1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) STMicroelectronics 2018 - All Rights Reserved
4  * Author: Ludovic Barre <ludovic.barre@st.com> for STMicroelectronics.
5  */
6 #include <linux/bitfield.h>
7 #include <linux/clk.h>
8 #include <linux/dmaengine.h>
9 #include <linux/dma-mapping.h>
10 #include <linux/errno.h>
11 #include <linux/gpio/consumer.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/mutex.h>
17 #include <linux/of.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/platform_device.h>
21 #include <linux/reset.h>
22 #include <linux/sizes.h>
23 #include <linux/spi/spi-mem.h>
24 
25 #define QSPI_CR			0x00
26 #define CR_EN			BIT(0)
27 #define CR_ABORT		BIT(1)
28 #define CR_DMAEN		BIT(2)
29 #define CR_TCEN			BIT(3)
30 #define CR_SSHIFT		BIT(4)
31 #define CR_DFM			BIT(6)
32 #define CR_FSEL			BIT(7)
33 #define CR_FTHRES_SHIFT		8
34 #define CR_TEIE			BIT(16)
35 #define CR_TCIE			BIT(17)
36 #define CR_FTIE			BIT(18)
37 #define CR_SMIE			BIT(19)
38 #define CR_TOIE			BIT(20)
39 #define CR_APMS			BIT(22)
40 #define CR_PRESC_MASK		GENMASK(31, 24)
41 
42 #define QSPI_DCR		0x04
43 #define DCR_FSIZE_MASK		GENMASK(20, 16)
44 
45 #define QSPI_SR			0x08
46 #define SR_TEF			BIT(0)
47 #define SR_TCF			BIT(1)
48 #define SR_FTF			BIT(2)
49 #define SR_SMF			BIT(3)
50 #define SR_TOF			BIT(4)
51 #define SR_BUSY			BIT(5)
52 #define SR_FLEVEL_MASK		GENMASK(13, 8)
53 
54 #define QSPI_FCR		0x0c
55 #define FCR_CTEF		BIT(0)
56 #define FCR_CTCF		BIT(1)
57 #define FCR_CSMF		BIT(3)
58 
59 #define QSPI_DLR		0x10
60 
61 #define QSPI_CCR		0x14
62 #define CCR_INST_MASK		GENMASK(7, 0)
63 #define CCR_IMODE_MASK		GENMASK(9, 8)
64 #define CCR_ADMODE_MASK		GENMASK(11, 10)
65 #define CCR_ADSIZE_MASK		GENMASK(13, 12)
66 #define CCR_DCYC_MASK		GENMASK(22, 18)
67 #define CCR_DMODE_MASK		GENMASK(25, 24)
68 #define CCR_FMODE_MASK		GENMASK(27, 26)
69 #define CCR_FMODE_INDW		(0U << 26)
70 #define CCR_FMODE_INDR		(1U << 26)
71 #define CCR_FMODE_APM		(2U << 26)
72 #define CCR_FMODE_MM		(3U << 26)
73 #define CCR_BUSWIDTH_0		0x0
74 #define CCR_BUSWIDTH_1		0x1
75 #define CCR_BUSWIDTH_2		0x2
76 #define CCR_BUSWIDTH_4		0x3
77 
78 #define QSPI_AR			0x18
79 #define QSPI_ABR		0x1c
80 #define QSPI_DR			0x20
81 #define QSPI_PSMKR		0x24
82 #define QSPI_PSMAR		0x28
83 #define QSPI_PIR		0x2c
84 #define QSPI_LPTR		0x30
85 
86 #define STM32_QSPI_MAX_MMAP_SZ	SZ_256M
87 #define STM32_QSPI_MAX_NORCHIP	2
88 
89 #define STM32_FIFO_TIMEOUT_US 30000
90 #define STM32_BUSY_TIMEOUT_US 100000
91 #define STM32_ABT_TIMEOUT_US 100000
92 #define STM32_COMP_TIMEOUT_MS 1000
93 #define STM32_AUTOSUSPEND_DELAY -1
94 
95 struct stm32_qspi_flash {
96 	u32 cs;
97 	u32 presc;
98 };
99 
100 struct stm32_qspi {
101 	struct device *dev;
102 	struct spi_controller *ctrl;
103 	phys_addr_t phys_base;
104 	void __iomem *io_base;
105 	void __iomem *mm_base;
106 	resource_size_t mm_size;
107 	struct clk *clk;
108 	u32 clk_rate;
109 	struct stm32_qspi_flash flash[STM32_QSPI_MAX_NORCHIP];
110 	struct completion data_completion;
111 	struct completion match_completion;
112 	u32 fmode;
113 
114 	struct dma_chan *dma_chtx;
115 	struct dma_chan *dma_chrx;
116 	struct completion dma_completion;
117 
118 	u32 cr_reg;
119 	u32 dcr_reg;
120 	unsigned long status_timeout;
121 
122 	/*
123 	 * to protect device configuration, could be different between
124 	 * 2 flash access (bk1, bk2)
125 	 */
126 	struct mutex lock;
127 };
128 
stm32_qspi_irq(int irq,void * dev_id)129 static irqreturn_t stm32_qspi_irq(int irq, void *dev_id)
130 {
131 	struct stm32_qspi *qspi = (struct stm32_qspi *)dev_id;
