1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Copyright IBM Corp. 2006, 2023
4  * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5  *	      Martin Schwidefsky <schwidefsky@de.ibm.com>
6  *	      Ralph Wuerthner <rwuerthn@de.ibm.com>
7  *	      Felix Beck <felix.beck@de.ibm.com>
8  *	      Holger Dengler <hd@linux.vnet.ibm.com>
9  *	      Harald Freudenberger <freude@linux.ibm.com>
10  *
11  * Adjunct processor bus.
12  */
13 
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16 
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/freezer.h>
23 #include <linux/interrupt.h>
24 #include <linux/workqueue.h>
25 #include <linux/slab.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/mutex.h>
29 #include <asm/machine.h>
30 #include <asm/airq.h>
31 #include <asm/tpi.h>
32 #include <linux/atomic.h>
33 #include <asm/isc.h>
34 #include <linux/hrtimer.h>
35 #include <linux/ktime.h>
36 #include <asm/facility.h>
37 #include <linux/crypto.h>
38 #include <linux/mod_devicetable.h>
39 #include <linux/debugfs.h>
40 #include <linux/ctype.h>
41 #include <linux/module.h>
42 #include <asm/uv.h>
43 #include <asm/chsc.h>
44 
45 #include "ap_bus.h"
46 #include "ap_debug.h"
47 
48 MODULE_AUTHOR("IBM Corporation");
49 MODULE_DESCRIPTION("Adjunct Processor Bus driver");
50 MODULE_LICENSE("GPL");
51 
52 int ap_domain_index = -1;	/* Adjunct Processor Domain Index */
53 static DEFINE_SPINLOCK(ap_domain_lock);
54 module_param_named(domain, ap_domain_index, int, 0440);
55 MODULE_PARM_DESC(domain, "domain index for ap devices");
56 EXPORT_SYMBOL(ap_domain_index);
57 
58 static int ap_thread_flag;
59 module_param_named(poll_thread, ap_thread_flag, int, 0440);
60 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
61 
62 static char *apm_str;
63 module_param_named(apmask, apm_str, charp, 0440);
64 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
65 
66 static char *aqm_str;
67 module_param_named(aqmask, aqm_str, charp, 0440);
68 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
69 
70 static int ap_useirq = 1;
71 module_param_named(useirq, ap_useirq, int, 0440);
72 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
73 
74 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
75 EXPORT_SYMBOL(ap_max_msg_size);
76 
77 static struct device *ap_root_device;
78 
79 /* Hashtable of all queue devices on the AP bus */
80 DEFINE_HASHTABLE(ap_queues, 8);
81 /* lock used for the ap_queues hashtable */
82 DEFINE_SPINLOCK(ap_queues_lock);
83 
84 /* Default permissions (ioctl, card and domain masking) */
85 struct ap_perms ap_perms;
86 EXPORT_SYMBOL(ap_perms);
87 DEFINE_MUTEX(ap_perms_mutex);
88 EXPORT_SYMBOL(ap_perms_mutex);
89 
90 /* # of bindings complete since init */
91 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
92 
93 /* completion for APQN bindings complete */
94 static DECLARE_COMPLETION(ap_apqn_bindings_complete);
95 
96 static struct ap_config_info qci[2];
97 static struct ap_config_info *const ap_qci_info = &qci[0];
98 static struct ap_config_info *const ap_qci_info_old = &qci[1];
99 
100 /*
101  * AP bus related debug feature things.
102  */
103 debug_info_t *ap_dbf_info;
104 
105 /*
106  * AP bus rescan related things.
107  */
108 static bool ap_scan_bus(void);
109 static bool ap_scan_bus_result; /* result of last ap_scan_bus() */
110 static DEFINE_MUTEX(ap_scan_bus_mutex); /* mutex ap_scan_bus() invocations */
111 static struct task_struct *ap_scan_bus_task; /* thread holding the scan mutex */
112 static atomic64_t ap_scan_bus_count; /* counter ap_scan_bus() invocations */
113 static int ap_scan_bus_time = AP_CONFIG_TIME;
114 static struct timer_list ap_scan_bus_timer;
115 static void ap_scan_bus_wq_callback(struct work_struct *);
116 static DECLARE_WORK(ap_scan_bus_work, ap_scan_bus_wq_callback);
117 
118 /*
119  * Tasklet & timer for AP request polling and interrupts
120  */
121 static void ap_tasklet_fn(unsigned long);
122 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
123 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
124 static struct task_struct *ap_poll_kthread;
125 static DEFINE_MUTEX(ap_poll_thread_mutex);
126 static DEFINE_SPINLOCK(ap_poll_timer_lock);
127 static struct hrtimer ap_poll_timer;
128 /*
129  * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
130  * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
131  */
132 static unsigned long poll_high_timeout = 250000UL;
133 
134 /*
135  * Some state machine states only require a low frequency polling.
136  * We use 25 Hz frequency for these.
137  */
138 static unsigned long poll_low_timeout = 40000000UL;
139 
140 /* Maximum domain id, if not given via qci */
141 static int ap_max_domain_id = 15;
142 /* Maximum adapter id, if not given via qci */
143 static int ap_max_adapter_id = 63;
144 
145 static const struct bus_type ap_bus_type;
146 
147 /* Adapter interrupt definitions */
148 static void ap_interrupt_handler(struct airq_struct *airq,
149 				 struct tpi_info *tpi_info);
150 
151 static bool ap_irq_flag;
152 
153 static struct airq_struct ap_airq = {
154 	.handler = ap_interrupt_handler,
155 	.isc = AP_ISC,
156 };
157 
158 /**
159  * ap_airq_ptr() - Get the address of the adapter interrupt indicator
160  *
161  * Returns the address of the local-summary-indicator of the adapter
162  * interrupt handler for AP, or NULL if adapter interrupts are not
163  * available.
164  */
ap_airq_ptr(void)165 void *ap_airq_ptr(void)
166 {
167 	if (ap_irq_flag)
168 		return ap_airq.lsi_ptr;
169 	return NULL;
170 }
171 
172 /**
173  * ap_interrupts_available(): Test if AP interrupts are available.
174  *
175  * Returns 1 if AP interrupts are available.
176  */
ap_interrupts_available(void)177 static int ap_interrupts_available(void)
178 {
179 	return test_facility(65);
180 }
181 
182 /**
183  * ap_qci_available(): Test if AP configuration
184  * information can be queried via QCI subfunction.
185  *
186  * Returns 1 if subfunction PQAP(QCI) is available.
187  */
ap_qci_available(void)188 static int ap_qci_available(void)
189 {
190 	return test_facility(12);
191 }
192 
193 /**
194  * ap_apft_available(): Test if AP facilities test (APFT)
195  * facility is available.
196  *
197  * Returns 1 if APFT is available.
198  */
ap_apft_available(void)199 static int ap_apft_available(void)
200 {
201 	return test_facility(15);
202 }
203 
204 /*
205  * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
206  *
207  * Returns 1 if the QACT subfunction is available.
208  */
ap_qact_available(void)209 static inline int ap_qact_available(void)
210 {
211 	return ap_qci_info->qact;
212 }
213 
214 /*
215  * ap_sb_available(): Test if the AP secure binding facility is available.
216  *
217  * Returns 1 if secure binding facility is available.
218  */
ap_sb_available(void)219 int ap_sb_available(void)
220 {
221 	return ap_qci_info->apsb;
222 }
223 
224 /*
225  * ap_is_se_guest(): Check for SE guest with AP pass-through support.
226  */
ap_is_se_guest(void)227 bool ap_is_se_guest(void)
228 {
229 	return is_prot_virt_guest() && ap_sb_available();
230 }
231 EXPORT_SYMBOL(ap_is_se_guest);
232 
233 /**
234  * ap_init_qci_info(): Allocate and query qci config info.
235  * Does also update the static variables ap_max_domain_id
236  * and ap_max_adapter_id if this info is available.
237  */
ap_init_qci_info(void)238 static void __init ap_init_qci_info(void)
239 {
240 	if (!ap_qci_available() ||
241 	    ap_qci(ap_qci_info)) {
242 		AP_DBF_INFO("%s QCI not supported\n", __func__);
243 		return;
244 	}
245 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
246 	AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
247 
248 	if (ap_qci_info->apxa) {
249 		if (ap_qci_info->na) {
250 			ap_max_adapter_id = ap_qci_info->na;
251 			AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
252 				    __func__, ap_max_adapter_id);
253 		}
254 		if (ap_qci_info->nd) {
255 			ap_max_domain_id = ap_qci_info->nd;
256 			AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
257 				    __func__, ap_max_domain_id);
258 		}
259 	}
260 }
261 
262 /*
263  * ap_test_config(): helper function to extract the nrth bit
264  *		     within the unsigned int array field.
265  */
ap_test_config(unsigned int * field,unsigned int nr)266 static inline int ap_test_config(unsigned int *field, unsigned int nr)
267 {
268 	return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
269 }
270 
271 /*
272  * ap_test_config_card_id(): Test, whether an AP card ID is configured.
273  *
274  * Returns 0 if the card is not configured
275  *	   1 if the card is configured or
276  *	     if the configuration information is not available
277  */
ap_test_config_card_id(unsigned int id)278 static inline int ap_test_config_card_id(unsigned int id)
279 {
280 	if (id > ap_max_adapter_id)
281 		return 0;
282 	if (ap_qci_info->flags)
283 		return ap_test_config(ap_qci_info->apm, id);
284 	return 1;
285 }
286 
287 /*
288  * ap_test_config_usage_domain(): Test, whether an AP usage domain
289  * is configured.
290  *
291  * Returns 0 if the usage domain is not configured
292  *	   1 if the usage domain is configured or
293  *	     if the configuration information is not available
294  */
ap_test_config_usage_domain(unsigned int domain)295 int ap_test_config_usage_domain(unsigned int domain)
296 {
297 	if (domain > ap_max_domain_id)
298 		return 0;
299 	if (ap_qci_info->flags)
300 		return ap_test_config(ap_qci_info->aqm, domain);
301 	return 1;
302 }
303 EXPORT_SYMBOL(ap_test_config_usage_domain);
304 
305 /*
306  * ap_test_config_ctrl_domain(): Test, whether an AP control domain
307  * is configured.
308  * @domain AP control domain ID
309  *
310  * Returns 1 if the control domain is configured
311  *	   0 in all other cases
312  */
ap_test_config_ctrl_domain(unsigned int domain)313 int ap_test_config_ctrl_domain(unsigned int domain)
314 {
315 	if (!ap_qci_info || domain > ap_max_domain_id)
316 		return 0;
317 	return ap_test_config(ap_qci_info->adm, domain);
318 }
319 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
320 
321 /*
322  * ap_queue_info(): Check and get AP queue info.
323  * Returns: 1 if APQN exists and info is filled,
324  *	    0 if APQN seems to exist but there is no info
325  *	      available (eg. caused by an asynch pending error)
326  *	   -1 invalid APQN, TAPQ error or AP queue status which
327  *	      indicates there is no APQN.
