1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * ASPEED FMC/SPI Memory Controller Driver
4  *
5  * Copyright (c) 2015-2022, IBM Corporation.
6  * Copyright (c) 2020, ASPEED Corporation.
7  */
8 
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/of_platform.h>
13 #include <linux/platform_device.h>
14 #include <linux/spi/spi.h>
15 #include <linux/spi/spi-mem.h>
16 
17 #define DEVICE_NAME "spi-aspeed-smc"
18 
19 /* Type setting Register */
20 #define CONFIG_REG			0x0
21 #define   CONFIG_TYPE_SPI		0x2
22 
23 /* CE Control Register */
24 #define CE_CTRL_REG			0x4
25 
26 /* CEx Control Register */
27 #define CE0_CTRL_REG			0x10
28 #define   CTRL_IO_MODE_MASK		GENMASK(30, 28)
29 #define   CTRL_IO_SINGLE_DATA	        0x0
30 #define   CTRL_IO_DUAL_DATA		BIT(29)
31 #define   CTRL_IO_QUAD_DATA		BIT(30)
32 #define   CTRL_COMMAND_SHIFT		16
33 #define   CTRL_IO_ADDRESS_4B		BIT(13)	/* AST2400 SPI only */
34 #define   CTRL_IO_DUMMY_SET(dummy)					\
35 	(((((dummy) >> 2) & 0x1) << 14) | (((dummy) & 0x3) << 6))
36 #define   CTRL_FREQ_SEL_SHIFT		8
37 #define   CTRL_FREQ_SEL_MASK		GENMASK(11, CTRL_FREQ_SEL_SHIFT)
38 #define   CTRL_CE_STOP_ACTIVE		BIT(2)
39 #define   CTRL_IO_MODE_CMD_MASK		GENMASK(1, 0)
40 #define   CTRL_IO_MODE_NORMAL		0x0
41 #define   CTRL_IO_MODE_READ		0x1
42 #define   CTRL_IO_MODE_WRITE		0x2
43 #define   CTRL_IO_MODE_USER		0x3
44 
45 #define   CTRL_IO_CMD_MASK		0xf0ff40c3
46 
47 /* CEx Address Decoding Range Register */
48 #define CE0_SEGMENT_ADDR_REG		0x30
49 
50 /* CEx Read timing compensation register */
51 #define CE0_TIMING_COMPENSATION_REG	0x94
52 
53 enum aspeed_spi_ctl_reg_value {
54 	ASPEED_SPI_BASE,
55 	ASPEED_SPI_READ,
56 	ASPEED_SPI_WRITE,
57 	ASPEED_SPI_MAX,
58 };
59 
60 struct aspeed_spi;
61 
62 struct aspeed_spi_chip {
63 	struct aspeed_spi	*aspi;
64 	u32			 cs;
65 	void __iomem		*ctl;
66 	void __iomem		*ahb_base;
67 	u32			 ahb_window_size;
68 	u32			 ctl_val[ASPEED_SPI_MAX];
69 	u32			 clk_freq;
70 };
71 
72 struct aspeed_spi_data {
73 	u32	ctl0;
74 	u32	max_cs;
75 	bool	hastype;
76 	u32	mode_bits;
77 	u32	we0;
78 	u32	timing;
79 	u32	hclk_mask;
80 	u32	hdiv_max;
81 
82 	u32 (*segment_start)(struct aspeed_spi *aspi, u32 reg);
83 	u32 (*segment_end)(struct aspeed_spi *aspi, u32 reg);
84 	u32 (*segment_reg)(struct aspeed_spi *aspi, u32 start, u32 end);
85 	int (*calibrate)(struct aspeed_spi_chip *chip, u32 hdiv,
86 			 const u8 *golden_buf, u8 *test_buf);
87 };
88 
89 #define ASPEED_SPI_MAX_NUM_CS	5
90 
91 struct aspeed_spi {
92 	const struct aspeed_spi_data	*data;
93 
94 	void __iomem		*regs;
95 	void __iomem		*ahb_base;
96 	u32			 ahb_base_phy;
97 	u32			 ahb_window_size;
98 	struct device		*dev;
99 
100 	struct clk		*clk;
101 	u32			 clk_freq;
102 
103 	struct aspeed_spi_chip	 chips[ASPEED_SPI_MAX_NUM_CS];
104 };
105 
aspeed_spi_get_io_mode(const struct spi_mem_op * op)106 static u32 aspeed_spi_get_io_mode(const struct spi_mem_op *op)
107 {
108 	switch (op->data.buswidth) {
109 	case 1:
110 		return CTRL_IO_SINGLE_DATA;
111 	case 2:
112 		return CTRL_IO_DUAL_DATA;
113 	case 4:
114 		return CTRL_IO_QUAD_DATA;
115 	default:
116 		return CTRL_IO_SINGLE_DATA;
117 	}
118 }
119 
aspeed_spi_set_io_mode(struct aspeed_spi_chip * chip,u32 io_mode)120 static void aspeed_spi_set_io_mode(struct aspeed_spi_chip *chip, u32 io_mode)
121 {
122 	u32 ctl;
123 
124 	if (io_mode > 0) {
125 		ctl = readl(chip->ctl) & ~CTRL_IO_MODE_MASK;
126 		ctl |= io_mode;
127 		writel(ctl, chip->ctl);
128 	}
129 }
130 
aspeed_spi_start_user(struct aspeed_spi_chip * chip)131 static void aspeed_spi_start_user(struct aspeed_spi_chip *chip)
132 {
133 	u32 ctl = chip->ctl_val[ASPEED_SPI_BASE];
134 
135 	ctl |= CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE;
136 	writel(ctl, chip->ctl);
137 
138 	ctl &= ~CTRL_CE_STOP_ACTIVE;
139 	writel(ctl, chip->ctl);
140 }
141 
aspeed_spi_stop_user(struct aspeed_spi_chip * chip)142 static void aspeed_spi_stop_user(struct aspeed_spi_chip *chip)
143 {
144 	u32 ctl = chip->ctl_val[ASPEED_SPI_READ] |
145 		CTRL_IO_MODE_USER | CTRL_CE_STOP_ACTIVE;
146 
147 	writel(ctl, chip->ctl);
148 
149 	/* Restore defaults */
150 	writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
151 }
152 
aspeed_spi_read_from_ahb(void * buf,void __iomem * src,size_t len)153 static int aspeed_spi_read_from_ahb(void *buf, void __iomem *src, size_t len)
154 {
155 	size_t offset = 0;
156 
157 	if (IS_ALIGNED((uintptr_t)src, sizeof(uintptr_t)) &&
158 	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
159 		ioread32_rep(src, buf, len >> 2);
160 		offset = len & ~0x3;
161 		len -= offset;
162 	}
163 	ioread8_rep(src, (u8 *)buf + offset, len);
164 	return 0;
165 }
166 
aspeed_spi_write_to_ahb(void __iomem * dst,const void * buf,size_t len)167 static int aspeed_spi_write_to_ahb(void __iomem *dst, const void *buf, size_t len)
168 {
169 	size_t offset = 0;
170 
171 	if (IS_ALIGNED((uintptr_t)dst, sizeof(uintptr_t)) &&
172 	    IS_ALIGNED((uintptr_t)buf, sizeof(uintptr_t))) {
173 		iowrite32_rep(dst, buf, len >> 2);