132 	u32 cr, sr;
133 
134 	cr = readl_relaxed(qspi->io_base + QSPI_CR);
135 	sr = readl_relaxed(qspi->io_base + QSPI_SR);
136 
137 	if (cr & CR_SMIE && sr & SR_SMF) {
138 		/* disable irq */
139 		cr &= ~CR_SMIE;
140 		writel_relaxed(cr, qspi->io_base + QSPI_CR);
141 		complete(&qspi->match_completion);
142 
143 		return IRQ_HANDLED;
144 	}
145 
146 	if (sr & (SR_TEF | SR_TCF)) {
147 		/* disable irq */
148 		cr &= ~CR_TCIE & ~CR_TEIE;
149 		writel_relaxed(cr, qspi->io_base + QSPI_CR);
150 		complete(&qspi->data_completion);
151 	}
152 
153 	return IRQ_HANDLED;
154 }
155 
stm32_qspi_read_fifo(u8 * val,void __iomem * addr)156 static void stm32_qspi_read_fifo(u8 *val, void __iomem *addr)
157 {
158 	*val = readb_relaxed(addr);
159 }
160 
stm32_qspi_write_fifo(u8 * val,void __iomem * addr)161 static void stm32_qspi_write_fifo(u8 *val, void __iomem *addr)
162 {
163 	writeb_relaxed(*val, addr);
164 }
165 
stm32_qspi_tx_poll(struct stm32_qspi * qspi,const struct spi_mem_op * op)166 static int stm32_qspi_tx_poll(struct stm32_qspi *qspi,
167 			      const struct spi_mem_op *op)
168 {
169 	void (*tx_fifo)(u8 *val, void __iomem *addr);
170 	u32 len = op->data.nbytes, sr;
171 	u8 *buf;
172 	int ret;
173 
174 	if (op->data.dir == SPI_MEM_DATA_IN) {
175 		tx_fifo = stm32_qspi_read_fifo;
176 		buf = op->data.buf.in;
177 
178 	} else {
179 		tx_fifo = stm32_qspi_write_fifo;
180 		buf = (u8 *)op->data.buf.out;
181 	}
182 
183 	while (len--) {
184 		ret = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR,
185 							sr, (sr & SR_FTF), 1,
186 							STM32_FIFO_TIMEOUT_US);
187 		if (ret) {
188 			dev_err(qspi->dev, "fifo timeout (len:%d stat:%#x)\n",
189 				len, sr);
190 			return ret;
191 		}
192 		tx_fifo(buf++, qspi->io_base + QSPI_DR);
193 	}
194 
195 	return 0;
196 }
197 
stm32_qspi_tx_mm(struct stm32_qspi * qspi,const struct spi_mem_op * op)198 static int stm32_qspi_tx_mm(struct stm32_qspi *qspi,
199 			    const struct spi_mem_op *op)
200 {
201 	memcpy_fromio(op->data.buf.in, qspi->mm_base + op->addr.val,
202 		      op->data.nbytes);
203 	return 0;
204 }
205 
stm32_qspi_dma_callback(void * arg)206 static void stm32_qspi_dma_callback(void *arg)
207 {
208 	struct completion *dma_completion = arg;
209 
210 	complete(dma_completion);
211 }
212 
stm32_qspi_tx_dma(struct stm32_qspi * qspi,const struct spi_mem_op * op)213 static int stm32_qspi_tx_dma(struct stm32_qspi *qspi,
214 			     const struct spi_mem_op *op)
215 {
216 	struct dma_async_tx_descriptor *desc;
217 	enum dma_transfer_direction dma_dir;
218 	struct dma_chan *dma_ch;
219 	struct sg_table sgt;
220 	dma_cookie_t cookie;
221 	u32 cr, t_out;
222 	int err;
223 
224 	if (op->data.dir == SPI_MEM_DATA_IN) {
225 		dma_dir = DMA_DEV_TO_MEM;
226 		dma_ch = qspi->dma_chrx;
227 	} else {
228 		dma_dir = DMA_MEM_TO_DEV;
229 		dma_ch = qspi->dma_chtx;
230 	}
231 
232 	/*
233 	 * spi_map_buf return -EINVAL if the buffer is not DMA-able
234 	 * (DMA-able: in vmalloc | kmap | virt_addr_valid)
235 	 */
236 	err = spi_controller_dma_map_mem_op_data(qspi->ctrl, op, &sgt);
237 	if (err)
238 		return err;
239 
240 	desc = dmaengine_prep_slave_sg(dma_ch, sgt.sgl, sgt.nents,
241 				       dma_dir, DMA_PREP_INTERRUPT);
242 	if (!desc) {
243 		err = -ENOMEM;
244 		goto out_unmap;
245 	}
246 
247 	cr = readl_relaxed(qspi->io_base + QSPI_CR);
248 
249 	reinit_completion(&qspi->dma_completion);
250 	desc->callback = stm32_qspi_dma_callback;
251 	desc->callback_param = &qspi->dma_completion;
252 	cookie = dmaengine_submit(desc);
253 	err = dma_submit_error(cookie);
