1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Generic pwmlib implementation
4  *
5  * Copyright (C) 2011 Sascha Hauer <s.hauer@pengutronix.de>
6  * Copyright (C) 2011-2012 Avionic Design GmbH
7  */
8 
9 #define DEFAULT_SYMBOL_NAMESPACE "PWM"
10 
11 #include <linux/acpi.h>
12 #include <linux/module.h>
13 #include <linux/idr.h>
14 #include <linux/of.h>
15 #include <linux/pwm.h>
16 #include <linux/list.h>
17 #include <linux/mutex.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/debugfs.h>
22 #include <linux/seq_file.h>
23 
24 #include <dt-bindings/pwm/pwm.h>
25 
26 #define CREATE_TRACE_POINTS
27 #include <trace/events/pwm.h>
28 
29 /* protects access to pwm_chips */
30 static DEFINE_MUTEX(pwm_lock);
31 
32 static DEFINE_IDR(pwm_chips);
33 
pwmchip_lock(struct pwm_chip * chip)34 static void pwmchip_lock(struct pwm_chip *chip)
35 {
36 	if (chip->atomic)
37 		spin_lock(&chip->atomic_lock);
38 	else
39 		mutex_lock(&chip->nonatomic_lock);
40 }
41 
pwmchip_unlock(struct pwm_chip * chip)42 static void pwmchip_unlock(struct pwm_chip *chip)
43 {
44 	if (chip->atomic)
45 		spin_unlock(&chip->atomic_lock);
46 	else
47 		mutex_unlock(&chip->nonatomic_lock);
48 }
49 
DEFINE_GUARD(pwmchip,struct pwm_chip *,pwmchip_lock (_T),pwmchip_unlock (_T))50 DEFINE_GUARD(pwmchip, struct pwm_chip *, pwmchip_lock(_T), pwmchip_unlock(_T))
51 
52 static bool pwm_wf_valid(const struct pwm_waveform *wf)
53 {
54 	/*
55 	 * For now restrict waveforms to period_length_ns <= S64_MAX to provide
56 	 * some space for future extensions. One possibility is to simplify
57 	 * representing waveforms with inverted polarity using negative values
58 	 * somehow.
59 	 */
60 	if (wf->period_length_ns > S64_MAX)
61 		return false;
62 
63 	if (wf->duty_length_ns > wf->period_length_ns)
64 		return false;
65 
66 	/*
67 	 * .duty_offset_ns is supposed to be smaller than .period_length_ns, apart
68 	 * from the corner case .duty_offset_ns == 0 && .period_length_ns == 0.
69 	 */
70 	if (wf->duty_offset_ns && wf->duty_offset_ns >= wf->period_length_ns)
71 		return false;
72 
73 	return true;
74 }
75 
pwm_wf2state(const struct pwm_waveform * wf,struct pwm_state * state)76 static void pwm_wf2state(const struct pwm_waveform *wf, struct pwm_state *state)
77 {
78 	if (wf->period_length_ns) {
79 		if (wf->duty_length_ns + wf->duty_offset_ns < wf->period_length_ns)
80 			*state = (struct pwm_state){
81 				.enabled = true,
82 				.polarity = PWM_POLARITY_NORMAL,
83 				.period = wf->period_length_ns,
84 				.duty_cycle = wf->duty_length_ns,
85 			};
86 		else
87 			*state = (struct pwm_state){
88 				.enabled = true,
89 				.polarity = PWM_POLARITY_INVERSED,
90 				.period = wf->period_length_ns,
91 				.duty_cycle = wf->period_length_ns - wf->duty_length_ns,
92 			};
93 	} else {
94 		*state = (struct pwm_state){
95 			.enabled = false,
96 		};
97 	}
98 }
99 
pwm_state2wf(const struct pwm_state * state,struct pwm_waveform * wf)100 static void pwm_state2wf(const struct pwm_state *state, struct pwm_waveform *wf)
101 {
102 	if (state->enabled) {
103 		if (state->polarity == PWM_POLARITY_NORMAL)
104 			*wf = (struct pwm_waveform){
105 				.period_length_ns = state->period,
106 				.duty_length_ns = state->duty_cycle,
107 				.duty_offset_ns = 0,
108 			};
109 		else
110 			*wf = (struct pwm_waveform){
111 				.period_length_ns = state->period,
112 				.duty_length_ns = state->period - state->duty_cycle,
113 				.duty_offset_ns = state->duty_cycle,
114 			};
115 	} else {
116 		*wf = (struct pwm_waveform){
117 			.period_length_ns = 0,
118 		};
119 	}
120 }
121 
pwmwfcmp(const struct pwm_waveform * a,const struct pwm_waveform * b)122 static int pwmwfcmp(const struct pwm_waveform *a, const struct pwm_waveform *b)
123 {
124 	if (a->period_length_ns > b->period_length_ns)
125 		return 1;
126 
127 	if (a->period_length_ns < b->period_length_ns)
128 		return -1;
129 
130 	if (a->duty_length_ns > b->duty_length_ns)
131 		return 1;
132 
133 	if (a->duty_length_ns < b->duty_length_ns)
134 		return -1;
135 
136 	if (a->duty_offset_ns > b->duty_offset_ns)
137 		return 1;
138 
139 	if (a->duty_offset_ns < b->duty_offset_ns)
140 		return -1;
141 
142 	return 0;
143 }
144 
pwm_check_rounding(const struct pwm_waveform * wf,const struct pwm_waveform * wf_rounded)145 static bool pwm_check_rounding(const struct pwm_waveform *wf,
146 			       const struct pwm_waveform *wf_rounded)
147 {
148 	if (!wf->period_length_ns)
149 		return true;
150 
151 	if (wf->period_length_ns < wf_rounded->period_length_ns)
152 		return false;
153 
154 	if (wf->duty_length_ns < wf_rounded->duty_length_ns)
155 		return false;
156 
157 	if (wf->duty_offset_ns < wf_rounded->duty_offset_ns)
158 		return false;
159 
160 	return true;
161 }
162 
__pwm_round_waveform_tohw(struct pwm_chip * chip,struct pwm_device * pwm,const struct pwm_waveform * wf,void * wfhw)163 static int __pwm_round_waveform_tohw(struct pwm_chip *chip, struct pwm_device *pwm,
164 				     const struct pwm_waveform *wf, void *wfhw)
165 {
166 	const struct pwm_ops *ops = chip->ops;
167 	int ret;
168 
169 	ret = ops->round_waveform_tohw(chip, pwm, wf, wfhw);
170 	trace_pwm_round_waveform_tohw(pwm, wf, wfhw, ret);
171 
172 	return ret;
173 }
174 
__pwm_round_waveform_fromhw(struct pwm_chip * chip,struct pwm_device * pwm,const void * wfhw,struct pwm_waveform * wf)175 static int __pwm_round_waveform_fromhw(struct pwm_chip *chip, struct pwm_device *pwm,
176 				       const void *wfhw, struct pwm_waveform *wf)
177 {
178 	const struct pwm_ops *ops = chip->ops;
179 	int ret;
180 
181 	ret = ops->round_waveform_fromhw(chip, pwm, wfhw, wf);
182 	trace_pwm_round_waveform_fromhw(pwm, wfhw, wf, ret);
183 
184 	return ret;
185 }
186 
__pwm_read_waveform(struct pwm_chip * chip,struct pwm_device * pwm,void * wfhw)187 static int __pwm_read_waveform(struct pwm_chip *chip, struct pwm_device *pwm, void *wfhw)
188 {
189 	const struct pwm_ops *ops = chip->ops;
190 	int ret;
191 
192 	ret = ops->read_waveform(chip, pwm, wfhw);
193 	trace_pwm_read_waveform(pwm, wfhw, ret);
194 
195 	return ret;
196 }
197 
__pwm_write_waveform(struct pwm_chip * chip,struct pwm_device * pwm,const void * wfhw)198 static int __pwm_write_waveform(struct pwm_chip *chip, struct pwm_device *pwm, const void *wfhw)
199 {
200 	const struct pwm_ops *ops = chip->ops;
201 	int ret;
202 
203 	ret = ops->write_waveform(chip, pwm, wfhw);
204 	trace_pwm_write_waveform(pwm, wfhw, ret);
205 
206 	return ret;
207 }
208 
209 #define WFHWSIZE 20
210 
211 /**
212  * pwm_round_waveform_might_sleep - Query hardware capabilities
213  * Cannot be used in atomic context.
214  * @pwm: PWM device
215  * @wf: waveform to round and output parameter
216  *
217  * Typically a given waveform cannot be implemented exactly by hardware, e.g.
218  * because hardware only supports coarse period resolution or no duty_offset.
219  * This function returns the actually implemented waveform if you pass wf to
220  * pwm_set_waveform_might_sleep now.
221  *
222  * Note however that the world doesn't stop turning when you call it, so when
223  * doing
224  *
225  * 	pwm_round_waveform_might_sleep(mypwm, &wf);
226  * 	pwm_set_waveform_might_sleep(mypwm, &wf, true);
227  *
228  * the latter might fail, e.g. because an input clock changed its rate between
229  * these two calls and the waveform determined by
230  * pwm_round_waveform_might_sleep() cannot be implemented any more.
231  *
232  * Returns 0 on success, 1 if there is no valid hardware configuration matching
233  * the input waveform under the PWM rounding rules or a negative errno.
234  */
pwm_round_waveform_might_sleep(struct pwm_device * pwm,struct pwm_waveform * wf)235 int pwm_round_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
236 {
237 	struct pwm_chip *chip = pwm->chip;
238 	const struct pwm_ops *ops = chip->ops;
239 	struct pwm_waveform wf_req = *wf;
240 	char wfhw[WFHWSIZE];
241 	int ret_tohw, ret_fromhw;
242 
243 	BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
244 
245 	if (!pwmchip_supports_waveform(chip))
246 		return -EOPNOTSUPP;
247 
248 	if (!pwm_wf_valid(wf))
249 		return -EINVAL;
250 
251 	guard(pwmchip)(chip);
252 
253 	if (!chip->operational)
254 		return -ENODEV;
255 
256 	ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, wfhw);
257 	if (ret_tohw < 0)
258 		return ret_tohw;
259 
260 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw > 1)
261 		dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_tohw: requested %llu/%llu [+%llu], return value %d\n",
262 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
263 
264 	ret_fromhw = __pwm_round_waveform_fromhw(chip, pwm, wfhw, wf);
265 	if (ret_fromhw < 0)
266 		return ret_fromhw;
267 
268 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_fromhw > 0)
269 		dev_err(&chip->dev, "Unexpected return value from __pwm_round_waveform_fromhw: requested %llu/%llu [+%llu], return value %d\n",
270 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns, ret_tohw);
271 
272 	if (IS_ENABLED(CONFIG_PWM_DEBUG) &&
273 	    ret_tohw == 0 && !pwm_check_rounding(&wf_req, wf))
274 		dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
275 			wf_req.duty_length_ns, wf_req.period_length_ns, wf_req.duty_offset_ns,
276 			wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns);
277 
278 	return ret_tohw;
279 }
280 EXPORT_SYMBOL_GPL(pwm_round_waveform_might_sleep);
281 
282 /**
283  * pwm_get_waveform_might_sleep - Query hardware about current configuration
284  * Cannot be used in atomic context.