328  */
ap_queue_info(ap_qid_t qid,struct ap_tapq_hwinfo * hwinfo,bool * decfg,bool * cstop)329 static int ap_queue_info(ap_qid_t qid, struct ap_tapq_hwinfo *hwinfo,
330 			 bool *decfg, bool *cstop)
331 {
332 	struct ap_queue_status status;
333 
334 	hwinfo->value = 0;
335 
336 	/* make sure we don't run into a specifiation exception */
337 	if (AP_QID_CARD(qid) > ap_max_adapter_id ||
338 	    AP_QID_QUEUE(qid) > ap_max_domain_id)
339 		return -1;
340 
341 	/* call TAPQ on this APQN */
342 	status = ap_test_queue(qid, ap_apft_available(), hwinfo);
343 
344 	switch (status.response_code) {
345 	case AP_RESPONSE_NORMAL:
346 	case AP_RESPONSE_RESET_IN_PROGRESS:
347 	case AP_RESPONSE_DECONFIGURED:
348 	case AP_RESPONSE_CHECKSTOPPED:
349 	case AP_RESPONSE_BUSY:
350 		/* For all these RCs the tapq info should be available */
351 		break;
352 	default:
353 		/* On a pending async error the info should be available */
354 		if (!status.async)
355 			return -1;
356 		break;
357 	}
358 
359 	/* There should be at least one of the mode bits set */
360 	if (WARN_ON_ONCE(!hwinfo->value))
361 		return 0;
362 
363 	*decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
364 	*cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
365 
366 	return 1;
367 }
368 
ap_wait(enum ap_sm_wait wait)369 void ap_wait(enum ap_sm_wait wait)
370 {
371 	ktime_t hr_time;
372 
373 	switch (wait) {
374 	case AP_SM_WAIT_AGAIN:
375 	case AP_SM_WAIT_INTERRUPT:
376 		if (ap_irq_flag)
377 			break;
378 		if (ap_poll_kthread) {
379 			wake_up(&ap_poll_wait);
380 			break;
381 		}
382 		fallthrough;
383 	case AP_SM_WAIT_LOW_TIMEOUT:
384 	case AP_SM_WAIT_HIGH_TIMEOUT:
385 		spin_lock_bh(&ap_poll_timer_lock);
386 		if (!hrtimer_is_queued(&ap_poll_timer)) {
387 			hr_time =
388 				wait == AP_SM_WAIT_LOW_TIMEOUT ?
389 				poll_low_timeout : poll_high_timeout;
390 			hrtimer_forward_now(&ap_poll_timer, hr_time);
391 			hrtimer_restart(&ap_poll_timer);
392 		}
393 		spin_unlock_bh(&ap_poll_timer_lock);
394 		break;
395 	case AP_SM_WAIT_NONE:
396 	default:
397 		break;
398 	}
399 }
400 
401 /**
402  * ap_request_timeout(): Handling of request timeouts
403  * @t: timer making this callback
404  *
405  * Handles request timeouts.
406  */
ap_request_timeout(struct timer_list * t)407 void ap_request_timeout(struct timer_list *t)
408 {
409 	struct ap_queue *aq = from_timer(aq, t, timeout);
410 
411 	spin_lock_bh(&aq->lock);
412 	ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
413 	spin_unlock_bh(&aq->lock);
414 }
415 
416 /**
417  * ap_poll_timeout(): AP receive polling for finished AP requests.
418  * @unused: Unused pointer.
419  *
420  * Schedules the AP tasklet using a high resolution timer.
421  */
ap_poll_timeout(struct hrtimer * unused)422 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
423 {
424 	tasklet_schedule(&ap_tasklet);
425 	return HRTIMER_NORESTART;
426 }
427 
428 /**
429  * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
430  * @airq: pointer to adapter interrupt descriptor
431  * @tpi_info: ignored
432  */
ap_interrupt_handler(struct airq_struct * airq,struct tpi_info * tpi_info)433 static void ap_interrupt_handler(struct airq_struct *airq,
434 				 struct tpi_info *tpi_info)
435 {
436 	inc_irq_stat(IRQIO_APB);
437 	tasklet_schedule(&ap_tasklet);
438 }
439 
440 /**
441  * ap_tasklet_fn(): Tasklet to poll all AP devices.
442  * @dummy: Unused variable
443  *
444  * Poll all AP devices on the bus.
445  */
ap_tasklet_fn(unsigned long dummy)446 static void ap_tasklet_fn(unsigned long dummy)
447 {
448 	int bkt;
449 	struct ap_queue *aq;
450 	enum ap_sm_wait wait = AP_SM_WAIT_NONE;
451 
452 	/* Reset the indicator if interrupts are used. Thus new interrupts can
453 	 * be received. Doing it in the beginning of the tasklet is therefore
454 	 * important that no requests on any AP get lost.
455 	 */
456 	if (ap_irq_flag)
457 		WRITE_ONCE(*ap_airq.lsi_ptr, 0);
458 
459 	spin_lock_bh(&ap_queues_lock);
460 	hash_for_each(ap_queues, bkt, aq, hnode) {
461 		spin_lock_bh(&aq->lock);
462 		wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
463 		spin_unlock_bh(&aq->lock);
464 	}
465 	spin_unlock_bh(&ap_queues_lock);
466 
467 	ap_wait(wait);
468 }
469 
ap_pending_requests(void)470 static int ap_pending_requests(void)
471 {
472 	int bkt;
473 	struct ap_queue *aq;
474 
475 	spin_lock_bh(&ap_queues_lock);
476 	hash_for_each(ap_queues, bkt, aq, hnode) {
477 		if (aq->queue_count == 0)
478 			continue;
479 		spin_unlock_bh(&ap_queues_lock);
480 		return 1;
481 	}
482 	spin_unlock_bh(&ap_queues_lock);
483 	return 0;
484 }
485 
486 /**
487  * ap_poll_thread(): Thread that polls for finished requests.
488  * @data: Unused pointer
489  *
490  * AP bus poll thread. The purpose of this thread is to poll for
491  * finished requests in a loop if there is a "free" cpu - that is
492  * a cpu that doesn't have anything better to do. The polling stops
493  * as soon as there is another task or if all messages have been
494  * delivered.
495  */
ap_poll_thread(void * data)496 static int ap_poll_thread(void *data)
497 {
498 	DECLARE_WAITQUEUE(wait, current);
499 
500 	set_user_nice(current, MAX_NICE);
501 	set_freezable();
502 	while (!kthread_should_stop()) {
503 		add_wait_queue(&ap_poll_wait, &wait);
504 		set_current_state(TASK_INTERRUPTIBLE);
505 		if (!ap_pending_requests()) {
506 			schedule();
507 			try_to_freeze();
508 		}
509 		set_current_state(TASK_RUNNING);
510 		remove_wait_queue(&ap_poll_wait, &wait);
511 		if (need_resched()) {
512 			schedule();
513 			try_to_freeze();
514 			continue;
515 		}
516 		ap_tasklet_fn(0);
517 	}
518 
519 	return 0;
520 }
521 
ap_poll_thread_start(void)522 static int ap_poll_thread_start(void)
523 {
524 	int rc;
525 
526 	if (ap_irq_flag || ap_poll_kthread)
527 		return 0;
528 	mutex_lock(&ap_poll_thread_mutex);
529 	ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
530 	rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
531 	if (rc)
532 		ap_poll_kthread = NULL;
533 	mutex_unlock(&ap_poll_thread_mutex);
534 	return rc;
535 }
536 
ap_poll_thread_stop(void)537 static void ap_poll_thread_stop(void)
538 {
539 	if (!ap_poll_kthread)
540 		return;
541 	mutex_lock(&ap_poll_thread_mutex);
542 	kthread_stop(ap_poll_kthread);
543 	ap_poll_kthread = NULL;
544 	mutex_unlock(&ap_poll_thread_mutex);
545 }
546 
547 #define is_card_dev(x) ((x)->parent == ap_root_device)
548 #define is_queue_dev(x) ((x)->parent != ap_root_device)
549 
550 /**
551  * ap_bus_match()
552  * @dev: Pointer to device
553  * @drv: Pointer to device_driver
554  *
555  * AP bus driver registration/unregistration.
556  */
ap_bus_match(struct device * dev,const struct device_driver * drv)557 static int ap_bus_match(struct device *dev, const struct device_driver *drv)
558 {
559 	const struct ap_driver *ap_drv = to_ap_drv(drv);
560 	struct ap_device_id *id;
561 
562 	/*
563 	 * Compare device type of the device with the list of
564 	 * supported types of the device_driver.
565 	 */
566 	for (id = ap_drv->ids; id->match_flags; id++) {
567 		if (is_card_dev(dev) &&
568 		    id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
569 		    id->dev_type == to_ap_dev(dev)->device_type)
570 			return 1;
571 		if (is_queue_dev(dev) &&
572 		    id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
573 		    id->dev_type == to_ap_dev(dev)->device_type)
574 			return 1;
575 	}
576 	return 0;
577 }
578 
579 /**
580  * ap_uevent(): Uevent function for AP devices.
581  * @dev: Pointer to device
582  * @env: Pointer to kobj_uevent_env
583  *
584  * It sets up a single environment variable DEV_TYPE which contains the
585  * hardware device type.
586  */
ap_uevent(const struct device * dev,struct kobj_uevent_env * env)587 static int ap_uevent(const struct device *dev, struct kobj_uevent_env *env)
588 {
589 	int rc = 0;
590 	const struct ap_device *ap_dev = to_ap_dev(dev);
591 
592 	/* Uevents from ap bus core don't need extensions to the env */
593 	if (dev == ap_root_device)
594 		return 0;
595 
596 	if (is_card_dev(dev)) {
597 		struct ap_card *ac = to_ap_card(&ap_dev->device);
598 
599 		/* Set up DEV_TYPE environment variable. */
600 		rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
601 		if (rc)
602 			return rc;
603 		/* Add MODALIAS= */
604 		rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
605 		if (rc)
606 			return rc;
607 
608 		/* Add MODE=<accel|cca|ep11> */
609 		if (ac->hwinfo.accel)
610 			rc = add_uevent_var(env, "MODE=accel");
611 		else if (ac->hwinfo.cca)
612 			rc = add_uevent_var(env, "MODE=cca");
613 		else if (ac->hwinfo.ep11)
614 			rc = add_uevent_var(env, "MODE=ep11");
615 		if (rc)
616 			return rc;
617 	} else {
618 		struct ap_queue *aq = to_ap_queue(&ap_dev->device);
619 
620 		/* Add MODE=<accel|cca|ep11> */
621 		if (aq->card->hwinfo.accel)
622 			rc = add_uevent_var(env, "MODE=accel");
623 		else if (aq->card->hwinfo.cca)
624 			rc = add_uevent_var(env, "MODE=cca");
625 		else if (aq->card->hwinfo.ep11)
626 			rc = add_uevent_var(env, "MODE=ep11");
627 		if (rc)
628 			return rc;
629 	}
630 
631 	return 0;
632 }
633 
ap_send_init_scan_done_uevent(void)634 static void ap_send_init_scan_done_uevent(void)
635 {
636 	char *envp[] = { "INITSCAN=done", NULL };
637 
638 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
639 }
640 
ap_send_bindings_complete_uevent(void)641 static void ap_send_bindings_complete_uevent(void)
642 {
643 	char buf[32];
644 	char *envp[] = { "BINDINGS=complete", buf, NULL };
645 
646 	snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
647 		 atomic64_inc_return(&ap_bindings_complete_count));
648 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
649 }
650 
ap_send_config_uevent(struct ap_device * ap_dev,bool cfg)651 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
652 {
653 	char buf[16];
654 	char *envp[] = { buf, NULL };
655 
656 	snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
657 
658 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
659 }
660 EXPORT_SYMBOL(ap_send_config_uevent);
661 
ap_send_online_uevent(struct ap_device * ap_dev,int online)662 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
663 {
664 	char buf[16];
665 	char *envp[] = { buf, NULL };
666 
667 	snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
668 
669 	kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
670 }
671 EXPORT_SYMBOL(ap_send_online_uevent);
672 
ap_send_mask_changed_uevent(unsigned long * newapm,unsigned long * newaqm)673 static void ap_send_mask_changed_uevent(unsigned long *newapm,
674 					unsigned long *newaqm)
675 {
676 	char buf[100];
677 	char *envp[] = { buf, NULL };
678 
679 	if (newapm)
680 		snprintf(buf, sizeof(buf),
681 			 "APMASK=0x%016lx%016lx%016lx%016lx\n",
682 			 newapm[0], newapm[1], newapm[2], newapm[3]);
683 	else
684 		snprintf(buf, sizeof(buf),
685 			 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
686 			 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
687 
688 	kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
689 }
690 
691 /*
692  * calc # of bound APQNs
693  */
694 
695 struct __ap_calc_ctrs {
696 	unsigned int apqns;
697 	unsigned int bound;
698 };
699 
__ap_calc_helper(struct device * dev,void * arg)700 static int __ap_calc_helper(struct device *dev, void *arg)
701 {
702 	struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
703 
704 	if (is_queue_dev(dev)) {
705 		pctrs->apqns++;
706 		if (dev->driver)
707 			pctrs->bound++;
708 	}
709 
710 	return 0;
711 }
712 
ap_calc_bound_apqns(unsigned int * apqns,unsigned int * bound)713 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
714 {
715 	struct __ap_calc_ctrs ctrs;
716 
717 	memset(&ctrs, 0, sizeof(ctrs));
718 	bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
719 
720 	*apqns = ctrs.apqns;
721 	*bound = ctrs.bound;
722 }
723 
724 /*
725  * After ap bus scan do check if all existing APQNs are
726  * bound to device drivers.
