1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * ARM CoreSight Architecture PMU driver.
4 *
5 * This driver adds support for uncore PMU based on ARM CoreSight Performance
6 * Monitoring Unit Architecture. The PMU is accessible via MMIO registers and
7 * like other uncore PMUs, it does not support process specific events and
8 * cannot be used in sampling mode.
9 *
10 * This code is based on other uncore PMUs like ARM DSU PMU. It provides a
11 * generic implementation to operate the PMU according to CoreSight PMU
12 * architecture and ACPI ARM PMU table (APMT) documents below:
13 * - ARM CoreSight PMU architecture document number: ARM IHI 0091 A.a-00bet0.
14 * - APMT document number: ARM DEN0117.
15 *
16 * The user should refer to the vendor technical documentation to get details
17 * about the supported events.
18 *
19 * Copyright (c) 2022-2023, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
20 *
21 */
22
23 #include <linux/acpi.h>
24 #include <linux/cacheinfo.h>
25 #include <linux/ctype.h>
26 #include <linux/interrupt.h>
27 #include <linux/io-64-nonatomic-lo-hi.h>
28 #include <linux/module.h>
29 #include <linux/mutex.h>
30 #include <linux/of.h>
31 #include <linux/perf_event.h>
32 #include <linux/platform_device.h>
33
34 #include "arm_cspmu.h"
35
36 #define PMUNAME "arm_cspmu"
37 #define DRVNAME "arm-cs-arch-pmu"
38
39 #define ARM_CSPMU_CPUMASK_ATTR(_name, _config) \
40 ARM_CSPMU_EXT_ATTR(_name, arm_cspmu_cpumask_show, \
41 (unsigned long)_config)
42
43 /* Each SET/CLR register supports up to 32 counters. */
44 #define ARM_CSPMU_SET_CLR_COUNTER_SHIFT 5
45 #define ARM_CSPMU_SET_CLR_COUNTER_NUM \
46 (1 << ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
47
48 /* Convert counter idx into SET/CLR register number. */
49 #define COUNTER_TO_SET_CLR_ID(idx) \
50 (idx >> ARM_CSPMU_SET_CLR_COUNTER_SHIFT)
51
52 /* Convert counter idx into SET/CLR register bit. */
53 #define COUNTER_TO_SET_CLR_BIT(idx) \
54 (idx & (ARM_CSPMU_SET_CLR_COUNTER_NUM - 1))
55
56 #define ARM_CSPMU_ACTIVE_CPU_MASK 0x0
57 #define ARM_CSPMU_ASSOCIATED_CPU_MASK 0x1
58
59 /*
60 * Maximum poll count for reading counter value using high-low-high sequence.
61 */
62 #define HILOHI_MAX_POLL 1000
63
64 static unsigned long arm_cspmu_cpuhp_state;
65
66 static DEFINE_MUTEX(arm_cspmu_lock);
67
68 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
69 const struct perf_event *event);
70 static void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu,
71 const struct perf_event *event);
72
arm_cspmu_apmt_node(struct device * dev)73 static struct acpi_apmt_node *arm_cspmu_apmt_node(struct device *dev)
74 {
75 struct acpi_apmt_node **ptr = dev_get_platdata(dev);
76
77 return ptr ? *ptr : NULL;
78 }
79
80 /*
81 * In CoreSight PMU architecture, all of the MMIO registers are 32-bit except
82 * counter register. The counter register can be implemented as 32-bit or 64-bit
83 * register depending on the value of PMCFGR.SIZE field. For 64-bit access,
84 * single-copy 64-bit atomic support is implementation defined. APMT node flag
85 * is used to identify if the PMU supports 64-bit single copy atomic. If 64-bit
86 * single copy atomic is not supported, the driver treats the register as a pair
87 * of 32-bit register.
88 */
89
90 /*
91 * Read 64-bit register as a pair of 32-bit registers using hi-lo-hi sequence.
92 */
read_reg64_hilohi(const void __iomem * addr,u32 max_poll_count)93 static u64 read_reg64_hilohi(const void __iomem *addr, u32 max_poll_count)
94 {
95 u32 val_lo, val_hi;
96 u64 val;
97
98 /* Use high-low-high sequence to avoid tearing */
99 do {
100 if (max_poll_count-- == 0) {
101 pr_err("ARM CSPMU: timeout hi-low-high sequence\n");
102 return 0;
103 }
104
105 val_hi = readl(addr + 4);
106 val_lo = readl(addr);
107 } while (val_hi != readl(addr + 4));
108
109 val = (((u64)val_hi << 32) | val_lo);
110
111 return val;
112 }
113
114 /* Check if cycle counter is supported. */
supports_cycle_counter(const struct arm_cspmu * cspmu)115 static inline bool supports_cycle_counter(const struct arm_cspmu *cspmu)
116 {
117 return (cspmu->pmcfgr & PMCFGR_CC);
118 }
119
120 /* Get counter size, which is (PMCFGR_SIZE + 1). */
counter_size(const struct arm_cspmu * cspmu)121 static inline u32 counter_size(const struct arm_cspmu *cspmu)
122 {
123 return FIELD_GET(PMCFGR_SIZE, cspmu->pmcfgr) + 1;
124 }
125
126 /* Get counter mask. */
counter_mask(const struct arm_cspmu * cspmu)127 static inline u64 counter_mask(const struct arm_cspmu *cspmu)
128 {
129 return GENMASK_ULL(counter_size(cspmu) - 1, 0);
130 }
131
132 /* Check if counter is implemented as 64-bit register. */
use_64b_counter_reg(const struct arm_cspmu * cspmu)133 static inline bool use_64b_counter_reg(const struct arm_cspmu *cspmu)
134 {
135 return (counter_size(cspmu) > 32);
136 }
137
arm_cspmu_sysfs_event_show(struct device * dev,struct device_attribute * attr,char * buf)138 ssize_t arm_cspmu_sysfs_event_show(struct device *dev,
139 struct device_attribute *attr, char *buf)
140 {
141 struct perf_pmu_events_attr *pmu_attr;
142
143 pmu_attr = container_of(attr, typeof(*pmu_attr), attr);
144 return sysfs_emit(buf, "event=0x%llx\n", pmu_attr->id);
145 }
146 EXPORT_SYMBOL_GPL(arm_cspmu_sysfs_event_show);
147
148 /* Default event list. */
149 static struct attribute *arm_cspmu_event_attrs[] = {
150 ARM_CSPMU_EVENT_ATTR(cycles, ARM_CSPMU_EVT_CYCLES_DEFAULT),
151 NULL,
152 };
153
154 static struct attribute **
arm_cspmu_get_event_attrs(const struct arm_cspmu * cspmu)155 arm_cspmu_get_event_attrs(const struct arm_cspmu *cspmu)
156 {
157 struct attribute **attrs;
158
159 attrs = devm_kmemdup(cspmu->dev, arm_cspmu_event_attrs,
160 sizeof(arm_cspmu_event_attrs), GFP_KERNEL);
161