174 		offset = len & ~0x3;
175 		len -= offset;
176 	}
177 	iowrite8_rep(dst, (const u8 *)buf + offset, len);
178 	return 0;
179 }
180 
aspeed_spi_send_cmd_addr(struct aspeed_spi_chip * chip,u8 addr_nbytes,u64 offset,u32 opcode)181 static int aspeed_spi_send_cmd_addr(struct aspeed_spi_chip *chip, u8 addr_nbytes,
182 				    u64 offset, u32 opcode)
183 {
184 	__be32 temp;
185 	u32 cmdaddr;
186 
187 	switch (addr_nbytes) {
188 	case 3:
189 		cmdaddr = offset & 0xFFFFFF;
190 		cmdaddr |= opcode << 24;
191 
192 		temp = cpu_to_be32(cmdaddr);
193 		aspeed_spi_write_to_ahb(chip->ahb_base, &temp, 4);
194 		break;
195 	case 4:
196 		temp = cpu_to_be32(offset);
197 		aspeed_spi_write_to_ahb(chip->ahb_base, &opcode, 1);
198 		aspeed_spi_write_to_ahb(chip->ahb_base, &temp, 4);
199 		break;
200 	default:
201 		WARN_ONCE(1, "Unexpected address width %u", addr_nbytes);
202 		return -EOPNOTSUPP;
203 	}
204 	return 0;
205 }
206 
aspeed_spi_read_reg(struct aspeed_spi_chip * chip,const struct spi_mem_op * op)207 static int aspeed_spi_read_reg(struct aspeed_spi_chip *chip,
208 			       const struct spi_mem_op *op)
209 {
210 	aspeed_spi_start_user(chip);
211 	aspeed_spi_write_to_ahb(chip->ahb_base, &op->cmd.opcode, 1);
212 	aspeed_spi_read_from_ahb(op->data.buf.in,
213 				 chip->ahb_base, op->data.nbytes);
214 	aspeed_spi_stop_user(chip);
215 	return 0;
216 }
217 
aspeed_spi_write_reg(struct aspeed_spi_chip * chip,const struct spi_mem_op * op)218 static int aspeed_spi_write_reg(struct aspeed_spi_chip *chip,
219 				const struct spi_mem_op *op)
220 {
221 	aspeed_spi_start_user(chip);
222 	aspeed_spi_write_to_ahb(chip->ahb_base, &op->cmd.opcode, 1);
223 	aspeed_spi_write_to_ahb(chip->ahb_base, op->data.buf.out,
224 				op->data.nbytes);
225 	aspeed_spi_stop_user(chip);
226 	return 0;
227 }
228 
aspeed_spi_read_user(struct aspeed_spi_chip * chip,const struct spi_mem_op * op,u64 offset,size_t len,void * buf)229 static ssize_t aspeed_spi_read_user(struct aspeed_spi_chip *chip,
230 				    const struct spi_mem_op *op,
231 				    u64 offset, size_t len, void *buf)
232 {
233 	int io_mode = aspeed_spi_get_io_mode(op);
234 	u8 dummy = 0xFF;
235 	int i;
236 	int ret;
237 
238 	aspeed_spi_start_user(chip);
239 
240 	ret = aspeed_spi_send_cmd_addr(chip, op->addr.nbytes, offset, op->cmd.opcode);
241 	if (ret < 0)
242 		goto stop_user;
243 
244 	if (op->dummy.buswidth && op->dummy.nbytes) {
245 		for (i = 0; i < op->dummy.nbytes / op->dummy.buswidth; i++)
246 			aspeed_spi_write_to_ahb(chip->ahb_base, &dummy,	sizeof(dummy));
247 	}
248 
249 	aspeed_spi_set_io_mode(chip, io_mode);
250 
251 	aspeed_spi_read_from_ahb(buf, chip->ahb_base, len);
252 stop_user:
253 	aspeed_spi_stop_user(chip);
254 	return ret;
255 }
256 
aspeed_spi_write_user(struct aspeed_spi_chip * chip,const struct spi_mem_op * op)257 static ssize_t aspeed_spi_write_user(struct aspeed_spi_chip *chip,
258 				     const struct spi_mem_op *op)
259 {
260 	int ret;
261 
262 	aspeed_spi_start_user(chip);
263 	ret = aspeed_spi_send_cmd_addr(chip, op->addr.nbytes, op->addr.val, op->cmd.opcode);
264 	if (ret < 0)
265 		goto stop_user;
266 	aspeed_spi_write_to_ahb(chip->ahb_base, op->data.buf.out, op->data.nbytes);
267 stop_user:
268 	aspeed_spi_stop_user(chip);
269 	return ret;
270 }
271 
272 /* support for 1-1-1, 1-1-2 or 1-1-4 */
aspeed_spi_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)273 static bool aspeed_spi_supports_op(struct spi_mem *mem, const struct spi_mem_op *op)
274 {
275 	if (op->cmd.buswidth > 1)
276 		return false;
277 
278 	if (op->addr.nbytes != 0) {
279 		if (op->addr.buswidth > 1)
280 			return false;
281 		if (op->addr.nbytes < 3 || op->addr.nbytes > 4)
282 			return false;
283 	}
284 
285 	if (op->dummy.nbytes != 0) {
286 		if (op->dummy.buswidth > 1 || op->dummy.nbytes > 7)
287 			return false;
288 	}
289 
290 	if (op->data.nbytes != 0 && op->data.buswidth > 4)
291 		return false;
292 
293 	return spi_mem_default_supports_op(mem, op);
294 }
295 
296 static const struct aspeed_spi_data ast2400_spi_data;
297 
do_aspeed_spi_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)298 static int do_aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
299 {
300 	struct aspeed_spi *aspi = spi_controller_get_devdata(mem->spi->controller);
301 	struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(mem->spi, 0)];
302 	u32 addr_mode, addr_mode_backup;
303 	u32 ctl_val;
304 	int ret = 0;
305 
306 	addr_mode = readl(aspi->regs + CE_CTRL_REG);
307 	addr_mode_backup = addr_mode;
308 
309 	ctl_val = chip->ctl_val[ASPEED_SPI_BASE];
310 	ctl_val &= ~CTRL_IO_CMD_MASK;
311 
312 	ctl_val |= op->cmd.opcode << CTRL_COMMAND_SHIFT;
313 
314 	/* 4BYTE address mode */
315 	if (op->addr.nbytes) {
316 		if (op->addr.nbytes == 4)
317 			addr_mode |= (0x11 << chip->cs);
318 		else
319 			addr_mode &= ~(0x11 << chip->cs);
320 
321 		if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data)
322 			ctl_val |= CTRL_IO_ADDRESS_4B;
323 	}
324 
