1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Common code for the NVMe target.
4  * Copyright (c) 2015-2016 HGST, a Western Digital Company.
5  */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/random.h>
9 #include <linux/rculist.h>
10 #include <linux/pci-p2pdma.h>
11 #include <linux/scatterlist.h>
12 
13 #include <generated/utsrelease.h>
14 
15 #define CREATE_TRACE_POINTS
16 #include "trace.h"
17 
18 #include "nvmet.h"
19 #include "debugfs.h"
20 
21 struct kmem_cache *nvmet_bvec_cache;
22 struct workqueue_struct *buffered_io_wq;
23 struct workqueue_struct *zbd_wq;
24 static const struct nvmet_fabrics_ops *nvmet_transports[NVMF_TRTYPE_MAX];
25 static DEFINE_IDA(cntlid_ida);
26 
27 struct workqueue_struct *nvmet_wq;
28 EXPORT_SYMBOL_GPL(nvmet_wq);
29 
30 /*
31  * This read/write semaphore is used to synchronize access to configuration
32  * information on a target system that will result in discovery log page
33  * information change for at least one host.
34  * The full list of resources to protected by this semaphore is:
35  *
36  *  - subsystems list
37  *  - per-subsystem allowed hosts list
38  *  - allow_any_host subsystem attribute
39  *  - nvmet_genctr
40  *  - the nvmet_transports array
41  *
42  * When updating any of those lists/structures write lock should be obtained,
43  * while when reading (popolating discovery log page or checking host-subsystem
44  * link) read lock is obtained to allow concurrent reads.
45  */
46 DECLARE_RWSEM(nvmet_config_sem);
47 
48 u32 nvmet_ana_group_enabled[NVMET_MAX_ANAGRPS + 1];
49 u64 nvmet_ana_chgcnt;
50 DECLARE_RWSEM(nvmet_ana_sem);
51 
errno_to_nvme_status(struct nvmet_req * req,int errno)52 inline u16 errno_to_nvme_status(struct nvmet_req *req, int errno)
53 {
54 	switch (errno) {
55 	case 0:
56 		return NVME_SC_SUCCESS;
57 	case -ENOSPC:
58 		req->error_loc = offsetof(struct nvme_rw_command, length);
59 		return NVME_SC_CAP_EXCEEDED | NVME_STATUS_DNR;
60 	case -EREMOTEIO:
61 		req->error_loc = offsetof(struct nvme_rw_command, slba);
62 		return  NVME_SC_LBA_RANGE | NVME_STATUS_DNR;
63 	case -EOPNOTSUPP:
64 		req->error_loc = offsetof(struct nvme_common_command, opcode);
65 		switch (req->cmd->common.opcode) {
66 		case nvme_cmd_dsm:
67 		case nvme_cmd_write_zeroes:
68 			return NVME_SC_ONCS_NOT_SUPPORTED | NVME_STATUS_DNR;
69 		default:
70 			return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
71 		}
72 		break;
73 	case -ENODATA:
74 		req->error_loc = offsetof(struct nvme_rw_command, nsid);
75 		return NVME_SC_ACCESS_DENIED;
76 	case -EIO:
77 		fallthrough;
78 	default:
79 		req->error_loc = offsetof(struct nvme_common_command, opcode);
80 		return NVME_SC_INTERNAL | NVME_STATUS_DNR;
81 	}
82 }
83 
nvmet_report_invalid_opcode(struct nvmet_req * req)84 u16 nvmet_report_invalid_opcode(struct nvmet_req *req)
85 {
86 	pr_debug("unhandled cmd %d on qid %d\n", req->cmd->common.opcode,
87 		 req->sq->qid);
88 
89 	req->error_loc = offsetof(struct nvme_common_command, opcode);
90 	return NVME_SC_INVALID_OPCODE | NVME_STATUS_DNR;
91 }
92 
93 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
94 		const char *subsysnqn);
95 
nvmet_copy_to_sgl(struct nvmet_req * req,off_t off,const void * buf,size_t len)96 u16 nvmet_copy_to_sgl(struct nvmet_req *req, off_t off, const void *buf,
97 		size_t len)
98 {
99 	if (sg_pcopy_from_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
100 		req->error_loc = offsetof(struct nvme_common_command, dptr);
101 		return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
102 	}
103 	return 0;
104 }
105 
nvmet_copy_from_sgl(struct nvmet_req * req,off_t off,void * buf,size_t len)106 u16 nvmet_copy_from_sgl(struct nvmet_req *req, off_t off, void *buf, size_t len)
107 {
108 	if (sg_pcopy_to_buffer(req->sg, req->sg_cnt, buf, len, off) != len) {
109 		req->error_loc = offsetof(struct nvme_common_command, dptr);
110 		return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
111 	}
112 	return 0;
113 }
114 
nvmet_zero_sgl(struct nvmet_req * req,off_t off,size_t len)115 u16 nvmet_zero_sgl(struct nvmet_req *req, off_t off, size_t len)
116 {
117 	if (sg_zero_buffer(req->sg, req->sg_cnt, len, off) != len) {
118 		req->error_loc = offsetof(struct nvme_common_command, dptr);
119 		return NVME_SC_SGL_INVALID_DATA | NVME_STATUS_DNR;
120 	}
121 	return 0;
122 }
123 
nvmet_max_nsid(struct nvmet_subsys * subsys)124 static u32 nvmet_max_nsid(struct nvmet_subsys *subsys)
125 {
126 	struct nvmet_ns *cur;
127 	unsigned long idx;
128 	u32 nsid = 0;
129 
130 	nvmet_for_each_enabled_ns(&subsys->namespaces, idx, cur)
131 		nsid = cur->nsid;
132 
133 	return nsid;
134 }
135 
nvmet_async_event_result(struct nvmet_async_event * aen)136 static u32 nvmet_async_event_result(struct nvmet_async_event *aen)
137 {
138 	return aen->event_type | (aen->event_info << 8) | (aen->log_page << 16);
139 }
140 
nvmet_async_events_failall(struct nvmet_ctrl * ctrl)141 static void nvmet_async_events_failall(struct nvmet_ctrl *ctrl)
142 {
143 	struct nvmet_req *req;
144 
145 	mutex_lock(&ctrl->lock);
146 	while (ctrl->nr_async_event_cmds) {
147 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
148 		mutex_unlock(&ctrl->lock);
149 		nvmet_req_complete(req, NVME_SC_INTERNAL | NVME_STATUS_DNR);
150 		mutex_lock(&ctrl->lock);
151 	}
152 	mutex_unlock(&ctrl->lock);
153 }
154 
nvmet_async_events_process(struct nvmet_ctrl * ctrl)155 static void nvmet_async_events_process(struct nvmet_ctrl *ctrl)
156 {
157 	struct nvmet_async_event *aen;
158 	struct nvmet_req *req;
159 
160 	mutex_lock(&ctrl->lock);
161 	while (ctrl->nr_async_event_cmds && !list_empty(&ctrl->async_events)) {
162 		aen = list_first_entry(&ctrl->async_events,
163 				       struct nvmet_async_event, entry);
164 		req = ctrl->async_event_cmds[--ctrl->nr_async_event_cmds];
165 		nvmet_set_result(req, nvmet_async_event_result(aen));
166 
167 		list_del(&aen->entry);
168 		kfree(aen);
169 
170 		mutex_unlock(&ctrl->lock);
171 		trace_nvmet_async_event(ctrl, req->cqe->result.u32);
172 		nvmet_req_complete(req, 0);
173 		mutex_lock(&ctrl->lock);
174 	}
175 	mutex_unlock(&ctrl->lock);
176 }
177 
nvmet_async_events_free(struct nvmet_ctrl * ctrl)178 static void nvmet_async_events_free(struct nvmet_ctrl *ctrl)
179 {
180 	struct nvmet_async_event *aen, *tmp;
181 
182 	mutex_lock(&ctrl->lock);
183 	list_for_each_entry_safe(aen, tmp, &ctrl->async_events, entry) {
184 		list_del(&aen->entry);
185 		kfree(aen);
186 	}
187 	mutex_unlock(&ctrl->lock);
188 }
189 
nvmet_async_event_work(struct work_struct * work)190 static void nvmet_async_event_work(struct work_struct *work)
191 {
192 	struct nvmet_ctrl *ctrl =
193 		container_of(work, struct nvmet_ctrl, async_event_work);
194 
195 	nvmet_async_events_process(ctrl);
196 }
197 
nvmet_add_async_event(struct nvmet_ctrl * ctrl,u8 event_type,u8 event_info,u8 log_page)198 void nvmet_add_async_event(struct nvmet_ctrl *ctrl, u8 event_type,
199 		u8 event_info, u8 log_page)
200 {
201 	struct nvmet_async_event *aen;
202 
203 	aen = kmalloc(sizeof(*aen), GFP_KERNEL);
204 	if (!aen)
205 		return;
206 
207 	aen->event_type = event_type;
208 	aen->event_info = event_info;
209 	aen->log_page = log_page;
210 
211 	mutex_lock(&ctrl->lock);
212 	list_add_tail(&aen->entry, &ctrl->async_events);
213 	mutex_unlock(&ctrl->lock);
214 
215 	queue_work(nvmet_wq, &ctrl->async_event_work);
216 }
217 
nvmet_add_to_changed_ns_log(struct nvmet_ctrl * ctrl,__le32 nsid)218 static void nvmet_add_to_changed_ns_log(struct nvmet_ctrl *ctrl, __le32 nsid)
219 {
220 	u32 i;
221 
222 	mutex_lock(&ctrl->lock);
223 	if (ctrl->nr_changed_ns > NVME_MAX_CHANGED_NAMESPACES)
224 		goto out_unlock;
225 
226 	for (i = 0; i < ctrl->nr_changed_ns; i++) {
227 		if (ctrl->changed_ns_list[i] == nsid)
228 			goto out_unlock;
229 	}
230 
231 	if (ctrl->nr_changed_ns == NVME_MAX_CHANGED_NAMESPACES) {
232 		ctrl->changed_ns_list[0] = cpu_to_le32(0xffffffff);
233 		ctrl->nr_changed_ns = U32_MAX;
234 		goto out_unlock;
235 	}
236 
237 	ctrl->changed_ns_list[ctrl->nr_changed_ns++] = nsid;
238 out_unlock:
239 	mutex_unlock(&ctrl->lock);
240 }
241 
nvmet_ns_changed(struct nvmet_subsys * subsys,u32 nsid)242 void nvmet_ns_changed(struct nvmet_subsys *subsys, u32 nsid)
243 {
244 	struct nvmet_ctrl *ctrl;
245 
