1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <linux/nvme-keyring.h>
13 #include <net/sock.h>
14 #include <net/tcp.h>
15 #include <net/tls.h>
16 #include <net/tls_prot.h>
17 #include <net/handshake.h>
18 #include <linux/blk-mq.h>
19 #include <crypto/hash.h>
20 #include <net/busy_poll.h>
21 #include <trace/events/sock.h>
22
23 #include "nvme.h"
24 #include "fabrics.h"
25
26 struct nvme_tcp_queue;
27
28 /* Define the socket priority to use for connections were it is desirable
29 * that the NIC consider performing optimized packet processing or filtering.
30 * A non-zero value being sufficient to indicate general consideration of any
31 * possible optimization. Making it a module param allows for alternative
32 * values that may be unique for some NIC implementations.
33 */
34 static int so_priority;
35 module_param(so_priority, int, 0644);
36 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
37
38 /*
39 * Use the unbound workqueue for nvme_tcp_wq, then we can set the cpu affinity
40 * from sysfs.
41 */
42 static bool wq_unbound;
43 module_param(wq_unbound, bool, 0644);
44 MODULE_PARM_DESC(wq_unbound, "Use unbound workqueue for nvme-tcp IO context (default false)");
45
46 /*
47 * TLS handshake timeout
48 */
49 static int tls_handshake_timeout = 10;
50 #ifdef CONFIG_NVME_TCP_TLS
51 module_param(tls_handshake_timeout, int, 0644);
52 MODULE_PARM_DESC(tls_handshake_timeout,
53 "nvme TLS handshake timeout in seconds (default 10)");
54 #endif
55
56 static atomic_t nvme_tcp_cpu_queues[NR_CPUS];
57
58 #ifdef CONFIG_DEBUG_LOCK_ALLOC
59 /* lockdep can detect a circular dependency of the form
60 * sk_lock -> mmap_lock (page fault) -> fs locks -> sk_lock
61 * because dependencies are tracked for both nvme-tcp and user contexts. Using
62 * a separate class prevents lockdep from conflating nvme-tcp socket use with
63 * user-space socket API use.
64 */
65 static struct lock_class_key nvme_tcp_sk_key[2];
66 static struct lock_class_key nvme_tcp_slock_key[2];
67
nvme_tcp_reclassify_socket(struct socket * sock)68 static void nvme_tcp_reclassify_socket(struct socket *sock)
69 {
70 struct sock *sk = sock->sk;
71
72 if (WARN_ON_ONCE(!sock_allow_reclassification(sk)))
73 return;
74
75 switch (sk->sk_family) {
76 case AF_INET:
77 sock_lock_init_class_and_name(sk, "slock-AF_INET-NVME",
78 &nvme_tcp_slock_key[0],
79 "sk_lock-AF_INET-NVME",
80 &nvme_tcp_sk_key[0]);
81 break;
82 case AF_INET6:
83 sock_lock_init_class_and_name(sk, "slock-AF_INET6-NVME",
84 &nvme_tcp_slock_key[1],
85 "sk_lock-AF_INET6-NVME",
86 &nvme_tcp_sk_key[1]);
87 break;
88 default:
89 WARN_ON_ONCE(1);
90 }
91 }
92 #else
nvme_tcp_reclassify_socket(struct socket * sock)93 static void nvme_tcp_reclassify_socket(struct socket *sock) { }
94 #endif
95
96 enum nvme_tcp_send_state {
97 NVME_TCP_SEND_CMD_PDU = 0,
98 NVME_TCP_SEND_H2C_PDU,
99 NVME_TCP_SEND_DATA,
100 NVME_TCP_SEND_DDGST,
101 };
102
103 struct nvme_tcp_request {
104 struct nvme_request req;
105 void *pdu;
106 struct nvme_tcp_queue *queue;
107 u32 data_len;
108 u32 pdu_len;
109 u32 pdu_sent;
110 u32 h2cdata_left;
111 u32 h2cdata_offset;
112 u16 ttag;
113 __le16 status;
114 struct list_head entry;
115 struct llist_node lentry;
116 __le32 ddgst;
117
118 struct bio *curr_bio;
119 struct iov_iter iter;
120
121 /* send state */
122 size_t offset;
123 size_t data_sent;
124 enum nvme_tcp_send_state state;
125 };
126
127 enum nvme_tcp_queue_flags {
128 NVME_TCP_Q_ALLOCATED = 0,
129 NVME_TCP_Q_LIVE = 1,
130 NVME_TCP_Q_POLLING = 2,
131 NVME_TCP_Q_IO_CPU_SET = 3,
132 };
133
134 enum nvme_tcp_recv_state {
135 NVME_TCP_RECV_PDU = 0,
136 NVME_TCP_RECV_DATA,
137 NVME_TCP_RECV_DDGST,
138 };
139
140 struct nvme_tcp_ctrl;
141 struct nvme_tcp_queue {
142 struct socket *sock;
143 struct work_struct io_work;
144 int io_cpu;
145
146 struct mutex queue_lock;
147 struct mutex send_mutex;
148 struct llist_head req_list;
149 struct list_head send_list;
150
151 /* recv state */
152 void *pdu;
153 int pdu_remaining;
154 int pdu_offset;
155 size_t data_remaining;
156 size_t ddgst_remaining;
157 unsigned int nr_cqe;
158
159 /* send state */
160 struct nvme_tcp_request *request;
161
162 u32 maxh2cdata;
163 size_t cmnd_capsule_len;
164 struct nvme_tcp_ctrl *ctrl;
165 unsigned long flags;
166 bool rd_enabled;
167
168 bool hdr_digest;
169 bool data_digest;
170 bool tls_enabled;
171 struct ahash_request *rcv_hash;
172 struct ahash_request *snd_hash;
173 __le32 exp_ddgst;
174 __le32 recv_ddgst;
175 struct completion tls_complete;
176 int tls_err;
177 struct page_frag_cache pf_cache;
178
179 void (*state_change)(struct sock *);
180 void (*data_ready)(struct sock *);
181 void (*write_space)(struct sock *);
182 };
183
184 struct nvme_tcp_ctrl {
185 /* read only in the hot path */
186 struct nvme_tcp_queue *queues;
187 struct blk_mq_tag_set tag_set;
188
189 /* other member variables */
190 struct list_head list;
191 struct blk_mq_tag_set admin_tag_set;
192 struct sockaddr_storage addr;
193 struct sockaddr_storage src_addr;
194 struct nvme_ctrl ctrl;
195
196 struct work_struct err_work;
197 struct delayed_work connect_work;
198 struct nvme_tcp_request async_req;
199 u32 io_queues[HCTX_MAX_TYPES];
200 };
201
202 static LIST_HEAD(nvme_tcp_ctrl_list);
203 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
204 static struct workqueue_struct *nvme_tcp_wq;
205 static const struct blk_mq_ops nvme_tcp_mq_ops;
206 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
207 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
208
to_tcp_ctrl(struct nvme_ctrl * ctrl)209 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
210 {
211 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
212 }
213
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)214 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
215 {
216 return queue - queue->ctrl->queues;
217 }
218
nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type)219 static inline bool nvme_tcp_recv_pdu_supported(enum nvme_tcp_pdu_type type)
220 {
221 switch (type) {
222 case nvme_tcp_c2h_term:
223 case nvme_tcp_c2h_data:
224 case nvme_tcp_r2t:
225 case nvme_tcp_rsp:
226 return true;
227 default:
228 return false;
229 }
230 }
231
232 /*
233 * Check if the queue is TLS encrypted
234 */
nvme_tcp_queue_tls(struct nvme_tcp_queue * queue)235 static inline bool nvme_tcp_queue_tls(struct nvme_tcp_queue *queue)
236 {
237 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
238 return 0;
239
240 return queue->tls_enabled;
241 }
242
243 /*
244 * Check if TLS is configured for the controller.
245 */
nvme_tcp_tls_configured(struct nvme_ctrl * ctrl)246 static inline bool nvme_tcp_tls_configured(struct nvme_ctrl *ctrl)
247 {
248 if (!IS_ENABLED(CONFIG_NVME_TCP_TLS))
249 return 0;
250
251 return ctrl->opts->tls || ctrl->opts->concat;
252 }
253
nvme_tcp_tagset(struct nvme_tcp_queue * queue)254 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
255 {
256 u32 queue_idx = nvme_tcp_queue_id(queue);
257
258 if (queue_idx == 0)
259 return queue->ctrl->admin_tag_set.tags[queue_idx];
260 return queue->ctrl->tag_set.tags[queue_idx - 1];
261 }
262
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)263 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
264 {
265 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
266 }
267
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)268 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
269 {
270 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
271 }
272
nvme_tcp_req_cmd_pdu(struct nvme_tcp_request * req)273 static inline void *nvme_tcp_req_cmd_pdu(struct nvme_tcp_request *req)
274 {
275 return req->pdu;
276 }
277
nvme_tcp_req_data_pdu(struct nvme_tcp_request * req)278 static inline void *nvme_tcp_req_data_pdu(struct nvme_tcp_request *req)
279 {
280 /* use the pdu space in the back for the data pdu */
281 return req->pdu + sizeof(struct nvme_tcp_cmd_pdu) -
282 sizeof(struct nvme_tcp_data_pdu);
283 }
284
nvme_tcp_inline_data_size(struct nvme_tcp_request * req)285 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_request *req)
286 {
287 if (nvme_is_fabrics(req->req.cmd))
288 return NVME_TCP_ADMIN_CCSZ;
289 return req->queue->cmnd_capsule_len - sizeof(struct nvme_command);
290 }
291
nvme_tcp_async_req(struct nvme_tcp_request * req)292 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
293 {
294 return req == &req->queue->ctrl->async_req;
295 }
296
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)297 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
298 {
299 struct request *rq;
300
301 if (unlikely(nvme_tcp_async_req(req)))
302 return false; /* async events don't have a request */
303
304 rq = blk_mq_rq_from_pdu(req);
305
306 return rq_data_dir(rq) == WRITE && req->data_len &&
307 req->data_len <= nvme_tcp_inline_data_size(req);
308 }
309
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)310 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
311 {
312 return req->iter.bvec->bv_page;
313 }
314
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)315 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
316 {
317 return req->iter.bvec->bv_offset + req->iter.iov_offset;
318 }
319
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)320 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
321 {
322 return min_t(size_t, iov_iter_single_seg_count(&req->iter),
323 req->pdu_len - req->pdu_sent);
324 }
325
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)326 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
327 {
328 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
329 req->pdu_len - req->pdu_sent : 0;
330 }
331
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)332 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
333 int len)
334 {
335 return nvme_tcp_pdu_data_left(req) <= len;
336 }
337
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)338 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
339 unsigned int dir)
340 {
341 struct request *rq = blk_mq_rq_from_pdu(req);
342 struct bio_vec *vec;
343 unsigned int size;
344 int nr_bvec;
345 size_t offset;
346
347 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
348 vec = &rq->special_vec;
349 nr_bvec = 1;
350 size = blk_rq_payload_bytes(rq);
351 offset = 0;
352 } else {
353 struct bio *bio = req->curr_bio;
354 struct bvec_iter bi;
355 struct bio_vec bv;
356
357 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
358 nr_bvec = 0;
359 bio_for_each_bvec(bv, bio, bi) {
360 nr_bvec++;
361 }
362 size = bio->bi_iter.bi_size;
363 offset = bio->bi_iter.bi_bvec_done;
364 }
365
366 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
367 req->iter.iov_offset = offset;
368 }
369
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)370 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
371 int len)
372 {
373 req->data_sent += len;
374 req->pdu_sent += len;
375 iov_iter_advance(&req->iter, len);
376 if (!iov_iter_count(&req->iter) &&
377 req->data_sent < req->data_len) {
378 req->curr_bio = req->curr_bio->bi_next;
379 nvme_tcp_init_iter(req, ITER_SOURCE);
380 }
381 }
382
nvme_tcp_send_all(struct nvme_tcp_queue * queue)383 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
384 {
385 int ret;
386
387 /* drain the send queue as much as we can... */
388 do {
389 ret = nvme_tcp_try_send(queue);
390 } while (ret > 0);
391 }
392
nvme_tcp_queue_has_pending(struct nvme_tcp_queue * queue)393 static inline bool nvme_tcp_queue_has_pending(struct nvme_tcp_queue *queue)
394 {
395 return !list_empty(&queue->send_list) ||
396 !llist_empty(&queue->req_list);
397 }
398
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)399 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
400 {
401 return !nvme_tcp_queue_tls(queue) &&
402 nvme_tcp_queue_has_pending(queue);
403 }
404
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool sync,bool last)405 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
406 bool sync, bool last)
407 {
408 struct nvme_tcp_queue *queue = req->queue;
409 bool empty;
410
411 empty = llist_add(&req->lentry, &queue->req_list) &&
412 list_empty(&queue->send_list) && !queue->request;
413
414 /*
415 * if we're the first on the send_list and we can try to send
416 * directly, otherwise queue io_work. Also, only do that if we
417 * are on the same cpu, so we don't introduce contention.