325 	if (op->dummy.nbytes)
326 		ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth);
327 
328 	if (op->data.nbytes)
329 		ctl_val |= aspeed_spi_get_io_mode(op);
330 
331 	if (op->data.dir == SPI_MEM_DATA_OUT)
332 		ctl_val |= CTRL_IO_MODE_WRITE;
333 	else
334 		ctl_val |= CTRL_IO_MODE_READ;
335 
336 	if (addr_mode != addr_mode_backup)
337 		writel(addr_mode, aspi->regs + CE_CTRL_REG);
338 	writel(ctl_val, chip->ctl);
339 
340 	if (op->data.dir == SPI_MEM_DATA_IN) {
341 		if (!op->addr.nbytes)
342 			ret = aspeed_spi_read_reg(chip, op);
343 		else
344 			ret = aspeed_spi_read_user(chip, op, op->addr.val,
345 						   op->data.nbytes, op->data.buf.in);
346 	} else {
347 		if (!op->addr.nbytes)
348 			ret = aspeed_spi_write_reg(chip, op);
349 		else
350 			ret = aspeed_spi_write_user(chip, op);
351 	}
352 
353 	/* Restore defaults */
354 	if (addr_mode != addr_mode_backup)
355 		writel(addr_mode_backup, aspi->regs + CE_CTRL_REG);
356 	writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
357 	return ret;
358 }
359 
aspeed_spi_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)360 static int aspeed_spi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
361 {
362 	int ret;
363 
364 	ret = do_aspeed_spi_exec_op(mem, op);
365 	if (ret)
366 		dev_err(&mem->spi->dev, "operation failed: %d\n", ret);
367 	return ret;
368 }
369 
aspeed_spi_get_name(struct spi_mem * mem)370 static const char *aspeed_spi_get_name(struct spi_mem *mem)
371 {
372 	struct aspeed_spi *aspi = spi_controller_get_devdata(mem->spi->controller);
373 	struct device *dev = aspi->dev;
374 
375 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev),
376 			      spi_get_chipselect(mem->spi, 0));
377 }
378 
379 struct aspeed_spi_window {
380 	u32 cs;
381 	u32 offset;
382 	u32 size;
383 };
384 
aspeed_spi_get_windows(struct aspeed_spi * aspi,struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS])385 static void aspeed_spi_get_windows(struct aspeed_spi *aspi,
386 				   struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS])
387 {
388 	const struct aspeed_spi_data *data = aspi->data;
389 	u32 reg_val;
390 	u32 cs;
391 
392 	for (cs = 0; cs < aspi->data->max_cs; cs++) {
393 		reg_val = readl(aspi->regs + CE0_SEGMENT_ADDR_REG + cs * 4);
394 		windows[cs].cs = cs;
395 		windows[cs].size = data->segment_end(aspi, reg_val) -
396 			data->segment_start(aspi, reg_val);
397 		windows[cs].offset = data->segment_start(aspi, reg_val) - aspi->ahb_base_phy;
398 		dev_vdbg(aspi->dev, "CE%d offset=0x%.8x size=0x%x\n", cs,
399 			 windows[cs].offset, windows[cs].size);
400 	}
401 }
402 
403 /*
404  * On the AST2600, some CE windows are closed by default at reset but
405  * U-Boot should open all.
406  */
aspeed_spi_chip_set_default_window(struct aspeed_spi_chip * chip)407 static int aspeed_spi_chip_set_default_window(struct aspeed_spi_chip *chip)
408 {
409 	struct aspeed_spi *aspi = chip->aspi;
410 	struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 };
411 	struct aspeed_spi_window *win = &windows[chip->cs];
412 
413 	/* No segment registers for the AST2400 SPI controller */
414 	if (aspi->data == &ast2400_spi_data) {
415 		win->offset = 0;
416 		win->size = aspi->ahb_window_size;
417 	} else {
418 		aspeed_spi_get_windows(aspi, windows);
419 	}
420 
421 	chip->ahb_base = aspi->ahb_base + win->offset;
422 	chip->ahb_window_size = win->size;
423 
424 	dev_dbg(aspi->dev, "CE%d default window [ 0x%.8x - 0x%.8x ] %dMB",
425 		chip->cs, aspi->ahb_base_phy + win->offset,
426 		aspi->ahb_base_phy + win->offset + win->size - 1,
427 		win->size >> 20);
428 
429 	return chip->ahb_window_size ? 0 : -1;
430 }
431 
aspeed_spi_set_window(struct aspeed_spi * aspi,const struct aspeed_spi_window * win)432 static int aspeed_spi_set_window(struct aspeed_spi *aspi,
433 				 const struct aspeed_spi_window *win)
434 {
435 	u32 start = aspi->ahb_base_phy + win->offset;
436 	u32 end = start + win->size;
437 	void __iomem *seg_reg = aspi->regs + CE0_SEGMENT_ADDR_REG + win->cs * 4;
438 	u32 seg_val_backup = readl(seg_reg);
439 	u32 seg_val = aspi->data->segment_reg(aspi, start, end);
440 
441 	if (seg_val == seg_val_backup)
442 		return 0;
443 
444 	writel(seg_val, seg_reg);
445 
446 	/*
447 	 * Restore initial value if something goes wrong else we could
448 	 * loose access to the chip.
449 	 */
450 	if (seg_val != readl(seg_reg)) {
451 		dev_err(aspi->dev, "CE%d invalid window [ 0x%.8x - 0x%.8x ] %dMB",
452 			win->cs, start, end - 1, win->size >> 20);
453 		writel(seg_val_backup, seg_reg);
454 		return -EIO;
455 	}
456 
457 	if (win->size)
458 		dev_dbg(aspi->dev, "CE%d new window [ 0x%.8x - 0x%.8x ] %dMB",
459 			win->cs, start, end - 1,  win->size >> 20);
460 	else
461 		dev_dbg(aspi->dev, "CE%d window closed", win->cs);
462 
463 	return 0;
464 }
465 
466 /*
467  * Yet to be done when possible :
468  * - Align mappings on flash size (we don't have the info)
469  * - ioremap each window, not strictly necessary since the overall window
470  *   is correct.
