1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2024-2025 Intel Corporation
4  */
5 
6 #include <net/mac80211.h>
7 #include <kunit/static_stub.h>
8 
9 #include "mld.h"
10 #include "sta.h"
11 #include "agg.h"
12 #include "rx.h"
13 #include "hcmd.h"
14 #include "iface.h"
15 #include "time_sync.h"
16 #include "fw/dbg.h"
17 #include "fw/api/rx.h"
18 
19 /* stores relevant PHY data fields extracted from iwl_rx_mpdu_desc */
20 struct iwl_mld_rx_phy_data {
21 	enum iwl_rx_phy_info_type info_type;
22 	__le32 data0;
23 	__le32 data1;
24 	__le32 data2;
25 	__le32 data3;
26 	__le32 eht_data4;
27 	__le32 data5;
28 	__le16 data4;
29 	bool first_subframe;
30 	bool with_data;
31 	__le32 rx_vec[4];
32 	u32 rate_n_flags;
33 	u32 gp2_on_air_rise;
34 	u16 phy_info;
35 	u8 energy_a, energy_b;
36 	u8 channel;
37 };
38 
39 static void
iwl_mld_fill_phy_data(struct iwl_rx_mpdu_desc * desc,struct iwl_mld_rx_phy_data * phy_data)40 iwl_mld_fill_phy_data(struct iwl_rx_mpdu_desc *desc,
41 		      struct iwl_mld_rx_phy_data *phy_data)
42 {
43 	phy_data->phy_info = le16_to_cpu(desc->phy_info);
44 	phy_data->rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
45 	phy_data->gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
46 	phy_data->channel = desc->v3.channel;
47 	phy_data->energy_a = desc->v3.energy_a;
48 	phy_data->energy_b = desc->v3.energy_b;
49 	phy_data->data0 = desc->v3.phy_data0;
50 	phy_data->data1 = desc->v3.phy_data1;
51 	phy_data->data2 = desc->v3.phy_data2;
52 	phy_data->data3 = desc->v3.phy_data3;
53 	phy_data->data4 = desc->phy_data4;
54 	phy_data->eht_data4 = desc->phy_eht_data4;
55 	phy_data->data5 = desc->v3.phy_data5;
56 	phy_data->with_data = true;
57 }
58 
iwl_mld_check_pn(struct iwl_mld * mld,struct sk_buff * skb,int queue,struct ieee80211_sta * sta)59 static inline int iwl_mld_check_pn(struct iwl_mld *mld, struct sk_buff *skb,
60 				   int queue, struct ieee80211_sta *sta)
61 {
62 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
63 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
64 	struct iwl_mld_sta *mld_sta;
65 	struct iwl_mld_ptk_pn *ptk_pn;
66 	int res;
67 	u8 tid, keyidx;
68 	u8 pn[IEEE80211_CCMP_PN_LEN];
69 	u8 *extiv;
70 
71 	/* multicast and non-data only arrives on default queue; avoid checking
72 	 * for default queue - we don't want to replicate all the logic that's
73 	 * necessary for checking the PN on fragmented frames, leave that
74 	 * to mac80211
75 	 */
76 	if (queue == 0 || !ieee80211_is_data(hdr->frame_control) ||
77 	    is_multicast_ether_addr(hdr->addr1))
78 		return 0;
79 
80 	if (!(stats->flag & RX_FLAG_DECRYPTED))
81 		return 0;
82 
83 	/* if we are here - this for sure is either CCMP or GCMP */
84 	if (!sta) {
85 		IWL_DEBUG_DROP(mld,
86 			       "expected hw-decrypted unicast frame for station\n");
87 		return -1;
88 	}
89 
90 	mld_sta = iwl_mld_sta_from_mac80211(sta);
91 
92 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
93 	keyidx = extiv[3] >> 6;
94 
95 	ptk_pn = rcu_dereference(mld_sta->ptk_pn[keyidx]);
96 	if (!ptk_pn)
97 		return -1;
98 
99 	if (ieee80211_is_data_qos(hdr->frame_control))
100 		tid = ieee80211_get_tid(hdr);
101 	else
102 		tid = 0;
103 
104 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
105 	if (tid >= IWL_MAX_TID_COUNT)
106 		return -1;
107 
108 	/* load pn */
109 	pn[0] = extiv[7];
110 	pn[1] = extiv[6];
111 	pn[2] = extiv[5];
112 	pn[3] = extiv[4];
113 	pn[4] = extiv[1];
114 	pn[5] = extiv[0];
115 
116 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
117 	if (res < 0)
118 		return -1;
119 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
120 		return -1;
121 
122 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
123 	stats->flag |= RX_FLAG_PN_VALIDATED;
124 
125 	return 0;
126 }
127 
128 /* iwl_mld_pass_packet_to_mac80211 - passes the packet for mac80211 */
iwl_mld_pass_packet_to_mac80211(struct iwl_mld * mld,struct napi_struct * napi,struct sk_buff * skb,int queue,struct ieee80211_sta * sta)129 void iwl_mld_pass_packet_to_mac80211(struct iwl_mld *mld,
130 				     struct napi_struct *napi,
131 				     struct sk_buff *skb, int queue,
132 				     struct ieee80211_sta *sta)
133 {
134 	KUNIT_STATIC_STUB_REDIRECT(iwl_mld_pass_packet_to_mac80211,
135 				   mld, napi, skb, queue, sta);
136 
137 	if (unlikely(iwl_mld_check_pn(mld, skb, queue, sta))) {
138 		kfree_skb(skb);
139 		return;
140 	}
141 
142 	ieee80211_rx_napi(mld->hw, sta, skb, napi);
143 }
144 EXPORT_SYMBOL_IF_IWLWIFI_KUNIT(iwl_mld_pass_packet_to_mac80211);
145 
iwl_mld_fill_signal(struct iwl_mld * mld,struct ieee80211_rx_status * rx_status,struct iwl_mld_rx_phy_data * phy_data)146 static void iwl_mld_fill_signal(struct iwl_mld *mld,
147 				struct ieee80211_rx_status *rx_status,
148 				struct iwl_mld_rx_phy_data *phy_data)
149 {
150 	u32 rate_n_flags = phy_data->rate_n_flags;
151 	int energy_a = phy_data->energy_a;
152 	int energy_b = phy_data->energy_b;
153 	int max_energy;
154 
155 	energy_a = energy_a ? -energy_a : S8_MIN;
156 	energy_b = energy_b ? -energy_b : S8_MIN;
157 	max_energy = max(energy_a, energy_b);
158 
159 	IWL_DEBUG_STATS(mld, "energy in A %d B %d, and max %d\n",
160 			energy_a, energy_b, max_energy);
161 
162 	rx_status->signal = max_energy;
163 	rx_status->chains =
164 	    (rate_n_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
165 	rx_status->chain_signal[0] = energy_a;
166 	rx_status->chain_signal[1] = energy_b;
167 }
168 
169 static void
iwl_mld_decode_he_phy_ru_alloc(struct iwl_mld_rx_phy_data * phy_data,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status)170 iwl_mld_decode_he_phy_ru_alloc(struct iwl_mld_rx_phy_data *phy_data,
171 			       struct ieee80211_radiotap_he *he,
172 			       struct ieee80211_radiotap_he_mu *he_mu,
173 			       struct ieee80211_rx_status *rx_status)
174 {
175 	/* Unfortunately, we have to leave the mac80211 data
176 	 * incorrect for the case that we receive an HE-MU
177 	 * transmission and *don't* have the HE phy data (due
178 	 * to the bits being used for TSF). This shouldn't
179 	 * happen though as management frames where we need
180 	 * the TSF/timers are not be transmitted in HE-MU.
