					    char *buf)			\
172 {									\
173 	return spi_emit_pcpu_stats(stat, buf,				\
174 			offsetof(struct spi_statistics, field));	\
175 }									\
176 SPI_STATISTICS_ATTRS(name, file)
177 
178 #define SPI_STATISTICS_SHOW(field)					\
179 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
180 				 field)
181 
182 SPI_STATISTICS_SHOW(messages);
183 SPI_STATISTICS_SHOW(transfers);
184 SPI_STATISTICS_SHOW(errors);
185 SPI_STATISTICS_SHOW(timedout);
186 
187 SPI_STATISTICS_SHOW(spi_sync);
188 SPI_STATISTICS_SHOW(spi_sync_immediate);
189 SPI_STATISTICS_SHOW(spi_async);
190 
191 SPI_STATISTICS_SHOW(bytes);
192 SPI_STATISTICS_SHOW(bytes_rx);
193 SPI_STATISTICS_SHOW(bytes_tx);
194 
195 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
196 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
197 				 "transfer_bytes_histo_" number,	\
198 				 transfer_bytes_histo[index])
199 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
200 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
201 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
202 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
203 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
204 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
205 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
206 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
207 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
208 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
209 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
210 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
211 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
212 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
213 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
214 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
215 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
216 
217 SPI_STATISTICS_SHOW(transfers_split_maxsize);
218 
219 static struct attribute *spi_dev_attrs[] = {
220 	&dev_attr_modalias.attr,
221 	&dev_attr_driver_override.attr,
222 	NULL,
223 };
224 
225 static const struct attribute_group spi_dev_group = {
226 	.attrs  = spi_dev_attrs,
227 };
228 
229 static struct attribute *spi_device_statistics_attrs[] = {
230 	&dev_attr_spi_device_messages.attr,
231 	&dev_attr_spi_device_transfers.attr,
232 	&dev_attr_spi_device_errors.attr,
233 	&dev_attr_spi_device_timedout.attr,
234 	&dev_attr_spi_device_spi_sync.attr,
235 	&dev_attr_spi_device_spi_sync_immediate.attr,
236 	&dev_attr_spi_device_spi_async.attr,
237 	&dev_attr_spi_device_bytes.attr,
238 	&dev_attr_spi_device_bytes_rx.attr,
239 	&dev_attr_spi_device_bytes_tx.attr,
240 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
241 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
242 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
243 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
244 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
245 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
246 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
247 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
248 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
249 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
250 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
251 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
252 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
253 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
254 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
255 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
256 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
257 	&dev_attr_spi_device_transfers_split_maxsize.attr,
258 	NULL,
259 };
260 
261 static const struct attribute_group spi_device_statistics_group = {
262 	.name  = "statistics",
263 	.attrs  = spi_device_statistics_attrs,
264 };
265 
266 static const struct attribute_group *spi_dev_groups[] = {
267 	&spi_dev_group,
268 	&spi_device_statistics_group,
269 	NULL,
270 };
271 
272 static struct attribute *spi_controller_statistics_attrs[] = {
273 	&dev_attr_spi_controller_messages.attr,
274 	&dev_attr_spi_controller_transfers.attr,
275 	&dev_attr_spi_controller_errors.attr,
276 	&dev_attr_spi_controller_timedout.attr,
277 	&dev_attr_spi_controller_spi_sync.attr,
278 	&dev_attr_spi_controller_spi_sync_immediate.attr,
279 	&dev_attr_spi_controller_spi_async.attr,
280 	&dev_attr_spi_controller_bytes.attr,
281 	&dev_attr_spi_controller_bytes_rx.attr,
282 	&dev_attr_spi_controller_bytes_tx.attr,
283 	&dev_attr_spi_controller_transfer_bytes_histo0.attr,
284 	&dev_attr_spi_controller_transfer_bytes_histo1.attr,
285 	&dev_attr_spi_controller_transfer_bytes_histo2.attr,
286 	&dev_attr_spi_controller_transfer_bytes_histo3.attr,
287 	&dev_attr_spi_controller_transfer_bytes_histo4.attr,
288 	&dev_attr_spi_controller_transfer_bytes_histo5.attr,
289 	&dev_attr_spi_controller_transfer_bytes_histo6.attr,
290 	&dev_attr_spi_controller_transfer_bytes_histo7.attr,
291 	&dev_attr_spi_controller_transfer_bytes_histo8.attr,
292 	&dev_attr_spi_controller_transfer_bytes_histo9.attr,
293 	&dev_attr_spi_controller_transfer_bytes_histo10.attr,
294 	&dev_attr_spi_controller_transfer_bytes_histo11.attr,
295 	&dev_attr_spi_controller_transfer_bytes_histo12.attr,
296 	&dev_attr_spi_controller_transfer_bytes_histo13.attr,
297 	&dev_attr_spi_controller_transfer_bytes_histo14.attr,
298 	&dev_attr_spi_controller_transfer_bytes_histo15.attr,
299 	&dev_attr_spi_controller_transfer_bytes_histo16.attr,
300 	&dev_attr_spi_controller_transfers_split_maxsize.attr,
301 	NULL,
302 };
303 
304 static const struct attribute_group spi_controller_statistics_group = {
305 	.name  = "statistics",
306 	.attrs  = spi_controller_statistics_attrs,
307 };
308 
309 static const struct attribute_group *spi_controller_groups[] = {
310 	&spi_controller_statistics_group,
311 	NULL,
312 };
313 
spi_statistics_add_transfer_stats(struct spi_statistics __percpu * pcpu_stats,struct spi_transfer * xfer,struct spi_message * msg)314 static void spi_statistics_add_transfer_stats(struct spi_statistics __percpu *pcpu_stats,
315 					      struct spi_transfer *xfer,
316 					      struct spi_message *msg)
317 {
318 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
319 	struct spi_statistics *stats;
320 
321 	if (l2len < 0)
322 		l2len = 0;
323 
324 	get_cpu();
325 	stats = this_cpu_ptr(pcpu_stats);
326 	u64_stats_update_begin(&stats->syncp);
327 
328 	u64_stats_inc(&stats->transfers);
329 	u64_stats_inc(&stats->transfer_bytes_histo[l2len]);
330 
331 	u64_stats_add(&stats->bytes, xfer->len);
332 	if (spi_valid_txbuf(msg, xfer))
333 		u64_stats_add(&stats->bytes_tx, xfer->len);
334 	if (spi_valid_rxbuf(msg, xfer))
335 		u64_stats_add(&stats->bytes_rx, xfer->len);
336 
337 	u64_stats_update_end(&stats->syncp);
338 	put_cpu();
339 }
340 
341 /*
342  * modalias support makes "modprobe $MODALIAS" new-style hotplug work,
343  * and the sysfs version makes coldplug work too.
344  */
spi_match_id(const struct spi_device_id * id,const char * name)345 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id, const char *name)
346 {
347 	while (id->name[0]) {
348 		if (!strcmp(name, id->name))
349 			return id;
350 		id++;
351 	}
352 	return NULL;
353 }
354 
spi_get_device_id(const struct spi_device * sdev)355 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
356 {
357 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
358 
359 	return spi_match_id(sdrv->id_table, sdev->modalias);
360 }
361 EXPORT_SYMBOL_GPL(spi_get_device_id);
362 
spi_get_device_match_data(const struct spi_device * sdev)363 const void *spi_get_device_match_data(const struct spi_device *sdev)
364 {
365 	const void *match;
366 
367 	match = device_get_match_data(&sdev->dev);
368 	if (match)
369 		return match;
370 
371 	return (const void *)spi_get_device_id(sdev)->driver_data;
372 }
373 EXPORT_SYMBOL_GPL(spi_get_device_match_data);
374 
spi_match_device(struct device * dev,const struct device_driver * drv)375 static int spi_match_device(struct device *dev, const struct device_driver *drv)
376 {
377 	const struct spi_device	*spi = to_spi_device(dev);
378 	const struct spi_driver	*sdrv = to_spi_driver(drv);
379 
380 	/* Check override first, and if set, only use the named driver */
381 	if (spi->driver_override)
382 		return strcmp(spi->driver_override, drv->name) == 0;
383 
384 	/* Attempt an OF style match */
385 	if (of_driver_match_device(dev, drv))
386 		return 1;
387 
388 	/* Then try ACPI */
389 	if (acpi_driver_match_device(dev, drv))
390 		return 1;
391 
392 	if (sdrv->id_table)
393 		return !!spi_match_id(sdrv->id_table, spi->modalias);
394 
395 	return strcmp(spi->modalias, drv->name) == 0;
396 }
397 
spi_uevent(const struct device * dev,struct kobj_uevent_env * env)398 static int spi_uevent(const struct device *dev, struct kobj_uevent_env *env)
399 {
400 	const struct spi_device		*spi = to_spi_device(dev);
401 	int rc;
402 
403 	rc = acpi_device_uevent_modalias(dev, env);
404 	if (rc != -ENODEV)
405 		return rc;
406 
407 	return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
408 }
409 
spi_probe(struct device * dev)410 static int spi_probe(struct device *dev)
411 {
412 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
413 	struct spi_device		*spi = to_spi_device(dev);
414 	struct fwnode_handle		*fwnode = dev_fwnode(dev);
415 	int ret;
416 
417 	ret = of_clk_set_defaults(dev->of_node, false);
418 	if (ret)
419 		return ret;
420 
421 	if (is_of_node(fwnode))
422 		spi->irq = of_irq_get(dev->of_node, 0);
423 	else if (is_acpi_device_node(fwnode) && spi->irq < 0)
424 		spi->irq = acpi_dev_gpio_irq_get(to_acpi_device_node(fwnode), 0);
425 	if (spi->irq == -EPROBE_DEFER)
426 		return dev_err_probe(dev, spi->irq, "Failed to get irq\n");
427 	if (spi->irq < 0)
428 		spi->irq = 0;
429 
430 	ret = dev_pm_domain_attach(dev, true);
431 	if (ret)
432 		return ret;
433 
434 	if (sdrv->probe) {
435 		ret = sdrv->probe(spi);
436 		if (ret)
437 			dev_pm_domain_detach(dev, true);
438 	}
439 
440 	return ret;
441 }
442 
spi_remove(struct device * dev)443 static void spi_remove(struct device *dev)
444 {
445 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
446 
447 	if (sdrv->remove)
448 		sdrv->remove(to_spi_device(dev));
449 
450 	dev_pm_domain_detach(dev, true);
451 }
452 
spi_shutdown(struct device * dev)453 static void spi_shutdown(struct device *dev)
454 {
455 	if (dev->driver) {
456 		const struct spi_driver	*sdrv = to_spi_driver(dev->driver);
457 
458 		if (sdrv->shutdown)
459 			sdrv->shutdown(to_spi_device(dev));
460 	}
461 }
462 
463 const struct bus_type spi_bus_type = {
464 	.name		= "spi",
465 	.dev_groups	= spi_dev_groups,
466 	.match		= spi_match_device,
467 	.uevent		= spi_uevent,
468 	.probe		= spi_probe,
469 	.remove		= spi_remove,
470 	.shutdown	= spi_shutdown,
471 };
472 EXPORT_SYMBOL_GPL(spi_bus_type);
473 
474 /**
475  * __spi_register_driver - register a SPI driver
476  * @owner: owner module of the driver to register
477  * @sdrv: the driver to register
478  * Context: can sleep
479  *
480  * Return: zero on success, else a negative error code.
481  */
__spi_register_driver(struct module * owner,struct spi_driver * sdrv)482 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
483 {
484 	sdrv->driver.owner = owner;
485 	sdrv->driver.bus = &spi_bus_type;
486 
487 	/*
488 	 * For Really Good Reasons we use spi: modaliases not of:
489 	 * modaliases for DT so module autoloading won't work if we
490 	 * don't have a spi_device_id as well as a compatible string.
491 	 */
492 	if (sdrv->driver.of_match_table) {
493 		const struct of_device_id *of_id;
494 
495 		for (of_id = sdrv->driver.of_match_table; of_id->compatible[0];
496 		     of_id++) {
497 			const char *of_name;
498 
499 			/* Strip off any vendor prefix */
500 			of_name = strnchr(of_id->compatible,
501 					  sizeof(of_id->compatible), ',');
502 			if (of_name)
503 				of_name++;
504 			else
505 				of_name = of_id->compatible;
506 
507 			if (sdrv->id_table) {
508 				const struct spi_device_id *spi_id;
509 
510 				spi_id = spi_match_id(sdrv->id_table, of_name);
511 				if (spi_id)
512 					continue;
513 			} else {
514 				if (strcmp(sdrv->driver.name, of_name) == 0)
515 					continue;
516 			}
517 
518 			pr_warn("SPI driver %s has no spi_device_id for %s\n",
519 				sdrv->driver.name, of_id->compatible);
520 		}
521 	}
522 
523 	return driver_register(&sdrv->driver);
524 }
525 EXPORT_SYMBOL_GPL(__spi_register_driver);
526 
527 /*-------------------------------------------------------------------------*/
528 
529 /*
530  * SPI devices should normally not be created by SPI device drivers; that
531  * would make them board-specific.  Similarly with SPI controller drivers.
532  * Device registration normally goes into like arch/.../mach.../board-YYY.c
533  * with other readonly (flashable) information about mainboard devices.
534  */
535 
536 struct boardinfo {
537 	struct list_head	list;
538 	struct spi_board_info	board_info;
539 };
540 
541 static LIST_HEAD(board_list);
542 static LIST_HEAD(spi_controller_list);
543 
544 /*
545  * Used to protect add/del operation for board_info list and
546  * spi_controller list, and their matching process also used
547  * to protect object of type struct idr.
548  */
549 static DEFINE_MUTEX(board_lock);
550 
551 /**
552  * spi_alloc_device - Allocate a new SPI device
553  * @ctlr: Controller to which device is connected
554  * Context: can sleep
555  *
556  * Allows a driver to allocate and initialize a spi_device without
557  * registering it immediately.  This allows a driver to directly
558  * fill the spi_device with device parameters before calling
559  * spi_add_device() on it.
560  *
561  * Caller is responsible to call spi_add_device() on the returned
562  * spi_device structure to add it to the SPI controller.  If the caller
563  * needs to discard the spi_device without adding it, then it should
564  * call spi_dev_put() on it.
565  *
566  * Return: a pointer to the new device, or NULL.
567  */
spi_alloc_device(struct spi_controller * ctlr)568 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
569 {
570 	struct spi_device	*spi;
571 
572 	if (!spi_controller_get(ctlr))
573 		return NULL;
574 
575 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
576 	if (!spi) {
577 		spi_controller_put(ctlr);
578 		return NULL;
579 	}
580 
581 	spi->pcpu_statistics = spi_alloc_pcpu_stats(NULL);
582 	if (!spi->pcpu_statistics) {
583 		kfree(spi);
584 		spi_controller_put(ctlr);
585 		return NULL;
586 	}
587 
588 	spi->controller = ctlr;
589 	spi->dev.parent = &ctlr->dev;
590 	spi->dev.bus = &spi_bus_type;
591 	spi->dev.release = spidev_release;
592 	spi->mode = ctlr->buswidth_override_bits;
593 
594 	device_initialize(&spi->dev);
595 	return spi;
596 }
597 EXPORT_SYMBOL_GPL(spi_alloc_device);
598 
spi_dev_set_name(struct spi_device * spi)599 static void spi_dev_set_name(struct spi_device *spi)
600 {
601 	struct device *dev = &spi->dev;
602 	struct fwnode_handle *fwnode = dev_fwnode(dev);
603 
604 	if (is_acpi_device_node(fwnode)) {
605 		dev_set_name(dev, "spi-%s", acpi_dev_name(to_acpi_device_node(fwnode)));
606 		return;
607 	}
608 
609 	if (is_software_node(fwnode)) {
610 		dev_set_name(dev, "spi-%pfwP", fwnode);
611 		return;
612 	}
613 
614 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
615 		     spi_get_chipselect(spi, 0));
616 }
617 
618 /*
619  * Zero(0) is a valid physical CS value and can be located at any
620  * logical CS in the spi->chip_select[]. If all the physical CS
621  * are initialized to 0 then It would be difficult to differentiate
622  * between a valid physical CS 0 & an unused logical CS whose physical
623  * CS can be 0. As a solution to this issue initialize all the CS to -1.
624  * Now all the unused logical CS will have -1 physical CS value & can be
625  * ignored while performing physical CS validity checks.
626  */
627 #define SPI_INVALID_CS		((s8)-1)
628 
is_valid_cs(s8 chip_select)629 static inline bool is_valid_cs(s8 chip_select)
630 {
631 	return chip_select != SPI_INVALID_CS;
632 }
633 
spi_dev_check_cs(struct device * dev,struct spi_device * spi,u8 idx,struct spi_device * new_spi,u8 new_idx)634 static inline int spi_dev_check_cs(struct device *dev,
635 				   struct spi_device *spi, u8 idx,
636 				   struct spi_device *new_spi, u8 new_idx)
637 {
638 	u8 cs, cs_new;
639 	u8 idx_new;
640 
641 	cs = spi_get_chipselect(spi, idx);
642 	for (idx_new = new_idx; idx_new < SPI_CS_CNT_MAX; idx_new++) {
643 		cs_new = spi_get_chipselect(new_spi, idx_new);
644 		if (is_valid_cs(cs) && is_valid_cs(cs_new) && cs == cs_new) {
645 			dev_err(dev, "chipselect %u already in use\n", cs_new);
646 			return -EBUSY;
647 		}
648 	}
649 	return 0;
650 }
651 
spi_dev_check(struct device * dev,void * data)652 static int spi_dev_check(struct device *dev, void *data)
653 {
654 	struct spi_device *spi = to_spi_device(dev);
655 	struct spi_device *new_spi = data;
656 	int status, idx;
657 
658 	if (spi->controller == new_spi->controller) {
659 		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
660 			status = spi_dev_check_cs(dev, spi, idx, new_spi, 0);
661 			if (status)
662 				return status;
663 		}
664 	}
665 	return 0;
666 }
667 
spi_cleanup(struct spi_device * spi)668 static void spi_cleanup(struct spi_device *spi)
669 {
670 	if (spi->controller->cleanup)
671 		spi->controller->cleanup(spi);
672 }
673 
__spi_add_device(struct spi_device * spi)674 static int __spi_add_device(struct spi_device *spi)
675 {
676 	struct spi_controller *ctlr = spi->controller;
677 	struct device *dev = ctlr->dev.parent;
678 	int status, idx;
679 	u8 cs;
680 
681 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
682 		/* Chipselects are numbered 0..max; validate. */
683 		cs = spi_get_chipselect(spi, idx);
684 		if (is_valid_cs(cs) && cs >= ctlr->num_chipselect) {
685 			dev_err(dev, "cs%d >= max %d\n", spi_get_chipselect(spi, idx),
686 				ctlr->num_chipselect);
687 			return -EINVAL;
688 		}
689 	}
690 
691 	/*
692 	 * Make sure that multiple logical CS doesn't map to the same physical CS.
693 	 * For example, spi->chip_select[0] != spi->chip_select[1] and so on.
694 	 */
695 	if (!spi_controller_is_target(ctlr)) {
696 		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
697 			status = spi_dev_check_cs(dev, spi, idx, spi, idx + 1);
698 			if (status)
699 				return status;
700 		}
701 	}
702 
703 	/* Set the bus ID string */
704 	spi_dev_set_name(spi);
705 
706 	/*
707 	 * We need to make sure there's no other device with this
708 	 * chipselect **BEFORE** we call setup(), else we'll trash
709 	 * its configuration.
710 	 */
711 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
712 	if (status)
713 		return status;
714 
715 	/* Controller may unregister concurrently */
716 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
717 	    !device_is_registered(&ctlr->dev)) {
718 		return -ENODEV;
719 	}
720 
721 	if (ctlr->cs_gpiods) {
722 		u8 cs;
723 
724 		for (idx = 0; idx < SPI_CS_CNT_MAX; idx++) {
725 			cs = spi_get_chipselect(spi, idx);
726 			if (is_valid_cs(cs))
727 				spi_set_csgpiod(spi, idx, ctlr->cs_gpiods[cs]);
728 		}
729 	}
730 
731 	/*
732 	 * Drivers may modify this initial i/o setup, but will
733 	 * normally rely on the device being setup.  Devices
734 	 * using SPI_CS_HIGH can't coexist well otherwise...
735 	 */
736 	status = spi_setup(spi);
737 	if (status < 0) {
738 		dev_err(dev, "can't setup %s, status %d\n",
739 				dev_name(&spi->dev), status);
740 		return status;
741 	}
742 
743 	/* Device may be bound to an active driver when this returns */
744 	status = device_add(&spi->dev);
745 	if (status < 0) {
746 		dev_err(dev, "can't add %s, status %d\n",
747 				dev_name(&spi->dev), status);
748 		spi_cleanup(spi);
749 	} else {
750 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
751 	}
752 
753 	return status;
754 }
755 
756 /**
757  * spi_add_device - Add spi_device allocated with spi_alloc_device
758  * @spi: spi_device to register
759  *
760  * Companion function to spi_alloc_device.  Devices allocated with
761  * spi_alloc_device can be added onto the SPI bus with this function.
762  *
763  * Return: 0 on success; negative errno on failure
764  */
spi_add_device(struct spi_device * spi)765 int spi_add_device(struct spi_device *spi)
766 {
767 	struct spi_controller *ctlr = spi->controller;
768 	int status;
769 
770 	/* Set the bus ID string */
771 	spi_dev_set_name(spi);
772 
773 	mutex_lock(&ctlr->add_lock);
774 	status = __spi_add_device(spi);
775 	mutex_unlock(&ctlr->add_lock);
776 	return status;
777 }
778 EXPORT_SYMBOL_GPL(spi_add_device);
779 
spi_set_all_cs_unused(struct spi_device * spi)780 static void spi_set_all_cs_unused(struct spi_device *spi)
781 {
782 	u8 idx;
783 
784 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
785 		spi_set_chipselect(spi, idx, SPI_INVALID_CS);
786 }
787 
788 /**
789  * spi_new_device - instantiate one new SPI device
790  * @ctlr: Controller to which device is connected
791  * @chip: Describes the SPI device
792  * Context: can sleep
793  *
794  * On typical mainboards, this is purely internal; and it's not needed
795  * after board init creates the hard-wired devices.  Some development
796  * platforms may not be able to use spi_register_board_info though, and
797  * this is exported so that for example a USB or parport based adapter
798  * driver could add devices (which it would learn about out-of-band).