418 */
419 if (queue->io_cpu == raw_smp_processor_id() &&
420 sync && empty && mutex_trylock(&queue->send_mutex)) {
421 nvme_tcp_send_all(queue);
422 mutex_unlock(&queue->send_mutex);
423 }
424
425 if (last && nvme_tcp_queue_has_pending(queue))
426 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
427 }
428
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)429 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
430 {
431 struct nvme_tcp_request *req;
432 struct llist_node *node;
433
434 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
435 req = llist_entry(node, struct nvme_tcp_request, lentry);
436 list_add(&req->entry, &queue->send_list);
437 }
438 }
439
440 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)441 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
442 {
443 struct nvme_tcp_request *req;
444
445 req = list_first_entry_or_null(&queue->send_list,
446 struct nvme_tcp_request, entry);
447 if (!req) {
448 nvme_tcp_process_req_list(queue);
449 req = list_first_entry_or_null(&queue->send_list,
450 struct nvme_tcp_request, entry);
451 if (unlikely(!req))
452 return NULL;
453 }
454
455 list_del(&req->entry);
456 return req;
457 }
458
nvme_tcp_ddgst_final(struct ahash_request * hash,__le32 * dgst)459 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
460 __le32 *dgst)
461 {
462 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
463 crypto_ahash_final(hash);
464 }
465
nvme_tcp_ddgst_update(struct ahash_request * hash,struct page * page,off_t off,size_t len)466 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
467 struct page *page, off_t off, size_t len)
468 {
469 struct scatterlist sg;
470
471 sg_init_table(&sg, 1);
472 sg_set_page(&sg, page, len, off);
473 ahash_request_set_crypt(hash, &sg, NULL, len);
474 crypto_ahash_update(hash);
475 }
476
nvme_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)477 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
478 void *pdu, size_t len)
479 {
480 struct scatterlist sg;
481
482 sg_init_one(&sg, pdu, len);
483 ahash_request_set_crypt(hash, &sg, pdu + len, len);
484 crypto_ahash_digest(hash);
485 }
486
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)487 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
488 void *pdu, size_t pdu_len)
489 {
490 struct nvme_tcp_hdr *hdr = pdu;
491 __le32 recv_digest;
492 __le32 exp_digest;
493
494 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
495 dev_err(queue->ctrl->ctrl.device,
496 "queue %d: header digest flag is cleared\n",
497 nvme_tcp_queue_id(queue));
498 return -EPROTO;
499 }
500
501 recv_digest = *(__le32 *)(pdu + hdr->hlen);
502 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
503 exp_digest = *(__le32 *)(pdu + hdr->hlen);
504 if (recv_digest != exp_digest) {
505 dev_err(queue->ctrl->ctrl.device,
506 "header digest error: recv %#x expected %#x\n",
507 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
508 return -EIO;
509 }
510
511 return 0;
512 }
513
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)514 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
515 {
516 struct nvme_tcp_hdr *hdr = pdu;
517 u8 digest_len = nvme_tcp_hdgst_len(queue);
518 u32 len;
519
520 len = le32_to_cpu(hdr->plen) - hdr->hlen -
521 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
522
523 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
524 dev_err(queue->ctrl->ctrl.device,
525 "queue %d: data digest flag is cleared\n",
526 nvme_tcp_queue_id(queue));
527 return -EPROTO;
528 }
529 crypto_ahash_init(queue->rcv_hash);
530
531 return 0;
532 }
533
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)534 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
535 struct request *rq, unsigned int hctx_idx)
536 {
537 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
538
539 page_frag_free(req->pdu);
540 }
541
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)542 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
543 struct request *rq, unsigned int hctx_idx,
544 unsigned int numa_node)
545 {
546 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
547 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
548 struct nvme_tcp_cmd_pdu *pdu;
549 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
550 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
551 u8 hdgst = nvme_tcp_hdgst_len(queue);
552
553 req->pdu = page_frag_alloc(&queue->pf_cache,
554 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
555 GFP_KERNEL | __GFP_ZERO);
556 if (!req->pdu)
557 return -ENOMEM;
558
559 pdu = req->pdu;
560 req->queue = queue;
561 nvme_req(rq)->ctrl = &ctrl->ctrl;
562 nvme_req(rq)->cmd = &pdu->cmd;
563
564 return 0;
565 }
566
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)567 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
568 unsigned int hctx_idx)
569 {
570 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
571 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
572
573 hctx->driver_data = queue;
574 return 0;
575 }
576
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)577 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
578 unsigned int hctx_idx)
579 {
580 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(data);
581 struct nvme_tcp_queue *queue = &ctrl->queues[0];
582
583 hctx->driver_data = queue;
584 return 0;
585 }
586
587 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)588 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
589 {
590 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
591 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
592 NVME_TCP_RECV_DATA;
593 }
594
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)595 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
596 {
597 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
598 nvme_tcp_hdgst_len(queue);
599 queue->pdu_offset = 0;
600 queue->data_remaining = -1;
601 queue->ddgst_remaining = 0;
602 }
603
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)604 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
605 {
606 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
607 return;
608
609 dev_warn(ctrl->device, "starting error recovery\n");
610 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
611 }
612
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)613 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
614 struct nvme_completion *cqe)
615 {
616 struct nvme_tcp_request *req;
617 struct request *rq;
618
619 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
620 if (!rq) {
621 dev_err(queue->ctrl->ctrl.device,
622 "got bad cqe.command_id %#x on queue %d\n",
623 cqe->command_id, nvme_tcp_queue_id(queue));
624 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
625 return -EINVAL;
626 }
627
628 req = blk_mq_rq_to_pdu(rq);
629 if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
630 req->status = cqe->status;
631
632 if (!nvme_try_complete_req(rq, req->status, cqe->result))
633 nvme_complete_rq(rq);
634 queue->nr_cqe++;
635
636 return 0;
637 }
638
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)639 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
640 struct nvme_tcp_data_pdu *pdu)
641 {
642 struct request *rq;
643
644 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
645 if (!rq) {
646 dev_err(queue->ctrl->ctrl.device,
647 "got bad c2hdata.command_id %#x on queue %d\n",
648 pdu->command_id, nvme_tcp_queue_id(queue));
649 return -ENOENT;
650 }
651
652 if (!blk_rq_payload_bytes(rq)) {
653 dev_err(queue->ctrl->ctrl.device,
654 "queue %d tag %#x unexpected data\n",
655 nvme_tcp_queue_id(queue), rq->tag);
656 return -EIO;
657 }
658
659 queue->data_remaining = le32_to_cpu(pdu->data_length);
660
661 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
662 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
663 dev_err(queue->ctrl->ctrl.device,
664 "queue %d tag %#x SUCCESS set but not last PDU\n",
665 nvme_tcp_queue_id(queue), rq->tag);
666 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
667 return -EPROTO;
668 }
669
670 return 0;
671 }
672
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)673 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
674 struct nvme_tcp_rsp_pdu *pdu)
675 {
676 struct nvme_completion *cqe = &pdu->cqe;
677 int ret = 0;
678
679 /*
680 * AEN requests are special as they don't time out and can
681 * survive any kind of queue freeze and often don't respond to
682 * aborts. We don't even bother to allocate a struct request
683 * for them but rather special case them here.
684 */
685 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
686 cqe->command_id)))
687 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
688 &cqe->result);
689 else
690 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
691
692 return ret;
693 }
694
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req)695 static void nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req)
696 {
697 struct nvme_tcp_data_pdu *data = nvme_tcp_req_data_pdu(req);
698 struct nvme_tcp_queue *queue = req->queue;
699 struct request *rq = blk_mq_rq_from_pdu(req);
700 u32 h2cdata_sent = req->pdu_len;
701 u8 hdgst = nvme_tcp_hdgst_len(queue);
702 u8 ddgst = nvme_tcp_ddgst_len(queue);
703
704 req->state = NVME_TCP_SEND_H2C_PDU;
705 req->offset = 0;
706 req->pdu_len = min(req->h2cdata_left, queue->maxh2cdata);
707 req->pdu_sent = 0;
708 req->h2cdata_left -= req->pdu_len;
709 req->h2cdata_offset += h2cdata_sent;
710
711 memset(data, 0, sizeof(*data));
712 data->hdr.type = nvme_tcp_h2c_data;
713 if (!req->h2cdata_left)
714 data->hdr.flags = NVME_TCP_F_DATA_LAST;
715 if (queue->hdr_digest)
716 data->hdr.flags |= NVME_TCP_F_HDGST;
717 if (queue->data_digest)
718 data->hdr.flags |= NVME_TCP_F_DDGST;
719 data->hdr.hlen = sizeof(*data);
720 data->hdr.pdo = data->hdr.hlen + hdgst;
721 data->hdr.plen =
722 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
723 data->ttag = req->ttag;
724 data->command_id = nvme_cid(rq);
725 data->data_offset = cpu_to_le32(req->h2cdata_offset);
726 data->data_length = cpu_to_le32(req->pdu_len);
727 }
728
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)729 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
730 struct nvme_tcp_r2t_pdu *pdu)
731 {
732 struct nvme_tcp_request *req;
733 struct request *rq;
734 u32 r2t_length = le32_to_cpu(pdu->r2t_length);
735 u32 r2t_offset = le32_to_cpu(pdu->r2t_offset);
736
737 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
738 if (!rq) {
739 dev_err(queue->ctrl->ctrl.device,
740 "got bad r2t.command_id %#x on queue %d\n",
741 pdu->command_id, nvme_tcp_queue_id(queue));
742 return -ENOENT;
743 }
744 req = blk_mq_rq_to_pdu(rq);
745
746 if (unlikely(!r2t_length)) {
747 dev_err(queue->ctrl->ctrl.device,
748 "req %d r2t len is %u, probably a bug...\n",
749 rq->tag, r2t_length);
750 return -EPROTO;
751 }
752
753 if (unlikely(req->data_sent + r2t_length > req->data_len)) {
754 dev_err(queue->ctrl->ctrl.device,
755 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
756 rq->tag, r2t_length, req->data_len, req->data_sent);
757 return -EPROTO;
758 }
759
760 if (unlikely(r2t_offset < req->data_sent)) {
761 dev_err(queue->ctrl->ctrl.device,
762 "req %d unexpected r2t offset %u (expected %zu)\n",
763 rq->tag, r2t_offset, req->data_sent);
764 return -EPROTO;
765 }
766
767 req->pdu_len = 0;
768 req->h2cdata_left = r2t_length;
769 req->h2cdata_offset = r2t_offset;
770 req->ttag = pdu->ttag;
771
772 nvme_tcp_setup_h2c_data_pdu(req);
773 nvme_tcp_queue_request(req, false, true);
774
775 return 0;
776 }
777
nvme_tcp_handle_c2h_term(struct nvme_tcp_queue * queue,struct nvme_tcp_term_pdu * pdu)778 static void nvme_tcp_handle_c2h_term(struct nvme_tcp_queue *queue,
779 struct nvme_tcp_term_pdu *pdu)
780 {
781 u16 fes;
782 const char *msg;
783 u32 plen = le32_to_cpu(pdu->hdr.plen);
784
785 static const char * const msg_table[] = {
786 [NVME_TCP_FES_INVALID_PDU_HDR] = "Invalid PDU Header Field",
787 [NVME_TCP_FES_PDU_SEQ_ERR] = "PDU Sequence Error",
788 [NVME_TCP_FES_HDR_DIGEST_ERR] = "Header Digest Error",
789 [NVME_TCP_FES_DATA_OUT_OF_RANGE] = "Data Transfer Out Of Range",
790 [NVME_TCP_FES_DATA_LIMIT_EXCEEDED] = "Data Transfer Limit Exceeded",
791 [NVME_TCP_FES_UNSUPPORTED_PARAM] = "Unsupported Parameter",
792 };
793
794 if (plen < NVME_TCP_MIN_C2HTERM_PLEN ||
795 plen > NVME_TCP_MAX_C2HTERM_PLEN) {
796 dev_err(queue->ctrl->ctrl.device,
797 "Received a malformed C2HTermReq PDU (plen = %u)\n",
798 plen);
799 return;
800 }
801
802 fes = le16_to_cpu(pdu->fes);
803 if (fes && fes < ARRAY_SIZE(msg_table))
804 msg = msg_table[fes];
805 else
806 msg = "Unknown";
807
808 dev_err(queue->ctrl->ctrl.device,
809 "Received C2HTermReq (FES = %s)\n", msg);
810 }
811
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)812 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
813 unsigned int *offset, size_t *len)
814 {
815 struct nvme_tcp_hdr *hdr;
816 char *pdu = queue->pdu;
817 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
818 int ret;
819
820 ret = skb_copy_bits(skb, *offset,
821 &pdu[queue->pdu_offset], rcv_len);
822 if (unlikely(ret))
823 return ret;
824
825 queue->pdu_remaining -= rcv_len;
826 queue->pdu_offset += rcv_len;
827 *offset += rcv_len;
828 *len -= rcv_len;
829 if (queue->pdu_remaining)
830 return 0;
831
832 hdr = queue->pdu;
833 if (unlikely(hdr->hlen != sizeof(struct nvme_tcp_rsp_pdu))) {
834 if (!nvme_tcp_recv_pdu_supported(hdr->type))
835 goto unsupported_pdu;
836
837 dev_err(queue->ctrl->ctrl.device,
838 "pdu type %d has unexpected header length (%d)\n",
839 hdr->type, hdr->hlen);
840 return -EPROTO;
841 }
842
843 if (unlikely(hdr->type == nvme_tcp_c2h_term)) {
844 /*
845 * C2HTermReq never includes Header or Data digests.