246 	lockdep_assert_held(&subsys->lock);
247 
248 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
249 		nvmet_add_to_changed_ns_log(ctrl, cpu_to_le32(nsid));
250 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_NS_ATTR))
251 			continue;
252 		nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
253 				NVME_AER_NOTICE_NS_CHANGED,
254 				NVME_LOG_CHANGED_NS);
255 	}
256 }
257 
nvmet_send_ana_event(struct nvmet_subsys * subsys,struct nvmet_port * port)258 void nvmet_send_ana_event(struct nvmet_subsys *subsys,
259 		struct nvmet_port *port)
260 {
261 	struct nvmet_ctrl *ctrl;
262 
263 	mutex_lock(&subsys->lock);
264 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
265 		if (port && ctrl->port != port)
266 			continue;
267 		if (nvmet_aen_bit_disabled(ctrl, NVME_AEN_BIT_ANA_CHANGE))
268 			continue;
269 		nvmet_add_async_event(ctrl, NVME_AER_NOTICE,
270 				NVME_AER_NOTICE_ANA, NVME_LOG_ANA);
271 	}
272 	mutex_unlock(&subsys->lock);
273 }
274 
nvmet_port_send_ana_event(struct nvmet_port * port)275 void nvmet_port_send_ana_event(struct nvmet_port *port)
276 {
277 	struct nvmet_subsys_link *p;
278 
279 	down_read(&nvmet_config_sem);
280 	list_for_each_entry(p, &port->subsystems, entry)
281 		nvmet_send_ana_event(p->subsys, port);
282 	up_read(&nvmet_config_sem);
283 }
284 
nvmet_register_transport(const struct nvmet_fabrics_ops * ops)285 int nvmet_register_transport(const struct nvmet_fabrics_ops *ops)
286 {
287 	int ret = 0;
288 
289 	down_write(&nvmet_config_sem);
290 	if (nvmet_transports[ops->type])
291 		ret = -EINVAL;
292 	else
293 		nvmet_transports[ops->type] = ops;
294 	up_write(&nvmet_config_sem);
295 
296 	return ret;
297 }
298 EXPORT_SYMBOL_GPL(nvmet_register_transport);
299 
nvmet_unregister_transport(const struct nvmet_fabrics_ops * ops)300 void nvmet_unregister_transport(const struct nvmet_fabrics_ops *ops)
301 {
302 	down_write(&nvmet_config_sem);
303 	nvmet_transports[ops->type] = NULL;
304 	up_write(&nvmet_config_sem);
305 }
306 EXPORT_SYMBOL_GPL(nvmet_unregister_transport);
307 
nvmet_port_del_ctrls(struct nvmet_port * port,struct nvmet_subsys * subsys)308 void nvmet_port_del_ctrls(struct nvmet_port *port, struct nvmet_subsys *subsys)
309 {
310 	struct nvmet_ctrl *ctrl;
311 
312 	mutex_lock(&subsys->lock);
313 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
314 		if (ctrl->port == port)
315 			ctrl->ops->delete_ctrl(ctrl);
316 	}
317 	mutex_unlock(&subsys->lock);
318 }
319 
nvmet_enable_port(struct nvmet_port * port)320 int nvmet_enable_port(struct nvmet_port *port)
321 {
322 	const struct nvmet_fabrics_ops *ops;
323 	int ret;
324 
325 	lockdep_assert_held(&nvmet_config_sem);
326 
327 	if (port->disc_addr.trtype == NVMF_TRTYPE_MAX)
328 		return -EINVAL;
329 
330 	ops = nvmet_transports[port->disc_addr.trtype];
331 	if (!ops) {
332 		up_write(&nvmet_config_sem);
333 		request_module("nvmet-transport-%d", port->disc_addr.trtype);
334 		down_write(&nvmet_config_sem);
335 		ops = nvmet_transports[port->disc_addr.trtype];
336 		if (!ops) {
337 			pr_err("transport type %d not supported\n",
338 				port->disc_addr.trtype);
339 			return -EINVAL;
340 		}
341 	}
342 
343 	if (!try_module_get(ops->owner))
344 		return -EINVAL;
345 
346 	/*
347 	 * If the user requested PI support and the transport isn't pi capable,
348 	 * don't enable the port.
349 	 */
350 	if (port->pi_enable && !(ops->flags & NVMF_METADATA_SUPPORTED)) {
351 		pr_err("T10-PI is not supported by transport type %d\n",
352 		       port->disc_addr.trtype);
353 		ret = -EINVAL;
354 		goto out_put;
355 	}
356 
357 	ret = ops->add_port(port);
358 	if (ret)
359 		goto out_put;
360 
361 	/* If the transport didn't set inline_data_size, then disable it. */
362 	if (port->inline_data_size < 0)
363 		port->inline_data_size = 0;
364 
365 	/*
366 	 * If the transport didn't set the max_queue_size properly, then clamp
367 	 * it to the target limits. Also set default values in case the
368 	 * transport didn't set it at all.
369 	 */
370 	if (port->max_queue_size < 0)
371 		port->max_queue_size = NVMET_MAX_QUEUE_SIZE;
372 	else
373 		port->max_queue_size = clamp_t(int, port->max_queue_size,
374 					       NVMET_MIN_QUEUE_SIZE,
375 					       NVMET_MAX_QUEUE_SIZE);
376 
377 	port->enabled = true;
378 	port->tr_ops = ops;
379 	return 0;
380 
381 out_put:
382 	module_put(ops->owner);
383 	return ret;
384 }
385 
nvmet_disable_port(struct nvmet_port * port)386 void nvmet_disable_port(struct nvmet_port *port)
387 {
388 	const struct nvmet_fabrics_ops *ops;
389 
390 	lockdep_assert_held(&nvmet_config_sem);
391 
392 	port->enabled = false;
393 	port->tr_ops = NULL;
394 
395 	ops = nvmet_transports[port->disc_addr.trtype];
396 	ops->remove_port(port);
397 	module_put(ops->owner);
398 }
399 
nvmet_keep_alive_timer(struct work_struct * work)400 static void nvmet_keep_alive_timer(struct work_struct *work)
401 {
402 	struct nvmet_ctrl *ctrl = container_of(to_delayed_work(work),
403 			struct nvmet_ctrl, ka_work);
404 	bool reset_tbkas = ctrl->reset_tbkas;
405 
406 	ctrl->reset_tbkas = false;
407 	if (reset_tbkas) {
408 		pr_debug("ctrl %d reschedule traffic based keep-alive timer\n",
409 			ctrl->cntlid);
410 		queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
411 		return;
412 	}
413 
414 	pr_err("ctrl %d keep-alive timer (%d seconds) expired!\n",
415 		ctrl->cntlid, ctrl->kato);
416 
417 	nvmet_ctrl_fatal_error(ctrl);
418 }
419 
nvmet_start_keep_alive_timer(struct nvmet_ctrl * ctrl)420 void nvmet_start_keep_alive_timer(struct nvmet_ctrl *ctrl)
421 {
422 	if (unlikely(ctrl->kato == 0))
423 		return;
424 
425 	pr_debug("ctrl %d start keep-alive timer for %d secs\n",
426 		ctrl->cntlid, ctrl->kato);
427 
428 	queue_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
429 }
430 
nvmet_stop_keep_alive_timer(struct nvmet_ctrl * ctrl)431 void nvmet_stop_keep_alive_timer(struct nvmet_ctrl *ctrl)
432 {
433 	if (unlikely(ctrl->kato == 0))
434 		return;
435 
436 	pr_debug("ctrl %d stop keep-alive\n", ctrl->cntlid);
437 
438 	cancel_delayed_work_sync(&ctrl->ka_work);
439 }
440 
nvmet_req_find_ns(struct nvmet_req * req)441 u16 nvmet_req_find_ns(struct nvmet_req *req)
442 {
443 	u32 nsid = le32_to_cpu(req->cmd->common.nsid);
444 	struct nvmet_subsys *subsys = nvmet_req_subsys(req);
445 
446 	req->ns = xa_load(&subsys->namespaces, nsid);
447 	if (unlikely(!req->ns || !req->ns->enabled)) {
448 		req->error_loc = offsetof(struct nvme_common_command, nsid);
449 		if (!req->ns) /* ns doesn't exist! */
450 			return NVME_SC_INVALID_NS | NVME_STATUS_DNR;
451 
452 		/* ns exists but it's disabled */
453 		req->ns = NULL;
454 		return NVME_SC_INTERNAL_PATH_ERROR;
455 	}
456 
457 	percpu_ref_get(&req->ns->ref);
458 	return NVME_SC_SUCCESS;
459 }
460 
nvmet_destroy_namespace(struct percpu_ref * ref)461 static void nvmet_destroy_namespace(struct percpu_ref *ref)
462 {
463 	struct nvmet_ns *ns = container_of(ref, struct nvmet_ns, ref);
464 
465 	complete(&ns->disable_done);
466 }
467 
nvmet_put_namespace(struct nvmet_ns * ns)468 void nvmet_put_namespace(struct nvmet_ns *ns)
469 {
470 	percpu_ref_put(&ns->ref);
471 }
472 
nvmet_ns_dev_disable(struct nvmet_ns * ns)473 static void nvmet_ns_dev_disable(struct nvmet_ns *ns)
474 {
475 	nvmet_bdev_ns_disable(ns);
476 	nvmet_file_ns_disable(ns);
477 }
478 
nvmet_p2pmem_ns_enable(struct nvmet_ns * ns)479 static int nvmet_p2pmem_ns_enable(struct nvmet_ns *ns)
480 {
481 	int ret;
482 	struct pci_dev *p2p_dev;
483 
484 	if (!ns->use_p2pmem)
485 		return 0;
486 
487 	if (!ns->bdev) {
488 		pr_err("peer-to-peer DMA is not supported by non-block device namespaces\n");
489 		return -EINVAL;
490 	}
491 
492 	if (!blk_queue_pci_p2pdma(ns->bdev->bd_disk->queue)) {
493 		pr_err("peer-to-peer DMA is not supported by the driver of %s\n",
494 		       ns->device_path);
495 		return -EINVAL;
496 	}
497 
498 	if (ns->p2p_dev) {
499 		ret = pci_p2pdma_distance(ns->p2p_dev, nvmet_ns_dev(ns), true);
500 		if (ret < 0)
501 			return -EINVAL;
502 	} else {
503 		/*
504 		 * Right now we just check that there is p2pmem available so
505 		 * we can report an error to the user right away if there
506 		 * is not. We'll find the actual device to use once we
507 		 * setup the controller when the port's device is available.