727  */
ap_check_bindings_complete(void)728 static void ap_check_bindings_complete(void)
729 {
730 	unsigned int apqns, bound;
731 
732 	if (atomic64_read(&ap_scan_bus_count) >= 1) {
733 		ap_calc_bound_apqns(&apqns, &bound);
734 		if (bound == apqns) {
735 			if (!completion_done(&ap_apqn_bindings_complete)) {
736 				complete_all(&ap_apqn_bindings_complete);
737 				ap_send_bindings_complete_uevent();
738 				pr_debug("all apqn bindings complete\n");
739 			}
740 		}
741 	}
742 }
743 
744 /*
745  * Interface to wait for the AP bus to have done one initial ap bus
746  * scan and all detected APQNs have been bound to device drivers.
747  * If these both conditions are not fulfilled, this function blocks
748  * on a condition with wait_for_completion_interruptible_timeout().
749  * If these both conditions are fulfilled (before the timeout hits)
750  * the return value is 0. If the timeout (in jiffies) hits instead
751  * -ETIME is returned. On failures negative return values are
752  * returned to the caller.
753  */
ap_wait_apqn_bindings_complete(unsigned long timeout)754 int ap_wait_apqn_bindings_complete(unsigned long timeout)
755 {
756 	int rc = 0;
757 	long l;
758 
759 	if (completion_done(&ap_apqn_bindings_complete))
760 		return 0;
761 
762 	if (timeout)
763 		l = wait_for_completion_interruptible_timeout(
764 			&ap_apqn_bindings_complete, timeout);
765 	else
766 		l = wait_for_completion_interruptible(
767 			&ap_apqn_bindings_complete);
768 	if (l < 0)
769 		rc = l == -ERESTARTSYS ? -EINTR : l;
770 	else if (l == 0 && timeout)
771 		rc = -ETIME;
772 
773 	pr_debug("rc=%d\n", rc);
774 	return rc;
775 }
776 EXPORT_SYMBOL(ap_wait_apqn_bindings_complete);
777 
__ap_queue_devices_with_id_unregister(struct device * dev,void * data)778 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
779 {
780 	if (is_queue_dev(dev) &&
781 	    AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
782 		device_unregister(dev);
783 	return 0;
784 }
785 
__ap_revise_reserved(struct device * dev,void * dummy)786 static int __ap_revise_reserved(struct device *dev, void *dummy)
787 {
788 	int rc, card, queue, devres, drvres;
789 
790 	if (is_queue_dev(dev)) {
791 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
792 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
793 		mutex_lock(&ap_perms_mutex);
794 		devres = test_bit_inv(card, ap_perms.apm) &&
795 			test_bit_inv(queue, ap_perms.aqm);
796 		mutex_unlock(&ap_perms_mutex);
797 		drvres = to_ap_drv(dev->driver)->flags
798 			& AP_DRIVER_FLAG_DEFAULT;
799 		if (!!devres != !!drvres) {
800 			pr_debug("reprobing queue=%02x.%04x\n", card, queue);
801 			rc = device_reprobe(dev);
802 			if (rc)
803 				AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
804 					    __func__, card, queue);
805 		}
806 	}
807 
808 	return 0;
809 }
810 
ap_bus_revise_bindings(void)811 static void ap_bus_revise_bindings(void)
812 {
813 	bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
814 }
815 
816 /**
817  * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
818  *			default host driver or not.
819  * @card: the APID of the adapter card to check
820  * @queue: the APQI of the queue to check
821  *
822  * Note: the ap_perms_mutex must be locked by the caller of this function.
823  *
824  * Return: an int specifying whether the AP adapter is reserved for the host (1)
825  *	   or not (0).
826  */
ap_owned_by_def_drv(int card,int queue)827 int ap_owned_by_def_drv(int card, int queue)
828 {
829 	int rc = 0;
830 
831 	if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
832 		return -EINVAL;
833 
834 	if (test_bit_inv(card, ap_perms.apm) &&
835 	    test_bit_inv(queue, ap_perms.aqm))
836 		rc = 1;
837 
838 	return rc;
839 }
840 EXPORT_SYMBOL(ap_owned_by_def_drv);
841 
842 /**
843  * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
844  *				       a set is reserved for the host drivers
845  *				       or not.
846  * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
847  * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
848  *
849  * Note: the ap_perms_mutex must be locked by the caller of this function.
850  *
851  * Return: an int specifying whether each APQN is reserved for the host (1) or
852  *	   not (0)
853  */
ap_apqn_in_matrix_owned_by_def_drv(unsigned long * apm,unsigned long * aqm)854 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
855 				       unsigned long *aqm)
856 {
857 	int card, queue, rc = 0;
858 
859 	for (card = 0; !rc && card < AP_DEVICES; card++)
860 		if (test_bit_inv(card, apm) &&
861 		    test_bit_inv(card, ap_perms.apm))
862 			for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
863 				if (test_bit_inv(queue, aqm) &&
864 				    test_bit_inv(queue, ap_perms.aqm))
865 					rc = 1;
866 
867 	return rc;
868 }
869 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
870 
ap_device_probe(struct device * dev)871 static int ap_device_probe(struct device *dev)
872 {
873 	struct ap_device *ap_dev = to_ap_dev(dev);
874 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
875 	int card, queue, devres, drvres, rc = -ENODEV;
876 
877 	if (!get_device(dev))
878 		return rc;
879 
880 	if (is_queue_dev(dev)) {
881 		/*
882 		 * If the apqn is marked as reserved/used by ap bus and
883 		 * default drivers, only probe with drivers with the default
884 		 * flag set. If it is not marked, only probe with drivers
885 		 * with the default flag not set.
886 		 */
887 		card = AP_QID_CARD(to_ap_queue(dev)->qid);
888 		queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
889 		mutex_lock(&ap_perms_mutex);
890 		devres = test_bit_inv(card, ap_perms.apm) &&
891 			test_bit_inv(queue, ap_perms.aqm);
892 		mutex_unlock(&ap_perms_mutex);
893 		drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
894 		if (!!devres != !!drvres)
895 			goto out;
896 	}
897 
898 	/*
899 	 * Rearm the bindings complete completion to trigger
900 	 * bindings complete when all devices are bound again
901 	 */
902 	reinit_completion(&ap_apqn_bindings_complete);
903 
904 	/* Add queue/card to list of active queues/cards */
905 	spin_lock_bh(&ap_queues_lock);
906 	if (is_queue_dev(dev))
907 		hash_add(ap_queues, &to_ap_queue(dev)->hnode,
908 			 to_ap_queue(dev)->qid);
909 	spin_unlock_bh(&ap_queues_lock);
910 
911 	rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
912 
913 	if (rc) {
914 		spin_lock_bh(&ap_queues_lock);
915 		if (is_queue_dev(dev))
916 			hash_del(&to_ap_queue(dev)->hnode);
917 		spin_unlock_bh(&ap_queues_lock);
918 	}
919 
920 out:
921 	if (rc)
922 		put_device(dev);
923 	return rc;
924 }
925 
ap_device_remove(struct device * dev)926 static void ap_device_remove(struct device *dev)
927 {
928 	struct ap_device *ap_dev = to_ap_dev(dev);
929 	struct ap_driver *ap_drv = to_ap_drv(dev->driver);
930 
931 	/* prepare ap queue device removal */
932 	if (is_queue_dev(dev))
933 		ap_queue_prepare_remove(to_ap_queue(dev));
934 
935 	/* driver's chance to clean up gracefully */
936 	if (ap_drv->remove)
937 		ap_drv->remove(ap_dev);
938 
939 	/* now do the ap queue device remove */
940 	if (is_queue_dev(dev))
941 		ap_queue_remove(to_ap_queue(dev));
942 
943 	/* Remove queue/card from list of active queues/cards */
944 	spin_lock_bh(&ap_queues_lock);
945 	if (is_queue_dev(dev))
946 		hash_del(&to_ap_queue(dev)->hnode);
947 	spin_unlock_bh(&ap_queues_lock);
948 
949 	put_device(dev);
950 }
951 
ap_get_qdev(ap_qid_t qid)952 struct ap_queue *ap_get_qdev(ap_qid_t qid)
953 {
954 	int bkt;
955 	struct ap_queue *aq;
956 
957 	spin_lock_bh(&ap_queues_lock);
958 	hash_for_each(ap_queues, bkt, aq, hnode) {
959 		if (aq->qid == qid) {
960 			get_device(&aq->ap_dev.device);
961 			spin_unlock_bh(&ap_queues_lock);
962 			return aq;
963 		}
964 	}
965 	spin_unlock_bh(&ap_queues_lock);
966 
967 	return NULL;
968 }
969 EXPORT_SYMBOL(ap_get_qdev);
970 
ap_driver_register(struct ap_driver * ap_drv,struct module * owner,char * name)971 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
972 		       char *name)
973 {
974 	struct device_driver *drv = &ap_drv->driver;
975 	int rc;
976 
977 	drv->bus = &ap_bus_type;
978 	drv->owner = owner;
979 	drv->name = name;
980 	rc = driver_register(drv);
981 
982 	ap_check_bindings_complete();
983 
984 	return rc;
985 }
986 EXPORT_SYMBOL(ap_driver_register);
987 
ap_driver_unregister(struct ap_driver * ap_drv)988 void ap_driver_unregister(struct ap_driver *ap_drv)
989 {
990 	driver_unregister(&ap_drv->driver);
991 }
992 EXPORT_SYMBOL(ap_driver_unregister);
993 
994 /*
995  * Enforce a synchronous AP bus rescan.