254 	if (err)
255 		goto out;
256 
257 	dma_async_issue_pending(dma_ch);
258 
259 	writel_relaxed(cr | CR_DMAEN, qspi->io_base + QSPI_CR);
260 
261 	t_out = sgt.nents * STM32_COMP_TIMEOUT_MS;
262 	if (!wait_for_completion_timeout(&qspi->dma_completion,
263 					 msecs_to_jiffies(t_out)))
264 		err = -ETIMEDOUT;
265 
266 	if (err)
267 		dmaengine_terminate_all(dma_ch);
268 
269 out:
270 	writel_relaxed(cr & ~CR_DMAEN, qspi->io_base + QSPI_CR);
271 out_unmap:
272 	spi_controller_dma_unmap_mem_op_data(qspi->ctrl, op, &sgt);
273 
274 	return err;
275 }
276 
stm32_qspi_tx(struct stm32_qspi * qspi,const struct spi_mem_op * op)277 static int stm32_qspi_tx(struct stm32_qspi *qspi, const struct spi_mem_op *op)
278 {
279 	if (!op->data.nbytes)
280 		return 0;
281 
282 	if (qspi->fmode == CCR_FMODE_MM)
283 		return stm32_qspi_tx_mm(qspi, op);
284 	else if (((op->data.dir == SPI_MEM_DATA_IN && qspi->dma_chrx) ||
285 		 (op->data.dir == SPI_MEM_DATA_OUT && qspi->dma_chtx)) &&
286 		  op->data.nbytes > 4)
287 		if (!stm32_qspi_tx_dma(qspi, op))
288 			return 0;
289 
290 	return stm32_qspi_tx_poll(qspi, op);
291 }
292 
stm32_qspi_wait_nobusy(struct stm32_qspi * qspi)293 static int stm32_qspi_wait_nobusy(struct stm32_qspi *qspi)
294 {
295 	u32 sr;
296 
297 	return readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_SR, sr,
298 						 !(sr & SR_BUSY), 1,
299 						 STM32_BUSY_TIMEOUT_US);
300 }
301 
stm32_qspi_wait_cmd(struct stm32_qspi * qspi)302 static int stm32_qspi_wait_cmd(struct stm32_qspi *qspi)
303 {
304 	u32 cr, sr;
305 	int err = 0;
306 
307 	if ((readl_relaxed(qspi->io_base + QSPI_SR) & SR_TCF) ||
308 	    qspi->fmode == CCR_FMODE_APM)
309 		goto out;
310 
311 	reinit_completion(&qspi->data_completion);
312 	cr = readl_relaxed(qspi->io_base + QSPI_CR);
313 	writel_relaxed(cr | CR_TCIE | CR_TEIE, qspi->io_base + QSPI_CR);
314 
315 	if (!wait_for_completion_timeout(&qspi->data_completion,
316 				msecs_to_jiffies(STM32_COMP_TIMEOUT_MS))) {
317 		err = -ETIMEDOUT;
318 	} else {
319 		sr = readl_relaxed(qspi->io_base + QSPI_SR);
320 		if (sr & SR_TEF)
321 			err = -EIO;
322 	}
323 
324 out:
325 	/* clear flags */
326 	writel_relaxed(FCR_CTCF | FCR_CTEF, qspi->io_base + QSPI_FCR);
327 	if (!err)
328 		err = stm32_qspi_wait_nobusy(qspi);
329 
330 	return err;
331 }
332 
stm32_qspi_wait_poll_status(struct stm32_qspi * qspi)333 static int stm32_qspi_wait_poll_status(struct stm32_qspi *qspi)
334 {
335 	u32 cr;
336 
337 	reinit_completion(&qspi->match_completion);
338 	cr = readl_relaxed(qspi->io_base + QSPI_CR);
339 	writel_relaxed(cr | CR_SMIE, qspi->io_base + QSPI_CR);
340 
341 	if (!wait_for_completion_timeout(&qspi->match_completion,
342 				msecs_to_jiffies(qspi->status_timeout)))
343 		return -ETIMEDOUT;
344 
345 	writel_relaxed(FCR_CSMF, qspi->io_base + QSPI_FCR);
346 
347 	return 0;
348 }
349 
stm32_qspi_get_mode(u8 buswidth)350 static int stm32_qspi_get_mode(u8 buswidth)
351 {
352 	if (buswidth >= 4)
353 		return CCR_BUSWIDTH_4;
354 
355 	return buswidth;
356 }
357 
stm32_qspi_send(struct spi_device * spi,const struct spi_mem_op * op)358 static int stm32_qspi_send(struct spi_device *spi, const struct spi_mem_op *op)
359 {
360 	struct stm32_qspi *qspi = spi_controller_get_devdata(spi->controller);
361 	struct stm32_qspi_flash *flash = &qspi->flash[spi_get_chipselect(spi, 0)];
362 	u32 ccr, cr;
363 	int timeout, err = 0, err_poll_status = 0;
364 
365 	cr = readl_relaxed(qspi->io_base + QSPI_CR);
366 	cr &= ~CR_PRESC_MASK & ~CR_FSEL;
367 	cr |= FIELD_PREP(CR_PRESC_MASK, flash->presc);