508 		 */
509 
510 		p2p_dev = pci_p2pmem_find(nvmet_ns_dev(ns));
511 		if (!p2p_dev) {
512 			pr_err("no peer-to-peer memory is available for %s\n",
513 			       ns->device_path);
514 			return -EINVAL;
515 		}
516 
517 		pci_dev_put(p2p_dev);
518 	}
519 
520 	return 0;
521 }
522 
523 /*
524  * Note: ctrl->subsys->lock should be held when calling this function
525  */
nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl * ctrl,struct nvmet_ns * ns)526 static void nvmet_p2pmem_ns_add_p2p(struct nvmet_ctrl *ctrl,
527 				    struct nvmet_ns *ns)
528 {
529 	struct device *clients[2];
530 	struct pci_dev *p2p_dev;
531 	int ret;
532 
533 	if (!ctrl->p2p_client || !ns->use_p2pmem)
534 		return;
535 
536 	if (ns->p2p_dev) {
537 		ret = pci_p2pdma_distance(ns->p2p_dev, ctrl->p2p_client, true);
538 		if (ret < 0)
539 			return;
540 
541 		p2p_dev = pci_dev_get(ns->p2p_dev);
542 	} else {
543 		clients[0] = ctrl->p2p_client;
544 		clients[1] = nvmet_ns_dev(ns);
545 
546 		p2p_dev = pci_p2pmem_find_many(clients, ARRAY_SIZE(clients));
547 		if (!p2p_dev) {
548 			pr_err("no peer-to-peer memory is available that's supported by %s and %s\n",
549 			       dev_name(ctrl->p2p_client), ns->device_path);
550 			return;
551 		}
552 	}
553 
554 	ret = radix_tree_insert(&ctrl->p2p_ns_map, ns->nsid, p2p_dev);
555 	if (ret < 0)
556 		pci_dev_put(p2p_dev);
557 
558 	pr_info("using p2pmem on %s for nsid %d\n", pci_name(p2p_dev),
559 		ns->nsid);
560 }
561 
nvmet_ns_revalidate(struct nvmet_ns * ns)562 bool nvmet_ns_revalidate(struct nvmet_ns *ns)
563 {
564 	loff_t oldsize = ns->size;
565 
566 	if (ns->bdev)
567 		nvmet_bdev_ns_revalidate(ns);
568 	else
569 		nvmet_file_ns_revalidate(ns);
570 
571 	return oldsize != ns->size;
572 }
573 
nvmet_ns_enable(struct nvmet_ns * ns)574 int nvmet_ns_enable(struct nvmet_ns *ns)
575 {
576 	struct nvmet_subsys *subsys = ns->subsys;
577 	struct nvmet_ctrl *ctrl;
578 	int ret;
579 
580 	mutex_lock(&subsys->lock);
581 	ret = 0;
582 
583 	if (nvmet_is_passthru_subsys(subsys)) {
584 		pr_info("cannot enable both passthru and regular namespaces for a single subsystem");
585 		goto out_unlock;
586 	}
587 
588 	if (ns->enabled)
589 		goto out_unlock;
590 
591 	ret = -EMFILE;
592 
593 	ret = nvmet_bdev_ns_enable(ns);
594 	if (ret == -ENOTBLK)
595 		ret = nvmet_file_ns_enable(ns);
596 	if (ret)
597 		goto out_unlock;
598 
599 	ret = nvmet_p2pmem_ns_enable(ns);
600 	if (ret)
601 		goto out_dev_disable;
602 
603 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
604 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
605 
606 	if (ns->pr.enable) {
607 		ret = nvmet_pr_init_ns(ns);
608 		if (ret)
609 			goto out_dev_put;
610 	}
611 
612 	if (percpu_ref_init(&ns->ref, nvmet_destroy_namespace, 0, GFP_KERNEL))
613 		goto out_pr_exit;
614 
615 	nvmet_ns_changed(subsys, ns->nsid);
616 	ns->enabled = true;
617 	xa_set_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED);
618 	ret = 0;
619 out_unlock:
620 	mutex_unlock(&subsys->lock);
621 	return ret;
622 out_pr_exit:
623 	if (ns->pr.enable)
624 		nvmet_pr_exit_ns(ns);
625 out_dev_put:
626 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
627 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
628 out_dev_disable:
629 	nvmet_ns_dev_disable(ns);
630 	goto out_unlock;
631 }
632 
nvmet_ns_disable(struct nvmet_ns * ns)633 void nvmet_ns_disable(struct nvmet_ns *ns)
634 {
635 	struct nvmet_subsys *subsys = ns->subsys;
636 	struct nvmet_ctrl *ctrl;
637 
638 	mutex_lock(&subsys->lock);
639 	if (!ns->enabled)
640 		goto out_unlock;
641 
642 	ns->enabled = false;
643 	xa_clear_mark(&subsys->namespaces, ns->nsid, NVMET_NS_ENABLED);
644 
645 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
646 		pci_dev_put(radix_tree_delete(&ctrl->p2p_ns_map, ns->nsid));
647 
648 	mutex_unlock(&subsys->lock);
649 
650 	/*
651 	 * Now that we removed the namespaces from the lookup list, we
652 	 * can kill the per_cpu ref and wait for any remaining references
653 	 * to be dropped, as well as a RCU grace period for anyone only
654 	 * using the namepace under rcu_read_lock().  Note that we can't
655 	 * use call_rcu here as we need to ensure the namespaces have
656 	 * been fully destroyed before unloading the module.
657 	 */
658 	percpu_ref_kill(&ns->ref);
659 	synchronize_rcu();
660 	wait_for_completion(&ns->disable_done);
661 	percpu_ref_exit(&ns->ref);
662 
663 	if (ns->pr.enable)
664 		nvmet_pr_exit_ns(ns);
665 
666 	mutex_lock(&subsys->lock);
667 	nvmet_ns_changed(subsys, ns->nsid);
668 	nvmet_ns_dev_disable(ns);
669 out_unlock:
670 	mutex_unlock(&subsys->lock);
671 }
672 
nvmet_ns_free(struct nvmet_ns * ns)673 void nvmet_ns_free(struct nvmet_ns *ns)
674 {
675 	struct nvmet_subsys *subsys = ns->subsys;
676 
677 	nvmet_ns_disable(ns);
678 
679 	mutex_lock(&subsys->lock);
680 
681 	xa_erase(&subsys->namespaces, ns->nsid);
682 	if (ns->nsid == subsys->max_nsid)
683 		subsys->max_nsid = nvmet_max_nsid(subsys);
684 
685 	subsys->nr_namespaces--;
686 	mutex_unlock(&subsys->lock);
687 
688 	down_write(&nvmet_ana_sem);
689 	nvmet_ana_group_enabled[ns->anagrpid]--;
690 	up_write(&nvmet_ana_sem);
691 
692 	kfree(ns->device_path);
693 	kfree(ns);
694 }
695 
nvmet_ns_alloc(struct nvmet_subsys * subsys,u32 nsid)696 struct nvmet_ns *nvmet_ns_alloc(struct nvmet_subsys *subsys, u32 nsid)
697 {
698 	struct nvmet_ns *ns;
699 
700 	mutex_lock(&subsys->lock);
701 
702 	if (subsys->nr_namespaces == NVMET_MAX_NAMESPACES)
703 		goto out_unlock;
704 
705 	ns = kzalloc(sizeof(*ns), GFP_KERNEL);
706 	if (!ns)
707 		goto out_unlock;
708 
709 	init_completion(&ns->disable_done);
710 
711 	ns->nsid = nsid;
712 	ns->subsys = subsys;
713 
714 	if (ns->nsid > subsys->max_nsid)
715 		subsys->max_nsid = nsid;
716 
717 	if (xa_insert(&subsys->namespaces, ns->nsid, ns, GFP_KERNEL))
718 		goto out_exit;
719 
720 	subsys->nr_namespaces++;
721 
722 	mutex_unlock(&subsys->lock);
723 
724 	down_write(&nvmet_ana_sem);
725 	ns->anagrpid = NVMET_DEFAULT_ANA_GRPID;
726 	nvmet_ana_group_enabled[ns->anagrpid]++;
727 	up_write(&nvmet_ana_sem);
728 
729 	uuid_gen(&ns->uuid);
730 	ns->buffered_io = false;
731 	ns->csi = NVME_CSI_NVM;
732 
733 	return ns;
734 out_exit:
735 	subsys->max_nsid = nvmet_max_nsid(subsys);
736 	kfree(ns);
737 out_unlock:
738 	mutex_unlock(&subsys->lock);
739 	return NULL;
740 }
741 
nvmet_update_sq_head(struct nvmet_req * req)742 static void nvmet_update_sq_head(struct nvmet_req *req)
743 {
744 	if (req->sq->size) {
745 		u32 old_sqhd, new_sqhd;
746 
747 		old_sqhd = READ_ONCE(req->sq->sqhd);
748 		do {
749 			new_sqhd = (old_sqhd + 1) % req->sq->size;
750 		} while (!try_cmpxchg(&req->sq->sqhd, &old_sqhd, new_sqhd));
751 	}
752 	req->cqe->sq_head = cpu_to_le16(req->sq->sqhd & 0x0000FFFF);
753 }
754 
nvmet_set_error(struct nvmet_req * req,u16 status)755 static void nvmet_set_error(struct nvmet_req *req, u16 status)
756 {
757 	struct nvmet_ctrl *ctrl = req->sq->ctrl;
758 	struct nvme_error_slot *new_error_slot;
759 	unsigned long flags;
760 
761 	req->cqe->status = cpu_to_le16(status << 1);
762 
763 	if (!ctrl || req->error_loc == NVMET_NO_ERROR_LOC)
764 		return;
765 
766 	spin_lock_irqsave(&ctrl->error_lock, flags);
767 	ctrl->err_counter++;
768 	new_error_slot =
769 		&ctrl->slots[ctrl->err_counter % NVMET_ERROR_LOG_SLOTS];
770 
771 	new_error_slot->error_count = cpu_to_le64(ctrl->err_counter);
772 	new_error_slot->sqid = cpu_to_le16(req->sq->qid);
773 	new_error_slot->cmdid = cpu_to_le16(req->cmd->common.command_id);
774 	new_error_slot->status_field = cpu_to_le16(status << 1);
775 	new_error_slot->param_error_location = cpu_to_le16(req->error_loc);
776 	new_error_slot->lba = cpu_to_le64(req->error_slba);
777 	new_error_slot->nsid = req->cmd->common.nsid;
778 	spin_unlock_irqrestore(&ctrl->error_lock, flags);
779 
780 	/* set the more bit for this request */
781 	req->cqe->status |= cpu_to_le16(1 << 14);
782 }
783 
__nvmet_req_complete(struct nvmet_req * req,u16 status)784 static void __nvmet_req_complete(struct nvmet_req *req, u16 status)
785 {
786 	struct nvmet_ns *ns = req->ns;
787 	struct nvmet_pr_per_ctrl_ref *pc_ref = req->pc_ref;
788 
789 	if (!req->sq->sqhd_disabled)
790 		nvmet_update_sq_head(req);
791 	req->cqe->sq_id = cpu_to_le16(req->sq->qid);
792 	req->cqe->command_id = req->cmd->common.command_id;
793 
794 	if (unlikely(status))
795 		nvmet_set_error(req, status);
796 
797 	trace_nvmet_req_complete(req);
798 
799 	req->ops->queue_response(req);
800 
801 	if (pc_ref)
802 		nvmet_pr_put_ns_pc_ref(pc_ref);
803 	if (ns)
804 		nvmet_put_namespace(ns);
805 }
806 
nvmet_req_complete(struct nvmet_req * req,u16 status)807 void nvmet_req_complete(struct nvmet_req *req, u16 status)
808 {
809 	struct nvmet_sq *sq = req->sq;
810 
811 	__nvmet_req_complete(req, status);
812 	percpu_ref_put(&sq->ref);
813 }
814 EXPORT_SYMBOL_GPL(nvmet_req_complete);
815 
nvmet_cq_setup(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)816 void nvmet_cq_setup(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
817 		u16 qid, u16 size)
818 {
819 	cq->qid = qid;
820 	cq->size = size;
821 }
822 
nvmet_sq_setup(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,u16 qid,u16 size)823 void nvmet_sq_setup(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
824 		u16 qid, u16 size)
825 {
826 	sq->sqhd = 0;
827 	sq->qid = qid;
828 	sq->size = size;
829 
830 	ctrl->sqs[qid] = sq;
831 }
832 
nvmet_confirm_sq(struct percpu_ref * ref)833 static void nvmet_confirm_sq(struct percpu_ref *ref)
834 {
835 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
836 
837 	complete(&sq->confirm_done);
838 }
839 
nvmet_check_cqid(struct nvmet_ctrl * ctrl,u16 cqid)840 u16 nvmet_check_cqid(struct nvmet_ctrl *ctrl, u16 cqid)
841 {
842 	if (!ctrl->sqs)
843 		return NVME_SC_INTERNAL | NVME_STATUS_DNR;
844 
845 	if (cqid > ctrl->subsys->max_qid)
846 		return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
847 
848 	/*
849 	 * Note: For PCI controllers, the NVMe specifications allows multiple
850 	 * SQs to share a single CQ. However, we do not support this yet, so
851 	 * check that there is no SQ defined for a CQ. If one exist, then the
852 	 * CQ ID is invalid for creation as well as when the CQ is being
853 	 * deleted (as that would mean that the SQ was not deleted before the
854 	 * CQ).