846 * Skip the checks.
847 */
848 nvme_tcp_handle_c2h_term(queue, (void *)queue->pdu);
849 return -EINVAL;
850 }
851
852 if (queue->hdr_digest) {
853 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
854 if (unlikely(ret))
855 return ret;
856 }
857
858
859 if (queue->data_digest) {
860 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
861 if (unlikely(ret))
862 return ret;
863 }
864
865 switch (hdr->type) {
866 case nvme_tcp_c2h_data:
867 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
868 case nvme_tcp_rsp:
869 nvme_tcp_init_recv_ctx(queue);
870 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
871 case nvme_tcp_r2t:
872 nvme_tcp_init_recv_ctx(queue);
873 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
874 default:
875 goto unsupported_pdu;
876 }
877
878 unsupported_pdu:
879 dev_err(queue->ctrl->ctrl.device,
880 "unsupported pdu type (%d)\n", hdr->type);
881 return -EINVAL;
882 }
883
nvme_tcp_end_request(struct request * rq,u16 status)884 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
885 {
886 union nvme_result res = {};
887
888 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
889 nvme_complete_rq(rq);
890 }
891
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)892 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
893 unsigned int *offset, size_t *len)
894 {
895 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
896 struct request *rq =
897 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
898 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
899
900 while (true) {
901 int recv_len, ret;
902
903 recv_len = min_t(size_t, *len, queue->data_remaining);
904 if (!recv_len)
905 break;
906
907 if (!iov_iter_count(&req->iter)) {
908 req->curr_bio = req->curr_bio->bi_next;
909
910 /*
911 * If we don`t have any bios it means that controller
912 * sent more data than we requested, hence error
913 */
914 if (!req->curr_bio) {
915 dev_err(queue->ctrl->ctrl.device,
916 "queue %d no space in request %#x",
917 nvme_tcp_queue_id(queue), rq->tag);
918 nvme_tcp_init_recv_ctx(queue);
919 return -EIO;
920 }
921 nvme_tcp_init_iter(req, ITER_DEST);
922 }
923
924 /* we can read only from what is left in this bio */
925 recv_len = min_t(size_t, recv_len,
926 iov_iter_count(&req->iter));
927
928 if (queue->data_digest)
929 ret = skb_copy_and_hash_datagram_iter(skb, *offset,
930 &req->iter, recv_len, queue->rcv_hash);
931 else
932 ret = skb_copy_datagram_iter(skb, *offset,
933 &req->iter, recv_len);
934 if (ret) {
935 dev_err(queue->ctrl->ctrl.device,
936 "queue %d failed to copy request %#x data",
937 nvme_tcp_queue_id(queue), rq->tag);
938 return ret;
939 }
940
941 *len -= recv_len;
942 *offset += recv_len;
943 queue->data_remaining -= recv_len;
944 }
945
946 if (!queue->data_remaining) {
947 if (queue->data_digest) {
948 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
949 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
950 } else {
951 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
952 nvme_tcp_end_request(rq,
953 le16_to_cpu(req->status));
954 queue->nr_cqe++;
955 }
956 nvme_tcp_init_recv_ctx(queue);
957 }
958 }
959
960 return 0;
961 }
962
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)963 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
964 struct sk_buff *skb, unsigned int *offset, size_t *len)
965 {
966 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
967 char *ddgst = (char *)&queue->recv_ddgst;
968 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
969 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
970 int ret;
971
972 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
973 if (unlikely(ret))
974 return ret;
975
976 queue->ddgst_remaining -= recv_len;
977 *offset += recv_len;
978 *len -= recv_len;
979 if (queue->ddgst_remaining)
980 return 0;
981
982 if (queue->recv_ddgst != queue->exp_ddgst) {
983 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
984 pdu->command_id);
985 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
986
987 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
988
989 dev_err(queue->ctrl->ctrl.device,
990 "data digest error: recv %#x expected %#x\n",
991 le32_to_cpu(queue->recv_ddgst),
992 le32_to_cpu(queue->exp_ddgst));
993 }
994
995 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
996 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
997 pdu->command_id);
998 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
999
1000 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
1001 queue->nr_cqe++;
1002 }
1003
1004 nvme_tcp_init_recv_ctx(queue);
1005 return 0;
1006 }
1007
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)1008 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
1009 unsigned int offset, size_t len)
1010 {
1011 struct nvme_tcp_queue *queue = desc->arg.data;
1012 size_t consumed = len;
1013 int result;
1014
1015 if (unlikely(!queue->rd_enabled))
1016 return -EFAULT;
1017
1018 while (len) {
1019 switch (nvme_tcp_recv_state(queue)) {
1020 case NVME_TCP_RECV_PDU:
1021 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
1022 break;
1023 case NVME_TCP_RECV_DATA:
1024 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
1025 break;
1026 case NVME_TCP_RECV_DDGST:
1027 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
1028 break;
1029 default:
1030 result = -EFAULT;
1031 }
1032 if (result) {
1033 dev_err(queue->ctrl->ctrl.device,
1034 "receive failed: %d\n", result);
1035 queue->rd_enabled = false;
1036 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1037 return result;
1038 }
1039 }
1040
1041 return consumed;
1042 }
1043
nvme_tcp_data_ready(struct sock * sk)1044 static void nvme_tcp_data_ready(struct sock *sk)
1045 {
1046 struct nvme_tcp_queue *queue;
1047
1048 trace_sk_data_ready(sk);
1049
1050 read_lock_bh(&sk->sk_callback_lock);
1051 queue = sk->sk_user_data;
1052 if (likely(queue && queue->rd_enabled) &&
1053 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
1054 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1055 read_unlock_bh(&sk->sk_callback_lock);
1056 }
1057
nvme_tcp_write_space(struct sock * sk)1058 static void nvme_tcp_write_space(struct sock *sk)
1059 {
1060 struct nvme_tcp_queue *queue;
1061
1062 read_lock_bh(&sk->sk_callback_lock);
1063 queue = sk->sk_user_data;
1064 if (likely(queue && sk_stream_is_writeable(sk))) {
1065 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1066 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1067 }
1068 read_unlock_bh(&sk->sk_callback_lock);
1069 }
1070
nvme_tcp_state_change(struct sock * sk)1071 static void nvme_tcp_state_change(struct sock *sk)
1072 {
1073 struct nvme_tcp_queue *queue;
1074
1075 read_lock_bh(&sk->sk_callback_lock);
1076 queue = sk->sk_user_data;
1077 if (!queue)
1078 goto done;
1079
1080 switch (sk->sk_state) {
1081 case TCP_CLOSE:
1082 case TCP_CLOSE_WAIT:
1083 case TCP_LAST_ACK:
1084 case TCP_FIN_WAIT1:
1085 case TCP_FIN_WAIT2:
1086 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
1087 break;
1088 default:
1089 dev_info(queue->ctrl->ctrl.device,
1090 "queue %d socket state %d\n",
1091 nvme_tcp_queue_id(queue), sk->sk_state);
1092 }
1093
1094 queue->state_change(sk);
1095 done:
1096 read_unlock_bh(&sk->sk_callback_lock);
1097 }
1098
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)1099 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
1100 {
1101 queue->request = NULL;
1102 }
1103
nvme_tcp_fail_request(struct nvme_tcp_request * req)1104 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
1105 {
1106 if (nvme_tcp_async_req(req)) {
1107 union nvme_result res = {};
1108
1109 nvme_complete_async_event(&req->queue->ctrl->ctrl,
1110 cpu_to_le16(NVME_SC_HOST_PATH_ERROR), &res);
1111 } else {
1112 nvme_tcp_end_request(blk_mq_rq_from_pdu(req),
1113 NVME_SC_HOST_PATH_ERROR);
1114 }
1115 }
1116
nvme_tcp_try_send_data(struct nvme_tcp_request * req)1117 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
1118 {
1119 struct nvme_tcp_queue *queue = req->queue;
1120 int req_data_len = req->data_len;
1121 u32 h2cdata_left = req->h2cdata_left;
1122
1123 while (true) {
1124 struct bio_vec bvec;
1125 struct msghdr msg = {
1126 .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES,
1127 };
1128 struct page *page = nvme_tcp_req_cur_page(req);
1129 size_t offset = nvme_tcp_req_cur_offset(req);
1130 size_t len = nvme_tcp_req_cur_length(req);
1131 bool last = nvme_tcp_pdu_last_send(req, len);
1132 int req_data_sent = req->data_sent;
1133 int ret;
1134
1135 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
1136 msg.msg_flags |= MSG_EOR;
1137 else
1138 msg.msg_flags |= MSG_MORE;
1139
1140 if (!sendpages_ok(page, len, offset))
1141 msg.msg_flags &= ~MSG_SPLICE_PAGES;
1142
1143 bvec_set_page(&bvec, page, len, offset);
1144 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1145 ret = sock_sendmsg(queue->sock, &msg);
1146 if (ret <= 0)
1147 return ret;
1148
1149 if (queue->data_digest)
1150 nvme_tcp_ddgst_update(queue->snd_hash, page,
1151 offset, ret);
1152
1153 /*
1154 * update the request iterator except for the last payload send
1155 * in the request where we don't want to modify it as we may
1156 * compete with the RX path completing the request.