996  * Returns true if the bus scan finds a change in the AP configuration
997  * and AP devices have been added or deleted when this function returns.
998  */
ap_bus_force_rescan(void)999 bool ap_bus_force_rescan(void)
1000 {
1001 	unsigned long scan_counter = atomic64_read(&ap_scan_bus_count);
1002 	bool rc = false;
1003 
1004 	pr_debug("> scan counter=%lu\n", scan_counter);
1005 
1006 	/* Only trigger AP bus scans after the initial scan is done */
1007 	if (scan_counter <= 0)
1008 		goto out;
1009 
1010 	/*
1011 	 * There is one unlikely but nevertheless valid scenario where the
1012 	 * thread holding the mutex may try to send some crypto load but
1013 	 * all cards are offline so a rescan is triggered which causes
1014 	 * a recursive call of ap_bus_force_rescan(). A simple return if
1015 	 * the mutex is already locked by this thread solves this.
1016 	 */
1017 	if (mutex_is_locked(&ap_scan_bus_mutex)) {
1018 		if (ap_scan_bus_task == current)
1019 			goto out;
1020 	}
1021 
1022 	/* Try to acquire the AP scan bus mutex */
1023 	if (mutex_trylock(&ap_scan_bus_mutex)) {
1024 		/* mutex acquired, run the AP bus scan */
1025 		ap_scan_bus_task = current;
1026 		ap_scan_bus_result = ap_scan_bus();
1027 		rc = ap_scan_bus_result;
1028 		ap_scan_bus_task = NULL;
1029 		mutex_unlock(&ap_scan_bus_mutex);
1030 		goto out;
1031 	}
1032 
1033 	/*
1034 	 * Mutex acquire failed. So there is currently another task
1035 	 * already running the AP bus scan. Then let's simple wait
1036 	 * for the lock which means the other task has finished and
1037 	 * stored the result in ap_scan_bus_result.
1038 	 */
1039 	if (mutex_lock_interruptible(&ap_scan_bus_mutex)) {
1040 		/* some error occurred, ignore and go out */
1041 		goto out;
1042 	}
1043 	rc = ap_scan_bus_result;
1044 	mutex_unlock(&ap_scan_bus_mutex);
1045 
1046 out:
1047 	pr_debug("rc=%d\n", rc);
1048 	return rc;
1049 }
1050 EXPORT_SYMBOL(ap_bus_force_rescan);
1051 
1052 /*
1053  * A config change has happened, force an ap bus rescan.
1054  */
ap_bus_cfg_chg(struct notifier_block * nb,unsigned long action,void * data)1055 static int ap_bus_cfg_chg(struct notifier_block *nb,
1056 			  unsigned long action, void *data)
1057 {
1058 	if (action != CHSC_NOTIFY_AP_CFG)
1059 		return NOTIFY_DONE;
1060 
1061 	pr_debug("config change, forcing bus rescan\n");
1062 
1063 	ap_bus_force_rescan();
1064 
1065 	return NOTIFY_OK;
1066 }
1067 
1068 static struct notifier_block ap_bus_nb = {
1069 	.notifier_call = ap_bus_cfg_chg,
1070 };
1071 
ap_hex2bitmap(const char * str,unsigned long * bitmap,int bits)1072 int ap_hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1073 {
1074 	int i, n, b;
1075 
1076 	/* bits needs to be a multiple of 8 */
1077 	if (bits & 0x07)
1078 		return -EINVAL;
1079 
1080 	if (str[0] == '0' && str[1] == 'x')
1081 		str++;
1082 	if (*str == 'x')
1083 		str++;
1084 
1085 	for (i = 0; isxdigit(*str) && i < bits; str++) {
1086 		b = hex_to_bin(*str);
1087 		for (n = 0; n < 4; n++)
1088 			if (b & (0x08 >> n))
1089 				set_bit_inv(i + n, bitmap);
1090 		i += 4;
1091 	}
1092 
1093 	if (*str == '\n')
1094 		str++;
1095 	if (*str)
1096 		return -EINVAL;
1097 	return 0;
1098 }
1099 EXPORT_SYMBOL(ap_hex2bitmap);
1100 
1101 /*
1102  * modify_bitmap() - parse bitmask argument and modify an existing
1103  * bit mask accordingly. A concatenation (done with ',') of these
1104  * terms is recognized:
1105  *   +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1106  * <bitnr> may be any valid number (hex, decimal or octal) in the range
1107  * 0...bits-1; the leading + or - is required. Here are some examples:
1108  *   +0-15,+32,-128,-0xFF
1109  *   -0-255,+1-16,+0x128
1110  *   +1,+2,+3,+4,-5,-7-10
1111  * Returns the new bitmap after all changes have been applied. Every
1112  * positive value in the string will set a bit and every negative value
1113  * in the string will clear a bit. As a bit may be touched more than once,
1114  * the last 'operation' wins:
1115  * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1116  * cleared again. All other bits are unmodified.
1117  */
modify_bitmap(const char * str,unsigned long * bitmap,int bits)1118 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1119 {
1120 	unsigned long a, i, z;
1121 	char *np, sign;
1122 
1123 	/* bits needs to be a multiple of 8 */
1124 	if (bits & 0x07)
1125 		return -EINVAL;
1126 
1127 	while (*str) {
1128 		sign = *str++;
1129 		if (sign != '+' && sign != '-')
1130 			return -EINVAL;
1131 		a = z = simple_strtoul(str, &np, 0);
1132 		if (str == np || a >= bits)
1133 			return -EINVAL;
1134 		str = np;
1135 		if (*str == '-') {
1136 			z = simple_strtoul(++str, &np, 0);
1137 			if (str == np || a > z || z >= bits)
1138 				return -EINVAL;
1139 			str = np;
1140 		}
1141 		for (i = a; i <= z; i++)
1142 			if (sign == '+')
1143 				set_bit_inv(i, bitmap);
1144 			else
1145 				clear_bit_inv(i, bitmap);
1146 		while (*str == ',' || *str == '\n')
1147 			str++;
1148 	}
1149 
1150 	return 0;
1151 }
1152 
ap_parse_bitmap_str(const char * str,unsigned long * bitmap,int bits,unsigned long * newmap)1153 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1154 			       unsigned long *newmap)
1155 {
1156 	unsigned long size;
1157 	int rc;
1158 
1159 	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1160 	if (*str == '+' || *str == '-') {
1161 		memcpy(newmap, bitmap, size);
1162 		rc = modify_bitmap(str, newmap, bits);
1163 	} else {
1164 		memset(newmap, 0, size);
1165 		rc = ap_hex2bitmap(str, newmap, bits);
1166 	}
1167 	return rc;
1168 }
1169 
ap_parse_mask_str(const char * str,unsigned long * bitmap,int bits,struct mutex * lock)1170 int ap_parse_mask_str(const char *str,
1171 		      unsigned long *bitmap, int bits,
1172 		      struct mutex *lock)
1173 {
1174 	unsigned long *newmap, size;
1175 	int rc;
1176 
1177 	/* bits needs to be a multiple of 8 */
1178 	if (bits & 0x07)
1179 		return -EINVAL;
1180 
1181 	size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1182 	newmap = kmalloc(size, GFP_KERNEL);
1183 	if (!newmap)
1184 		return -ENOMEM;
1185 	if (mutex_lock_interruptible(lock)) {
1186 		kfree(newmap);
1187 		return -ERESTARTSYS;
1188 	}
1189 	rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1190 	if (rc == 0)
1191 		memcpy(bitmap, newmap, size);
1192 	mutex_unlock(lock);
1193 	kfree(newmap);
1194 	return rc;
1195 }
1196 EXPORT_SYMBOL(ap_parse_mask_str);
1197 
1198 /*
1199  * AP bus attributes.