471  */
472 static const struct aspeed_spi_data ast2500_spi_data;
473 static const struct aspeed_spi_data ast2600_spi_data;
474 static const struct aspeed_spi_data ast2600_fmc_data;
475 
aspeed_spi_chip_adjust_window(struct aspeed_spi_chip * chip,u32 local_offset,u32 size)476 static int aspeed_spi_chip_adjust_window(struct aspeed_spi_chip *chip,
477 					 u32 local_offset, u32 size)
478 {
479 	struct aspeed_spi *aspi = chip->aspi;
480 	struct aspeed_spi_window windows[ASPEED_SPI_MAX_NUM_CS] = { 0 };
481 	struct aspeed_spi_window *win = &windows[chip->cs];
482 	int ret;
483 
484 	/* No segment registers for the AST2400 SPI controller */
485 	if (aspi->data == &ast2400_spi_data)
486 		return 0;
487 
488 	/*
489 	 * Due to an HW issue on the AST2500 SPI controller, the CE0
490 	 * window size should be smaller than the maximum 128MB.
491 	 */
492 	if (aspi->data == &ast2500_spi_data && chip->cs == 0 && size == SZ_128M) {
493 		size = 120 << 20;
494 		dev_info(aspi->dev, "CE%d window resized to %dMB (AST2500 HW quirk)",
495 			 chip->cs, size >> 20);
496 	}
497 
498 	/*
499 	 * The decoding size of AST2600 SPI controller should set at
500 	 * least 2MB.
501 	 */
502 	if ((aspi->data == &ast2600_spi_data || aspi->data == &ast2600_fmc_data) &&
503 	    size < SZ_2M) {
504 		size = SZ_2M;
505 		dev_info(aspi->dev, "CE%d window resized to %dMB (AST2600 Decoding)",
506 			 chip->cs, size >> 20);
507 	}
508 
509 	aspeed_spi_get_windows(aspi, windows);
510 
511 	/* Adjust this chip window */
512 	win->offset += local_offset;
513 	win->size = size;
514 
515 	if (win->offset + win->size > aspi->ahb_window_size) {
516 		win->size = aspi->ahb_window_size - win->offset;
517 		dev_warn(aspi->dev, "CE%d window resized to %dMB", chip->cs, win->size >> 20);
518 	}
519 
520 	ret = aspeed_spi_set_window(aspi, win);
521 	if (ret)
522 		return ret;
523 
524 	/* Update chip mapping info */
525 	chip->ahb_base = aspi->ahb_base + win->offset;
526 	chip->ahb_window_size = win->size;
527 
528 	/*
529 	 * Also adjust next chip window to make sure that it does not
530 	 * overlap with the current window.
531 	 */
532 	if (chip->cs < aspi->data->max_cs - 1) {
533 		struct aspeed_spi_window *next = &windows[chip->cs + 1];
534 
535 		/* Change offset and size to keep the same end address */
536 		if ((next->offset + next->size) > (win->offset + win->size))
537 			next->size = (next->offset + next->size) - (win->offset + win->size);
538 		else
539 			next->size = 0;
540 		next->offset = win->offset + win->size;
541 
542 		aspeed_spi_set_window(aspi, next);
543 	}
544 	return 0;
545 }
546 
547 static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip);
548 
aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc * desc)549 static int aspeed_spi_dirmap_create(struct spi_mem_dirmap_desc *desc)
550 {
551 	struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->controller);
552 	struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(desc->mem->spi, 0)];
553 	struct spi_mem_op *op = &desc->info.op_tmpl;
554 	u32 ctl_val;
555 	int ret = 0;
556 
557 	dev_dbg(aspi->dev,
558 		"CE%d %s dirmap [ 0x%.8llx - 0x%.8llx ] OP %#x mode:%d.%d.%d.%d naddr:%#x ndummies:%#x\n",
559 		chip->cs, op->data.dir == SPI_MEM_DATA_IN ? "read" : "write",
560 		desc->info.offset, desc->info.offset + desc->info.length,
561 		op->cmd.opcode, op->cmd.buswidth, op->addr.buswidth,
562 		op->dummy.buswidth, op->data.buswidth,
563 		op->addr.nbytes, op->dummy.nbytes);
564 
565 	chip->clk_freq = desc->mem->spi->max_speed_hz;
566 
567 	/* Only for reads */
568 	if (op->data.dir != SPI_MEM_DATA_IN)
569 		return -EOPNOTSUPP;
570 
571 	aspeed_spi_chip_adjust_window(chip, desc->info.offset, desc->info.length);
572 
573 	if (desc->info.length > chip->ahb_window_size)
574 		dev_warn(aspi->dev, "CE%d window (%dMB) too small for mapping",
575 			 chip->cs, chip->ahb_window_size >> 20);
576 
577 	/* Define the default IO read settings */
578 	ctl_val = readl(chip->ctl) & ~CTRL_IO_CMD_MASK;
579 	ctl_val |= aspeed_spi_get_io_mode(op) |
580 		op->cmd.opcode << CTRL_COMMAND_SHIFT |
581 		CTRL_IO_MODE_READ;
582 
583 	if (op->dummy.nbytes)
584 		ctl_val |= CTRL_IO_DUMMY_SET(op->dummy.nbytes / op->dummy.buswidth);
585 
586 	/* Tune 4BYTE address mode */
587 	if (op->addr.nbytes) {
588 		u32 addr_mode = readl(aspi->regs + CE_CTRL_REG);
589 
590 		if (op->addr.nbytes == 4)
591 			addr_mode |= (0x11 << chip->cs);
592 		else
593 			addr_mode &= ~(0x11 << chip->cs);
594 		writel(addr_mode, aspi->regs + CE_CTRL_REG);
595 
596 		/* AST2400 SPI controller sets 4BYTE address mode in
597 		 * CE0 Control Register
598 		 */
599 		if (op->addr.nbytes == 4 && chip->aspi->data == &ast2400_spi_data)
600 			ctl_val |= CTRL_IO_ADDRESS_4B;
601 	}
602 
603 	/* READ mode is the controller default setting */
604 	chip->ctl_val[ASPEED_SPI_READ] = ctl_val;
605 	writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
606 
607 	ret = aspeed_spi_do_calibration(chip);
608 
609 	dev_info(aspi->dev, "CE%d read buswidth:%d [0x%08x]\n",
610 		 chip->cs, op->data.buswidth, chip->ctl_val[ASPEED_SPI_READ]);
611 
612 	return ret;
613 }
614 
aspeed_spi_dirmap_read(struct spi_mem_dirmap_desc * desc,u64 offset,size_t len,void * buf)615 static ssize_t aspeed_spi_dirmap_read(struct spi_mem_dirmap_desc *desc,
616 				      u64 offset, size_t len, void *buf)
617 {