181 	 */
182 	u8 ru = le32_get_bits(phy_data->data1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
183 	u32 rate_n_flags = phy_data->rate_n_flags;
184 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
185 	u8 offs = 0;
186 
187 	rx_status->bw = RATE_INFO_BW_HE_RU;
188 
189 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
190 
191 	switch (ru) {
192 	case 0 ... 36:
193 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
194 		offs = ru;
195 		break;
196 	case 37 ... 52:
197 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
198 		offs = ru - 37;
199 		break;
200 	case 53 ... 60:
201 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
202 		offs = ru - 53;
203 		break;
204 	case 61 ... 64:
205 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
206 		offs = ru - 61;
207 		break;
208 	case 65 ... 66:
209 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
210 		offs = ru - 65;
211 		break;
212 	case 67:
213 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
214 		break;
215 	case 68:
216 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
217 		break;
218 	}
219 	he->data2 |= le16_encode_bits(offs,
220 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
221 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
222 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
223 	if (phy_data->data1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
224 		he->data2 |=
225 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
226 
227 #define CHECK_BW(bw) \
228 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
229 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
230 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
231 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
232 	CHECK_BW(20);
233 	CHECK_BW(40);
234 	CHECK_BW(80);
235 	CHECK_BW(160);
236 
237 	if (he_mu)
238 		he_mu->flags2 |=
239 			le16_encode_bits(u32_get_bits(rate_n_flags,
240 						      RATE_MCS_CHAN_WIDTH_MSK),
241 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
242 	else if (he_type == RATE_MCS_HE_TYPE_TRIG)
243 		he->data6 |=
244 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
245 			le16_encode_bits(u32_get_bits(rate_n_flags,
246 						      RATE_MCS_CHAN_WIDTH_MSK),
247 					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
248 }
249 
250 static void
iwl_mld_decode_he_mu_ext(struct iwl_mld_rx_phy_data * phy_data,struct ieee80211_radiotap_he_mu * he_mu)251 iwl_mld_decode_he_mu_ext(struct iwl_mld_rx_phy_data *phy_data,
252 			 struct ieee80211_radiotap_he_mu *he_mu)
253 {
254 	u32 phy_data2 = le32_to_cpu(phy_data->data2);
255 	u32 phy_data3 = le32_to_cpu(phy_data->data3);
256 	u16 phy_data4 = le16_to_cpu(phy_data->data4);
257 	u32 rate_n_flags = phy_data->rate_n_flags;
258 
259 	if (u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK)) {
260 		he_mu->flags1 |=
261 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
262 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
263 
264 		he_mu->flags1 |=
265 			le16_encode_bits(u32_get_bits(phy_data4,
266 						      IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU),
267 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
268 
269 		he_mu->ru_ch1[0] = u32_get_bits(phy_data2,
270 						IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0);
271 		he_mu->ru_ch1[1] = u32_get_bits(phy_data3,
272 						IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1);
273 		he_mu->ru_ch1[2] = u32_get_bits(phy_data2,
274 						IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2);
275 		he_mu->ru_ch1[3] = u32_get_bits(phy_data3,
276 						IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3);
277 	}
278 
279 	if (u32_get_bits(phy_data4, IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK) &&
280 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
281 		he_mu->flags1 |=
282 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
283 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
284 
285 		he_mu->flags2 |=
286 			le16_encode_bits(u32_get_bits(phy_data4,
287 						      IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU),
288 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
289 
290 		he_mu->ru_ch2[0] = u32_get_bits(phy_data2,
291 						IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0);
292 		he_mu->ru_ch2[1] = u32_get_bits(phy_data3,
293 						IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1);
294 		he_mu->ru_ch2[2] = u32_get_bits(phy_data2,
295 						IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2);
296 		he_mu->ru_ch2[3] = u32_get_bits(phy_data3,
297 						IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3);
298 	}
299 }
300 
301 static void
iwl_mld_decode_he_phy_data(struct iwl_mld_rx_phy_data * phy_data,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status,int queue)302 iwl_mld_decode_he_phy_data(struct iwl_mld_rx_phy_data *phy_data,
303 			   struct ieee80211_radiotap_he *he,
304 			   struct ieee80211_radiotap_he_mu *he_mu,
305 			   struct ieee80211_rx_status *rx_status,
306 			   int queue)
307 {
308 	switch (phy_data->info_type) {
309 	case IWL_RX_PHY_INFO_TYPE_NONE:
310 	case IWL_RX_PHY_INFO_TYPE_CCK:
311 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
312 	case IWL_RX_PHY_INFO_TYPE_HT:
313 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
314 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
315 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
316 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
317 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
318 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
319 		return;
320 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
321 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
322 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
323 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
324 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
325 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
326 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
327 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
328 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
329 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
330 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
331 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
332 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
333 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
334 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data2,
335 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
336 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
337 		fallthrough;
338 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
339 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
340 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
341 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
342 		/* HE common */
343 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
344 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
345 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
346 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
347 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
348 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
349 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
350 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
351 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
352 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
353 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
354 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
355 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
356 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
357 							    IWL_RX_PHY_DATA0_HE_UPLINK),
358 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
359 		}
360 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
361 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
362 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