799  *
800  * Return: the new device, or NULL.
801  */
spi_new_device(struct spi_controller * ctlr,struct spi_board_info * chip)802 struct spi_device *spi_new_device(struct spi_controller *ctlr,
803 				  struct spi_board_info *chip)
804 {
805 	struct spi_device	*proxy;
806 	int			status;
807 
808 	/*
809 	 * NOTE:  caller did any chip->bus_num checks necessary.
810 	 *
811 	 * Also, unless we change the return value convention to use
812 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
813 	 * suggests syslogged diagnostics are best here (ugh).
814 	 */
815 
816 	proxy = spi_alloc_device(ctlr);
817 	if (!proxy)
818 		return NULL;
819 
820 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
821 
822 	/* Use provided chip-select for proxy device */
823 	spi_set_all_cs_unused(proxy);
824 	spi_set_chipselect(proxy, 0, chip->chip_select);
825 
826 	proxy->max_speed_hz = chip->max_speed_hz;
827 	proxy->mode = chip->mode;
828 	proxy->irq = chip->irq;
829 	strscpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
830 	proxy->dev.platform_data = (void *) chip->platform_data;
831 	proxy->controller_data = chip->controller_data;
832 	proxy->controller_state = NULL;
833 	/*
834 	 * By default spi->chip_select[0] will hold the physical CS number,
835 	 * so set bit 0 in spi->cs_index_mask.
836 	 */
837 	proxy->cs_index_mask = BIT(0);
838 
839 	if (chip->swnode) {
840 		status = device_add_software_node(&proxy->dev, chip->swnode);
841 		if (status) {
842 			dev_err(&ctlr->dev, "failed to add software node to '%s': %d\n",
843 				chip->modalias, status);
844 			goto err_dev_put;
845 		}
846 	}
847 
848 	status = spi_add_device(proxy);
849 	if (status < 0)
850 		goto err_dev_put;
851 
852 	return proxy;
853 
854 err_dev_put:
855 	device_remove_software_node(&proxy->dev);
856 	spi_dev_put(proxy);
857 	return NULL;
858 }
859 EXPORT_SYMBOL_GPL(spi_new_device);
860 
861 /**
862  * spi_unregister_device - unregister a single SPI device
863  * @spi: spi_device to unregister
864  *
865  * Start making the passed SPI device vanish. Normally this would be handled
866  * by spi_unregister_controller().
867  */
spi_unregister_device(struct spi_device * spi)868 void spi_unregister_device(struct spi_device *spi)
869 {
870 	struct fwnode_handle *fwnode;
871 
872 	if (!spi)
873 		return;
874 
875 	fwnode = dev_fwnode(&spi->dev);
876 	if (is_of_node(fwnode)) {
877 		of_node_clear_flag(to_of_node(fwnode), OF_POPULATED);
878 		of_node_put(to_of_node(fwnode));
879 	} else if (is_acpi_device_node(fwnode)) {
880 		acpi_device_clear_enumerated(to_acpi_device_node(fwnode));
881 	}
882 	device_remove_software_node(&spi->dev);
883 	device_del(&spi->dev);
884 	spi_cleanup(spi);
885 	put_device(&spi->dev);
886 }
887 EXPORT_SYMBOL_GPL(spi_unregister_device);
888 
spi_match_controller_to_boardinfo(struct spi_controller * ctlr,struct spi_board_info * bi)889 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
890 					      struct spi_board_info *bi)
891 {
892 	struct spi_device *dev;
893 
894 	if (ctlr->bus_num != bi->bus_num)
895 		return;
896 
897 	dev = spi_new_device(ctlr, bi);
898 	if (!dev)
899 		dev_err(ctlr->dev.parent, "can't create new device for %s\n",
900 			bi->modalias);
901 }
902 
903 /**
904  * spi_register_board_info - register SPI devices for a given board
905  * @info: array of chip descriptors
906  * @n: how many descriptors are provided
907  * Context: can sleep
908  *
909  * Board-specific early init code calls this (probably during arch_initcall)
910  * with segments of the SPI device table.  Any device nodes are created later,
911  * after the relevant parent SPI controller (bus_num) is defined.  We keep
912  * this table of devices forever, so that reloading a controller driver will
913  * not make Linux forget about these hard-wired devices.
914  *
915  * Other code can also call this, e.g. a particular add-on board might provide
916  * SPI devices through its expansion connector, so code initializing that board
917  * would naturally declare its SPI devices.
918  *
919  * The board info passed can safely be __initdata ... but be careful of
920  * any embedded pointers (platform_data, etc), they're copied as-is.
921  *
922  * Return: zero on success, else a negative error code.
923  */
spi_register_board_info(struct spi_board_info const * info,unsigned n)924 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
925 {
926 	struct boardinfo *bi;
927 	int i;
928 
929 	if (!n)
930 		return 0;
931 
932 	bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
933 	if (!bi)
934 		return -ENOMEM;
935 
936 	for (i = 0; i < n; i++, bi++, info++) {
937 		struct spi_controller *ctlr;
938 
939 		memcpy(&bi->board_info, info, sizeof(*info));
940 
941 		mutex_lock(&board_lock);
942 		list_add_tail(&bi->list, &board_list);
943 		list_for_each_entry(ctlr, &spi_controller_list, list)
944 			spi_match_controller_to_boardinfo(ctlr,
945 							  &bi->board_info);
946 		mutex_unlock(&board_lock);
947 	}
948 
949 	return 0;
950 }
951 
952 /*-------------------------------------------------------------------------*/
953 
954 /* Core methods for SPI resource management */
955 
956 /**
957  * spi_res_alloc - allocate a spi resource that is life-cycle managed
958  *                 during the processing of a spi_message while using
959  *                 spi_transfer_one
960  * @spi:     the SPI device for which we allocate memory
961  * @release: the release code to execute for this resource
962  * @size:    size to alloc and return
963  * @gfp:     GFP allocation flags
964  *
965  * Return: the pointer to the allocated data
966  *
967  * This may get enhanced in the future to allocate from a memory pool
968  * of the @spi_device or @spi_controller to avoid repeated allocations.
969  */
spi_res_alloc(struct spi_device * spi,spi_res_release_t release,size_t size,gfp_t gfp)970 static void *spi_res_alloc(struct spi_device *spi, spi_res_release_t release,
971 			   size_t size, gfp_t gfp)
972 {
973 	struct spi_res *sres;
974 
975 	sres = kzalloc(sizeof(*sres) + size, gfp);
976 	if (!sres)
977 		return NULL;
978 
979 	INIT_LIST_HEAD(&sres->entry);
980 	sres->release = release;
981 
982 	return sres->data;
983 }
984 
985 /**
986  * spi_res_free - free an SPI resource
987  * @res: pointer to the custom data of a resource
988  */
spi_res_free(void * res)989 static void spi_res_free(void *res)
990 {
991 	struct spi_res *sres = container_of(res, struct spi_res, data);
992 
993 	WARN_ON(!list_empty(&sres->entry));
994 	kfree(sres);
995 }
996 
997 /**
998  * spi_res_add - add a spi_res to the spi_message
999  * @message: the SPI message
1000  * @res:     the spi_resource
1001  */
spi_res_add(struct spi_message * message,void * res)1002 static void spi_res_add(struct spi_message *message, void *res)
1003 {
1004 	struct spi_res *sres = container_of(res, struct spi_res, data);
1005 
1006 	WARN_ON(!list_empty(&sres->entry));
1007 	list_add_tail(&sres->entry, &message->resources);
1008 }
1009 
1010 /**
1011  * spi_res_release - release all SPI resources for this message
1012  * @ctlr:  the @spi_controller
1013  * @message: the @spi_message
1014  */
spi_res_release(struct spi_controller * ctlr,struct spi_message * message)1015 static void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
1016 {
1017 	struct spi_res *res, *tmp;
1018 
1019 	list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
1020 		if (res->release)
1021 			res->release(ctlr, message, res->data);
1022 
1023 		list_del(&res->entry);
1024 
1025 		kfree(res);
1026 	}
1027 }
1028 
1029 /*-------------------------------------------------------------------------*/
1030 #define spi_for_each_valid_cs(spi, idx)				\
1031 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)		\
1032 		if (!(spi->cs_index_mask & BIT(idx))) {} else
1033 
spi_is_last_cs(struct spi_device * spi)1034 static inline bool spi_is_last_cs(struct spi_device *spi)
1035 {
1036 	u8 idx;
1037 	bool last = false;
1038 
1039 	spi_for_each_valid_cs(spi, idx) {
1040 		if (spi->controller->last_cs[idx] == spi_get_chipselect(spi, idx))
1041 			last = true;
1042 	}
1043 	return last;
1044 }
1045 
spi_toggle_csgpiod(struct spi_device * spi,u8 idx,bool enable,bool activate)1046 static void spi_toggle_csgpiod(struct spi_device *spi, u8 idx, bool enable, bool activate)
1047 {
1048 	/*
1049 	 * Historically ACPI has no means of the GPIO polarity and
1050 	 * thus the SPISerialBus() resource defines it on the per-chip
1051 	 * basis. In order to avoid a chain of negations, the GPIO
1052 	 * polarity is considered being Active High. Even for the cases
1053 	 * when _DSD() is involved (in the updated versions of ACPI)
1054 	 * the GPIO CS polarity must be defined Active High to avoid
1055 	 * ambiguity. That's why we use enable, that takes SPI_CS_HIGH
1056 	 * into account.
1057 	 */
1058 	if (is_acpi_device_node(dev_fwnode(&spi->dev)))
1059 		gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), !enable);
1060 	else
1061 		/* Polarity handled by GPIO library */
1062 		gpiod_set_value_cansleep(spi_get_csgpiod(spi, idx), activate);
1063 
1064 	if (activate)
1065 		spi_delay_exec(&spi->cs_setup, NULL);
1066 	else
1067 		spi_delay_exec(&spi->cs_inactive, NULL);
1068 }
1069 
spi_set_cs(struct spi_device * spi,bool enable,bool force)1070 static void spi_set_cs(struct spi_device *spi, bool enable, bool force)
1071 {
1072 	bool activate = enable;
1073 	u8 idx;
1074 
1075 	/*
1076 	 * Avoid calling into the driver (or doing delays) if the chip select
1077 	 * isn't actually changing from the last time this was called.
1078 	 */
1079 	if (!force && ((enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1080 			spi_is_last_cs(spi)) ||
1081 		       (!enable && spi->controller->last_cs_index_mask == spi->cs_index_mask &&
1082 			!spi_is_last_cs(spi))) &&
1083 	    (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
1084 		return;
1085 
1086 	trace_spi_set_cs(spi, activate);
1087 
1088 	spi->controller->last_cs_index_mask = spi->cs_index_mask;
1089 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
1090 		spi->controller->last_cs[idx] = enable ? spi_get_chipselect(spi, 0) : SPI_INVALID_CS;
1091 	spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
1092 
1093 	if (spi->mode & SPI_CS_HIGH)
1094 		enable = !enable;
1095 
1096 	/*
1097 	 * Handle chip select delays for GPIO based CS or controllers without
1098 	 * programmable chip select timing.
1099 	 */
1100 	if ((spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) && !activate)
1101 		spi_delay_exec(&spi->cs_hold, NULL);
1102 
1103 	if (spi_is_csgpiod(spi)) {
1104 		if (!(spi->mode & SPI_NO_CS)) {
1105 			spi_for_each_valid_cs(spi, idx) {
1106 				if (spi_get_csgpiod(spi, idx))
1107 					spi_toggle_csgpiod(spi, idx, enable, activate);
1108 			}
1109 		}
1110 		/* Some SPI controllers need both GPIO CS & ->set_cs() */
1111 		if ((spi->controller->flags & SPI_CONTROLLER_GPIO_SS) &&
1112 		    spi->controller->set_cs)
1113 			spi->controller->set_cs(spi, !enable);
1114 	} else if (spi->controller->set_cs) {
1115 		spi->controller->set_cs(spi, !enable);
1116 	}
1117 
1118 	if (spi_is_csgpiod(spi) || !spi->controller->set_cs_timing) {
1119 		if (activate)
1120 			spi_delay_exec(&spi->cs_setup, NULL);
1121 		else
1122 			spi_delay_exec(&spi->cs_inactive, NULL);
1123 	}
1124 }
1125 
1126 #ifdef CONFIG_HAS_DMA
spi_map_buf_attrs(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir,unsigned long attrs)1127 static int spi_map_buf_attrs(struct spi_controller *ctlr, struct device *dev,
1128 			     struct sg_table *sgt, void *buf, size_t len,
1129 			     enum dma_data_direction dir, unsigned long attrs)
1130 {
1131 	const bool vmalloced_buf = is_vmalloc_addr(buf);
1132 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
1133 #ifdef CONFIG_HIGHMEM
1134 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
1135 				(unsigned long)buf < (PKMAP_BASE +
1136 					(LAST_PKMAP * PAGE_SIZE)));
1137 #else
1138 	const bool kmap_buf = false;
1139 #endif
1140 	int desc_len;
1141 	int sgs;
1142 	struct page *vm_page;
1143 	struct scatterlist *sg;
1144 	void *sg_buf;
1145 	size_t min;
1146 	int i, ret;
1147 
1148 	if (vmalloced_buf || kmap_buf) {
1149 		desc_len = min_t(unsigned long, max_seg_size, PAGE_SIZE);
1150 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
1151 	} else if (virt_addr_valid(buf)) {
1152 		desc_len = min_t(size_t, max_seg_size, ctlr->max_dma_len);
1153 		sgs = DIV_ROUND_UP(len, desc_len);
1154 	} else {
1155 		return -EINVAL;
1156 	}
1157 
1158 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
1159 	if (ret != 0)
1160 		return ret;
1161 
1162 	sg = &sgt->sgl[0];
1163 	for (i = 0; i < sgs; i++) {
1164 
1165 		if (vmalloced_buf || kmap_buf) {
1166 			/*
1167 			 * Next scatterlist entry size is the minimum between
1168 			 * the desc_len and the remaining buffer length that
1169 			 * fits in a page.
1170 			 */
1171 			min = min_t(size_t, desc_len,
1172 				    min_t(size_t, len,
1173 					  PAGE_SIZE - offset_in_page(buf)));
1174 			if (vmalloced_buf)
1175 				vm_page = vmalloc_to_page(buf);
1176 			else
1177 				vm_page = kmap_to_page(buf);
1178 			if (!vm_page) {
1179 				sg_free_table(sgt);
1180 				return -ENOMEM;
1181 			}
1182 			sg_set_page(sg, vm_page,
1183 				    min, offset_in_page(buf));
1184 		} else {
1185 			min = min_t(size_t, len, desc_len);
1186 			sg_buf = buf;
1187 			sg_set_buf(sg, sg_buf, min);
1188 		}
1189 
1190 		buf += min;
1191 		len -= min;
1192 		sg = sg_next(sg);
1193 	}
1194 
1195 	ret = dma_map_sgtable(dev, sgt, dir, attrs);
1196 	if (ret < 0) {
1197 		sg_free_table(sgt);
1198 		return ret;
1199 	}
1200 
1201 	return 0;
1202 }
1203 
spi_map_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,void * buf,size_t len,enum dma_data_direction dir)1204 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
1205 		struct sg_table *sgt, void *buf, size_t len,
1206 		enum dma_data_direction dir)
1207 {
1208 	return spi_map_buf_attrs(ctlr, dev, sgt, buf, len, dir, 0);
1209 }
1210 
spi_unmap_buf_attrs(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir,unsigned long attrs)1211 static void spi_unmap_buf_attrs(struct spi_controller *ctlr,
1212 				struct device *dev, struct sg_table *sgt,
1213 				enum dma_data_direction dir,
1214 				unsigned long attrs)
1215 {
1216 	dma_unmap_sgtable(dev, sgt, dir, attrs);
1217 	sg_free_table(sgt);
1218 	sgt->orig_nents = 0;
1219 	sgt->nents = 0;
1220 }
1221 
spi_unmap_buf(struct spi_controller * ctlr,struct device * dev,struct sg_table * sgt,enum dma_data_direction dir)1222 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
1223 		   struct sg_table *sgt, enum dma_data_direction dir)
1224 {
1225 	spi_unmap_buf_attrs(ctlr, dev, sgt, dir, 0);
1226 }
1227 
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1228 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1229 {
1230 	struct device *tx_dev, *rx_dev;
1231 	struct spi_transfer *xfer;
1232 	int ret;
1233 
1234 	if (!ctlr->can_dma)
1235 		return 0;
1236 
1237 	if (ctlr->dma_tx)
1238 		tx_dev = ctlr->dma_tx->device->dev;
1239 	else if (ctlr->dma_map_dev)
1240 		tx_dev = ctlr->dma_map_dev;
1241 	else
1242 		tx_dev = ctlr->dev.parent;
1243 
1244 	if (ctlr->dma_rx)
1245 		rx_dev = ctlr->dma_rx->device->dev;
1246 	else if (ctlr->dma_map_dev)
1247 		rx_dev = ctlr->dma_map_dev;
1248 	else
1249 		rx_dev = ctlr->dev.parent;
1250 
1251 	ret = -ENOMSG;
1252 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1253 		/* The sync is done before each transfer. */
1254 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1255 
1256 		if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1257 			continue;
1258 
1259 		if (xfer->tx_buf != NULL) {
1260 			ret = spi_map_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1261 						(void *)xfer->tx_buf,
1262 						xfer->len, DMA_TO_DEVICE,
1263 						attrs);
1264 			if (ret != 0)
1265 				return ret;
1266 
1267 			xfer->tx_sg_mapped = true;
1268 		}
1269 
1270 		if (xfer->rx_buf != NULL) {
1271 			ret = spi_map_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1272 						xfer->rx_buf, xfer->len,
1273 						DMA_FROM_DEVICE, attrs);
1274 			if (ret != 0) {
1275 				spi_unmap_buf_attrs(ctlr, tx_dev,
1276 						&xfer->tx_sg, DMA_TO_DEVICE,
1277 						attrs);
1278 
1279 				return ret;
1280 			}
1281 
1282 			xfer->rx_sg_mapped = true;
1283 		}
1284 	}
1285 	/* No transfer has been mapped, bail out with success */
1286 	if (ret)
1287 		return 0;
1288 
1289 	ctlr->cur_rx_dma_dev = rx_dev;
1290 	ctlr->cur_tx_dma_dev = tx_dev;
1291 
1292 	return 0;
1293 }
1294 
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1295 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
1296 {
1297 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1298 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1299 	struct spi_transfer *xfer;
1300 
1301 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1302 		/* The sync has already been done after each transfer. */
1303 		unsigned long attrs = DMA_ATTR_SKIP_CPU_SYNC;
1304 
1305 		if (xfer->rx_sg_mapped)
1306 			spi_unmap_buf_attrs(ctlr, rx_dev, &xfer->rx_sg,
1307 					    DMA_FROM_DEVICE, attrs);
1308 		xfer->rx_sg_mapped = false;
1309 
1310 		if (xfer->tx_sg_mapped)
1311 			spi_unmap_buf_attrs(ctlr, tx_dev, &xfer->tx_sg,
1312 					    DMA_TO_DEVICE, attrs);
1313 		xfer->tx_sg_mapped = false;
1314 	}
1315 
1316 	return 0;
1317 }
1318 
spi_dma_sync_for_device(struct spi_controller * ctlr,struct spi_transfer * xfer)1319 static void spi_dma_sync_for_device(struct spi_controller *ctlr,
1320 				    struct spi_transfer *xfer)
1321 {
1322 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1323 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1324 
1325 	if (xfer->tx_sg_mapped)
1326 		dma_sync_sgtable_for_device(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1327 	if (xfer->rx_sg_mapped)
1328 		dma_sync_sgtable_for_device(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1329 }
1330 
spi_dma_sync_for_cpu(struct spi_controller * ctlr,struct spi_transfer * xfer)1331 static void spi_dma_sync_for_cpu(struct spi_controller *ctlr,
1332 				 struct spi_transfer *xfer)
1333 {
1334 	struct device *rx_dev = ctlr->cur_rx_dma_dev;
1335 	struct device *tx_dev = ctlr->cur_tx_dma_dev;
1336 
1337 	if (xfer->rx_sg_mapped)
1338 		dma_sync_sgtable_for_cpu(rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1339 	if (xfer->tx_sg_mapped)
1340 		dma_sync_sgtable_for_cpu(tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1341 }
1342 #else /* !CONFIG_HAS_DMA */
__spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1343 static inline int __spi_map_msg(struct spi_controller *ctlr,
1344 				struct spi_message *msg)
1345 {
1346 	return 0;
1347 }
1348 
__spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1349 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1350 				  struct spi_message *msg)
1351 {
1352 	return 0;
1353 }
1354 
spi_dma_sync_for_device(struct spi_controller * ctrl,struct spi_transfer * xfer)1355 static void spi_dma_sync_for_device(struct spi_controller *ctrl,
1356 				    struct spi_transfer *xfer)
1357 {
1358 }
1359 
spi_dma_sync_for_cpu(struct spi_controller * ctrl,struct spi_transfer * xfer)1360 static void spi_dma_sync_for_cpu(struct spi_controller *ctrl,
1361 				 struct spi_transfer *xfer)
1362 {
1363 }
1364 #endif /* !CONFIG_HAS_DMA */
1365 
spi_unmap_msg(struct spi_controller * ctlr,struct spi_message * msg)1366 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1367 				struct spi_message *msg)
1368 {
1369 	struct spi_transfer *xfer;
1370 
1371 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1372 		/*
1373 		 * Restore the original value of tx_buf or rx_buf if they are
1374 		 * NULL.