285  * @pwm: PWM device
286  * @wf: output parameter
287  *
288  * Stores the current configuration of the PWM in @wf. Note this is the
289  * equivalent of pwm_get_state_hw() (and not pwm_get_state()) for pwm_waveform.
290  */
pwm_get_waveform_might_sleep(struct pwm_device * pwm,struct pwm_waveform * wf)291 int pwm_get_waveform_might_sleep(struct pwm_device *pwm, struct pwm_waveform *wf)
292 {
293 	struct pwm_chip *chip = pwm->chip;
294 	const struct pwm_ops *ops = chip->ops;
295 	char wfhw[WFHWSIZE];
296 	int err;
297 
298 	BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
299 
300 	if (!pwmchip_supports_waveform(chip) || !ops->read_waveform)
301 		return -EOPNOTSUPP;
302 
303 	guard(pwmchip)(chip);
304 
305 	if (!chip->operational)
306 		return -ENODEV;
307 
308 	err = __pwm_read_waveform(chip, pwm, &wfhw);
309 	if (err)
310 		return err;
311 
312 	return __pwm_round_waveform_fromhw(chip, pwm, &wfhw, wf);
313 }
314 EXPORT_SYMBOL_GPL(pwm_get_waveform_might_sleep);
315 
316 /* Called with the pwmchip lock held */
__pwm_set_waveform(struct pwm_device * pwm,const struct pwm_waveform * wf,bool exact)317 static int __pwm_set_waveform(struct pwm_device *pwm,
318 			      const struct pwm_waveform *wf,
319 			      bool exact)
320 {
321 	struct pwm_chip *chip = pwm->chip;
322 	const struct pwm_ops *ops = chip->ops;
323 	char wfhw[WFHWSIZE];
324 	struct pwm_waveform wf_rounded;
325 	int err, ret_tohw;
326 
327 	BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
328 
329 	if (!pwmchip_supports_waveform(chip))
330 		return -EOPNOTSUPP;
331 
332 	if (!pwm_wf_valid(wf))
333 		return -EINVAL;
334 
335 	ret_tohw = __pwm_round_waveform_tohw(chip, pwm, wf, &wfhw);
336 	if (ret_tohw < 0)
337 		return ret_tohw;
338 
339 	if ((IS_ENABLED(CONFIG_PWM_DEBUG) || exact) && wf->period_length_ns) {
340 		err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
341 		if (err)
342 			return err;
343 
344 		if (IS_ENABLED(CONFIG_PWM_DEBUG) && ret_tohw == 0 && !pwm_check_rounding(wf, &wf_rounded))
345 			dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
346 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
347 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
348 
349 		if (exact && pwmwfcmp(wf, &wf_rounded)) {
350 			dev_dbg(&chip->dev, "Requested no rounding, but %llu/%llu [+%llu] -> %llu/%llu [+%llu]\n",
351 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
352 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
353 
354 			return 1;
355 		}
356 	}
357 
358 	err = __pwm_write_waveform(chip, pwm, &wfhw);
359 	if (err)
360 		return err;
361 
362 	/* update .state */
363 	pwm_wf2state(wf, &pwm->state);
364 
365 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && ops->read_waveform && wf->period_length_ns) {
366 		struct pwm_waveform wf_set;
367 
368 		err = __pwm_read_waveform(chip, pwm, &wfhw);
369 		if (err)
370 			/* maybe ignore? */
371 			return err;
372 
373 		err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_set);
374 		if (err)
375 			/* maybe ignore? */
376 			return err;
377 
378 		if (pwmwfcmp(&wf_set, &wf_rounded) != 0)
379 			dev_err(&chip->dev,
380 				"Unexpected setting: requested %llu/%llu [+%llu], expected %llu/%llu [+%llu], set %llu/%llu [+%llu]\n",
381 				wf->duty_length_ns, wf->period_length_ns, wf->duty_offset_ns,
382 				wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns,
383 				wf_set.duty_length_ns, wf_set.period_length_ns, wf_set.duty_offset_ns);
384 	}
385 
386 	return ret_tohw;
387 }
388 
389 /**
390  * pwm_set_waveform_might_sleep - Apply a new waveform
391  * Cannot be used in atomic context.
392  * @pwm: PWM device
393  * @wf: The waveform to apply
394  * @exact: If true no rounding is allowed
395  *
396  * Typically a requested waveform cannot be implemented exactly, e.g. because
397  * you requested .period_length_ns = 100 ns, but the hardware can only set
398  * periods that are a multiple of 8.5 ns. With that hardware passing exact =
399  * true results in pwm_set_waveform_might_sleep() failing and returning 1. If
400  * exact = false you get a period of 93.5 ns (i.e. the biggest period not bigger
401  * than the requested value).
402  * Note that even with exact = true, some rounding by less than 1 is
403  * possible/needed. In the above example requesting .period_length_ns = 94 and
404  * exact = true, you get the hardware configured with period = 93.5 ns.
405  */
pwm_set_waveform_might_sleep(struct pwm_device * pwm,const struct pwm_waveform * wf,bool exact)406 int pwm_set_waveform_might_sleep(struct pwm_device *pwm,
407 				 const struct pwm_waveform *wf, bool exact)
408 {
409 	struct pwm_chip *chip = pwm->chip;
410 	int err;
411 
412 	might_sleep();
413 
414 	guard(pwmchip)(chip);
415 
416 	if (!chip->operational)
417 		return -ENODEV;
418 
419 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
420 		/*
421 		 * Catch any drivers that have been marked as atomic but
422 		 * that will sleep anyway.
423 		 */
424 		non_block_start();
425 		err = __pwm_set_waveform(pwm, wf, exact);
426 		non_block_end();
427 	} else {
428 		err = __pwm_set_waveform(pwm, wf, exact);
429 	}
430 
431 	return err;
432 }
433 EXPORT_SYMBOL_GPL(pwm_set_waveform_might_sleep);
434 
pwm_apply_debug(struct pwm_device * pwm,const struct pwm_state * state)435 static void pwm_apply_debug(struct pwm_device *pwm,
436 			    const struct pwm_state *state)
437 {
438 	struct pwm_state *last = &pwm->last;
439 	struct pwm_chip *chip = pwm->chip;
440 	struct pwm_state s1 = { 0 }, s2 = { 0 };
441 	int err;
442 
443 	if (!IS_ENABLED(CONFIG_PWM_DEBUG))
444 		return;
445 
446 	/* No reasonable diagnosis possible without .get_state() */
447 	if (!chip->ops->get_state)
448 		return;
449 
450 	/*
451 	 * *state was just applied. Read out the hardware state and do some
452 	 * checks.
453 	 */
454 
455 	err = chip->ops->get_state(chip, pwm, &s1);
456 	trace_pwm_get(pwm, &s1, err);
457 	if (err)
458 		/* If that failed there isn't much to debug */
459 		return;
460 
461 	/*
462 	 * The lowlevel driver either ignored .polarity (which is a bug) or as
463 	 * best effort inverted .polarity and fixed .duty_cycle respectively.
464 	 * Undo this inversion and fixup for further tests.
465 	 */
466 	if (s1.enabled && s1.polarity != state->polarity) {
467 		s2.polarity = state->polarity;
468 		s2.duty_cycle = s1.period - s1.duty_cycle;
469 		s2.period = s1.period;
470 		s2.enabled = s1.enabled;
471 	} else {
472 		s2 = s1;
473 	}
474 
475 	if (s2.polarity != state->polarity &&
476 	    state->duty_cycle < state->period)
477 		dev_warn(pwmchip_parent(chip), ".apply ignored .polarity\n");
478 
479 	if (state->enabled && s2.enabled &&
480 	    last->polarity == state->polarity &&
481 	    last->period > s2.period &&
482 	    last->period <= state->period)
483 		dev_warn(pwmchip_parent(chip),
484 			 ".apply didn't pick the best available period (requested: %llu, applied: %llu, possible: %llu)\n",
485 			 state->period, s2.period, last->period);
486 
487 	/*
488 	 * Rounding period up is fine only if duty_cycle is 0 then, because a
489 	 * flat line doesn't have a characteristic period.
490 	 */
491 	if (state->enabled && s2.enabled && state->period < s2.period && s2.duty_cycle)
492 		dev_warn(pwmchip_parent(chip),
493 			 ".apply is supposed to round down period (requested: %llu, applied: %llu)\n",
494 			 state->period, s2.period);
495 
496 	if (state->enabled &&
497 	    last->polarity == state->polarity &&
498 	    last->period == s2.period &&
499 	    last->duty_cycle > s2.duty_cycle &&
500 	    last->duty_cycle <= state->duty_cycle)
501 		dev_warn(pwmchip_parent(chip),
502 			 ".apply didn't pick the best available duty cycle (requested: %llu/%llu, applied: %llu/%llu, possible: %llu/%llu)\n",
503 			 state->duty_cycle, state->period,
504 			 s2.duty_cycle, s2.period,
505 			 last->duty_cycle, last->period);
506 
507 	if (state->enabled && s2.enabled && state->duty_cycle < s2.duty_cycle)
508 		dev_warn(pwmchip_parent(chip),
509 			 ".apply is supposed to round down duty_cycle (requested: %llu/%llu, applied: %llu/%llu)\n",
510 			 state->duty_cycle, state->period,
511 			 s2.duty_cycle, s2.period);
512 
513 	if (!state->enabled && s2.enabled && s2.duty_cycle > 0)
514 		dev_warn(pwmchip_parent(chip),
515 			 "requested disabled, but yielded enabled with duty > 0\n");
516 
517 	/* reapply the state that the driver reported being configured. */
518 	err = chip->ops->apply(chip, pwm, &s1);
519 	trace_pwm_apply(pwm, &s1, err);
520 	if (err) {
521 		*last = s1;
522 		dev_err(pwmchip_parent(chip), "failed to reapply current setting\n");
523 		return;
524 	}
525 
526 	*last = (struct pwm_state){ 0 };
527 	err = chip->ops->get_state(chip, pwm, last);
528 	trace_pwm_get(pwm, last, err);
529 	if (err)
530 		return;
531 
532 	/* reapplication of the current state should give an exact match */
533 	if (s1.enabled != last->enabled ||
534 	    s1.polarity != last->polarity ||
535 	    (s1.enabled && s1.period != last->period) ||
536 	    (s1.enabled && s1.duty_cycle != last->duty_cycle)) {
537 		dev_err(pwmchip_parent(chip),
538 			".apply is not idempotent (ena=%d pol=%d %llu/%llu) -> (ena=%d pol=%d %llu/%llu)\n",
539 			s1.enabled, s1.polarity, s1.duty_cycle, s1.period,
540 			last->enabled, last->polarity, last->duty_cycle,
541 			last->period);
542 	}
543 }
544 
pwm_state_valid(const struct pwm_state * state)545 static bool pwm_state_valid(const struct pwm_state *state)
546 {
547 	/*
548 	 * For a disabled state all other state description is irrelevant and
549 	 * and supposed to be ignored. So also ignore any strange values and
550 	 * consider the state ok.