368 	cr |= FIELD_PREP(CR_FSEL, flash->cs);
369 	writel_relaxed(cr, qspi->io_base + QSPI_CR);
370 
371 	if (op->data.nbytes)
372 		writel_relaxed(op->data.nbytes - 1,
373 			       qspi->io_base + QSPI_DLR);
374 
375 	ccr = qspi->fmode;
376 	ccr |= FIELD_PREP(CCR_INST_MASK, op->cmd.opcode);
377 	ccr |= FIELD_PREP(CCR_IMODE_MASK,
378 			  stm32_qspi_get_mode(op->cmd.buswidth));
379 
380 	if (op->addr.nbytes) {
381 		ccr |= FIELD_PREP(CCR_ADMODE_MASK,
382 				  stm32_qspi_get_mode(op->addr.buswidth));
383 		ccr |= FIELD_PREP(CCR_ADSIZE_MASK, op->addr.nbytes - 1);
384 	}
385 
386 	if (op->dummy.nbytes)
387 		ccr |= FIELD_PREP(CCR_DCYC_MASK,
388 				  op->dummy.nbytes * 8 / op->dummy.buswidth);
389 
390 	if (op->data.nbytes) {
391 		ccr |= FIELD_PREP(CCR_DMODE_MASK,
392 				  stm32_qspi_get_mode(op->data.buswidth));
393 	}
394 
395 	writel_relaxed(ccr, qspi->io_base + QSPI_CCR);
396 
397 	if (op->addr.nbytes && qspi->fmode != CCR_FMODE_MM)
398 		writel_relaxed(op->addr.val, qspi->io_base + QSPI_AR);
399 
400 	if (qspi->fmode == CCR_FMODE_APM)
401 		err_poll_status = stm32_qspi_wait_poll_status(qspi);
402 
403 	err = stm32_qspi_tx(qspi, op);
404 
405 	/*
406 	 * Abort in:
407 	 * -error case
408 	 * -read memory map: prefetching must be stopped if we read the last
409 	 *  byte of device (device size - fifo size). like device size is not
410 	 *  knows, the prefetching is always stop.
411 	 */
412 	if (err || err_poll_status || qspi->fmode == CCR_FMODE_MM)
413 		goto abort;
414 
415 	/* wait end of tx in indirect mode */
416 	err = stm32_qspi_wait_cmd(qspi);
417 	if (err)
418 		goto abort;
419 
420 	return 0;
421 
422 abort:
423 	cr = readl_relaxed(qspi->io_base + QSPI_CR) | CR_ABORT;
424 	writel_relaxed(cr, qspi->io_base + QSPI_CR);
425 
426 	/* wait clear of abort bit by hw */
427 	timeout = readl_relaxed_poll_timeout_atomic(qspi->io_base + QSPI_CR,
428 						    cr, !(cr & CR_ABORT), 1,
429 						    STM32_ABT_TIMEOUT_US);
430 
431 	writel_relaxed(FCR_CTCF | FCR_CSMF, qspi->io_base + QSPI_FCR);
432 
433 	if (err || err_poll_status || timeout)
434 		dev_err(qspi->dev, "%s err:%d err_poll_status:%d abort timeout:%d\n",
435 			__func__, err, err_poll_status, timeout);
436 
437 	return err;
438 }
439 
stm32_qspi_poll_status(struct spi_mem * mem,const struct spi_mem_op * op,u16 mask,u16 match,unsigned long initial_delay_us,unsigned long polling_rate_us,unsigned long timeout_ms)440 static int stm32_qspi_poll_status(struct spi_mem *mem, const struct spi_mem_op *op,
441 				  u16 mask, u16 match,
442 				  unsigned long initial_delay_us,
443 				  unsigned long polling_rate_us,
444 				  unsigned long timeout_ms)
445 {
446 	struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->controller);
447 	int ret;
448 
449 	if (!spi_mem_supports_op(mem, op))
450 		return -EOPNOTSUPP;
451 
452 	ret = pm_runtime_resume_and_get(qspi->dev);
453 	if (ret < 0)
454 		return ret;
455 
456 	mutex_lock(&qspi->lock);
457 
458 	writel_relaxed(mask, qspi->io_base + QSPI_PSMKR);
459 	writel_relaxed(match, qspi->io_base + QSPI_PSMAR);
460 	qspi->fmode = CCR_FMODE_APM;
461 	qspi->status_timeout = timeout_ms;
462 
463 	ret = stm32_qspi_send(mem->spi, op);
464 	mutex_unlock(&qspi->lock);
465 
466 	pm_runtime_mark_last_busy(qspi->dev);
467 	pm_runtime_put_autosuspend(qspi->dev);
468 
469 	return ret;
470 }
471 
stm32_qspi_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)472 static int stm32_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
473 {
474 	struct stm32_qspi *qspi = spi_controller_get_devdata(mem->spi->controller);