1375 		 */
1376 		if (xfer->tx_buf == ctlr->dummy_tx)
1377 			xfer->tx_buf = NULL;
1378 		if (xfer->rx_buf == ctlr->dummy_rx)
1379 			xfer->rx_buf = NULL;
1380 	}
1381 
1382 	return __spi_unmap_msg(ctlr, msg);
1383 }
1384 
spi_map_msg(struct spi_controller * ctlr,struct spi_message * msg)1385 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1386 {
1387 	struct spi_transfer *xfer;
1388 	void *tmp;
1389 	unsigned int max_tx, max_rx;
1390 
1391 	if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1392 		&& !(msg->spi->mode & SPI_3WIRE)) {
1393 		max_tx = 0;
1394 		max_rx = 0;
1395 
1396 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1397 			if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1398 			    !xfer->tx_buf)
1399 				max_tx = max(xfer->len, max_tx);
1400 			if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1401 			    !xfer->rx_buf)
1402 				max_rx = max(xfer->len, max_rx);
1403 		}
1404 
1405 		if (max_tx) {
1406 			tmp = krealloc(ctlr->dummy_tx, max_tx,
1407 				       GFP_KERNEL | GFP_DMA | __GFP_ZERO);
1408 			if (!tmp)
1409 				return -ENOMEM;
1410 			ctlr->dummy_tx = tmp;
1411 		}
1412 
1413 		if (max_rx) {
1414 			tmp = krealloc(ctlr->dummy_rx, max_rx,
1415 				       GFP_KERNEL | GFP_DMA);
1416 			if (!tmp)
1417 				return -ENOMEM;
1418 			ctlr->dummy_rx = tmp;
1419 		}
1420 
1421 		if (max_tx || max_rx) {
1422 			list_for_each_entry(xfer, &msg->transfers,
1423 					    transfer_list) {
1424 				if (!xfer->len)
1425 					continue;
1426 				if (!xfer->tx_buf)
1427 					xfer->tx_buf = ctlr->dummy_tx;
1428 				if (!xfer->rx_buf)
1429 					xfer->rx_buf = ctlr->dummy_rx;
1430 			}
1431 		}
1432 	}
1433 
1434 	return __spi_map_msg(ctlr, msg);
1435 }
1436 
spi_transfer_wait(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer * xfer)1437 static int spi_transfer_wait(struct spi_controller *ctlr,
1438 			     struct spi_message *msg,
1439 			     struct spi_transfer *xfer)
1440 {
1441 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1442 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1443 	u32 speed_hz = xfer->speed_hz;
1444 	unsigned long long ms;
1445 
1446 	if (spi_controller_is_target(ctlr)) {
1447 		if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1448 			dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1449 			return -EINTR;
1450 		}
1451 	} else {
1452 		if (!speed_hz)
1453 			speed_hz = 100000;
1454 
1455 		/*
1456 		 * For each byte we wait for 8 cycles of the SPI clock.
1457 		 * Since speed is defined in Hz and we want milliseconds,
1458 		 * use respective multiplier, but before the division,
1459 		 * otherwise we may get 0 for short transfers.
1460 		 */
1461 		ms = 8LL * MSEC_PER_SEC * xfer->len;
1462 		do_div(ms, speed_hz);
1463 
1464 		/*
1465 		 * Increase it twice and add 200 ms tolerance, use
1466 		 * predefined maximum in case of overflow.
1467 		 */
1468 		ms += ms + 200;
1469 		if (ms > UINT_MAX)
1470 			ms = UINT_MAX;
1471 
1472 		ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1473 						 msecs_to_jiffies(ms));
1474 
1475 		if (ms == 0) {
1476 			SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1477 			SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1478 			dev_err(&msg->spi->dev,
1479 				"SPI transfer timed out\n");
1480 			return -ETIMEDOUT;
1481 		}
1482 
1483 		if (xfer->error & SPI_TRANS_FAIL_IO)
1484 			return -EIO;
1485 	}
1486 
1487 	return 0;
1488 }
1489 
_spi_transfer_delay_ns(u32 ns)1490 static void _spi_transfer_delay_ns(u32 ns)
1491 {
1492 	if (!ns)
1493 		return;
1494 	if (ns <= NSEC_PER_USEC) {
1495 		ndelay(ns);
1496 	} else {
1497 		u32 us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
1498 
1499 		fsleep(us);
1500 	}
1501 }
1502 
spi_delay_to_ns(struct spi_delay * _delay,struct spi_transfer * xfer)1503 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1504 {
1505 	u32 delay = _delay->value;
1506 	u32 unit = _delay->unit;
1507 	u32 hz;
1508 
1509 	if (!delay)
1510 		return 0;
1511 
1512 	switch (unit) {
1513 	case SPI_DELAY_UNIT_USECS:
1514 		delay *= NSEC_PER_USEC;
1515 		break;
1516 	case SPI_DELAY_UNIT_NSECS:
1517 		/* Nothing to do here */
1518 		break;
1519 	case SPI_DELAY_UNIT_SCK:
1520 		/* Clock cycles need to be obtained from spi_transfer */
1521 		if (!xfer)
1522 			return -EINVAL;
1523 		/*
1524 		 * If there is unknown effective speed, approximate it
1525 		 * by underestimating with half of the requested Hz.
1526 		 */
1527 		hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1528 		if (!hz)
1529 			return -EINVAL;
1530 
1531 		/* Convert delay to nanoseconds */
1532 		delay *= DIV_ROUND_UP(NSEC_PER_SEC, hz);
1533 		break;
1534 	default:
1535 		return -EINVAL;
1536 	}
1537 
1538 	return delay;
1539 }
1540 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1541 
spi_delay_exec(struct spi_delay * _delay,struct spi_transfer * xfer)1542 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1543 {
1544 	int delay;
1545 
1546 	might_sleep();
1547 
1548 	if (!_delay)
1549 		return -EINVAL;
1550 
1551 	delay = spi_delay_to_ns(_delay, xfer);
1552 	if (delay < 0)
1553 		return delay;
1554 
1555 	_spi_transfer_delay_ns(delay);
1556 
1557 	return 0;
1558 }
1559 EXPORT_SYMBOL_GPL(spi_delay_exec);
1560 
_spi_transfer_cs_change_delay(struct spi_message * msg,struct spi_transfer * xfer)1561 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1562 					  struct spi_transfer *xfer)
1563 {
1564 	u32 default_delay_ns = 10 * NSEC_PER_USEC;
1565 	u32 delay = xfer->cs_change_delay.value;
1566 	u32 unit = xfer->cs_change_delay.unit;
1567 	int ret;
1568 
1569 	/* Return early on "fast" mode - for everything but USECS */
1570 	if (!delay) {
1571 		if (unit == SPI_DELAY_UNIT_USECS)
1572 			_spi_transfer_delay_ns(default_delay_ns);
1573 		return;
1574 	}
1575 
1576 	ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1577 	if (ret) {
1578 		dev_err_once(&msg->spi->dev,
1579 			     "Use of unsupported delay unit %i, using default of %luus\n",
1580 			     unit, default_delay_ns / NSEC_PER_USEC);
1581 		_spi_transfer_delay_ns(default_delay_ns);
1582 	}
1583 }
1584 
spi_transfer_cs_change_delay_exec(struct spi_message * msg,struct spi_transfer * xfer)1585 void spi_transfer_cs_change_delay_exec(struct spi_message *msg,
1586 						  struct spi_transfer *xfer)
1587 {
1588 	_spi_transfer_cs_change_delay(msg, xfer);
1589 }
1590 EXPORT_SYMBOL_GPL(spi_transfer_cs_change_delay_exec);
1591 
1592 /*
1593  * spi_transfer_one_message - Default implementation of transfer_one_message()
1594  *
1595  * This is a standard implementation of transfer_one_message() for
1596  * drivers which implement a transfer_one() operation.  It provides
1597  * standard handling of delays and chip select management.
1598  */
spi_transfer_one_message(struct spi_controller * ctlr,struct spi_message * msg)1599 static int spi_transfer_one_message(struct spi_controller *ctlr,
1600 				    struct spi_message *msg)
1601 {
1602 	struct spi_transfer *xfer;
1603 	bool keep_cs = false;
1604 	int ret = 0;
1605 	struct spi_statistics __percpu *statm = ctlr->pcpu_statistics;
1606 	struct spi_statistics __percpu *stats = msg->spi->pcpu_statistics;
1607 
1608 	xfer = list_first_entry(&msg->transfers, struct spi_transfer, transfer_list);
1609 	spi_set_cs(msg->spi, !xfer->cs_off, false);
1610 
1611 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1612 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1613 
1614 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1615 		trace_spi_transfer_start(msg, xfer);
1616 
1617 		spi_statistics_add_transfer_stats(statm, xfer, msg);
1618 		spi_statistics_add_transfer_stats(stats, xfer, msg);
1619 
1620 		if (!ctlr->ptp_sts_supported) {
1621 			xfer->ptp_sts_word_pre = 0;
1622 			ptp_read_system_prets(xfer->ptp_sts);
1623 		}
1624 
1625 		if ((xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1626 			reinit_completion(&ctlr->xfer_completion);
1627 
1628 fallback_pio:
1629 			spi_dma_sync_for_device(ctlr, xfer);
1630 			ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1631 			if (ret < 0) {
1632 				spi_dma_sync_for_cpu(ctlr, xfer);
1633 
1634 				if ((xfer->tx_sg_mapped || xfer->rx_sg_mapped) &&
1635 				    (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1636 					__spi_unmap_msg(ctlr, msg);
1637 					ctlr->fallback = true;
1638 					xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1639 					goto fallback_pio;
1640 				}
1641 
1642 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1643 							       errors);
1644 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1645 							       errors);
1646 				dev_err(&msg->spi->dev,
1647 					"SPI transfer failed: %d\n", ret);
1648 				goto out;
1649 			}
1650 
1651 			if (ret > 0) {
1652 				ret = spi_transfer_wait(ctlr, msg, xfer);
1653 				if (ret < 0)
1654 					msg->status = ret;
1655 			}
1656 
1657 			spi_dma_sync_for_cpu(ctlr, xfer);
1658 		} else {
1659 			if (xfer->len)
1660 				dev_err(&msg->spi->dev,
1661 					"Bufferless transfer has length %u\n",
1662 					xfer->len);
1663 		}
1664 
1665 		if (!ctlr->ptp_sts_supported) {
1666 			ptp_read_system_postts(xfer->ptp_sts);
1667 			xfer->ptp_sts_word_post = xfer->len;
1668 		}
1669 
1670 		trace_spi_transfer_stop(msg, xfer);
1671 
1672 		if (msg->status != -EINPROGRESS)
1673 			goto out;
1674 
1675 		spi_transfer_delay_exec(xfer);
1676 
1677 		if (xfer->cs_change) {
1678 			if (list_is_last(&xfer->transfer_list,
1679 					 &msg->transfers)) {
1680 				keep_cs = true;
1681 			} else {
1682 				if (!xfer->cs_off)
1683 					spi_set_cs(msg->spi, false, false);
1684 				_spi_transfer_cs_change_delay(msg, xfer);
1685 				if (!list_next_entry(xfer, transfer_list)->cs_off)
1686 					spi_set_cs(msg->spi, true, false);
1687 			}
1688 		} else if (!list_is_last(&xfer->transfer_list, &msg->transfers) &&
1689 			   xfer->cs_off != list_next_entry(xfer, transfer_list)->cs_off) {
1690 			spi_set_cs(msg->spi, xfer->cs_off, false);
1691 		}
1692 
1693 		msg->actual_length += xfer->len;
1694 	}
1695 
1696 out:
1697 	if (ret != 0 || !keep_cs)
1698 		spi_set_cs(msg->spi, false, false);
1699 
1700 	if (msg->status == -EINPROGRESS)
1701 		msg->status = ret;
1702 
1703 	if (msg->status && ctlr->handle_err)
1704 		ctlr->handle_err(ctlr, msg);
1705 
1706 	spi_finalize_current_message(ctlr);
1707 
1708 	return ret;
1709 }
1710 
1711 /**
1712  * spi_finalize_current_transfer - report completion of a transfer
1713  * @ctlr: the controller reporting completion
1714  *
1715  * Called by SPI drivers using the core transfer_one_message()
1716  * implementation to notify it that the current interrupt driven
1717  * transfer has finished and the next one may be scheduled.
1718  */
spi_finalize_current_transfer(struct spi_controller * ctlr)1719 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1720 {
1721 	complete(&ctlr->xfer_completion);
1722 }
1723 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1724 
spi_idle_runtime_pm(struct spi_controller * ctlr)1725 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1726 {
1727 	if (ctlr->auto_runtime_pm) {
1728 		pm_runtime_mark_last_busy(ctlr->dev.parent);
1729 		pm_runtime_put_autosuspend(ctlr->dev.parent);
1730 	}
1731 }
1732 
__spi_pump_transfer_message(struct spi_controller * ctlr,struct spi_message * msg,bool was_busy)1733 static int __spi_pump_transfer_message(struct spi_controller *ctlr,
1734 		struct spi_message *msg, bool was_busy)
1735 {
1736 	struct spi_transfer *xfer;
1737 	int ret;
1738 
1739 	if (!was_busy && ctlr->auto_runtime_pm) {
1740 		ret = pm_runtime_get_sync(ctlr->dev.parent);
1741 		if (ret < 0) {
1742 			pm_runtime_put_noidle(ctlr->dev.parent);
1743 			dev_err(&ctlr->dev, "Failed to power device: %d\n",
1744 				ret);
1745 
1746 			msg->status = ret;
1747 			spi_finalize_current_message(ctlr);
1748 
1749 			return ret;
1750 		}
1751 	}
1752 
1753 	if (!was_busy)
1754 		trace_spi_controller_busy(ctlr);
1755 
1756 	if (!was_busy && ctlr->prepare_transfer_hardware) {
1757 		ret = ctlr->prepare_transfer_hardware(ctlr);
1758 		if (ret) {
1759 			dev_err(&ctlr->dev,
1760 				"failed to prepare transfer hardware: %d\n",
1761 				ret);
1762 
1763 			if (ctlr->auto_runtime_pm)
1764 				pm_runtime_put(ctlr->dev.parent);
1765 
1766 			msg->status = ret;
1767 			spi_finalize_current_message(ctlr);
1768 
1769 			return ret;
1770 		}
1771 	}
1772 
1773 	trace_spi_message_start(msg);
1774 
1775 	if (ctlr->prepare_message) {
1776 		ret = ctlr->prepare_message(ctlr, msg);
1777 		if (ret) {
1778 			dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1779 				ret);
1780 			msg->status = ret;
1781 			spi_finalize_current_message(ctlr);
1782 			return ret;
1783 		}
1784 		msg->prepared = true;
1785 	}
1786 
1787 	ret = spi_map_msg(ctlr, msg);
1788 	if (ret) {
1789 		msg->status = ret;
1790 		spi_finalize_current_message(ctlr);
1791 		return ret;
1792 	}
1793 
1794 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1795 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1796 			xfer->ptp_sts_word_pre = 0;
1797 			ptp_read_system_prets(xfer->ptp_sts);
1798 		}
1799 	}
1800 
1801 	/*
1802 	 * Drivers implementation of transfer_one_message() must arrange for
1803 	 * spi_finalize_current_message() to get called. Most drivers will do
1804 	 * this in the calling context, but some don't. For those cases, a
1805 	 * completion is used to guarantee that this function does not return
1806 	 * until spi_finalize_current_message() is done accessing
1807 	 * ctlr->cur_msg.
1808 	 * Use of the following two flags enable to opportunistically skip the
1809 	 * use of the completion since its use involves expensive spin locks.
1810 	 * In case of a race with the context that calls
1811 	 * spi_finalize_current_message() the completion will always be used,
1812 	 * due to strict ordering of these flags using barriers.
1813 	 */
1814 	WRITE_ONCE(ctlr->cur_msg_incomplete, true);
1815 	WRITE_ONCE(ctlr->cur_msg_need_completion, false);
1816 	reinit_completion(&ctlr->cur_msg_completion);
1817 	smp_wmb(); /* Make these available to spi_finalize_current_message() */
1818 
1819 	ret = ctlr->transfer_one_message(ctlr, msg);
1820 	if (ret) {
1821 		dev_err(&ctlr->dev,
1822 			"failed to transfer one message from queue\n");
1823 		return ret;
1824 	}
1825 
1826 	WRITE_ONCE(ctlr->cur_msg_need_completion, true);
1827 	smp_mb(); /* See spi_finalize_current_message()... */
1828 	if (READ_ONCE(ctlr->cur_msg_incomplete))
1829 		wait_for_completion(&ctlr->cur_msg_completion);
1830 
1831 	return 0;
1832 }
1833 
1834 /**
1835  * __spi_pump_messages - function which processes SPI message queue
1836  * @ctlr: controller to process queue for
1837  * @in_kthread: true if we are in the context of the message pump thread
1838  *
1839  * This function checks if there is any SPI message in the queue that
1840  * needs processing and if so call out to the driver to initialize hardware
1841  * and transfer each message.
1842  *
1843  * Note that it is called both from the kthread itself and also from
1844  * inside spi_sync(); the queue extraction handling at the top of the
1845  * function should deal with this safely.
1846  */
__spi_pump_messages(struct spi_controller * ctlr,bool in_kthread)1847 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1848 {
1849 	struct spi_message *msg;
1850 	bool was_busy = false;
1851 	unsigned long flags;
1852 	int ret;
1853 
1854 	/* Take the I/O mutex */
1855 	mutex_lock(&ctlr->io_mutex);
1856 
1857 	/* Lock queue */
1858 	spin_lock_irqsave(&ctlr->queue_lock, flags);
1859 
1860 	/* Make sure we are not already running a message */
1861 	if (ctlr->cur_msg)
1862 		goto out_unlock;
1863 
1864 	/* Check if the queue is idle */
1865 	if (list_empty(&ctlr->queue) || !ctlr->running) {
1866 		if (!ctlr->busy)
1867 			goto out_unlock;
1868 
1869 		/* Defer any non-atomic teardown to the thread */
1870 		if (!in_kthread) {
1871 			if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1872 			    !ctlr->unprepare_transfer_hardware) {
1873 				spi_idle_runtime_pm(ctlr);
1874 				ctlr->busy = false;
1875 				ctlr->queue_empty = true;
1876 				trace_spi_controller_idle(ctlr);
1877 			} else {
1878 				kthread_queue_work(ctlr->kworker,
1879 						   &ctlr->pump_messages);
1880 			}
1881 			goto out_unlock;
1882 		}
1883 
1884 		ctlr->busy = false;
1885 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1886 
1887 		kfree(ctlr->dummy_rx);
1888 		ctlr->dummy_rx = NULL;
1889 		kfree(ctlr->dummy_tx);
1890 		ctlr->dummy_tx = NULL;
1891 		if (ctlr->unprepare_transfer_hardware &&
1892 		    ctlr->unprepare_transfer_hardware(ctlr))
1893 			dev_err(&ctlr->dev,
1894 				"failed to unprepare transfer hardware\n");
1895 		spi_idle_runtime_pm(ctlr);
1896 		trace_spi_controller_idle(ctlr);
1897 
1898 		spin_lock_irqsave(&ctlr->queue_lock, flags);
1899 		ctlr->queue_empty = true;
1900 		goto out_unlock;
1901 	}
1902 
1903 	/* Extract head of queue */
1904 	msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1905 	ctlr->cur_msg = msg;
1906 
1907 	list_del_init(&msg->queue);
1908 	if (ctlr->busy)
1909 		was_busy = true;
1910 	else
1911 		ctlr->busy = true;
1912 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1913 
1914 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
1915 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1916 
1917 	ctlr->cur_msg = NULL;
1918 	ctlr->fallback = false;
1919 
1920 	mutex_unlock(&ctlr->io_mutex);
1921 
1922 	/* Prod the scheduler in case transfer_one() was busy waiting */
1923 	if (!ret)
1924 		cond_resched();
1925 	return;
1926 
1927 out_unlock:
1928 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1929 	mutex_unlock(&ctlr->io_mutex);
1930 }
1931 
1932 /**
1933  * spi_pump_messages - kthread work function which processes spi message queue
1934  * @work: pointer to kthread work struct contained in the controller struct
1935  */
spi_pump_messages(struct kthread_work * work)1936 static void spi_pump_messages(struct kthread_work *work)
1937 {
1938 	struct spi_controller *ctlr =
1939 		container_of(work, struct spi_controller, pump_messages);
1940 
1941 	__spi_pump_messages(ctlr, true);
1942 }
1943 
1944 /**
1945  * spi_take_timestamp_pre - helper to collect the beginning of the TX timestamp
1946  * @ctlr: Pointer to the spi_controller structure of the driver
1947  * @xfer: Pointer to the transfer being timestamped
1948  * @progress: How many words (not bytes) have been transferred so far
1949  * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1950  *	      transfer, for less jitter in time measurement. Only compatible
1951  *	      with PIO drivers. If true, must follow up with
1952  *	      spi_take_timestamp_post or otherwise system will crash.
1953  *	      WARNING: for fully predictable results, the CPU frequency must
1954  *	      also be under control (governor).
1955  *
1956  * This is a helper for drivers to collect the beginning of the TX timestamp
1957  * for the requested byte from the SPI transfer. The frequency with which this
1958  * function must be called (once per word, once for the whole transfer, once
1959  * per batch of words etc) is arbitrary as long as the @tx buffer offset is
1960  * greater than or equal to the requested byte at the time of the call. The
1961  * timestamp is only taken once, at the first such call. It is assumed that
1962  * the driver advances its @tx buffer pointer monotonically.