551 	 */
552 	if (state->enabled)
553 		return true;
554 
555 	if (!state->period)
556 		return false;
557 
558 	if (state->duty_cycle > state->period)
559 		return false;
560 
561 	return true;
562 }
563 
564 /**
565  * __pwm_apply() - atomically apply a new state to a PWM device
566  * @pwm: PWM device
567  * @state: new state to apply
568  */
__pwm_apply(struct pwm_device * pwm,const struct pwm_state * state)569 static int __pwm_apply(struct pwm_device *pwm, const struct pwm_state *state)
570 {
571 	struct pwm_chip *chip;
572 	const struct pwm_ops *ops;
573 	int err;
574 
575 	if (!pwm || !state)
576 		return -EINVAL;
577 
578 	if (!pwm_state_valid(state)) {
579 		/*
580 		 * Allow to transition from one invalid state to another.
581 		 * This ensures that you can e.g. change the polarity while
582 		 * the period is zero. (This happens on stm32 when the hardware
583 		 * is in its poweron default state.) This greatly simplifies
584 		 * working with the sysfs API where you can only change one
585 		 * parameter at a time.
586 		 */
587 		if (!pwm_state_valid(&pwm->state)) {
588 			pwm->state = *state;
589 			return 0;
590 		}
591 
592 		return -EINVAL;
593 	}
594 
595 	chip = pwm->chip;
596 	ops = chip->ops;
597 
598 	if (state->period == pwm->state.period &&
599 	    state->duty_cycle == pwm->state.duty_cycle &&
600 	    state->polarity == pwm->state.polarity &&
601 	    state->enabled == pwm->state.enabled &&
602 	    state->usage_power == pwm->state.usage_power)
603 		return 0;
604 
605 	if (pwmchip_supports_waveform(chip)) {
606 		struct pwm_waveform wf;
607 		char wfhw[WFHWSIZE];
608 
609 		BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
610 
611 		pwm_state2wf(state, &wf);
612 
613 		/*
614 		 * The rounding is wrong here for states with inverted polarity.
615 		 * While .apply() rounds down duty_cycle (which represents the
616 		 * time from the start of the period to the inner edge),
617 		 * .round_waveform_tohw() rounds down the time the PWM is high.
618 		 * Can be fixed if the need arises, until reported otherwise
619 		 * let's assume that consumers don't care.
620 		 */
621 
622 		err = __pwm_round_waveform_tohw(chip, pwm, &wf, &wfhw);
623 		if (err) {
624 			if (err > 0)
625 				/*
626 				 * This signals an invalid request, typically
627 				 * the requested period (or duty_offset) is
628 				 * smaller than possible with the hardware.
629 				 */
630 				return -EINVAL;
631 
632 			return err;
633 		}
634 
635 		if (IS_ENABLED(CONFIG_PWM_DEBUG)) {
636 			struct pwm_waveform wf_rounded;
637 
638 			err = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf_rounded);
639 			if (err)
640 				return err;
641 
642 			if (!pwm_check_rounding(&wf, &wf_rounded))
643 				dev_err(&chip->dev, "Wrong rounding: requested %llu/%llu [+%llu], result %llu/%llu [+%llu]\n",
644 					wf.duty_length_ns, wf.period_length_ns, wf.duty_offset_ns,
645 					wf_rounded.duty_length_ns, wf_rounded.period_length_ns, wf_rounded.duty_offset_ns);
646 		}
647 
648 		err = __pwm_write_waveform(chip, pwm, &wfhw);
649 		if (err)
650 			return err;
651 
652 		pwm->state = *state;
653 
654 	} else {
655 		err = ops->apply(chip, pwm, state);
656 		trace_pwm_apply(pwm, state, err);
657 		if (err)
658 			return err;
659 
660 		pwm->state = *state;
661 
662 		/*
663 		 * only do this after pwm->state was applied as some
664 		 * implementations of .get_state() depend on this
665 		 */
666 		pwm_apply_debug(pwm, state);
667 	}
668 
669 	return 0;
670 }
671 
672 /**
673  * pwm_apply_might_sleep() - atomically apply a new state to a PWM device
674  * Cannot be used in atomic context.
675  * @pwm: PWM device
676  * @state: new state to apply
677  */
pwm_apply_might_sleep(struct pwm_device * pwm,const struct pwm_state * state)678 int pwm_apply_might_sleep(struct pwm_device *pwm, const struct pwm_state *state)
679 {
680 	int err;
681 	struct pwm_chip *chip = pwm->chip;
682 
683 	/*
684 	 * Some lowlevel driver's implementations of .apply() make use of
685 	 * mutexes, also with some drivers only returning when the new
686 	 * configuration is active calling pwm_apply_might_sleep() from atomic context
687 	 * is a bad idea. So make it explicit that calling this function might
688 	 * sleep.
689 	 */
690 	might_sleep();
691 
692 	guard(pwmchip)(chip);
693 
694 	if (!chip->operational)
695 		return -ENODEV;
696 
697 	if (IS_ENABLED(CONFIG_PWM_DEBUG) && chip->atomic) {
698 		/*
699 		 * Catch any drivers that have been marked as atomic but
700 		 * that will sleep anyway.
701 		 */
702 		non_block_start();
703 		err = __pwm_apply(pwm, state);
704 		non_block_end();
705 	} else {
706 		err = __pwm_apply(pwm, state);
707 	}
708 
709 	return err;
710 }
711 EXPORT_SYMBOL_GPL(pwm_apply_might_sleep);
712 
713 /**
714  * pwm_apply_atomic() - apply a new state to a PWM device from atomic context
715  * Not all PWM devices support this function, check with pwm_might_sleep().
716  * @pwm: PWM device
717  * @state: new state to apply
718  */
pwm_apply_atomic(struct pwm_device * pwm,const struct pwm_state * state)719 int pwm_apply_atomic(struct pwm_device *pwm, const struct pwm_state *state)
720 {
721 	struct pwm_chip *chip = pwm->chip;
722 
723 	WARN_ONCE(!chip->atomic,
724 		  "sleeping PWM driver used in atomic context\n");
725 
726 	guard(pwmchip)(chip);
727 
728 	if (!chip->operational)
729 		return -ENODEV;
730 
731 	return __pwm_apply(pwm, state);
732 }
733 EXPORT_SYMBOL_GPL(pwm_apply_atomic);
734 
735 /**
736  * pwm_get_state_hw() - get the current PWM state from hardware
737  * @pwm: PWM device
738  * @state: state to fill with the current PWM state
739  *
740  * Similar to pwm_get_state() but reads the current PWM state from hardware
741  * instead of the requested state.
742  *
743  * Returns: 0 on success or a negative error code on failure.
744  * Context: May sleep.
745  */
pwm_get_state_hw(struct pwm_device * pwm,struct pwm_state * state)746 int pwm_get_state_hw(struct pwm_device *pwm, struct pwm_state *state)
747 {
748 	struct pwm_chip *chip = pwm->chip;
749 	const struct pwm_ops *ops = chip->ops;
750 	int ret = -EOPNOTSUPP;
751 
752 	might_sleep();
753 
754 	guard(pwmchip)(chip);
755 
756 	if (!chip->operational)
757 		return -ENODEV;
758 
759 	if (pwmchip_supports_waveform(chip) && ops->read_waveform) {
760 		char wfhw[WFHWSIZE];
761 		struct pwm_waveform wf;
762 
763 		BUG_ON(WFHWSIZE < ops->sizeof_wfhw);
764 
765 		ret = __pwm_read_waveform(chip, pwm, &wfhw);
766 		if (ret)
767 			return ret;
768 
769 		ret = __pwm_round_waveform_fromhw(chip, pwm, &wfhw, &wf);
770 		if (ret)
771 			return ret;
772 
773 		pwm_wf2state(&wf, state);
774 
775 	} else if (ops->get_state) {
776 		ret = ops->get_state(chip, pwm, state);
777 		trace_pwm_get(pwm, state, ret);
778 	}
779 
780 	return ret;
781 }
782 EXPORT_SYMBOL_GPL(pwm_get_state_hw);
783 
784 /**
785  * pwm_adjust_config() - adjust the current PWM config to the PWM arguments
786  * @pwm: PWM device
787  *
788  * This function will adjust the PWM config to the PWM arguments provided
789  * by the DT or PWM lookup table. This is particularly useful to adapt
790  * the bootloader config to the Linux one.
791  */
pwm_adjust_config(struct pwm_device * pwm)792 int pwm_adjust_config(struct pwm_device *pwm)
793 {
794 	struct pwm_state state;
795 	struct pwm_args pargs;
796 
797 	pwm_get_args(pwm, &pargs);
798 	pwm_get_state(pwm, &state);
799 
800 	/*
801 	 * If the current period is zero it means that either the PWM driver
802 	 * does not support initial state retrieval or the PWM has not yet
803 	 * been configured.
804 	 *
805 	 * In either case, we setup the new period and polarity, and assign a
806 	 * duty cycle of 0.
807 	 */
808 	if (!state.period) {
809 		state.duty_cycle = 0;
810 		state.period = pargs.period;
811 		state.polarity = pargs.polarity;
812 
813 		return pwm_apply_might_sleep(pwm, &state);
814 	}
815 
816 	/*
817 	 * Adjust the PWM duty cycle/period based on the period value provided
818 	 * in PWM args.
819 	 */
820 	if (pargs.period != state.period) {
821 		u64 dutycycle = (u64)state.duty_cycle * pargs.period;
822 
823 		do_div(dutycycle, state.period);
824 		state.duty_cycle = dutycycle;
825 		state.period = pargs.period;
826 	}
827 
828 	/*
829 	 * If the polarity changed, we should also change the duty cycle.
830 	 */
831 	if (pargs.polarity != state.polarity) {
832 		state.polarity = pargs.polarity;
833 		state.duty_cycle = state.period - state.duty_cycle;
834 	}
835 
836 	return pwm_apply_might_sleep(pwm, &state);
837 }
838 EXPORT_SYMBOL_GPL(pwm_adjust_config);
839 
840 /**
841  * pwm_capture() - capture and report a PWM signal
842  * @pwm: PWM device
843  * @result: structure to fill with capture result
844  * @timeout: time to wait, in milliseconds, before giving up on capture
845  *
846  * Returns: 0 on success or a negative error code on failure.
847  */
pwm_capture(struct pwm_device * pwm,struct pwm_capture * result,unsigned long timeout)848 static int pwm_capture(struct pwm_device *pwm, struct pwm_capture *result,
849 		       unsigned long timeout)
850 {
851 	struct pwm_chip *chip = pwm->chip;
852 	const struct pwm_ops *ops = chip->ops;
853 
854 	if (!ops->capture)
855 		return -ENOSYS;
856 
857 	/*
858 	 * Holding the pwm_lock is probably not needed. If you use pwm_capture()
859 	 * and you're interested to speed it up, please convince yourself it's
860 	 * really not needed, test and then suggest a patch on the mailing list.