618 	struct aspeed_spi *aspi = spi_controller_get_devdata(desc->mem->spi->controller);
619 	struct aspeed_spi_chip *chip = &aspi->chips[spi_get_chipselect(desc->mem->spi, 0)];
620 
621 	/* Switch to USER command mode if mapping window is too small */
622 	if (chip->ahb_window_size < offset + len) {
623 		int ret;
624 
625 		ret = aspeed_spi_read_user(chip, &desc->info.op_tmpl, offset, len, buf);
626 		if (ret < 0)
627 			return ret;
628 	} else {
629 		memcpy_fromio(buf, chip->ahb_base + offset, len);
630 	}
631 
632 	return len;
633 }
634 
635 static const struct spi_controller_mem_ops aspeed_spi_mem_ops = {
636 	.supports_op = aspeed_spi_supports_op,
637 	.exec_op = aspeed_spi_exec_op,
638 	.get_name = aspeed_spi_get_name,
639 	.dirmap_create = aspeed_spi_dirmap_create,
640 	.dirmap_read = aspeed_spi_dirmap_read,
641 };
642 
aspeed_spi_chip_set_type(struct aspeed_spi * aspi,unsigned int cs,int type)643 static void aspeed_spi_chip_set_type(struct aspeed_spi *aspi, unsigned int cs, int type)
644 {
645 	u32 reg;
646 
647 	reg = readl(aspi->regs + CONFIG_REG);
648 	reg &= ~(0x3 << (cs * 2));
649 	reg |= type << (cs * 2);
650 	writel(reg, aspi->regs + CONFIG_REG);
651 }
652 
aspeed_spi_chip_enable(struct aspeed_spi * aspi,unsigned int cs,bool enable)653 static void aspeed_spi_chip_enable(struct aspeed_spi *aspi, unsigned int cs, bool enable)
654 {
655 	u32 we_bit = BIT(aspi->data->we0 + cs);
656 	u32 reg = readl(aspi->regs + CONFIG_REG);
657 
658 	if (enable)
659 		reg |= we_bit;
660 	else
661 		reg &= ~we_bit;
662 	writel(reg, aspi->regs + CONFIG_REG);
663 }
664 
aspeed_spi_setup(struct spi_device * spi)665 static int aspeed_spi_setup(struct spi_device *spi)
666 {
667 	struct aspeed_spi *aspi = spi_controller_get_devdata(spi->controller);
668 	const struct aspeed_spi_data *data = aspi->data;
669 	unsigned int cs = spi_get_chipselect(spi, 0);
670 	struct aspeed_spi_chip *chip = &aspi->chips[cs];
671 
672 	chip->aspi = aspi;
673 	chip->cs = cs;
674 	chip->ctl = aspi->regs + data->ctl0 + cs * 4;
675 
676 	/* The driver only supports SPI type flash */
677 	if (data->hastype)
678 		aspeed_spi_chip_set_type(aspi, cs, CONFIG_TYPE_SPI);
679 
680 	if (aspeed_spi_chip_set_default_window(chip) < 0) {
681 		dev_warn(aspi->dev, "CE%d window invalid", cs);
682 		return -EINVAL;
683 	}
684 
685 	aspeed_spi_chip_enable(aspi, cs, true);
686 
687 	chip->ctl_val[ASPEED_SPI_BASE] = CTRL_CE_STOP_ACTIVE | CTRL_IO_MODE_USER;
688 
689 	dev_dbg(aspi->dev, "CE%d setup done\n", cs);
690 	return 0;
691 }
692 
aspeed_spi_cleanup(struct spi_device * spi)693 static void aspeed_spi_cleanup(struct spi_device *spi)
694 {
695 	struct aspeed_spi *aspi = spi_controller_get_devdata(spi->controller);
696 	unsigned int cs = spi_get_chipselect(spi, 0);
697 
698 	aspeed_spi_chip_enable(aspi, cs, false);
699 
700 	dev_dbg(aspi->dev, "CE%d cleanup done\n", cs);
701 }
702 
aspeed_spi_enable(struct aspeed_spi * aspi,bool enable)703 static void aspeed_spi_enable(struct aspeed_spi *aspi, bool enable)
704 {
705 	int cs;
706 
707 	for (cs = 0; cs < aspi->data->max_cs; cs++)
708 		aspeed_spi_chip_enable(aspi, cs, enable);
709 }
710 
aspeed_spi_probe(struct platform_device * pdev)711 static int aspeed_spi_probe(struct platform_device *pdev)
712 {
713 	struct device *dev = &pdev->dev;
714 	const struct aspeed_spi_data *data;
715 	struct spi_controller *ctlr;
716 	struct aspeed_spi *aspi;
717 	struct resource *res;
718 	int ret;
719 
720 	data = of_device_get_match_data(&pdev->dev);
721 	if (!data)
722 		return -ENODEV;
723 
724 	ctlr = devm_spi_alloc_host(dev, sizeof(*aspi));
725 	if (!ctlr)
726 		return -ENOMEM;
727 
728 	aspi = spi_controller_get_devdata(ctlr);
729 	platform_set_drvdata(pdev, aspi);
730 	aspi->data = data;
731 	aspi->dev = dev;
732 
733 	aspi->regs = devm_platform_ioremap_resource(pdev, 0);
734 	if (IS_ERR(aspi->regs))
735 		return PTR_ERR(aspi->regs);
736 
737 	aspi->ahb_base = devm_platform_get_and_ioremap_resource(pdev, 1, &res);
738 	if (IS_ERR(aspi->ahb_base)) {
739 		dev_err(dev, "missing AHB mapping window\n");
740 		return PTR_ERR(aspi->ahb_base);
741 	}
742 
743 	aspi->ahb_window_size = resource_size(res);
744 	aspi->ahb_base_phy = res->start;
745 
746 	aspi->clk = devm_clk_get_enabled(&pdev->dev, NULL);
747 	if (IS_ERR(aspi->clk)) {
748 		dev_err(dev, "missing clock\n");
749 		return PTR_ERR(aspi->clk);
750 	}
751 
752 	aspi->clk_freq = clk_get_rate(aspi->clk);
753 	if (!aspi->clk_freq) {
754 		dev_err(dev, "invalid clock\n");
755 		return -EINVAL;
756 	}
757 
758 	/* IRQ is for DMA, which the driver doesn't support yet */
759 
760 	ctlr->mode_bits = SPI_RX_DUAL | SPI_TX_DUAL | data->mode_bits;
761 	ctlr->bus_num = pdev->id;
762 	ctlr->mem_ops = &aspeed_spi_mem_ops;
763 	ctlr->setup = aspeed_spi_setup;
764 	ctlr->cleanup = aspeed_spi_cleanup;
765 	ctlr->num_chipselect = data->max_cs;
766 	ctlr->dev.of_node = dev->of_node;
767 
768 	ret = devm_spi_register_controller(dev, ctlr);
769 	if (ret)
770 		dev_err(&pdev->dev, "spi_register_controller failed\n");
771 
772 	return ret;
773 }
774 
aspeed_spi_remove(struct platform_device * pdev)775 static void aspeed_spi_remove(struct platform_device *pdev)
776 {
777 	struct aspeed_spi *aspi = platform_get_drvdata(pdev);
778 
779 	aspeed_spi_enable(aspi, false);
780 }
781 
782 /*
783  * AHB mappings
784  */
785 
786 /*
787  * The Segment Registers of the AST2400 and AST2500 use a 8MB unit.