162 return attrs;
163 }
164
165 static umode_t
arm_cspmu_event_attr_is_visible(struct kobject * kobj,struct attribute * attr,int unused)166 arm_cspmu_event_attr_is_visible(struct kobject *kobj,
167 struct attribute *attr, int unused)
168 {
169 struct device *dev = kobj_to_dev(kobj);
170 struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
171 struct perf_pmu_events_attr *eattr;
172
173 eattr = container_of(attr, typeof(*eattr), attr.attr);
174
175 /* Hide cycle event if not supported */
176 if (!supports_cycle_counter(cspmu) &&
177 eattr->id == ARM_CSPMU_EVT_CYCLES_DEFAULT)
178 return 0;
179
180 return attr->mode;
181 }
182
183 static struct attribute *arm_cspmu_format_attrs[] = {
184 ARM_CSPMU_FORMAT_EVENT_ATTR,
185 ARM_CSPMU_FORMAT_FILTER_ATTR,
186 ARM_CSPMU_FORMAT_FILTER2_ATTR,
187 NULL,
188 };
189
190 static struct attribute **
arm_cspmu_get_format_attrs(const struct arm_cspmu * cspmu)191 arm_cspmu_get_format_attrs(const struct arm_cspmu *cspmu)
192 {
193 struct attribute **attrs;
194
195 attrs = devm_kmemdup(cspmu->dev, arm_cspmu_format_attrs,
196 sizeof(arm_cspmu_format_attrs), GFP_KERNEL);
197
198 return attrs;
199 }
200
arm_cspmu_event_type(const struct perf_event * event)201 static u32 arm_cspmu_event_type(const struct perf_event *event)
202 {
203 return event->attr.config & ARM_CSPMU_EVENT_MASK;
204 }
205
arm_cspmu_is_cycle_counter_event(const struct perf_event * event)206 static bool arm_cspmu_is_cycle_counter_event(const struct perf_event *event)
207 {
208 return (event->attr.config == ARM_CSPMU_EVT_CYCLES_DEFAULT);
209 }
210
arm_cspmu_identifier_show(struct device * dev,struct device_attribute * attr,char * page)211 static ssize_t arm_cspmu_identifier_show(struct device *dev,
212 struct device_attribute *attr,
213 char *page)
214 {
215 struct arm_cspmu *cspmu = to_arm_cspmu(dev_get_drvdata(dev));
216
217 return sysfs_emit(page, "%s\n", cspmu->identifier);
218 }
219
220 static struct device_attribute arm_cspmu_identifier_attr =
221 __ATTR(identifier, 0444, arm_cspmu_identifier_show, NULL);
222
223 static struct attribute *arm_cspmu_identifier_attrs[] = {
224 &arm_cspmu_identifier_attr.attr,
225 NULL,
226 };
227
228 static struct attribute_group arm_cspmu_identifier_attr_group = {
229 .attrs = arm_cspmu_identifier_attrs,
230 };
231
arm_cspmu_get_identifier(const struct arm_cspmu * cspmu)232 static const char *arm_cspmu_get_identifier(const struct arm_cspmu *cspmu)
233 {
234 const char *identifier =
235 devm_kasprintf(cspmu->dev, GFP_KERNEL, "%x",
236 cspmu->impl.pmiidr);
237 return identifier;
238 }
239
240 static const char *arm_cspmu_type_str[ACPI_APMT_NODE_TYPE_COUNT] = {
241 "mc",
242 "smmu",
243 "pcie",
244 "acpi",
245 "cache",
246 };
247
arm_cspmu_get_name(const struct arm_cspmu * cspmu)248 static const char *arm_cspmu_get_name(const struct arm_cspmu *cspmu)
249 {
250 struct device *dev;
251 struct acpi_apmt_node *apmt_node;
252 u8 pmu_type;
253 char *name;
254 char acpi_hid_string[ACPI_ID_LEN] = { 0 };
255 static atomic_t pmu_idx[ACPI_APMT_NODE_TYPE_COUNT] = { 0 };
256
257 dev = cspmu->dev;
258 apmt_node = arm_cspmu_apmt_node(dev);
259 if (!apmt_node)
260 return devm_kasprintf(dev, GFP_KERNEL, PMUNAME "_%u",
261 atomic_fetch_inc(&pmu_idx[0]));
262
263 pmu_type = apmt_node->type;
264
265 if (pmu_type >= ACPI_APMT_NODE_TYPE_COUNT) {
266 dev_err(dev, "unsupported PMU type-%u\n", pmu_type);
267 return NULL;
268 }
269
270 if (pmu_type == ACPI_APMT_NODE_TYPE_ACPI) {
271 memcpy(acpi_hid_string,
272 &apmt_node->inst_primary,
273 sizeof(apmt_node->inst_primary));
274 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%s_%u", PMUNAME,
275 arm_cspmu_type_str[pmu_type],
276 acpi_hid_string,
277 apmt_node->inst_secondary);
278 } else {
279 name = devm_kasprintf(dev, GFP_KERNEL, "%s_%s_%d", PMUNAME,
280 arm_cspmu_type_str[pmu_type],
281 atomic_fetch_inc(&pmu_idx[pmu_type]));
282 }
283
284 return name;
285 }
286
arm_cspmu_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)287 static ssize_t arm_cspmu_cpumask_show(struct device *dev,
288 struct device_attribute *attr,
289 char *buf)
290 {
291 struct pmu *pmu = dev_get_drvdata(dev);
292 struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
293 struct dev_ext_attribute *eattr =
294 container_of(attr, struct dev_ext_attribute, attr);
295 unsigned long mask_id = (unsigned long)eattr->var;
296 const cpumask_t *cpumask;
297
298 switch (mask_id) {
299 case ARM_CSPMU_ACTIVE_CPU_MASK:
300 cpumask = &cspmu->active_cpu;
301 break;
302 case ARM_CSPMU_ASSOCIATED_CPU_MASK:
303 cpumask = &cspmu->associated_cpus;
304 break;
305 default:
306 return 0;
307 }
308 return cpumap_print_to_pagebuf(true, buf, cpumask);
309 }
310
311 static struct attribute *arm_cspmu_cpumask_attrs[] = {
312 ARM_CSPMU_CPUMASK_ATTR(cpumask, ARM_CSPMU_ACTIVE_CPU_MASK),
313 ARM_CSPMU_CPUMASK_ATTR(associated_cpus, ARM_CSPMU_ASSOCIATED_CPU_MASK),
314 NULL,
315 };
316
317 static struct attribute_group arm_cspmu_cpumask_attr_group = {
318 .attrs = arm_cspmu_cpumask_attrs,
319 };
320
321 static struct arm_cspmu_impl_match impl_match[] = {
322 {
323 .module_name = "nvidia_cspmu",
324 .pmiidr_val = ARM_CSPMU_IMPL_ID_NVIDIA,
325 .pmiidr_mask = ARM_CSPMU_PMIIDR_IMPLEMENTER,
326 .module = NULL,
327 .impl_init_ops = NULL,
328 },
329 {
330 .module_name = "ampere_cspmu",
331 .pmiidr_val = ARM_CSPMU_IMPL_ID_AMPERE,
332 .pmiidr_mask = ARM_CSPMU_PMIIDR_IMPLEMENTER,
333 .module = NULL,
334 .impl_init_ops = NULL,
335 },
336
337 {0}
338 };
339
arm_cspmu_impl_match_get(u32 pmiidr)340 static struct arm_cspmu_impl_match *arm_cspmu_impl_match_get(u32 pmiidr)
341 {
342 struct arm_cspmu_impl_match *match = impl_match;
343
344 for (; match->pmiidr_val; match++) {
345 u32 mask = match->pmiidr_mask;