861 	 */
862 	guard(mutex)(&pwm_lock);
863 
864 	guard(pwmchip)(chip);
865 
866 	if (!chip->operational)
867 		return -ENODEV;
868 
869 	return ops->capture(chip, pwm, result, timeout);
870 }
871 
pwmchip_find_by_name(const char * name)872 static struct pwm_chip *pwmchip_find_by_name(const char *name)
873 {
874 	struct pwm_chip *chip;
875 	unsigned long id, tmp;
876 
877 	if (!name)
878 		return NULL;
879 
880 	guard(mutex)(&pwm_lock);
881 
882 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id) {
883 		if (device_match_name(pwmchip_parent(chip), name))
884 			return chip;
885 	}
886 
887 	return NULL;
888 }
889 
pwm_device_request(struct pwm_device * pwm,const char * label)890 static int pwm_device_request(struct pwm_device *pwm, const char *label)
891 {
892 	int err;
893 	struct pwm_chip *chip = pwm->chip;
894 	const struct pwm_ops *ops = chip->ops;
895 
896 	if (test_bit(PWMF_REQUESTED, &pwm->flags))
897 		return -EBUSY;
898 
899 	/*
900 	 * This function is called while holding pwm_lock. As .operational only
901 	 * changes while holding this lock, checking it here without holding the
902 	 * chip lock is fine.
903 	 */
904 	if (!chip->operational)
905 		return -ENODEV;
906 
907 	if (!try_module_get(chip->owner))
908 		return -ENODEV;
909 
910 	if (!get_device(&chip->dev)) {
911 		err = -ENODEV;
912 		goto err_get_device;
913 	}
914 
915 	if (ops->request) {
916 		err = ops->request(chip, pwm);
917 		if (err) {
918 			put_device(&chip->dev);
919 err_get_device:
920 			module_put(chip->owner);
921 			return err;
922 		}
923 	}
924 
925 	if (ops->read_waveform || ops->get_state) {
926 		/*
927 		 * Zero-initialize state because most drivers are unaware of
928 		 * .usage_power. The other members of state are supposed to be
929 		 * set by lowlevel drivers. We still initialize the whole
930 		 * structure for simplicity even though this might paper over
931 		 * faulty implementations of .get_state().
932 		 */
933 		struct pwm_state state = { 0, };
934 
935 		err = pwm_get_state_hw(pwm, &state);
936 		if (!err)
937 			pwm->state = state;
938 
939 		if (IS_ENABLED(CONFIG_PWM_DEBUG))
940 			pwm->last = pwm->state;
941 	}
942 
943 	set_bit(PWMF_REQUESTED, &pwm->flags);
944 	pwm->label = label;
945 
946 	return 0;
947 }
948 
949 /**
950  * pwm_request_from_chip() - request a PWM device relative to a PWM chip
951  * @chip: PWM chip
952  * @index: per-chip index of the PWM to request
953  * @label: a literal description string of this PWM
954  *
955  * Returns: A pointer to the PWM device at the given index of the given PWM
956  * chip. A negative error code is returned if the index is not valid for the
957  * specified PWM chip or if the PWM device cannot be requested.
958  */
pwm_request_from_chip(struct pwm_chip * chip,unsigned int index,const char * label)959 static struct pwm_device *pwm_request_from_chip(struct pwm_chip *chip,
960 						unsigned int index,
961 						const char *label)
962 {
963 	struct pwm_device *pwm;
964 	int err;
965 
966 	if (!chip || index >= chip->npwm)
967 		return ERR_PTR(-EINVAL);
968 
969 	guard(mutex)(&pwm_lock);
970 
971 	pwm = &chip->pwms[index];
972 
973 	err = pwm_device_request(pwm, label);
974 	if (err < 0)
975 		return ERR_PTR(err);
976 
977 	return pwm;
978 }
979 
980 struct pwm_device *
of_pwm_xlate_with_flags(struct pwm_chip * chip,const struct of_phandle_args * args)981 of_pwm_xlate_with_flags(struct pwm_chip *chip, const struct of_phandle_args *args)
982 {
983 	struct pwm_device *pwm;
984 
985 	/* period in the second cell and flags in the third cell are optional */
986 	if (args->args_count < 1)
987 		return ERR_PTR(-EINVAL);
988 
989 	pwm = pwm_request_from_chip(chip, args->args[0], NULL);
990 	if (IS_ERR(pwm))
991 		return pwm;
992 
993 	if (args->args_count > 1)
994 		pwm->args.period = args->args[1];
995 
996 	pwm->args.polarity = PWM_POLARITY_NORMAL;
997 	if (args->args_count > 2 && args->args[2] & PWM_POLARITY_INVERTED)
998 		pwm->args.polarity = PWM_POLARITY_INVERSED;
999 
1000 	return pwm;
1001 }
1002 EXPORT_SYMBOL_GPL(of_pwm_xlate_with_flags);
1003 
1004 /*
1005  * This callback is used for PXA PWM chips that only have a single PWM line.
1006  * For such chips you could argue that passing the line number (i.e. the first
1007  * parameter in the common case) is useless as it's always zero. So compared to
1008  * the default xlate function of_pwm_xlate_with_flags() the first parameter is
1009  * the default period and the second are flags.
1010  *
1011  * Note that if #pwm-cells = <3>, the semantic is the same as for
1012  * of_pwm_xlate_with_flags() to allow converting the affected driver to
1013  * #pwm-cells = <3> without breaking the legacy binding.
1014  *
1015  * Don't use for new drivers.
1016  */
1017 struct pwm_device *
of_pwm_single_xlate(struct pwm_chip * chip,const struct of_phandle_args * args)1018 of_pwm_single_xlate(struct pwm_chip *chip, const struct of_phandle_args *args)
1019 {
1020 	struct pwm_device *pwm;
1021 
1022 	if (args->args_count >= 3)
1023 		return of_pwm_xlate_with_flags(chip, args);
1024 
1025 	pwm = pwm_request_from_chip(chip, 0, NULL);
1026 	if (IS_ERR(pwm))
1027 		return pwm;
1028 
1029 	if (args->args_count > 0)
1030 		pwm->args.period = args->args[0];
1031 
1032 	pwm->args.polarity = PWM_POLARITY_NORMAL;
1033 	if (args->args_count > 1 && args->args[1] & PWM_POLARITY_INVERTED)
1034 		pwm->args.polarity = PWM_POLARITY_INVERSED;
1035 
1036 	return pwm;
1037 }
1038 EXPORT_SYMBOL_GPL(of_pwm_single_xlate);
1039 
1040 struct pwm_export {
1041 	struct device pwm_dev;
1042 	struct pwm_device *pwm;
1043 	struct mutex lock;
1044 	struct pwm_state suspend;
1045 };
1046 
pwmchip_from_dev(struct device * pwmchip_dev)1047 static inline struct pwm_chip *pwmchip_from_dev(struct device *pwmchip_dev)
1048 {
1049 	return container_of(pwmchip_dev, struct pwm_chip, dev);
1050 }
1051 
pwmexport_from_dev(struct device * pwm_dev)1052 static inline struct pwm_export *pwmexport_from_dev(struct device *pwm_dev)
1053 {
1054 	return container_of(pwm_dev, struct pwm_export, pwm_dev);
1055 }
1056 
pwm_from_dev(struct device * pwm_dev)1057 static inline struct pwm_device *pwm_from_dev(struct device *pwm_dev)
1058 {
1059 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1060 
1061 	return export->pwm;
1062 }
1063 
period_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1064 static ssize_t period_show(struct device *pwm_dev,
1065 			   struct device_attribute *attr,
1066 			   char *buf)
1067 {
1068 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1069 	struct pwm_state state;
1070 
1071 	pwm_get_state(pwm, &state);
1072 
1073 	return sysfs_emit(buf, "%llu\n", state.period);
1074 }
1075 
period_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1076 static ssize_t period_store(struct device *pwm_dev,
1077 			    struct device_attribute *attr,
1078 			    const char *buf, size_t size)
1079 {
1080 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1081 	struct pwm_device *pwm = export->pwm;
1082 	struct pwm_state state;
1083 	u64 val;
1084 	int ret;
1085 
1086 	ret = kstrtou64(buf, 0, &val);
1087 	if (ret)
1088 		return ret;
1089 
1090 	guard(mutex)(&export->lock);
1091 
1092 	pwm_get_state(pwm, &state);
1093 	state.period = val;
1094 	ret = pwm_apply_might_sleep(pwm, &state);
1095 
1096 	return ret ? : size;
1097 }
1098 
duty_cycle_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1099 static ssize_t duty_cycle_show(struct device *pwm_dev,
1100 			       struct device_attribute *attr,
1101 			       char *buf)
1102 {
1103 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1104 	struct pwm_state state;
1105 
1106 	pwm_get_state(pwm, &state);
1107 
1108 	return sysfs_emit(buf, "%llu\n", state.duty_cycle);
1109 }
1110 
duty_cycle_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1111 static ssize_t duty_cycle_store(struct device *pwm_dev,
1112 				struct device_attribute *attr,
1113 				const char *buf, size_t size)
1114 {
1115 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1116 	struct pwm_device *pwm = export->pwm;
1117 	struct pwm_state state;
1118 	u64 val;
1119 	int ret;
1120 
1121 	ret = kstrtou64(buf, 0, &val);
1122 	if (ret)
1123 		return ret;
1124 
1125 	guard(mutex)(&export->lock);
1126 
1127 	pwm_get_state(pwm, &state);
1128 	state.duty_cycle = val;
1129 	ret = pwm_apply_might_sleep(pwm, &state);
1130 
1131 	return ret ? : size;
1132 }
1133 
enable_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1134 static ssize_t enable_show(struct device *pwm_dev,
1135 			   struct device_attribute *attr,
1136 			   char *buf)
1137 {
1138 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1139 	struct pwm_state state;
1140 
1141 	pwm_get_state(pwm, &state);
1142 
1143 	return sysfs_emit(buf, "%d\n", state.enabled);
1144 }
1145 
enable_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1146 static ssize_t enable_store(struct device *pwm_dev,
1147 			    struct device_attribute *attr,
1148 			    const char *buf, size_t size)
1149 {
1150 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1151 	struct pwm_device *pwm = export->pwm;
1152 	struct pwm_state state;
1153 	int val, ret;
1154 
1155 	ret = kstrtoint(buf, 0, &val);
1156 	if (ret)
1157 		return ret;
1158 
1159 	guard(mutex)(&export->lock);
1160 
1161 	pwm_get_state(pwm, &state);
1162 
1163 	switch (val) {
1164 	case 0:
1165 		state.enabled = false;
1166 		break;
1167 	case 1:
1168 		state.enabled = true;
1169 		break;
1170 	default:
1171 		return -EINVAL;
1172 	}
1173 
1174 	ret = pwm_apply_might_sleep(pwm, &state);
1175 
1176 	return ret ? : size;
1177 }
1178 