1963  */
spi_take_timestamp_pre(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)1964 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1965 			    struct spi_transfer *xfer,
1966 			    size_t progress, bool irqs_off)
1967 {
1968 	if (!xfer->ptp_sts)
1969 		return;
1970 
1971 	if (xfer->timestamped)
1972 		return;
1973 
1974 	if (progress > xfer->ptp_sts_word_pre)
1975 		return;
1976 
1977 	/* Capture the resolution of the timestamp */
1978 	xfer->ptp_sts_word_pre = progress;
1979 
1980 	if (irqs_off) {
1981 		local_irq_save(ctlr->irq_flags);
1982 		preempt_disable();
1983 	}
1984 
1985 	ptp_read_system_prets(xfer->ptp_sts);
1986 }
1987 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1988 
1989 /**
1990  * spi_take_timestamp_post - helper to collect the end of the TX timestamp
1991  * @ctlr: Pointer to the spi_controller structure of the driver
1992  * @xfer: Pointer to the transfer being timestamped
1993  * @progress: How many words (not bytes) have been transferred so far
1994  * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1995  *
1996  * This is a helper for drivers to collect the end of the TX timestamp for
1997  * the requested byte from the SPI transfer. Can be called with an arbitrary
1998  * frequency: only the first call where @tx exceeds or is equal to the
1999  * requested word will be timestamped.
2000  */
spi_take_timestamp_post(struct spi_controller * ctlr,struct spi_transfer * xfer,size_t progress,bool irqs_off)2001 void spi_take_timestamp_post(struct spi_controller *ctlr,
2002 			     struct spi_transfer *xfer,
2003 			     size_t progress, bool irqs_off)
2004 {
2005 	if (!xfer->ptp_sts)
2006 		return;
2007 
2008 	if (xfer->timestamped)
2009 		return;
2010 
2011 	if (progress < xfer->ptp_sts_word_post)
2012 		return;
2013 
2014 	ptp_read_system_postts(xfer->ptp_sts);
2015 
2016 	if (irqs_off) {
2017 		local_irq_restore(ctlr->irq_flags);
2018 		preempt_enable();
2019 	}
2020 
2021 	/* Capture the resolution of the timestamp */
2022 	xfer->ptp_sts_word_post = progress;
2023 
2024 	xfer->timestamped = 1;
2025 }
2026 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
2027 
2028 /**
2029  * spi_set_thread_rt - set the controller to pump at realtime priority
2030  * @ctlr: controller to boost priority of
2031  *
2032  * This can be called because the controller requested realtime priority
2033  * (by setting the ->rt value before calling spi_register_controller()) or
2034  * because a device on the bus said that its transfers needed realtime
2035  * priority.
2036  *
2037  * NOTE: at the moment if any device on a bus says it needs realtime then
2038  * the thread will be at realtime priority for all transfers on that
2039  * controller.  If this eventually becomes a problem we may see if we can
2040  * find a way to boost the priority only temporarily during relevant
2041  * transfers.
2042  */
spi_set_thread_rt(struct spi_controller * ctlr)2043 static void spi_set_thread_rt(struct spi_controller *ctlr)
2044 {
2045 	dev_info(&ctlr->dev,
2046 		"will run message pump with realtime priority\n");
2047 	sched_set_fifo(ctlr->kworker->task);
2048 }
2049 
spi_init_queue(struct spi_controller * ctlr)2050 static int spi_init_queue(struct spi_controller *ctlr)
2051 {
2052 	ctlr->running = false;
2053 	ctlr->busy = false;
2054 	ctlr->queue_empty = true;
2055 
2056 	ctlr->kworker = kthread_run_worker(0, dev_name(&ctlr->dev));
2057 	if (IS_ERR(ctlr->kworker)) {
2058 		dev_err(&ctlr->dev, "failed to create message pump kworker\n");
2059 		return PTR_ERR(ctlr->kworker);
2060 	}
2061 
2062 	kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
2063 
2064 	/*
2065 	 * Controller config will indicate if this controller should run the
2066 	 * message pump with high (realtime) priority to reduce the transfer
2067 	 * latency on the bus by minimising the delay between a transfer
2068 	 * request and the scheduling of the message pump thread. Without this
2069 	 * setting the message pump thread will remain at default priority.
2070 	 */
2071 	if (ctlr->rt)
2072 		spi_set_thread_rt(ctlr);
2073 
2074 	return 0;
2075 }
2076 
2077 /**
2078  * spi_get_next_queued_message() - called by driver to check for queued
2079  * messages
2080  * @ctlr: the controller to check for queued messages
2081  *
2082  * If there are more messages in the queue, the next message is returned from
2083  * this call.
2084  *
2085  * Return: the next message in the queue, else NULL if the queue is empty.
2086  */
spi_get_next_queued_message(struct spi_controller * ctlr)2087 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
2088 {
2089 	struct spi_message *next;
2090 	unsigned long flags;
2091 
2092 	/* Get a pointer to the next message, if any */
2093 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2094 	next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
2095 					queue);
2096 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2097 
2098 	return next;
2099 }
2100 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
2101 
2102 /*
2103  * __spi_unoptimize_message - shared implementation of spi_unoptimize_message()
2104  *                            and spi_maybe_unoptimize_message()
2105  * @msg: the message to unoptimize
2106  *
2107  * Peripheral drivers should use spi_unoptimize_message() and callers inside
2108  * core should use spi_maybe_unoptimize_message() rather than calling this
2109  * function directly.
2110  *
2111  * It is not valid to call this on a message that is not currently optimized.
2112  */
__spi_unoptimize_message(struct spi_message * msg)2113 static void __spi_unoptimize_message(struct spi_message *msg)
2114 {
2115 	struct spi_controller *ctlr = msg->spi->controller;
2116 
2117 	if (ctlr->unoptimize_message)
2118 		ctlr->unoptimize_message(msg);
2119 
2120 	spi_res_release(ctlr, msg);
2121 
2122 	msg->optimized = false;
2123 	msg->opt_state = NULL;
2124 }
2125 
2126 /*
2127  * spi_maybe_unoptimize_message - unoptimize msg not managed by a peripheral
2128  * @msg: the message to unoptimize
2129  *
2130  * This function is used to unoptimize a message if and only if it was
2131  * optimized by the core (via spi_maybe_optimize_message()).
2132  */
spi_maybe_unoptimize_message(struct spi_message * msg)2133 static void spi_maybe_unoptimize_message(struct spi_message *msg)
2134 {
2135 	if (!msg->pre_optimized && msg->optimized &&
2136 	    !msg->spi->controller->defer_optimize_message)
2137 		__spi_unoptimize_message(msg);
2138 }
2139 
2140 /**
2141  * spi_finalize_current_message() - the current message is complete
2142  * @ctlr: the controller to return the message to
2143  *
2144  * Called by the driver to notify the core that the message in the front of the
2145  * queue is complete and can be removed from the queue.
2146  */
spi_finalize_current_message(struct spi_controller * ctlr)2147 void spi_finalize_current_message(struct spi_controller *ctlr)
2148 {
2149 	struct spi_transfer *xfer;
2150 	struct spi_message *mesg;
2151 	int ret;
2152 
2153 	mesg = ctlr->cur_msg;
2154 
2155 	if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
2156 		list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
2157 			ptp_read_system_postts(xfer->ptp_sts);
2158 			xfer->ptp_sts_word_post = xfer->len;
2159 		}
2160 	}
2161 
2162 	if (unlikely(ctlr->ptp_sts_supported))
2163 		list_for_each_entry(xfer, &mesg->transfers, transfer_list)
2164 			WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
2165 
2166 	spi_unmap_msg(ctlr, mesg);
2167 
2168 	if (mesg->prepared && ctlr->unprepare_message) {
2169 		ret = ctlr->unprepare_message(ctlr, mesg);
2170 		if (ret) {
2171 			dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
2172 				ret);
2173 		}
2174 	}
2175 
2176 	mesg->prepared = false;
2177 
2178 	spi_maybe_unoptimize_message(mesg);
2179 
2180 	WRITE_ONCE(ctlr->cur_msg_incomplete, false);
2181 	smp_mb(); /* See __spi_pump_transfer_message()... */
2182 	if (READ_ONCE(ctlr->cur_msg_need_completion))
2183 		complete(&ctlr->cur_msg_completion);
2184 
2185 	trace_spi_message_done(mesg);
2186 
2187 	mesg->state = NULL;
2188 	if (mesg->complete)
2189 		mesg->complete(mesg->context);
2190 }
2191 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
2192 
spi_start_queue(struct spi_controller * ctlr)2193 static int spi_start_queue(struct spi_controller *ctlr)
2194 {
2195 	unsigned long flags;
2196 
2197 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2198 
2199 	if (ctlr->running || ctlr->busy) {
2200 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2201 		return -EBUSY;
2202 	}
2203 
2204 	ctlr->running = true;
2205 	ctlr->cur_msg = NULL;
2206 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2207 
2208 	kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2209 
2210 	return 0;
2211 }
2212 
spi_stop_queue(struct spi_controller * ctlr)2213 static int spi_stop_queue(struct spi_controller *ctlr)
2214 {
2215 	unsigned int limit = 500;
2216 	unsigned long flags;
2217 
2218 	/*
2219 	 * This is a bit lame, but is optimized for the common execution path.
2220 	 * A wait_queue on the ctlr->busy could be used, but then the common
2221 	 * execution path (pump_messages) would be required to call wake_up or
2222 	 * friends on every SPI message. Do this instead.
2223 	 */
2224 	do {
2225 		spin_lock_irqsave(&ctlr->queue_lock, flags);
2226 		if (list_empty(&ctlr->queue) && !ctlr->busy) {
2227 			ctlr->running = false;
2228 			spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2229 			return 0;
2230 		}
2231 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2232 		usleep_range(10000, 11000);
2233 	} while (--limit);
2234 
2235 	return -EBUSY;
2236 }
2237 
spi_destroy_queue(struct spi_controller * ctlr)2238 static int spi_destroy_queue(struct spi_controller *ctlr)
2239 {
2240 	int ret;
2241 
2242 	ret = spi_stop_queue(ctlr);
2243 
2244 	/*
2245 	 * kthread_flush_worker will block until all work is done.
2246 	 * If the reason that stop_queue timed out is that the work will never
2247 	 * finish, then it does no good to call flush/stop thread, so
2248 	 * return anyway.
2249 	 */
2250 	if (ret) {
2251 		dev_err(&ctlr->dev, "problem destroying queue\n");
2252 		return ret;
2253 	}
2254 
2255 	kthread_destroy_worker(ctlr->kworker);
2256 
2257 	return 0;
2258 }
2259 
__spi_queued_transfer(struct spi_device * spi,struct spi_message * msg,bool need_pump)2260 static int __spi_queued_transfer(struct spi_device *spi,
2261 				 struct spi_message *msg,
2262 				 bool need_pump)
2263 {
2264 	struct spi_controller *ctlr = spi->controller;
2265 	unsigned long flags;
2266 
2267 	spin_lock_irqsave(&ctlr->queue_lock, flags);
2268 
2269 	if (!ctlr->running) {
2270 		spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2271 		return -ESHUTDOWN;
2272 	}
2273 	msg->actual_length = 0;
2274 	msg->status = -EINPROGRESS;
2275 
2276 	list_add_tail(&msg->queue, &ctlr->queue);
2277 	ctlr->queue_empty = false;
2278 	if (!ctlr->busy && need_pump)
2279 		kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
2280 
2281 	spin_unlock_irqrestore(&ctlr->queue_lock, flags);
2282 	return 0;
2283 }
2284 
2285 /**
2286  * spi_queued_transfer - transfer function for queued transfers
2287  * @spi: SPI device which is requesting transfer
2288  * @msg: SPI message which is to handled is queued to driver queue
2289  *
2290  * Return: zero on success, else a negative error code.
2291  */
spi_queued_transfer(struct spi_device * spi,struct spi_message * msg)2292 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
2293 {
2294 	return __spi_queued_transfer(spi, msg, true);
2295 }
2296 
spi_controller_initialize_queue(struct spi_controller * ctlr)2297 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
2298 {
2299 	int ret;
2300 
2301 	ctlr->transfer = spi_queued_transfer;
2302 	if (!ctlr->transfer_one_message)
2303 		ctlr->transfer_one_message = spi_transfer_one_message;
2304 
2305 	/* Initialize and start queue */
2306 	ret = spi_init_queue(ctlr);
2307 	if (ret) {
2308 		dev_err(&ctlr->dev, "problem initializing queue\n");
2309 		goto err_init_queue;
2310 	}
2311 	ctlr->queued = true;
2312 	ret = spi_start_queue(ctlr);
2313 	if (ret) {
2314 		dev_err(&ctlr->dev, "problem starting queue\n");
2315 		goto err_start_queue;
2316 	}
2317 
2318 	return 0;
2319 
2320 err_start_queue:
2321 	spi_destroy_queue(ctlr);
2322 err_init_queue:
2323 	return ret;
2324 }
2325 
2326 /**
2327  * spi_flush_queue - Send all pending messages in the queue from the callers'
2328  *		     context
2329  * @ctlr: controller to process queue for
2330  *
2331  * This should be used when one wants to ensure all pending messages have been
2332  * sent before doing something. Is used by the spi-mem code to make sure SPI
2333  * memory operations do not preempt regular SPI transfers that have been queued
2334  * before the spi-mem operation.
2335  */
spi_flush_queue(struct spi_controller * ctlr)2336 void spi_flush_queue(struct spi_controller *ctlr)
2337 {
2338 	if (ctlr->transfer == spi_queued_transfer)
2339 		__spi_pump_messages(ctlr, false);
2340 }
2341 
2342 /*-------------------------------------------------------------------------*/
2343 
2344 #if defined(CONFIG_OF)
of_spi_parse_dt_cs_delay(struct device_node * nc,struct spi_delay * delay,const char * prop)2345 static void of_spi_parse_dt_cs_delay(struct device_node *nc,
2346 				     struct spi_delay *delay, const char *prop)
2347 {
2348 	u32 value;
2349 
2350 	if (!of_property_read_u32(nc, prop, &value)) {
2351 		if (value > U16_MAX) {
2352 			delay->value = DIV_ROUND_UP(value, 1000);
2353 			delay->unit = SPI_DELAY_UNIT_USECS;
2354 		} else {
2355 			delay->value = value;
2356 			delay->unit = SPI_DELAY_UNIT_NSECS;
2357 		}
2358 	}
2359 }
2360 
of_spi_parse_dt(struct spi_controller * ctlr,struct spi_device * spi,struct device_node * nc)2361 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
2362 			   struct device_node *nc)
2363 {
2364 	u32 value, cs[SPI_CS_CNT_MAX];
2365 	int rc, idx;
2366 
2367 	/* Mode (clock phase/polarity/etc.) */
2368 	if (of_property_read_bool(nc, "spi-cpha"))
2369 		spi->mode |= SPI_CPHA;
2370 	if (of_property_read_bool(nc, "spi-cpol"))
2371 		spi->mode |= SPI_CPOL;
2372 	if (of_property_read_bool(nc, "spi-3wire"))
2373 		spi->mode |= SPI_3WIRE;
2374 	if (of_property_read_bool(nc, "spi-lsb-first"))
2375 		spi->mode |= SPI_LSB_FIRST;
2376 	if (of_property_read_bool(nc, "spi-cs-high"))
2377 		spi->mode |= SPI_CS_HIGH;
2378 
2379 	/* Device DUAL/QUAD mode */
2380 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
2381 		switch (value) {
2382 		case 0:
2383 			spi->mode |= SPI_NO_TX;
2384 			break;
2385 		case 1:
2386 			break;
2387 		case 2:
2388 			spi->mode |= SPI_TX_DUAL;
2389 			break;
2390 		case 4:
2391 			spi->mode |= SPI_TX_QUAD;
2392 			break;
2393 		case 8:
2394 			spi->mode |= SPI_TX_OCTAL;
2395 			break;
2396 		default:
2397 			dev_warn(&ctlr->dev,
2398 				"spi-tx-bus-width %d not supported\n",
2399 				value);
2400 			break;
2401 		}
2402 	}
2403 
2404 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
2405 		switch (value) {
2406 		case 0:
2407 			spi->mode |= SPI_NO_RX;
2408 			break;
2409 		case 1:
2410 			break;
2411 		case 2:
2412 			spi->mode |= SPI_RX_DUAL;
2413 			break;
2414 		case 4:
2415 			spi->mode |= SPI_RX_QUAD;
2416 			break;
2417 		case 8:
2418 			spi->mode |= SPI_RX_OCTAL;
2419 			break;
2420 		default:
2421 			dev_warn(&ctlr->dev,
2422 				"spi-rx-bus-width %d not supported\n",
2423 				value);
2424 			break;
2425 		}
2426 	}
2427 
2428 	if (spi_controller_is_target(ctlr)) {
2429 		if (!of_node_name_eq(nc, "slave")) {
2430 			dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
2431 				nc);
2432 			return -EINVAL;
2433 		}
2434 		return 0;
2435 	}
2436 
2437 	if (ctlr->num_chipselect > SPI_CS_CNT_MAX) {
2438 		dev_err(&ctlr->dev, "No. of CS is more than max. no. of supported CS\n");
2439 		return -EINVAL;
2440 	}
2441 
2442 	spi_set_all_cs_unused(spi);
2443 
2444 	/* Device address */
2445 	rc = of_property_read_variable_u32_array(nc, "reg", &cs[0], 1,
2446 						 SPI_CS_CNT_MAX);
2447 	if (rc < 0) {
2448 		dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
2449 			nc, rc);
2450 		return rc;
2451 	}
2452 	if (rc > ctlr->num_chipselect) {
2453 		dev_err(&ctlr->dev, "%pOF has number of CS > ctlr->num_chipselect (%d)\n",
2454 			nc, rc);
2455 		return rc;
2456 	}
2457 	if ((of_property_present(nc, "parallel-memories")) &&
2458 	    (!(ctlr->flags & SPI_CONTROLLER_MULTI_CS))) {
2459 		dev_err(&ctlr->dev, "SPI controller doesn't support multi CS\n");
2460 		return -EINVAL;
2461 	}
2462 	for (idx = 0; idx < rc; idx++)
2463 		spi_set_chipselect(spi, idx, cs[idx]);
2464 
2465 	/*
2466 	 * By default spi->chip_select[0] will hold the physical CS number,
2467 	 * so set bit 0 in spi->cs_index_mask.
2468 	 */
2469 	spi->cs_index_mask = BIT(0);
2470 
2471 	/* Device speed */
2472 	if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2473 		spi->max_speed_hz = value;
2474 
2475 	/* Device CS delays */
2476 	of_spi_parse_dt_cs_delay(nc, &spi->cs_setup, "spi-cs-setup-delay-ns");
2477 	of_spi_parse_dt_cs_delay(nc, &spi->cs_hold, "spi-cs-hold-delay-ns");
2478 	of_spi_parse_dt_cs_delay(nc, &spi->cs_inactive, "spi-cs-inactive-delay-ns");
2479 
2480 	return 0;
2481 }
2482 
2483 static struct spi_device *
of_register_spi_device(struct spi_controller * ctlr,struct device_node * nc)2484 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2485 {
2486 	struct spi_device *spi;
2487 	int rc;
2488 
2489 	/* Alloc an spi_device */
2490 	spi = spi_alloc_device(ctlr);
2491 	if (!spi) {
2492 		dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2493 		rc = -ENOMEM;
2494 		goto err_out;
2495 	}
2496 
2497 	/* Select device driver */
2498 	rc = of_alias_from_compatible(nc, spi->modalias,
2499 				      sizeof(spi->modalias));
2500 	if (rc < 0) {
2501 		dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2502 		goto err_out;
2503 	}
2504 
2505 	rc = of_spi_parse_dt(ctlr, spi, nc);
2506 	if (rc)
2507 		goto err_out;
2508 
2509 	/* Store a pointer to the node in the device structure */
2510 	of_node_get(nc);
2511 
2512 	device_set_node(&spi->dev, of_fwnode_handle(nc));
2513 
2514 	/* Register the new device */
2515 	rc = spi_add_device(spi);
2516 	if (rc) {
2517 		dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2518 		goto err_of_node_put;
2519 	}
2520 
2521 	return spi;
2522 
2523 err_of_node_put:
2524 	of_node_put(nc);
2525 err_out:
2526 	spi_dev_put(spi);
2527 	return ERR_PTR(rc);
2528 }
2529 
2530 /**
2531  * of_register_spi_devices() - Register child devices onto the SPI bus
2532  * @ctlr:	Pointer to spi_controller device
2533  *
2534  * Registers an spi_device for each child node of controller node which
2535  * represents a valid SPI target device.
2536  */
of_register_spi_devices(struct spi_controller * ctlr)2537 static void of_register_spi_devices(struct spi_controller *ctlr)
2538 {
2539 	struct spi_device *spi;
2540 	struct device_node *nc;
2541 
2542 	for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2543 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
2544 			continue;
2545 		spi = of_register_spi_device(ctlr, nc);
2546 		if (IS_ERR(spi)) {
2547 			dev_warn(&ctlr->dev,
2548 				 "Failed to create SPI device for %pOF\n", nc);
2549 			of_node_clear_flag(nc, OF_POPULATED);
2550 		}
2551 	}
2552 }
2553 #else
of_register_spi_devices(struct spi_controller * ctlr)2554 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2555 #endif
2556 
2557 /**
2558  * spi_new_ancillary_device() - Register ancillary SPI device
2559  * @spi:         Pointer to the main SPI device registering the ancillary device
2560  * @chip_select: Chip Select of the ancillary device
2561  *
2562  * Register an ancillary SPI device; for example some chips have a chip-select
2563  * for normal device usage and another one for setup/firmware upload.
2564  *
2565  * This may only be called from main SPI device's probe routine.