1157 */
1158 if (req_data_sent + ret < req_data_len)
1159 nvme_tcp_advance_req(req, ret);
1160
1161 /* fully successful last send in current PDU */
1162 if (last && ret == len) {
1163 if (queue->data_digest) {
1164 nvme_tcp_ddgst_final(queue->snd_hash,
1165 &req->ddgst);
1166 req->state = NVME_TCP_SEND_DDGST;
1167 req->offset = 0;
1168 } else {
1169 if (h2cdata_left)
1170 nvme_tcp_setup_h2c_data_pdu(req);
1171 else
1172 nvme_tcp_done_send_req(queue);
1173 }
1174 return 1;
1175 }
1176 }
1177 return -EAGAIN;
1178 }
1179
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)1180 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
1181 {
1182 struct nvme_tcp_queue *queue = req->queue;
1183 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
1184 struct bio_vec bvec;
1185 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_SPLICE_PAGES, };
1186 bool inline_data = nvme_tcp_has_inline_data(req);
1187 u8 hdgst = nvme_tcp_hdgst_len(queue);
1188 int len = sizeof(*pdu) + hdgst - req->offset;
1189 int ret;
1190
1191 if (inline_data || nvme_tcp_queue_more(queue))
1192 msg.msg_flags |= MSG_MORE;
1193 else
1194 msg.msg_flags |= MSG_EOR;
1195
1196 if (queue->hdr_digest && !req->offset)
1197 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1198
1199 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1200 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1201 ret = sock_sendmsg(queue->sock, &msg);
1202 if (unlikely(ret <= 0))
1203 return ret;
1204
1205 len -= ret;
1206 if (!len) {
1207 if (inline_data) {
1208 req->state = NVME_TCP_SEND_DATA;
1209 if (queue->data_digest)
1210 crypto_ahash_init(queue->snd_hash);
1211 } else {
1212 nvme_tcp_done_send_req(queue);
1213 }
1214 return 1;
1215 }
1216 req->offset += ret;
1217
1218 return -EAGAIN;
1219 }
1220
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)1221 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1222 {
1223 struct nvme_tcp_queue *queue = req->queue;
1224 struct nvme_tcp_data_pdu *pdu = nvme_tcp_req_data_pdu(req);
1225 struct bio_vec bvec;
1226 struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_MORE, };
1227 u8 hdgst = nvme_tcp_hdgst_len(queue);
1228 int len = sizeof(*pdu) - req->offset + hdgst;
1229 int ret;
1230
1231 if (queue->hdr_digest && !req->offset)
1232 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1233
1234 if (!req->h2cdata_left)
1235 msg.msg_flags |= MSG_SPLICE_PAGES;
1236
1237 bvec_set_virt(&bvec, (void *)pdu + req->offset, len);
1238 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, len);
1239 ret = sock_sendmsg(queue->sock, &msg);
1240 if (unlikely(ret <= 0))
1241 return ret;
1242
1243 len -= ret;
1244 if (!len) {
1245 req->state = NVME_TCP_SEND_DATA;
1246 if (queue->data_digest)
1247 crypto_ahash_init(queue->snd_hash);
1248 return 1;
1249 }
1250 req->offset += ret;
1251
1252 return -EAGAIN;
1253 }
1254
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1255 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1256 {
1257 struct nvme_tcp_queue *queue = req->queue;
1258 size_t offset = req->offset;
1259 u32 h2cdata_left = req->h2cdata_left;
1260 int ret;
1261 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1262 struct kvec iov = {
1263 .iov_base = (u8 *)&req->ddgst + req->offset,
1264 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1265 };
1266
1267 if (nvme_tcp_queue_more(queue))
1268 msg.msg_flags |= MSG_MORE;
1269 else
1270 msg.msg_flags |= MSG_EOR;
1271
1272 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1273 if (unlikely(ret <= 0))
1274 return ret;
1275
1276 if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1277 if (h2cdata_left)
1278 nvme_tcp_setup_h2c_data_pdu(req);
1279 else
1280 nvme_tcp_done_send_req(queue);
1281 return 1;
1282 }
1283
1284 req->offset += ret;
1285 return -EAGAIN;
1286 }
1287
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1288 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1289 {
1290 struct nvme_tcp_request *req;
1291 unsigned int noreclaim_flag;
1292 int ret = 1;
1293
1294 if (!queue->request) {
1295 queue->request = nvme_tcp_fetch_request(queue);
1296 if (!queue->request)
1297 return 0;
1298 }
1299 req = queue->request;
1300
1301 noreclaim_flag = memalloc_noreclaim_save();
1302 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1303 ret = nvme_tcp_try_send_cmd_pdu(req);
1304 if (ret <= 0)
1305 goto done;
1306 if (!nvme_tcp_has_inline_data(req))
1307 goto out;
1308 }
1309
1310 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1311 ret = nvme_tcp_try_send_data_pdu(req);
1312 if (ret <= 0)
1313 goto done;
1314 }
1315
1316 if (req->state == NVME_TCP_SEND_DATA) {
1317 ret = nvme_tcp_try_send_data(req);
1318 if (ret <= 0)
1319 goto done;
1320 }
1321
1322 if (req->state == NVME_TCP_SEND_DDGST)
1323 ret = nvme_tcp_try_send_ddgst(req);
1324 done:
1325 if (ret == -EAGAIN) {
1326 ret = 0;
1327 } else if (ret < 0) {
1328 dev_err(queue->ctrl->ctrl.device,
1329 "failed to send request %d\n", ret);
1330 nvme_tcp_fail_request(queue->request);
1331 nvme_tcp_done_send_req(queue);
1332 }
1333 out:
1334 memalloc_noreclaim_restore(noreclaim_flag);
1335 return ret;
1336 }
1337
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1338 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1339 {
1340 struct socket *sock = queue->sock;
1341 struct sock *sk = sock->sk;
1342 read_descriptor_t rd_desc;
1343 int consumed;
1344
1345 rd_desc.arg.data = queue;
1346 rd_desc.count = 1;
1347 lock_sock(sk);
1348 queue->nr_cqe = 0;
1349 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1350 release_sock(sk);
1351 return consumed;
1352 }
1353
nvme_tcp_io_work(struct work_struct * w)1354 static void nvme_tcp_io_work(struct work_struct *w)
1355 {
1356 struct nvme_tcp_queue *queue =
1357 container_of(w, struct nvme_tcp_queue, io_work);
1358 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1359
1360 do {
1361 bool pending = false;
1362 int result;
1363
1364 if (mutex_trylock(&queue->send_mutex)) {
1365 result = nvme_tcp_try_send(queue);
1366 mutex_unlock(&queue->send_mutex);
1367 if (result > 0)
1368 pending = true;
1369 else if (unlikely(result < 0))
1370 break;
1371 }
1372
1373 result = nvme_tcp_try_recv(queue);
1374 if (result > 0)
1375 pending = true;
1376 else if (unlikely(result < 0))
1377 return;
1378
1379 if (!pending || !queue->rd_enabled)
1380 return;
1381
1382 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1383
1384 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1385 }
1386
nvme_tcp_free_crypto(struct nvme_tcp_queue * queue)1387 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1388 {
1389 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1390
1391 ahash_request_free(queue->rcv_hash);
1392 ahash_request_free(queue->snd_hash);
1393 crypto_free_ahash(tfm);
1394 }
1395
nvme_tcp_alloc_crypto(struct nvme_tcp_queue * queue)1396 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1397 {
1398 struct crypto_ahash *tfm;
1399
1400 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1401 if (IS_ERR(tfm))
1402 return PTR_ERR(tfm);
1403
1404 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1405 if (!queue->snd_hash)
1406 goto free_tfm;
1407 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1408
1409 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1410 if (!queue->rcv_hash)
1411 goto free_snd_hash;
1412 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1413
1414 return 0;
1415 free_snd_hash:
1416 ahash_request_free(queue->snd_hash);
1417 free_tfm:
1418 crypto_free_ahash(tfm);
1419 return -ENOMEM;
1420 }
1421
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1422 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1423 {
1424 struct nvme_tcp_request *async = &ctrl->async_req;
1425
1426 page_frag_free(async->pdu);
1427 }
1428
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1429 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1430 {
1431 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1432 struct nvme_tcp_request *async = &ctrl->async_req;
1433 u8 hdgst = nvme_tcp_hdgst_len(queue);
1434
1435 async->pdu = page_frag_alloc(&queue->pf_cache,
1436 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1437 GFP_KERNEL | __GFP_ZERO);
1438 if (!async->pdu)
1439 return -ENOMEM;
1440
1441 async->queue = &ctrl->queues[0];
1442 return 0;
1443 }
1444
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1445 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1446 {
1447 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1448 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1449 unsigned int noreclaim_flag;
1450
1451 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1452 return;
1453
1454 if (queue->hdr_digest || queue->data_digest)
1455 nvme_tcp_free_crypto(queue);
1456
1457 page_frag_cache_drain(&queue->pf_cache);
1458
1459 noreclaim_flag = memalloc_noreclaim_save();
1460 /* ->sock will be released by fput() */
1461 fput(queue->sock->file);
1462 queue->sock = NULL;
1463 memalloc_noreclaim_restore(noreclaim_flag);
1464
1465 kfree(queue->pdu);
1466 mutex_destroy(&queue->send_mutex);
1467 mutex_destroy(&queue->queue_lock);
1468 }
1469
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1470 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1471 {
1472 struct nvme_tcp_icreq_pdu *icreq;
1473 struct nvme_tcp_icresp_pdu *icresp;
1474 char cbuf[CMSG_LEN(sizeof(char))] = {};
1475 u8 ctype;
1476 struct msghdr msg = {};
1477 struct kvec iov;
1478 bool ctrl_hdgst, ctrl_ddgst;
1479 u32 maxh2cdata;
1480 int ret;
1481
1482 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1483 if (!icreq)
1484 return -ENOMEM;
1485
1486 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1487 if (!icresp) {
1488 ret = -ENOMEM;
1489 goto free_icreq;
1490 }
1491
1492 icreq->hdr.type = nvme_tcp_icreq;
1493 icreq->hdr.hlen = sizeof(*icreq);
1494 icreq->hdr.pdo = 0;
1495 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1496 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1497 icreq->maxr2t = 0; /* single inflight r2t supported */
1498 icreq->hpda = 0; /* no alignment constraint */
1499 if (queue->hdr_digest)
1500 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1501 if (queue->data_digest)
1502 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1503
1504 iov.iov_base = icreq;
1505 iov.iov_len = sizeof(*icreq);
1506 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1507 if (ret < 0) {
1508 pr_warn("queue %d: failed to send icreq, error %d\n",
1509 nvme_tcp_queue_id(queue), ret);
1510 goto free_icresp;
1511 }
1512
1513 memset(&msg, 0, sizeof(msg));
1514 iov.iov_base = icresp;
1515 iov.iov_len = sizeof(*icresp);
1516 if (nvme_tcp_queue_tls(queue)) {
1517 msg.msg_control = cbuf;
1518 msg.msg_controllen = sizeof(cbuf);
1519 }
1520 msg.msg_flags = MSG_WAITALL;
1521 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1522 iov.iov_len, msg.msg_flags);
1523 if (ret >= 0 && ret < sizeof(*icresp))
1524 ret = -ECONNRESET;
1525 if (ret < 0) {
1526 pr_warn("queue %d: failed to receive icresp, error %d\n",
1527 nvme_tcp_queue_id(queue), ret);
1528 goto free_icresp;
1529 }
1530 ret = -ENOTCONN;
1531 if (nvme_tcp_queue_tls(queue)) {
1532 ctype = tls_get_record_type(queue->sock->sk,
1533 (struct cmsghdr *)cbuf);
1534 if (ctype != TLS_RECORD_TYPE_DATA) {
1535 pr_err("queue %d: unhandled TLS record %d\n",
1536 nvme_tcp_queue_id(queue), ctype);
1537 goto free_icresp;
1538 }
1539 }
1540 ret = -EINVAL;
1541 if (icresp->hdr.type != nvme_tcp_icresp) {
1542 pr_err("queue %d: bad type returned %d\n",
1543 nvme_tcp_queue_id(queue), icresp->hdr.type);
1544 goto free_icresp;
1545 }
1546
1547 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1548 pr_err("queue %d: bad pdu length returned %d\n",
1549 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1550 goto free_icresp;
1551 }
1552
1553 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1554 pr_err("queue %d: bad pfv returned %d\n",
1555 nvme_tcp_queue_id(queue), icresp->pfv);
1556 goto free_icresp;
1557 }
1558
1559 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1560 if ((queue->data_digest && !ctrl_ddgst) ||
1561 (!queue->data_digest && ctrl_ddgst)) {
1562 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1563 nvme_tcp_queue_id(queue),
1564 queue->data_digest ? "enabled" : "disabled",
1565 ctrl_ddgst ? "enabled" : "disabled");
1566 goto free_icresp;
1567 }
1568
1569 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1570 if ((queue->hdr_digest && !ctrl_hdgst) ||
1571 (!queue->hdr_digest && ctrl_hdgst)) {
1572 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1573 nvme_tcp_queue_id(queue),
1574 queue->hdr_digest ? "enabled" : "disabled",
1575 ctrl_hdgst ? "enabled" : "disabled");
1576 goto free_icresp;
1577 }
1578
1579 if (icresp->cpda != 0) {
1580 pr_err("queue %d: unsupported cpda returned %d\n",
1581 nvme_tcp_queue_id(queue), icresp->cpda);
1582 goto free_icresp;
1583 }
1584
1585 maxh2cdata = le32_to_cpu(icresp->maxdata);
1586 if ((maxh2cdata % 4) || (maxh2cdata < NVME_TCP_MIN_MAXH2CDATA)) {
1587 pr_err("queue %d: invalid maxh2cdata returned %u\n",
1588 nvme_tcp_queue_id(queue), maxh2cdata);
1589 goto free_icresp;
1590 }
1591 queue->maxh2cdata = maxh2cdata;
1592
1593 ret = 0;
1594 free_icresp:
1595 kfree(icresp);
1596 free_icreq:
1597 kfree(icreq);
1598 return ret;
1599 }
1600
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1601 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1602 {
1603 return nvme_tcp_queue_id(queue) == 0;
1604 }
1605
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1606 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1607 {
1608 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1609 int qid = nvme_tcp_queue_id(queue);
1610
1611 return !nvme_tcp_admin_queue(queue) &&
1612 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1613 }
1614
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1615 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1616 {
1617 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1618 int qid = nvme_tcp_queue_id(queue);
1619
1620 return !nvme_tcp_admin_queue(queue) &&
1621 !nvme_tcp_default_queue(queue) &&
1622 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1623 ctrl->io_queues[HCTX_TYPE_READ];
1624 }
1625
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1626 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1627 {
1628 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1629 int qid = nvme_tcp_queue_id(queue);
1630
1631 return !nvme_tcp_admin_queue(queue) &&
1632 !nvme_tcp_default_queue(queue) &&
1633 !nvme_tcp_read_queue(queue) &&
1634 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1635 ctrl->io_queues[HCTX_TYPE_READ] +
1636 ctrl->io_queues[HCTX_TYPE_POLL];
1637 }
1638
1639 /*
1640 * Track the number of queues assigned to each cpu using a global per-cpu
1641 * counter and select the least used cpu from the mq_map. Our goal is to spread
1642 * different controllers I/O threads across different cpu cores.