1200  */
1201 
ap_domain_show(const struct bus_type * bus,char * buf)1202 static ssize_t ap_domain_show(const struct bus_type *bus, char *buf)
1203 {
1204 	return sysfs_emit(buf, "%d\n", ap_domain_index);
1205 }
1206 
ap_domain_store(const struct bus_type * bus,const char * buf,size_t count)1207 static ssize_t ap_domain_store(const struct bus_type *bus,
1208 			       const char *buf, size_t count)
1209 {
1210 	int domain;
1211 
1212 	if (sscanf(buf, "%i\n", &domain) != 1 ||
1213 	    domain < 0 || domain > ap_max_domain_id ||
1214 	    !test_bit_inv(domain, ap_perms.aqm))
1215 		return -EINVAL;
1216 
1217 	spin_lock_bh(&ap_domain_lock);
1218 	ap_domain_index = domain;
1219 	spin_unlock_bh(&ap_domain_lock);
1220 
1221 	AP_DBF_INFO("%s stored new default domain=%d\n",
1222 		    __func__, domain);
1223 
1224 	return count;
1225 }
1226 
1227 static BUS_ATTR_RW(ap_domain);
1228 
ap_control_domain_mask_show(const struct bus_type * bus,char * buf)1229 static ssize_t ap_control_domain_mask_show(const struct bus_type *bus, char *buf)
1230 {
1231 	if (!ap_qci_info->flags)	/* QCI not supported */
1232 		return sysfs_emit(buf, "not supported\n");
1233 
1234 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1235 			  ap_qci_info->adm[0], ap_qci_info->adm[1],
1236 			  ap_qci_info->adm[2], ap_qci_info->adm[3],
1237 			  ap_qci_info->adm[4], ap_qci_info->adm[5],
1238 			  ap_qci_info->adm[6], ap_qci_info->adm[7]);
1239 }
1240 
1241 static BUS_ATTR_RO(ap_control_domain_mask);
1242 
ap_usage_domain_mask_show(const struct bus_type * bus,char * buf)1243 static ssize_t ap_usage_domain_mask_show(const struct bus_type *bus, char *buf)
1244 {
1245 	if (!ap_qci_info->flags)	/* QCI not supported */
1246 		return sysfs_emit(buf, "not supported\n");
1247 
1248 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1249 			  ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1250 			  ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1251 			  ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1252 			  ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1253 }
1254 
1255 static BUS_ATTR_RO(ap_usage_domain_mask);
1256 
ap_adapter_mask_show(const struct bus_type * bus,char * buf)1257 static ssize_t ap_adapter_mask_show(const struct bus_type *bus, char *buf)
1258 {
1259 	if (!ap_qci_info->flags)	/* QCI not supported */
1260 		return sysfs_emit(buf, "not supported\n");
1261 
1262 	return sysfs_emit(buf, "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1263 			  ap_qci_info->apm[0], ap_qci_info->apm[1],
1264 			  ap_qci_info->apm[2], ap_qci_info->apm[3],
1265 			  ap_qci_info->apm[4], ap_qci_info->apm[5],
1266 			  ap_qci_info->apm[6], ap_qci_info->apm[7]);
1267 }
1268 
1269 static BUS_ATTR_RO(ap_adapter_mask);
1270 
ap_interrupts_show(const struct bus_type * bus,char * buf)1271 static ssize_t ap_interrupts_show(const struct bus_type *bus, char *buf)
1272 {
1273 	return sysfs_emit(buf, "%d\n", ap_irq_flag ? 1 : 0);
1274 }
1275 
1276 static BUS_ATTR_RO(ap_interrupts);
1277 
config_time_show(const struct bus_type * bus,char * buf)1278 static ssize_t config_time_show(const struct bus_type *bus, char *buf)
1279 {
1280 	return sysfs_emit(buf, "%d\n", ap_scan_bus_time);
1281 }
1282 
config_time_store(const struct bus_type * bus,const char * buf,size_t count)1283 static ssize_t config_time_store(const struct bus_type *bus,
1284 				 const char *buf, size_t count)
1285 {
1286 	int time;
1287 
1288 	if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1289 		return -EINVAL;
1290 	ap_scan_bus_time = time;
1291 	mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ);
1292 	return count;
1293 }
1294 
1295 static BUS_ATTR_RW(config_time);
1296 
poll_thread_show(const struct bus_type * bus,char * buf)1297 static ssize_t poll_thread_show(const struct bus_type *bus, char *buf)
1298 {
1299 	return sysfs_emit(buf, "%d\n", ap_poll_kthread ? 1 : 0);
1300 }
1301 
poll_thread_store(const struct bus_type * bus,const char * buf,size_t count)1302 static ssize_t poll_thread_store(const struct bus_type *bus,
1303 				 const char *buf, size_t count)
1304 {
1305 	bool value;
1306 	int rc;
1307 
1308 	rc = kstrtobool(buf, &value);
1309 	if (rc)
1310 		return rc;
1311 
1312 	if (value) {
1313 		rc = ap_poll_thread_start();
1314 		if (rc)
1315 			count = rc;
1316 	} else {
1317 		ap_poll_thread_stop();
1318 	}
1319 	return count;
1320 }
1321 
1322 static BUS_ATTR_RW(poll_thread);
1323 
poll_timeout_show(const struct bus_type * bus,char * buf)1324 static ssize_t poll_timeout_show(const struct bus_type *bus, char *buf)
1325 {
1326 	return sysfs_emit(buf, "%lu\n", poll_high_timeout);
1327 }
1328 
poll_timeout_store(const struct bus_type * bus,const char * buf,size_t count)1329 static ssize_t poll_timeout_store(const struct bus_type *bus, const char *buf,
1330 				  size_t count)
1331 {
1332 	unsigned long value;
1333 	ktime_t hr_time;
1334 	int rc;
1335 
1336 	rc = kstrtoul(buf, 0, &value);
1337 	if (rc)
1338 		return rc;
1339 
1340 	/* 120 seconds = maximum poll interval */
1341 	if (value > 120000000000UL)
1342 		return -EINVAL;
1343 	poll_high_timeout = value;
1344 	hr_time = poll_high_timeout;
1345 
1346 	spin_lock_bh(&ap_poll_timer_lock);
1347 	hrtimer_cancel(&ap_poll_timer);
1348 	hrtimer_set_expires(&ap_poll_timer, hr_time);
1349 	hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1350 	spin_unlock_bh(&ap_poll_timer_lock);
1351 
1352 	return count;
1353 }
1354 
1355 static BUS_ATTR_RW(poll_timeout);
1356 
ap_max_domain_id_show(const struct bus_type * bus,char * buf)1357 static ssize_t ap_max_domain_id_show(const struct bus_type *bus, char *buf)
1358 {
1359 	return sysfs_emit(buf, "%d\n", ap_max_domain_id);
1360 }
1361 
1362 static BUS_ATTR_RO(ap_max_domain_id);
1363 
ap_max_adapter_id_show(const struct bus_type * bus,char * buf)1364 static ssize_t ap_max_adapter_id_show(const struct bus_type *bus, char *buf)
1365 {
1366 	return sysfs_emit(buf, "%d\n", ap_max_adapter_id);
1367 }
1368 
1369 static BUS_ATTR_RO(ap_max_adapter_id);
1370 
apmask_show(const struct bus_type * bus,char * buf)1371 static ssize_t apmask_show(const struct bus_type *bus, char *buf)
1372 {
1373 	int rc;
1374 
1375 	if (mutex_lock_interruptible(&ap_perms_mutex))
1376 		return -ERESTARTSYS;
1377 	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1378 			ap_perms.apm[0], ap_perms.apm[1],
1379 			ap_perms.apm[2], ap_perms.apm[3]);
1380 	mutex_unlock(&ap_perms_mutex);
1381 
1382 	return rc;
1383 }
1384 
__verify_card_reservations(struct device_driver * drv,void * data)1385 static int __verify_card_reservations(struct device_driver *drv, void *data)
1386 {
1387 	int rc = 0;
1388 	struct ap_driver *ap_drv = to_ap_drv(drv);
1389 	unsigned long *newapm = (unsigned long *)data;
1390 
1391 	/*
1392 	 * increase the driver's module refcounter to be sure it is not
1393 	 * going away when we invoke the callback function.
1394 	 */
1395 	if (!try_module_get(drv->owner))
1396 		return 0;
1397 
1398 	if (ap_drv->in_use) {
1399 		rc = ap_drv->in_use(newapm, ap_perms.aqm);
1400 		if (rc)
1401 			rc = -EBUSY;
1402 	}
1403 
1404 	/* release the driver's module */
1405 	module_put(drv->owner);
1406 
1407 	return rc;
1408 }
1409 
apmask_commit(unsigned long * newapm)1410 static int apmask_commit(unsigned long *newapm)
1411 {
1412 	int rc;
1413 	unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1414 
1415 	/*
1416 	 * Check if any bits in the apmask have been set which will
1417 	 * result in queues being removed from non-default drivers
1418 	 */
1419 	if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1420 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1421 				      __verify_card_reservations);
1422 		if (rc)
1423 			return rc;
1424 	}
1425 
1426 	memcpy(ap_perms.apm, newapm, APMASKSIZE);
1427 
1428 	return 0;
1429 }
1430 
apmask_store(const struct bus_type * bus,const char * buf,size_t count)1431 static ssize_t apmask_store(const struct bus_type *bus, const char *buf,
1432 			    size_t count)
1433 {
1434 	int rc, changes = 0;
1435 	DECLARE_BITMAP(newapm, AP_DEVICES);
1436 
1437 	if (mutex_lock_interruptible(&ap_perms_mutex))
1438 		return -ERESTARTSYS;
1439 
1440 	rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1441 	if (rc)
1442 		goto done;
1443 
1444 	changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1445 	if (changes)
1446 		rc = apmask_commit(newapm);
1447 
1448 done:
1449 	mutex_unlock(&ap_perms_mutex);
1450 	if (rc)
1451 		return rc;
1452 
1453 	if (changes) {
1454 		ap_bus_revise_bindings();
1455 		ap_send_mask_changed_uevent(newapm, NULL);
1456 	}
1457 
1458 	return count;
1459 }
1460 
1461 static BUS_ATTR_RW(apmask);
1462 
aqmask_show(const struct bus_type * bus,char * buf)1463 static ssize_t aqmask_show(const struct bus_type *bus, char *buf)
1464 {
1465 	int rc;
1466 
1467 	if (mutex_lock_interruptible(&ap_perms_mutex))
1468 		return -ERESTARTSYS;
1469 	rc = sysfs_emit(buf, "0x%016lx%016lx%016lx%016lx\n",
1470 			ap_perms.aqm[0], ap_perms.aqm[1],
1471 			ap_perms.aqm[2], ap_perms.aqm[3]);
1472 	mutex_unlock(&ap_perms_mutex);
1473 
1474 	return rc;
1475 }
1476 
__verify_queue_reservations(struct device_driver * drv,void * data)1477 static int __verify_queue_reservations(struct device_driver *drv, void *data)
1478 {
1479 	int rc = 0;
1480 	struct ap_driver *ap_drv = to_ap_drv(drv);
1481 	unsigned long *newaqm = (unsigned long *)data;
1482 
1483 	/*
1484 	 * increase the driver's module refcounter to be sure it is not
1485 	 * going away when we invoke the callback function.
1486 	 */
1487 	if (!try_module_get(drv->owner))
1488 		return 0;
1489 
1490 	if (ap_drv->in_use) {
1491 		rc = ap_drv->in_use(ap_perms.apm, newaqm);
1492 		if (rc)
1493 			rc = -EBUSY;
1494 	}
1495 
1496 	/* release the driver's module */
1497 	module_put(drv->owner);
1498 
1499 	return rc;
1500 }
1501 
aqmask_commit(unsigned long * newaqm)1502 static int aqmask_commit(unsigned long *newaqm)
1503 {
1504 	int rc;
1505 	unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1506 
1507 	/*
1508 	 * Check if any bits in the aqmask have been set which will
1509 	 * result in queues being removed from non-default drivers
1510 	 */
1511 	if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1512 		rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1513 				      __verify_queue_reservations);
1514 		if (rc)
1515 			return rc;
1516 	}
1517 
1518 	memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1519 
1520 	return 0;
1521 }
1522 
aqmask_store(const struct bus_type * bus,const char * buf,size_t count)1523 static ssize_t aqmask_store(const struct bus_type *bus, const char *buf,
1524 			    size_t count)
1525 {
1526 	int rc, changes = 0;
1527 	DECLARE_BITMAP(newaqm, AP_DOMAINS);
1528 
1529 	if (mutex_lock_interruptible(&ap_perms_mutex))
1530 		return -ERESTARTSYS;
1531 
1532 	rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1533 	if (rc)
1534 		goto done;
1535 
1536 	changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1537 	if (changes)
1538 		rc = aqmask_commit(newaqm);
1539 
1540 done:
1541 	mutex_unlock(&ap_perms_mutex);
1542 	if (rc)
1543 		return rc;
1544 
1545 	if (changes) {
1546 		ap_bus_revise_bindings();
1547 		ap_send_mask_changed_uevent(NULL, newaqm);
1548 	}
1549 
1550 	return count;
1551 }
1552 
1553 static BUS_ATTR_RW(aqmask);
1554 
scans_show(const struct bus_type * bus,char * buf)1555 static ssize_t scans_show(const struct bus_type *bus, char *buf)
1556 {
1557 	return sysfs_emit(buf, "%llu\n", atomic64_read(&ap_scan_bus_count));
1558 }
1559 
scans_store(const struct bus_type * bus,const char * buf,size_t count)1560 static ssize_t scans_store(const struct bus_type *bus, const char *buf,
1561 			   size_t count)
1562 {
1563 	AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1564 
1565 	ap_bus_force_rescan();
1566 
1567 	return count;
1568 }
1569 
1570 static BUS_ATTR_RW(scans);
1571 
bindings_show(const struct bus_type * bus,char * buf)1572 static ssize_t bindings_show(const struct bus_type *bus, char *buf)
1573 {
1574 	int rc;
1575 	unsigned int apqns, n;
1576 
1577 	ap_calc_bound_apqns(&apqns, &n);
1578 	if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1579 		rc = sysfs_emit(buf, "%u/%u (complete)\n", n, apqns);
1580 	else
1581 		rc = sysfs_emit(buf, "%u/%u\n", n, apqns);
1582 
1583 	return rc;
1584 }
1585 
1586 static BUS_ATTR_RO(bindings);
1587 
features_show(const struct bus_type * bus,char * buf)1588 static ssize_t features_show(const struct bus_type *bus, char *buf)
1589 {
1590 	int n = 0;
1591 
1592 	if (!ap_qci_info->flags)	/* QCI not supported */
1593 		return sysfs_emit(buf, "-\n");
1594 
1595 	if (ap_qci_info->apsc)
1596 		n += sysfs_emit_at(buf, n, "APSC ");
1597 	if (ap_qci_info->apxa)
1598 		n += sysfs_emit_at(buf, n, "APXA ");
1599 	if (ap_qci_info->qact)
1600 		n += sysfs_emit_at(buf, n, "QACT ");
1601 	if (ap_qci_info->rc8a)
1602 		n += sysfs_emit_at(buf, n, "RC8A ");
1603 	if (ap_qci_info->apsb)
1604 		n += sysfs_emit_at(buf, n, "APSB ");
1605 
1606 	sysfs_emit_at(buf, n == 0 ? 0 : n - 1, "\n");
1607 
1608 	return n;
1609 }
1610 
1611 static BUS_ATTR_RO(features);
1612 
1613 static struct attribute *ap_bus_attrs[] = {
1614 	&bus_attr_ap_domain.attr,
1615 	&bus_attr_ap_control_domain_mask.attr,
1616 	&bus_attr_ap_usage_domain_mask.attr,
1617 	&bus_attr_ap_adapter_mask.attr,
1618 	&bus_attr_config_time.attr,
1619 	&bus_attr_poll_thread.attr,
1620 	&bus_attr_ap_interrupts.attr,
1621 	&bus_attr_poll_timeout.attr,
1622 	&bus_attr_ap_max_domain_id.attr,
1623 	&bus_attr_ap_max_adapter_id.attr,
1624 	&bus_attr_apmask.attr,
1625 	&bus_attr_aqmask.attr,
1626 	&bus_attr_scans.attr,
1627 	&bus_attr_bindings.attr,
1628 	&bus_attr_features.attr,
1629 	NULL,
1630 };
1631 ATTRIBUTE_GROUPS(ap_bus);
1632 
1633 static const struct bus_type ap_bus_type = {
1634 	.name = "ap",
1635 	.bus_groups = ap_bus_groups,
1636 	.match = &ap_bus_match,
1637 	.uevent = &ap_uevent,
1638 	.probe = ap_device_probe,
1639 	.remove = ap_device_remove,
1640 };
1641 
1642 /**
1643  * ap_select_domain(): Select an AP domain if possible and we haven't
1644  * already done so before.