788  * The address range is encoded with absolute addresses in the overall
789  * mapping window.
790  */
aspeed_spi_segment_start(struct aspeed_spi * aspi,u32 reg)791 static u32 aspeed_spi_segment_start(struct aspeed_spi *aspi, u32 reg)
792 {
793 	return ((reg >> 16) & 0xFF) << 23;
794 }
795 
aspeed_spi_segment_end(struct aspeed_spi * aspi,u32 reg)796 static u32 aspeed_spi_segment_end(struct aspeed_spi *aspi, u32 reg)
797 {
798 	return ((reg >> 24) & 0xFF) << 23;
799 }
800 
aspeed_spi_segment_reg(struct aspeed_spi * aspi,u32 start,u32 end)801 static u32 aspeed_spi_segment_reg(struct aspeed_spi *aspi, u32 start, u32 end)
802 {
803 	return (((start >> 23) & 0xFF) << 16) | (((end >> 23) & 0xFF) << 24);
804 }
805 
806 /*
807  * The Segment Registers of the AST2600 use a 1MB unit. The address
808  * range is encoded with offsets in the overall mapping window.
809  */
810 
811 #define AST2600_SEG_ADDR_MASK 0x0ff00000
812 
aspeed_spi_segment_ast2600_start(struct aspeed_spi * aspi,u32 reg)813 static u32 aspeed_spi_segment_ast2600_start(struct aspeed_spi *aspi,
814 					    u32 reg)
815 {
816 	u32 start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
817 
818 	return aspi->ahb_base_phy + start_offset;
819 }
820 
aspeed_spi_segment_ast2600_end(struct aspeed_spi * aspi,u32 reg)821 static u32 aspeed_spi_segment_ast2600_end(struct aspeed_spi *aspi,
822 					  u32 reg)
823 {
824 	u32 end_offset = reg & AST2600_SEG_ADDR_MASK;
825 
826 	/* segment is disabled */
827 	if (!end_offset)
828 		return aspi->ahb_base_phy;
829 
830 	return aspi->ahb_base_phy + end_offset + 0x100000;
831 }
832 
aspeed_spi_segment_ast2600_reg(struct aspeed_spi * aspi,u32 start,u32 end)833 static u32 aspeed_spi_segment_ast2600_reg(struct aspeed_spi *aspi,
834 					  u32 start, u32 end)
835 {
836 	/* disable zero size segments */
837 	if (start == end)
838 		return 0;
839 
840 	return ((start & AST2600_SEG_ADDR_MASK) >> 16) |
841 		((end - 1) & AST2600_SEG_ADDR_MASK);
842 }
843 
844 /*
845  * Read timing compensation sequences
846  */
847 
848 #define CALIBRATE_BUF_SIZE SZ_16K
849 
aspeed_spi_check_reads(struct aspeed_spi_chip * chip,const u8 * golden_buf,u8 * test_buf)850 static bool aspeed_spi_check_reads(struct aspeed_spi_chip *chip,
851 				   const u8 *golden_buf, u8 *test_buf)
852 {
853 	int i;
854 
855 	for (i = 0; i < 10; i++) {
856 		memcpy_fromio(test_buf, chip->ahb_base, CALIBRATE_BUF_SIZE);
857 		if (memcmp(test_buf, golden_buf, CALIBRATE_BUF_SIZE) != 0) {
858 #if defined(VERBOSE_DEBUG)
859 			print_hex_dump_bytes(DEVICE_NAME "  fail: ", DUMP_PREFIX_NONE,
860 					     test_buf, 0x100);
861 #endif
862 			return false;
863 		}
864 	}
865 	return true;
866 }
867 
868 #define FREAD_TPASS(i)	(((i) / 2) | (((i) & 1) ? 0 : 8))
869 
870 /*
871  * The timing register is shared by all devices. Only update for CE0.
872  */
aspeed_spi_calibrate(struct aspeed_spi_chip * chip,u32 hdiv,const u8 * golden_buf,u8 * test_buf)873 static int aspeed_spi_calibrate(struct aspeed_spi_chip *chip, u32 hdiv,
874 				const u8 *golden_buf, u8 *test_buf)
875 {
876 	struct aspeed_spi *aspi = chip->aspi;
877 	const struct aspeed_spi_data *data = aspi->data;
878 	int i;
879 	int good_pass = -1, pass_count = 0;
880 	u32 shift = (hdiv - 1) << 2;
881 	u32 mask = ~(0xfu << shift);
882 	u32 fread_timing_val = 0;
883 
884 	/* Try HCLK delay 0..5, each one with/without delay and look for a
885 	 * good pair.
886 	 */
887 	for (i = 0; i < 12; i++) {
888 		bool pass;
889 
890 		if (chip->cs == 0) {
891 			fread_timing_val &= mask;
892 			fread_timing_val |= FREAD_TPASS(i) << shift;
893 			writel(fread_timing_val, aspi->regs + data->timing);
894 		}
895 		pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
896 		dev_dbg(aspi->dev,
897 			"  * [%08x] %d HCLK delay, %dns DI delay : %s",
898 			fread_timing_val, i / 2, (i & 1) ? 0 : 4,
899 			pass ? "PASS" : "FAIL");
900 		if (pass) {
901 			pass_count++;
902 			if (pass_count == 3) {
903 				good_pass = i - 1;
904 				break;
905 			}
906 		} else {
907 			pass_count = 0;
908 		}
909 	}
910 
911 	/* No good setting for this frequency */
912 	if (good_pass < 0)
913 		return -1;
914 
915 	/* We have at least one pass of margin, let's use first pass */
916 	if (chip->cs == 0) {
917 		fread_timing_val &= mask;
918 		fread_timing_val |= FREAD_TPASS(good_pass) << shift;
919 		writel(fread_timing_val, aspi->regs + data->timing);
920 	}
921 	dev_dbg(aspi->dev, " * -> good is pass %d [0x%08x]",
922 		good_pass, fread_timing_val);
923 	return 0;
924 }
925 
aspeed_spi_check_calib_data(const u8 * test_buf,u32 size)926 static bool aspeed_spi_check_calib_data(const u8 *test_buf, u32 size)
927 {
928 	const u32 *tb32 = (const u32 *)test_buf;
929 	u32 i, cnt = 0;
930 
931 	/* We check if we have enough words that are neither all 0
932 	 * nor all 1's so the calibration can be considered valid.