polarity_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1179 static ssize_t polarity_show(struct device *pwm_dev,
1180 			     struct device_attribute *attr,
1181 			     char *buf)
1182 {
1183 	const struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1184 	const char *polarity = "unknown";
1185 	struct pwm_state state;
1186 
1187 	pwm_get_state(pwm, &state);
1188 
1189 	switch (state.polarity) {
1190 	case PWM_POLARITY_NORMAL:
1191 		polarity = "normal";
1192 		break;
1193 
1194 	case PWM_POLARITY_INVERSED:
1195 		polarity = "inversed";
1196 		break;
1197 	}
1198 
1199 	return sysfs_emit(buf, "%s\n", polarity);
1200 }
1201 
polarity_store(struct device * pwm_dev,struct device_attribute * attr,const char * buf,size_t size)1202 static ssize_t polarity_store(struct device *pwm_dev,
1203 			      struct device_attribute *attr,
1204 			      const char *buf, size_t size)
1205 {
1206 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1207 	struct pwm_device *pwm = export->pwm;
1208 	enum pwm_polarity polarity;
1209 	struct pwm_state state;
1210 	int ret;
1211 
1212 	if (sysfs_streq(buf, "normal"))
1213 		polarity = PWM_POLARITY_NORMAL;
1214 	else if (sysfs_streq(buf, "inversed"))
1215 		polarity = PWM_POLARITY_INVERSED;
1216 	else
1217 		return -EINVAL;
1218 
1219 	guard(mutex)(&export->lock);
1220 
1221 	pwm_get_state(pwm, &state);
1222 	state.polarity = polarity;
1223 	ret = pwm_apply_might_sleep(pwm, &state);
1224 
1225 	return ret ? : size;
1226 }
1227 
capture_show(struct device * pwm_dev,struct device_attribute * attr,char * buf)1228 static ssize_t capture_show(struct device *pwm_dev,
1229 			    struct device_attribute *attr,
1230 			    char *buf)
1231 {
1232 	struct pwm_device *pwm = pwm_from_dev(pwm_dev);
1233 	struct pwm_capture result;
1234 	int ret;
1235 
1236 	ret = pwm_capture(pwm, &result, jiffies_to_msecs(HZ));
1237 	if (ret)
1238 		return ret;
1239 
1240 	return sysfs_emit(buf, "%u %u\n", result.period, result.duty_cycle);
1241 }
1242 
1243 static DEVICE_ATTR_RW(period);
1244 static DEVICE_ATTR_RW(duty_cycle);
1245 static DEVICE_ATTR_RW(enable);
1246 static DEVICE_ATTR_RW(polarity);
1247 static DEVICE_ATTR_RO(capture);
1248 
1249 static struct attribute *pwm_attrs[] = {
1250 	&dev_attr_period.attr,
1251 	&dev_attr_duty_cycle.attr,
1252 	&dev_attr_enable.attr,
1253 	&dev_attr_polarity.attr,
1254 	&dev_attr_capture.attr,
1255 	NULL
1256 };
1257 ATTRIBUTE_GROUPS(pwm);
1258 
pwm_export_release(struct device * pwm_dev)1259 static void pwm_export_release(struct device *pwm_dev)
1260 {
1261 	struct pwm_export *export = pwmexport_from_dev(pwm_dev);
1262 
1263 	kfree(export);
1264 }
1265 
pwm_export_child(struct device * pwmchip_dev,struct pwm_device * pwm)1266 static int pwm_export_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1267 {
1268 	struct pwm_export *export;
1269 	char *pwm_prop[2];
1270 	int ret;
1271 
1272 	if (test_and_set_bit(PWMF_EXPORTED, &pwm->flags))
1273 		return -EBUSY;
1274 
1275 	export = kzalloc(sizeof(*export), GFP_KERNEL);
1276 	if (!export) {
1277 		clear_bit(PWMF_EXPORTED, &pwm->flags);
1278 		return -ENOMEM;
1279 	}
1280 
1281 	export->pwm = pwm;
1282 	mutex_init(&export->lock);
1283 
1284 	export->pwm_dev.release = pwm_export_release;
1285 	export->pwm_dev.parent = pwmchip_dev;
1286 	export->pwm_dev.devt = MKDEV(0, 0);
1287 	export->pwm_dev.groups = pwm_groups;
1288 	dev_set_name(&export->pwm_dev, "pwm%u", pwm->hwpwm);
1289 
1290 	ret = device_register(&export->pwm_dev);
1291 	if (ret) {
1292 		clear_bit(PWMF_EXPORTED, &pwm->flags);
1293 		put_device(&export->pwm_dev);
1294 		export = NULL;
1295 		return ret;
1296 	}
1297 	pwm_prop[0] = kasprintf(GFP_KERNEL, "EXPORT=pwm%u", pwm->hwpwm);
1298 	pwm_prop[1] = NULL;
1299 	kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1300 	kfree(pwm_prop[0]);
1301 
1302 	return 0;
1303 }
1304 
pwm_unexport_match(struct device * pwm_dev,const void * data)1305 static int pwm_unexport_match(struct device *pwm_dev, const void *data)
1306 {
1307 	return pwm_from_dev(pwm_dev) == data;
1308 }
1309 
pwm_unexport_child(struct device * pwmchip_dev,struct pwm_device * pwm)1310 static int pwm_unexport_child(struct device *pwmchip_dev, struct pwm_device *pwm)
1311 {
1312 	struct device *pwm_dev;
1313 	char *pwm_prop[2];
1314 
1315 	if (!test_and_clear_bit(PWMF_EXPORTED, &pwm->flags))
1316 		return -ENODEV;
1317 
1318 	pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1319 	if (!pwm_dev)
1320 		return -ENODEV;
1321 
1322 	pwm_prop[0] = kasprintf(GFP_KERNEL, "UNEXPORT=pwm%u", pwm->hwpwm);
1323 	pwm_prop[1] = NULL;
1324 	kobject_uevent_env(&pwmchip_dev->kobj, KOBJ_CHANGE, pwm_prop);
1325 	kfree(pwm_prop[0]);
1326 
1327 	/* for device_find_child() */
1328 	put_device(pwm_dev);
1329 	device_unregister(pwm_dev);
1330 	pwm_put(pwm);
1331 
1332 	return 0;
1333 }
1334 
export_store(struct device * pwmchip_dev,struct device_attribute * attr,const char * buf,size_t len)1335 static ssize_t export_store(struct device *pwmchip_dev,
1336 			    struct device_attribute *attr,
1337 			    const char *buf, size_t len)
1338 {
1339 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1340 	struct pwm_device *pwm;
1341 	unsigned int hwpwm;
1342 	int ret;
1343 
1344 	ret = kstrtouint(buf, 0, &hwpwm);
1345 	if (ret < 0)
1346 		return ret;
1347 
1348 	if (hwpwm >= chip->npwm)
1349 		return -ENODEV;
1350 
1351 	pwm = pwm_request_from_chip(chip, hwpwm, "sysfs");
1352 	if (IS_ERR(pwm))
1353 		return PTR_ERR(pwm);
1354 
1355 	ret = pwm_export_child(pwmchip_dev, pwm);
1356 	if (ret < 0)
1357 		pwm_put(pwm);
1358 
1359 	return ret ? : len;
1360 }
1361 static DEVICE_ATTR_WO(export);
1362 
unexport_store(struct device * pwmchip_dev,struct device_attribute * attr,const char * buf,size_t len)1363 static ssize_t unexport_store(struct device *pwmchip_dev,
1364 			      struct device_attribute *attr,
1365 			      const char *buf, size_t len)
1366 {
1367 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1368 	unsigned int hwpwm;
1369 	int ret;
1370 
1371 	ret = kstrtouint(buf, 0, &hwpwm);
1372 	if (ret < 0)
1373 		return ret;
1374 
1375 	if (hwpwm >= chip->npwm)
1376 		return -ENODEV;
1377 
1378 	ret = pwm_unexport_child(pwmchip_dev, &chip->pwms[hwpwm]);
1379 
1380 	return ret ? : len;
1381 }
1382 static DEVICE_ATTR_WO(unexport);
1383 
npwm_show(struct device * pwmchip_dev,struct device_attribute * attr,char * buf)1384 static ssize_t npwm_show(struct device *pwmchip_dev, struct device_attribute *attr,
1385 			 char *buf)
1386 {
1387 	const struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1388 
1389 	return sysfs_emit(buf, "%u\n", chip->npwm);
1390 }
1391 static DEVICE_ATTR_RO(npwm);
1392 
1393 static struct attribute *pwm_chip_attrs[] = {
1394 	&dev_attr_export.attr,
1395 	&dev_attr_unexport.attr,
1396 	&dev_attr_npwm.attr,
1397 	NULL,
1398 };
1399 ATTRIBUTE_GROUPS(pwm_chip);
1400 
1401 /* takes export->lock on success */
pwm_class_get_state(struct device * pwmchip_dev,struct pwm_device * pwm,struct pwm_state * state)1402 static struct pwm_export *pwm_class_get_state(struct device *pwmchip_dev,
1403 					      struct pwm_device *pwm,
1404 					      struct pwm_state *state)
1405 {
1406 	struct device *pwm_dev;
1407 	struct pwm_export *export;
1408 
1409 	if (!test_bit(PWMF_EXPORTED, &pwm->flags))
1410 		return NULL;
1411 
1412 	pwm_dev = device_find_child(pwmchip_dev, pwm, pwm_unexport_match);
1413 	if (!pwm_dev)
1414 		return NULL;
1415 
1416 	export = pwmexport_from_dev(pwm_dev);
1417 	put_device(pwm_dev);	/* for device_find_child() */
1418 
1419 	mutex_lock(&export->lock);
1420 	pwm_get_state(pwm, state);
1421 
1422 	return export;
1423 }
1424 
pwm_class_apply_state(struct pwm_export * export,struct pwm_device * pwm,struct pwm_state * state)1425 static int pwm_class_apply_state(struct pwm_export *export,
1426 				 struct pwm_device *pwm,
1427 				 struct pwm_state *state)
1428 {
1429 	int ret = pwm_apply_might_sleep(pwm, state);
1430 
1431 	/* release lock taken in pwm_class_get_state */
1432 	mutex_unlock(&export->lock);
1433 
1434 	return ret;
1435 }
1436 
pwm_class_resume_npwm(struct device * pwmchip_dev,unsigned int npwm)1437 static int pwm_class_resume_npwm(struct device *pwmchip_dev, unsigned int npwm)
1438 {
1439 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1440 	unsigned int i;
1441 	int ret = 0;
1442 
1443 	for (i = 0; i < npwm; i++) {
1444 		struct pwm_device *pwm = &chip->pwms[i];
1445 		struct pwm_state state;
1446 		struct pwm_export *export;
1447 
1448 		export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1449 		if (!export)
1450 			continue;
1451 
1452 		/* If pwmchip was not enabled before suspend, do nothing. */
1453 		if (!export->suspend.enabled) {
1454 			/* release lock taken in pwm_class_get_state */
1455 			mutex_unlock(&export->lock);
1456 			continue;
1457 		}
1458 
1459 		state.enabled = export->suspend.enabled;
1460 		ret = pwm_class_apply_state(export, pwm, &state);
1461 		if (ret < 0)
1462 			break;
1463 	}
1464 
1465 	return ret;
1466 }
1467 
pwm_class_suspend(struct device * pwmchip_dev)1468 static int pwm_class_suspend(struct device *pwmchip_dev)
1469 {
1470 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1471 	unsigned int i;
1472 	int ret = 0;
1473 
1474 	for (i = 0; i < chip->npwm; i++) {
1475 		struct pwm_device *pwm = &chip->pwms[i];
1476 		struct pwm_state state;
1477 		struct pwm_export *export;
1478 
1479 		export = pwm_class_get_state(pwmchip_dev, pwm, &state);
1480 		if (!export)
1481 			continue;
1482 
1483 		/*
1484 		 * If pwmchip was not enabled before suspend, save
1485 		 * state for resume time and do nothing else.