855 	 */
856 	if (ctrl->sqs[cqid])
857 		return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
858 
859 	return NVME_SC_SUCCESS;
860 }
861 
nvmet_cq_create(struct nvmet_ctrl * ctrl,struct nvmet_cq * cq,u16 qid,u16 size)862 u16 nvmet_cq_create(struct nvmet_ctrl *ctrl, struct nvmet_cq *cq,
863 		    u16 qid, u16 size)
864 {
865 	u16 status;
866 
867 	status = nvmet_check_cqid(ctrl, qid);
868 	if (status != NVME_SC_SUCCESS)
869 		return status;
870 
871 	nvmet_cq_setup(ctrl, cq, qid, size);
872 
873 	return NVME_SC_SUCCESS;
874 }
875 EXPORT_SYMBOL_GPL(nvmet_cq_create);
876 
nvmet_check_sqid(struct nvmet_ctrl * ctrl,u16 sqid,bool create)877 u16 nvmet_check_sqid(struct nvmet_ctrl *ctrl, u16 sqid,
878 		     bool create)
879 {
880 	if (!ctrl->sqs)
881 		return NVME_SC_INTERNAL | NVME_STATUS_DNR;
882 
883 	if (sqid > ctrl->subsys->max_qid)
884 		return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
885 
886 	if ((create && ctrl->sqs[sqid]) ||
887 	    (!create && !ctrl->sqs[sqid]))
888 		return NVME_SC_QID_INVALID | NVME_STATUS_DNR;
889 
890 	return NVME_SC_SUCCESS;
891 }
892 
nvmet_sq_create(struct nvmet_ctrl * ctrl,struct nvmet_sq * sq,u16 sqid,u16 size)893 u16 nvmet_sq_create(struct nvmet_ctrl *ctrl, struct nvmet_sq *sq,
894 		    u16 sqid, u16 size)
895 {
896 	u16 status;
897 	int ret;
898 
899 	if (!kref_get_unless_zero(&ctrl->ref))
900 		return NVME_SC_INTERNAL | NVME_STATUS_DNR;
901 
902 	status = nvmet_check_sqid(ctrl, sqid, true);
903 	if (status != NVME_SC_SUCCESS)
904 		return status;
905 
906 	ret = nvmet_sq_init(sq);
907 	if (ret) {
908 		status = NVME_SC_INTERNAL | NVME_STATUS_DNR;
909 		goto ctrl_put;
910 	}
911 
912 	nvmet_sq_setup(ctrl, sq, sqid, size);
913 	sq->ctrl = ctrl;
914 
915 	return NVME_SC_SUCCESS;
916 
917 ctrl_put:
918 	nvmet_ctrl_put(ctrl);
919 	return status;
920 }
921 EXPORT_SYMBOL_GPL(nvmet_sq_create);
922 
nvmet_sq_destroy(struct nvmet_sq * sq)923 void nvmet_sq_destroy(struct nvmet_sq *sq)
924 {
925 	struct nvmet_ctrl *ctrl = sq->ctrl;
926 
927 	/*
928 	 * If this is the admin queue, complete all AERs so that our
929 	 * queue doesn't have outstanding requests on it.
930 	 */
931 	if (ctrl && ctrl->sqs && ctrl->sqs[0] == sq)
932 		nvmet_async_events_failall(ctrl);
933 	percpu_ref_kill_and_confirm(&sq->ref, nvmet_confirm_sq);
934 	wait_for_completion(&sq->confirm_done);
935 	wait_for_completion(&sq->free_done);
936 	percpu_ref_exit(&sq->ref);
937 	nvmet_auth_sq_free(sq);
938 
939 	/*
940 	 * we must reference the ctrl again after waiting for inflight IO
941 	 * to complete. Because admin connect may have sneaked in after we
942 	 * store sq->ctrl locally, but before we killed the percpu_ref. the
943 	 * admin connect allocates and assigns sq->ctrl, which now needs a
944 	 * final ref put, as this ctrl is going away.
945 	 */
946 	ctrl = sq->ctrl;
947 
948 	if (ctrl) {
949 		/*
950 		 * The teardown flow may take some time, and the host may not
951 		 * send us keep-alive during this period, hence reset the
952 		 * traffic based keep-alive timer so we don't trigger a
953 		 * controller teardown as a result of a keep-alive expiration.
954 		 */
955 		ctrl->reset_tbkas = true;
956 		sq->ctrl->sqs[sq->qid] = NULL;
957 		nvmet_ctrl_put(ctrl);
958 		sq->ctrl = NULL; /* allows reusing the queue later */
959 	}
960 }
961 EXPORT_SYMBOL_GPL(nvmet_sq_destroy);
962 
nvmet_sq_free(struct percpu_ref * ref)963 static void nvmet_sq_free(struct percpu_ref *ref)
964 {
965 	struct nvmet_sq *sq = container_of(ref, struct nvmet_sq, ref);
966 
967 	complete(&sq->free_done);
968 }
969 
nvmet_sq_init(struct nvmet_sq * sq)970 int nvmet_sq_init(struct nvmet_sq *sq)
971 {
972 	int ret;
973 
974 	ret = percpu_ref_init(&sq->ref, nvmet_sq_free, 0, GFP_KERNEL);
975 	if (ret) {
976 		pr_err("percpu_ref init failed!\n");
977 		return ret;
978 	}
979 	init_completion(&sq->free_done);
980 	init_completion(&sq->confirm_done);
981 	nvmet_auth_sq_init(sq);
982 
983 	return 0;
984 }
985 EXPORT_SYMBOL_GPL(nvmet_sq_init);
986 
nvmet_check_ana_state(struct nvmet_port * port,struct nvmet_ns * ns)987 static inline u16 nvmet_check_ana_state(struct nvmet_port *port,
988 		struct nvmet_ns *ns)
989 {
990 	enum nvme_ana_state state = port->ana_state[ns->anagrpid];
991 
992 	if (unlikely(state == NVME_ANA_INACCESSIBLE))
993 		return NVME_SC_ANA_INACCESSIBLE;
994 	if (unlikely(state == NVME_ANA_PERSISTENT_LOSS))
995 		return NVME_SC_ANA_PERSISTENT_LOSS;
996 	if (unlikely(state == NVME_ANA_CHANGE))
997 		return NVME_SC_ANA_TRANSITION;
998 	return 0;
999 }
1000 
nvmet_io_cmd_check_access(struct nvmet_req * req)1001 static inline u16 nvmet_io_cmd_check_access(struct nvmet_req *req)
1002 {
1003 	if (unlikely(req->ns->readonly)) {
1004 		switch (req->cmd->common.opcode) {
1005 		case nvme_cmd_read:
1006 		case nvme_cmd_flush:
1007 			break;
1008 		default:
1009 			return NVME_SC_NS_WRITE_PROTECTED;
1010 		}
1011 	}
1012 
1013 	return 0;
1014 }
1015 
nvmet_io_cmd_transfer_len(struct nvmet_req * req)1016 static u32 nvmet_io_cmd_transfer_len(struct nvmet_req *req)
1017 {
1018 	struct nvme_command *cmd = req->cmd;
1019 	u32 metadata_len = 0;
1020 
1021 	if (nvme_is_fabrics(cmd))
1022 		return nvmet_fabrics_io_cmd_data_len(req);
1023 
1024 	if (!req->ns)
1025 		return 0;
1026 
1027 	switch (req->cmd->common.opcode) {
1028 	case nvme_cmd_read:
1029 	case nvme_cmd_write:
1030 	case nvme_cmd_zone_append:
1031 		if (req->sq->ctrl->pi_support && nvmet_ns_has_pi(req->ns))
1032 			metadata_len = nvmet_rw_metadata_len(req);
1033 		return nvmet_rw_data_len(req) + metadata_len;
1034 	case nvme_cmd_dsm:
1035 		return nvmet_dsm_len(req);
1036 	case nvme_cmd_zone_mgmt_recv:
1037 		return (le32_to_cpu(req->cmd->zmr.numd) + 1) << 2;
1038 	default:
1039 		return 0;
1040 	}
1041 }
1042 
nvmet_parse_io_cmd(struct nvmet_req * req)1043 static u16 nvmet_parse_io_cmd(struct nvmet_req *req)
1044 {
1045 	struct nvme_command *cmd = req->cmd;
1046 	u16 ret;
1047 
1048 	if (nvme_is_fabrics(cmd))
1049 		return nvmet_parse_fabrics_io_cmd(req);
1050 
1051 	if (unlikely(!nvmet_check_auth_status(req)))
1052 		return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
1053 
1054 	ret = nvmet_check_ctrl_status(req);
1055 	if (unlikely(ret))
1056 		return ret;
1057 
1058 	if (nvmet_is_passthru_req(req))
1059 		return nvmet_parse_passthru_io_cmd(req);
1060 
1061 	ret = nvmet_req_find_ns(req);
1062 	if (unlikely(ret))
1063 		return ret;
1064 
1065 	ret = nvmet_check_ana_state(req->port, req->ns);
1066 	if (unlikely(ret)) {
1067 		req->error_loc = offsetof(struct nvme_common_command, nsid);
1068 		return ret;
1069 	}
1070 	ret = nvmet_io_cmd_check_access(req);
1071 	if (unlikely(ret)) {
1072 		req->error_loc = offsetof(struct nvme_common_command, nsid);
1073 		return ret;
1074 	}
1075 
1076 	if (req->ns->pr.enable) {
1077 		ret = nvmet_parse_pr_cmd(req);
1078 		if (!ret)
1079 			return ret;
1080 	}
1081 
1082 	switch (req->ns->csi) {
1083 	case NVME_CSI_NVM:
1084 		if (req->ns->file)
1085 			ret = nvmet_file_parse_io_cmd(req);
1086 		else
1087 			ret = nvmet_bdev_parse_io_cmd(req);
1088 		break;
1089 	case NVME_CSI_ZNS:
1090 		if (IS_ENABLED(CONFIG_BLK_DEV_ZONED))
1091 			ret = nvmet_bdev_zns_parse_io_cmd(req);
1092 		else
1093 			ret = NVME_SC_INVALID_IO_CMD_SET;
1094 		break;
1095 	default:
1096 		ret = NVME_SC_INVALID_IO_CMD_SET;
1097 	}
1098 	if (ret)
1099 		return ret;
1100 
1101 	if (req->ns->pr.enable) {
1102 		ret = nvmet_pr_check_cmd_access(req);