363 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data0,
364 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
365 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
366 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data0,
367 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
368 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
369 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->data1,
370 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
371 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
372 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->data0,
373 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
374 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
375 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->data0,
376 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
377 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
378 		break;
379 	}
380 
381 	switch (phy_data->info_type) {
382 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
383 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
384 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
385 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
386 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->data0,
387 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
388 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
389 		break;
390 	default:
391 		/* nothing here */
392 		break;
393 	}
394 
395 	switch (phy_data->info_type) {
396 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
397 		he_mu->flags1 |=
398 			le16_encode_bits(le16_get_bits(phy_data->data4,
399 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
400 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
401 		he_mu->flags1 |=
402 			le16_encode_bits(le16_get_bits(phy_data->data4,
403 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
404 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
405 		he_mu->flags2 |=
406 			le16_encode_bits(le16_get_bits(phy_data->data4,
407 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
408 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
409 		iwl_mld_decode_he_mu_ext(phy_data, he_mu);
410 		fallthrough;
411 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
412 		he_mu->flags2 |=
413 			le16_encode_bits(le32_get_bits(phy_data->data1,
414 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
415 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
416 		he_mu->flags2 |=
417 			le16_encode_bits(le32_get_bits(phy_data->data1,
418 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
419 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
420 		fallthrough;
421 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
422 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
423 		iwl_mld_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
424 		break;
425 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
426 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
427 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->data0,
428 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
429 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
430 		break;
431 	default:
432 		/* nothing */
433 		break;
434 	}
435 }
436 
iwl_mld_rx_he(struct iwl_mld * mld,struct sk_buff * skb,struct iwl_mld_rx_phy_data * phy_data,int queue)437 static void iwl_mld_rx_he(struct iwl_mld *mld, struct sk_buff *skb,
438 			  struct iwl_mld_rx_phy_data *phy_data,
439 			  int queue)
440 {
441 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
442 	struct ieee80211_radiotap_he *he = NULL;
443 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
444 	u32 rate_n_flags = phy_data->rate_n_flags;
445 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
446 	u8 ltf;
447 	static const struct ieee80211_radiotap_he known = {
448 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
449 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
450 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN	|
451 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
452 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
453 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
454 	};
455 	static const struct ieee80211_radiotap_he_mu mu_known = {
456 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
457 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
458 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
459 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
460 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
461 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
462 	};
463 	u16 phy_info = phy_data->phy_info;
464 
465 	he = skb_put_data(skb, &known, sizeof(known));
466 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
467 
468 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
469 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
470 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
471 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
472 	}
473 
474 	/* report the AMPDU-EOF bit on single frames */
475 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
476 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
477 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
478 		if (phy_data->data0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
479 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
480 	}
481 
482 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
483 		iwl_mld_decode_he_phy_data(phy_data, he, he_mu, rx_status,
484 					   queue);
485 
486 	/* update aggregation data for monitor sake on default queue */
487 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
488 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
489 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
490 		if (phy_data->data0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
491 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
492 	}
493 
494 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
495 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
496 		rx_status->bw = RATE_INFO_BW_HE_RU;
497 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
498 	}
499 
500 	/* actually data is filled in mac80211 */
501 	if (he_type == RATE_MCS_HE_TYPE_SU ||
502 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
503 		he->data1 |=
504 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
505 
506 #define CHECK_TYPE(F)							\
507 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
508 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
509 
510 	CHECK_TYPE(SU);
511 	CHECK_TYPE(EXT_SU);
512 	CHECK_TYPE(MU);
513 	CHECK_TYPE(TRIG);
514 
515 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
516 
517 	if (rate_n_flags & RATE_MCS_BF_MSK)
518 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
519 
520 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
521 		RATE_MCS_HE_GI_LTF_POS) {
522 	case 0:
523 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
524 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
525 		else
526 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
527 		if (he_type == RATE_MCS_HE_TYPE_MU)
528 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
529 		else
530 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
531 		break;
532 	case 1:
533 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
534 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
535 		else
536 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
537 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
538 		break;
539 	case 2:
540 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
541 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
542 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
543 		} else {
544 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
545 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
546 		}
547 		break;
548 	case 3:
549 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
550 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