2566  *
2567  * Return: 0 on success; negative errno on failure
2568  */
spi_new_ancillary_device(struct spi_device * spi,u8 chip_select)2569 struct spi_device *spi_new_ancillary_device(struct spi_device *spi,
2570 					     u8 chip_select)
2571 {
2572 	struct spi_controller *ctlr = spi->controller;
2573 	struct spi_device *ancillary;
2574 	int rc;
2575 
2576 	/* Alloc an spi_device */
2577 	ancillary = spi_alloc_device(ctlr);
2578 	if (!ancillary) {
2579 		rc = -ENOMEM;
2580 		goto err_out;
2581 	}
2582 
2583 	strscpy(ancillary->modalias, "dummy", sizeof(ancillary->modalias));
2584 
2585 	/* Use provided chip-select for ancillary device */
2586 	spi_set_all_cs_unused(ancillary);
2587 	spi_set_chipselect(ancillary, 0, chip_select);
2588 
2589 	/* Take over SPI mode/speed from SPI main device */
2590 	ancillary->max_speed_hz = spi->max_speed_hz;
2591 	ancillary->mode = spi->mode;
2592 	/*
2593 	 * By default spi->chip_select[0] will hold the physical CS number,
2594 	 * so set bit 0 in spi->cs_index_mask.
2595 	 */
2596 	ancillary->cs_index_mask = BIT(0);
2597 
2598 	WARN_ON(!mutex_is_locked(&ctlr->add_lock));
2599 
2600 	/* Register the new device */
2601 	rc = __spi_add_device(ancillary);
2602 	if (rc) {
2603 		dev_err(&spi->dev, "failed to register ancillary device\n");
2604 		goto err_out;
2605 	}
2606 
2607 	return ancillary;
2608 
2609 err_out:
2610 	spi_dev_put(ancillary);
2611 	return ERR_PTR(rc);
2612 }
2613 EXPORT_SYMBOL_GPL(spi_new_ancillary_device);
2614 
2615 #ifdef CONFIG_ACPI
2616 struct acpi_spi_lookup {
2617 	struct spi_controller 	*ctlr;
2618 	u32			max_speed_hz;
2619 	u32			mode;
2620 	int			irq;
2621 	u8			bits_per_word;
2622 	u8			chip_select;
2623 	int			n;
2624 	int			index;
2625 };
2626 
acpi_spi_count(struct acpi_resource * ares,void * data)2627 static int acpi_spi_count(struct acpi_resource *ares, void *data)
2628 {
2629 	struct acpi_resource_spi_serialbus *sb;
2630 	int *count = data;
2631 
2632 	if (ares->type != ACPI_RESOURCE_TYPE_SERIAL_BUS)
2633 		return 1;
2634 
2635 	sb = &ares->data.spi_serial_bus;
2636 	if (sb->type != ACPI_RESOURCE_SERIAL_TYPE_SPI)
2637 		return 1;
2638 
2639 	*count = *count + 1;
2640 
2641 	return 1;
2642 }
2643 
2644 /**
2645  * acpi_spi_count_resources - Count the number of SpiSerialBus resources
2646  * @adev:	ACPI device
2647  *
2648  * Return: the number of SpiSerialBus resources in the ACPI-device's
2649  * resource-list; or a negative error code.
2650  */
acpi_spi_count_resources(struct acpi_device * adev)2651 int acpi_spi_count_resources(struct acpi_device *adev)
2652 {
2653 	LIST_HEAD(r);
2654 	int count = 0;
2655 	int ret;
2656 
2657 	ret = acpi_dev_get_resources(adev, &r, acpi_spi_count, &count);
2658 	if (ret < 0)
2659 		return ret;
2660 
2661 	acpi_dev_free_resource_list(&r);
2662 
2663 	return count;
2664 }
2665 EXPORT_SYMBOL_GPL(acpi_spi_count_resources);
2666 
acpi_spi_parse_apple_properties(struct acpi_device * dev,struct acpi_spi_lookup * lookup)2667 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2668 					    struct acpi_spi_lookup *lookup)
2669 {
2670 	const union acpi_object *obj;
2671 
2672 	if (!x86_apple_machine)
2673 		return;
2674 
2675 	if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2676 	    && obj->buffer.length >= 4)
2677 		lookup->max_speed_hz  = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2678 
2679 	if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2680 	    && obj->buffer.length == 8)
2681 		lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2682 
2683 	if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2684 	    && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2685 		lookup->mode |= SPI_LSB_FIRST;
2686 
2687 	if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2688 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2689 		lookup->mode |= SPI_CPOL;
2690 
2691 	if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2692 	    && obj->buffer.length == 8 &&  *(u64 *)obj->buffer.pointer)
2693 		lookup->mode |= SPI_CPHA;
2694 }
2695 
acpi_spi_add_resource(struct acpi_resource * ares,void * data)2696 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2697 {
2698 	struct acpi_spi_lookup *lookup = data;
2699 	struct spi_controller *ctlr = lookup->ctlr;
2700 
2701 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2702 		struct acpi_resource_spi_serialbus *sb;
2703 		acpi_handle parent_handle;
2704 		acpi_status status;
2705 
2706 		sb = &ares->data.spi_serial_bus;
2707 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2708 
2709 			if (lookup->index != -1 && lookup->n++ != lookup->index)
2710 				return 1;
2711 
2712 			status = acpi_get_handle(NULL,
2713 						 sb->resource_source.string_ptr,
2714 						 &parent_handle);
2715 
2716 			if (ACPI_FAILURE(status))
2717 				return -ENODEV;
2718 
2719 			if (ctlr) {
2720 				if (!device_match_acpi_handle(ctlr->dev.parent, parent_handle))
2721 					return -ENODEV;
2722 			} else {
2723 				struct acpi_device *adev;
2724 
2725 				adev = acpi_fetch_acpi_dev(parent_handle);
2726 				if (!adev)
2727 					return -ENODEV;
2728 
2729 				ctlr = acpi_spi_find_controller_by_adev(adev);
2730 				if (!ctlr)
2731 					return -EPROBE_DEFER;
2732 
2733 				lookup->ctlr = ctlr;
2734 			}
2735 
2736 			/*
2737 			 * ACPI DeviceSelection numbering is handled by the
2738 			 * host controller driver in Windows and can vary
2739 			 * from driver to driver. In Linux we always expect
2740 			 * 0 .. max - 1 so we need to ask the driver to
2741 			 * translate between the two schemes.
2742 			 */
2743 			if (ctlr->fw_translate_cs) {
2744 				int cs = ctlr->fw_translate_cs(ctlr,
2745 						sb->device_selection);
2746 				if (cs < 0)
2747 					return cs;
2748 				lookup->chip_select = cs;
2749 			} else {
2750 				lookup->chip_select = sb->device_selection;
2751 			}
2752 
2753 			lookup->max_speed_hz = sb->connection_speed;
2754 			lookup->bits_per_word = sb->data_bit_length;
2755 
2756 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2757 				lookup->mode |= SPI_CPHA;
2758 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2759 				lookup->mode |= SPI_CPOL;
2760 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2761 				lookup->mode |= SPI_CS_HIGH;
2762 		}
2763 	} else if (lookup->irq < 0) {
2764 		struct resource r;
2765 
2766 		if (acpi_dev_resource_interrupt(ares, 0, &r))
2767 			lookup->irq = r.start;
2768 	}
2769 
2770 	/* Always tell the ACPI core to skip this resource */
2771 	return 1;
2772 }
2773 
2774 /**
2775  * acpi_spi_device_alloc - Allocate a spi device, and fill it in with ACPI information
2776  * @ctlr: controller to which the spi device belongs
2777  * @adev: ACPI Device for the spi device
2778  * @index: Index of the spi resource inside the ACPI Node
2779  *
2780  * This should be used to allocate a new SPI device from and ACPI Device node.
2781  * The caller is responsible for calling spi_add_device to register the SPI device.
2782  *
2783  * If ctlr is set to NULL, the Controller for the SPI device will be looked up
2784  * using the resource.
2785  * If index is set to -1, index is not used.
2786  * Note: If index is -1, ctlr must be set.
2787  *
2788  * Return: a pointer to the new device, or ERR_PTR on error.
2789  */
acpi_spi_device_alloc(struct spi_controller * ctlr,struct acpi_device * adev,int index)2790 struct spi_device *acpi_spi_device_alloc(struct spi_controller *ctlr,
2791 					 struct acpi_device *adev,
2792 					 int index)
2793 {
2794 	acpi_handle parent_handle = NULL;
2795 	struct list_head resource_list;
2796 	struct acpi_spi_lookup lookup = {};
2797 	struct spi_device *spi;
2798 	int ret;
2799 
2800 	if (!ctlr && index == -1)
2801 		return ERR_PTR(-EINVAL);
2802 
2803 	lookup.ctlr		= ctlr;
2804 	lookup.irq		= -1;
2805 	lookup.index		= index;
2806 	lookup.n		= 0;
2807 
2808 	INIT_LIST_HEAD(&resource_list);
2809 	ret = acpi_dev_get_resources(adev, &resource_list,
2810 				     acpi_spi_add_resource, &lookup);
2811 	acpi_dev_free_resource_list(&resource_list);
2812 
2813 	if (ret < 0)
2814 		/* Found SPI in _CRS but it points to another controller */
2815 		return ERR_PTR(ret);
2816 
2817 	if (!lookup.max_speed_hz &&
2818 	    ACPI_SUCCESS(acpi_get_parent(adev->handle, &parent_handle)) &&
2819 	    device_match_acpi_handle(lookup.ctlr->dev.parent, parent_handle)) {
2820 		/* Apple does not use _CRS but nested devices for SPI target devices */
2821 		acpi_spi_parse_apple_properties(adev, &lookup);
2822 	}
2823 
2824 	if (!lookup.max_speed_hz)
2825 		return ERR_PTR(-ENODEV);
2826 
2827 	spi = spi_alloc_device(lookup.ctlr);
2828 	if (!spi) {
2829 		dev_err(&lookup.ctlr->dev, "failed to allocate SPI device for %s\n",
2830 			dev_name(&adev->dev));
2831 		return ERR_PTR(-ENOMEM);
2832 	}
2833 
2834 	spi_set_all_cs_unused(spi);
2835 	spi_set_chipselect(spi, 0, lookup.chip_select);
2836 
2837 	ACPI_COMPANION_SET(&spi->dev, adev);
2838 	spi->max_speed_hz	= lookup.max_speed_hz;
2839 	spi->mode		|= lookup.mode;
2840 	spi->irq		= lookup.irq;
2841 	spi->bits_per_word	= lookup.bits_per_word;
2842 	/*
2843 	 * By default spi->chip_select[0] will hold the physical CS number,
2844 	 * so set bit 0 in spi->cs_index_mask.
2845 	 */
2846 	spi->cs_index_mask	= BIT(0);
2847 
2848 	return spi;
2849 }
2850 EXPORT_SYMBOL_GPL(acpi_spi_device_alloc);
2851 
acpi_register_spi_device(struct spi_controller * ctlr,struct acpi_device * adev)2852 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2853 					    struct acpi_device *adev)
2854 {
2855 	struct spi_device *spi;
2856 
2857 	if (acpi_bus_get_status(adev) || !adev->status.present ||
2858 	    acpi_device_enumerated(adev))
2859 		return AE_OK;
2860 
2861 	spi = acpi_spi_device_alloc(ctlr, adev, -1);
2862 	if (IS_ERR(spi)) {
2863 		if (PTR_ERR(spi) == -ENOMEM)
2864 			return AE_NO_MEMORY;
2865 		else
2866 			return AE_OK;
2867 	}
2868 
2869 	acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2870 			  sizeof(spi->modalias));
2871 
2872 	acpi_device_set_enumerated(adev);
2873 
2874 	adev->power.flags.ignore_parent = true;
2875 	if (spi_add_device(spi)) {
2876 		adev->power.flags.ignore_parent = false;
2877 		dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2878 			dev_name(&adev->dev));
2879 		spi_dev_put(spi);
2880 	}
2881 
2882 	return AE_OK;
2883 }
2884 
acpi_spi_add_device(acpi_handle handle,u32 level,void * data,void ** return_value)2885 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2886 				       void *data, void **return_value)
2887 {
2888 	struct acpi_device *adev = acpi_fetch_acpi_dev(handle);
2889 	struct spi_controller *ctlr = data;
2890 
2891 	if (!adev)
2892 		return AE_OK;
2893 
2894 	return acpi_register_spi_device(ctlr, adev);
2895 }
2896 
2897 #define SPI_ACPI_ENUMERATE_MAX_DEPTH		32
2898 
acpi_register_spi_devices(struct spi_controller * ctlr)2899 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2900 {
2901 	acpi_status status;
2902 	acpi_handle handle;
2903 
2904 	handle = ACPI_HANDLE(ctlr->dev.parent);
2905 	if (!handle)
2906 		return;
2907 
2908 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2909 				     SPI_ACPI_ENUMERATE_MAX_DEPTH,
2910 				     acpi_spi_add_device, NULL, ctlr, NULL);
2911 	if (ACPI_FAILURE(status))
2912 		dev_warn(&ctlr->dev, "failed to enumerate SPI target devices\n");
2913 }
2914 #else
acpi_register_spi_devices(struct spi_controller * ctlr)2915 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2916 #endif /* CONFIG_ACPI */
2917 
spi_controller_release(struct device * dev)2918 static void spi_controller_release(struct device *dev)
2919 {
2920 	struct spi_controller *ctlr;
2921 
2922 	ctlr = container_of(dev, struct spi_controller, dev);
2923 	kfree(ctlr);
2924 }
2925 
2926 static const struct class spi_controller_class = {
2927 	.name		= "spi_master",
2928 	.dev_release	= spi_controller_release,
2929 	.dev_groups	= spi_controller_groups,
2930 };
2931 
2932 #ifdef CONFIG_SPI_SLAVE
2933 /**
2934  * spi_target_abort - abort the ongoing transfer request on an SPI target controller
2935  * @spi: device used for the current transfer
2936  */
spi_target_abort(struct spi_device * spi)2937 int spi_target_abort(struct spi_device *spi)
2938 {
2939 	struct spi_controller *ctlr = spi->controller;
2940 
2941 	if (spi_controller_is_target(ctlr) && ctlr->target_abort)
2942 		return ctlr->target_abort(ctlr);
2943 
2944 	return -ENOTSUPP;
2945 }
2946 EXPORT_SYMBOL_GPL(spi_target_abort);
2947 
slave_show(struct device * dev,struct device_attribute * attr,char * buf)2948 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2949 			  char *buf)
2950 {
2951 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2952 						   dev);
2953 	struct device *child;
2954 	int ret;
2955 
2956 	child = device_find_any_child(&ctlr->dev);
2957 	ret = sysfs_emit(buf, "%s\n", child ? to_spi_device(child)->modalias : NULL);
2958 	put_device(child);
2959 
2960 	return ret;
2961 }
2962 
slave_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2963 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2964 			   const char *buf, size_t count)
2965 {
2966 	struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2967 						   dev);
2968 	struct spi_device *spi;
2969 	struct device *child;
2970 	char name[32];
2971 	int rc;
2972 
2973 	rc = sscanf(buf, "%31s", name);
2974 	if (rc != 1 || !name[0])
2975 		return -EINVAL;
2976 
2977 	child = device_find_any_child(&ctlr->dev);
2978 	if (child) {
2979 		/* Remove registered target device */
2980 		device_unregister(child);
2981 		put_device(child);
2982 	}
2983 
2984 	if (strcmp(name, "(null)")) {
2985 		/* Register new target device */
2986 		spi = spi_alloc_device(ctlr);
2987 		if (!spi)
2988 			return -ENOMEM;
2989 
2990 		strscpy(spi->modalias, name, sizeof(spi->modalias));
2991 
2992 		rc = spi_add_device(spi);
2993 		if (rc) {
2994 			spi_dev_put(spi);
2995 			return rc;
2996 		}
2997 	}
2998 
2999 	return count;
3000 }
3001 
3002 static DEVICE_ATTR_RW(slave);
3003 
3004 static struct attribute *spi_target_attrs[] = {
3005 	&dev_attr_slave.attr,
3006 	NULL,
3007 };
3008 
3009 static const struct attribute_group spi_target_group = {
3010 	.attrs = spi_target_attrs,
3011 };
3012 
3013 static const struct attribute_group *spi_target_groups[] = {
3014 	&spi_controller_statistics_group,
3015 	&spi_target_group,
3016 	NULL,
3017 };
3018 
3019 static const struct class spi_target_class = {
3020 	.name		= "spi_slave",
3021 	.dev_release	= spi_controller_release,
3022 	.dev_groups	= spi_target_groups,
3023 };
3024 #else
3025 extern struct class spi_target_class;	/* dummy */
3026 #endif
3027 
3028 /**
3029  * __spi_alloc_controller - allocate an SPI host or target controller
3030  * @dev: the controller, possibly using the platform_bus
3031  * @size: how much zeroed driver-private data to allocate; the pointer to this
3032  *	memory is in the driver_data field of the returned device, accessible
3033  *	with spi_controller_get_devdata(); the memory is cacheline aligned;
3034  *	drivers granting DMA access to portions of their private data need to
3035  *	round up @size using ALIGN(size, dma_get_cache_alignment()).
3036  * @target: flag indicating whether to allocate an SPI host (false) or SPI target (true)
3037  *	controller
3038  * Context: can sleep
3039  *
3040  * This call is used only by SPI controller drivers, which are the
3041  * only ones directly touching chip registers.  It's how they allocate
3042  * an spi_controller structure, prior to calling spi_register_controller().
3043  *
3044  * This must be called from context that can sleep.
3045  *
3046  * The caller is responsible for assigning the bus number and initializing the
3047  * controller's methods before calling spi_register_controller(); and (after
3048  * errors adding the device) calling spi_controller_put() to prevent a memory
3049  * leak.
3050  *
3051  * Return: the SPI controller structure on success, else NULL.
3052  */
__spi_alloc_controller(struct device * dev,unsigned int size,bool target)3053 struct spi_controller *__spi_alloc_controller(struct device *dev,
3054 					      unsigned int size, bool target)
3055 {
3056 	struct spi_controller	*ctlr;
3057 	size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
3058 
3059 	if (!dev)
3060 		return NULL;
3061 
3062 	ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
3063 	if (!ctlr)
3064 		return NULL;
3065 
3066 	device_initialize(&ctlr->dev);
3067 	INIT_LIST_HEAD(&ctlr->queue);
3068 	spin_lock_init(&ctlr->queue_lock);
3069 	spin_lock_init(&ctlr->bus_lock_spinlock);
3070 	mutex_init(&ctlr->bus_lock_mutex);
3071 	mutex_init(&ctlr->io_mutex);
3072 	mutex_init(&ctlr->add_lock);
3073 	ctlr->bus_num = -1;
3074 	ctlr->num_chipselect = 1;
3075 	ctlr->target = target;
3076 	if (IS_ENABLED(CONFIG_SPI_SLAVE) && target)
3077 		ctlr->dev.class = &spi_target_class;
3078 	else
3079 		ctlr->dev.class = &spi_controller_class;
3080 	ctlr->dev.parent = dev;
3081 	pm_suspend_ignore_children(&ctlr->dev, true);
3082 	spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
3083 
3084 	return ctlr;
3085 }
3086 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
3087 
devm_spi_release_controller(struct device * dev,void * ctlr)3088 static void devm_spi_release_controller(struct device *dev, void *ctlr)
3089 {
3090 	spi_controller_put(*(struct spi_controller **)ctlr);
3091 }
3092 
3093 /**
3094  * __devm_spi_alloc_controller - resource-managed __spi_alloc_controller()
3095  * @dev: physical device of SPI controller
3096  * @size: how much zeroed driver-private data to allocate
3097  * @target: whether to allocate an SPI host (false) or SPI target (true) controller
3098  * Context: can sleep
3099  *
3100  * Allocate an SPI controller and automatically release a reference on it
3101  * when @dev is unbound from its driver.  Drivers are thus relieved from
3102  * having to call spi_controller_put().
3103  *
3104  * The arguments to this function are identical to __spi_alloc_controller().
3105  *
3106  * Return: the SPI controller structure on success, else NULL.
3107  */
__devm_spi_alloc_controller(struct device * dev,unsigned int size,bool target)3108 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
3109 						   unsigned int size,
3110 						   bool target)
3111 {
3112 	struct spi_controller **ptr, *ctlr;
3113 
3114 	ptr = devres_alloc(devm_spi_release_controller, sizeof(*ptr),
3115 			   GFP_KERNEL);
3116 	if (!ptr)
3117 		return NULL;
3118 
3119 	ctlr = __spi_alloc_controller(dev, size, target);
3120 	if (ctlr) {
3121 		ctlr->devm_allocated = true;
3122 		*ptr = ctlr;
3123 		devres_add(dev, ptr);
3124 	} else {
3125 		devres_free(ptr);
3126 	}
3127 
3128 	return ctlr;
3129 }
3130 EXPORT_SYMBOL_GPL(__devm_spi_alloc_controller);
3131 
3132 /**
3133  * spi_get_gpio_descs() - grab chip select GPIOs for the controller
3134  * @ctlr: The SPI controller to grab GPIO descriptors for
3135  */
spi_get_gpio_descs(struct spi_controller * ctlr)3136 static int spi_get_gpio_descs(struct spi_controller *ctlr)
3137 {
3138 	int nb, i;
3139 	struct gpio_desc **cs;
3140 	struct device *dev = &ctlr->dev;
3141 	unsigned long native_cs_mask = 0;
3142 	unsigned int num_cs_gpios = 0;
3143 
3144 	nb = gpiod_count(dev, "cs");
3145 	if (nb < 0) {
3146 		/* No GPIOs at all is fine, else return the error */
3147 		if (nb == -ENOENT)
3148 			return 0;
3149 		return nb;
3150 	}
3151 
3152 	ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
3153 
3154 	cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
3155 			  GFP_KERNEL);
3156 	if (!cs)
3157 		return -ENOMEM;
3158 	ctlr->cs_gpiods = cs;
3159 
3160 	for (i = 0; i < nb; i++) {
3161 		/*
3162 		 * Most chipselects are active low, the inverted
3163 		 * semantics are handled by special quirks in gpiolib,
3164 		 * so initializing them GPIOD_OUT_LOW here means
3165 		 * "unasserted", in most cases this will drive the physical
3166 		 * line high.
3167 		 */
3168 		cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
3169 						      GPIOD_OUT_LOW);
3170 		if (IS_ERR(cs[i]))
3171 			return PTR_ERR(cs[i]);
3172 
3173 		if (cs[i]) {
3174 			/*
3175 			 * If we find a CS GPIO, name it after the device and
3176 			 * chip select line.