933 	 *
934 	 * I use an arbitrary threshold for now of 64
935 	 */
936 	size >>= 2;
937 	for (i = 0; i < size; i++) {
938 		if (tb32[i] != 0 && tb32[i] != 0xffffffff)
939 			cnt++;
940 	}
941 	return cnt >= 64;
942 }
943 
944 static const u32 aspeed_spi_hclk_divs[] = {
945 	0xf, /* HCLK */
946 	0x7, /* HCLK/2 */
947 	0xe, /* HCLK/3 */
948 	0x6, /* HCLK/4 */
949 	0xd, /* HCLK/5 */
950 };
951 
952 #define ASPEED_SPI_HCLK_DIV(i) \
953 	(aspeed_spi_hclk_divs[(i) - 1] << CTRL_FREQ_SEL_SHIFT)
954 
aspeed_spi_do_calibration(struct aspeed_spi_chip * chip)955 static int aspeed_spi_do_calibration(struct aspeed_spi_chip *chip)
956 {
957 	struct aspeed_spi *aspi = chip->aspi;
958 	const struct aspeed_spi_data *data = aspi->data;
959 	u32 ahb_freq = aspi->clk_freq;
960 	u32 max_freq = chip->clk_freq;
961 	u32 ctl_val;
962 	u8 *golden_buf = NULL;
963 	u8 *test_buf = NULL;
964 	int i, rc, best_div = -1;
965 
966 	dev_dbg(aspi->dev, "calculate timing compensation - AHB freq: %d MHz",
967 		ahb_freq / 1000000);
968 
969 	/*
970 	 * use the related low frequency to get check calibration data
971 	 * and get golden data.
972 	 */
973 	ctl_val = chip->ctl_val[ASPEED_SPI_READ] & data->hclk_mask;
974 	writel(ctl_val, chip->ctl);
975 
976 	test_buf = kzalloc(CALIBRATE_BUF_SIZE * 2, GFP_KERNEL);
977 	if (!test_buf)
978 		return -ENOMEM;
979 
980 	golden_buf = test_buf + CALIBRATE_BUF_SIZE;
981 
982 	memcpy_fromio(golden_buf, chip->ahb_base, CALIBRATE_BUF_SIZE);
983 	if (!aspeed_spi_check_calib_data(golden_buf, CALIBRATE_BUF_SIZE)) {
984 		dev_info(aspi->dev, "Calibration area too uniform, using low speed");
985 		goto no_calib;
986 	}
987 
988 #if defined(VERBOSE_DEBUG)
989 	print_hex_dump_bytes(DEVICE_NAME "  good: ", DUMP_PREFIX_NONE,
990 			     golden_buf, 0x100);
991 #endif
992 
993 	/* Now we iterate the HCLK dividers until we find our breaking point */
994 	for (i = ARRAY_SIZE(aspeed_spi_hclk_divs); i > data->hdiv_max - 1; i--) {
995 		u32 tv, freq;
996 
997 		freq = ahb_freq / i;
998 		if (freq > max_freq)
999 			continue;
1000 
1001 		/* Set the timing */
1002 		tv = chip->ctl_val[ASPEED_SPI_READ] | ASPEED_SPI_HCLK_DIV(i);
1003 		writel(tv, chip->ctl);
1004 		dev_dbg(aspi->dev, "Trying HCLK/%d [%08x] ...", i, tv);
1005 		rc = data->calibrate(chip, i, golden_buf, test_buf);
1006 		if (rc == 0)
1007 			best_div = i;
1008 	}
1009 
1010 	/* Nothing found ? */
1011 	if (best_div < 0) {
1012 		dev_warn(aspi->dev, "No good frequency, using dumb slow");
1013 	} else {
1014 		dev_dbg(aspi->dev, "Found good read timings at HCLK/%d", best_div);
1015 
1016 		/* Record the freq */
1017 		for (i = 0; i < ASPEED_SPI_MAX; i++)
1018 			chip->ctl_val[i] = (chip->ctl_val[i] & data->hclk_mask) |
1019 				ASPEED_SPI_HCLK_DIV(best_div);
1020 	}
1021 
1022 no_calib:
1023 	writel(chip->ctl_val[ASPEED_SPI_READ], chip->ctl);
1024 	kfree(test_buf);
1025 	return 0;
1026 }
1027 
1028 #define TIMING_DELAY_DI		BIT(3)
1029 #define TIMING_DELAY_HCYCLE_MAX	5
1030 #define TIMING_REG_AST2600(chip)				\
1031 	((chip)->aspi->regs + (chip)->aspi->data->timing +	\
1032 	 (chip)->cs * 4)
1033 
aspeed_spi_ast2600_calibrate(struct aspeed_spi_chip * chip,u32 hdiv,const u8 * golden_buf,u8 * test_buf)1034 static int aspeed_spi_ast2600_calibrate(struct aspeed_spi_chip *chip, u32 hdiv,
1035 					const u8 *golden_buf, u8 *test_buf)
1036 {
1037 	struct aspeed_spi *aspi = chip->aspi;
1038 	int hcycle;
1039 	u32 shift = (hdiv - 2) << 3;
1040 	u32 mask = ~(0xfu << shift);
1041 	u32 fread_timing_val = 0;
1042 
1043 	for (hcycle = 0; hcycle <= TIMING_DELAY_HCYCLE_MAX; hcycle++) {
1044 		int delay_ns;
1045 		bool pass = false;
1046 
1047 		fread_timing_val &= mask;
1048 		fread_timing_val |= hcycle << shift;
1049 
1050 		/* no DI input delay first  */
1051 		writel(fread_timing_val, TIMING_REG_AST2600(chip));
1052 		pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
1053 		dev_dbg(aspi->dev,
1054 			"  * [%08x] %d HCLK delay, DI delay none : %s",
1055 			fread_timing_val, hcycle, pass ? "PASS" : "FAIL");
1056 		if (pass)
1057 			return 0;
1058 
1059 		/* Add DI input delays  */
1060 		fread_timing_val &= mask;
1061 		fread_timing_val |= (TIMING_DELAY_DI | hcycle) << shift;
1062 
1063 		for (delay_ns = 0; delay_ns < 0x10; delay_ns++) {
1064 			fread_timing_val &= ~(0xf << (4 + shift));
1065 			fread_timing_val |= delay_ns << (4 + shift);
1066 
1067 			writel(fread_timing_val, TIMING_REG_AST2600(chip));
1068 			pass = aspeed_spi_check_reads(chip, golden_buf, test_buf);
1069 			dev_dbg(aspi->dev,
1070 				"  * [%08x] %d HCLK delay, DI delay %d.%dns : %s",
1071 				fread_timing_val, hcycle, (delay_ns + 1) / 2,
1072 				(delay_ns + 1) & 1 ? 5 : 5, pass ? "PASS" : "FAIL");
1073 			/*
1074 			 * TODO: This is optimistic. We should look
1075 			 * for a working interval and save the middle
1076 			 * value in the read timing register.