1103 		if (ret)
1104 			return ret;
1105 
1106 		ret = nvmet_pr_get_ns_pc_ref(req);
1107 	}
1108 	return ret;
1109 }
1110 
nvmet_req_init(struct nvmet_req * req,struct nvmet_cq * cq,struct nvmet_sq * sq,const struct nvmet_fabrics_ops * ops)1111 bool nvmet_req_init(struct nvmet_req *req, struct nvmet_cq *cq,
1112 		struct nvmet_sq *sq, const struct nvmet_fabrics_ops *ops)
1113 {
1114 	u8 flags = req->cmd->common.flags;
1115 	u16 status;
1116 
1117 	req->cq = cq;
1118 	req->sq = sq;
1119 	req->ops = ops;
1120 	req->sg = NULL;
1121 	req->metadata_sg = NULL;
1122 	req->sg_cnt = 0;
1123 	req->metadata_sg_cnt = 0;
1124 	req->transfer_len = 0;
1125 	req->metadata_len = 0;
1126 	req->cqe->result.u64 = 0;
1127 	req->cqe->status = 0;
1128 	req->cqe->sq_head = 0;
1129 	req->ns = NULL;
1130 	req->error_loc = NVMET_NO_ERROR_LOC;
1131 	req->error_slba = 0;
1132 	req->pc_ref = NULL;
1133 
1134 	/* no support for fused commands yet */
1135 	if (unlikely(flags & (NVME_CMD_FUSE_FIRST | NVME_CMD_FUSE_SECOND))) {
1136 		req->error_loc = offsetof(struct nvme_common_command, flags);
1137 		status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1138 		goto fail;
1139 	}
1140 
1141 	/*
1142 	 * For fabrics, PSDT field shall describe metadata pointer (MPTR) that
1143 	 * contains an address of a single contiguous physical buffer that is
1144 	 * byte aligned. For PCI controllers, this is optional so not enforced.
1145 	 */
1146 	if (unlikely((flags & NVME_CMD_SGL_ALL) != NVME_CMD_SGL_METABUF)) {
1147 		if (!req->sq->ctrl || !nvmet_is_pci_ctrl(req->sq->ctrl)) {
1148 			req->error_loc =
1149 				offsetof(struct nvme_common_command, flags);
1150 			status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1151 			goto fail;
1152 		}
1153 	}
1154 
1155 	if (unlikely(!req->sq->ctrl))
1156 		/* will return an error for any non-connect command: */
1157 		status = nvmet_parse_connect_cmd(req);
1158 	else if (likely(req->sq->qid != 0))
1159 		status = nvmet_parse_io_cmd(req);
1160 	else
1161 		status = nvmet_parse_admin_cmd(req);
1162 
1163 	if (status)
1164 		goto fail;
1165 
1166 	trace_nvmet_req_init(req, req->cmd);
1167 
1168 	if (unlikely(!percpu_ref_tryget_live(&sq->ref))) {
1169 		status = NVME_SC_INVALID_FIELD | NVME_STATUS_DNR;
1170 		goto fail;
1171 	}
1172 
1173 	if (sq->ctrl)
1174 		sq->ctrl->reset_tbkas = true;
1175 
1176 	return true;
1177 
1178 fail:
1179 	__nvmet_req_complete(req, status);
1180 	return false;
1181 }
1182 EXPORT_SYMBOL_GPL(nvmet_req_init);
1183 
nvmet_req_uninit(struct nvmet_req * req)1184 void nvmet_req_uninit(struct nvmet_req *req)
1185 {
1186 	percpu_ref_put(&req->sq->ref);
1187 	if (req->pc_ref)
1188 		nvmet_pr_put_ns_pc_ref(req->pc_ref);
1189 	if (req->ns)
1190 		nvmet_put_namespace(req->ns);
1191 }
1192 EXPORT_SYMBOL_GPL(nvmet_req_uninit);
1193 
nvmet_req_transfer_len(struct nvmet_req * req)1194 size_t nvmet_req_transfer_len(struct nvmet_req *req)
1195 {
1196 	if (likely(req->sq->qid != 0))
1197 		return nvmet_io_cmd_transfer_len(req);
1198 	if (unlikely(!req->sq->ctrl))
1199 		return nvmet_connect_cmd_data_len(req);
1200 	return nvmet_admin_cmd_data_len(req);
1201 }
1202 EXPORT_SYMBOL_GPL(nvmet_req_transfer_len);
1203 
nvmet_check_transfer_len(struct nvmet_req * req,size_t len)1204 bool nvmet_check_transfer_len(struct nvmet_req *req, size_t len)
1205 {
1206 	if (unlikely(len != req->transfer_len)) {
1207 		u16 status;
1208 
1209 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1210 		if (req->cmd->common.flags & NVME_CMD_SGL_ALL)
1211 			status = NVME_SC_SGL_INVALID_DATA;
1212 		else
1213 			status = NVME_SC_INVALID_FIELD;
1214 		nvmet_req_complete(req, status | NVME_STATUS_DNR);
1215 		return false;
1216 	}
1217 
1218 	return true;
1219 }
1220 EXPORT_SYMBOL_GPL(nvmet_check_transfer_len);
1221 
nvmet_check_data_len_lte(struct nvmet_req * req,size_t data_len)1222 bool nvmet_check_data_len_lte(struct nvmet_req *req, size_t data_len)
1223 {
1224 	if (unlikely(data_len > req->transfer_len)) {
1225 		u16 status;
1226 
1227 		req->error_loc = offsetof(struct nvme_common_command, dptr);
1228 		if (req->cmd->common.flags & NVME_CMD_SGL_ALL)
1229 			status = NVME_SC_SGL_INVALID_DATA;
1230 		else
1231 			status = NVME_SC_INVALID_FIELD;
1232 		nvmet_req_complete(req, status | NVME_STATUS_DNR);
1233 		return false;
1234 	}
1235 
1236 	return true;
1237 }
1238 
nvmet_data_transfer_len(struct nvmet_req * req)1239 static unsigned int nvmet_data_transfer_len(struct nvmet_req *req)
1240 {
1241 	return req->transfer_len - req->metadata_len;
1242 }
1243 
nvmet_req_alloc_p2pmem_sgls(struct pci_dev * p2p_dev,struct nvmet_req * req)1244 static int nvmet_req_alloc_p2pmem_sgls(struct pci_dev *p2p_dev,
1245 		struct nvmet_req *req)
1246 {
1247 	req->sg = pci_p2pmem_alloc_sgl(p2p_dev, &req->sg_cnt,
1248 			nvmet_data_transfer_len(req));
1249 	if (!req->sg)
1250 		goto out_err;
1251 
1252 	if (req->metadata_len) {
1253 		req->metadata_sg = pci_p2pmem_alloc_sgl(p2p_dev,
1254 				&req->metadata_sg_cnt, req->metadata_len);
1255 		if (!req->metadata_sg)
1256 			goto out_free_sg;
1257 	}
1258 
1259 	req->p2p_dev = p2p_dev;
1260 
1261 	return 0;
1262 out_free_sg:
1263 	pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1264 out_err:
1265 	return -ENOMEM;
1266 }
1267 
nvmet_req_find_p2p_dev(struct nvmet_req * req)1268 static struct pci_dev *nvmet_req_find_p2p_dev(struct nvmet_req *req)
1269 {
1270 	if (!IS_ENABLED(CONFIG_PCI_P2PDMA) ||
1271 	    !req->sq->ctrl || !req->sq->qid || !req->ns)
1272 		return NULL;
1273 	return radix_tree_lookup(&req->sq->ctrl->p2p_ns_map, req->ns->nsid);
1274 }
1275 
nvmet_req_alloc_sgls(struct nvmet_req * req)1276 int nvmet_req_alloc_sgls(struct nvmet_req *req)
1277 {
1278 	struct pci_dev *p2p_dev = nvmet_req_find_p2p_dev(req);
1279 
1280 	if (p2p_dev && !nvmet_req_alloc_p2pmem_sgls(p2p_dev, req))
1281 		return 0;
1282 
1283 	req->sg = sgl_alloc(nvmet_data_transfer_len(req), GFP_KERNEL,
1284 			    &req->sg_cnt);
1285 	if (unlikely(!req->sg))
1286 		goto out;
1287 
1288 	if (req->metadata_len) {
1289 		req->metadata_sg = sgl_alloc(req->metadata_len, GFP_KERNEL,
1290 					     &req->metadata_sg_cnt);
1291 		if (unlikely(!req->metadata_sg))
1292 			goto out_free;
1293 	}
1294 
1295 	return 0;
1296 out_free:
1297 	sgl_free(req->sg);
1298 out:
1299 	return -ENOMEM;
1300 }
1301 EXPORT_SYMBOL_GPL(nvmet_req_alloc_sgls);
1302 
nvmet_req_free_sgls(struct nvmet_req * req)1303 void nvmet_req_free_sgls(struct nvmet_req *req)
1304 {
1305 	if (req->p2p_dev) {
1306 		pci_p2pmem_free_sgl(req->p2p_dev, req->sg);
1307 		if (req->metadata_sg)
1308 			pci_p2pmem_free_sgl(req->p2p_dev, req->metadata_sg);
1309 		req->p2p_dev = NULL;
1310 	} else {
1311 		sgl_free(req->sg);
1312 		if (req->metadata_sg)
1313 			sgl_free(req->metadata_sg);
1314 	}
1315 
1316 	req->sg = NULL;
1317 	req->metadata_sg = NULL;
1318 	req->sg_cnt = 0;
1319 	req->metadata_sg_cnt = 0;
1320 }
1321 EXPORT_SYMBOL_GPL(nvmet_req_free_sgls);
1322 
nvmet_css_supported(u8 cc_css)1323 static inline bool nvmet_css_supported(u8 cc_css)
1324 {
1325 	switch (cc_css << NVME_CC_CSS_SHIFT) {
1326 	case NVME_CC_CSS_NVM:
1327 	case NVME_CC_CSS_CSI:
1328 		return true;
1329 	default:
1330 		return false;
1331 	}
1332 }
1333 
nvmet_start_ctrl(struct nvmet_ctrl * ctrl)1334 static void nvmet_start_ctrl(struct nvmet_ctrl *ctrl)
1335 {
1336 	lockdep_assert_held(&ctrl->lock);
1337 
1338 	/*
1339 	 * Only I/O controllers should verify iosqes,iocqes.