1643 *
1644 * Note that the accounting is not 100% perfect, but we don't need to be, we're
1645 * simply putting our best effort to select the best candidate cpu core that we
1646 * find at any given point.
1647 */
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1648 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1649 {
1650 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1651 struct blk_mq_tag_set *set = &ctrl->tag_set;
1652 int qid = nvme_tcp_queue_id(queue) - 1;
1653 unsigned int *mq_map = NULL;
1654 int cpu, min_queues = INT_MAX, io_cpu;
1655
1656 if (wq_unbound)
1657 goto out;
1658
1659 if (nvme_tcp_default_queue(queue))
1660 mq_map = set->map[HCTX_TYPE_DEFAULT].mq_map;
1661 else if (nvme_tcp_read_queue(queue))
1662 mq_map = set->map[HCTX_TYPE_READ].mq_map;
1663 else if (nvme_tcp_poll_queue(queue))
1664 mq_map = set->map[HCTX_TYPE_POLL].mq_map;
1665
1666 if (WARN_ON(!mq_map))
1667 goto out;
1668
1669 /* Search for the least used cpu from the mq_map */
1670 io_cpu = WORK_CPU_UNBOUND;
1671 for_each_online_cpu(cpu) {
1672 int num_queues = atomic_read(&nvme_tcp_cpu_queues[cpu]);
1673
1674 if (mq_map[cpu] != qid)
1675 continue;
1676 if (num_queues < min_queues) {
1677 io_cpu = cpu;
1678 min_queues = num_queues;
1679 }
1680 }
1681 if (io_cpu != WORK_CPU_UNBOUND) {
1682 queue->io_cpu = io_cpu;
1683 atomic_inc(&nvme_tcp_cpu_queues[io_cpu]);
1684 set_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags);
1685 }
1686 out:
1687 dev_dbg(ctrl->ctrl.device, "queue %d: using cpu %d\n",
1688 qid, queue->io_cpu);
1689 }
1690
nvme_tcp_tls_done(void * data,int status,key_serial_t pskid)1691 static void nvme_tcp_tls_done(void *data, int status, key_serial_t pskid)
1692 {
1693 struct nvme_tcp_queue *queue = data;
1694 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1695 int qid = nvme_tcp_queue_id(queue);
1696 struct key *tls_key;
1697
1698 dev_dbg(ctrl->ctrl.device, "queue %d: TLS handshake done, key %x, status %d\n",
1699 qid, pskid, status);
1700
1701 if (status) {
1702 queue->tls_err = -status;
1703 goto out_complete;
1704 }
1705
1706 tls_key = nvme_tls_key_lookup(pskid);
1707 if (IS_ERR(tls_key)) {
1708 dev_warn(ctrl->ctrl.device, "queue %d: Invalid key %x\n",
1709 qid, pskid);
1710 queue->tls_err = -ENOKEY;
1711 } else {
1712 queue->tls_enabled = true;
1713 if (qid == 0)
1714 ctrl->ctrl.tls_pskid = key_serial(tls_key);
1715 key_put(tls_key);
1716 queue->tls_err = 0;
1717 }
1718
1719 out_complete:
1720 complete(&queue->tls_complete);
1721 }
1722
nvme_tcp_start_tls(struct nvme_ctrl * nctrl,struct nvme_tcp_queue * queue,key_serial_t pskid)1723 static int nvme_tcp_start_tls(struct nvme_ctrl *nctrl,
1724 struct nvme_tcp_queue *queue,
1725 key_serial_t pskid)
1726 {
1727 int qid = nvme_tcp_queue_id(queue);
1728 int ret;
1729 struct tls_handshake_args args;
1730 unsigned long tmo = tls_handshake_timeout * HZ;
1731 key_serial_t keyring = nvme_keyring_id();
1732
1733 dev_dbg(nctrl->device, "queue %d: start TLS with key %x\n",
1734 qid, pskid);
1735 memset(&args, 0, sizeof(args));
1736 args.ta_sock = queue->sock;
1737 args.ta_done = nvme_tcp_tls_done;
1738 args.ta_data = queue;
1739 args.ta_my_peerids[0] = pskid;
1740 args.ta_num_peerids = 1;
1741 if (nctrl->opts->keyring)
1742 keyring = key_serial(nctrl->opts->keyring);
1743 args.ta_keyring = keyring;
1744 args.ta_timeout_ms = tls_handshake_timeout * 1000;
1745 queue->tls_err = -EOPNOTSUPP;
1746 init_completion(&queue->tls_complete);
1747 ret = tls_client_hello_psk(&args, GFP_KERNEL);
1748 if (ret) {
1749 dev_err(nctrl->device, "queue %d: failed to start TLS: %d\n",
1750 qid, ret);
1751 return ret;
1752 }
1753 ret = wait_for_completion_interruptible_timeout(&queue->tls_complete, tmo);
1754 if (ret <= 0) {
1755 if (ret == 0)
1756 ret = -ETIMEDOUT;
1757
1758 dev_err(nctrl->device,
1759 "queue %d: TLS handshake failed, error %d\n",
1760 qid, ret);
1761 tls_handshake_cancel(queue->sock->sk);
1762 } else {
1763 dev_dbg(nctrl->device,
1764 "queue %d: TLS handshake complete, error %d\n",
1765 qid, queue->tls_err);
1766 ret = queue->tls_err;
1767 }
1768 return ret;
1769 }
1770
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid,key_serial_t pskid)1771 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl, int qid,
1772 key_serial_t pskid)
1773 {
1774 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1775 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1776 int ret, rcv_pdu_size;
1777 struct file *sock_file;
1778
1779 mutex_init(&queue->queue_lock);
1780 queue->ctrl = ctrl;
1781 init_llist_head(&queue->req_list);
1782 INIT_LIST_HEAD(&queue->send_list);
1783 mutex_init(&queue->send_mutex);
1784 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1785
1786 if (qid > 0)
1787 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1788 else
1789 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1790 NVME_TCP_ADMIN_CCSZ;
1791
1792 ret = sock_create_kern(current->nsproxy->net_ns,
1793 ctrl->addr.ss_family, SOCK_STREAM,
1794 IPPROTO_TCP, &queue->sock);
1795 if (ret) {
1796 dev_err(nctrl->device,
1797 "failed to create socket: %d\n", ret);
1798 goto err_destroy_mutex;
1799 }
1800
1801 sock_file = sock_alloc_file(queue->sock, O_CLOEXEC, NULL);
1802 if (IS_ERR(sock_file)) {
1803 ret = PTR_ERR(sock_file);
1804 goto err_destroy_mutex;
1805 }
1806
1807 sk_net_refcnt_upgrade(queue->sock->sk);
1808 nvme_tcp_reclassify_socket(queue->sock);
1809
1810 /* Single syn retry */
1811 tcp_sock_set_syncnt(queue->sock->sk, 1);
1812
1813 /* Set TCP no delay */
1814 tcp_sock_set_nodelay(queue->sock->sk);
1815
1816 /*
1817 * Cleanup whatever is sitting in the TCP transmit queue on socket
1818 * close. This is done to prevent stale data from being sent should
1819 * the network connection be restored before TCP times out.
1820 */
1821 sock_no_linger(queue->sock->sk);
1822
1823 if (so_priority > 0)
1824 sock_set_priority(queue->sock->sk, so_priority);
1825
1826 /* Set socket type of service */
1827 if (nctrl->opts->tos >= 0)
1828 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1829
1830 /* Set 10 seconds timeout for icresp recvmsg */
1831 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1832
1833 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1834 queue->sock->sk->sk_use_task_frag = false;
1835 queue->io_cpu = WORK_CPU_UNBOUND;
1836 queue->request = NULL;
1837 queue->data_remaining = 0;
1838 queue->ddgst_remaining = 0;
1839 queue->pdu_remaining = 0;
1840 queue->pdu_offset = 0;
1841 sk_set_memalloc(queue->sock->sk);
1842
1843 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1844 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1845 sizeof(ctrl->src_addr));
1846 if (ret) {
1847 dev_err(nctrl->device,
1848 "failed to bind queue %d socket %d\n",
1849 qid, ret);
1850 goto err_sock;
1851 }
1852 }
1853
1854 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1855 char *iface = nctrl->opts->host_iface;
1856 sockptr_t optval = KERNEL_SOCKPTR(iface);
1857
1858 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1859 optval, strlen(iface));
1860 if (ret) {
1861 dev_err(nctrl->device,
1862 "failed to bind to interface %s queue %d err %d\n",
1863 iface, qid, ret);
1864 goto err_sock;
1865 }
1866 }
1867
1868 queue->hdr_digest = nctrl->opts->hdr_digest;
1869 queue->data_digest = nctrl->opts->data_digest;
1870 if (queue->hdr_digest || queue->data_digest) {
1871 ret = nvme_tcp_alloc_crypto(queue);
1872 if (ret) {
1873 dev_err(nctrl->device,
1874 "failed to allocate queue %d crypto\n", qid);
1875 goto err_sock;
1876 }
1877 }
1878
1879 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1880 nvme_tcp_hdgst_len(queue);
1881 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1882 if (!queue->pdu) {
1883 ret = -ENOMEM;
1884 goto err_crypto;
1885 }
1886
1887 dev_dbg(nctrl->device, "connecting queue %d\n",
1888 nvme_tcp_queue_id(queue));
1889
1890 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1891 sizeof(ctrl->addr), 0);
1892 if (ret) {
1893 dev_err(nctrl->device,
1894 "failed to connect socket: %d\n", ret);
1895 goto err_rcv_pdu;
1896 }
1897
1898 /* If PSKs are configured try to start TLS */
1899 if (nvme_tcp_tls_configured(nctrl) && pskid) {
1900 ret = nvme_tcp_start_tls(nctrl, queue, pskid);
1901 if (ret)
1902 goto err_init_connect;
1903 }
1904
1905 ret = nvme_tcp_init_connection(queue);
1906 if (ret)
1907 goto err_init_connect;
1908
1909 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1910
1911 return 0;
1912
1913 err_init_connect:
1914 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1915 err_rcv_pdu:
1916 kfree(queue->pdu);
1917 err_crypto:
1918 if (queue->hdr_digest || queue->data_digest)
1919 nvme_tcp_free_crypto(queue);
1920 err_sock:
1921 /* ->sock will be released by fput() */
1922 fput(queue->sock->file);
1923 queue->sock = NULL;
1924 err_destroy_mutex:
1925 mutex_destroy(&queue->send_mutex);
1926 mutex_destroy(&queue->queue_lock);
1927 return ret;
1928 }
1929
nvme_tcp_restore_sock_ops(struct nvme_tcp_queue * queue)1930 static void nvme_tcp_restore_sock_ops(struct nvme_tcp_queue *queue)
1931 {
1932 struct socket *sock = queue->sock;
1933
1934 write_lock_bh(&sock->sk->sk_callback_lock);
1935 sock->sk->sk_user_data = NULL;
1936 sock->sk->sk_data_ready = queue->data_ready;
1937 sock->sk->sk_state_change = queue->state_change;
1938 sock->sk->sk_write_space = queue->write_space;
1939 write_unlock_bh(&sock->sk->sk_callback_lock);
1940 }
1941
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1942 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1943 {
1944 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1945 nvme_tcp_restore_sock_ops(queue);
1946 cancel_work_sync(&queue->io_work);
1947 }
1948
nvme_tcp_stop_queue_nowait(struct nvme_ctrl * nctrl,int qid)1949 static void nvme_tcp_stop_queue_nowait(struct nvme_ctrl *nctrl, int qid)
1950 {
1951 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1952 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1953
1954 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1955 return;
1956
1957 if (test_and_clear_bit(NVME_TCP_Q_IO_CPU_SET, &queue->flags))
1958 atomic_dec(&nvme_tcp_cpu_queues[queue->io_cpu]);
1959
1960 mutex_lock(&queue->queue_lock);
1961 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1962 __nvme_tcp_stop_queue(queue);
1963 /* Stopping the queue will disable TLS */
1964 queue->tls_enabled = false;
1965 mutex_unlock(&queue->queue_lock);
1966 }
1967
nvme_tcp_wait_queue(struct nvme_ctrl * nctrl,int qid)1968 static void nvme_tcp_wait_queue(struct nvme_ctrl *nctrl, int qid)
1969 {
1970 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1971 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1972 int timeout = 100;
1973
1974 while (timeout > 0) {
1975 if (!test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags) ||
1976 !sk_wmem_alloc_get(queue->sock->sk))
1977 return;
1978 msleep(2);
1979 timeout -= 2;
1980 }
1981 dev_warn(nctrl->device,
1982 "qid %d: timeout draining sock wmem allocation expired\n",
1983 qid);
1984 }
1985
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)1986 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1987 {