1645  */
ap_select_domain(void)1646 static void ap_select_domain(void)
1647 {
1648 	struct ap_queue_status status;
1649 	int card, dom;
1650 
1651 	/*
1652 	 * Choose the default domain. Either the one specified with
1653 	 * the "domain=" parameter or the first domain with at least
1654 	 * one valid APQN.
1655 	 */
1656 	spin_lock_bh(&ap_domain_lock);
1657 	if (ap_domain_index >= 0) {
1658 		/* Domain has already been selected. */
1659 		goto out;
1660 	}
1661 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1662 		if (!ap_test_config_usage_domain(dom) ||
1663 		    !test_bit_inv(dom, ap_perms.aqm))
1664 			continue;
1665 		for (card = 0; card <= ap_max_adapter_id; card++) {
1666 			if (!ap_test_config_card_id(card) ||
1667 			    !test_bit_inv(card, ap_perms.apm))
1668 				continue;
1669 			status = ap_test_queue(AP_MKQID(card, dom),
1670 					       ap_apft_available(),
1671 					       NULL);
1672 			if (status.response_code == AP_RESPONSE_NORMAL)
1673 				break;
1674 		}
1675 		if (card <= ap_max_adapter_id)
1676 			break;
1677 	}
1678 	if (dom <= ap_max_domain_id) {
1679 		ap_domain_index = dom;
1680 		AP_DBF_INFO("%s new default domain is %d\n",
1681 			    __func__, ap_domain_index);
1682 	}
1683 out:
1684 	spin_unlock_bh(&ap_domain_lock);
1685 }
1686 
1687 /*
1688  * This function checks the type and returns either 0 for not
1689  * supported or the highest compatible type value (which may
1690  * include the input type value).
1691  */
ap_get_compatible_type(ap_qid_t qid,int rawtype,unsigned int func)1692 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1693 {
1694 	int comp_type = 0;
1695 
1696 	/* < CEX4 is not supported */
1697 	if (rawtype < AP_DEVICE_TYPE_CEX4) {
1698 		AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1699 			    __func__, AP_QID_CARD(qid),
1700 			    AP_QID_QUEUE(qid), rawtype);
1701 		return 0;
1702 	}
1703 	/* up to CEX8 known and fully supported */
1704 	if (rawtype <= AP_DEVICE_TYPE_CEX8)
1705 		return rawtype;
1706 	/*
1707 	 * unknown new type > CEX8, check for compatibility
1708 	 * to the highest known and supported type which is
1709 	 * currently CEX8 with the help of the QACT function.
1710 	 */
1711 	if (ap_qact_available()) {
1712 		struct ap_queue_status status;
1713 		union ap_qact_ap_info apinfo = {0};
1714 
1715 		apinfo.mode = (func >> 26) & 0x07;
1716 		apinfo.cat = AP_DEVICE_TYPE_CEX8;
1717 		status = ap_qact(qid, 0, &apinfo);
1718 		if (status.response_code == AP_RESPONSE_NORMAL &&
1719 		    apinfo.cat >= AP_DEVICE_TYPE_CEX4 &&
1720 		    apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1721 			comp_type = apinfo.cat;
1722 	}
1723 	if (!comp_type)
1724 		AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1725 			    __func__, AP_QID_CARD(qid),
1726 			    AP_QID_QUEUE(qid), rawtype);
1727 	else if (comp_type != rawtype)
1728 		AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1729 			    __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1730 			    rawtype, comp_type);
1731 	return comp_type;
1732 }
1733 
1734 /*
1735  * Helper function to be used with bus_find_dev
1736  * matches for the card device with the given id
1737  */
__match_card_device_with_id(struct device * dev,const void * data)1738 static int __match_card_device_with_id(struct device *dev, const void *data)
1739 {
1740 	return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1741 }
1742 
1743 /*
1744  * Helper function to be used with bus_find_dev
1745  * matches for the queue device with a given qid
1746  */
__match_queue_device_with_qid(struct device * dev,const void * data)1747 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1748 {
1749 	return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1750 }
1751 
1752 /*
1753  * Helper function to be used with bus_find_dev
1754  * matches any queue device with given queue id
1755  */
__match_queue_device_with_queue_id(struct device * dev,const void * data)1756 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1757 {
1758 	return is_queue_dev(dev) &&
1759 		AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1760 }
1761 
1762 /* Helper function for notify_config_changed */
__drv_notify_config_changed(struct device_driver * drv,void * data)1763 static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1764 {
1765 	struct ap_driver *ap_drv = to_ap_drv(drv);
1766 
1767 	if (try_module_get(drv->owner)) {
1768 		if (ap_drv->on_config_changed)
1769 			ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1770 		module_put(drv->owner);
1771 	}
1772 
1773 	return 0;
1774 }
1775 
1776 /* Notify all drivers about an qci config change */
notify_config_changed(void)1777 static inline void notify_config_changed(void)
1778 {
1779 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1780 			 __drv_notify_config_changed);
1781 }
1782 
1783 /* Helper function for notify_scan_complete */
__drv_notify_scan_complete(struct device_driver * drv,void * data)1784 static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1785 {
1786 	struct ap_driver *ap_drv = to_ap_drv(drv);
1787 
1788 	if (try_module_get(drv->owner)) {
1789 		if (ap_drv->on_scan_complete)
1790 			ap_drv->on_scan_complete(ap_qci_info,
1791 						 ap_qci_info_old);
1792 		module_put(drv->owner);
1793 	}
1794 
1795 	return 0;
1796 }
1797 
1798 /* Notify all drivers about bus scan complete */
notify_scan_complete(void)1799 static inline void notify_scan_complete(void)
1800 {
1801 	bus_for_each_drv(&ap_bus_type, NULL, NULL,
1802 			 __drv_notify_scan_complete);
1803 }
1804 
1805 /*
1806  * Helper function for ap_scan_bus().
1807  * Remove card device and associated queue devices.
1808  */
ap_scan_rm_card_dev_and_queue_devs(struct ap_card * ac)1809 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1810 {
1811 	bus_for_each_dev(&ap_bus_type, NULL,
1812 			 (void *)(long)ac->id,
1813 			 __ap_queue_devices_with_id_unregister);
1814 	device_unregister(&ac->ap_dev.device);
1815 }
1816 
1817 /*
1818  * Helper function for ap_scan_bus().
1819  * Does the scan bus job for all the domains within
1820  * a valid adapter given by an ap_card ptr.
1821  */
ap_scan_domains(struct ap_card * ac)1822 static inline void ap_scan_domains(struct ap_card *ac)
1823 {
1824 	struct ap_tapq_hwinfo hwinfo;
1825 	bool decfg, chkstop;
1826 	struct ap_queue *aq;
1827 	struct device *dev;
1828 	ap_qid_t qid;
1829 	int rc, dom;
1830 
1831 	/*
1832 	 * Go through the configuration for the domains and compare them
1833 	 * to the existing queue devices. Also take care of the config
1834 	 * and error state for the queue devices.