1340 	 * Strictly speaking, the spec says a discovery controller
1341 	 * should verify iosqes,iocqes are zeroed, however that
1342 	 * would break backwards compatibility, so don't enforce it.
1343 	 */
1344 	if (!nvmet_is_disc_subsys(ctrl->subsys) &&
1345 	    (nvmet_cc_iosqes(ctrl->cc) != NVME_NVM_IOSQES ||
1346 	     nvmet_cc_iocqes(ctrl->cc) != NVME_NVM_IOCQES)) {
1347 		ctrl->csts = NVME_CSTS_CFS;
1348 		return;
1349 	}
1350 
1351 	if (nvmet_cc_mps(ctrl->cc) != 0 ||
1352 	    nvmet_cc_ams(ctrl->cc) != 0 ||
1353 	    !nvmet_css_supported(nvmet_cc_css(ctrl->cc))) {
1354 		ctrl->csts = NVME_CSTS_CFS;
1355 		return;
1356 	}
1357 
1358 	ctrl->csts = NVME_CSTS_RDY;
1359 
1360 	/*
1361 	 * Controllers that are not yet enabled should not really enforce the
1362 	 * keep alive timeout, but we still want to track a timeout and cleanup
1363 	 * in case a host died before it enabled the controller.  Hence, simply
1364 	 * reset the keep alive timer when the controller is enabled.
1365 	 */
1366 	if (ctrl->kato)
1367 		mod_delayed_work(nvmet_wq, &ctrl->ka_work, ctrl->kato * HZ);
1368 }
1369 
nvmet_clear_ctrl(struct nvmet_ctrl * ctrl)1370 static void nvmet_clear_ctrl(struct nvmet_ctrl *ctrl)
1371 {
1372 	lockdep_assert_held(&ctrl->lock);
1373 
1374 	/* XXX: tear down queues? */
1375 	ctrl->csts &= ~NVME_CSTS_RDY;
1376 	ctrl->cc = 0;
1377 }
1378 
nvmet_update_cc(struct nvmet_ctrl * ctrl,u32 new)1379 void nvmet_update_cc(struct nvmet_ctrl *ctrl, u32 new)
1380 {
1381 	u32 old;
1382 
1383 	mutex_lock(&ctrl->lock);
1384 	old = ctrl->cc;
1385 	ctrl->cc = new;
1386 
1387 	if (nvmet_cc_en(new) && !nvmet_cc_en(old))
1388 		nvmet_start_ctrl(ctrl);
1389 	if (!nvmet_cc_en(new) && nvmet_cc_en(old))
1390 		nvmet_clear_ctrl(ctrl);
1391 	if (nvmet_cc_shn(new) && !nvmet_cc_shn(old)) {
1392 		nvmet_clear_ctrl(ctrl);
1393 		ctrl->csts |= NVME_CSTS_SHST_CMPLT;
1394 	}
1395 	if (!nvmet_cc_shn(new) && nvmet_cc_shn(old))
1396 		ctrl->csts &= ~NVME_CSTS_SHST_CMPLT;
1397 	mutex_unlock(&ctrl->lock);
1398 }
1399 EXPORT_SYMBOL_GPL(nvmet_update_cc);
1400 
nvmet_init_cap(struct nvmet_ctrl * ctrl)1401 static void nvmet_init_cap(struct nvmet_ctrl *ctrl)
1402 {
1403 	/* command sets supported: NVMe command set: */
1404 	ctrl->cap = (1ULL << 37);
1405 	/* Controller supports one or more I/O Command Sets */
1406 	ctrl->cap |= (1ULL << 43);
1407 	/* CC.EN timeout in 500msec units: */
1408 	ctrl->cap |= (15ULL << 24);
1409 	/* maximum queue entries supported: */
1410 	if (ctrl->ops->get_max_queue_size)
1411 		ctrl->cap |= min_t(u16, ctrl->ops->get_max_queue_size(ctrl),
1412 				   ctrl->port->max_queue_size) - 1;
1413 	else
1414 		ctrl->cap |= ctrl->port->max_queue_size - 1;
1415 
1416 	if (nvmet_is_passthru_subsys(ctrl->subsys))
1417 		nvmet_passthrough_override_cap(ctrl);
1418 }
1419 
nvmet_ctrl_find_get(const char * subsysnqn,const char * hostnqn,u16 cntlid,struct nvmet_req * req)1420 struct nvmet_ctrl *nvmet_ctrl_find_get(const char *subsysnqn,
1421 				       const char *hostnqn, u16 cntlid,
1422 				       struct nvmet_req *req)
1423 {
1424 	struct nvmet_ctrl *ctrl = NULL;
1425 	struct nvmet_subsys *subsys;
1426 
1427 	subsys = nvmet_find_get_subsys(req->port, subsysnqn);
1428 	if (!subsys) {
1429 		pr_warn("connect request for invalid subsystem %s!\n",
1430 			subsysnqn);
1431 		req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(subsysnqn);
1432 		goto out;
1433 	}
1434 
1435 	mutex_lock(&subsys->lock);
1436 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
1437 		if (ctrl->cntlid == cntlid) {
1438 			if (strncmp(hostnqn, ctrl->hostnqn, NVMF_NQN_SIZE)) {
1439 				pr_warn("hostnqn mismatch.\n");
1440 				continue;
1441 			}
1442 			if (!kref_get_unless_zero(&ctrl->ref))
1443 				continue;
1444 
1445 			/* ctrl found */
1446 			goto found;
1447 		}
1448 	}
1449 
1450 	ctrl = NULL; /* ctrl not found */
1451 	pr_warn("could not find controller %d for subsys %s / host %s\n",
1452 		cntlid, subsysnqn, hostnqn);
1453 	req->cqe->result.u32 = IPO_IATTR_CONNECT_DATA(cntlid);
1454 
1455 found:
1456 	mutex_unlock(&subsys->lock);
1457 	nvmet_subsys_put(subsys);
1458 out:
1459 	return ctrl;
1460 }
1461 
nvmet_check_ctrl_status(struct nvmet_req * req)1462 u16 nvmet_check_ctrl_status(struct nvmet_req *req)
1463 {
1464 	if (unlikely(!(req->sq->ctrl->cc & NVME_CC_ENABLE))) {
1465 		pr_err("got cmd %d while CC.EN == 0 on qid = %d\n",
1466 		       req->cmd->common.opcode, req->sq->qid);
1467 		return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1468 	}
1469 
1470 	if (unlikely(!(req->sq->ctrl->csts & NVME_CSTS_RDY))) {
1471 		pr_err("got cmd %d while CSTS.RDY == 0 on qid = %d\n",
1472 		       req->cmd->common.opcode, req->sq->qid);
1473 		return NVME_SC_CMD_SEQ_ERROR | NVME_STATUS_DNR;
1474 	}
1475 
1476 	if (unlikely(!nvmet_check_auth_status(req))) {
1477 		pr_warn("qid %d not authenticated\n", req->sq->qid);
1478 		return NVME_SC_AUTH_REQUIRED | NVME_STATUS_DNR;
1479 	}
1480 	return 0;
1481 }
1482 
nvmet_host_allowed(struct nvmet_subsys * subsys,const char * hostnqn)1483 bool nvmet_host_allowed(struct nvmet_subsys *subsys, const char *hostnqn)
1484 {
1485 	struct nvmet_host_link *p;
1486 
1487 	lockdep_assert_held(&nvmet_config_sem);
1488 
1489 	if (subsys->allow_any_host)
1490 		return true;
1491 
1492 	if (nvmet_is_disc_subsys(subsys)) /* allow all access to disc subsys */
1493 		return true;
1494 
1495 	list_for_each_entry(p, &subsys->hosts, entry) {
1496 		if (!strcmp(nvmet_host_name(p->host), hostnqn))
1497 			return true;
1498 	}
1499 
1500 	return false;
1501 }
1502 
1503 /*
1504  * Note: ctrl->subsys->lock should be held when calling this function
1505  */
nvmet_setup_p2p_ns_map(struct nvmet_ctrl * ctrl,struct device * p2p_client)1506 static void nvmet_setup_p2p_ns_map(struct nvmet_ctrl *ctrl,
1507 		struct device *p2p_client)
1508 {
1509 	struct nvmet_ns *ns;
1510 	unsigned long idx;
1511 
1512 	if (!p2p_client)
1513 		return;
1514 
1515 	ctrl->p2p_client = get_device(p2p_client);
1516 
1517 	nvmet_for_each_enabled_ns(&ctrl->subsys->namespaces, idx, ns)
1518 		nvmet_p2pmem_ns_add_p2p(ctrl, ns);
1519 }
1520 
1521 /*
1522  * Note: ctrl->subsys->lock should be held when calling this function
1523  */
nvmet_release_p2p_ns_map(struct nvmet_ctrl * ctrl)1524 static void nvmet_release_p2p_ns_map(struct nvmet_ctrl *ctrl)
1525 {
1526 	struct radix_tree_iter iter;
1527 	void __rcu **slot;
1528 
1529 	radix_tree_for_each_slot(slot, &ctrl->p2p_ns_map, &iter, 0)
1530 		pci_dev_put(radix_tree_deref_slot(slot));
1531 
1532 	put_device(ctrl->p2p_client);
1533 }
1534 
nvmet_fatal_error_handler(struct work_struct * work)1535 static void nvmet_fatal_error_handler(struct work_struct *work)
1536 {
1537 	struct nvmet_ctrl *ctrl =