1988 nvme_tcp_stop_queue_nowait(nctrl, qid);
1989 nvme_tcp_wait_queue(nctrl, qid);
1990 }
1991
1992
nvme_tcp_setup_sock_ops(struct nvme_tcp_queue * queue)1993 static void nvme_tcp_setup_sock_ops(struct nvme_tcp_queue *queue)
1994 {
1995 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1996 queue->sock->sk->sk_user_data = queue;
1997 queue->state_change = queue->sock->sk->sk_state_change;
1998 queue->data_ready = queue->sock->sk->sk_data_ready;
1999 queue->write_space = queue->sock->sk->sk_write_space;
2000 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
2001 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
2002 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
2003 #ifdef CONFIG_NET_RX_BUSY_POLL
2004 queue->sock->sk->sk_ll_usec = 1;
2005 #endif
2006 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
2007 }
2008
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)2009 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
2010 {
2011 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2012 struct nvme_tcp_queue *queue = &ctrl->queues[idx];
2013 int ret;
2014
2015 queue->rd_enabled = true;
2016 nvme_tcp_init_recv_ctx(queue);
2017 nvme_tcp_setup_sock_ops(queue);
2018
2019 if (idx) {
2020 nvme_tcp_set_queue_io_cpu(queue);
2021 ret = nvmf_connect_io_queue(nctrl, idx);
2022 } else
2023 ret = nvmf_connect_admin_queue(nctrl);
2024
2025 if (!ret) {
2026 set_bit(NVME_TCP_Q_LIVE, &queue->flags);
2027 } else {
2028 if (test_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
2029 __nvme_tcp_stop_queue(queue);
2030 dev_err(nctrl->device,
2031 "failed to connect queue: %d ret=%d\n", idx, ret);
2032 }
2033 return ret;
2034 }
2035
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)2036 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
2037 {
2038 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
2039 cancel_work_sync(&ctrl->async_event_work);
2040 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
2041 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
2042 }
2043
2044 nvme_tcp_free_queue(ctrl, 0);
2045 }
2046
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)2047 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
2048 {
2049 int i;
2050
2051 for (i = 1; i < ctrl->queue_count; i++)
2052 nvme_tcp_free_queue(ctrl, i);
2053 }
2054
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)2055 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
2056 {
2057 int i;
2058
2059 for (i = 1; i < ctrl->queue_count; i++)
2060 nvme_tcp_stop_queue_nowait(ctrl, i);
2061 for (i = 1; i < ctrl->queue_count; i++)
2062 nvme_tcp_wait_queue(ctrl, i);
2063 }
2064
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl,int first,int last)2065 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl,
2066 int first, int last)
2067 {
2068 int i, ret;
2069
2070 for (i = first; i < last; i++) {
2071 ret = nvme_tcp_start_queue(ctrl, i);
2072 if (ret)
2073 goto out_stop_queues;
2074 }
2075
2076 return 0;
2077
2078 out_stop_queues:
2079 for (i--; i >= first; i--)
2080 nvme_tcp_stop_queue(ctrl, i);
2081 return ret;
2082 }
2083
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)2084 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
2085 {
2086 int ret;
2087 key_serial_t pskid = 0;
2088
2089 if (nvme_tcp_tls_configured(ctrl)) {
2090 if (ctrl->opts->tls_key)
2091 pskid = key_serial(ctrl->opts->tls_key);
2092 else if (ctrl->opts->tls) {
2093 pskid = nvme_tls_psk_default(ctrl->opts->keyring,
2094 ctrl->opts->host->nqn,
2095 ctrl->opts->subsysnqn);
2096 if (!pskid) {
2097 dev_err(ctrl->device, "no valid PSK found\n");
2098 return -ENOKEY;
2099 }
2100 }
2101 }
2102
2103 ret = nvme_tcp_alloc_queue(ctrl, 0, pskid);
2104 if (ret)
2105 return ret;
2106
2107 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
2108 if (ret)
2109 goto out_free_queue;
2110
2111 return 0;
2112
2113 out_free_queue:
2114 nvme_tcp_free_queue(ctrl, 0);
2115 return ret;
2116 }
2117
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)2118 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2119 {
2120 int i, ret;
2121
2122 if (nvme_tcp_tls_configured(ctrl)) {
2123 if (ctrl->opts->concat) {
2124 /*
2125 * The generated PSK is stored in the
2126 * fabric options
2127 */
2128 if (!ctrl->opts->tls_key) {
2129 dev_err(ctrl->device, "no PSK generated\n");
2130 return -ENOKEY;
2131 }
2132 if (ctrl->tls_pskid &&
2133 ctrl->tls_pskid != key_serial(ctrl->opts->tls_key)) {
2134 dev_err(ctrl->device, "Stale PSK id %08x\n", ctrl->tls_pskid);
2135 ctrl->tls_pskid = 0;
2136 }
2137 } else if (!ctrl->tls_pskid) {
2138 dev_err(ctrl->device, "no PSK negotiated\n");
2139 return -ENOKEY;
2140 }
2141 }
2142
2143 for (i = 1; i < ctrl->queue_count; i++) {
2144 ret = nvme_tcp_alloc_queue(ctrl, i,
2145 ctrl->tls_pskid);
2146 if (ret)
2147 goto out_free_queues;
2148 }
2149
2150 return 0;
2151
2152 out_free_queues:
2153 for (i--; i >= 1; i--)
2154 nvme_tcp_free_queue(ctrl, i);
2155
2156 return ret;
2157 }
2158
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)2159 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
2160 {
2161 unsigned int nr_io_queues;
2162 int ret;
2163
2164 nr_io_queues = nvmf_nr_io_queues(ctrl->opts);
2165 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
2166 if (ret)
2167 return ret;
2168
2169 if (nr_io_queues == 0) {
2170 dev_err(ctrl->device,
2171 "unable to set any I/O queues\n");
2172 return -ENOMEM;
2173 }
2174
2175 ctrl->queue_count = nr_io_queues + 1;
2176 dev_info(ctrl->device,
2177 "creating %d I/O queues.\n", nr_io_queues);
2178
2179 nvmf_set_io_queues(ctrl->opts, nr_io_queues,
2180 to_tcp_ctrl(ctrl)->io_queues);
2181 return __nvme_tcp_alloc_io_queues(ctrl);
2182 }
2183
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)2184 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
2185 {
2186 int ret, nr_queues;
2187
2188 ret = nvme_tcp_alloc_io_queues(ctrl);
2189 if (ret)
2190 return ret;
2191
2192 if (new) {
2193 ret = nvme_alloc_io_tag_set(ctrl, &to_tcp_ctrl(ctrl)->tag_set,
2194 &nvme_tcp_mq_ops,
2195 ctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2,
2196 sizeof(struct nvme_tcp_request));
2197 if (ret)
2198 goto out_free_io_queues;
2199 }
2200
2201 /*
2202 * Only start IO queues for which we have allocated the tagset
2203 * and limitted it to the available queues. On reconnects, the
2204 * queue number might have changed.
2205 */
2206 nr_queues = min(ctrl->tagset->nr_hw_queues + 1, ctrl->queue_count);
2207 ret = nvme_tcp_start_io_queues(ctrl, 1, nr_queues);
2208 if (ret)
2209 goto out_cleanup_connect_q;
2210
2211 if (!new) {
2212 nvme_start_freeze(ctrl);
2213 nvme_unquiesce_io_queues(ctrl);
2214 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
2215 /*
2216 * If we timed out waiting for freeze we are likely to
2217 * be stuck. Fail the controller initialization just
2218 * to be safe.
2219 */
2220 ret = -ENODEV;
2221 nvme_unfreeze(ctrl);
2222 goto out_wait_freeze_timed_out;
2223 }
2224 blk_mq_update_nr_hw_queues(ctrl->tagset,
2225 ctrl->queue_count - 1);
2226 nvme_unfreeze(ctrl);
2227 }
2228
2229 /*
2230 * If the number of queues has increased (reconnect case)
2231 * start all new queues now.
2232 */
2233 ret = nvme_tcp_start_io_queues(ctrl, nr_queues,
2234 ctrl->tagset->nr_hw_queues + 1);
2235 if (ret)
2236 goto out_wait_freeze_timed_out;
2237
2238 return 0;
2239
2240 out_wait_freeze_timed_out:
2241 nvme_quiesce_io_queues(ctrl);
2242 nvme_sync_io_queues(ctrl);
2243 nvme_tcp_stop_io_queues(ctrl);
2244 out_cleanup_connect_q:
2245 nvme_cancel_tagset(ctrl);
2246 if (new)
2247 nvme_remove_io_tag_set(ctrl);
2248 out_free_io_queues:
2249 nvme_tcp_free_io_queues(ctrl);
2250 return ret;
2251 }
2252
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)2253 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
2254 {
2255 int error;
2256
2257 error = nvme_tcp_alloc_admin_queue(ctrl);
2258 if (error)
2259 return error;
2260
2261 if (new) {
2262 error = nvme_alloc_admin_tag_set(ctrl,
2263 &to_tcp_ctrl(ctrl)->admin_tag_set,
2264 &nvme_tcp_admin_mq_ops,
2265 sizeof(struct nvme_tcp_request));
2266 if (error)
2267 goto out_free_queue;
2268 }
2269
2270 error = nvme_tcp_start_queue(ctrl, 0);
2271 if (error)
2272 goto out_cleanup_tagset;
2273
2274 error = nvme_enable_ctrl(ctrl);
2275 if (error)
2276 goto out_stop_queue;
2277
2278 nvme_unquiesce_admin_queue(ctrl);
2279
2280 error = nvme_init_ctrl_finish(ctrl, false);
2281 if (error)
2282 goto out_quiesce_queue;
2283
2284 return 0;
2285
2286 out_quiesce_queue:
2287 nvme_quiesce_admin_queue(ctrl);
2288 blk_sync_queue(ctrl->admin_q);
2289 out_stop_queue:
2290 nvme_tcp_stop_queue(ctrl, 0);
2291 nvme_cancel_admin_tagset(ctrl);
2292 out_cleanup_tagset:
2293 if (new)
2294 nvme_remove_admin_tag_set(ctrl);
2295 out_free_queue:
2296 nvme_tcp_free_admin_queue(ctrl);
2297 return error;
2298 }
2299
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)2300 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
2301 bool remove)
2302 {
2303 nvme_quiesce_admin_queue(ctrl);
2304 blk_sync_queue(ctrl->admin_q);
2305 nvme_tcp_stop_queue(ctrl, 0);
2306 nvme_cancel_admin_tagset(ctrl);
2307 if (remove) {
2308 nvme_unquiesce_admin_queue(ctrl);
2309 nvme_remove_admin_tag_set(ctrl);
2310 }
2311 nvme_tcp_free_admin_queue(ctrl);
2312 if (ctrl->tls_pskid) {
2313 dev_dbg(ctrl->device, "Wipe negotiated TLS_PSK %08x\n",
2314 ctrl->tls_pskid);
2315 ctrl->tls_pskid = 0;
2316 }
2317 }
2318
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)2319 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
2320 bool remove)
2321 {
2322 if (ctrl->queue_count <= 1)
2323 return;
2324 nvme_quiesce_io_queues(ctrl);
2325 nvme_sync_io_queues(ctrl);
2326 nvme_tcp_stop_io_queues(ctrl);
2327 nvme_cancel_tagset(ctrl);
2328 if (remove) {
2329 nvme_unquiesce_io_queues(ctrl);
2330 nvme_remove_io_tag_set(ctrl);
2331 }
2332 nvme_tcp_free_io_queues(ctrl);
2333 }
2334
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl,int status)2335 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl,
2336 int status)
2337 {
2338 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2339
2340 /* If we are resetting/deleting then do nothing */
2341 if (state != NVME_CTRL_CONNECTING) {
2342 WARN_ON_ONCE(state == NVME_CTRL_NEW || state == NVME_CTRL_LIVE);
2343 return;
2344 }
2345
2346 if (nvmf_should_reconnect(ctrl, status)) {
2347 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
2348 ctrl->opts->reconnect_delay);
2349 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
2350 ctrl->opts->reconnect_delay * HZ);
2351 } else {
2352 dev_info(ctrl->device, "Removing controller (%d)...\n",
2353 status);
2354 nvme_delete_ctrl(ctrl);
2355 }
2356 }
2357
2358 /*
2359 * The TLS key is set by secure concatenation after negotiation has been
2360 * completed on the admin queue. We need to revoke the key when:
2361 * - concatenation is enabled (otherwise it's a static key set by the user)
2362 * and
2363 * - the generated key is present in ctrl->tls_key (otherwise there's nothing
2364 * to revoke)
2365 * and
2366 * - a valid PSK key ID has been set in ctrl->tls_pskid (otherwise TLS
2367 * negotiation has not run).