3177 			 */
3178 			char *gpioname;
3179 
3180 			gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
3181 						  dev_name(dev), i);
3182 			if (!gpioname)
3183 				return -ENOMEM;
3184 			gpiod_set_consumer_name(cs[i], gpioname);
3185 			num_cs_gpios++;
3186 			continue;
3187 		}
3188 
3189 		if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
3190 			dev_err(dev, "Invalid native chip select %d\n", i);
3191 			return -EINVAL;
3192 		}
3193 		native_cs_mask |= BIT(i);
3194 	}
3195 
3196 	ctlr->unused_native_cs = ffs(~native_cs_mask) - 1;
3197 
3198 	if ((ctlr->flags & SPI_CONTROLLER_GPIO_SS) && num_cs_gpios &&
3199 	    ctlr->max_native_cs && ctlr->unused_native_cs >= ctlr->max_native_cs) {
3200 		dev_err(dev, "No unused native chip select available\n");
3201 		return -EINVAL;
3202 	}
3203 
3204 	return 0;
3205 }
3206 
spi_controller_check_ops(struct spi_controller * ctlr)3207 static int spi_controller_check_ops(struct spi_controller *ctlr)
3208 {
3209 	/*
3210 	 * The controller may implement only the high-level SPI-memory like
3211 	 * operations if it does not support regular SPI transfers, and this is
3212 	 * valid use case.
3213 	 * If ->mem_ops or ->mem_ops->exec_op is NULL, we request that at least
3214 	 * one of the ->transfer_xxx() method be implemented.
3215 	 */
3216 	if (!ctlr->mem_ops || !ctlr->mem_ops->exec_op) {
3217 		if (!ctlr->transfer && !ctlr->transfer_one &&
3218 		   !ctlr->transfer_one_message) {
3219 			return -EINVAL;
3220 		}
3221 	}
3222 
3223 	return 0;
3224 }
3225 
3226 /* Allocate dynamic bus number using Linux idr */
spi_controller_id_alloc(struct spi_controller * ctlr,int start,int end)3227 static int spi_controller_id_alloc(struct spi_controller *ctlr, int start, int end)
3228 {
3229 	int id;
3230 
3231 	mutex_lock(&board_lock);
3232 	id = idr_alloc(&spi_controller_idr, ctlr, start, end, GFP_KERNEL);
3233 	mutex_unlock(&board_lock);
3234 	if (WARN(id < 0, "couldn't get idr"))
3235 		return id == -ENOSPC ? -EBUSY : id;
3236 	ctlr->bus_num = id;
3237 	return 0;
3238 }
3239 
3240 /**
3241  * spi_register_controller - register SPI host or target controller
3242  * @ctlr: initialized controller, originally from spi_alloc_host() or
3243  *	spi_alloc_target()
3244  * Context: can sleep
3245  *
3246  * SPI controllers connect to their drivers using some non-SPI bus,
3247  * such as the platform bus.  The final stage of probe() in that code
3248  * includes calling spi_register_controller() to hook up to this SPI bus glue.
3249  *
3250  * SPI controllers use board specific (often SOC specific) bus numbers,
3251  * and board-specific addressing for SPI devices combines those numbers
3252  * with chip select numbers.  Since SPI does not directly support dynamic
3253  * device identification, boards need configuration tables telling which
3254  * chip is at which address.
3255  *
3256  * This must be called from context that can sleep.  It returns zero on
3257  * success, else a negative error code (dropping the controller's refcount).
3258  * After a successful return, the caller is responsible for calling
3259  * spi_unregister_controller().
3260  *
3261  * Return: zero on success, else a negative error code.
3262  */
spi_register_controller(struct spi_controller * ctlr)3263 int spi_register_controller(struct spi_controller *ctlr)
3264 {
3265 	struct device		*dev = ctlr->dev.parent;
3266 	struct boardinfo	*bi;
3267 	int			first_dynamic;
3268 	int			status;
3269 	int			idx;
3270 
3271 	if (!dev)
3272 		return -ENODEV;
3273 
3274 	/*
3275 	 * Make sure all necessary hooks are implemented before registering
3276 	 * the SPI controller.
3277 	 */
3278 	status = spi_controller_check_ops(ctlr);
3279 	if (status)
3280 		return status;
3281 
3282 	if (ctlr->bus_num < 0)
3283 		ctlr->bus_num = of_alias_get_id(ctlr->dev.of_node, "spi");
3284 	if (ctlr->bus_num >= 0) {
3285 		/* Devices with a fixed bus num must check-in with the num */
3286 		status = spi_controller_id_alloc(ctlr, ctlr->bus_num, ctlr->bus_num + 1);
3287 		if (status)
3288 			return status;
3289 	}
3290 	if (ctlr->bus_num < 0) {
3291 		first_dynamic = of_alias_get_highest_id("spi");
3292 		if (first_dynamic < 0)
3293 			first_dynamic = 0;
3294 		else
3295 			first_dynamic++;
3296 
3297 		status = spi_controller_id_alloc(ctlr, first_dynamic, 0);
3298 		if (status)
3299 			return status;
3300 	}
3301 	ctlr->bus_lock_flag = 0;
3302 	init_completion(&ctlr->xfer_completion);
3303 	init_completion(&ctlr->cur_msg_completion);
3304 	if (!ctlr->max_dma_len)
3305 		ctlr->max_dma_len = INT_MAX;
3306 
3307 	/*
3308 	 * Register the device, then userspace will see it.
3309 	 * Registration fails if the bus ID is in use.
3310 	 */
3311 	dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
3312 
3313 	if (!spi_controller_is_target(ctlr) && ctlr->use_gpio_descriptors) {
3314 		status = spi_get_gpio_descs(ctlr);
3315 		if (status)
3316 			goto free_bus_id;
3317 		/*
3318 		 * A controller using GPIO descriptors always
3319 		 * supports SPI_CS_HIGH if need be.
3320 		 */
3321 		ctlr->mode_bits |= SPI_CS_HIGH;
3322 	}
3323 
3324 	/*
3325 	 * Even if it's just one always-selected device, there must
3326 	 * be at least one chipselect.
3327 	 */
3328 	if (!ctlr->num_chipselect) {
3329 		status = -EINVAL;
3330 		goto free_bus_id;
3331 	}
3332 
3333 	/* Setting last_cs to SPI_INVALID_CS means no chip selected */
3334 	for (idx = 0; idx < SPI_CS_CNT_MAX; idx++)
3335 		ctlr->last_cs[idx] = SPI_INVALID_CS;
3336 
3337 	status = device_add(&ctlr->dev);
3338 	if (status < 0)
3339 		goto free_bus_id;
3340 	dev_dbg(dev, "registered %s %s\n",
3341 			spi_controller_is_target(ctlr) ? "target" : "host",
3342 			dev_name(&ctlr->dev));
3343 
3344 	/*
3345 	 * If we're using a queued driver, start the queue. Note that we don't
3346 	 * need the queueing logic if the driver is only supporting high-level
3347 	 * memory operations.
3348 	 */
3349 	if (ctlr->transfer) {
3350 		dev_info(dev, "controller is unqueued, this is deprecated\n");
3351 	} else if (ctlr->transfer_one || ctlr->transfer_one_message) {
3352 		status = spi_controller_initialize_queue(ctlr);
3353 		if (status) {
3354 			device_del(&ctlr->dev);
3355 			goto free_bus_id;
3356 		}
3357 	}
3358 	/* Add statistics */
3359 	ctlr->pcpu_statistics = spi_alloc_pcpu_stats(dev);
3360 	if (!ctlr->pcpu_statistics) {
3361 		dev_err(dev, "Error allocating per-cpu statistics\n");
3362 		status = -ENOMEM;
3363 		goto destroy_queue;
3364 	}
3365 
3366 	mutex_lock(&board_lock);
3367 	list_add_tail(&ctlr->list, &spi_controller_list);
3368 	list_for_each_entry(bi, &board_list, list)
3369 		spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
3370 	mutex_unlock(&board_lock);
3371 
3372 	/* Register devices from the device tree and ACPI */
3373 	of_register_spi_devices(ctlr);
3374 	acpi_register_spi_devices(ctlr);
3375 	return status;
3376 
3377 destroy_queue:
3378 	spi_destroy_queue(ctlr);
3379 free_bus_id:
3380 	mutex_lock(&board_lock);
3381 	idr_remove(&spi_controller_idr, ctlr->bus_num);
3382 	mutex_unlock(&board_lock);
3383 	return status;
3384 }
3385 EXPORT_SYMBOL_GPL(spi_register_controller);
3386 
devm_spi_unregister(struct device * dev,void * res)3387 static void devm_spi_unregister(struct device *dev, void *res)
3388 {
3389 	spi_unregister_controller(*(struct spi_controller **)res);
3390 }
3391 
3392 /**
3393  * devm_spi_register_controller - register managed SPI host or target controller
3394  * @dev:    device managing SPI controller
3395  * @ctlr: initialized controller, originally from spi_alloc_host() or
3396  *	spi_alloc_target()
3397  * Context: can sleep
3398  *
3399  * Register a SPI device as with spi_register_controller() which will
3400  * automatically be unregistered and freed.
3401  *
3402  * Return: zero on success, else a negative error code.
3403  */
devm_spi_register_controller(struct device * dev,struct spi_controller * ctlr)3404 int devm_spi_register_controller(struct device *dev,
3405 				 struct spi_controller *ctlr)
3406 {
3407 	struct spi_controller **ptr;
3408 	int ret;
3409 
3410 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
3411 	if (!ptr)
3412 		return -ENOMEM;
3413 
3414 	ret = spi_register_controller(ctlr);
3415 	if (!ret) {
3416 		*ptr = ctlr;
3417 		devres_add(dev, ptr);
3418 	} else {
3419 		devres_free(ptr);
3420 	}
3421 
3422 	return ret;
3423 }
3424 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
3425 
__unregister(struct device * dev,void * null)3426 static int __unregister(struct device *dev, void *null)
3427 {
3428 	spi_unregister_device(to_spi_device(dev));
3429 	return 0;
3430 }
3431 
3432 /**
3433  * spi_unregister_controller - unregister SPI host or target controller
3434  * @ctlr: the controller being unregistered
3435  * Context: can sleep
3436  *
3437  * This call is used only by SPI controller drivers, which are the
3438  * only ones directly touching chip registers.
3439  *
3440  * This must be called from context that can sleep.
3441  *
3442  * Note that this function also drops a reference to the controller.
3443  */
spi_unregister_controller(struct spi_controller * ctlr)3444 void spi_unregister_controller(struct spi_controller *ctlr)
3445 {
3446 	struct spi_controller *found;
3447 	int id = ctlr->bus_num;
3448 
3449 	/* Prevent addition of new devices, unregister existing ones */
3450 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3451 		mutex_lock(&ctlr->add_lock);
3452 
3453 	device_for_each_child(&ctlr->dev, NULL, __unregister);
3454 
3455 	/* First make sure that this controller was ever added */
3456 	mutex_lock(&board_lock);
3457 	found = idr_find(&spi_controller_idr, id);
3458 	mutex_unlock(&board_lock);
3459 	if (ctlr->queued) {
3460 		if (spi_destroy_queue(ctlr))
3461 			dev_err(&ctlr->dev, "queue remove failed\n");
3462 	}
3463 	mutex_lock(&board_lock);
3464 	list_del(&ctlr->list);
3465 	mutex_unlock(&board_lock);
3466 
3467 	device_del(&ctlr->dev);
3468 
3469 	/* Free bus id */
3470 	mutex_lock(&board_lock);
3471 	if (found == ctlr)
3472 		idr_remove(&spi_controller_idr, id);
3473 	mutex_unlock(&board_lock);
3474 
3475 	if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
3476 		mutex_unlock(&ctlr->add_lock);
3477 
3478 	/*
3479 	 * Release the last reference on the controller if its driver
3480 	 * has not yet been converted to devm_spi_alloc_host/target().
3481 	 */
3482 	if (!ctlr->devm_allocated)
3483 		put_device(&ctlr->dev);
3484 }
3485 EXPORT_SYMBOL_GPL(spi_unregister_controller);
3486 
__spi_check_suspended(const struct spi_controller * ctlr)3487 static inline int __spi_check_suspended(const struct spi_controller *ctlr)
3488 {
3489 	return ctlr->flags & SPI_CONTROLLER_SUSPENDED ? -ESHUTDOWN : 0;
3490 }
3491 
__spi_mark_suspended(struct spi_controller * ctlr)3492 static inline void __spi_mark_suspended(struct spi_controller *ctlr)
3493 {
3494 	mutex_lock(&ctlr->bus_lock_mutex);
3495 	ctlr->flags |= SPI_CONTROLLER_SUSPENDED;
3496 	mutex_unlock(&ctlr->bus_lock_mutex);
3497 }
3498 
__spi_mark_resumed(struct spi_controller * ctlr)3499 static inline void __spi_mark_resumed(struct spi_controller *ctlr)
3500 {
3501 	mutex_lock(&ctlr->bus_lock_mutex);
3502 	ctlr->flags &= ~SPI_CONTROLLER_SUSPENDED;
3503 	mutex_unlock(&ctlr->bus_lock_mutex);
3504 }
3505 
spi_controller_suspend(struct spi_controller * ctlr)3506 int spi_controller_suspend(struct spi_controller *ctlr)
3507 {
3508 	int ret = 0;
3509 
3510 	/* Basically no-ops for non-queued controllers */
3511 	if (ctlr->queued) {
3512 		ret = spi_stop_queue(ctlr);
3513 		if (ret)
3514 			dev_err(&ctlr->dev, "queue stop failed\n");
3515 	}
3516 
3517 	__spi_mark_suspended(ctlr);
3518 	return ret;
3519 }
3520 EXPORT_SYMBOL_GPL(spi_controller_suspend);
3521 
spi_controller_resume(struct spi_controller * ctlr)3522 int spi_controller_resume(struct spi_controller *ctlr)
3523 {
3524 	int ret = 0;
3525 
3526 	__spi_mark_resumed(ctlr);
3527 
3528 	if (ctlr->queued) {
3529 		ret = spi_start_queue(ctlr);
3530 		if (ret)
3531 			dev_err(&ctlr->dev, "queue restart failed\n");
3532 	}
3533 	return ret;
3534 }
3535 EXPORT_SYMBOL_GPL(spi_controller_resume);
3536 
3537 /*-------------------------------------------------------------------------*/
3538 
3539 /* Core methods for spi_message alterations */
3540 
__spi_replace_transfers_release(struct spi_controller * ctlr,struct spi_message * msg,void * res)3541 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3542 					    struct spi_message *msg,
3543 					    void *res)
3544 {
3545 	struct spi_replaced_transfers *rxfer = res;
3546 	size_t i;
3547 
3548 	/* Call extra callback if requested */
3549 	if (rxfer->release)
3550 		rxfer->release(ctlr, msg, res);
3551 
3552 	/* Insert replaced transfers back into the message */
3553 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3554 
3555 	/* Remove the formerly inserted entries */
3556 	for (i = 0; i < rxfer->inserted; i++)
3557 		list_del(&rxfer->inserted_transfers[i].transfer_list);
3558 }
3559 
3560 /**
3561  * spi_replace_transfers - replace transfers with several transfers
3562  *                         and register change with spi_message.resources
3563  * @msg:           the spi_message we work upon
3564  * @xfer_first:    the first spi_transfer we want to replace
3565  * @remove:        number of transfers to remove
3566  * @insert:        the number of transfers we want to insert instead
3567  * @release:       extra release code necessary in some circumstances
3568  * @extradatasize: extra data to allocate (with alignment guarantees
3569  *                 of struct @spi_transfer)
3570  * @gfp:           gfp flags
3571  *
3572  * Returns: pointer to @spi_replaced_transfers,
3573  *          PTR_ERR(...) in case of errors.
3574  */
spi_replace_transfers(struct spi_message * msg,struct spi_transfer * xfer_first,size_t remove,size_t insert,spi_replaced_release_t release,size_t extradatasize,gfp_t gfp)3575 static struct spi_replaced_transfers *spi_replace_transfers(
3576 	struct spi_message *msg,
3577 	struct spi_transfer *xfer_first,
3578 	size_t remove,
3579 	size_t insert,
3580 	spi_replaced_release_t release,
3581 	size_t extradatasize,
3582 	gfp_t gfp)
3583 {
3584 	struct spi_replaced_transfers *rxfer;
3585 	struct spi_transfer *xfer;
3586 	size_t i;
3587 
3588 	/* Allocate the structure using spi_res */
3589 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3590 			      struct_size(rxfer, inserted_transfers, insert)
3591 			      + extradatasize,
3592 			      gfp);
3593 	if (!rxfer)
3594 		return ERR_PTR(-ENOMEM);
3595 
3596 	/* The release code to invoke before running the generic release */
3597 	rxfer->release = release;
3598 
3599 	/* Assign extradata */
3600 	if (extradatasize)
3601 		rxfer->extradata =
3602 			&rxfer->inserted_transfers[insert];
3603 
3604 	/* Init the replaced_transfers list */
3605 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
3606 
3607 	/*
3608 	 * Assign the list_entry after which we should reinsert
3609 	 * the @replaced_transfers - it may be spi_message.messages!
3610 	 */
3611 	rxfer->replaced_after = xfer_first->transfer_list.prev;
3612 
3613 	/* Remove the requested number of transfers */
3614 	for (i = 0; i < remove; i++) {
3615 		/*
3616 		 * If the entry after replaced_after it is msg->transfers
3617 		 * then we have been requested to remove more transfers
3618 		 * than are in the list.
3619 		 */
3620 		if (rxfer->replaced_after->next == &msg->transfers) {
3621 			dev_err(&msg->spi->dev,
3622 				"requested to remove more spi_transfers than are available\n");
3623 			/* Insert replaced transfers back into the message */
3624 			list_splice(&rxfer->replaced_transfers,
3625 				    rxfer->replaced_after);
3626 
3627 			/* Free the spi_replace_transfer structure... */
3628 			spi_res_free(rxfer);
3629 
3630 			/* ...and return with an error */
3631 			return ERR_PTR(-EINVAL);
3632 		}
3633 
3634 		/*
3635 		 * Remove the entry after replaced_after from list of
3636 		 * transfers and add it to list of replaced_transfers.
3637 		 */
3638 		list_move_tail(rxfer->replaced_after->next,
3639 			       &rxfer->replaced_transfers);
3640 	}
3641 
3642 	/*
3643 	 * Create copy of the given xfer with identical settings
3644 	 * based on the first transfer to get removed.
3645 	 */
3646 	for (i = 0; i < insert; i++) {
3647 		/* We need to run in reverse order */
3648 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
3649 
3650 		/* Copy all spi_transfer data */
3651 		memcpy(xfer, xfer_first, sizeof(*xfer));
3652 
3653 		/* Add to list */
3654 		list_add(&xfer->transfer_list, rxfer->replaced_after);
3655 
3656 		/* Clear cs_change and delay for all but the last */
3657 		if (i) {
3658 			xfer->cs_change = false;
3659 			xfer->delay.value = 0;
3660 		}
3661 	}
3662 
3663 	/* Set up inserted... */
3664 	rxfer->inserted = insert;
3665 
3666 	/* ...and register it with spi_res/spi_message */
3667 	spi_res_add(msg, rxfer);
3668 
3669 	return rxfer;
3670 }
3671 
__spi_split_transfer_maxsize(struct spi_controller * ctlr,struct spi_message * msg,struct spi_transfer ** xferp,size_t maxsize)3672 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3673 					struct spi_message *msg,
3674 					struct spi_transfer **xferp,
3675 					size_t maxsize)
3676 {
3677 	struct spi_transfer *xfer = *xferp, *xfers;
3678 	struct spi_replaced_transfers *srt;
3679 	size_t offset;
3680 	size_t count, i;
3681 
3682 	/* Calculate how many we have to replace */
3683 	count = DIV_ROUND_UP(xfer->len, maxsize);
3684 
3685 	/* Create replacement */
3686 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, GFP_KERNEL);
3687 	if (IS_ERR(srt))
3688 		return PTR_ERR(srt);
3689 	xfers = srt->inserted_transfers;
3690 
3691 	/*
3692 	 * Now handle each of those newly inserted spi_transfers.
3693 	 * Note that the replacements spi_transfers all are preset
3694 	 * to the same values as *xferp, so tx_buf, rx_buf and len
3695 	 * are all identical (as well as most others)
3696 	 * so we just have to fix up len and the pointers.
3697 	 */
3698 
3699 	/*
3700 	 * The first transfer just needs the length modified, so we
3701 	 * run it outside the loop.
3702 	 */
3703 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3704 
3705 	/* All the others need rx_buf/tx_buf also set */
3706 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3707 		/* Update rx_buf, tx_buf and DMA */
3708 		if (xfers[i].rx_buf)
3709 			xfers[i].rx_buf += offset;
3710 		if (xfers[i].tx_buf)
3711 			xfers[i].tx_buf += offset;
3712 
3713 		/* Update length */
3714 		xfers[i].len = min(maxsize, xfers[i].len - offset);
3715 	}
3716 
3717 	/*
3718 	 * We set up xferp to the last entry we have inserted,
3719 	 * so that we skip those already split transfers.
3720 	 */
3721 	*xferp = &xfers[count - 1];
3722 
3723 	/* Increment statistics counters */
3724 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics,
3725 				       transfers_split_maxsize);
3726 	SPI_STATISTICS_INCREMENT_FIELD(msg->spi->pcpu_statistics,
3727 				       transfers_split_maxsize);
3728 
3729 	return 0;
3730 }
3731 
3732 /**
3733  * spi_split_transfers_maxsize - split spi transfers into multiple transfers
3734  *                               when an individual transfer exceeds a
3735  *                               certain size
3736  * @ctlr:    the @spi_controller for this transfer
3737  * @msg:   the @spi_message to transform
3738  * @maxsize:  the maximum when to apply this
3739  *
3740  * This function allocates resources that are automatically freed during the
3741  * spi message unoptimize phase so this function should only be called from
3742  * optimize_message callbacks.