1538 			container_of(work, struct nvmet_ctrl, fatal_err_work);
1539 
1540 	pr_err("ctrl %d fatal error occurred!\n", ctrl->cntlid);
1541 	ctrl->ops->delete_ctrl(ctrl);
1542 }
1543 
nvmet_alloc_ctrl(struct nvmet_alloc_ctrl_args * args)1544 struct nvmet_ctrl *nvmet_alloc_ctrl(struct nvmet_alloc_ctrl_args *args)
1545 {
1546 	struct nvmet_subsys *subsys;
1547 	struct nvmet_ctrl *ctrl;
1548 	u32 kato = args->kato;
1549 	u8 dhchap_status;
1550 	int ret;
1551 
1552 	args->status = NVME_SC_CONNECT_INVALID_PARAM | NVME_STATUS_DNR;
1553 	subsys = nvmet_find_get_subsys(args->port, args->subsysnqn);
1554 	if (!subsys) {
1555 		pr_warn("connect request for invalid subsystem %s!\n",
1556 			args->subsysnqn);
1557 		args->result = IPO_IATTR_CONNECT_DATA(subsysnqn);
1558 		args->error_loc = offsetof(struct nvme_common_command, dptr);
1559 		return NULL;
1560 	}
1561 
1562 	down_read(&nvmet_config_sem);
1563 	if (!nvmet_host_allowed(subsys, args->hostnqn)) {
1564 		pr_info("connect by host %s for subsystem %s not allowed\n",
1565 			args->hostnqn, args->subsysnqn);
1566 		args->result = IPO_IATTR_CONNECT_DATA(hostnqn);
1567 		up_read(&nvmet_config_sem);
1568 		args->status = NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR;
1569 		args->error_loc = offsetof(struct nvme_common_command, dptr);
1570 		goto out_put_subsystem;
1571 	}
1572 	up_read(&nvmet_config_sem);
1573 
1574 	args->status = NVME_SC_INTERNAL;
1575 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
1576 	if (!ctrl)
1577 		goto out_put_subsystem;
1578 	mutex_init(&ctrl->lock);
1579 
1580 	ctrl->port = args->port;
1581 	ctrl->ops = args->ops;
1582 
1583 #ifdef CONFIG_NVME_TARGET_PASSTHRU
1584 	/* By default, set loop targets to clear IDS by default */
1585 	if (ctrl->port->disc_addr.trtype == NVMF_TRTYPE_LOOP)
1586 		subsys->clear_ids = 1;
1587 #endif
1588 
1589 	INIT_WORK(&ctrl->async_event_work, nvmet_async_event_work);
1590 	INIT_LIST_HEAD(&ctrl->async_events);
1591 	INIT_RADIX_TREE(&ctrl->p2p_ns_map, GFP_KERNEL);
1592 	INIT_WORK(&ctrl->fatal_err_work, nvmet_fatal_error_handler);
1593 	INIT_DELAYED_WORK(&ctrl->ka_work, nvmet_keep_alive_timer);
1594 
1595 	memcpy(ctrl->subsysnqn, args->subsysnqn, NVMF_NQN_SIZE);
1596 	memcpy(ctrl->hostnqn, args->hostnqn, NVMF_NQN_SIZE);
1597 
1598 	kref_init(&ctrl->ref);
1599 	ctrl->subsys = subsys;
1600 	ctrl->pi_support = ctrl->port->pi_enable && ctrl->subsys->pi_support;
1601 	nvmet_init_cap(ctrl);
1602 	WRITE_ONCE(ctrl->aen_enabled, NVMET_AEN_CFG_OPTIONAL);
1603 
1604 	ctrl->changed_ns_list = kmalloc_array(NVME_MAX_CHANGED_NAMESPACES,
1605 			sizeof(__le32), GFP_KERNEL);
1606 	if (!ctrl->changed_ns_list)
1607 		goto out_free_ctrl;
1608 
1609 	ctrl->sqs = kcalloc(subsys->max_qid + 1,
1610 			sizeof(struct nvmet_sq *),
1611 			GFP_KERNEL);
1612 	if (!ctrl->sqs)
1613 		goto out_free_changed_ns_list;
1614 
1615 	ret = ida_alloc_range(&cntlid_ida,
1616 			     subsys->cntlid_min, subsys->cntlid_max,
1617 			     GFP_KERNEL);
1618 	if (ret < 0) {
1619 		args->status = NVME_SC_CONNECT_CTRL_BUSY | NVME_STATUS_DNR;
1620 		goto out_free_sqs;
1621 	}
1622 	ctrl->cntlid = ret;
1623 
1624 	/*
1625 	 * Discovery controllers may use some arbitrary high value
1626 	 * in order to cleanup stale discovery sessions
1627 	 */
1628 	if (nvmet_is_disc_subsys(ctrl->subsys) && !kato)
1629 		kato = NVMET_DISC_KATO_MS;
1630 
1631 	/* keep-alive timeout in seconds */
1632 	ctrl->kato = DIV_ROUND_UP(kato, 1000);
1633 
1634 	ctrl->err_counter = 0;
1635 	spin_lock_init(&ctrl->error_lock);
1636 
1637 	nvmet_start_keep_alive_timer(ctrl);
1638 
1639 	mutex_lock(&subsys->lock);
1640 	ret = nvmet_ctrl_init_pr(ctrl);
1641 	if (ret)
1642 		goto init_pr_fail;
1643 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
1644 	nvmet_setup_p2p_ns_map(ctrl, args->p2p_client);
1645 	nvmet_debugfs_ctrl_setup(ctrl);
1646 	mutex_unlock(&subsys->lock);
1647 
1648 	if (args->hostid)
1649 		uuid_copy(&ctrl->hostid, args->hostid);
1650 
1651 	dhchap_status = nvmet_setup_auth(ctrl, args->sq);
1652 	if (dhchap_status) {
1653 		pr_err("Failed to setup authentication, dhchap status %u\n",
1654 		       dhchap_status);
1655 		nvmet_ctrl_put(ctrl);
1656 		if (dhchap_status == NVME_AUTH_DHCHAP_FAILURE_FAILED)
1657 			args->status =
1658 				NVME_SC_CONNECT_INVALID_HOST | NVME_STATUS_DNR;
1659 		else
1660 			args->status = NVME_SC_INTERNAL;
1661 		return NULL;
1662 	}
1663 
1664 	args->status = NVME_SC_SUCCESS;
1665 
1666 	pr_info("Created %s controller %d for subsystem %s for NQN %s%s%s%s.\n",
1667 		nvmet_is_disc_subsys(ctrl->subsys) ? "discovery" : "nvm",
1668 		ctrl->cntlid, ctrl->subsys->subsysnqn, ctrl->hostnqn,
1669 		ctrl->pi_support ? " T10-PI is enabled" : "",
1670 		nvmet_has_auth(ctrl, args->sq) ? " with DH-HMAC-CHAP" : "",
1671 		nvmet_queue_tls_keyid(args->sq) ? ", TLS" : "");
1672 
1673 	return ctrl;
1674 
1675 init_pr_fail:
1676 	mutex_unlock(&subsys->lock);
1677 	nvmet_stop_keep_alive_timer(ctrl);
1678 	ida_free(&cntlid_ida, ctrl->cntlid);
1679 out_free_sqs:
1680 	kfree(ctrl->sqs);
1681 out_free_changed_ns_list:
1682 	kfree(ctrl->changed_ns_list);
1683 out_free_ctrl:
1684 	kfree(ctrl);
1685 out_put_subsystem:
1686 	nvmet_subsys_put(subsys);
1687 	return NULL;
1688 }
1689 EXPORT_SYMBOL_GPL(nvmet_alloc_ctrl);
1690 
nvmet_ctrl_free(struct kref * ref)1691 static void nvmet_ctrl_free(struct kref *ref)
1692 {
1693 	struct nvmet_ctrl *ctrl = container_of(ref, struct nvmet_ctrl, ref);
1694 	struct nvmet_subsys *subsys = ctrl->subsys;
1695 
1696 	mutex_lock(&subsys->lock);
1697 	nvmet_ctrl_destroy_pr(ctrl);
1698 	nvmet_release_p2p_ns_map(ctrl);
1699 	list_del(&ctrl->subsys_entry);
1700 	mutex_unlock(&subsys->lock);
1701 
1702 	nvmet_stop_keep_alive_timer(ctrl);
1703 
1704 	flush_work(&ctrl->async_event_work);
1705 	cancel_work_sync(&ctrl->fatal_err_work);
1706 
1707 	nvmet_destroy_auth(ctrl);
1708 
1709 	nvmet_debugfs_ctrl_free(ctrl);
1710 
1711 	ida_free(&cntlid_ida, ctrl->cntlid);
1712 
1713 	nvmet_async_events_free(ctrl);
1714 	kfree(ctrl->sqs);
1715 	kfree(ctrl->changed_ns_list);
1716 	kfree(ctrl);
1717 
1718 	nvmet_subsys_put(subsys);
1719 }
1720 
nvmet_ctrl_put(struct nvmet_ctrl * ctrl)1721 void nvmet_ctrl_put(struct nvmet_ctrl *ctrl)
1722 {
1723 	kref_put(&ctrl->ref, nvmet_ctrl_free);
1724 }
1725 EXPORT_SYMBOL_GPL(nvmet_ctrl_put);
1726 
nvmet_ctrl_fatal_error(struct nvmet_ctrl * ctrl)1727 void nvmet_ctrl_fatal_error(struct nvmet_ctrl *ctrl)
1728 {
1729 	mutex_lock(&ctrl->lock);
1730 	if (!(ctrl->csts & NVME_CSTS_CFS)) {
1731 		ctrl->csts |= NVME_CSTS_CFS;
1732 		queue_work(nvmet_wq, &ctrl->fatal_err_work);
1733 	}
1734 	mutex_unlock(&ctrl->lock);
1735 }
1736 EXPORT_SYMBOL_GPL(nvmet_ctrl_fatal_error);
1737 