551 		break;
552 	case 4:
553 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
554 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
555 		break;
556 	default:
557 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
558 	}
559 
560 	he->data5 |= le16_encode_bits(ltf,
561 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
562 }
563 
iwl_mld_decode_lsig(struct sk_buff * skb,struct iwl_mld_rx_phy_data * phy_data)564 static void iwl_mld_decode_lsig(struct sk_buff *skb,
565 				struct iwl_mld_rx_phy_data *phy_data)
566 {
567 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
568 	struct ieee80211_radiotap_lsig *lsig;
569 
570 	switch (phy_data->info_type) {
571 	case IWL_RX_PHY_INFO_TYPE_HT:
572 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
573 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
574 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
575 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
576 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
577 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
578 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
579 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
580 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
581 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
582 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
583 		lsig = skb_put(skb, sizeof(*lsig));
584 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
585 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->data1,
586 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
587 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
588 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
589 		break;
590 	default:
591 		break;
592 	}
593 }
594 
595 /* Put a TLV on the skb and return data pointer
596  *
597  * Also pad the len to 4 and zero out all data part
598  */
599 static void *
iwl_mld_radiotap_put_tlv(struct sk_buff * skb,u16 type,u16 len)600 iwl_mld_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
601 {
602 	struct ieee80211_radiotap_tlv *tlv;
603 
604 	tlv = skb_put(skb, sizeof(*tlv));
605 	tlv->type = cpu_to_le16(type);
606 	tlv->len = cpu_to_le16(len);
607 	return skb_put_zero(skb, ALIGN(len, 4));
608 }
609 
610 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \
611 	le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
612 
613 #define IWL_MLD_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
614 	typeof(enc_bits) _enc_bits = enc_bits; \
615 	typeof(usig) _usig = usig; \
616 	(_usig)->mask |= cpu_to_le32(_enc_bits); \
617 	(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
618 } while (0)
619 
620 #define __IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
621 	eht->data[(rt_data)] |= \
622 		(cpu_to_le32 \
623 		 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
624 		 LE32_DEC_ENC(data ## fw_data, \
625 			      IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
626 			      IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
627 
628 #define _IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)	\
629 	__IWL_MLD_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
630 
631 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1	1
632 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1	2
633 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2	2
634 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2	2
635 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1	3
636 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1	3
637 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2	3
638 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2	4
639 
640 #define IWL_RX_RU_DATA_A1			2
641 #define IWL_RX_RU_DATA_A2			2
642 #define IWL_RX_RU_DATA_B1			2
643 #define IWL_RX_RU_DATA_B2			4
644 #define IWL_RX_RU_DATA_C1			3
645 #define IWL_RX_RU_DATA_C2			3
646 #define IWL_RX_RU_DATA_D1			4
647 #define IWL_RX_RU_DATA_D2			4
648 
649 #define IWL_MLD_ENC_EHT_RU(rt_ru, fw_ru)				\
650 	_IWL_MLD_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru,	\
651 			    rt_ru,					\
652 			    IWL_RX_RU_DATA_ ## fw_ru,			\
653 			    fw_ru)
654 
iwl_mld_decode_eht_ext_mu(struct iwl_mld * mld,struct iwl_mld_rx_phy_data * phy_data,struct ieee80211_rx_status * rx_status,struct ieee80211_radiotap_eht * eht,struct ieee80211_radiotap_eht_usig * usig)655 static void iwl_mld_decode_eht_ext_mu(struct iwl_mld *mld,
656 				      struct iwl_mld_rx_phy_data *phy_data,
657 				      struct ieee80211_rx_status *rx_status,
658 				      struct ieee80211_radiotap_eht *eht,
659 				      struct ieee80211_radiotap_eht_usig *usig)
660 {
661 	if (phy_data->with_data) {
662 		__le32 data1 = phy_data->data1;
663 		__le32 data2 = phy_data->data2;
664 		__le32 data3 = phy_data->data3;
665 		__le32 data4 = phy_data->eht_data4;
666 		__le32 data5 = phy_data->data5;
667 		u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
668 
669 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
670 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
671 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
672 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
673 					    IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
674 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
675 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data4,
676 					    IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
677 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
678 		IWL_MLD_ENC_USIG_VALUE_MASK
679 			(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
680 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
681 
682 		eht->user_info[0] |=
683 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
684 			LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
685 				     IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
686 
687 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
688 		eht->data[7] |= LE32_DEC_ENC
689 			(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
690 			 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
691 
692 		/*
693 		 * Hardware labels the content channels/RU allocation values
694 		 * as follows:
695 		 *           Content Channel 1		Content Channel 2
696 		 *   20 MHz: A1
697 		 *   40 MHz: A1				B1
698 		 *   80 MHz: A1 C1			B1 D1
699 		 *  160 MHz: A1 C1 A2 C2		B1 D1 B2 D2
700 		 *  320 MHz: A1 C1 A2 C2 A3 C3 A4 C4	B1 D1 B2 D2 B3 D3 B4 D4
701 		 *
702 		 * However firmware can only give us A1-D2, so the higher
703 		 * frequencies are missing.
704 		 */
705 
706 		switch (phy_bw) {
707 		case RATE_MCS_CHAN_WIDTH_320:
708 			/* additional values are missing in RX metadata */
709 			fallthrough;
710 		case RATE_MCS_CHAN_WIDTH_160:
711 			/* content channel 1 */
712 			IWL_MLD_ENC_EHT_RU(1_2_1, A2);
713 			IWL_MLD_ENC_EHT_RU(1_2_2, C2);
714 			/* content channel 2 */
715 			IWL_MLD_ENC_EHT_RU(2_2_1, B2);
716 			IWL_MLD_ENC_EHT_RU(2_2_2, D2);
717 			fallthrough;
718 		case RATE_MCS_CHAN_WIDTH_80:
719 			/* content channel 1 */
720 			IWL_MLD_ENC_EHT_RU(1_1_2, C1);
721 			/* content channel 2 */
722 			IWL_MLD_ENC_EHT_RU(2_1_2, D1);
723 			fallthrough;
724 		case RATE_MCS_CHAN_WIDTH_40:
725 			/* content channel 2 */
726 			IWL_MLD_ENC_EHT_RU(2_1_1, B1);
727 			fallthrough;
728 		case RATE_MCS_CHAN_WIDTH_20:
729 			IWL_MLD_ENC_EHT_RU(1_1_1, A1);
730 			break;
731 		}
732 	} else {
733 		__le32 usig_a1 = phy_data->rx_vec[0];
734 		__le32 usig_a2 = phy_data->rx_vec[1];
735 
736 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1,
737 					    IWL_RX_USIG_A1_DISREGARD,
738 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
739 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1,
740 					    IWL_RX_USIG_A1_VALIDATE,
741 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
742 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
743 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
744 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
745 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