1486 		 */
1487 		export->suspend = state;
1488 		if (!state.enabled) {
1489 			/* release lock taken in pwm_class_get_state */
1490 			mutex_unlock(&export->lock);
1491 			continue;
1492 		}
1493 
1494 		state.enabled = false;
1495 		ret = pwm_class_apply_state(export, pwm, &state);
1496 		if (ret < 0) {
1497 			/*
1498 			 * roll back the PWM devices that were disabled by
1499 			 * this suspend function.
1500 			 */
1501 			pwm_class_resume_npwm(pwmchip_dev, i);
1502 			break;
1503 		}
1504 	}
1505 
1506 	return ret;
1507 }
1508 
pwm_class_resume(struct device * pwmchip_dev)1509 static int pwm_class_resume(struct device *pwmchip_dev)
1510 {
1511 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1512 
1513 	return pwm_class_resume_npwm(pwmchip_dev, chip->npwm);
1514 }
1515 
1516 static DEFINE_SIMPLE_DEV_PM_OPS(pwm_class_pm_ops, pwm_class_suspend, pwm_class_resume);
1517 
1518 static struct class pwm_class = {
1519 	.name = "pwm",
1520 	.dev_groups = pwm_chip_groups,
1521 	.pm = pm_sleep_ptr(&pwm_class_pm_ops),
1522 };
1523 
pwmchip_sysfs_unexport(struct pwm_chip * chip)1524 static void pwmchip_sysfs_unexport(struct pwm_chip *chip)
1525 {
1526 	unsigned int i;
1527 
1528 	for (i = 0; i < chip->npwm; i++) {
1529 		struct pwm_device *pwm = &chip->pwms[i];
1530 
1531 		if (test_bit(PWMF_EXPORTED, &pwm->flags))
1532 			pwm_unexport_child(&chip->dev, pwm);
1533 	}
1534 }
1535 
1536 #define PWMCHIP_ALIGN ARCH_DMA_MINALIGN
1537 
pwmchip_priv(struct pwm_chip * chip)1538 static void *pwmchip_priv(struct pwm_chip *chip)
1539 {
1540 	return (void *)chip + ALIGN(struct_size(chip, pwms, chip->npwm), PWMCHIP_ALIGN);
1541 }
1542 
1543 /* This is the counterpart to pwmchip_alloc() */
pwmchip_put(struct pwm_chip * chip)1544 void pwmchip_put(struct pwm_chip *chip)
1545 {
1546 	put_device(&chip->dev);
1547 }
1548 EXPORT_SYMBOL_GPL(pwmchip_put);
1549 
pwmchip_release(struct device * pwmchip_dev)1550 static void pwmchip_release(struct device *pwmchip_dev)
1551 {
1552 	struct pwm_chip *chip = pwmchip_from_dev(pwmchip_dev);
1553 
1554 	kfree(chip);
1555 }
1556 
pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)1557 struct pwm_chip *pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1558 {
1559 	struct pwm_chip *chip;
1560 	struct device *pwmchip_dev;
1561 	size_t alloc_size;
1562 	unsigned int i;
1563 
1564 	alloc_size = size_add(ALIGN(struct_size(chip, pwms, npwm), PWMCHIP_ALIGN),
1565 			      sizeof_priv);
1566 
1567 	chip = kzalloc(alloc_size, GFP_KERNEL);
1568 	if (!chip)
1569 		return ERR_PTR(-ENOMEM);
1570 
1571 	chip->npwm = npwm;
1572 	chip->uses_pwmchip_alloc = true;
1573 	chip->operational = false;
1574 
1575 	pwmchip_dev = &chip->dev;
1576 	device_initialize(pwmchip_dev);
1577 	pwmchip_dev->class = &pwm_class;
1578 	pwmchip_dev->parent = parent;
1579 	pwmchip_dev->release = pwmchip_release;
1580 
1581 	pwmchip_set_drvdata(chip, pwmchip_priv(chip));
1582 
1583 	for (i = 0; i < chip->npwm; i++) {
1584 		struct pwm_device *pwm = &chip->pwms[i];
1585 		pwm->chip = chip;
1586 		pwm->hwpwm = i;
1587 	}
1588 
1589 	return chip;
1590 }
1591 EXPORT_SYMBOL_GPL(pwmchip_alloc);
1592 
devm_pwmchip_put(void * data)1593 static void devm_pwmchip_put(void *data)
1594 {
1595 	struct pwm_chip *chip = data;
1596 
1597 	pwmchip_put(chip);
1598 }
1599 
devm_pwmchip_alloc(struct device * parent,unsigned int npwm,size_t sizeof_priv)1600 struct pwm_chip *devm_pwmchip_alloc(struct device *parent, unsigned int npwm, size_t sizeof_priv)
1601 {
1602 	struct pwm_chip *chip;
1603 	int ret;
1604 
1605 	chip = pwmchip_alloc(parent, npwm, sizeof_priv);
1606 	if (IS_ERR(chip))
1607 		return chip;
1608 
1609 	ret = devm_add_action_or_reset(parent, devm_pwmchip_put, chip);
1610 	if (ret)
1611 		return ERR_PTR(ret);
1612 
1613 	return chip;
1614 }
1615 EXPORT_SYMBOL_GPL(devm_pwmchip_alloc);
1616 
of_pwmchip_add(struct pwm_chip * chip)1617 static void of_pwmchip_add(struct pwm_chip *chip)
1618 {
1619 	if (!pwmchip_parent(chip) || !pwmchip_parent(chip)->of_node)
1620 		return;
1621 
1622 	if (!chip->of_xlate)
1623 		chip->of_xlate = of_pwm_xlate_with_flags;
1624 
1625 	of_node_get(pwmchip_parent(chip)->of_node);
1626 }
1627 
of_pwmchip_remove(struct pwm_chip * chip)1628 static void of_pwmchip_remove(struct pwm_chip *chip)
1629 {
1630 	if (pwmchip_parent(chip))
1631 		of_node_put(pwmchip_parent(chip)->of_node);
1632 }
1633 
pwm_ops_check(const struct pwm_chip * chip)1634 static bool pwm_ops_check(const struct pwm_chip *chip)
1635 {
1636 	const struct pwm_ops *ops = chip->ops;
1637 
1638 	if (ops->write_waveform) {
1639 		if (!ops->round_waveform_tohw ||
1640 		    !ops->round_waveform_fromhw ||
1641 		    !ops->write_waveform)
1642 			return false;
1643 
1644 		if (WFHWSIZE < ops->sizeof_wfhw) {
1645 			dev_warn(pwmchip_parent(chip), "WFHWSIZE < %zu\n", ops->sizeof_wfhw);
1646 			return false;
1647 		}
1648 	} else {
1649 		if (!ops->apply)
1650 			return false;
1651 
1652 		if (IS_ENABLED(CONFIG_PWM_DEBUG) && !ops->get_state)
1653 			dev_warn(pwmchip_parent(chip),
1654 				 "Please implement the .get_state() callback\n");
1655 	}
1656 
1657 	return true;
1658 }
1659 
pwm_device_link_add(struct device * dev,struct pwm_device * pwm)1660 static struct device_link *pwm_device_link_add(struct device *dev,
1661 					       struct pwm_device *pwm)
1662 {
1663 	struct device_link *dl;
1664 
1665 	if (!dev) {
1666 		/*
1667 		 * No device for the PWM consumer has been provided. It may
1668 		 * impact the PM sequence ordering: the PWM supplier may get
1669 		 * suspended before the consumer.
1670 		 */
1671 		dev_warn(pwmchip_parent(pwm->chip),
1672 			 "No consumer device specified to create a link to\n");
1673 		return NULL;
1674 	}
1675 
1676 	dl = device_link_add(dev, pwmchip_parent(pwm->chip), DL_FLAG_AUTOREMOVE_CONSUMER);
1677 	if (!dl) {
1678 		dev_err(dev, "failed to create device link to %s\n",
1679 			dev_name(pwmchip_parent(pwm->chip)));
1680 		return ERR_PTR(-EINVAL);
1681 	}
1682 
1683 	return dl;
1684 }
1685 
fwnode_to_pwmchip(struct fwnode_handle * fwnode)1686 static struct pwm_chip *fwnode_to_pwmchip(struct fwnode_handle *fwnode)
1687 {
1688 	struct pwm_chip *chip;
1689 	unsigned long id, tmp;
1690 
1691 	guard(mutex)(&pwm_lock);
1692 
1693 	idr_for_each_entry_ul(&pwm_chips, chip, tmp, id)
1694 		if (pwmchip_parent(chip) && device_match_fwnode(pwmchip_parent(chip), fwnode))
1695 			return chip;
1696 
1697 	return ERR_PTR(-EPROBE_DEFER);
1698 }
1699 
1700 /**
1701  * of_pwm_get() - request a PWM via the PWM framework
1702  * @dev: device for PWM consumer
1703  * @np: device node to get the PWM from
1704  * @con_id: consumer name
1705  *
1706  * Returns the PWM device parsed from the phandle and index specified in the
1707  * "pwms" property of a device tree node or a negative error-code on failure.
1708  * Values parsed from the device tree are stored in the returned PWM device
1709  * object.
1710  *
1711  * If con_id is NULL, the first PWM device listed in the "pwms" property will
1712  * be requested. Otherwise the "pwm-names" property is used to do a reverse
1713  * lookup of the PWM index. This also means that the "pwm-names" property
1714  * becomes mandatory for devices that look up the PWM device via the con_id
1715  * parameter.
1716  *
1717  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1718  * error code on failure.