346
347 if ((match->pmiidr_val & mask) == (pmiidr & mask))
348 return match;
349 }
350
351 return NULL;
352 }
353
354 #define DEFAULT_IMPL_OP(name) .name = arm_cspmu_##name
355
arm_cspmu_init_impl_ops(struct arm_cspmu * cspmu)356 static int arm_cspmu_init_impl_ops(struct arm_cspmu *cspmu)
357 {
358 int ret = 0;
359 struct acpi_apmt_node *apmt_node = arm_cspmu_apmt_node(cspmu->dev);
360 struct arm_cspmu_impl_match *match;
361
362 /* Start with a default PMU implementation */
363 cspmu->impl.module = THIS_MODULE;
364 cspmu->impl.pmiidr = readl(cspmu->base0 + PMIIDR);
365 cspmu->impl.ops = (struct arm_cspmu_impl_ops) {
366 DEFAULT_IMPL_OP(get_event_attrs),
367 DEFAULT_IMPL_OP(get_format_attrs),
368 DEFAULT_IMPL_OP(get_identifier),
369 DEFAULT_IMPL_OP(get_name),
370 DEFAULT_IMPL_OP(is_cycle_counter_event),
371 DEFAULT_IMPL_OP(event_type),
372 DEFAULT_IMPL_OP(set_cc_filter),
373 DEFAULT_IMPL_OP(set_ev_filter),
374 DEFAULT_IMPL_OP(event_attr_is_visible),
375 };
376
377 /* Firmware may override implementer/product ID from PMIIDR */
378 if (apmt_node && apmt_node->impl_id)
379 cspmu->impl.pmiidr = apmt_node->impl_id;
380
381 /* Find implementer specific attribute ops. */
382 match = arm_cspmu_impl_match_get(cspmu->impl.pmiidr);
383
384 /* Load implementer module and initialize the callbacks. */
385 if (match) {
386 mutex_lock(&arm_cspmu_lock);
387
388 if (match->impl_init_ops) {
389 /* Prevent unload until PMU registration is done. */
390 if (try_module_get(match->module)) {
391 cspmu->impl.module = match->module;
392 cspmu->impl.match = match;
393 ret = match->impl_init_ops(cspmu);
394 if (ret)
395 module_put(match->module);
396 } else {
397 WARN(1, "arm_cspmu failed to get module: %s\n",
398 match->module_name);
399 ret = -EINVAL;
400 }
401 } else {
402 request_module_nowait(match->module_name);
403 ret = -EPROBE_DEFER;
404 }
405
406 mutex_unlock(&arm_cspmu_lock);
407 }
408
409 return ret;
410 }
411
412 static struct attribute_group *
arm_cspmu_alloc_event_attr_group(struct arm_cspmu * cspmu)413 arm_cspmu_alloc_event_attr_group(struct arm_cspmu *cspmu)
414 {
415 struct attribute_group *event_group;
416 struct device *dev = cspmu->dev;
417 const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
418
419 event_group =
420 devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
421 if (!event_group)
422 return NULL;
423
424 event_group->name = "events";
425 event_group->is_visible = impl_ops->event_attr_is_visible;
426 event_group->attrs = impl_ops->get_event_attrs(cspmu);
427
428 if (!event_group->attrs)
429 return NULL;
430
431 return event_group;
432 }
433
434 static struct attribute_group *
arm_cspmu_alloc_format_attr_group(struct arm_cspmu * cspmu)435 arm_cspmu_alloc_format_attr_group(struct arm_cspmu *cspmu)
436 {
437 struct attribute_group *format_group;
438 struct device *dev = cspmu->dev;
439
440 format_group =
441 devm_kzalloc(dev, sizeof(struct attribute_group), GFP_KERNEL);
442 if (!format_group)
443 return NULL;
444
445 format_group->name = "format";
446 format_group->attrs = cspmu->impl.ops.get_format_attrs(cspmu);
447
448 if (!format_group->attrs)
449 return NULL;
450
451 return format_group;
452 }
453
arm_cspmu_alloc_attr_groups(struct arm_cspmu * cspmu)454 static int arm_cspmu_alloc_attr_groups(struct arm_cspmu *cspmu)
455 {
456 const struct attribute_group **attr_groups = cspmu->attr_groups;
457 const struct arm_cspmu_impl_ops *impl_ops = &cspmu->impl.ops;
458
459 cspmu->identifier = impl_ops->get_identifier(cspmu);
460 cspmu->name = impl_ops->get_name(cspmu);
461
462 if (!cspmu->identifier || !cspmu->name)
463 return -ENOMEM;
464
465 attr_groups[0] = arm_cspmu_alloc_event_attr_group(cspmu);
466 attr_groups[1] = arm_cspmu_alloc_format_attr_group(cspmu);
467 attr_groups[2] = &arm_cspmu_identifier_attr_group;
468 attr_groups[3] = &arm_cspmu_cpumask_attr_group;
469
470 if (!attr_groups[0] || !attr_groups[1])
471 return -ENOMEM;
472
473 return 0;
474 }
475
arm_cspmu_reset_counters(struct arm_cspmu * cspmu)476 static inline void arm_cspmu_reset_counters(struct arm_cspmu *cspmu)
477 {
478 writel(PMCR_C | PMCR_P, cspmu->base0 + PMCR);
479 }
480
arm_cspmu_start_counters(struct arm_cspmu * cspmu)481 static inline void arm_cspmu_start_counters(struct arm_cspmu *cspmu)
482 {
483 writel(PMCR_E, cspmu->base0 + PMCR);
484 }
485
arm_cspmu_stop_counters(struct arm_cspmu * cspmu)486 static inline void arm_cspmu_stop_counters(struct arm_cspmu *cspmu)
487 {
488 writel(0, cspmu->base0 + PMCR);
489 }
490
arm_cspmu_enable(struct pmu * pmu)491 static void arm_cspmu_enable(struct pmu *pmu)
492 {
493 bool disabled;
494 struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
495
496 disabled = bitmap_empty(cspmu->hw_events.used_ctrs,
497 cspmu->num_logical_ctrs);
498
499 if (disabled)
500 return;
501
502 arm_cspmu_start_counters(cspmu);
503 }
504
arm_cspmu_disable(struct pmu * pmu)505 static void arm_cspmu_disable(struct pmu *pmu)
506 {
507 struct arm_cspmu *cspmu = to_arm_cspmu(pmu);
508
509 arm_cspmu_stop_counters(cspmu);
510 }
511
arm_cspmu_get_event_idx(struct arm_cspmu_hw_events * hw_events,struct perf_event * event)512 static int arm_cspmu_get_event_idx(struct arm_cspmu_hw_events *hw_events,
513 struct perf_event *event)
514 {
515 int idx, ret;
516 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
517
518 if (supports_cycle_counter(cspmu)) {
519 if (cspmu->impl.ops.is_cycle_counter_event(event)) {
520 /* Search for available cycle counter. */
521 if (test_and_set_bit(cspmu->cycle_counter_logical_idx,
522 hw_events->used_ctrs))
523 return -EAGAIN;
524
525 return cspmu->cycle_counter_logical_idx;
526 }
527
528 /*
529 * Search a regular counter from the used counter bitmap.