475 	int ret;
476 
477 	ret = pm_runtime_resume_and_get(qspi->dev);
478 	if (ret < 0)
479 		return ret;
480 
481 	mutex_lock(&qspi->lock);
482 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.nbytes)
483 		qspi->fmode = CCR_FMODE_INDR;
484 	else
485 		qspi->fmode = CCR_FMODE_INDW;
486 
487 	ret = stm32_qspi_send(mem->spi, op);
488 	mutex_unlock(&qspi->lock);
489 
490 	pm_runtime_mark_last_busy(qspi->dev);
491 	pm_runtime_put_autosuspend(qspi->dev);
492 
493 	return ret;
494 }
495 
stm32_qspi_dirmap_create(struct spi_mem_dirmap_desc * desc)496 static int stm32_qspi_dirmap_create(struct spi_mem_dirmap_desc *desc)
497 {
498 	struct stm32_qspi *qspi = spi_controller_get_devdata(desc->mem->spi->controller);
499 
500 	if (desc->info.op_tmpl.data.dir == SPI_MEM_DATA_OUT)
501 		return -EOPNOTSUPP;
502 
503 	/* should never happen, as mm_base == null is an error probe exit condition */
504 	if (!qspi->mm_base && desc->info.op_tmpl.data.dir == SPI_MEM_DATA_IN)
505 		return -EOPNOTSUPP;
506 
507 	if (!qspi->mm_size)
508 		return -EOPNOTSUPP;
509 
510 	return 0;
511 }
512 
stm32_qspi_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offs,size_t len,void * buf)513 static ssize_t stm32_qspi_dirmap_read(struct spi_mem_dirmap_desc *desc,
514 				      u64 offs, size_t len, void *buf)
515 {
516 	struct stm32_qspi *qspi = spi_controller_get_devdata(desc->mem->spi->controller);
517 	struct spi_mem_op op;
518 	u32 addr_max;
519 	int ret;
520 
521 	ret = pm_runtime_resume_and_get(qspi->dev);
522 	if (ret < 0)
523 		return ret;
524 
525 	mutex_lock(&qspi->lock);
526 	/* make a local copy of desc op_tmpl and complete dirmap rdesc
527 	 * spi_mem_op template with offs, len and *buf in  order to get
528 	 * all needed transfer information into struct spi_mem_op
529 	 */
530 	memcpy(&op, &desc->info.op_tmpl, sizeof(struct spi_mem_op));
531 	dev_dbg(qspi->dev, "%s len = 0x%zx offs = 0x%llx buf = 0x%p\n", __func__, len, offs, buf);
532 
533 	op.data.nbytes = len;
534 	op.addr.val = desc->info.offset + offs;
535 	op.data.buf.in = buf;
536 
537 	addr_max = op.addr.val + op.data.nbytes + 1;
538 	if (addr_max < qspi->mm_size && op.addr.buswidth)
539 		qspi->fmode = CCR_FMODE_MM;
540 	else
541 		qspi->fmode = CCR_FMODE_INDR;
542 
543 	ret = stm32_qspi_send(desc->mem->spi, &op);
544 	mutex_unlock(&qspi->lock);
545 
546 	pm_runtime_mark_last_busy(qspi->dev);
547 	pm_runtime_put_autosuspend(qspi->dev);
548 
549 	return ret ?: len;
550 }
551 
stm32_qspi_transfer_one_message(struct spi_controller * ctrl,struct spi_message * msg)552 static int stm32_qspi_transfer_one_message(struct spi_controller *ctrl,
553 					   struct spi_message *msg)
554 {
555 	struct stm32_qspi *qspi = spi_controller_get_devdata(ctrl);
556 	struct spi_transfer *transfer;
557 	struct spi_device *spi = msg->spi;
558 	struct spi_mem_op op;
559 	int ret = 0;
560 
561 	if (!spi_get_csgpiod(spi, 0))
562 		return -EOPNOTSUPP;
563 
564 	ret = pm_runtime_resume_and_get(qspi->dev);
565 	if (ret < 0)
566 		return ret;
567 
568 	mutex_lock(&qspi->lock);
569 
570 	gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), true);
571 
572 	list_for_each_entry(transfer, &msg->transfers, transfer_list) {
573 		u8 dummy_bytes = 0;
574 
575 		memset(&op, 0, sizeof(op));
576 
577 		dev_dbg(qspi->dev, "tx_buf:%p tx_nbits:%d rx_buf:%p rx_nbits:%d len:%d dummy_data:%d\n",
578 			transfer->tx_buf, transfer->tx_nbits,
579 			transfer->rx_buf, transfer->rx_nbits,
580 			transfer->len, transfer->dummy_data);
581 
582 		/*
583 		 * QSPI hardware supports dummy bytes transfer.