1719  */
of_pwm_get(struct device * dev,struct device_node * np,const char * con_id)1720 static struct pwm_device *of_pwm_get(struct device *dev, struct device_node *np,
1721 				     const char *con_id)
1722 {
1723 	struct pwm_device *pwm = NULL;
1724 	struct of_phandle_args args;
1725 	struct device_link *dl;
1726 	struct pwm_chip *chip;
1727 	int index = 0;
1728 	int err;
1729 
1730 	if (con_id) {
1731 		index = of_property_match_string(np, "pwm-names", con_id);
1732 		if (index < 0)
1733 			return ERR_PTR(index);
1734 	}
1735 
1736 	err = of_parse_phandle_with_args_map(np, "pwms", "pwm", index, &args);
1737 	if (err) {
1738 		pr_err("%s(): can't parse \"pwms\" property\n", __func__);
1739 		return ERR_PTR(err);
1740 	}
1741 
1742 	chip = fwnode_to_pwmchip(of_fwnode_handle(args.np));
1743 	if (IS_ERR(chip)) {
1744 		if (PTR_ERR(chip) != -EPROBE_DEFER)
1745 			pr_err("%s(): PWM chip not found\n", __func__);
1746 
1747 		pwm = ERR_CAST(chip);
1748 		goto put;
1749 	}
1750 
1751 	pwm = chip->of_xlate(chip, &args);
1752 	if (IS_ERR(pwm))
1753 		goto put;
1754 
1755 	dl = pwm_device_link_add(dev, pwm);
1756 	if (IS_ERR(dl)) {
1757 		/* of_xlate ended up calling pwm_request_from_chip() */
1758 		pwm_put(pwm);
1759 		pwm = ERR_CAST(dl);
1760 		goto put;
1761 	}
1762 
1763 	/*
1764 	 * If a consumer name was not given, try to look it up from the
1765 	 * "pwm-names" property if it exists. Otherwise use the name of
1766 	 * the user device node.
1767 	 */
1768 	if (!con_id) {
1769 		err = of_property_read_string_index(np, "pwm-names", index,
1770 						    &con_id);
1771 		if (err < 0)
1772 			con_id = np->name;
1773 	}
1774 
1775 	pwm->label = con_id;
1776 
1777 put:
1778 	of_node_put(args.np);
1779 
1780 	return pwm;
1781 }
1782 
1783 /**
1784  * acpi_pwm_get() - request a PWM via parsing "pwms" property in ACPI
1785  * @fwnode: firmware node to get the "pwms" property from
1786  *
1787  * Returns the PWM device parsed from the fwnode and index specified in the
1788  * "pwms" property or a negative error-code on failure.
1789  * Values parsed from the device tree are stored in the returned PWM device
1790  * object.
1791  *
1792  * This is analogous to of_pwm_get() except con_id is not yet supported.
1793  * ACPI entries must look like
1794  * Package () {"pwms", Package ()
1795  *     { <PWM device reference>, <PWM index>, <PWM period> [, <PWM flags>]}}
1796  *
1797  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1798  * error code on failure.
1799  */
acpi_pwm_get(const struct fwnode_handle * fwnode)1800 static struct pwm_device *acpi_pwm_get(const struct fwnode_handle *fwnode)
1801 {
1802 	struct pwm_device *pwm;
1803 	struct fwnode_reference_args args;
1804 	struct pwm_chip *chip;
1805 	int ret;
1806 
1807 	memset(&args, 0, sizeof(args));
1808 
1809 	ret = __acpi_node_get_property_reference(fwnode, "pwms", 0, 3, &args);
1810 	if (ret < 0)
1811 		return ERR_PTR(ret);
1812 
1813 	if (args.nargs < 2)
1814 		return ERR_PTR(-EPROTO);
1815 
1816 	chip = fwnode_to_pwmchip(args.fwnode);
1817 	if (IS_ERR(chip))
1818 		return ERR_CAST(chip);
1819 
1820 	pwm = pwm_request_from_chip(chip, args.args[0], NULL);
1821 	if (IS_ERR(pwm))
1822 		return pwm;
1823 
1824 	pwm->args.period = args.args[1];
1825 	pwm->args.polarity = PWM_POLARITY_NORMAL;
1826 
1827 	if (args.nargs > 2 && args.args[2] & PWM_POLARITY_INVERTED)
1828 		pwm->args.polarity = PWM_POLARITY_INVERSED;
1829 
1830 	return pwm;
1831 }
1832 
1833 static DEFINE_MUTEX(pwm_lookup_lock);
1834 static LIST_HEAD(pwm_lookup_list);
1835 
1836 /**
1837  * pwm_get() - look up and request a PWM device
1838  * @dev: device for PWM consumer
1839  * @con_id: consumer name
1840  *
1841  * Lookup is first attempted using DT. If the device was not instantiated from
1842  * a device tree, a PWM chip and a relative index is looked up via a table
1843  * supplied by board setup code (see pwm_add_table()).
1844  *
1845  * Once a PWM chip has been found the specified PWM device will be requested
1846  * and is ready to be used.
1847  *
1848  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
1849  * error code on failure.
1850  */
pwm_get(struct device * dev,const char * con_id)1851 struct pwm_device *pwm_get(struct device *dev, const char *con_id)
1852 {
1853 	const struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
1854 	const char *dev_id = dev ? dev_name(dev) : NULL;
1855 	struct pwm_device *pwm;
1856 	struct pwm_chip *chip;
1857 	struct device_link *dl;
1858 	unsigned int best = 0;
1859 	struct pwm_lookup *p, *chosen = NULL;
1860 	unsigned int match;
1861 	int err;
1862 
1863 	/* look up via DT first */
1864 	if (is_of_node(fwnode))
1865 		return of_pwm_get(dev, to_of_node(fwnode), con_id);
1866 
1867 	/* then lookup via ACPI */
1868 	if (is_acpi_node(fwnode)) {
1869 		pwm = acpi_pwm_get(fwnode);
1870 		if (!IS_ERR(pwm) || PTR_ERR(pwm) != -ENOENT)
1871 			return pwm;
1872 	}
1873 
1874 	/*
1875 	 * We look up the provider in the static table typically provided by
1876 	 * board setup code. We first try to lookup the consumer device by
1877 	 * name. If the consumer device was passed in as NULL or if no match
1878 	 * was found, we try to find the consumer by directly looking it up
1879 	 * by name.
1880 	 *
1881 	 * If a match is found, the provider PWM chip is looked up by name
1882 	 * and a PWM device is requested using the PWM device per-chip index.
1883 	 *
1884 	 * The lookup algorithm was shamelessly taken from the clock
1885 	 * framework:
1886 	 *
1887 	 * We do slightly fuzzy matching here:
1888 	 *  An entry with a NULL ID is assumed to be a wildcard.
1889 	 *  If an entry has a device ID, it must match
1890 	 *  If an entry has a connection ID, it must match
1891 	 * Then we take the most specific entry - with the following order
1892 	 * of precedence: dev+con > dev only > con only.
1893 	 */
1894 	scoped_guard(mutex, &pwm_lookup_lock)
1895 		list_for_each_entry(p, &pwm_lookup_list, list) {
1896 			match = 0;
1897 
1898 			if (p->dev_id) {
1899 				if (!dev_id || strcmp(p->dev_id, dev_id))
1900 					continue;
1901 
1902 				match += 2;
1903 			}
1904 
1905 			if (p->con_id) {
1906 				if (!con_id || strcmp(p->con_id, con_id))
1907 					continue;
1908 
1909 				match += 1;
1910 			}
1911 
1912 			if (match > best) {
1913 				chosen = p;
1914 
1915 				if (match != 3)
1916 					best = match;
1917 				else
1918 					break;
1919 			}
1920 		}
1921 
1922 	if (!chosen)
1923 		return ERR_PTR(-ENODEV);
1924 
1925 	chip = pwmchip_find_by_name(chosen->provider);
1926 
1927 	/*
1928 	 * If the lookup entry specifies a module, load the module and retry
1929 	 * the PWM chip lookup. This can be used to work around driver load
1930 	 * ordering issues if driver's can't be made to properly support the
1931 	 * deferred probe mechanism.
1932 	 */
1933 	if (!chip && chosen->module) {
1934 		err = request_module(chosen->module);
1935 		if (err == 0)
1936 			chip = pwmchip_find_by_name(chosen->provider);
1937 	}
1938 
1939 	if (!chip)
1940 		return ERR_PTR(-EPROBE_DEFER);
1941 
1942 	pwm = pwm_request_from_chip(chip, chosen->index, con_id ?: dev_id);
1943 	if (IS_ERR(pwm))
1944 		return pwm;
1945 
1946 	dl = pwm_device_link_add(dev, pwm);
1947 	if (IS_ERR(dl)) {
1948 		pwm_put(pwm);
1949 		return ERR_CAST(dl);
1950 	}
1951 
1952 	pwm->args.period = chosen->period;
1953 	pwm->args.polarity = chosen->polarity;
1954 
1955 	return pwm;
1956 }
1957 EXPORT_SYMBOL_GPL(pwm_get);
1958 
1959 /**
1960  * pwm_put() - release a PWM device
1961  * @pwm: PWM device
1962  */
pwm_put(struct pwm_device * pwm)1963 void pwm_put(struct pwm_device *pwm)
1964 {
1965 	struct pwm_chip *chip;
1966 
1967 	if (!pwm)
1968 		return;
1969 
1970 	chip = pwm->chip;
1971 
1972 	guard(mutex)(&pwm_lock);
1973 
1974 	/*
1975 	 * Trigger a warning if a consumer called pwm_put() twice.
1976 	 * If the chip isn't operational, PWMF_REQUESTED was already cleared in
1977 	 * pwmchip_remove(). So don't warn in this case.
1978 	 */
1979 	if (chip->operational && !test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
1980 		pr_warn("PWM device already freed\n");
1981 		return;
1982 	}
1983 
1984 	if (chip->operational && chip->ops->free)
1985 		pwm->chip->ops->free(pwm->chip, pwm);
1986 
1987 	pwm->label = NULL;
1988 
1989 	put_device(&chip->dev);
1990 
1991 	module_put(chip->owner);
1992 }
1993 EXPORT_SYMBOL_GPL(pwm_put);
1994 
devm_pwm_release(void * pwm)1995 static void devm_pwm_release(void *pwm)
1996 {
1997 	pwm_put(pwm);
1998 }
1999 
2000 /**
2001  * devm_pwm_get() - resource managed pwm_get()
2002  * @dev: device for PWM consumer
2003  * @con_id: consumer name
2004  *
2005  * This function performs like pwm_get() but the acquired PWM device will
2006  * automatically be released on driver detach.
2007  *
2008  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
2009  * error code on failure.
2010  */
devm_pwm_get(struct device * dev,const char * con_id)2011 struct pwm_device *devm_pwm_get(struct device *dev, const char *con_id)
2012 {
2013 	struct pwm_device *pwm;
2014 	int ret;
2015 
2016 	pwm = pwm_get(dev, con_id);
2017 	if (IS_ERR(pwm))
2018 		return pwm;
2019 
2020 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2021 	if (ret)
2022 		return ERR_PTR(ret);
2023 
2024 	return pwm;
2025 }
2026 EXPORT_SYMBOL_GPL(devm_pwm_get);
2027 
2028 /**
2029  * devm_fwnode_pwm_get() - request a resource managed PWM from firmware node
2030  * @dev: device for PWM consumer
2031  * @fwnode: firmware node to get the PWM from
2032  * @con_id: consumer name
2033  *
2034  * Returns the PWM device parsed from the firmware node. See of_pwm_get() and
2035  * acpi_pwm_get() for a detailed description.