530 * The cycle counter divides the bitmap into two parts. Search
531 * the first then second half to exclude the cycle counter bit.
532 */
533 idx = find_first_zero_bit(hw_events->used_ctrs,
534 cspmu->cycle_counter_logical_idx);
535 if (idx >= cspmu->cycle_counter_logical_idx) {
536 idx = find_next_zero_bit(
537 hw_events->used_ctrs,
538 cspmu->num_logical_ctrs,
539 cspmu->cycle_counter_logical_idx + 1);
540 }
541 } else {
542 idx = find_first_zero_bit(hw_events->used_ctrs,
543 cspmu->num_logical_ctrs);
544 }
545
546 if (idx >= cspmu->num_logical_ctrs)
547 return -EAGAIN;
548
549 if (cspmu->impl.ops.validate_event) {
550 ret = cspmu->impl.ops.validate_event(cspmu, event);
551 if (ret)
552 return ret;
553 }
554
555 set_bit(idx, hw_events->used_ctrs);
556
557 return idx;
558 }
559
arm_cspmu_validate_event(struct pmu * pmu,struct arm_cspmu_hw_events * hw_events,struct perf_event * event)560 static bool arm_cspmu_validate_event(struct pmu *pmu,
561 struct arm_cspmu_hw_events *hw_events,
562 struct perf_event *event)
563 {
564 if (is_software_event(event))
565 return true;
566
567 /* Reject groups spanning multiple HW PMUs. */
568 if (event->pmu != pmu)
569 return false;
570
571 return (arm_cspmu_get_event_idx(hw_events, event) >= 0);
572 }
573
574 /*
575 * Make sure the group of events can be scheduled at once
576 * on the PMU.
577 */
arm_cspmu_validate_group(struct perf_event * event)578 static bool arm_cspmu_validate_group(struct perf_event *event)
579 {
580 struct perf_event *sibling, *leader = event->group_leader;
581 struct arm_cspmu_hw_events fake_hw_events;
582
583 if (event->group_leader == event)
584 return true;
585
586 memset(&fake_hw_events, 0, sizeof(fake_hw_events));
587
588 if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events, leader))
589 return false;
590
591 for_each_sibling_event(sibling, leader) {
592 if (!arm_cspmu_validate_event(event->pmu, &fake_hw_events,
593 sibling))
594 return false;
595 }
596
597 return arm_cspmu_validate_event(event->pmu, &fake_hw_events, event);
598 }
599
arm_cspmu_event_init(struct perf_event * event)600 static int arm_cspmu_event_init(struct perf_event *event)
601 {
602 struct arm_cspmu *cspmu;
603 struct hw_perf_event *hwc = &event->hw;
604
605 cspmu = to_arm_cspmu(event->pmu);
606
607 if (event->attr.type != event->pmu->type)
608 return -ENOENT;
609
610 /*
611 * Following other "uncore" PMUs, we do not support sampling mode or
612 * attach to a task (per-process mode).
613 */
614 if (is_sampling_event(event)) {
615 dev_dbg(cspmu->pmu.dev,
616 "Can't support sampling events\n");
617 return -EOPNOTSUPP;
618 }
619
620 if (event->cpu < 0 || event->attach_state & PERF_ATTACH_TASK) {
621 dev_dbg(cspmu->pmu.dev,
622 "Can't support per-task counters\n");
623 return -EINVAL;
624 }
625
626 /*
627 * Make sure the CPU assignment is on one of the CPUs associated with
628 * this PMU.
629 */
630 if (!cpumask_test_cpu(event->cpu, &cspmu->associated_cpus)) {
631 dev_dbg(cspmu->pmu.dev,
632 "Requested cpu is not associated with the PMU\n");
633 return -EINVAL;
634 }
635
636 /* Enforce the current active CPU to handle the events in this PMU. */
637 event->cpu = cpumask_first(&cspmu->active_cpu);
638 if (event->cpu >= nr_cpu_ids)
639 return -EINVAL;
640
641 if (!arm_cspmu_validate_group(event))
642 return -EINVAL;
643
644 /*
645 * The logical counter id is tracked with hw_perf_event.extra_reg.idx.
646 * The physical counter id is tracked with hw_perf_event.idx.
647 * We don't assign an index until we actually place the event onto
648 * hardware. Use -1 to signify that we haven't decided where to put it
649 * yet.
650 */
651 hwc->idx = -1;
652 hwc->extra_reg.idx = -1;
653 hwc->config = cspmu->impl.ops.event_type(event);
654
655 return 0;
656 }
657
counter_offset(u32 reg_sz,u32 ctr_idx)658 static inline u32 counter_offset(u32 reg_sz, u32 ctr_idx)
659 {
660 return (PMEVCNTR_LO + (reg_sz * ctr_idx));
661 }
662
arm_cspmu_write_counter(struct perf_event * event,u64 val)663 static void arm_cspmu_write_counter(struct perf_event *event, u64 val)
664 {
665 u32 offset;
666 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
667
668 if (use_64b_counter_reg(cspmu)) {
669 offset = counter_offset(sizeof(u64), event->hw.idx);
670
671 if (cspmu->has_atomic_dword)
672 writeq(val, cspmu->base1 + offset);
673 else
674 lo_hi_writeq(val, cspmu->base1 + offset);
675 } else {
676 offset = counter_offset(sizeof(u32), event->hw.idx);
677
678 writel(lower_32_bits(val), cspmu->base1 + offset);
679 }
680 }
681
arm_cspmu_read_counter(struct perf_event * event)682 static u64 arm_cspmu_read_counter(struct perf_event *event)
683 {
684 u32 offset;
685 const void __iomem *counter_addr;
686 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
687
688 if (use_64b_counter_reg(cspmu)) {
689 offset = counter_offset(sizeof(u64), event->hw.idx);
690 counter_addr = cspmu->base1 + offset;
691
692 return cspmu->has_atomic_dword ?