746 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
747 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
748 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
749 					    IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
750 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
751 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
752 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
753 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
754 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
755 					    IWL_RX_USIG_A2_EHT_SIG_MCS,
756 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
757 		IWL_MLD_ENC_USIG_VALUE_MASK
758 			(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
759 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
760 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
761 					    IWL_RX_USIG_A2_EHT_CRC_OK,
762 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
763 	}
764 }
765 
iwl_mld_decode_eht_ext_tb(struct iwl_mld * mld,struct iwl_mld_rx_phy_data * phy_data,struct ieee80211_rx_status * rx_status,struct ieee80211_radiotap_eht * eht,struct ieee80211_radiotap_eht_usig * usig)766 static void iwl_mld_decode_eht_ext_tb(struct iwl_mld *mld,
767 				      struct iwl_mld_rx_phy_data *phy_data,
768 				      struct ieee80211_rx_status *rx_status,
769 				      struct ieee80211_radiotap_eht *eht,
770 				      struct ieee80211_radiotap_eht_usig *usig)
771 {
772 	if (phy_data->with_data) {
773 		__le32 data5 = phy_data->data5;
774 
775 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
776 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
777 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
778 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
779 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
780 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
781 
782 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, data5,
783 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
784 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
785 	} else {
786 		__le32 usig_a1 = phy_data->rx_vec[0];
787 		__le32 usig_a2 = phy_data->rx_vec[1];
788 
789 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a1,
790 					    IWL_RX_USIG_A1_DISREGARD,
791 					    IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
792 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
793 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
794 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
795 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
796 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
797 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
798 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
799 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
800 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
801 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
802 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
803 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
804 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
805 					    IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
806 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
807 		IWL_MLD_ENC_USIG_VALUE_MASK(usig, usig_a2,
808 					    IWL_RX_USIG_A2_EHT_CRC_OK,
809 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
810 	}
811 }
812 
iwl_mld_decode_eht_ru(struct iwl_mld * mld,struct ieee80211_rx_status * rx_status,struct ieee80211_radiotap_eht * eht)813 static void iwl_mld_decode_eht_ru(struct iwl_mld *mld,
814 				  struct ieee80211_rx_status *rx_status,
815 				  struct ieee80211_radiotap_eht *eht)
816 {
817 	u32 ru = le32_get_bits(eht->data[8],
818 			       IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
819 	enum nl80211_eht_ru_alloc nl_ru;
820 
821 	/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
822 	 * in an EHT variant User Info field
823 	 */
824 
825 	switch (ru) {
826 	case 0 ... 36:
827 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
828 		break;
829 	case 37 ... 52:
830 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
831 		break;
832 	case 53 ... 60:
833 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
834 		break;
835 	case 61 ... 64:
836 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
837 		break;
838 	case 65 ... 66:
839 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
840 		break;
841 	case 67:
842 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
843 		break;
844 	case 68:
845 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
846 		break;
847 	case 69:
848 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
849 		break;
850 	case 70 ... 81:
851 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
852 		break;
853 	case 82 ... 89:
854 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
855 		break;
856 	case 90 ... 93:
857 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
858 		break;
859 	case 94 ... 95:
860 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
861 		break;
862 	case 96 ... 99:
863 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
864 		break;
865 	case 100 ... 103:
866 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
867 		break;
868 	case 104:
869 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
870 		break;
871 	case 105 ... 106:
872 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
873 		break;
874 	default:
875 		return;
876 	}
877 
878 	rx_status->bw = RATE_INFO_BW_EHT_RU;
879 	rx_status->eht.ru = nl_ru;
880 }
881 
iwl_mld_decode_eht_phy_data(struct iwl_mld * mld,struct iwl_mld_rx_phy_data * phy_data,struct ieee80211_rx_status * rx_status,struct ieee80211_radiotap_eht * eht,struct ieee80211_radiotap_eht_usig * usig)882 static void iwl_mld_decode_eht_phy_data(struct iwl_mld *mld,
883 					struct iwl_mld_rx_phy_data *phy_data,
884 					struct ieee80211_rx_status *rx_status,
885 					struct ieee80211_radiotap_eht *eht,
886 					struct ieee80211_radiotap_eht_usig *usig)
887 
888 {
889 	__le32 data0 = phy_data->data0;
890 	__le32 data1 = phy_data->data1;
891 	__le32 usig_a1 = phy_data->rx_vec[0];
892 	u8 info_type = phy_data->info_type;
893 
894 	/* Not in EHT range */
895 	if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
896 	    info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
897 		return;
898 
899 	usig->common |= cpu_to_le32
900 		(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
901 		 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
902 	if (phy_data->with_data) {
903 		usig->common |= LE32_DEC_ENC(data0,
904 					     IWL_RX_PHY_DATA0_EHT_UPLINK,
905 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
906 		usig->common |= LE32_DEC_ENC(data0,
907 					     IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
908 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
909 	} else {
910 		usig->common |= LE32_DEC_ENC(usig_a1,
911 					     IWL_RX_USIG_A1_UL_FLAG,
912 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
913 		usig->common |= LE32_DEC_ENC(usig_a1,
914 					     IWL_RX_USIG_A1_BSS_COLOR,
915 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
916 	}
917 
918 	usig->common |=
919 		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
920 	usig->common |=
921 		LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
922 			     IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
923 
924 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
925 	eht->data[0] |= LE32_DEC_ENC(data0,
926 				     IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
927 				     IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
928 
929 	/* All RU allocating size/index is in TB format */
930 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
931 	eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
932 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
933 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
934 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