1835 	 */
1836 
1837 	for (dom = 0; dom <= ap_max_domain_id; dom++) {
1838 		qid = AP_MKQID(ac->id, dom);
1839 		dev = bus_find_device(&ap_bus_type, NULL,
1840 				      (void *)(long)qid,
1841 				      __match_queue_device_with_qid);
1842 		aq = dev ? to_ap_queue(dev) : NULL;
1843 		if (!ap_test_config_usage_domain(dom)) {
1844 			if (dev) {
1845 				AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1846 					    __func__, ac->id, dom);
1847 				device_unregister(dev);
1848 			}
1849 			goto put_dev_and_continue;
1850 		}
1851 		/* domain is valid, get info from this APQN */
1852 		rc = ap_queue_info(qid, &hwinfo, &decfg, &chkstop);
1853 		switch (rc) {
1854 		case -1:
1855 			if (dev) {
1856 				AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1857 					    __func__, ac->id, dom);
1858 				device_unregister(dev);
1859 			}
1860 			fallthrough;
1861 		case 0:
1862 			goto put_dev_and_continue;
1863 		default:
1864 			break;
1865 		}
1866 		/* if no queue device exists, create a new one */
1867 		if (!aq) {
1868 			aq = ap_queue_create(qid, ac);
1869 			if (!aq) {
1870 				AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1871 					    __func__, ac->id, dom);
1872 				continue;
1873 			}
1874 			aq->config = !decfg;
1875 			aq->chkstop = chkstop;
1876 			aq->se_bstate = hwinfo.bs;
1877 			dev = &aq->ap_dev.device;
1878 			dev->bus = &ap_bus_type;
1879 			dev->parent = &ac->ap_dev.device;
1880 			dev_set_name(dev, "%02x.%04x", ac->id, dom);
1881 			/* register queue device */
1882 			rc = device_register(dev);
1883 			if (rc) {
1884 				AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1885 					    __func__, ac->id, dom);
1886 				goto put_dev_and_continue;
1887 			}
1888 			/* get it and thus adjust reference counter */
1889 			get_device(dev);
1890 			if (decfg) {
1891 				AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1892 					    __func__, ac->id, dom);
1893 			} else if (chkstop) {
1894 				AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1895 					    __func__, ac->id, dom);
1896 			} else {
1897 				/* nudge the queue's state machine */
1898 				ap_queue_init_state(aq);
1899 				AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1900 					    __func__, ac->id, dom);
1901 			}
1902 			goto put_dev_and_continue;
1903 		}
1904 		/* handle state changes on already existing queue device */
1905 		spin_lock_bh(&aq->lock);
1906 		/* SE bind state */
1907 		aq->se_bstate = hwinfo.bs;
1908 		/* checkstop state */
1909 		if (chkstop && !aq->chkstop) {
1910 			/* checkstop on */
1911 			aq->chkstop = true;
1912 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1913 				aq->dev_state = AP_DEV_STATE_ERROR;
1914 				aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1915 			}
1916 			spin_unlock_bh(&aq->lock);
1917 			pr_debug("(%d,%d) queue dev checkstop on\n",
1918 				 ac->id, dom);
1919 			/* 'receive' pending messages with -EAGAIN */
1920 			ap_flush_queue(aq);
1921 			goto put_dev_and_continue;
1922 		} else if (!chkstop && aq->chkstop) {
1923 			/* checkstop off */
1924 			aq->chkstop = false;
1925 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1926 				_ap_queue_init_state(aq);
1927 			spin_unlock_bh(&aq->lock);
1928 			pr_debug("(%d,%d) queue dev checkstop off\n",
1929 				 ac->id, dom);
1930 			goto put_dev_and_continue;
1931 		}
1932 		/* config state change */
1933 		if (decfg && aq->config) {
1934 			/* config off this queue device */
1935 			aq->config = false;
1936 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1937 				aq->dev_state = AP_DEV_STATE_ERROR;
1938 				aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1939 			}
1940 			spin_unlock_bh(&aq->lock);
1941 			pr_debug("(%d,%d) queue dev config off\n",
1942 				 ac->id, dom);
1943 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1944 			/* 'receive' pending messages with -EAGAIN */
1945 			ap_flush_queue(aq);
1946 			goto put_dev_and_continue;
1947 		} else if (!decfg && !aq->config) {
1948 			/* config on this queue device */
1949 			aq->config = true;
1950 			if (aq->dev_state > AP_DEV_STATE_UNINITIATED)
1951 				_ap_queue_init_state(aq);
1952 			spin_unlock_bh(&aq->lock);
1953 			pr_debug("(%d,%d) queue dev config on\n",
1954 				 ac->id, dom);
1955 			ap_send_config_uevent(&aq->ap_dev, aq->config);
1956 			goto put_dev_and_continue;
1957 		}
1958 		/* handle other error states */
1959 		if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1960 			spin_unlock_bh(&aq->lock);
1961 			/* 'receive' pending messages with -EAGAIN */
1962 			ap_flush_queue(aq);
1963 			/* re-init (with reset) the queue device */
1964 			ap_queue_init_state(aq);
1965 			AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1966 				    __func__, ac->id, dom);
1967 			goto put_dev_and_continue;
1968 		}
1969 		spin_unlock_bh(&aq->lock);
1970 put_dev_and_continue:
1971 		put_device(dev);
1972 	}
1973 }
1974 
1975 /*
1976  * Helper function for ap_scan_bus().
1977  * Does the scan bus job for the given adapter id.
1978  */
ap_scan_adapter(int ap)1979 static inline void ap_scan_adapter(int ap)
1980 {
1981 	struct ap_tapq_hwinfo hwinfo;
1982 	int rc, dom, comp_type;
1983 	bool decfg, chkstop;
1984 	struct ap_card *ac;
1985 	struct device *dev;
1986 	ap_qid_t qid;
1987 
1988 	/* Is there currently a card device for this adapter ? */
1989 	dev = bus_find_device(&ap_bus_type, NULL,
1990 			      (void *)(long)ap,
1991 			      __match_card_device_with_id);
1992 	ac = dev ? to_ap_card(dev) : NULL;
1993 
1994 	/* Adapter not in configuration ? */
1995 	if (!ap_test_config_card_id(ap)) {
1996 		if (ac) {
1997 			AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
1998 				    __func__, ap);
1999 			ap_scan_rm_card_dev_and_queue_devs(ac);
2000 			put_device(dev);
2001 		}
2002 		return;
2003 	}
2004 
2005 	/*
2006 	 * Adapter ap is valid in the current configuration. So do some checks:
2007 	 * If no card device exists, build one. If a card device exists, check
2008 	 * for type and functions changed. For all this we need to find a valid
2009 	 * APQN first.
2010 	 */
2011 
2012 	for (dom = 0; dom <= ap_max_domain_id; dom++)
2013 		if (ap_test_config_usage_domain(dom)) {
2014 			qid = AP_MKQID(ap, dom);
2015 			if (ap_queue_info(qid, &hwinfo, &decfg, &chkstop) > 0)
2016 				break;
2017 		}
2018 	if (dom > ap_max_domain_id) {
2019 		/* Could not find one valid APQN for this adapter */
2020 		if (ac) {
2021 			AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
2022 				    __func__, ap);
2023 			ap_scan_rm_card_dev_and_queue_devs(ac);
2024 			put_device(dev);
2025 		} else {
2026 			pr_debug("(%d) no type info (no APQN found), ignored\n",
2027 				 ap);
2028 		}
2029 		return;
2030 	}
2031 	if (!hwinfo.at) {
2032 		/* No apdater type info available, an unusable adapter */
2033 		if (ac) {
2034 			AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
2035 				    __func__, ap);
2036 			ap_scan_rm_card_dev_and_queue_devs(ac);
2037 			put_device(dev);
2038 		} else {
2039 			pr_debug("(%d) no valid type (0) info, ignored\n", ap);
2040 		}
2041 		return;
2042 	}
2043 	hwinfo.value &= TAPQ_CARD_HWINFO_MASK; /* filter card specific hwinfo */
2044 	if (ac) {
2045 		/* Check APQN against existing card device for changes */
2046 		if (ac->hwinfo.at != hwinfo.at) {
2047 			AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
2048 				    __func__, ap, hwinfo.at);
2049 			ap_scan_rm_card_dev_and_queue_devs(ac);
2050 			put_device(dev);
2051 			ac = NULL;
2052 		} else if (ac->hwinfo.fac != hwinfo.fac) {
2053 			AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
2054 				    __func__, ap, hwinfo.fac);
2055 			ap_scan_rm_card_dev_and_queue_devs(ac);
2056 			put_device(dev);
2057 			ac = NULL;
2058 		} else {
2059 			/* handle checkstop state change */
2060 			if (chkstop && !ac->chkstop) {
2061 				/* checkstop on */
2062 				ac->chkstop = true;
2063 				AP_DBF_INFO("%s(%d) card dev checkstop on\n",
2064 					    __func__, ap);
2065 			} else if (!chkstop && ac->chkstop) {
2066 				/* checkstop off */
2067 				ac->chkstop = false;
2068 				AP_DBF_INFO("%s(%d) card dev checkstop off\n",
2069 					    __func__, ap);
2070 			}
2071 			/* handle config state change */
2072 			if (decfg && ac->config) {
2073 				ac->config = false;
2074 				AP_DBF_INFO("%s(%d) card dev config off\n",
2075 					    __func__, ap);
2076 				ap_send_config_uevent(&ac->ap_dev, ac->config);
2077 			} else if (!decfg && !ac->config) {
2078 				ac->config = true;
2079 				AP_DBF_INFO("%s(%d) card dev config on\n",
2080 					    __func__, ap);
2081 				ap_send_config_uevent(&ac->ap_dev, ac->config);
2082 			}
2083 		}
2084 	}
2085 
2086 	if (!ac) {
2087 		/* Build a new card device */
2088 		comp_type = ap_get_compatible_type(qid, hwinfo.at, hwinfo.fac);
2089 		if (!comp_type) {
2090 			AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2091 				    __func__, ap, hwinfo.at);
2092 			return;
2093 		}
2094 		ac = ap_card_create(ap, hwinfo, comp_type);
2095 		if (!ac) {
2096 			AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2097 				    __func__, ap);
2098 			return;
2099 		}
2100 		ac->config = !decfg;
2101 		ac->chkstop = chkstop;
2102 		dev = &ac->ap_dev.device;
2103 		dev->bus = &ap_bus_type;
2104 		dev->parent = ap_root_device;
2105 		dev_set_name(dev, "card%02x", ap);
2106 		/* maybe enlarge ap_max_msg_size to support this card */
2107 		if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2108 			atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2109 			AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2110 				    __func__, ap,
2111 				    atomic_read(&ap_max_msg_size));
2112 		}
2113 		/* Register the new card device with AP bus */
2114 		rc = device_register(dev);
2115 		if (rc) {
2116 			AP_DBF_WARN("%s(%d) device_register() failed\n",
2117 				    __func__, ap);
2118 			put_device(dev);
2119 			return;
2120 		}
2121 		/* get it and thus adjust reference counter */
2122 		get_device(dev);
2123 		if (decfg)
2124 			AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2125 				    __func__, ap, hwinfo.at, hwinfo.fac);
2126 		else if (chkstop)
2127 			AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2128 				    __func__, ap, hwinfo.at, hwinfo.fac);
2129 		else
2130 			AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2131 				    __func__, ap, hwinfo.at, hwinfo.fac);
2132 	}
2133 
2134 	/* Verify the domains and the queue devices for this card */
2135 	ap_scan_domains(ac);
2136 
2137 	/* release the card device */
2138 	put_device(&ac->ap_dev.device);
2139 }
2140 
2141 /**
2142  * ap_get_configuration - get the host AP configuration
2143  *
2144  * Stores the host AP configuration information returned from the previous call
2145  * to Query Configuration Information (QCI), then retrieves and stores the
2146  * current AP configuration returned from QCI.
2147  *
2148  * Return: true if the host AP configuration changed between calls to QCI;
2149  * otherwise, return false.
2150  */
ap_get_configuration(void)2151 static bool ap_get_configuration(void)
2152 {
2153 	if (!ap_qci_info->flags)	/* QCI not supported */
2154 		return false;
2155 
2156 	memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2157 	ap_qci(ap_qci_info);
2158 
2159 	return memcmp(ap_qci_info, ap_qci_info_old,
2160 		      sizeof(struct ap_config_info)) != 0;
2161 }
2162 
2163 /*
2164  * ap_config_has_new_aps - Check current against old qci info if
2165  * new adapters have appeared. Returns true if at least one new
2166  * adapter in the apm mask is showing up. Existing adapters or
2167  * receding adapters are not counted.