693 readq(counter_addr) :
694 read_reg64_hilohi(counter_addr, HILOHI_MAX_POLL);
695 }
696
697 offset = counter_offset(sizeof(u32), event->hw.idx);
698 return readl(cspmu->base1 + offset);
699 }
700
701 /*
702 * arm_cspmu_set_event_period: Set the period for the counter.
703 *
704 * To handle cases of extreme interrupt latency, we program
705 * the counter with half of the max count for the counters.
706 */
arm_cspmu_set_event_period(struct perf_event * event)707 static void arm_cspmu_set_event_period(struct perf_event *event)
708 {
709 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
710 u64 val = counter_mask(cspmu) >> 1ULL;
711
712 local64_set(&event->hw.prev_count, val);
713 arm_cspmu_write_counter(event, val);
714 }
715
arm_cspmu_enable_counter(struct arm_cspmu * cspmu,int idx)716 static void arm_cspmu_enable_counter(struct arm_cspmu *cspmu, int idx)
717 {
718 u32 reg_id, reg_bit, inten_off, cnten_off;
719
720 reg_id = COUNTER_TO_SET_CLR_ID(idx);
721 reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
722
723 inten_off = PMINTENSET + (4 * reg_id);
724 cnten_off = PMCNTENSET + (4 * reg_id);
725
726 writel(BIT(reg_bit), cspmu->base0 + inten_off);
727 writel(BIT(reg_bit), cspmu->base0 + cnten_off);
728 }
729
arm_cspmu_disable_counter(struct arm_cspmu * cspmu,int idx)730 static void arm_cspmu_disable_counter(struct arm_cspmu *cspmu, int idx)
731 {
732 u32 reg_id, reg_bit, inten_off, cnten_off;
733
734 reg_id = COUNTER_TO_SET_CLR_ID(idx);
735 reg_bit = COUNTER_TO_SET_CLR_BIT(idx);
736
737 inten_off = PMINTENCLR + (4 * reg_id);
738 cnten_off = PMCNTENCLR + (4 * reg_id);
739
740 writel(BIT(reg_bit), cspmu->base0 + cnten_off);
741 writel(BIT(reg_bit), cspmu->base0 + inten_off);
742 }
743
arm_cspmu_event_update(struct perf_event * event)744 static void arm_cspmu_event_update(struct perf_event *event)
745 {
746 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
747 struct hw_perf_event *hwc = &event->hw;
748 u64 delta, prev, now;
749
750 do {
751 prev = local64_read(&hwc->prev_count);
752 now = arm_cspmu_read_counter(event);
753 } while (local64_cmpxchg(&hwc->prev_count, prev, now) != prev);
754
755 delta = (now - prev) & counter_mask(cspmu);
756 local64_add(delta, &event->count);
757 }
758
arm_cspmu_set_event(struct arm_cspmu * cspmu,struct hw_perf_event * hwc)759 static inline void arm_cspmu_set_event(struct arm_cspmu *cspmu,
760 struct hw_perf_event *hwc)
761 {
762 u32 offset = PMEVTYPER + (4 * hwc->idx);
763
764 writel(hwc->config, cspmu->base0 + offset);
765 }
766
arm_cspmu_set_ev_filter(struct arm_cspmu * cspmu,const struct perf_event * event)767 static void arm_cspmu_set_ev_filter(struct arm_cspmu *cspmu,
768 const struct perf_event *event)
769 {
770 u32 filter = event->attr.config1 & ARM_CSPMU_FILTER_MASK;
771 u32 filter2 = event->attr.config2 & ARM_CSPMU_FILTER_MASK;
772 u32 offset = 4 * event->hw.idx;
773
774 writel(filter, cspmu->base0 + PMEVFILTR + offset);
775 writel(filter2, cspmu->base0 + PMEVFILT2R + offset);
776 }
777
arm_cspmu_set_cc_filter(struct arm_cspmu * cspmu,const struct perf_event * event)778 static void arm_cspmu_set_cc_filter(struct arm_cspmu *cspmu,
779 const struct perf_event *event)
780 {
781 u32 filter = event->attr.config1 & ARM_CSPMU_FILTER_MASK;
782
783 writel(filter, cspmu->base0 + PMCCFILTR);
784 }
785
arm_cspmu_start(struct perf_event * event,int pmu_flags)786 static void arm_cspmu_start(struct perf_event *event, int pmu_flags)
787 {
788 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
789 struct hw_perf_event *hwc = &event->hw;
790
791 /* We always reprogram the counter */
792 if (pmu_flags & PERF_EF_RELOAD)
793 WARN_ON(!(hwc->state & PERF_HES_UPTODATE));
794
795 arm_cspmu_set_event_period(event);
796
797 if (event->hw.extra_reg.idx == cspmu->cycle_counter_logical_idx) {
798 cspmu->impl.ops.set_cc_filter(cspmu, event);
799 } else {
800 arm_cspmu_set_event(cspmu, hwc);
801 cspmu->impl.ops.set_ev_filter(cspmu, event);
802 }
803
804 hwc->state = 0;
805
806 arm_cspmu_enable_counter(cspmu, hwc->idx);
807 }
808
arm_cspmu_stop(struct perf_event * event,int pmu_flags)809 static void arm_cspmu_stop(struct perf_event *event, int pmu_flags)
810 {
811 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
812 struct hw_perf_event *hwc = &event->hw;
813
814 if (hwc->state & PERF_HES_STOPPED)
815 return;
816
817 arm_cspmu_disable_counter(cspmu, hwc->idx);
818 arm_cspmu_event_update(event);
819
820 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
821 }
822
to_phys_idx(struct arm_cspmu * cspmu,u32 idx)823 static inline u32 to_phys_idx(struct arm_cspmu *cspmu, u32 idx)
824 {
825 return (idx == cspmu->cycle_counter_logical_idx) ?