584 		 * If current transfer is dummy byte, merge it with the next
585 		 * transfer in order to take into account QSPI block constraint
586 		 */
587 		if (transfer->dummy_data) {
588 			op.dummy.buswidth = transfer->tx_nbits;
589 			op.dummy.nbytes = transfer->len;
590 			dummy_bytes = transfer->len;
591 
592 			/* if happens, means that message is not correctly built */
593 			if (list_is_last(&transfer->transfer_list, &msg->transfers)) {
594 				ret = -EINVAL;
595 				goto end_of_transfer;
596 			}
597 
598 			transfer = list_next_entry(transfer, transfer_list);
599 		}
600 
601 		op.data.nbytes = transfer->len;
602 
603 		if (transfer->rx_buf) {
604 			qspi->fmode = CCR_FMODE_INDR;
605 			op.data.buswidth = transfer->rx_nbits;
606 			op.data.dir = SPI_MEM_DATA_IN;
607 			op.data.buf.in = transfer->rx_buf;
608 		} else {
609 			qspi->fmode = CCR_FMODE_INDW;
610 			op.data.buswidth = transfer->tx_nbits;
611 			op.data.dir = SPI_MEM_DATA_OUT;
612 			op.data.buf.out = transfer->tx_buf;
613 		}
614 
615 		ret = stm32_qspi_send(spi, &op);
616 		if (ret)
617 			goto end_of_transfer;
618 
619 		msg->actual_length += transfer->len + dummy_bytes;
620 	}
621 
622 end_of_transfer:
623 	gpiod_set_value_cansleep(spi_get_csgpiod(spi, 0), false);
624 
625 	mutex_unlock(&qspi->lock);
626 
627 	msg->status = ret;
628 	spi_finalize_current_message(ctrl);
629 
630 	pm_runtime_mark_last_busy(qspi->dev);
631 	pm_runtime_put_autosuspend(qspi->dev);
632 
633 	return ret;
634 }
635 
stm32_qspi_setup(struct spi_device * spi)636 static int stm32_qspi_setup(struct spi_device *spi)
637 {
638 	struct spi_controller *ctrl = spi->controller;
639 	struct stm32_qspi *qspi = spi_controller_get_devdata(ctrl);
640 	struct stm32_qspi_flash *flash;
641 	u32 presc, mode;
642 	int ret;
643 
644 	if (ctrl->busy)
645 		return -EBUSY;
646 
647 	if (!spi->max_speed_hz)
648 		return -EINVAL;
649 
650 	mode = spi->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL);
651 	if (mode && gpiod_count(qspi->dev, "cs") == -ENOENT) {
652 		dev_err(qspi->dev, "spi-rx-bus-width\\/spi-tx-bus-width\\/cs-gpios\n");
653 		dev_err(qspi->dev, "configuration not supported\n");
654 
655 		return -EINVAL;
656 	}
657 
658 	ret = pm_runtime_resume_and_get(qspi->dev);
659 	if (ret < 0)
660 		return ret;
661 
662 	presc = DIV_ROUND_UP(qspi->clk_rate, spi->max_speed_hz) - 1;
663 
664 	flash = &qspi->flash[spi_get_chipselect(spi, 0)];
665 	flash->cs = spi_get_chipselect(spi, 0);
666 	flash->presc = presc;
667 
668 	mutex_lock(&qspi->lock);
669 	qspi->cr_reg = CR_APMS | 3 << CR_FTHRES_SHIFT | CR_SSHIFT | CR_EN;
670 
671 	/*
672 	 * Dual flash mode is only enable in case SPI_TX_OCTAL or SPI_RX_OCTAL
673 	 * is set in spi->mode and "cs-gpios" properties is found in DT
674 	 */
675 	if (mode) {
676 		qspi->cr_reg |= CR_DFM;
677 		dev_dbg(qspi->dev, "Dual flash mode enable");
678 	}
679 
680 	writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR);
681 
682 	/* set dcr fsize to max address */
683 	qspi->dcr_reg = DCR_FSIZE_MASK;
684 	writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR);
685 	mutex_unlock(&qspi->lock);
686 
687 	pm_runtime_mark_last_busy(qspi->dev);
688 	pm_runtime_put_autosuspend(qspi->dev);
689 
690 	return 0;
691 }
692 
stm32_qspi_dma_setup(struct stm32_qspi * qspi)693 static int stm32_qspi_dma_setup(struct stm32_qspi *qspi)
694 {
695 	struct dma_slave_config dma_cfg;
696 	struct device *dev = qspi->dev;
697 	int ret = 0;
698 
699 	memset(&dma_cfg, 0, sizeof(dma_cfg));
700 
701 	dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
702 	dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
703 	dma_cfg.src_addr = qspi->phys_base + QSPI_DR;
704 	dma_cfg.dst_addr = qspi->phys_base + QSPI_DR;
705 	dma_cfg.src_maxburst = 4;
706 	dma_cfg.dst_maxburst = 4;
707 
708 	qspi->dma_chrx = dma_request_chan(dev, "rx");
709 	if (IS_ERR(qspi->dma_chrx)) {
710 		ret = PTR_ERR(qspi->dma_chrx);
711 		qspi->dma_chrx = NULL;
712 		if (ret == -EPROBE_DEFER)
713 			goto out;
714 	} else {
715 		if (dmaengine_slave_config(qspi->dma_chrx, &dma_cfg)) {
716 			dev_err(dev, "dma rx config failed\n");
717 			dma_release_channel(qspi->dma_chrx);
718 			qspi->dma_chrx = NULL;
719 		}
720 	}
721 
722 	qspi->dma_chtx = dma_request_chan(dev, "tx");
723 	if (IS_ERR(qspi->dma_chtx)) {
724 		ret = PTR_ERR(qspi->dma_chtx);
725 		qspi->dma_chtx = NULL;
726 	} else {
727 		if (dmaengine_slave_config(qspi->dma_chtx, &dma_cfg)) {
728 			dev_err(dev, "dma tx config failed\n");
729 			dma_release_channel(qspi->dma_chtx);
730 			qspi->dma_chtx = NULL;
731 		}
732 	}
733 
734 out:
735 	init_completion(&qspi->dma_completion);
736 
737 	if (ret != -EPROBE_DEFER)
738 		ret = 0;
739 
740 	return ret;
741 }
742 
stm32_qspi_dma_free(struct stm32_qspi * qspi)743 static void stm32_qspi_dma_free(struct stm32_qspi *qspi)
744 {
745 	if (qspi->dma_chtx)
746 		dma_release_channel(qspi->dma_chtx);
747 	if (qspi->dma_chrx)
748 		dma_release_channel(qspi->dma_chrx);
749 }
750 
751 /*
752  * no special host constraint, so use default spi_mem_default_supports_op
753  * to check supported mode.