nvmet_ctrl_host_traddr(struct nvmet_ctrl * ctrl,char * traddr,size_t traddr_len)1738 ssize_t nvmet_ctrl_host_traddr(struct nvmet_ctrl *ctrl,
1739 		char *traddr, size_t traddr_len)
1740 {
1741 	if (!ctrl->ops->host_traddr)
1742 		return -EOPNOTSUPP;
1743 	return ctrl->ops->host_traddr(ctrl, traddr, traddr_len);
1744 }
1745 
nvmet_find_get_subsys(struct nvmet_port * port,const char * subsysnqn)1746 static struct nvmet_subsys *nvmet_find_get_subsys(struct nvmet_port *port,
1747 		const char *subsysnqn)
1748 {
1749 	struct nvmet_subsys_link *p;
1750 
1751 	if (!port)
1752 		return NULL;
1753 
1754 	if (!strcmp(NVME_DISC_SUBSYS_NAME, subsysnqn)) {
1755 		if (!kref_get_unless_zero(&nvmet_disc_subsys->ref))
1756 			return NULL;
1757 		return nvmet_disc_subsys;
1758 	}
1759 
1760 	down_read(&nvmet_config_sem);
1761 	if (!strncmp(nvmet_disc_subsys->subsysnqn, subsysnqn,
1762 				NVMF_NQN_SIZE)) {
1763 		if (kref_get_unless_zero(&nvmet_disc_subsys->ref)) {
1764 			up_read(&nvmet_config_sem);
1765 			return nvmet_disc_subsys;
1766 		}
1767 	}
1768 	list_for_each_entry(p, &port->subsystems, entry) {
1769 		if (!strncmp(p->subsys->subsysnqn, subsysnqn,
1770 				NVMF_NQN_SIZE)) {
1771 			if (!kref_get_unless_zero(&p->subsys->ref))
1772 				break;
1773 			up_read(&nvmet_config_sem);
1774 			return p->subsys;
1775 		}
1776 	}
1777 	up_read(&nvmet_config_sem);
1778 	return NULL;
1779 }
1780 
nvmet_subsys_alloc(const char * subsysnqn,enum nvme_subsys_type type)1781 struct nvmet_subsys *nvmet_subsys_alloc(const char *subsysnqn,
1782 		enum nvme_subsys_type type)
1783 {
1784 	struct nvmet_subsys *subsys;
1785 	char serial[NVMET_SN_MAX_SIZE / 2];
1786 	int ret;
1787 
1788 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
1789 	if (!subsys)
1790 		return ERR_PTR(-ENOMEM);
1791 
1792 	subsys->ver = NVMET_DEFAULT_VS;
1793 	/* generate a random serial number as our controllers are ephemeral: */
1794 	get_random_bytes(&serial, sizeof(serial));
1795 	bin2hex(subsys->serial, &serial, sizeof(serial));
1796 
1797 	subsys->model_number = kstrdup(NVMET_DEFAULT_CTRL_MODEL, GFP_KERNEL);
1798 	if (!subsys->model_number) {
1799 		ret = -ENOMEM;
1800 		goto free_subsys;
1801 	}
1802 
1803 	subsys->ieee_oui = 0;
1804 
1805 	subsys->firmware_rev = kstrndup(UTS_RELEASE, NVMET_FR_MAX_SIZE, GFP_KERNEL);
1806 	if (!subsys->firmware_rev) {
1807 		ret = -ENOMEM;
1808 		goto free_mn;
1809 	}
1810 
1811 	switch (type) {
1812 	case NVME_NQN_NVME:
1813 		subsys->max_qid = NVMET_NR_QUEUES;
1814 		break;
1815 	case NVME_NQN_DISC:
1816 	case NVME_NQN_CURR:
1817 		subsys->max_qid = 0;
1818 		break;
1819 	default:
1820 		pr_err("%s: Unknown Subsystem type - %d\n", __func__, type);
1821 		ret = -EINVAL;
1822 		goto free_fr;
1823 	}
1824 	subsys->type = type;
1825 	subsys->subsysnqn = kstrndup(subsysnqn, NVMF_NQN_SIZE,
1826 			GFP_KERNEL);
1827 	if (!subsys->subsysnqn) {
1828 		ret = -ENOMEM;
1829 		goto free_fr;
1830 	}
1831 	subsys->cntlid_min = NVME_CNTLID_MIN;
1832 	subsys->cntlid_max = NVME_CNTLID_MAX;
1833 	kref_init(&subsys->ref);
1834 
1835 	mutex_init(&subsys->lock);
1836 	xa_init(&subsys->namespaces);
1837 	INIT_LIST_HEAD(&subsys->ctrls);
1838 	INIT_LIST_HEAD(&subsys->hosts);
1839 
1840 	ret = nvmet_debugfs_subsys_setup(subsys);
1841 	if (ret)
1842 		goto free_subsysnqn;
1843 
1844 	return subsys;
1845 
1846 free_subsysnqn:
1847 	kfree(subsys->subsysnqn);
1848 free_fr:
1849 	kfree(subsys->firmware_rev);
1850 free_mn:
1851 	kfree(subsys->model_number);
1852 free_subsys:
1853 	kfree(subsys);
1854 	return ERR_PTR(ret);
1855 }
1856 
nvmet_subsys_free(struct kref * ref)1857 static void nvmet_subsys_free(struct kref *ref)
1858 {
1859 	struct nvmet_subsys *subsys =
1860 		container_of(ref, struct nvmet_subsys, ref);
1861 
1862 	WARN_ON_ONCE(!xa_empty(&subsys->namespaces));
1863 
1864 	nvmet_debugfs_subsys_free(subsys);
1865 
1866 	xa_destroy(&subsys->namespaces);
1867 	nvmet_passthru_subsys_free(subsys);
1868 
1869 	kfree(subsys->subsysnqn);
1870 	kfree(subsys->model_number);
1871 	kfree(subsys->firmware_rev);
1872 	kfree(subsys);
1873 }
1874 
nvmet_subsys_del_ctrls(struct nvmet_subsys * subsys)1875 void nvmet_subsys_del_ctrls(struct nvmet_subsys *subsys)
1876 {
1877 	struct nvmet_ctrl *ctrl;
1878 
1879 	mutex_lock(&subsys->lock);
1880 	list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry)
1881 		ctrl->ops->delete_ctrl(ctrl);
1882 	mutex_unlock(&subsys->lock);
1883 }
1884 
nvmet_subsys_put(struct nvmet_subsys * subsys)1885 void nvmet_subsys_put(struct nvmet_subsys *subsys)
1886 {
1887 	kref_put(&subsys->ref, nvmet_subsys_free);
1888 }
1889 
nvmet_init(void)1890 static int __init nvmet_init(void)
1891 {
1892 	int error = -ENOMEM;
1893 
1894 	nvmet_ana_group_enabled[NVMET_DEFAULT_ANA_GRPID] = 1;
1895 
1896 	nvmet_bvec_cache = kmem_cache_create("nvmet-bvec",
1897 			NVMET_MAX_MPOOL_BVEC * sizeof(struct bio_vec), 0,
1898 			SLAB_HWCACHE_ALIGN, NULL);
1899 	if (!nvmet_bvec_cache)
1900 		return -ENOMEM;
1901 
1902 	zbd_wq = alloc_workqueue("nvmet-zbd-wq", WQ_MEM_RECLAIM, 0);
1903 	if (!zbd_wq)
1904 		goto out_destroy_bvec_cache;
1905 
1906 	buffered_io_wq = alloc_workqueue("nvmet-buffered-io-wq",
1907 			WQ_MEM_RECLAIM, 0);
1908 	if (!buffered_io_wq)
1909 		goto out_free_zbd_work_queue;
1910 
1911 	nvmet_wq = alloc_workqueue("nvmet-wq",
1912 			WQ_MEM_RECLAIM | WQ_UNBOUND | WQ_SYSFS, 0);
1913 	if (!nvmet_wq)
1914 		goto out_free_buffered_work_queue;
1915 
1916 	error = nvmet_init_discovery();
1917 	if (error)
1918 		goto out_free_nvmet_work_queue;
1919 
1920 	error = nvmet_init_debugfs();
1921 	if (error)
1922 		goto out_exit_discovery;
1923 
1924 	error = nvmet_init_configfs();
1925 	if (error)
1926 		goto out_exit_debugfs;
1927 
1928 	return 0;
1929 
1930 out_exit_debugfs:
1931 	nvmet_exit_debugfs();
1932 out_exit_discovery:
1933 	nvmet_exit_discovery();
1934 out_free_nvmet_work_queue:
1935 	destroy_workqueue(nvmet_wq);
1936 out_free_buffered_work_queue:
1937 	destroy_workqueue(buffered_io_wq);
1938 out_free_zbd_work_queue:
1939 	destroy_workqueue(zbd_wq);
1940 out_destroy_bvec_cache:
1941 	kmem_cache_destroy(nvmet_bvec_cache);
1942 	return error;
1943 }
1944 
nvmet_exit(void)1945 static void __exit nvmet_exit(void)
1946 {
1947 	nvmet_exit_configfs();
1948 	nvmet_exit_debugfs();
1949 	nvmet_exit_discovery();
1950 	ida_destroy(&cntlid_ida);
1951 	destroy_workqueue(nvmet_wq);
1952 	destroy_workqueue(buffered_io_wq);
1953 	destroy_workqueue(zbd_wq);
1954 	kmem_cache_destroy(nvmet_bvec_cache);
1955 
1956 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_entry) != 1024);
1957 	BUILD_BUG_ON(sizeof(struct nvmf_disc_rsp_page_hdr) != 1024);
1958 }
1959 
1960 module_init(nvmet_init);
1961 module_exit(nvmet_exit);
1962 
1963 MODULE_DESCRIPTION("NVMe target core framework");
1964 MODULE_LICENSE("GPL v2");
1965