1077 			 */
1078 			if (pass)
1079 				return 0;
1080 		}
1081 	}
1082 
1083 	/* No good setting for this frequency */
1084 	return -1;
1085 }
1086 
1087 /*
1088  * Platform definitions
1089  */
1090 static const struct aspeed_spi_data ast2400_fmc_data = {
1091 	.max_cs	       = 5,
1092 	.hastype       = true,
1093 	.we0	       = 16,
1094 	.ctl0	       = CE0_CTRL_REG,
1095 	.timing	       = CE0_TIMING_COMPENSATION_REG,
1096 	.hclk_mask     = 0xfffff0ff,
1097 	.hdiv_max      = 1,
1098 	.calibrate     = aspeed_spi_calibrate,
1099 	.segment_start = aspeed_spi_segment_start,
1100 	.segment_end   = aspeed_spi_segment_end,
1101 	.segment_reg   = aspeed_spi_segment_reg,
1102 };
1103 
1104 static const struct aspeed_spi_data ast2400_spi_data = {
1105 	.max_cs	       = 1,
1106 	.hastype       = false,
1107 	.we0	       = 0,
1108 	.ctl0	       = 0x04,
1109 	.timing	       = 0x14,
1110 	.hclk_mask     = 0xfffff0ff,
1111 	.hdiv_max      = 1,
1112 	.calibrate     = aspeed_spi_calibrate,
1113 	/* No segment registers */
1114 };
1115 
1116 static const struct aspeed_spi_data ast2500_fmc_data = {
1117 	.max_cs	       = 3,
1118 	.hastype       = true,
1119 	.we0	       = 16,
1120 	.ctl0	       = CE0_CTRL_REG,
1121 	.timing	       = CE0_TIMING_COMPENSATION_REG,
1122 	.hclk_mask     = 0xffffd0ff,
1123 	.hdiv_max      = 1,
1124 	.calibrate     = aspeed_spi_calibrate,
1125 	.segment_start = aspeed_spi_segment_start,
1126 	.segment_end   = aspeed_spi_segment_end,
1127 	.segment_reg   = aspeed_spi_segment_reg,
1128 };
1129 
1130 static const struct aspeed_spi_data ast2500_spi_data = {
1131 	.max_cs	       = 2,
1132 	.hastype       = false,
1133 	.we0	       = 16,
1134 	.ctl0	       = CE0_CTRL_REG,
1135 	.timing	       = CE0_TIMING_COMPENSATION_REG,
1136 	.hclk_mask     = 0xffffd0ff,
1137 	.hdiv_max      = 1,
1138 	.calibrate     = aspeed_spi_calibrate,
1139 	.segment_start = aspeed_spi_segment_start,
1140 	.segment_end   = aspeed_spi_segment_end,
1141 	.segment_reg   = aspeed_spi_segment_reg,
1142 };
1143 
1144 static const struct aspeed_spi_data ast2600_fmc_data = {
1145 	.max_cs	       = 3,
1146 	.hastype       = false,
1147 	.mode_bits     = SPI_RX_QUAD | SPI_TX_QUAD,
1148 	.we0	       = 16,
1149 	.ctl0	       = CE0_CTRL_REG,
1150 	.timing	       = CE0_TIMING_COMPENSATION_REG,
1151 	.hclk_mask     = 0xf0fff0ff,
1152 	.hdiv_max      = 2,
1153 	.calibrate     = aspeed_spi_ast2600_calibrate,
1154 	.segment_start = aspeed_spi_segment_ast2600_start,
1155 	.segment_end   = aspeed_spi_segment_ast2600_end,
1156 	.segment_reg   = aspeed_spi_segment_ast2600_reg,
1157 };
1158 
1159 static const struct aspeed_spi_data ast2600_spi_data = {
1160 	.max_cs	       = 2,
1161 	.hastype       = false,
1162 	.mode_bits     = SPI_RX_QUAD | SPI_TX_QUAD,
1163 	.we0	       = 16,
1164 	.ctl0	       = CE0_CTRL_REG,
1165 	.timing	       = CE0_TIMING_COMPENSATION_REG,
1166 	.hclk_mask     = 0xf0fff0ff,
1167 	.hdiv_max      = 2,
1168 	.calibrate     = aspeed_spi_ast2600_calibrate,
1169 	.segment_start = aspeed_spi_segment_ast2600_start,
1170 	.segment_end   = aspeed_spi_segment_ast2600_end,
1171 	.segment_reg   = aspeed_spi_segment_ast2600_reg,
1172 };
1173 
1174 static const struct of_device_id aspeed_spi_matches[] = {
1175 	{ .compatible = "aspeed,ast2400-fmc", .data = &ast2400_fmc_data },
1176 	{ .compatible = "aspeed,ast2400-spi", .data = &ast2400_spi_data },
1177 	{ .compatible = "aspeed,ast2500-fmc", .data = &ast2500_fmc_data },
1178 	{ .compatible = "aspeed,ast2500-spi", .data = &ast2500_spi_data },
1179 	{ .compatible = "aspeed,ast2600-fmc", .data = &ast2600_fmc_data },
1180 	{ .compatible = "aspeed,ast2600-spi", .data = &ast2600_spi_data },
1181 	{ }
1182 };
1183 MODULE_DEVICE_TABLE(of, aspeed_spi_matches);
1184 
1185 static struct platform_driver aspeed_spi_driver = {
1186 	.probe			= aspeed_spi_probe,
1187 	.remove			= aspeed_spi_remove,
1188 	.driver	= {
1189 		.name		= DEVICE_NAME,
1190 		.of_match_table = aspeed_spi_matches,
1191 	}
1192 };
1193 
1194 module_platform_driver(aspeed_spi_driver);
1195 
1196 MODULE_DESCRIPTION("ASPEED Static Memory Controller Driver");
1197 MODULE_AUTHOR("Chin-Ting Kuo <chin-ting_kuo@aspeedtech.com>");
1198 MODULE_AUTHOR("Cedric Le Goater <clg@kaod.org>");
1199 MODULE_LICENSE("GPL v2");
1200