3743  *
3744  * Return: status of transformation
3745  */
spi_split_transfers_maxsize(struct spi_controller * ctlr,struct spi_message * msg,size_t maxsize)3746 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3747 				struct spi_message *msg,
3748 				size_t maxsize)
3749 {
3750 	struct spi_transfer *xfer;
3751 	int ret;
3752 
3753 	/*
3754 	 * Iterate over the transfer_list,
3755 	 * but note that xfer is advanced to the last transfer inserted
3756 	 * to avoid checking sizes again unnecessarily (also xfer does
3757 	 * potentially belong to a different list by the time the
3758 	 * replacement has happened).
3759 	 */
3760 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3761 		if (xfer->len > maxsize) {
3762 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3763 							   maxsize);
3764 			if (ret)
3765 				return ret;
3766 		}
3767 	}
3768 
3769 	return 0;
3770 }
3771 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3772 
3773 
3774 /**
3775  * spi_split_transfers_maxwords - split SPI transfers into multiple transfers
3776  *                                when an individual transfer exceeds a
3777  *                                certain number of SPI words
3778  * @ctlr:     the @spi_controller for this transfer
3779  * @msg:      the @spi_message to transform
3780  * @maxwords: the number of words to limit each transfer to
3781  *
3782  * This function allocates resources that are automatically freed during the
3783  * spi message unoptimize phase so this function should only be called from
3784  * optimize_message callbacks.
3785  *
3786  * Return: status of transformation
3787  */
spi_split_transfers_maxwords(struct spi_controller * ctlr,struct spi_message * msg,size_t maxwords)3788 int spi_split_transfers_maxwords(struct spi_controller *ctlr,
3789 				 struct spi_message *msg,
3790 				 size_t maxwords)
3791 {
3792 	struct spi_transfer *xfer;
3793 
3794 	/*
3795 	 * Iterate over the transfer_list,
3796 	 * but note that xfer is advanced to the last transfer inserted
3797 	 * to avoid checking sizes again unnecessarily (also xfer does
3798 	 * potentially belong to a different list by the time the
3799 	 * replacement has happened).
3800 	 */
3801 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3802 		size_t maxsize;
3803 		int ret;
3804 
3805 		maxsize = maxwords * roundup_pow_of_two(BITS_TO_BYTES(xfer->bits_per_word));
3806 		if (xfer->len > maxsize) {
3807 			ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3808 							   maxsize);
3809 			if (ret)
3810 				return ret;
3811 		}
3812 	}
3813 
3814 	return 0;
3815 }
3816 EXPORT_SYMBOL_GPL(spi_split_transfers_maxwords);
3817 
3818 /*-------------------------------------------------------------------------*/
3819 
3820 /*
3821  * Core methods for SPI controller protocol drivers. Some of the
3822  * other core methods are currently defined as inline functions.
3823  */
3824 
__spi_validate_bits_per_word(struct spi_controller * ctlr,u8 bits_per_word)3825 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3826 					u8 bits_per_word)
3827 {
3828 	if (ctlr->bits_per_word_mask) {
3829 		/* Only 32 bits fit in the mask */
3830 		if (bits_per_word > 32)
3831 			return -EINVAL;
3832 		if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3833 			return -EINVAL;
3834 	}
3835 
3836 	return 0;
3837 }
3838 
3839 /**
3840  * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3841  * @spi: the device that requires specific CS timing configuration
3842  *
3843  * Return: zero on success, else a negative error code.
3844  */
spi_set_cs_timing(struct spi_device * spi)3845 static int spi_set_cs_timing(struct spi_device *spi)
3846 {
3847 	struct device *parent = spi->controller->dev.parent;
3848 	int status = 0;
3849 
3850 	if (spi->controller->set_cs_timing && !spi_get_csgpiod(spi, 0)) {
3851 		if (spi->controller->auto_runtime_pm) {
3852 			status = pm_runtime_get_sync(parent);
3853 			if (status < 0) {
3854 				pm_runtime_put_noidle(parent);
3855 				dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3856 					status);
3857 				return status;
3858 			}
3859 
3860 			status = spi->controller->set_cs_timing(spi);
3861 			pm_runtime_mark_last_busy(parent);
3862 			pm_runtime_put_autosuspend(parent);
3863 		} else {
3864 			status = spi->controller->set_cs_timing(spi);
3865 		}
3866 	}
3867 	return status;
3868 }
3869 
3870 /**
3871  * spi_setup - setup SPI mode and clock rate
3872  * @spi: the device whose settings are being modified
3873  * Context: can sleep, and no requests are queued to the device
3874  *
3875  * SPI protocol drivers may need to update the transfer mode if the
3876  * device doesn't work with its default.  They may likewise need
3877  * to update clock rates or word sizes from initial values.  This function
3878  * changes those settings, and must be called from a context that can sleep.
3879  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3880  * effect the next time the device is selected and data is transferred to
3881  * or from it.  When this function returns, the SPI device is deselected.
3882  *
3883  * Note that this call will fail if the protocol driver specifies an option
3884  * that the underlying controller or its driver does not support.  For
3885  * example, not all hardware supports wire transfers using nine bit words,
3886  * LSB-first wire encoding, or active-high chipselects.
3887  *
3888  * Return: zero on success, else a negative error code.
3889  */
spi_setup(struct spi_device * spi)3890 int spi_setup(struct spi_device *spi)
3891 {
3892 	unsigned	bad_bits, ugly_bits;
3893 	int		status;
3894 
3895 	/*
3896 	 * Check mode to prevent that any two of DUAL, QUAD and NO_MOSI/MISO
3897 	 * are set at the same time.
3898 	 */
3899 	if ((hweight_long(spi->mode &
3900 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_NO_TX)) > 1) ||
3901 	    (hweight_long(spi->mode &
3902 		(SPI_RX_DUAL | SPI_RX_QUAD | SPI_NO_RX)) > 1)) {
3903 		dev_err(&spi->dev,
3904 		"setup: can not select any two of dual, quad and no-rx/tx at the same time\n");
3905 		return -EINVAL;
3906 	}
3907 	/* If it is SPI_3WIRE mode, DUAL and QUAD should be forbidden */
3908 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
3909 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3910 		 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3911 		return -EINVAL;
3912 	/* Check against conflicting MOSI idle configuration */
3913 	if ((spi->mode & SPI_MOSI_IDLE_LOW) && (spi->mode & SPI_MOSI_IDLE_HIGH)) {
3914 		dev_err(&spi->dev,
3915 			"setup: MOSI configured to idle low and high at the same time.\n");
3916 		return -EINVAL;
3917 	}
3918 	/*
3919 	 * Help drivers fail *cleanly* when they need options
3920 	 * that aren't supported with their current controller.
3921 	 * SPI_CS_WORD has a fallback software implementation,
3922 	 * so it is ignored here.
3923 	 */
3924 	bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD |
3925 				 SPI_NO_TX | SPI_NO_RX);
3926 	ugly_bits = bad_bits &
3927 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3928 		     SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3929 	if (ugly_bits) {
3930 		dev_warn(&spi->dev,
3931 			 "setup: ignoring unsupported mode bits %x\n",
3932 			 ugly_bits);
3933 		spi->mode &= ~ugly_bits;
3934 		bad_bits &= ~ugly_bits;
3935 	}
3936 	if (bad_bits) {
3937 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3938 			bad_bits);
3939 		return -EINVAL;
3940 	}
3941 
3942 	if (!spi->bits_per_word) {
3943 		spi->bits_per_word = 8;
3944 	} else {
3945 		/*
3946 		 * Some controllers may not support the default 8 bits-per-word
3947 		 * so only perform the check when this is explicitly provided.
3948 		 */
3949 		status = __spi_validate_bits_per_word(spi->controller,
3950 						      spi->bits_per_word);
3951 		if (status)
3952 			return status;
3953 	}
3954 
3955 	if (spi->controller->max_speed_hz &&
3956 	    (!spi->max_speed_hz ||
3957 	     spi->max_speed_hz > spi->controller->max_speed_hz))
3958 		spi->max_speed_hz = spi->controller->max_speed_hz;
3959 
3960 	mutex_lock(&spi->controller->io_mutex);
3961 
3962 	if (spi->controller->setup) {
3963 		status = spi->controller->setup(spi);
3964 		if (status) {
3965 			mutex_unlock(&spi->controller->io_mutex);
3966 			dev_err(&spi->controller->dev, "Failed to setup device: %d\n",
3967 				status);
3968 			return status;
3969 		}
3970 	}
3971 
3972 	status = spi_set_cs_timing(spi);
3973 	if (status) {
3974 		mutex_unlock(&spi->controller->io_mutex);
3975 		return status;
3976 	}
3977 
3978 	if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3979 		status = pm_runtime_resume_and_get(spi->controller->dev.parent);
3980 		if (status < 0) {
3981 			mutex_unlock(&spi->controller->io_mutex);
3982 			dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3983 				status);
3984 			return status;
3985 		}
3986 
3987 		/*
3988 		 * We do not want to return positive value from pm_runtime_get,
3989 		 * there are many instances of devices calling spi_setup() and
3990 		 * checking for a non-zero return value instead of a negative
3991 		 * return value.
3992 		 */
3993 		status = 0;
3994 
3995 		spi_set_cs(spi, false, true);
3996 		pm_runtime_mark_last_busy(spi->controller->dev.parent);
3997 		pm_runtime_put_autosuspend(spi->controller->dev.parent);
3998 	} else {
3999 		spi_set_cs(spi, false, true);
4000 	}
4001 
4002 	mutex_unlock(&spi->controller->io_mutex);
4003 
4004 	if (spi->rt && !spi->controller->rt) {
4005 		spi->controller->rt = true;
4006 		spi_set_thread_rt(spi->controller);
4007 	}
4008 
4009 	trace_spi_setup(spi, status);
4010 
4011 	dev_dbg(&spi->dev, "setup mode %lu, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
4012 			spi->mode & SPI_MODE_X_MASK,
4013 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
4014 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
4015 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
4016 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
4017 			spi->bits_per_word, spi->max_speed_hz,
4018 			status);
4019 
4020 	return status;
4021 }
4022 EXPORT_SYMBOL_GPL(spi_setup);
4023 
_spi_xfer_word_delay_update(struct spi_transfer * xfer,struct spi_device * spi)4024 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
4025 				       struct spi_device *spi)
4026 {
4027 	int delay1, delay2;
4028 
4029 	delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
4030 	if (delay1 < 0)
4031 		return delay1;
4032 
4033 	delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
4034 	if (delay2 < 0)
4035 		return delay2;
4036 
4037 	if (delay1 < delay2)
4038 		memcpy(&xfer->word_delay, &spi->word_delay,
4039 		       sizeof(xfer->word_delay));
4040 
4041 	return 0;
4042 }
4043 
__spi_validate(struct spi_device * spi,struct spi_message * message)4044 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
4045 {
4046 	struct spi_controller *ctlr = spi->controller;
4047 	struct spi_transfer *xfer;
4048 	int w_size;
4049 
4050 	if (list_empty(&message->transfers))
4051 		return -EINVAL;
4052 
4053 	message->spi = spi;
4054 
4055 	/*
4056 	 * Half-duplex links include original MicroWire, and ones with
4057 	 * only one data pin like SPI_3WIRE (switches direction) or where
4058 	 * either MOSI or MISO is missing.  They can also be caused by
4059 	 * software limitations.
4060 	 */
4061 	if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
4062 	    (spi->mode & SPI_3WIRE)) {
4063 		unsigned flags = ctlr->flags;
4064 
4065 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4066 			if (xfer->rx_buf && xfer->tx_buf)
4067 				return -EINVAL;
4068 			if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
4069 				return -EINVAL;
4070 			if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
4071 				return -EINVAL;
4072 		}
4073 	}
4074 
4075 	/*
4076 	 * Set transfer bits_per_word and max speed as spi device default if
4077 	 * it is not set for this transfer.
4078 	 * Set transfer tx_nbits and rx_nbits as single transfer default
4079 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
4080 	 * Ensure transfer word_delay is at least as long as that required by
4081 	 * device itself.
4082 	 */
4083 	message->frame_length = 0;
4084 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
4085 		xfer->effective_speed_hz = 0;
4086 		message->frame_length += xfer->len;
4087 		if (!xfer->bits_per_word)
4088 			xfer->bits_per_word = spi->bits_per_word;
4089 
4090 		if (!xfer->speed_hz)
4091 			xfer->speed_hz = spi->max_speed_hz;
4092 
4093 		if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
4094 			xfer->speed_hz = ctlr->max_speed_hz;
4095 
4096 		if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
4097 			return -EINVAL;
4098 
4099 		/*
4100 		 * SPI transfer length should be multiple of SPI word size
4101 		 * where SPI word size should be power-of-two multiple.
4102 		 */
4103 		if (xfer->bits_per_word <= 8)
4104 			w_size = 1;
4105 		else if (xfer->bits_per_word <= 16)
4106 			w_size = 2;
4107 		else
4108 			w_size = 4;
4109 
4110 		/* No partial transfers accepted */
4111 		if (xfer->len % w_size)
4112 			return -EINVAL;
4113 
4114 		if (xfer->speed_hz && ctlr->min_speed_hz &&
4115 		    xfer->speed_hz < ctlr->min_speed_hz)
4116 			return -EINVAL;
4117 
4118 		if (xfer->tx_buf && !xfer->tx_nbits)
4119 			xfer->tx_nbits = SPI_NBITS_SINGLE;
4120 		if (xfer->rx_buf && !xfer->rx_nbits)
4121 			xfer->rx_nbits = SPI_NBITS_SINGLE;
4122 		/*
4123 		 * Check transfer tx/rx_nbits:
4124 		 * 1. check the value matches one of single, dual and quad
4125 		 * 2. check tx/rx_nbits match the mode in spi_device
4126 		 */
4127 		if (xfer->tx_buf) {
4128 			if (spi->mode & SPI_NO_TX)
4129 				return -EINVAL;
4130 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
4131 				xfer->tx_nbits != SPI_NBITS_DUAL &&
4132 				xfer->tx_nbits != SPI_NBITS_QUAD &&
4133 				xfer->tx_nbits != SPI_NBITS_OCTAL)
4134 				return -EINVAL;
4135 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
4136 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
4137 				return -EINVAL;
4138 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
4139 				!(spi->mode & SPI_TX_QUAD))
4140 				return -EINVAL;
4141 		}
4142 		/* Check transfer rx_nbits */
4143 		if (xfer->rx_buf) {
4144 			if (spi->mode & SPI_NO_RX)
4145 				return -EINVAL;
4146 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
4147 				xfer->rx_nbits != SPI_NBITS_DUAL &&
4148 				xfer->rx_nbits != SPI_NBITS_QUAD &&
4149 				xfer->rx_nbits != SPI_NBITS_OCTAL)
4150 				return -EINVAL;
4151 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
4152 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
4153 				return -EINVAL;
4154 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
4155 				!(spi->mode & SPI_RX_QUAD))
4156 				return -EINVAL;
4157 		}
4158 
4159 		if (_spi_xfer_word_delay_update(xfer, spi))
4160 			return -EINVAL;
4161 
4162 		/* Make sure controller supports required offload features. */
4163 		if (xfer->offload_flags) {
4164 			if (!message->offload)
4165 				return -EINVAL;
4166 
4167 			if (xfer->offload_flags & ~message->offload->xfer_flags)
4168 				return -EINVAL;
4169 		}
4170 	}
4171 
4172 	message->status = -EINPROGRESS;
4173 
4174 	return 0;
4175 }
4176 
4177 /*
4178  * spi_split_transfers - generic handling of transfer splitting
4179  * @msg: the message to split
4180  *
4181  * Under certain conditions, a SPI controller may not support arbitrary
4182  * transfer sizes or other features required by a peripheral. This function
4183  * will split the transfers in the message into smaller transfers that are
4184  * supported by the controller.
4185  *
4186  * Controllers with special requirements not covered here can also split
4187  * transfers in the optimize_message() callback.
4188  *
4189  * Context: can sleep
4190  * Return: zero on success, else a negative error code
4191  */
spi_split_transfers(struct spi_message * msg)4192 static int spi_split_transfers(struct spi_message *msg)
4193 {
4194 	struct spi_controller *ctlr = msg->spi->controller;
4195 	struct spi_transfer *xfer;
4196 	int ret;
4197 
4198 	/*
4199 	 * If an SPI controller does not support toggling the CS line on each
4200 	 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
4201 	 * for the CS line, we can emulate the CS-per-word hardware function by
4202 	 * splitting transfers into one-word transfers and ensuring that
4203 	 * cs_change is set for each transfer.
4204 	 */
4205 	if ((msg->spi->mode & SPI_CS_WORD) &&
4206 	    (!(ctlr->mode_bits & SPI_CS_WORD) || spi_is_csgpiod(msg->spi))) {
4207 		ret = spi_split_transfers_maxwords(ctlr, msg, 1);
4208 		if (ret)
4209 			return ret;
4210 
4211 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
4212 			/* Don't change cs_change on the last entry in the list */
4213 			if (list_is_last(&xfer->transfer_list, &msg->transfers))
4214 				break;
4215 
4216 			xfer->cs_change = 1;
4217 		}
4218 	} else {
4219 		ret = spi_split_transfers_maxsize(ctlr, msg,
4220 						  spi_max_transfer_size(msg->spi));
4221 		if (ret)
4222 			return ret;
4223 	}
4224 
4225 	return 0;
4226 }
4227 
4228 /*
4229  * __spi_optimize_message - shared implementation for spi_optimize_message()
4230  *                          and spi_maybe_optimize_message()
4231  * @spi: the device that will be used for the message
4232  * @msg: the message to optimize
4233  *
4234  * Peripheral drivers will call spi_optimize_message() and the spi core will
4235  * call spi_maybe_optimize_message() instead of calling this directly.
4236  *
4237  * It is not valid to call this on a message that has already been optimized.
4238  *
4239  * Return: zero on success, else a negative error code
4240  */
__spi_optimize_message(struct spi_device * spi,struct spi_message * msg)4241 static int __spi_optimize_message(struct spi_device *spi,
4242 				  struct spi_message *msg)
4243 {
4244 	struct spi_controller *ctlr = spi->controller;
4245 	int ret;
4246 
4247 	ret = __spi_validate(spi, msg);
4248 	if (ret)
4249 		return ret;
4250 
4251 	ret = spi_split_transfers(msg);
4252 	if (ret)
4253 		return ret;
4254 
4255 	if (ctlr->optimize_message) {
4256 		ret = ctlr->optimize_message(msg);
4257 		if (ret) {
4258 			spi_res_release(ctlr, msg);
4259 			return ret;
4260 		}
4261 	}
4262 
4263 	msg->optimized = true;
4264 
4265 	return 0;
4266 }
4267 
4268 /*
4269  * spi_maybe_optimize_message - optimize message if it isn't already pre-optimized
4270  * @spi: the device that will be used for the message
4271  * @msg: the message to optimize
4272  * Return: zero on success, else a negative error code
4273  */
spi_maybe_optimize_message(struct spi_device * spi,struct spi_message * msg)4274 static int spi_maybe_optimize_message(struct spi_device *spi,
4275 				      struct spi_message *msg)
4276 {
4277 	if (spi->controller->defer_optimize_message) {
4278 		msg->spi = spi;
4279 		return 0;
4280 	}
4281 
4282 	if (msg->pre_optimized)
4283 		return 0;
4284 
4285 	return __spi_optimize_message(spi, msg);
4286 }
4287 
4288 /**
4289  * spi_optimize_message - do any one-time validation and setup for a SPI message
4290  * @spi: the device that will be used for the message
4291  * @msg: the message to optimize
4292  *
4293  * Peripheral drivers that reuse the same message repeatedly may call this to
4294  * perform as much message prep as possible once, rather than repeating it each
4295  * time a message transfer is performed to improve throughput and reduce CPU
4296  * usage.
4297  *
4298  * Once a message has been optimized, it cannot be modified with the exception
4299  * of updating the contents of any xfer->tx_buf (the pointer can't be changed,
4300  * only the data in the memory it points to).
4301  *
4302  * Calls to this function must be balanced with calls to spi_unoptimize_message()
4303  * to avoid leaking resources.
4304  *
4305  * Context: can sleep
4306  * Return: zero on success, else a negative error code
4307  */
spi_optimize_message(struct spi_device * spi,struct spi_message * msg)4308 int spi_optimize_message(struct spi_device *spi, struct spi_message *msg)
4309 {
4310 	int ret;
4311 
4312 	/*
4313 	 * Pre-optimization is not supported and optimization is deferred e.g.
4314 	 * when using spi-mux.
4315 	 */
4316 	if (spi->controller->defer_optimize_message)
4317 		return 0;
4318 
4319 	ret = __spi_optimize_message(spi, msg);
4320 	if (ret)
4321 		return ret;
4322 
4323 	/*
4324 	 * This flag indicates that the peripheral driver called spi_optimize_message()
4325 	 * and therefore we shouldn't unoptimize message automatically when finalizing
4326 	 * the message but rather wait until spi_unoptimize_message() is called
4327 	 * by the peripheral driver.
4328 	 */
4329 	msg->pre_optimized = true;
4330 
4331 	return 0;
4332 }
4333 EXPORT_SYMBOL_GPL(spi_optimize_message);
4334 
4335 /**
4336  * spi_unoptimize_message - releases any resources allocated by spi_optimize_message()
4337  * @msg: the message to unoptimize
4338  *
4339  * Calls to this function must be balanced with calls to spi_optimize_message().
4340  *
4341  * Context: can sleep
4342  */
spi_unoptimize_message(struct spi_message * msg)4343 void spi_unoptimize_message(struct spi_message *msg)
4344 {
4345 	if (msg->spi->controller->defer_optimize_message)
4346 		return;
4347 
4348 	__spi_unoptimize_message(msg);
4349 	msg->pre_optimized = false;
4350 }
4351 EXPORT_SYMBOL_GPL(spi_unoptimize_message);
4352 
__spi_async(struct spi_device * spi,struct spi_message * message)4353 static int __spi_async(struct spi_device *spi, struct spi_message *message)
4354 {
4355 	struct spi_controller *ctlr = spi->controller;
4356 	struct spi_transfer *xfer;
4357 
4358 	/*
4359 	 * Some controllers do not support doing regular SPI transfers. Return
4360 	 * ENOTSUPP when this is the case.