935 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
936 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
937 
938 	iwl_mld_decode_eht_ru(mld, rx_status, eht);
939 
940 	/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
941 	 * which is on only in case of monitor mode so no need to check monitor
942 	 * mode
943 	 */
944 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
945 	eht->data[1] |=
946 		le32_encode_bits(mld->monitor.p80,
947 				 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
948 
949 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
950 	if (phy_data->with_data)
951 		usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
952 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
953 	else
954 		usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
955 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
956 
957 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
958 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
959 				     IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
960 
961 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
962 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
963 				    IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
964 
965 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
966 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
967 				     IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
968 
969 	/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
970 
971 	if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
972 		usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
973 
974 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
975 	usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
976 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
977 
978 	/*
979 	 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
980 	 *			 IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
981 	 */
982 
983 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
984 	eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
985 				     IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
986 
987 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
988 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
989 		iwl_mld_decode_eht_ext_tb(mld, phy_data, rx_status, eht, usig);
990 
991 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
992 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
993 		iwl_mld_decode_eht_ext_mu(mld, phy_data, rx_status, eht, usig);
994 }
995 
iwl_mld_rx_eht(struct iwl_mld * mld,struct sk_buff * skb,struct iwl_mld_rx_phy_data * phy_data,int queue)996 static void iwl_mld_rx_eht(struct iwl_mld *mld, struct sk_buff *skb,
997 			   struct iwl_mld_rx_phy_data *phy_data,
998 			   int queue)
999 {
1000 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1001 	struct ieee80211_radiotap_eht *eht;
1002 	struct ieee80211_radiotap_eht_usig *usig;
1003 	size_t eht_len = sizeof(*eht);
1004 
1005 	u32 rate_n_flags = phy_data->rate_n_flags;
1006 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1007 	/* EHT and HE have the same values for LTF */
1008 	u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1009 	u16 phy_info = phy_data->phy_info;
1010 	u32 bw;
1011 
1012 	/* u32 for 1 user_info */
1013 	if (phy_data->with_data)
1014 		eht_len += sizeof(u32);
1015 
1016 	eht = iwl_mld_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1017 
1018 	usig = iwl_mld_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1019 					sizeof(*usig));
1020 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1021 	usig->common |=
1022 		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1023 
1024 	/* specific handling for 320MHz */
1025 	bw = u32_get_bits(rate_n_flags, RATE_MCS_CHAN_WIDTH_MSK);
1026 	if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1027 		bw += le32_get_bits(phy_data->data0,
1028 				    IWL_RX_PHY_DATA0_EHT_BW320_SLOT);
1029 
1030 	usig->common |= cpu_to_le32
1031 		(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1032 
1033 	/* report the AMPDU-EOF bit on single frames */
1034 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1035 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1036 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1037 		if (phy_data->data0 &
1038 		    cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1039 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1040 	}
1041 
1042 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1043 		iwl_mld_decode_eht_phy_data(mld, phy_data, rx_status, eht, usig);
1044 
1045 #define CHECK_TYPE(F)							\
1046 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1047 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1048 
1049 	CHECK_TYPE(SU);
1050 	CHECK_TYPE(EXT_SU);
1051 	CHECK_TYPE(MU);
1052 	CHECK_TYPE(TRIG);
1053 
1054 	switch (u32_get_bits(rate_n_flags, RATE_MCS_HE_GI_LTF_MSK)) {
1055 	case 0:
1056 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1057 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1058 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1059 		} else {
1060 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1061 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1062 		}
1063 		break;
1064 	case 1:
1065 		rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1066 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1067 		break;
1068 	case 2:
1069 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1070 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1071 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1072 		else
1073 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1074 		break;
1075 	case 3:
1076 		if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1077 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1078 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1079 		}
1080 		break;
1081 	default:
1082 		/* nothing here */
1083 		break;
1084 	}
1085 
1086 	if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1087 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1088 		eht->data[0] |= cpu_to_le32
1089 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1090 				    ltf) |
1091 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1092 				    rx_status->eht.gi));
1093 	}
1094 
1095 	if (!phy_data->with_data) {
1096 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1097 					  IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1098 		eht->data[7] |=
1099 			le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1100 						       RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1101 					 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1102 		if (rate_n_flags & RATE_MCS_BF_MSK)
1103 			eht->data[7] |=
1104 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1105 	} else {
1106 		eht->user_info[0] |=
1107 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1108 				    IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1109 				    IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1110 				    IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
1111 				    IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
1112 
1113 		if (rate_n_flags & RATE_MCS_BF_MSK)
1114 			eht->user_info[0] |=
1115 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
1116 
1117 		if (rate_n_flags & RATE_MCS_LDPC_MSK)
1118 			eht->user_info[0] |=
1119 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
1120 
1121 		eht->user_info[0] |= cpu_to_le32
1122 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
1123 				    u32_get_bits(rate_n_flags,
1124 						 RATE_VHT_MCS_RATE_CODE_MSK)) |
1125 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
1126 				    u32_get_bits(rate_n_flags,
1127 						 RATE_MCS_NSS_MSK)));
1128 	}
1129 }
1130 
1131 #ifdef CONFIG_IWLWIFI_DEBUGFS
iwl_mld_add_rtap_sniffer_config(struct iwl_mld * mld,struct sk_buff * skb)1132 static void iwl_mld_add_rtap_sniffer_config(struct iwl_mld *mld,
1133 					    struct sk_buff *skb)