826 ARM_CSPMU_CYCLE_CNTR_IDX : idx;
827 }
828
arm_cspmu_add(struct perf_event * event,int flags)829 static int arm_cspmu_add(struct perf_event *event, int flags)
830 {
831 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
832 struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
833 struct hw_perf_event *hwc = &event->hw;
834 int idx;
835
836 if (WARN_ON_ONCE(!cpumask_test_cpu(smp_processor_id(),
837 &cspmu->associated_cpus)))
838 return -ENOENT;
839
840 idx = arm_cspmu_get_event_idx(hw_events, event);
841 if (idx < 0)
842 return idx;
843
844 hw_events->events[idx] = event;
845 hwc->idx = to_phys_idx(cspmu, idx);
846 hwc->extra_reg.idx = idx;
847 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
848
849 if (flags & PERF_EF_START)
850 arm_cspmu_start(event, PERF_EF_RELOAD);
851
852 /* Propagate changes to the userspace mapping. */
853 perf_event_update_userpage(event);
854
855 return 0;
856 }
857
arm_cspmu_del(struct perf_event * event,int flags)858 static void arm_cspmu_del(struct perf_event *event, int flags)
859 {
860 struct arm_cspmu *cspmu = to_arm_cspmu(event->pmu);
861 struct arm_cspmu_hw_events *hw_events = &cspmu->hw_events;
862 struct hw_perf_event *hwc = &event->hw;
863 int idx = hwc->extra_reg.idx;
864
865 arm_cspmu_stop(event, PERF_EF_UPDATE);
866
867 hw_events->events[idx] = NULL;
868
869 clear_bit(idx, hw_events->used_ctrs);
870
871 perf_event_update_userpage(event);
872 }
873
arm_cspmu_read(struct perf_event * event)874 static void arm_cspmu_read(struct perf_event *event)
875 {
876 arm_cspmu_event_update(event);
877 }
878
arm_cspmu_alloc(struct platform_device * pdev)879 static struct arm_cspmu *arm_cspmu_alloc(struct platform_device *pdev)
880 {
881 struct acpi_apmt_node *apmt_node;
882 struct arm_cspmu *cspmu;
883 struct device *dev = &pdev->dev;
884
885 cspmu = devm_kzalloc(dev, sizeof(*cspmu), GFP_KERNEL);
886 if (!cspmu)
887 return NULL;
888
889 cspmu->dev = dev;
890 platform_set_drvdata(pdev, cspmu);
891
892 apmt_node = arm_cspmu_apmt_node(dev);
893 if (apmt_node) {
894 cspmu->has_atomic_dword = apmt_node->flags & ACPI_APMT_FLAGS_ATOMIC;
895 } else {
896 u32 width = 0;
897
898 device_property_read_u32(dev, "reg-io-width", &width);
899 cspmu->has_atomic_dword = (width == 8);
900 }
901
902 return cspmu;
903 }
904
arm_cspmu_init_mmio(struct arm_cspmu * cspmu)905 static int arm_cspmu_init_mmio(struct arm_cspmu *cspmu)
906 {
907 struct device *dev;
908 struct platform_device *pdev;
909
910 dev = cspmu->dev;
911 pdev = to_platform_device(dev);
912
913 /* Base address for page 0. */
914 cspmu->base0 = devm_platform_ioremap_resource(pdev, 0);
915 if (IS_ERR(cspmu->base0)) {
916 dev_err(dev, "ioremap failed for page-0 resource\n");
917 return PTR_ERR(cspmu->base0);
918 }
919
920 /* Base address for page 1 if supported. Otherwise point to page 0. */
921 cspmu->base1 = cspmu->base0;
922 if (platform_get_resource(pdev, IORESOURCE_MEM, 1)) {
923 cspmu->base1 = devm_platform_ioremap_resource(pdev, 1);
924 if (IS_ERR(cspmu->base1)) {
925 dev_err(dev, "ioremap failed for page-1 resource\n");
926 return PTR_ERR(cspmu->base1);
927 }
928 }
929
930 cspmu->pmcfgr = readl(cspmu->base0 + PMCFGR);
931
932 cspmu->num_logical_ctrs = FIELD_GET(PMCFGR_N, cspmu->pmcfgr) + 1;
933
934 cspmu->cycle_counter_logical_idx = ARM_CSPMU_MAX_HW_CNTRS;
935
936 if (supports_cycle_counter(cspmu)) {
937 /*
938 * The last logical counter is mapped to cycle counter if
939 * there is a gap between regular and cycle counter. Otherwise,
940 * logical and physical have 1-to-1 mapping.
941 */
942 cspmu->cycle_counter_logical_idx =
943 (cspmu->num_logical_ctrs <= ARM_CSPMU_CYCLE_CNTR_IDX) ?
944 cspmu->num_logical_ctrs - 1 :
945 ARM_CSPMU_CYCLE_CNTR_IDX;
946 }
947
948 cspmu->num_set_clr_reg =
949 DIV_ROUND_UP(cspmu->num_logical_ctrs,
950 ARM_CSPMU_SET_CLR_COUNTER_NUM);
951
952 cspmu->hw_events.events =
953 devm_kcalloc(dev, cspmu->num_logical_ctrs,
954 sizeof(*cspmu->hw_events.events), GFP_KERNEL);
955
956 if (!cspmu->hw_events.events)
957 return -ENOMEM;
958
959 return 0;
960 }
961
arm_cspmu_get_reset_overflow(struct arm_cspmu * cspmu,u32 * pmovs)962 static inline int arm_cspmu_get_reset_overflow(struct arm_cspmu *cspmu,
963 u32 *pmovs)
964 {
965 int i;
966 u32 pmovclr_offset = PMOVSCLR;
967 u32 has_overflowed = 0;
968
969 for (i = 0; i < cspmu->num_set_clr_reg; ++i) {
970 pmovs[i] = readl(cspmu->base1 + pmovclr_offset);
971 has_overflowed |= pmovs[i];
972 writel(pmovs[i], cspmu->base1 + pmovclr_offset);
973 pmovclr_offset += sizeof(u32);
974 }
975
976 return has_overflowed != 0;
977 }
978
arm_cspmu_handle_irq(int irq_num,void * dev)979 static irqreturn_t arm_cspmu_handle_irq(int irq_num, void *dev)
980 {
981 int idx, has_overflowed;
982 struct perf_event *event;
983 struct arm_cspmu *cspmu = dev;
984 DECLARE_BITMAP(pmovs, ARM_CSPMU_MAX_HW_CNTRS);
985 bool handled = false;
986
987 arm_cspmu_stop_counters(cspmu);
988
989 has_overflowed = arm_cspmu_get_reset_overflow(cspmu, (u32 *)pmovs);
990 if (!has_overflowed)
991 goto done;
992
993 for_each_set_bit(idx, cspmu->hw_events.used_ctrs,
994 cspmu->num_logical_ctrs) {
995 event = cspmu->hw_events.events[idx];
996
997 if (!event)
998 continue;
999
1000 if (!test_bit(event->hw.idx, pmovs))
1001 continue;
1002
1003 arm_cspmu_event_update(event);
1004 arm_cspmu_set_event_period(event);
1005
1006 handled = true;
1007 }
1008
1009 done:
1010 arm_cspmu_start_counters(cspmu);
1011 return IRQ_RETVAL(handled);
1012 }
1013