2368 *
2369 * We cannot always revoke the key as nvme_tcp_alloc_admin_queue() is called
2370 * twice during secure concatenation, once on a 'normal' connection to run the
2371 * DH-HMAC-CHAP negotiation (which generates the key, so it _must not_ be set),
2372 * and once after the negotiation (which uses the key, so it _must_ be set).
2373 */
nvme_tcp_key_revoke_needed(struct nvme_ctrl * ctrl)2374 static bool nvme_tcp_key_revoke_needed(struct nvme_ctrl *ctrl)
2375 {
2376 return ctrl->opts->concat && ctrl->opts->tls_key && ctrl->tls_pskid;
2377 }
2378
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)2379 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
2380 {
2381 struct nvmf_ctrl_options *opts = ctrl->opts;
2382 int ret;
2383
2384 ret = nvme_tcp_configure_admin_queue(ctrl, new);
2385 if (ret)
2386 return ret;
2387
2388 if (ctrl->opts && ctrl->opts->concat && !ctrl->tls_pskid) {
2389 /* See comments for nvme_tcp_key_revoke_needed() */
2390 dev_dbg(ctrl->device, "restart admin queue for secure concatenation\n");
2391 nvme_stop_keep_alive(ctrl);
2392 nvme_tcp_teardown_admin_queue(ctrl, false);
2393 ret = nvme_tcp_configure_admin_queue(ctrl, false);
2394 if (ret)
2395 return ret;
2396 }
2397
2398 if (ctrl->icdoff) {
2399 ret = -EOPNOTSUPP;
2400 dev_err(ctrl->device, "icdoff is not supported!\n");
2401 goto destroy_admin;
2402 }
2403
2404 if (!nvme_ctrl_sgl_supported(ctrl)) {
2405 ret = -EOPNOTSUPP;
2406 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2407 goto destroy_admin;
2408 }
2409
2410 if (opts->queue_size > ctrl->sqsize + 1)
2411 dev_warn(ctrl->device,
2412 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2413 opts->queue_size, ctrl->sqsize + 1);
2414
2415 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2416 dev_warn(ctrl->device,
2417 "sqsize %u > ctrl maxcmd %u, clamping down\n",
2418 ctrl->sqsize + 1, ctrl->maxcmd);
2419 ctrl->sqsize = ctrl->maxcmd - 1;
2420 }
2421
2422 if (ctrl->queue_count > 1) {
2423 ret = nvme_tcp_configure_io_queues(ctrl, new);
2424 if (ret)
2425 goto destroy_admin;
2426 }
2427
2428 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2429 /*
2430 * state change failure is ok if we started ctrl delete,
2431 * unless we're during creation of a new controller to
2432 * avoid races with teardown flow.
2433 */
2434 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2435
2436 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2437 state != NVME_CTRL_DELETING_NOIO);
2438 WARN_ON_ONCE(new);
2439 ret = -EINVAL;
2440 goto destroy_io;
2441 }
2442
2443 nvme_start_ctrl(ctrl);
2444 return 0;
2445
2446 destroy_io:
2447 if (ctrl->queue_count > 1) {
2448 nvme_quiesce_io_queues(ctrl);
2449 nvme_sync_io_queues(ctrl);
2450 nvme_tcp_stop_io_queues(ctrl);
2451 nvme_cancel_tagset(ctrl);
2452 if (new)
2453 nvme_remove_io_tag_set(ctrl);
2454 nvme_tcp_free_io_queues(ctrl);
2455 }
2456 destroy_admin:
2457 nvme_stop_keep_alive(ctrl);
2458 nvme_tcp_teardown_admin_queue(ctrl, new);
2459 return ret;
2460 }
2461
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)2462 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2463 {
2464 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2465 struct nvme_tcp_ctrl, connect_work);
2466 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2467 int ret;
2468
2469 ++ctrl->nr_reconnects;
2470
2471 ret = nvme_tcp_setup_ctrl(ctrl, false);
2472 if (ret)
2473 goto requeue;
2474
2475 dev_info(ctrl->device, "Successfully reconnected (attempt %d/%d)\n",
2476 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2477
2478 ctrl->nr_reconnects = 0;
2479
2480 return;
2481
2482 requeue:
2483 dev_info(ctrl->device, "Failed reconnect attempt %d/%d\n",
2484 ctrl->nr_reconnects, ctrl->opts->max_reconnects);
2485 nvme_tcp_reconnect_or_remove(ctrl, ret);
2486 }
2487
nvme_tcp_error_recovery_work(struct work_struct * work)2488 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2489 {
2490 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2491 struct nvme_tcp_ctrl, err_work);
2492 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2493
2494 if (nvme_tcp_key_revoke_needed(ctrl))
2495 nvme_auth_revoke_tls_key(ctrl);
2496 nvme_stop_keep_alive(ctrl);
2497 flush_work(&ctrl->async_event_work);
2498 nvme_tcp_teardown_io_queues(ctrl, false);
2499 /* unquiesce to fail fast pending requests */
2500 nvme_unquiesce_io_queues(ctrl);
2501 nvme_tcp_teardown_admin_queue(ctrl, false);
2502 nvme_unquiesce_admin_queue(ctrl);
2503 nvme_auth_stop(ctrl);
2504
2505 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2506 /* state change failure is ok if we started ctrl delete */
2507 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2508
2509 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2510 state != NVME_CTRL_DELETING_NOIO);
2511 return;
2512 }
2513
2514 nvme_tcp_reconnect_or_remove(ctrl, 0);
2515 }
2516
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2517 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2518 {
2519 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2520 nvme_quiesce_admin_queue(ctrl);
2521 nvme_disable_ctrl(ctrl, shutdown);
2522 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2523 }
2524
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2525 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2526 {
2527 nvme_tcp_teardown_ctrl(ctrl, true);
2528 }
2529
nvme_reset_ctrl_work(struct work_struct * work)2530 static void nvme_reset_ctrl_work(struct work_struct *work)
2531 {
2532 struct nvme_ctrl *ctrl =
2533 container_of(work, struct nvme_ctrl, reset_work);
2534 int ret;
2535
2536 if (nvme_tcp_key_revoke_needed(ctrl))
2537 nvme_auth_revoke_tls_key(ctrl);
2538 nvme_stop_ctrl(ctrl);
2539 nvme_tcp_teardown_ctrl(ctrl, false);
2540
2541 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2542 /* state change failure is ok if we started ctrl delete */
2543 enum nvme_ctrl_state state = nvme_ctrl_state(ctrl);
2544
2545 WARN_ON_ONCE(state != NVME_CTRL_DELETING &&
2546 state != NVME_CTRL_DELETING_NOIO);
2547 return;
2548 }
2549
2550 ret = nvme_tcp_setup_ctrl(ctrl, false);
2551 if (ret)
2552 goto out_fail;
2553
2554 return;
2555
2556 out_fail:
2557 ++ctrl->nr_reconnects;
2558 nvme_tcp_reconnect_or_remove(ctrl, ret);
2559 }
2560
nvme_tcp_stop_ctrl(struct nvme_ctrl * ctrl)2561 static void nvme_tcp_stop_ctrl(struct nvme_ctrl *ctrl)
2562 {
2563 flush_work(&to_tcp_ctrl(ctrl)->err_work);
2564 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2565 }
2566
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2567 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2568 {
2569 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2570
2571 if (list_empty(&ctrl->list))
2572 goto free_ctrl;
2573
2574 mutex_lock(&nvme_tcp_ctrl_mutex);
2575 list_del(&ctrl->list);
2576 mutex_unlock(&nvme_tcp_ctrl_mutex);
2577
2578 nvmf_free_options(nctrl->opts);
2579 free_ctrl:
2580 kfree(ctrl->queues);
2581 kfree(ctrl);
2582 }
2583
nvme_tcp_set_sg_null(struct nvme_command * c)2584 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2585 {
2586 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2587
2588 sg->addr = 0;
2589 sg->length = 0;
2590 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2591 NVME_SGL_FMT_TRANSPORT_A;
2592 }
2593
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2594 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2595 struct nvme_command *c, u32 data_len)
2596 {
2597 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2598
2599 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2600 sg->length = cpu_to_le32(data_len);
2601 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2602 }
2603
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2604 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2605 u32 data_len)
2606 {
2607 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2608
2609 sg->addr = 0;
2610 sg->length = cpu_to_le32(data_len);
2611 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2612 NVME_SGL_FMT_TRANSPORT_A;
2613 }
2614
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2615 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2616 {
2617 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2618 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2619 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2620 struct nvme_command *cmd = &pdu->cmd;
2621 u8 hdgst = nvme_tcp_hdgst_len(queue);
2622
2623 memset(pdu, 0, sizeof(*pdu));
2624 pdu->hdr.type = nvme_tcp_cmd;
2625 if (queue->hdr_digest)
2626 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2627 pdu->hdr.hlen = sizeof(*pdu);
2628 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2629
2630 cmd->common.opcode = nvme_admin_async_event;
2631 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2632 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2633 nvme_tcp_set_sg_null(cmd);
2634
2635 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2636 ctrl->async_req.offset = 0;
2637 ctrl->async_req.curr_bio = NULL;
2638 ctrl->async_req.data_len = 0;
2639
2640 nvme_tcp_queue_request(&ctrl->async_req, true, true);
2641 }
2642
nvme_tcp_complete_timed_out(struct request * rq)2643 static void nvme_tcp_complete_timed_out(struct request *rq)
2644 {
2645 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2646 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2647
2648 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2649 nvmf_complete_timed_out_request(rq);
2650 }
2651
nvme_tcp_timeout(struct request * rq)2652 static enum blk_eh_timer_return nvme_tcp_timeout(struct request *rq)
2653 {
2654 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2655 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2656 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2657 struct nvme_command *cmd = &pdu->cmd;
2658 int qid = nvme_tcp_queue_id(req->queue);
2659
2660 dev_warn(ctrl->device,
2661 "I/O tag %d (%04x) type %d opcode %#x (%s) QID %d timeout\n",
2662 rq->tag, nvme_cid(rq), pdu->hdr.type, cmd->common.opcode,
2663 nvme_fabrics_opcode_str(qid, cmd), qid);
2664
2665 if (nvme_ctrl_state(ctrl) != NVME_CTRL_LIVE) {
2666 /*
2667 * If we are resetting, connecting or deleting we should
2668 * complete immediately because we may block controller
2669 * teardown or setup sequence
2670 * - ctrl disable/shutdown fabrics requests
2671 * - connect requests
2672 * - initialization admin requests
2673 * - I/O requests that entered after unquiescing and
2674 * the controller stopped responding
2675 *
2676 * All other requests should be cancelled by the error
2677 * recovery work, so it's fine that we fail it here.
2678 */
2679 nvme_tcp_complete_timed_out(rq);
2680 return BLK_EH_DONE;
2681 }
2682
2683 /*
2684 * LIVE state should trigger the normal error recovery which will
2685 * handle completing this request.
2686 */
2687 nvme_tcp_error_recovery(ctrl);
2688 return BLK_EH_RESET_TIMER;
2689 }
2690
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2691 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2692 struct request *rq)
2693 {
2694 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2695 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2696 struct nvme_command *c = &pdu->cmd;
2697
2698 c->common.flags |= NVME_CMD_SGL_METABUF;
2699
2700 if (!blk_rq_nr_phys_segments(rq))
2701 nvme_tcp_set_sg_null(c);
2702 else if (rq_data_dir(rq) == WRITE &&
2703 req->data_len <= nvme_tcp_inline_data_size(req))
2704 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2705 else
2706 nvme_tcp_set_sg_host_data(c, req->data_len);
2707
2708 return 0;
2709 }
2710
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2711 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2712 struct request *rq)
2713 {
2714 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2715 struct nvme_tcp_cmd_pdu *pdu = nvme_tcp_req_cmd_pdu(req);
2716 struct nvme_tcp_queue *queue = req->queue;
2717 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2718 blk_status_t ret;
2719
2720 ret = nvme_setup_cmd(ns, rq);
2721 if (ret)
2722 return ret;
2723
2724 req->state = NVME_TCP_SEND_CMD_PDU;
2725 req->status = cpu_to_le16(NVME_SC_SUCCESS);
2726 req->offset = 0;
2727 req->data_sent = 0;
2728 req->pdu_len = 0;
2729 req->pdu_sent = 0;
2730 req->h2cdata_left = 0;
2731 req->data_len = blk_rq_nr_phys_segments(rq) ?