754  */
755 static const struct spi_controller_mem_ops stm32_qspi_mem_ops = {
756 	.exec_op	= stm32_qspi_exec_op,
757 	.dirmap_create	= stm32_qspi_dirmap_create,
758 	.dirmap_read	= stm32_qspi_dirmap_read,
759 	.poll_status	= stm32_qspi_poll_status,
760 };
761 
stm32_qspi_probe(struct platform_device * pdev)762 static int stm32_qspi_probe(struct platform_device *pdev)
763 {
764 	struct device *dev = &pdev->dev;
765 	struct spi_controller *ctrl;
766 	struct reset_control *rstc;
767 	struct stm32_qspi *qspi;
768 	struct resource *res;
769 	int ret, irq;
770 
771 	ctrl = devm_spi_alloc_host(dev, sizeof(*qspi));
772 	if (!ctrl)
773 		return -ENOMEM;
774 
775 	qspi = spi_controller_get_devdata(ctrl);
776 	qspi->ctrl = ctrl;
777 
778 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi");
779 	qspi->io_base = devm_ioremap_resource(dev, res);
780 	if (IS_ERR(qspi->io_base))
781 		return PTR_ERR(qspi->io_base);
782 
783 	qspi->phys_base = res->start;
784 
785 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mm");
786 	qspi->mm_base = devm_ioremap_resource(dev, res);
787 	if (IS_ERR(qspi->mm_base))
788 		return PTR_ERR(qspi->mm_base);
789 
790 	qspi->mm_size = resource_size(res);
791 	if (qspi->mm_size > STM32_QSPI_MAX_MMAP_SZ)
792 		return -EINVAL;
793 
794 	irq = platform_get_irq(pdev, 0);
795 	if (irq < 0)
796 		return irq;
797 
798 	ret = devm_request_irq(dev, irq, stm32_qspi_irq, 0,
799 			       dev_name(dev), qspi);
800 	if (ret) {
801 		dev_err(dev, "failed to request irq\n");
802 		return ret;
803 	}
804 
805 	init_completion(&qspi->data_completion);
806 	init_completion(&qspi->match_completion);
807 
808 	qspi->clk = devm_clk_get(dev, NULL);
809 	if (IS_ERR(qspi->clk))
810 		return PTR_ERR(qspi->clk);
811 
812 	qspi->clk_rate = clk_get_rate(qspi->clk);
813 	if (!qspi->clk_rate)
814 		return -EINVAL;
815 
816 	ret = clk_prepare_enable(qspi->clk);
817 	if (ret) {
818 		dev_err(dev, "can not enable the clock\n");
819 		return ret;
820 	}
821 
822 	rstc = devm_reset_control_get_exclusive(dev, NULL);
823 	if (IS_ERR(rstc)) {
824 		ret = PTR_ERR(rstc);
825 		if (ret == -EPROBE_DEFER)
826 			goto err_clk_disable;
827 	} else {
828 		reset_control_assert(rstc);
829 		udelay(2);
830 		reset_control_deassert(rstc);
831 	}
832 
833 	qspi->dev = dev;
834 	platform_set_drvdata(pdev, qspi);
835 	ret = stm32_qspi_dma_setup(qspi);
836 	if (ret)
837 		goto err_dma_free;
838 
839 	mutex_init(&qspi->lock);
840 
841 	ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_OCTAL
842 		| SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_OCTAL;
843 	ctrl->setup = stm32_qspi_setup;
844 	ctrl->bus_num = -1;
845 	ctrl->mem_ops = &stm32_qspi_mem_ops;
846 	ctrl->use_gpio_descriptors = true;
847 	ctrl->transfer_one_message = stm32_qspi_transfer_one_message;
848 	ctrl->num_chipselect = STM32_QSPI_MAX_NORCHIP;
849 	ctrl->dev.of_node = dev->of_node;
850 
851 	pm_runtime_set_autosuspend_delay(dev, STM32_AUTOSUSPEND_DELAY);
852 	pm_runtime_use_autosuspend(dev);
853 	pm_runtime_set_active(dev);
854 	pm_runtime_enable(dev);
855 	pm_runtime_get_noresume(dev);
856 
857 	ret = spi_register_controller(ctrl);
858 	if (ret)
859 		goto err_pm_runtime_free;
860 
861 	pm_runtime_mark_last_busy(dev);
862 	pm_runtime_put_autosuspend(dev);
863 
864 	return 0;
865 