arm_cspmu_request_irq(struct arm_cspmu * cspmu)1014 static int arm_cspmu_request_irq(struct arm_cspmu *cspmu)
1015 {
1016 int irq, ret;
1017 struct device *dev;
1018 struct platform_device *pdev;
1019
1020 dev = cspmu->dev;
1021 pdev = to_platform_device(dev);
1022
1023 /* Skip IRQ request if the PMU does not support overflow interrupt. */
1024 irq = platform_get_irq_optional(pdev, 0);
1025 if (irq < 0)
1026 return irq == -ENXIO ? 0 : irq;
1027
1028 ret = devm_request_irq(dev, irq, arm_cspmu_handle_irq,
1029 IRQF_NOBALANCING | IRQF_NO_THREAD, dev_name(dev),
1030 cspmu);
1031 if (ret) {
1032 dev_err(dev, "Could not request IRQ %d\n", irq);
1033 return ret;
1034 }
1035
1036 cspmu->irq = irq;
1037
1038 return 0;
1039 }
1040
1041 #if defined(CONFIG_ACPI) && defined(CONFIG_ARM64)
1042 #include <acpi/processor.h>
1043
arm_cspmu_find_cpu_container(int cpu,u32 container_uid)1044 static inline int arm_cspmu_find_cpu_container(int cpu, u32 container_uid)
1045 {
1046 struct device *cpu_dev;
1047 struct acpi_device *acpi_dev;
1048
1049 cpu_dev = get_cpu_device(cpu);
1050 if (!cpu_dev)
1051 return -ENODEV;
1052
1053 acpi_dev = ACPI_COMPANION(cpu_dev);
1054 while (acpi_dev) {
1055 if (acpi_dev_hid_uid_match(acpi_dev, ACPI_PROCESSOR_CONTAINER_HID, container_uid))
1056 return 0;
1057
1058 acpi_dev = acpi_dev_parent(acpi_dev);
1059 }
1060
1061 return -ENODEV;
1062 }
1063
arm_cspmu_acpi_get_cpus(struct arm_cspmu * cspmu)1064 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1065 {
1066 struct acpi_apmt_node *apmt_node;
1067 int affinity_flag;
1068 int cpu;
1069
1070 apmt_node = arm_cspmu_apmt_node(cspmu->dev);
1071 affinity_flag = apmt_node->flags & ACPI_APMT_FLAGS_AFFINITY;
1072
1073 if (affinity_flag == ACPI_APMT_FLAGS_AFFINITY_PROC) {
1074 for_each_possible_cpu(cpu) {
1075 if (apmt_node->proc_affinity ==
1076 get_acpi_id_for_cpu(cpu)) {
1077 cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1078 break;
1079 }
1080 }
1081 } else {
1082 for_each_possible_cpu(cpu) {
1083 if (arm_cspmu_find_cpu_container(
1084 cpu, apmt_node->proc_affinity))
1085 continue;
1086
1087 cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1088 }
1089 }
1090
1091 return 0;
1092 }
1093 #else
arm_cspmu_acpi_get_cpus(struct arm_cspmu * cspmu)1094 static int arm_cspmu_acpi_get_cpus(struct arm_cspmu *cspmu)
1095 {
1096 return -ENODEV;
1097 }
1098 #endif
1099
arm_cspmu_of_get_cpus(struct arm_cspmu * cspmu)1100 static int arm_cspmu_of_get_cpus(struct arm_cspmu *cspmu)
1101 {
1102 struct of_phandle_iterator it;
1103 int ret, cpu;
1104
1105 of_for_each_phandle(&it, ret, dev_of_node(cspmu->dev), "cpus", NULL, 0) {
1106 cpu = of_cpu_node_to_id(it.node);
1107 if (cpu < 0)
1108 continue;
1109 cpumask_set_cpu(cpu, &cspmu->associated_cpus);
1110 }
1111 return ret == -ENOENT ? 0 : ret;
1112 }
1113
arm_cspmu_get_cpus(struct arm_cspmu * cspmu)1114 static int arm_cspmu_get_cpus(struct arm_cspmu *cspmu)
1115 {
1116 int ret = 0;
1117
1118 if (arm_cspmu_apmt_node(cspmu->dev))
1119 ret = arm_cspmu_acpi_get_cpus(cspmu);
1120 else if (device_property_present(cspmu->dev, "cpus"))
1121 ret = arm_cspmu_of_get_cpus(cspmu);
1122 else
1123 cpumask_copy(&cspmu->associated_cpus, cpu_possible_mask);
1124
1125 if (!ret && cpumask_empty(&cspmu->associated_cpus)) {
1126 dev_dbg(cspmu->dev, "No cpu associated with the PMU\n");
1127 ret = -ENODEV;
1128 }
1129 return ret;
1130 }
1131
arm_cspmu_register_pmu(struct arm_cspmu * cspmu)1132 static int arm_cspmu_register_pmu(struct arm_cspmu *cspmu)
1133 {
1134 int ret, capabilities;
1135
1136 ret = arm_cspmu_alloc_attr_groups(cspmu);
1137 if (ret)
1138 return ret;
1139
1140 ret = cpuhp_state_add_instance(arm_cspmu_cpuhp_state,
1141 &cspmu->cpuhp_node);
1142 if (ret)
1143 return ret;
1144
1145 capabilities = PERF_PMU_CAP_NO_EXCLUDE;
1146 if (cspmu->irq == 0)
1147 capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1148
1149 cspmu->pmu = (struct pmu){
1150 .task_ctx_nr = perf_invalid_context,
1151 .module = cspmu->impl.module,
1152 .parent = cspmu->dev,
1153 .pmu_enable = arm_cspmu_enable,
1154 .pmu_disable = arm_cspmu_disable,
1155 .event_init = arm_cspmu_event_init,
1156 .add = arm_cspmu_add,
1157 .del = arm_cspmu_del,
1158 .start = arm_cspmu_start,
1159 .stop = arm_cspmu_stop,
1160 .read = arm_cspmu_read,
1161 .attr_groups = cspmu->attr_groups,
1162 .capabilities = capabilities,
1163 };
1164
1165 /* Hardware counter init */
1166 arm_cspmu_reset_counters(cspmu);
1167
1168 ret = perf_pmu_register(&cspmu->pmu, cspmu->name, -1);
1169 if (ret) {
1170 cpuhp_state_remove_instance(arm_cspmu_cpuhp_state,
1171 &cspmu->cpuhp_node);
1172 }
1173
1174 return ret;
1175 }
1176
arm_cspmu_device_probe(struct platform_device * pdev)1177 static int arm_cspmu_device_probe(struct platform_device *pdev)
1178 {
1179 int ret;
1180 struct arm_cspmu *cspmu;
1181
1182 cspmu = arm_cspmu_alloc(pdev);
1183 if (!cspmu)
1184 return -ENOMEM;
1185
1186 ret = arm_cspmu_init_mmio(cspmu);
1187 if (ret)
1188 return ret;
1189
1190 ret = arm_cspmu_request_irq(cspmu);
1191 if (ret)
1192 return ret;
1193
1194 ret = arm_cspmu_get_cpus(cspmu);
1195 if (ret)
1196 return ret;
1197
1198 ret = arm_cspmu_init_impl_ops(cspmu);
1199 if (ret)
1200 return ret;
1201
1202 ret = arm_cspmu_register_pmu(cspmu);
1203
1204 /* Matches arm_cspmu_init_impl_ops() above. */
1205 if (cspmu->impl.module != THIS_MODULE)
1206 module_put(cspmu->impl.module);
1207
1208 return ret;
1209 }
1210
arm_cspmu_device_remove(struct platform_device * pdev)1211 static void arm_cspmu_device_remove(struct platform_device *pdev)