2732 blk_rq_payload_bytes(rq) : 0;
2733 req->curr_bio = rq->bio;
2734 if (req->curr_bio && req->data_len)
2735 nvme_tcp_init_iter(req, rq_data_dir(rq));
2736
2737 if (rq_data_dir(rq) == WRITE &&
2738 req->data_len <= nvme_tcp_inline_data_size(req))
2739 req->pdu_len = req->data_len;
2740
2741 pdu->hdr.type = nvme_tcp_cmd;
2742 pdu->hdr.flags = 0;
2743 if (queue->hdr_digest)
2744 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2745 if (queue->data_digest && req->pdu_len) {
2746 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2747 ddgst = nvme_tcp_ddgst_len(queue);
2748 }
2749 pdu->hdr.hlen = sizeof(*pdu);
2750 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2751 pdu->hdr.plen =
2752 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2753
2754 ret = nvme_tcp_map_data(queue, rq);
2755 if (unlikely(ret)) {
2756 nvme_cleanup_cmd(rq);
2757 dev_err(queue->ctrl->ctrl.device,
2758 "Failed to map data (%d)\n", ret);
2759 return ret;
2760 }
2761
2762 return 0;
2763 }
2764
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2765 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2766 {
2767 struct nvme_tcp_queue *queue = hctx->driver_data;
2768
2769 if (!llist_empty(&queue->req_list))
2770 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2771 }
2772
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2773 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2774 const struct blk_mq_queue_data *bd)
2775 {
2776 struct nvme_ns *ns = hctx->queue->queuedata;
2777 struct nvme_tcp_queue *queue = hctx->driver_data;
2778 struct request *rq = bd->rq;
2779 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2780 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2781 blk_status_t ret;
2782
2783 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2784 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2785
2786 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2787 if (unlikely(ret))
2788 return ret;
2789
2790 nvme_start_request(rq);
2791
2792 nvme_tcp_queue_request(req, true, bd->last);
2793
2794 return BLK_STS_OK;
2795 }
2796
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2797 static void nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2798 {
2799 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(set->driver_data);
2800
2801 nvmf_map_queues(set, &ctrl->ctrl, ctrl->io_queues);
2802 }
2803
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx,struct io_comp_batch * iob)2804 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx, struct io_comp_batch *iob)
2805 {
2806 struct nvme_tcp_queue *queue = hctx->driver_data;
2807 struct sock *sk = queue->sock->sk;
2808 int ret;
2809
2810 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2811 return 0;
2812
2813 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2814 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2815 sk_busy_loop(sk, true);
2816 ret = nvme_tcp_try_recv(queue);
2817 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2818 return ret < 0 ? ret : queue->nr_cqe;
2819 }
2820
nvme_tcp_get_address(struct nvme_ctrl * ctrl,char * buf,int size)2821 static int nvme_tcp_get_address(struct nvme_ctrl *ctrl, char *buf, int size)
2822 {
2823 struct nvme_tcp_queue *queue = &to_tcp_ctrl(ctrl)->queues[0];
2824 struct sockaddr_storage src_addr;
2825 int ret, len;
2826
2827 len = nvmf_get_address(ctrl, buf, size);
2828
2829 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2830 return len;
2831
2832 mutex_lock(&queue->queue_lock);
2833
2834 ret = kernel_getsockname(queue->sock, (struct sockaddr *)&src_addr);
2835 if (ret > 0) {
2836 if (len > 0)
2837 len--; /* strip trailing newline */
2838 len += scnprintf(buf + len, size - len, "%ssrc_addr=%pISc\n",
2839 (len) ? "," : "", &src_addr);
2840 }
2841
2842 mutex_unlock(&queue->queue_lock);
2843
2844 return len;
2845 }
2846
2847 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2848 .queue_rq = nvme_tcp_queue_rq,
2849 .commit_rqs = nvme_tcp_commit_rqs,
2850 .complete = nvme_complete_rq,
2851 .init_request = nvme_tcp_init_request,
2852 .exit_request = nvme_tcp_exit_request,
2853 .init_hctx = nvme_tcp_init_hctx,
2854 .timeout = nvme_tcp_timeout,
2855 .map_queues = nvme_tcp_map_queues,
2856 .poll = nvme_tcp_poll,
2857 };
2858
2859 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2860 .queue_rq = nvme_tcp_queue_rq,
2861 .complete = nvme_complete_rq,
2862 .init_request = nvme_tcp_init_request,
2863 .exit_request = nvme_tcp_exit_request,
2864 .init_hctx = nvme_tcp_init_admin_hctx,
2865 .timeout = nvme_tcp_timeout,
2866 };
2867
2868 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2869 .name = "tcp",
2870 .module = THIS_MODULE,
2871 .flags = NVME_F_FABRICS | NVME_F_BLOCKING,
2872 .reg_read32 = nvmf_reg_read32,
2873 .reg_read64 = nvmf_reg_read64,
2874 .reg_write32 = nvmf_reg_write32,
2875 .subsystem_reset = nvmf_subsystem_reset,
2876 .free_ctrl = nvme_tcp_free_ctrl,
2877 .submit_async_event = nvme_tcp_submit_async_event,
2878 .delete_ctrl = nvme_tcp_delete_ctrl,
2879 .get_address = nvme_tcp_get_address,
2880 .stop_ctrl = nvme_tcp_stop_ctrl,
2881 };
2882
2883 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2884 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2885 {
2886 struct nvme_tcp_ctrl *ctrl;
2887 bool found = false;
2888
2889 mutex_lock(&nvme_tcp_ctrl_mutex);
2890 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2891 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2892 if (found)
2893 break;
2894 }
2895 mutex_unlock(&nvme_tcp_ctrl_mutex);
2896
2897 return found;
2898 }
2899
nvme_tcp_alloc_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2900 static struct nvme_tcp_ctrl *nvme_tcp_alloc_ctrl(struct device *dev,
2901 struct nvmf_ctrl_options *opts)
2902 {
2903 struct nvme_tcp_ctrl *ctrl;
2904 int ret;
2905
2906 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2907 if (!ctrl)
2908 return ERR_PTR(-ENOMEM);
2909
2910 INIT_LIST_HEAD(&ctrl->list);
2911 ctrl->ctrl.opts = opts;
2912 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2913 opts->nr_poll_queues + 1;
2914 ctrl->ctrl.sqsize = opts->queue_size - 1;
2915 ctrl->ctrl.kato = opts->kato;
2916
2917 INIT_DELAYED_WORK(&ctrl->connect_work,
2918 nvme_tcp_reconnect_ctrl_work);
2919 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2920 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2921
2922 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2923 opts->trsvcid =
2924 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2925 if (!opts->trsvcid) {
2926 ret = -ENOMEM;
2927 goto out_free_ctrl;
2928 }
2929 opts->mask |= NVMF_OPT_TRSVCID;
2930 }
2931
2932 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2933 opts->traddr, opts->trsvcid, &ctrl->addr);
2934 if (ret) {
2935 pr_err("malformed address passed: %s:%s\n",
2936 opts->traddr, opts->trsvcid);
2937 goto out_free_ctrl;
2938 }
2939
2940 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2941 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2942 opts->host_traddr, NULL, &ctrl->src_addr);
2943 if (ret) {
2944 pr_err("malformed src address passed: %s\n",
2945 opts->host_traddr);
2946 goto out_free_ctrl;
2947 }
2948 }
2949
2950 if (opts->mask & NVMF_OPT_HOST_IFACE) {
2951 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2952 pr_err("invalid interface passed: %s\n",
2953 opts->host_iface);
2954 ret = -ENODEV;
2955 goto out_free_ctrl;
2956 }
2957 }
2958
2959 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2960 ret = -EALREADY;
2961 goto out_free_ctrl;
2962 }
2963
2964 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2965 GFP_KERNEL);
2966 if (!ctrl->queues) {
2967 ret = -ENOMEM;
2968 goto out_free_ctrl;
2969 }
2970
2971 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2972 if (ret)
2973 goto out_kfree_queues;
2974
2975 return ctrl;
2976 out_kfree_queues:
2977 kfree(ctrl->queues);
2978 out_free_ctrl:
2979 kfree(ctrl);
2980 return ERR_PTR(ret);
2981 }
2982
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2983 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2984 struct nvmf_ctrl_options *opts)
2985 {
2986 struct nvme_tcp_ctrl *ctrl;
2987 int ret;
2988
2989 ctrl = nvme_tcp_alloc_ctrl(dev, opts);
2990 if (IS_ERR(ctrl))
2991 return ERR_CAST(ctrl);
2992
2993 ret = nvme_add_ctrl(&ctrl->ctrl);
2994 if (ret)
2995 goto out_put_ctrl;
2996
2997 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2998 WARN_ON_ONCE(1);
2999 ret = -EINTR;
3000 goto out_uninit_ctrl;
3001 }
3002
3003 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
3004 if (ret)
3005 goto out_uninit_ctrl;
3006
3007 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp, hostnqn: %s\n",
3008 nvmf_ctrl_subsysnqn(&ctrl->ctrl), &ctrl->addr, opts->host->nqn);
3009
3010 mutex_lock(&nvme_tcp_ctrl_mutex);
3011 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
3012 mutex_unlock(&nvme_tcp_ctrl_mutex);
3013
3014 return &ctrl->ctrl;
3015
3016 out_uninit_ctrl:
3017 nvme_uninit_ctrl(&ctrl->ctrl);
3018 out_put_ctrl:
3019 nvme_put_ctrl(&ctrl->ctrl);
3020 if (ret > 0)
3021 ret = -EIO;
3022 return ERR_PTR(ret);
3023 }
3024
3025 static struct nvmf_transport_ops nvme_tcp_transport = {
3026 .name = "tcp",
3027 .module = THIS_MODULE,
3028 .required_opts = NVMF_OPT_TRADDR,
3029 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
3030 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
3031 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
3032 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
3033 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE | NVMF_OPT_TLS |
3034 NVMF_OPT_KEYRING | NVMF_OPT_TLS_KEY | NVMF_OPT_CONCAT,
3035 .create_ctrl = nvme_tcp_create_ctrl,
3036 };
3037
nvme_tcp_init_module(void)3038 static int __init nvme_tcp_init_module(void)
3039 {
3040 unsigned int wq_flags = WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_SYSFS;
3041 int cpu;
3042
3043 BUILD_BUG_ON(sizeof(struct nvme_tcp_hdr) != 8);
3044 BUILD_BUG_ON(sizeof(struct nvme_tcp_cmd_pdu) != 72);
3045 BUILD_BUG_ON(sizeof(struct nvme_tcp_data_pdu) != 24);
3046 BUILD_BUG_ON(sizeof(struct nvme_tcp_rsp_pdu) != 24);
3047 BUILD_BUG_ON(sizeof(struct nvme_tcp_r2t_pdu) != 24);
3048 BUILD_BUG_ON(sizeof(struct nvme_tcp_icreq_pdu) != 128);
3049 BUILD_BUG_ON(sizeof(struct nvme_tcp_icresp_pdu) != 128);
3050 BUILD_BUG_ON(sizeof(struct nvme_tcp_term_pdu) != 24);
3051
3052 if (wq_unbound)
3053 wq_flags |= WQ_UNBOUND;
3054
3055 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq", wq_flags, 0);
3056 if (!nvme_tcp_wq)
3057 return -ENOMEM;
3058
3059 for_each_possible_cpu(cpu)
3060 atomic_set(&nvme_tcp_cpu_queues[cpu], 0);
3061
3062 nvmf_register_transport(&nvme_tcp_transport);
3063 return 0;
3064 }
3065
nvme_tcp_cleanup_module(void)3066 static void __exit nvme_tcp_cleanup_module(void)
3067 {
3068 struct nvme_tcp_ctrl *ctrl;
3069
3070 nvmf_unregister_transport(&nvme_tcp_transport);
3071
3072 mutex_lock(&nvme_tcp_ctrl_mutex);
3073 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
3074 nvme_delete_ctrl(&ctrl->ctrl);
3075 mutex_unlock(&nvme_tcp_ctrl_mutex);
3076 flush_workqueue(nvme_delete_wq);
3077
3078 destroy_workqueue(nvme_tcp_wq);
3079 }
3080
3081 module_init(nvme_tcp_init_module);
3082 module_exit(nvme_tcp_cleanup_module);
3083
3084 MODULE_DESCRIPTION("NVMe host TCP transport driver");
3085 MODULE_LICENSE("GPL v2");
3086