1134 {
1135 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1136 	struct ieee80211_radiotap_vendor_content *radiotap;
1137 	const u16 vendor_data_len = sizeof(mld->monitor.cur_aid);
1138 
1139 	if (!mld->monitor.cur_aid)
1140 		return;
1141 
1142 	radiotap =
1143 		iwl_mld_radiotap_put_tlv(skb,
1144 					 IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
1145 					 sizeof(*radiotap) + vendor_data_len);
1146 
1147 	/* Intel OUI */
1148 	radiotap->oui[0] = 0xf6;
1149 	radiotap->oui[1] = 0x54;
1150 	radiotap->oui[2] = 0x25;
1151 	/* radiotap sniffer config sub-namespace */
1152 	radiotap->oui_subtype = 1;
1153 	radiotap->vendor_type = 0;
1154 
1155 	/* fill the data now */
1156 	memcpy(radiotap->data, &mld->monitor.cur_aid,
1157 	       sizeof(mld->monitor.cur_aid));
1158 
1159 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1160 }
1161 #endif
1162 
iwl_mld_rx_fill_status(struct iwl_mld * mld,struct sk_buff * skb,struct iwl_mld_rx_phy_data * phy_data,struct iwl_rx_mpdu_desc * mpdu_desc,struct ieee80211_hdr * hdr,int queue)1163 static void iwl_mld_rx_fill_status(struct iwl_mld *mld, struct sk_buff *skb,
1164 				   struct iwl_mld_rx_phy_data *phy_data,
1165 				   struct iwl_rx_mpdu_desc *mpdu_desc,
1166 				   struct ieee80211_hdr *hdr,
1167 				   int queue)
1168 {
1169 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1170 	u32 format = phy_data->rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1171 	u32 rate_n_flags = phy_data->rate_n_flags;
1172 	u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
1173 	bool is_sgi = rate_n_flags & RATE_MCS_SGI_MSK;
1174 
1175 	if (WARN_ON_ONCE(phy_data->with_data && (!mpdu_desc || !hdr)))
1176 		return;
1177 
1178 	/* Keep packets with CRC errors (and with overrun) for monitor mode
1179 	 * (otherwise the firmware discards them) but mark them as bad.
1180 	 */
1181 	if (phy_data->with_data &&
1182 	    (!(mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1183 	     !(mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK)))) {
1184 		IWL_DEBUG_RX(mld, "Bad CRC or FIFO: 0x%08X.\n",
1185 			     le32_to_cpu(mpdu_desc->status));
1186 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1187 	}
1188 
1189 	phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
1190 
1191 	if (phy_data->with_data &&
1192 	    likely(!(phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1193 		rx_status->mactime =
1194 			le64_to_cpu(mpdu_desc->v3.tsf_on_air_rise);
1195 
1196 		/* TSF as indicated by the firmware is at INA time */
1197 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1198 	} else {
1199 		phy_data->info_type =
1200 			le32_get_bits(phy_data->data1,
1201 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1202 	}
1203 
1204 	/* management stuff on default queue */
1205 	if (!queue && phy_data->with_data &&
1206 	    unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1207 		     ieee80211_is_probe_resp(hdr->frame_control))) {
1208 		rx_status->boottime_ns = ktime_get_boottime_ns();
1209 
1210 		if (mld->scan.pass_all_sched_res == SCHED_SCAN_PASS_ALL_STATE_ENABLED)
1211 			mld->scan.pass_all_sched_res = SCHED_SCAN_PASS_ALL_STATE_FOUND;
1212 	}
1213 
1214 	/* set the preamble flag if appropriate */
1215 	if (format == RATE_MCS_CCK_MSK &&
1216 	    phy_data->phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1217 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1218 
1219 	iwl_mld_fill_signal(mld, rx_status, phy_data);
1220 
1221 	/* This may be overridden by iwl_mld_rx_he() to HE_RU */
1222 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1223 	case RATE_MCS_CHAN_WIDTH_20:
1224 		break;
1225 	case RATE_MCS_CHAN_WIDTH_40:
1226 		rx_status->bw = RATE_INFO_BW_40;
1227 		break;
1228 	case RATE_MCS_CHAN_WIDTH_80:
1229 		rx_status->bw = RATE_INFO_BW_80;
1230 		break;
1231 	case RATE_MCS_CHAN_WIDTH_160:
1232 		rx_status->bw = RATE_INFO_BW_160;
1233 		break;
1234 	case RATE_MCS_CHAN_WIDTH_320:
1235 		rx_status->bw = RATE_INFO_BW_320;
1236 		break;
1237 	}
1238 
1239 	/* must be before L-SIG data */
1240 	if (format == RATE_MCS_HE_MSK)
1241 		iwl_mld_rx_he(mld, skb, phy_data, queue);
1242 
1243 	iwl_mld_decode_lsig(skb, phy_data);
1244 
1245 	rx_status->device_timestamp = phy_data->gp2_on_air_rise;
1246 
1247 	/* using TLV format and must be after all fixed len fields */
1248 	if (format == RATE_MCS_EHT_MSK)
1249 		iwl_mld_rx_eht(mld, skb, phy_data, queue);
1250 
1251 #ifdef CONFIG_IWLWIFI_DEBUGFS
1252 	if (unlikely(mld->monitor.on))
1253 		iwl_mld_add_rtap_sniffer_config(mld, skb);
1254 #endif
1255 
1256 	if (format != RATE_MCS_CCK_MSK && is_sgi)
1257 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1258 
1259 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
1260 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1261 
1262 	switch (format) {
1263 	case RATE_MCS_HT_MSK:
1264 		rx_status->encoding = RX_ENC_HT;
1265 		rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
1266 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1267 		break;
1268 	case RATE_MCS_VHT_MSK:
1269 	case RATE_MCS_HE_MSK:
1270 	case RATE_MCS_EHT_MSK:
1271 		if (format == RATE_MCS_VHT_MSK) {
1272 			rx_status->encoding = RX_ENC_VHT;
1273 		} else if (format == RATE_MCS_HE_MSK) {
1274 			rx_status->encoding = RX_ENC_HE;
1275 			rx_status->he_dcm =
1276 				!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1277 		} else if (format == RATE_MCS_EHT_MSK) {
1278 			rx_status->encoding = RX_ENC_EHT;
1279 		}
1280 
1281 		rx_status->nss = u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
1282 		rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
1283 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1284 		break;
1285 	default: {
1286 		int rate =
1287 		    iwl_mld_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
1288 							  rx_status->band);
1289 
1290 		/* valid rate */
1291 		if (rate >= 0 && rate <= 0xFF) {
1292 			rx_status->rate_idx = rate;
1293 			break;
1294 		}
1295 
1296 		/* invalid rate */
1297 		rx_status->rate_idx = 0;
1298 
1299 		if (net_ratelimit())
1300 			IWL_ERR(mld, "invalid rate_n_flags=0x%x, band=%d\n",
1301 				rate_n_flags, rx_status->band);
1302 		break;
1303 		}
1304 	}
1305 }
1306 
1307 /* iwl_mld_create_skb adds the rxb to a new skb */
iwl_mld_build_rx_skb(struct iwl_mld * mld,struct sk_buff * skb,struct ieee80211_hdr * hdr,u16 len,u8 crypt_len,struct iwl_rx_cmd_buffer * rxb)1308 static int iwl_mld_build_rx_skb(struct iwl_mld *mld, struct sk_buff *skb,
1309 				struct ieee80211_hdr *hdr, u16 len,
1310 				u8 crypt_len, struct iwl_rx_cmd_buffer *rxb)
1311 {
1312 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1313 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1314 	unsigned int headlen, fraglen, pad_len = 0;
1315 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
1316 	u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
1317 				     IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
1318 
1319 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1320 		len -= 2;
1321 		pad_len = 2;
1322 	}
1323 
1324 	/* For non monitor interface strip the bytes the RADA might not have
1325 	 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
1326 	 * interface cannot exist with other interfaces, this removal is safe
1327 	 * and sufficient, in monitor mode there's no decryption being done.
1328 	 */
1329 	if (len > mic_crc_len && !ieee80211_hw_check(mld->hw, RX_INCLUDES_FCS))
1330 		len -= mic_crc_len;
1331 
1332 	/* If frame is small enough to fit in skb->head, pull it completely.
1333 	 * If not, only pull ieee80211_hdr (including crypto if present, and
1334 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
1335 	 * splice() or TCP coalesce are more efficient.
1336 	 *
1337 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
1338 	 * least 8 bytes (possibly more for mesh) we can do the same here
1339 	 * to save the cost of doing it later. That still doesn't pull in