866 err_pm_runtime_free:
867 	pm_runtime_get_sync(qspi->dev);
868 	/* disable qspi */
869 	writel_relaxed(0, qspi->io_base + QSPI_CR);
870 	mutex_destroy(&qspi->lock);
871 	pm_runtime_put_noidle(qspi->dev);
872 	pm_runtime_disable(qspi->dev);
873 	pm_runtime_set_suspended(qspi->dev);
874 	pm_runtime_dont_use_autosuspend(qspi->dev);
875 err_dma_free:
876 	stm32_qspi_dma_free(qspi);
877 err_clk_disable:
878 	clk_disable_unprepare(qspi->clk);
879 
880 	return ret;
881 }
882 
stm32_qspi_remove(struct platform_device * pdev)883 static void stm32_qspi_remove(struct platform_device *pdev)
884 {
885 	struct stm32_qspi *qspi = platform_get_drvdata(pdev);
886 
887 	pm_runtime_get_sync(qspi->dev);
888 	spi_unregister_controller(qspi->ctrl);
889 	/* disable qspi */
890 	writel_relaxed(0, qspi->io_base + QSPI_CR);
891 	stm32_qspi_dma_free(qspi);
892 	mutex_destroy(&qspi->lock);
893 	pm_runtime_put_noidle(qspi->dev);
894 	pm_runtime_disable(qspi->dev);
895 	pm_runtime_set_suspended(qspi->dev);
896 	pm_runtime_dont_use_autosuspend(qspi->dev);
897 	clk_disable_unprepare(qspi->clk);
898 }
899 
stm32_qspi_runtime_suspend(struct device * dev)900 static int __maybe_unused stm32_qspi_runtime_suspend(struct device *dev)
901 {
902 	struct stm32_qspi *qspi = dev_get_drvdata(dev);
903 
904 	clk_disable_unprepare(qspi->clk);
905 
906 	return 0;
907 }
908 
stm32_qspi_runtime_resume(struct device * dev)909 static int __maybe_unused stm32_qspi_runtime_resume(struct device *dev)
910 {
911 	struct stm32_qspi *qspi = dev_get_drvdata(dev);
912 
913 	return clk_prepare_enable(qspi->clk);
914 }
915 
stm32_qspi_suspend(struct device * dev)916 static int __maybe_unused stm32_qspi_suspend(struct device *dev)
917 {
918 	pinctrl_pm_select_sleep_state(dev);
919 
920 	return pm_runtime_force_suspend(dev);
921 }
922 
stm32_qspi_resume(struct device * dev)923 static int __maybe_unused stm32_qspi_resume(struct device *dev)
924 {
925 	struct stm32_qspi *qspi = dev_get_drvdata(dev);
926 	int ret;
927 
928 	ret = pm_runtime_force_resume(dev);
929 	if (ret < 0)
930 		return ret;
931 
932 	pinctrl_pm_select_default_state(dev);
933 
934 	ret = pm_runtime_resume_and_get(dev);
935 	if (ret < 0)
936 		return ret;
937 
938 	writel_relaxed(qspi->cr_reg, qspi->io_base + QSPI_CR);
939 	writel_relaxed(qspi->dcr_reg, qspi->io_base + QSPI_DCR);
940 
941 	pm_runtime_mark_last_busy(dev);
942 	pm_runtime_put_autosuspend(dev);
943 
944 	return 0;
945 }
946 
947 static const struct dev_pm_ops stm32_qspi_pm_ops = {
948 	SET_RUNTIME_PM_OPS(stm32_qspi_runtime_suspend,
949 			   stm32_qspi_runtime_resume, NULL)
950 	SET_SYSTEM_SLEEP_PM_OPS(stm32_qspi_suspend, stm32_qspi_resume)
951 };
952 
953 static const struct of_device_id stm32_qspi_match[] = {
954 	{.compatible = "st,stm32f469-qspi"},
955 	{}
956 };
957 MODULE_DEVICE_TABLE(of, stm32_qspi_match);
958 
959 static struct platform_driver stm32_qspi_driver = {
960 	.probe	= stm32_qspi_probe,
961 	.remove = stm32_qspi_remove,
962 	.driver	= {
963 		.name = "stm32-qspi",
964 		.of_match_table = stm32_qspi_match,
965 		.pm = &stm32_qspi_pm_ops,
966 	},
967 };
968 module_platform_driver(stm32_qspi_driver);
969 
970 MODULE_AUTHOR("Ludovic Barre <ludovic.barre@st.com>");
971 MODULE_DESCRIPTION("STMicroelectronics STM32 quad spi driver");
972 MODULE_LICENSE("GPL v2");
973