2036  *
2037  * Returns: A pointer to the requested PWM device or an ERR_PTR()-encoded
2038  * error code on failure.
2039  */
devm_fwnode_pwm_get(struct device * dev,struct fwnode_handle * fwnode,const char * con_id)2040 struct pwm_device *devm_fwnode_pwm_get(struct device *dev,
2041 				       struct fwnode_handle *fwnode,
2042 				       const char *con_id)
2043 {
2044 	struct pwm_device *pwm = ERR_PTR(-ENODEV);
2045 	int ret;
2046 
2047 	if (is_of_node(fwnode))
2048 		pwm = of_pwm_get(dev, to_of_node(fwnode), con_id);
2049 	else if (is_acpi_node(fwnode))
2050 		pwm = acpi_pwm_get(fwnode);
2051 	if (IS_ERR(pwm))
2052 		return pwm;
2053 
2054 	ret = devm_add_action_or_reset(dev, devm_pwm_release, pwm);
2055 	if (ret)
2056 		return ERR_PTR(ret);
2057 
2058 	return pwm;
2059 }
2060 EXPORT_SYMBOL_GPL(devm_fwnode_pwm_get);
2061 
2062 /**
2063  * __pwmchip_add() - register a new PWM chip
2064  * @chip: the PWM chip to add
2065  * @owner: reference to the module providing the chip.
2066  *
2067  * Register a new PWM chip. @owner is supposed to be THIS_MODULE, use the
2068  * pwmchip_add wrapper to do this right.
2069  *
2070  * Returns: 0 on success or a negative error code on failure.
2071  */
__pwmchip_add(struct pwm_chip * chip,struct module * owner)2072 int __pwmchip_add(struct pwm_chip *chip, struct module *owner)
2073 {
2074 	int ret;
2075 
2076 	if (!chip || !pwmchip_parent(chip) || !chip->ops || !chip->npwm)
2077 		return -EINVAL;
2078 
2079 	/*
2080 	 * a struct pwm_chip must be allocated using (devm_)pwmchip_alloc,
2081 	 * otherwise the embedded struct device might disappear too early
2082 	 * resulting in memory corruption.
2083 	 * Catch drivers that were not converted appropriately.
2084 	 */
2085 	if (!chip->uses_pwmchip_alloc)
2086 		return -EINVAL;
2087 
2088 	if (!pwm_ops_check(chip))
2089 		return -EINVAL;
2090 
2091 	chip->owner = owner;
2092 
2093 	if (chip->atomic)
2094 		spin_lock_init(&chip->atomic_lock);
2095 	else
2096 		mutex_init(&chip->nonatomic_lock);
2097 
2098 	guard(mutex)(&pwm_lock);
2099 
2100 	ret = idr_alloc(&pwm_chips, chip, 0, 0, GFP_KERNEL);
2101 	if (ret < 0)
2102 		return ret;
2103 
2104 	chip->id = ret;
2105 
2106 	dev_set_name(&chip->dev, "pwmchip%u", chip->id);
2107 
2108 	if (IS_ENABLED(CONFIG_OF))
2109 		of_pwmchip_add(chip);
2110 
2111 	scoped_guard(pwmchip, chip)
2112 		chip->operational = true;
2113 
2114 	ret = device_add(&chip->dev);
2115 	if (ret)
2116 		goto err_device_add;
2117 
2118 	return 0;
2119 
2120 err_device_add:
2121 	scoped_guard(pwmchip, chip)
2122 		chip->operational = false;
2123 
2124 	if (IS_ENABLED(CONFIG_OF))
2125 		of_pwmchip_remove(chip);
2126 
2127 	idr_remove(&pwm_chips, chip->id);
2128 
2129 	return ret;
2130 }
2131 EXPORT_SYMBOL_GPL(__pwmchip_add);
2132 
2133 /**
2134  * pwmchip_remove() - remove a PWM chip
2135  * @chip: the PWM chip to remove
2136  *
2137  * Removes a PWM chip.
2138  */
pwmchip_remove(struct pwm_chip * chip)2139 void pwmchip_remove(struct pwm_chip *chip)
2140 {
2141 	pwmchip_sysfs_unexport(chip);
2142 
2143 	scoped_guard(mutex, &pwm_lock) {
2144 		unsigned int i;
2145 
2146 		scoped_guard(pwmchip, chip)
2147 			chip->operational = false;
2148 
2149 		for (i = 0; i < chip->npwm; ++i) {
2150 			struct pwm_device *pwm = &chip->pwms[i];
2151 
2152 			if (test_and_clear_bit(PWMF_REQUESTED, &pwm->flags)) {
2153 				dev_warn(&chip->dev, "Freeing requested PWM #%u\n", i);
2154 				if (pwm->chip->ops->free)
2155 					pwm->chip->ops->free(pwm->chip, pwm);
2156 			}
2157 		}
2158 
2159 		if (IS_ENABLED(CONFIG_OF))
2160 			of_pwmchip_remove(chip);
2161 
2162 		idr_remove(&pwm_chips, chip->id);
2163 	}
2164 
2165 	device_del(&chip->dev);
2166 }
2167 EXPORT_SYMBOL_GPL(pwmchip_remove);
2168 
devm_pwmchip_remove(void * data)2169 static void devm_pwmchip_remove(void *data)
2170 {
2171 	struct pwm_chip *chip = data;
2172 
2173 	pwmchip_remove(chip);
2174 }
2175 
__devm_pwmchip_add(struct device * dev,struct pwm_chip * chip,struct module * owner)2176 int __devm_pwmchip_add(struct device *dev, struct pwm_chip *chip, struct module *owner)
2177 {
2178 	int ret;
2179 
2180 	ret = __pwmchip_add(chip, owner);
2181 	if (ret)
2182 		return ret;
2183 
2184 	return devm_add_action_or_reset(dev, devm_pwmchip_remove, chip);
2185 }
2186 EXPORT_SYMBOL_GPL(__devm_pwmchip_add);
2187 
2188 /**
2189  * pwm_add_table() - register PWM device consumers
2190  * @table: array of consumers to register
2191  * @num: number of consumers in table
2192  */
pwm_add_table(struct pwm_lookup * table,size_t num)2193 void pwm_add_table(struct pwm_lookup *table, size_t num)
2194 {
2195 	guard(mutex)(&pwm_lookup_lock);
2196 
2197 	while (num--) {
2198 		list_add_tail(&table->list, &pwm_lookup_list);
2199 		table++;
2200 	}
2201 }
2202 
2203 /**
2204  * pwm_remove_table() - unregister PWM device consumers
2205  * @table: array of consumers to unregister
2206  * @num: number of consumers in table
2207  */
pwm_remove_table(struct pwm_lookup * table,size_t num)2208 void pwm_remove_table(struct pwm_lookup *table, size_t num)
2209 {
2210 	guard(mutex)(&pwm_lookup_lock);
2211 
2212 	while (num--) {
2213 		list_del(&table->list);
2214 		table++;
2215 	}
2216 }
2217 
pwm_dbg_show(struct pwm_chip * chip,struct seq_file * s)2218 static void pwm_dbg_show(struct pwm_chip *chip, struct seq_file *s)
2219 {
2220 	unsigned int i;
2221 
2222 	for (i = 0; i < chip->npwm; i++) {
2223 		struct pwm_device *pwm = &chip->pwms[i];
2224 		struct pwm_state state;
2225 
2226 		pwm_get_state(pwm, &state);
2227 
2228 		seq_printf(s, " pwm-%-3d (%-20.20s):", i, pwm->label);
2229 
2230 		if (test_bit(PWMF_REQUESTED, &pwm->flags))
2231 			seq_puts(s, " requested");
2232 
2233 		if (state.enabled)
2234 			seq_puts(s, " enabled");
2235 
2236 		seq_printf(s, " period: %llu ns", state.period);
2237 		seq_printf(s, " duty: %llu ns", state.duty_cycle);
2238 		seq_printf(s, " polarity: %s",
2239 			   state.polarity ? "inverse" : "normal");
2240 
2241 		if (state.usage_power)
2242 			seq_puts(s, " usage_power");
2243 
2244 		seq_puts(s, "\n");
2245 	}
2246 }
2247 
pwm_seq_start(struct seq_file * s,loff_t * pos)2248 static void *pwm_seq_start(struct seq_file *s, loff_t *pos)
2249 {
2250 	unsigned long id = *pos;
2251 	void *ret;
2252 
2253 	mutex_lock(&pwm_lock);
2254 	s->private = "";
2255 
2256 	ret = idr_get_next_ul(&pwm_chips, &id);
2257 	*pos = id;
2258 	return ret;
2259 }
2260 
pwm_seq_next(struct seq_file * s,void * v,loff_t * pos)2261 static void *pwm_seq_next(struct seq_file *s, void *v, loff_t *pos)
2262 {
2263 	unsigned long id = *pos + 1;
2264 	void *ret;
2265 
2266 	s->private = "\n";
2267 
2268 	ret = idr_get_next_ul(&pwm_chips, &id);
2269 	*pos = id;
2270 	return ret;
2271 }
2272 
pwm_seq_stop(struct seq_file * s,void * v)2273 static void pwm_seq_stop(struct seq_file *s, void *v)
2274 {
2275 	mutex_unlock(&pwm_lock);
2276 }
2277 
pwm_seq_show(struct seq_file * s,void * v)2278 static int pwm_seq_show(struct seq_file *s, void *v)
2279 {
2280 	struct pwm_chip *chip = v;
2281 
2282 	seq_printf(s, "%s%d: %s/%s, %d PWM device%s\n",
2283 		   (char *)s->private, chip->id,
2284 		   pwmchip_parent(chip)->bus ? pwmchip_parent(chip)->bus->name : "no-bus",
2285 		   dev_name(pwmchip_parent(chip)), chip->npwm,
2286 		   (chip->npwm != 1) ? "s" : "");
2287 
2288 	pwm_dbg_show(chip, s);
2289 
2290 	return 0;
2291 }
2292 
2293 static const struct seq_operations pwm_debugfs_sops = {
2294 	.start = pwm_seq_start,
2295 	.next = pwm_seq_next,
2296 	.stop = pwm_seq_stop,
2297 	.show = pwm_seq_show,
2298 };
2299 
2300 DEFINE_SEQ_ATTRIBUTE(pwm_debugfs);
2301 
pwm_init(void)2302 static int __init pwm_init(void)
2303 {
2304 	int ret;
2305 
2306 	ret = class_register(&pwm_class);
2307 	if (ret) {
2308 		pr_err("Failed to initialize PWM class (%pe)\n", ERR_PTR(ret));
2309 		return ret;
2310 	}
2311 
2312 	if (IS_ENABLED(CONFIG_DEBUG_FS))
2313 		debugfs_create_file("pwm", 0444, NULL, NULL, &pwm_debugfs_fops);
2314 
2315 	return 0;
2316 }
2317 subsys_initcall(pwm_init);
2318