2168  */
ap_config_has_new_aps(void)2169 static bool ap_config_has_new_aps(void)
2170 {
2171 
2172 	unsigned long m[BITS_TO_LONGS(AP_DEVICES)];
2173 
2174 	if (!ap_qci_info->flags)
2175 		return false;
2176 
2177 	bitmap_andnot(m, (unsigned long *)ap_qci_info->apm,
2178 		      (unsigned long *)ap_qci_info_old->apm, AP_DEVICES);
2179 	if (!bitmap_empty(m, AP_DEVICES))
2180 		return true;
2181 
2182 	return false;
2183 }
2184 
2185 /*
2186  * ap_config_has_new_doms - Check current against old qci info if
2187  * new (usage) domains have appeared. Returns true if at least one
2188  * new domain in the aqm mask is showing up. Existing domains or
2189  * receding domains are not counted.
2190  */
ap_config_has_new_doms(void)2191 static bool ap_config_has_new_doms(void)
2192 {
2193 	unsigned long m[BITS_TO_LONGS(AP_DOMAINS)];
2194 
2195 	if (!ap_qci_info->flags)
2196 		return false;
2197 
2198 	bitmap_andnot(m, (unsigned long *)ap_qci_info->aqm,
2199 		      (unsigned long *)ap_qci_info_old->aqm, AP_DOMAINS);
2200 	if (!bitmap_empty(m, AP_DOMAINS))
2201 		return true;
2202 
2203 	return false;
2204 }
2205 
2206 /**
2207  * ap_scan_bus(): Scan the AP bus for new devices
2208  * Always run under mutex ap_scan_bus_mutex protection
2209  * which needs to get locked/unlocked by the caller!
2210  * Returns true if any config change has been detected
2211  * during the scan, otherwise false.
2212  */
ap_scan_bus(void)2213 static bool ap_scan_bus(void)
2214 {
2215 	bool config_changed;
2216 	int ap;
2217 
2218 	pr_debug(">\n");
2219 
2220 	/* (re-)fetch configuration via QCI */
2221 	config_changed = ap_get_configuration();
2222 	if (config_changed) {
2223 		if (ap_config_has_new_aps() || ap_config_has_new_doms()) {
2224 			/*
2225 			 * Appearance of new adapters and/or domains need to
2226 			 * build new ap devices which need to get bound to an
2227 			 * device driver. Thus reset the APQN bindings complete
2228 			 * completion.
2229 			 */
2230 			reinit_completion(&ap_apqn_bindings_complete);
2231 		}
2232 		/* post a config change notify */
2233 		notify_config_changed();
2234 	}
2235 	ap_select_domain();
2236 
2237 	/* loop over all possible adapters */
2238 	for (ap = 0; ap <= ap_max_adapter_id; ap++)
2239 		ap_scan_adapter(ap);
2240 
2241 	/* scan complete notify */
2242 	if (config_changed)
2243 		notify_scan_complete();
2244 
2245 	/* check if there is at least one queue available with default domain */
2246 	if (ap_domain_index >= 0) {
2247 		struct device *dev =
2248 			bus_find_device(&ap_bus_type, NULL,
2249 					(void *)(long)ap_domain_index,
2250 					__match_queue_device_with_queue_id);
2251 		if (dev)
2252 			put_device(dev);
2253 		else
2254 			AP_DBF_INFO("%s no queue device with default domain %d available\n",
2255 				    __func__, ap_domain_index);
2256 	}
2257 
2258 	if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2259 		pr_debug("init scan complete\n");
2260 		ap_send_init_scan_done_uevent();
2261 	}
2262 
2263 	ap_check_bindings_complete();
2264 
2265 	mod_timer(&ap_scan_bus_timer, jiffies + ap_scan_bus_time * HZ);
2266 
2267 	pr_debug("< config_changed=%d\n", config_changed);
2268 
2269 	return config_changed;
2270 }
2271 
2272 /*
2273  * Callback for the ap_scan_bus_timer
2274  * Runs periodically, workqueue timer (ap_scan_bus_time)
2275  */
ap_scan_bus_timer_callback(struct timer_list * unused)2276 static void ap_scan_bus_timer_callback(struct timer_list *unused)
2277 {
2278 	/*
2279 	 * schedule work into the system long wq which when
2280 	 * the work is finally executed, calls the AP bus scan.
2281 	 */
2282 	queue_work(system_long_wq, &ap_scan_bus_work);
2283 }
2284 
2285 /*
2286  * Callback for the ap_scan_bus_work
2287  */
ap_scan_bus_wq_callback(struct work_struct * unused)2288 static void ap_scan_bus_wq_callback(struct work_struct *unused)
2289 {
2290 	/*
2291 	 * Try to invoke an ap_scan_bus(). If the mutex acquisition
2292 	 * fails there is currently another task already running the
2293 	 * AP scan bus and there is no need to wait and re-trigger the
2294 	 * scan again. Please note at the end of the scan bus function
2295 	 * the AP scan bus timer is re-armed which triggers then the
2296 	 * ap_scan_bus_timer_callback which enqueues a work into the
2297 	 * system_long_wq which invokes this function here again.
2298 	 */
2299 	if (mutex_trylock(&ap_scan_bus_mutex)) {
2300 		ap_scan_bus_task = current;
2301 		ap_scan_bus_result = ap_scan_bus();
2302 		ap_scan_bus_task = NULL;
2303 		mutex_unlock(&ap_scan_bus_mutex);
2304 	}
2305 }
2306 
ap_async_exit(void)2307 static inline void __exit ap_async_exit(void)
2308 {
2309 	if (ap_thread_flag)
2310 		ap_poll_thread_stop();
2311 	chsc_notifier_unregister(&ap_bus_nb);
2312 	cancel_work(&ap_scan_bus_work);
2313 	hrtimer_cancel(&ap_poll_timer);
2314 	timer_delete(&ap_scan_bus_timer);
2315 }
2316 
ap_async_init(void)2317 static inline int __init ap_async_init(void)
2318 {
2319 	int rc;
2320 
2321 	/* Setup the AP bus rescan timer. */
2322 	timer_setup(&ap_scan_bus_timer, ap_scan_bus_timer_callback, 0);
2323 
2324 	/*
2325 	 * Setup the high resolution poll timer.
2326 	 * If we are running under z/VM adjust polling to z/VM polling rate.
2327 	 */
2328 	if (machine_is_vm())
2329 		poll_high_timeout = 1500000;
2330 	hrtimer_setup(&ap_poll_timer, ap_poll_timeout, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2331 
2332 	queue_work(system_long_wq, &ap_scan_bus_work);
2333 
2334 	rc = chsc_notifier_register(&ap_bus_nb);
2335 	if (rc)
2336 		goto out;
2337 
2338 	/* Start the low priority AP bus poll thread. */
2339 	if (!ap_thread_flag)
2340 		return 0;
2341 
2342 	rc = ap_poll_thread_start();
2343 	if (rc)
2344 		goto out_notifier;
2345 
2346 	return 0;
2347 
2348 out_notifier:
2349 	chsc_notifier_unregister(&ap_bus_nb);
2350 out:
2351 	cancel_work(&ap_scan_bus_work);
2352 	hrtimer_cancel(&ap_poll_timer);
2353 	timer_delete(&ap_scan_bus_timer);
2354 	return rc;
2355 }
2356 
ap_irq_exit(void)2357 static inline void ap_irq_exit(void)
2358 {
2359 	if (ap_irq_flag)
2360 		unregister_adapter_interrupt(&ap_airq);
2361 }
2362 
ap_irq_init(void)2363 static inline int __init ap_irq_init(void)
2364 {
2365 	int rc;
2366 
2367 	if (!ap_interrupts_available() || !ap_useirq)
2368 		return 0;
2369 
2370 	rc = register_adapter_interrupt(&ap_airq);
2371 	ap_irq_flag = (rc == 0);
2372 
2373 	return rc;
2374 }
2375 
ap_debug_exit(void)2376 static inline void ap_debug_exit(void)
2377 {
2378 	debug_unregister(ap_dbf_info);
2379 }
2380 
ap_debug_init(void)2381 static inline int __init ap_debug_init(void)
2382 {
2383 	ap_dbf_info = debug_register("ap", 2, 1,
2384 				     AP_DBF_MAX_SPRINTF_ARGS * sizeof(long));
2385 	debug_register_view(ap_dbf_info, &debug_sprintf_view);
2386 	debug_set_level(ap_dbf_info, DBF_ERR);
2387 
2388 	return 0;
2389 }
2390 
ap_perms_init(void)2391 static void __init ap_perms_init(void)
2392 {
2393 	/* all resources usable if no kernel parameter string given */
2394 	memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2395 	memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2396 	memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2397 
2398 	/* apm kernel parameter string */
2399 	if (apm_str) {
2400 		memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2401 		ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2402 				  &ap_perms_mutex);
2403 	}
2404 
2405 	/* aqm kernel parameter string */
2406 	if (aqm_str) {
2407 		memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2408 		ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2409 				  &ap_perms_mutex);
2410 	}
2411 }
2412 
2413 /**
2414  * ap_module_init(): The module initialization code.
2415  *
2416  * Initializes the module.
2417  */
ap_module_init(void)2418 static int __init ap_module_init(void)
2419 {
2420 	int rc;
2421 
2422 	rc = ap_debug_init();
2423 	if (rc)
2424 		return rc;
2425 
2426 	if (!ap_instructions_available()) {
2427 		pr_warn("The hardware system does not support AP instructions\n");
2428 		return -ENODEV;
2429 	}
2430 
2431 	/* init ap_queue hashtable */
2432 	hash_init(ap_queues);
2433 
2434 	/* set up the AP permissions (ioctls, ap and aq masks) */
2435 	ap_perms_init();
2436 
2437 	/* Get AP configuration data if available */
2438 	ap_init_qci_info();
2439 
2440 	/* check default domain setting */
2441 	if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2442 	    (ap_domain_index >= 0 &&
2443 	     !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2444 		pr_warn("%d is not a valid cryptographic domain\n",
2445 			ap_domain_index);
2446 		ap_domain_index = -1;
2447 	}
2448 
2449 	/* Create /sys/bus/ap. */
2450 	rc = bus_register(&ap_bus_type);
2451 	if (rc)
2452 		goto out;
2453 
2454 	/* Create /sys/devices/ap. */
2455 	ap_root_device = root_device_register("ap");
2456 	rc = PTR_ERR_OR_ZERO(ap_root_device);
2457 	if (rc)
2458 		goto out_bus;
2459 	ap_root_device->bus = &ap_bus_type;
2460 
2461 	/* enable interrupts if available */
2462 	rc = ap_irq_init();
2463 	if (rc)
2464 		goto out_device;
2465 
2466 	/* Setup asynchronous work (timers, workqueue, etc). */
2467 	rc = ap_async_init();
2468 	if (rc)
2469 		goto out_irq;
2470 
2471 	return 0;
2472 
2473 out_irq:
2474 	ap_irq_exit();
2475 out_device:
2476 	root_device_unregister(ap_root_device);
2477 out_bus:
2478 	bus_unregister(&ap_bus_type);
2479 out:
2480 	ap_debug_exit();
2481 	return rc;
2482 }
2483 
ap_module_exit(void)2484 static void __exit ap_module_exit(void)
2485 {
2486 	ap_async_exit();
2487 	ap_irq_exit();
2488 	root_device_unregister(ap_root_device);
2489 	bus_unregister(&ap_bus_type);
2490 	ap_debug_exit();
2491 }
2492 
2493 module_init(ap_module_init);
2494 module_exit(ap_module_exit);
2495