4361 	 */
4362 	if (!ctlr->transfer)
4363 		return -ENOTSUPP;
4364 
4365 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_async);
4366 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_async);
4367 
4368 	trace_spi_message_submit(message);
4369 
4370 	if (!ctlr->ptp_sts_supported) {
4371 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
4372 			xfer->ptp_sts_word_pre = 0;
4373 			ptp_read_system_prets(xfer->ptp_sts);
4374 		}
4375 	}
4376 
4377 	return ctlr->transfer(spi, message);
4378 }
4379 
devm_spi_unoptimize_message(void * msg)4380 static void devm_spi_unoptimize_message(void *msg)
4381 {
4382 	spi_unoptimize_message(msg);
4383 }
4384 
4385 /**
4386  * devm_spi_optimize_message - managed version of spi_optimize_message()
4387  * @dev: the device that manages @msg (usually @spi->dev)
4388  * @spi: the device that will be used for the message
4389  * @msg: the message to optimize
4390  * Return: zero on success, else a negative error code
4391  *
4392  * spi_unoptimize_message() will automatically be called when the device is
4393  * removed.
4394  */
devm_spi_optimize_message(struct device * dev,struct spi_device * spi,struct spi_message * msg)4395 int devm_spi_optimize_message(struct device *dev, struct spi_device *spi,
4396 			      struct spi_message *msg)
4397 {
4398 	int ret;
4399 
4400 	ret = spi_optimize_message(spi, msg);
4401 	if (ret)
4402 		return ret;
4403 
4404 	return devm_add_action_or_reset(dev, devm_spi_unoptimize_message, msg);
4405 }
4406 EXPORT_SYMBOL_GPL(devm_spi_optimize_message);
4407 
4408 /**
4409  * spi_async - asynchronous SPI transfer
4410  * @spi: device with which data will be exchanged
4411  * @message: describes the data transfers, including completion callback
4412  * Context: any (IRQs may be blocked, etc)
4413  *
4414  * This call may be used in_irq and other contexts which can't sleep,
4415  * as well as from task contexts which can sleep.
4416  *
4417  * The completion callback is invoked in a context which can't sleep.
4418  * Before that invocation, the value of message->status is undefined.
4419  * When the callback is issued, message->status holds either zero (to
4420  * indicate complete success) or a negative error code.  After that
4421  * callback returns, the driver which issued the transfer request may
4422  * deallocate the associated memory; it's no longer in use by any SPI
4423  * core or controller driver code.
4424  *
4425  * Note that although all messages to a spi_device are handled in
4426  * FIFO order, messages may go to different devices in other orders.
4427  * Some device might be higher priority, or have various "hard" access
4428  * time requirements, for example.
4429  *
4430  * On detection of any fault during the transfer, processing of
4431  * the entire message is aborted, and the device is deselected.
4432  * Until returning from the associated message completion callback,
4433  * no other spi_message queued to that device will be processed.
4434  * (This rule applies equally to all the synchronous transfer calls,
4435  * which are wrappers around this core asynchronous primitive.)
4436  *
4437  * Return: zero on success, else a negative error code.
4438  */
spi_async(struct spi_device * spi,struct spi_message * message)4439 int spi_async(struct spi_device *spi, struct spi_message *message)
4440 {
4441 	struct spi_controller *ctlr = spi->controller;
4442 	int ret;
4443 	unsigned long flags;
4444 
4445 	ret = spi_maybe_optimize_message(spi, message);
4446 	if (ret)
4447 		return ret;
4448 
4449 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4450 
4451 	if (ctlr->bus_lock_flag)
4452 		ret = -EBUSY;
4453 	else
4454 		ret = __spi_async(spi, message);
4455 
4456 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4457 
4458 	return ret;
4459 }
4460 EXPORT_SYMBOL_GPL(spi_async);
4461 
__spi_transfer_message_noqueue(struct spi_controller * ctlr,struct spi_message * msg)4462 static void __spi_transfer_message_noqueue(struct spi_controller *ctlr, struct spi_message *msg)
4463 {
4464 	bool was_busy;
4465 	int ret;
4466 
4467 	mutex_lock(&ctlr->io_mutex);
4468 
4469 	was_busy = ctlr->busy;
4470 
4471 	ctlr->cur_msg = msg;
4472 	ret = __spi_pump_transfer_message(ctlr, msg, was_busy);
4473 	if (ret)
4474 		dev_err(&ctlr->dev, "noqueue transfer failed\n");
4475 	ctlr->cur_msg = NULL;
4476 	ctlr->fallback = false;
4477 
4478 	if (!was_busy) {
4479 		kfree(ctlr->dummy_rx);
4480 		ctlr->dummy_rx = NULL;
4481 		kfree(ctlr->dummy_tx);
4482 		ctlr->dummy_tx = NULL;
4483 		if (ctlr->unprepare_transfer_hardware &&
4484 		    ctlr->unprepare_transfer_hardware(ctlr))
4485 			dev_err(&ctlr->dev,
4486 				"failed to unprepare transfer hardware\n");
4487 		spi_idle_runtime_pm(ctlr);
4488 	}
4489 
4490 	mutex_unlock(&ctlr->io_mutex);
4491 }
4492 
4493 /*-------------------------------------------------------------------------*/
4494 
4495 /*
4496  * Utility methods for SPI protocol drivers, layered on
4497  * top of the core.  Some other utility methods are defined as
4498  * inline functions.
4499  */
4500 
spi_complete(void * arg)4501 static void spi_complete(void *arg)
4502 {
4503 	complete(arg);
4504 }
4505 
__spi_sync(struct spi_device * spi,struct spi_message * message)4506 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
4507 {
4508 	DECLARE_COMPLETION_ONSTACK(done);
4509 	unsigned long flags;
4510 	int status;
4511 	struct spi_controller *ctlr = spi->controller;
4512 
4513 	if (__spi_check_suspended(ctlr)) {
4514 		dev_warn_once(&spi->dev, "Attempted to sync while suspend\n");
4515 		return -ESHUTDOWN;
4516 	}
4517 
4518 	status = spi_maybe_optimize_message(spi, message);
4519 	if (status)
4520 		return status;
4521 
4522 	SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync);
4523 	SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync);
4524 
4525 	/*
4526 	 * Checking queue_empty here only guarantees async/sync message
4527 	 * ordering when coming from the same context. It does not need to
4528 	 * guard against reentrancy from a different context. The io_mutex
4529 	 * will catch those cases.
4530 	 */
4531 	if (READ_ONCE(ctlr->queue_empty) && !ctlr->must_async) {
4532 		message->actual_length = 0;
4533 		message->status = -EINPROGRESS;
4534 
4535 		trace_spi_message_submit(message);
4536 
4537 		SPI_STATISTICS_INCREMENT_FIELD(ctlr->pcpu_statistics, spi_sync_immediate);
4538 		SPI_STATISTICS_INCREMENT_FIELD(spi->pcpu_statistics, spi_sync_immediate);
4539 
4540 		__spi_transfer_message_noqueue(ctlr, message);
4541 
4542 		return message->status;
4543 	}
4544 
4545 	/*
4546 	 * There are messages in the async queue that could have originated
4547 	 * from the same context, so we need to preserve ordering.
4548 	 * Therefor we send the message to the async queue and wait until they
4549 	 * are completed.
4550 	 */
4551 	message->complete = spi_complete;
4552 	message->context = &done;
4553 
4554 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4555 	status = __spi_async(spi, message);
4556 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4557 
4558 	if (status == 0) {
4559 		wait_for_completion(&done);
4560 		status = message->status;
4561 	}
4562 	message->complete = NULL;
4563 	message->context = NULL;
4564 
4565 	return status;
4566 }
4567 
4568 /**
4569  * spi_sync - blocking/synchronous SPI data transfers
4570  * @spi: device with which data will be exchanged
4571  * @message: describes the data transfers
4572  * Context: can sleep
4573  *
4574  * This call may only be used from a context that may sleep.  The sleep
4575  * is non-interruptible, and has no timeout.  Low-overhead controller
4576  * drivers may DMA directly into and out of the message buffers.
4577  *
4578  * Note that the SPI device's chip select is active during the message,
4579  * and then is normally disabled between messages.  Drivers for some
4580  * frequently-used devices may want to minimize costs of selecting a chip,
4581  * by leaving it selected in anticipation that the next message will go
4582  * to the same chip.  (That may increase power usage.)
4583  *
4584  * Also, the caller is guaranteeing that the memory associated with the
4585  * message will not be freed before this call returns.
4586  *
4587  * Return: zero on success, else a negative error code.
4588  */
spi_sync(struct spi_device * spi,struct spi_message * message)4589 int spi_sync(struct spi_device *spi, struct spi_message *message)
4590 {
4591 	int ret;
4592 
4593 	mutex_lock(&spi->controller->bus_lock_mutex);
4594 	ret = __spi_sync(spi, message);
4595 	mutex_unlock(&spi->controller->bus_lock_mutex);
4596 
4597 	return ret;
4598 }
4599 EXPORT_SYMBOL_GPL(spi_sync);
4600 
4601 /**
4602  * spi_sync_locked - version of spi_sync with exclusive bus usage
4603  * @spi: device with which data will be exchanged
4604  * @message: describes the data transfers
4605  * Context: can sleep
4606  *
4607  * This call may only be used from a context that may sleep.  The sleep
4608  * is non-interruptible, and has no timeout.  Low-overhead controller
4609  * drivers may DMA directly into and out of the message buffers.
4610  *
4611  * This call should be used by drivers that require exclusive access to the
4612  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
4613  * be released by a spi_bus_unlock call when the exclusive access is over.
4614  *
4615  * Return: zero on success, else a negative error code.
4616  */
spi_sync_locked(struct spi_device * spi,struct spi_message * message)4617 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
4618 {
4619 	return __spi_sync(spi, message);
4620 }
4621 EXPORT_SYMBOL_GPL(spi_sync_locked);
4622 
4623 /**
4624  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
4625  * @ctlr: SPI bus controller that should be locked for exclusive bus access
4626  * Context: can sleep
4627  *
4628  * This call may only be used from a context that may sleep.  The sleep
4629  * is non-interruptible, and has no timeout.
4630  *
4631  * This call should be used by drivers that require exclusive access to the
4632  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
4633  * exclusive access is over. Data transfer must be done by spi_sync_locked
4634  * and spi_async_locked calls when the SPI bus lock is held.
4635  *
4636  * Return: always zero.
4637  */
spi_bus_lock(struct spi_controller * ctlr)4638 int spi_bus_lock(struct spi_controller *ctlr)
4639 {
4640 	unsigned long flags;
4641 
4642 	mutex_lock(&ctlr->bus_lock_mutex);
4643 
4644 	spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
4645 	ctlr->bus_lock_flag = 1;
4646 	spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
4647 
4648 	/* Mutex remains locked until spi_bus_unlock() is called */
4649 
4650 	return 0;
4651 }
4652 EXPORT_SYMBOL_GPL(spi_bus_lock);
4653 
4654 /**
4655  * spi_bus_unlock - release the lock for exclusive SPI bus usage
4656  * @ctlr: SPI bus controller that was locked for exclusive bus access
4657  * Context: can sleep
4658  *
4659  * This call may only be used from a context that may sleep.  The sleep
4660  * is non-interruptible, and has no timeout.
4661  *
4662  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
4663  * call.
4664  *
4665  * Return: always zero.
4666  */
spi_bus_unlock(struct spi_controller * ctlr)4667 int spi_bus_unlock(struct spi_controller *ctlr)
4668 {
4669 	ctlr->bus_lock_flag = 0;
4670 
4671 	mutex_unlock(&ctlr->bus_lock_mutex);
4672 
4673 	return 0;
4674 }
4675 EXPORT_SYMBOL_GPL(spi_bus_unlock);
4676 
4677 /* Portable code must never pass more than 32 bytes */
4678 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
4679 
4680 static u8	*buf;
4681 
4682 /**
4683  * spi_write_then_read - SPI synchronous write followed by read
4684  * @spi: device with which data will be exchanged
4685  * @txbuf: data to be written (need not be DMA-safe)
4686  * @n_tx: size of txbuf, in bytes
4687  * @rxbuf: buffer into which data will be read (need not be DMA-safe)
4688  * @n_rx: size of rxbuf, in bytes
4689  * Context: can sleep
4690  *
4691  * This performs a half duplex MicroWire style transaction with the
4692  * device, sending txbuf and then reading rxbuf.  The return value
4693  * is zero for success, else a negative errno status code.
4694  * This call may only be used from a context that may sleep.
4695  *
4696  * Parameters to this routine are always copied using a small buffer.
4697  * Performance-sensitive or bulk transfer code should instead use
4698  * spi_{async,sync}() calls with DMA-safe buffers.
4699  *
4700  * Return: zero on success, else a negative error code.
4701  */
spi_write_then_read(struct spi_device * spi,const void * txbuf,unsigned n_tx,void * rxbuf,unsigned n_rx)4702 int spi_write_then_read(struct spi_device *spi,
4703 		const void *txbuf, unsigned n_tx,
4704 		void *rxbuf, unsigned n_rx)
4705 {
4706 	static DEFINE_MUTEX(lock);
4707 
4708 	int			status;
4709 	struct spi_message	message;
4710 	struct spi_transfer	x[2];
4711 	u8			*local_buf;
4712 
4713 	/*
4714 	 * Use preallocated DMA-safe buffer if we can. We can't avoid
4715 	 * copying here, (as a pure convenience thing), but we can
4716 	 * keep heap costs out of the hot path unless someone else is
4717 	 * using the pre-allocated buffer or the transfer is too large.
4718 	 */
4719 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
4720 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
4721 				    GFP_KERNEL | GFP_DMA);
4722 		if (!local_buf)
4723 			return -ENOMEM;
4724 	} else {
4725 		local_buf = buf;
4726 	}
4727 
4728 	spi_message_init(&message);
4729 	memset(x, 0, sizeof(x));
4730 	if (n_tx) {
4731 		x[0].len = n_tx;
4732 		spi_message_add_tail(&x[0], &message);
4733 	}
4734 	if (n_rx) {
4735 		x[1].len = n_rx;
4736 		spi_message_add_tail(&x[1], &message);
4737 	}
4738 
4739 	memcpy(local_buf, txbuf, n_tx);
4740 	x[0].tx_buf = local_buf;
4741 	x[1].rx_buf = local_buf + n_tx;
4742 
4743 	/* Do the I/O */
4744 	status = spi_sync(spi, &message);
4745 	if (status == 0)
4746 		memcpy(rxbuf, x[1].rx_buf, n_rx);
4747 
4748 	if (x[0].tx_buf == buf)
4749 		mutex_unlock(&lock);
4750 	else
4751 		kfree(local_buf);
4752 
4753 	return status;
4754 }
4755 EXPORT_SYMBOL_GPL(spi_write_then_read);
4756 
4757 /*-------------------------------------------------------------------------*/
4758 
4759 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
4760 /* Must call put_device() when done with returned spi_device device */
of_find_spi_device_by_node(struct device_node * node)4761 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
4762 {
4763 	struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
4764 
4765 	return dev ? to_spi_device(dev) : NULL;
4766 }
4767 
4768 /* The spi controllers are not using spi_bus, so we find it with another way */
of_find_spi_controller_by_node(struct device_node * node)4769 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
4770 {
4771 	struct device *dev;
4772 
4773 	dev = class_find_device_by_of_node(&spi_controller_class, node);
4774 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4775 		dev = class_find_device_by_of_node(&spi_target_class, node);
4776 	if (!dev)
4777 		return NULL;
4778 
4779 	/* Reference got in class_find_device */
4780 	return container_of(dev, struct spi_controller, dev);
4781 }
4782 
of_spi_notify(struct notifier_block * nb,unsigned long action,void * arg)4783 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4784 			 void *arg)
4785 {
4786 	struct of_reconfig_data *rd = arg;
4787 	struct spi_controller *ctlr;
4788 	struct spi_device *spi;
4789 
4790 	switch (of_reconfig_get_state_change(action, arg)) {
4791 	case OF_RECONFIG_CHANGE_ADD:
4792 		ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4793 		if (ctlr == NULL)
4794 			return NOTIFY_OK;	/* Not for us */
4795 
4796 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4797 			put_device(&ctlr->dev);
4798 			return NOTIFY_OK;
4799 		}
4800 
4801 		/*
4802 		 * Clear the flag before adding the device so that fw_devlink
4803 		 * doesn't skip adding consumers to this device.
4804 		 */
4805 		rd->dn->fwnode.flags &= ~FWNODE_FLAG_NOT_DEVICE;
4806 		spi = of_register_spi_device(ctlr, rd->dn);
4807 		put_device(&ctlr->dev);
4808 
4809 		if (IS_ERR(spi)) {
4810 			pr_err("%s: failed to create for '%pOF'\n",
4811 					__func__, rd->dn);
4812 			of_node_clear_flag(rd->dn, OF_POPULATED);
4813 			return notifier_from_errno(PTR_ERR(spi));
4814 		}
4815 		break;
4816 
4817 	case OF_RECONFIG_CHANGE_REMOVE:
4818 		/* Already depopulated? */
4819 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
4820 			return NOTIFY_OK;
4821 
4822 		/* Find our device by node */
4823 		spi = of_find_spi_device_by_node(rd->dn);
4824 		if (spi == NULL)
4825 			return NOTIFY_OK;	/* No? not meant for us */
4826 
4827 		/* Unregister takes one ref away */
4828 		spi_unregister_device(spi);
4829 
4830 		/* And put the reference of the find */
4831 		put_device(&spi->dev);
4832 		break;
4833 	}
4834 
4835 	return NOTIFY_OK;
4836 }
4837 
4838 static struct notifier_block spi_of_notifier = {
4839 	.notifier_call = of_spi_notify,
4840 };
4841 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4842 extern struct notifier_block spi_of_notifier;
4843 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4844 
4845 #if IS_ENABLED(CONFIG_ACPI)
spi_acpi_controller_match(struct device * dev,const void * data)4846 static int spi_acpi_controller_match(struct device *dev, const void *data)
4847 {
4848 	return device_match_acpi_dev(dev->parent, data);
4849 }
4850 
acpi_spi_find_controller_by_adev(struct acpi_device * adev)4851 struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4852 {
4853 	struct device *dev;
4854 
4855 	dev = class_find_device(&spi_controller_class, NULL, adev,
4856 				spi_acpi_controller_match);
4857 	if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4858 		dev = class_find_device(&spi_target_class, NULL, adev,
4859 					spi_acpi_controller_match);
4860 	if (!dev)
4861 		return NULL;
4862 
4863 	return container_of(dev, struct spi_controller, dev);
4864 }
4865 EXPORT_SYMBOL_GPL(acpi_spi_find_controller_by_adev);
4866 
acpi_spi_find_device_by_adev(struct acpi_device * adev)4867 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4868 {
4869 	struct device *dev;
4870 
4871 	dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4872 	return to_spi_device(dev);
4873 }
4874 
acpi_spi_notify(struct notifier_block * nb,unsigned long value,void * arg)4875 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4876 			   void *arg)
4877 {
4878 	struct acpi_device *adev = arg;
4879 	struct spi_controller *ctlr;
4880 	struct spi_device *spi;
4881 
4882 	switch (value) {
4883 	case ACPI_RECONFIG_DEVICE_ADD:
4884 		ctlr = acpi_spi_find_controller_by_adev(acpi_dev_parent(adev));
4885 		if (!ctlr)
4886 			break;
4887 
4888 		acpi_register_spi_device(ctlr, adev);
4889 		put_device(&ctlr->dev);
4890 		break;
4891 	case ACPI_RECONFIG_DEVICE_REMOVE:
4892 		if (!acpi_device_enumerated(adev))
4893 			break;
4894 
4895 		spi = acpi_spi_find_device_by_adev(adev);
4896 		if (!spi)
4897 			break;
4898 
4899 		spi_unregister_device(spi);
4900 		put_device(&spi->dev);
4901 		break;
4902 	}
4903 
4904 	return NOTIFY_OK;
4905 }
4906 
4907 static struct notifier_block spi_acpi_notifier = {
4908 	.notifier_call = acpi_spi_notify,
4909 };
4910 #else
4911 extern struct notifier_block spi_acpi_notifier;
4912 #endif
4913 
spi_init(void)4914 static int __init spi_init(void)
4915 {
4916 	int	status;
4917 
4918 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4919 	if (!buf) {
4920 		status = -ENOMEM;
4921 		goto err0;
4922 	}
4923 
4924 	status = bus_register(&spi_bus_type);
4925 	if (status < 0)
4926 		goto err1;
4927 
4928 	status = class_register(&spi_controller_class);
4929 	if (status < 0)
4930 		goto err2;
4931 
4932 	if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4933 		status = class_register(&spi_target_class);
4934 		if (status < 0)
4935 			goto err3;
4936 	}
4937 
4938 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4939 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4940 	if (IS_ENABLED(CONFIG_ACPI))
4941 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4942 
4943 	return 0;
4944 
4945 err3:
4946 	class_unregister(&spi_controller_class);
4947 err2:
4948 	bus_unregister(&spi_bus_type);
4949 err1:
4950 	kfree(buf);
4951 	buf = NULL;
4952 err0:
4953 	return status;
4954 }
4955 
4956 /*
4957  * A board_info is normally registered in arch_initcall(),
4958  * but even essential drivers wait till later.
4959  *
4960  * REVISIT only boardinfo really needs static linking. The rest (device and
4961  * driver registration) _could_ be dynamically linked (modular) ... Costs
4962  * include needing to have boardinfo data structures be much more public.
4963  */
4964 postcore_initcall(spi_init);
4965