1212 {
1213 struct arm_cspmu *cspmu = platform_get_drvdata(pdev);
1214
1215 perf_pmu_unregister(&cspmu->pmu);
1216 cpuhp_state_remove_instance(arm_cspmu_cpuhp_state, &cspmu->cpuhp_node);
1217 }
1218
1219 static const struct platform_device_id arm_cspmu_id[] = {
1220 {DRVNAME, 0},
1221 { },
1222 };
1223 MODULE_DEVICE_TABLE(platform, arm_cspmu_id);
1224
1225 static const struct of_device_id arm_cspmu_of_match[] = {
1226 { .compatible = "arm,coresight-pmu" },
1227 {}
1228 };
1229 MODULE_DEVICE_TABLE(of, arm_cspmu_of_match);
1230
1231 static struct platform_driver arm_cspmu_driver = {
1232 .driver = {
1233 .name = DRVNAME,
1234 .of_match_table = arm_cspmu_of_match,
1235 .suppress_bind_attrs = true,
1236 },
1237 .probe = arm_cspmu_device_probe,
1238 .remove = arm_cspmu_device_remove,
1239 .id_table = arm_cspmu_id,
1240 };
1241
arm_cspmu_set_active_cpu(int cpu,struct arm_cspmu * cspmu)1242 static void arm_cspmu_set_active_cpu(int cpu, struct arm_cspmu *cspmu)
1243 {
1244 cpumask_set_cpu(cpu, &cspmu->active_cpu);
1245 if (cspmu->irq)
1246 WARN_ON(irq_set_affinity(cspmu->irq, &cspmu->active_cpu));
1247 }
1248
arm_cspmu_cpu_online(unsigned int cpu,struct hlist_node * node)1249 static int arm_cspmu_cpu_online(unsigned int cpu, struct hlist_node *node)
1250 {
1251 struct arm_cspmu *cspmu =
1252 hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1253
1254 if (!cpumask_test_cpu(cpu, &cspmu->associated_cpus))
1255 return 0;
1256
1257 /* If the PMU is already managed, there is nothing to do */
1258 if (!cpumask_empty(&cspmu->active_cpu))
1259 return 0;
1260
1261 /* Use this CPU for event counting */
1262 arm_cspmu_set_active_cpu(cpu, cspmu);
1263
1264 return 0;
1265 }
1266
arm_cspmu_cpu_teardown(unsigned int cpu,struct hlist_node * node)1267 static int arm_cspmu_cpu_teardown(unsigned int cpu, struct hlist_node *node)
1268 {
1269 unsigned int dst;
1270
1271 struct arm_cspmu *cspmu =
1272 hlist_entry_safe(node, struct arm_cspmu, cpuhp_node);
1273
1274 /* Nothing to do if this CPU doesn't own the PMU */
1275 if (!cpumask_test_and_clear_cpu(cpu, &cspmu->active_cpu))
1276 return 0;
1277
1278 /* Choose a new CPU to migrate ownership of the PMU to */
1279 dst = cpumask_any_and_but(&cspmu->associated_cpus,
1280 cpu_online_mask, cpu);
1281 if (dst >= nr_cpu_ids)
1282 return 0;
1283
1284 /* Use this CPU for event counting */
1285 perf_pmu_migrate_context(&cspmu->pmu, cpu, dst);
1286 arm_cspmu_set_active_cpu(dst, cspmu);
1287
1288 return 0;
1289 }
1290
arm_cspmu_init(void)1291 static int __init arm_cspmu_init(void)
1292 {
1293 int ret;
1294
1295 ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1296 "perf/arm/cspmu:online",
1297 arm_cspmu_cpu_online,
1298 arm_cspmu_cpu_teardown);
1299 if (ret < 0)
1300 return ret;
1301 arm_cspmu_cpuhp_state = ret;
1302 return platform_driver_register(&arm_cspmu_driver);
1303 }
1304
arm_cspmu_exit(void)1305 static void __exit arm_cspmu_exit(void)
1306 {
1307 platform_driver_unregister(&arm_cspmu_driver);
1308 cpuhp_remove_multi_state(arm_cspmu_cpuhp_state);
1309 }
1310
arm_cspmu_impl_register(const struct arm_cspmu_impl_match * impl_match)1311 int arm_cspmu_impl_register(const struct arm_cspmu_impl_match *impl_match)
1312 {
1313 struct arm_cspmu_impl_match *match;
1314 int ret = 0;
1315
1316 match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1317
1318 if (match) {
1319 mutex_lock(&arm_cspmu_lock);
1320
1321 if (!match->impl_init_ops) {
1322 match->module = impl_match->module;
1323 match->impl_init_ops = impl_match->impl_init_ops;
1324 } else {
1325 /* Broken match table may contain non-unique entries */
1326 WARN(1, "arm_cspmu backend already registered for module: %s, pmiidr: 0x%x, mask: 0x%x\n",
1327 match->module_name,
1328 match->pmiidr_val,
1329 match->pmiidr_mask);
1330
1331 ret = -EINVAL;
1332 }
1333
1334 mutex_unlock(&arm_cspmu_lock);
1335
1336 if (!ret)
1337 ret = driver_attach(&arm_cspmu_driver.driver);
1338 } else {
1339 pr_err("arm_cspmu reg failed, unable to find a match for pmiidr: 0x%x\n",
1340 impl_match->pmiidr_val);
1341
1342 ret = -EINVAL;
1343 }
1344
1345 return ret;
1346 }
1347 EXPORT_SYMBOL_GPL(arm_cspmu_impl_register);
1348
arm_cspmu_match_device(struct device * dev,const void * match)1349 static int arm_cspmu_match_device(struct device *dev, const void *match)
1350 {
1351 struct arm_cspmu *cspmu = platform_get_drvdata(to_platform_device(dev));
1352
1353 return (cspmu && cspmu->impl.match == match) ? 1 : 0;
1354 }
1355
arm_cspmu_impl_unregister(const struct arm_cspmu_impl_match * impl_match)1356 void arm_cspmu_impl_unregister(const struct arm_cspmu_impl_match *impl_match)
1357 {
1358 struct device *dev;
1359 struct arm_cspmu_impl_match *match;
1360
1361 match = arm_cspmu_impl_match_get(impl_match->pmiidr_val);
1362
1363 if (WARN_ON(!match))
1364 return;
1365
1366 /* Unbind the driver from all matching backend devices. */
1367 while ((dev = driver_find_device(&arm_cspmu_driver.driver, NULL,
1368 match, arm_cspmu_match_device)))
1369 device_release_driver(dev);
1370
1371 mutex_lock(&arm_cspmu_lock);
1372
1373 match->module = NULL;
1374 match->impl_init_ops = NULL;
1375
1376 mutex_unlock(&arm_cspmu_lock);
1377 }
1378 EXPORT_SYMBOL_GPL(arm_cspmu_impl_unregister);
1379
1380 module_init(arm_cspmu_init);
1381 module_exit(arm_cspmu_exit);
1382
1383 MODULE_DESCRIPTION("ARM CoreSight Architecture Performance Monitor Driver");
1384 MODULE_LICENSE("GPL v2");
1385