1340 	 * the actual IP header since the typical case has a SNAP header.
1341 	 * If the latter changes (there are efforts in the standards group
1342 	 * to do so) we should revisit this and ieee80211_data_to_8023().
1343 	 */
1344 	headlen = (len <= skb_tailroom(skb)) ? len : hdrlen + crypt_len + 8;
1345 
1346 	/* The firmware may align the packet to DWORD.
1347 	 * The padding is inserted after the IV.
1348 	 * After copying the header + IV skip the padding if
1349 	 * present before copying packet data.
1350 	 */
1351 	hdrlen += crypt_len;
1352 
1353 	if (unlikely(headlen < hdrlen))
1354 		return -EINVAL;
1355 
1356 	/* Since data doesn't move data while putting data on skb and that is
1357 	 * the only way we use, data + len is the next place that hdr would
1358 	 * be put
1359 	 */
1360 	skb_set_mac_header(skb, skb->len);
1361 	skb_put_data(skb, hdr, hdrlen);
1362 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
1363 
1364 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
1365 		struct {
1366 			u8 hdr[6];
1367 			__be16 type;
1368 		} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
1369 
1370 		if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
1371 			     !ether_addr_equal(shdr->hdr, rfc1042_header) ||
1372 			     (shdr->type != htons(ETH_P_IP) &&
1373 			      shdr->type != htons(ETH_P_ARP) &&
1374 			      shdr->type != htons(ETH_P_IPV6) &&
1375 			      shdr->type != htons(ETH_P_8021Q) &&
1376 			      shdr->type != htons(ETH_P_PAE) &&
1377 			      shdr->type != htons(ETH_P_TDLS))))
1378 			skb->ip_summed = CHECKSUM_NONE;
1379 	}
1380 
1381 	fraglen = len - headlen;
1382 
1383 	if (fraglen) {
1384 		int offset = (u8 *)hdr + headlen + pad_len -
1385 			     (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
1386 
1387 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
1388 				fraglen, rxb->truesize);
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 /* returns true if a packet is a duplicate or invalid tid and
1395  * should be dropped. Updates AMSDU PN tracking info
1396  */
1397 VISIBLE_IF_IWLWIFI_KUNIT
1398 bool
iwl_mld_is_dup(struct iwl_mld * mld,struct ieee80211_sta * sta,struct ieee80211_hdr * hdr,const struct iwl_rx_mpdu_desc * mpdu_desc,struct ieee80211_rx_status * rx_status,int queue)1399 iwl_mld_is_dup(struct iwl_mld *mld, struct ieee80211_sta *sta,
1400 	       struct ieee80211_hdr *hdr,
1401 	       const struct iwl_rx_mpdu_desc *mpdu_desc,
1402 	       struct ieee80211_rx_status *rx_status, int queue)
1403 {
1404 	struct iwl_mld_sta *mld_sta;
1405 	struct iwl_mld_rxq_dup_data *dup_data;
1406 	u8 tid, sub_frame_idx;
1407 
1408 	if (WARN_ON(!sta))
1409 		return false;
1410 
1411 	mld_sta = iwl_mld_sta_from_mac80211(sta);
1412 
1413 	if (WARN_ON_ONCE(!mld_sta->dup_data))
1414 		return false;
1415 
1416 	dup_data = &mld_sta->dup_data[queue];
1417 
1418 	/* Drop duplicate 802.11 retransmissions
1419 	 * (IEEE 802.11-2020: 10.3.2.14 "Duplicate detection and recovery")
1420 	 */
1421 	if (ieee80211_is_ctl(hdr->frame_control) ||
1422 	    ieee80211_is_any_nullfunc(hdr->frame_control) ||
1423 	    is_multicast_ether_addr(hdr->addr1))
1424 		return false;
1425 
1426 	if (ieee80211_is_data_qos(hdr->frame_control)) {
1427 		/* frame has qos control */
1428 		tid = ieee80211_get_tid(hdr);
1429 		if (tid >= IWL_MAX_TID_COUNT)
1430 			return true;
1431 	} else {
1432 		tid = IWL_MAX_TID_COUNT;
1433 	}
1434 
1435 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
1436 	sub_frame_idx = mpdu_desc->amsdu_info &
1437 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
1438 
1439 	if (IWL_FW_CHECK(mld,
1440 			 sub_frame_idx > 0 &&
1441 			 !(mpdu_desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU),
1442 			 "got sub_frame_idx=%d but A-MSDU flag is not set\n",
1443 			 sub_frame_idx))
1444 		return true;
1445 
1446 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
1447 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
1448 		     dup_data->last_sub_frame_idx[tid] >= sub_frame_idx))
1449 		return true;
1450 
1451 	/* Allow same PN as the first subframe for following sub frames */
1452 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
1453 	    sub_frame_idx > dup_data->last_sub_frame_idx[tid])
1454 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
1455 
1456 	dup_data->last_seq[tid] = hdr->seq_ctrl;
1457 	dup_data->last_sub_frame_idx[tid] = sub_frame_idx;
1458 
1459 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
1460 
1461 	return false;
1462 }
1463 EXPORT_SYMBOL_IF_IWLWIFI_KUNIT(iwl_mld_is_dup);
1464 
iwl_mld_update_last_rx_timestamp(struct iwl_mld * mld,u8 baid)1465 static void iwl_mld_update_last_rx_timestamp(struct iwl_mld *mld, u8 baid)
1466 {
1467 	unsigned long now = jiffies;
1468 	unsigned long timeout;
1469 	struct iwl_mld_baid_data *ba_data;
1470 
1471 	ba_data = rcu_dereference(mld->fw_id_to_ba[baid]);
1472 	if (!ba_data) {
1473 		IWL_DEBUG_HT(mld, "BAID %d not found in map\n", baid);
1474 		return;
1475 	}
1476 
1477 	if (!ba_data->timeout)
1478 		return;
1479 
1480 	/* To minimize cache bouncing between RX queues, avoid frequent updates
1481 	 * to last_rx_timestamp. update it only when the timeout period has
1482 	 * passed. The worst-case scenario is the session expiring after
1483 	 * approximately 2 * timeout, which is negligible (the update is
1484 	 * atomic).
1485 	 */
1486 	timeout = TU_TO_JIFFIES(ba_data->timeout);
1487 	if (time_is_before_jiffies(ba_data->last_rx_timestamp + timeout))
1488 		ba_data->last_rx_timestamp = now;
1489 }
1490 
1491 /* Processes received packets for a station.
1492  * Sets *drop to true if the packet should be dropped.
1493  * Returns the station if found, or NULL otherwise.
1494  */
1495 static struct ieee80211_sta *
iwl_mld_rx_with_sta(struct iwl_mld * mld,struct ieee80211_hdr * hdr,struct sk_buff * skb,const struct iwl_rx_mpdu_desc * mpdu_desc,const struct iwl_rx_packet * pkt,int queue,bool * drop)1496 iwl_mld_rx_with_sta(struct iwl_mld *mld, struct ieee80211_hdr *hdr,
1497 		    struct sk_buff *skb,
1498 		    const struct iwl_rx_mpdu_desc *mpdu_desc,
1499 		    const struct iwl_rx_packet *pkt, int queue, bool *drop)
1500 {
1501 	struct ieee80211_sta *sta = NULL;
1502 	struct ieee80211_link_sta *link_sta = NULL;
1503 	struct ieee80211_rx_status *rx_status;
1504 	u8 baid;
1505 
1506 	if (mpdu_desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1507 		u8 sta_id = le32_get_bits(mpdu_desc->status,
1508 					  IWL_RX_MPDU_STATUS_STA_ID);
1509 
1510 		if (IWL_FW_CHECK(mld,
1511 				 sta_id >= mld->fw->ucode_capa.num_stations,
1512 				 "rx_mpdu: invalid sta_id %d\n", sta_id))
1513 			return NULL;
1514 
1515 		link_sta = rcu_dereference(mld->fw_id_to_link_sta[sta_id]);
1516 		if (!IS_ERR_OR_NULL(link_sta))
1517 			sta = link_sta->sta;
1518 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
1519 		/* Passing NULL is fine since we prevent two stations with the
1520 		 * same address from being added.
1521 		 */
1522 		sta = ieee80211_find_sta_by_ifaddr(mld->hw, hdr->addr2, NULL);
1523 	}
1524 
1525 	/* we may not have any station yet */
1526 	if (!sta)
1527 		return NULL;
1528 
1529 	rx_status = IEEE80211_SKB_RXCB(skb);
1530 
1531 	if (link_sta && sta->valid_links) {
1532 		rx_status->link_valid = true;
1533 		rx_status->link_id = link_sta->link_id;
1534 	}
1535 
1536 	/* fill checksum */
1537 	if (ieee80211_is_data(hdr->frame_control) &&
1538 	    pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
1539 		u16 hwsum = be16_to_cpu(mpdu_desc->v3.raw_xsum);
1540 
1541 		skb->ip_summed = CHECKSUM_COMPLETE;
1542 		skb->csum = csum_unfold(~(__force __sum16)hwsum);
1543 	}
1544 
1545 	if (iwl_mld_is_dup(mld, sta, hdr, mpdu_desc, rx_status, queue)) {
1546 		IWL_DEBUG_DROP(mld, "Dropping duplicate packet 0x%x\n",
1547 			       le16_to_cpu(hdr->seq_ctrl));
1548 		*drop = true;
1549 		return NULL;
1550 	}
1551 
1552 	baid = le32_get_bits(mpdu_desc->reorder_data,
1553 			     IWL_RX_MPDU_REORDER_BAID_MASK);
1554 	if (baid != IWL_RX_REORDER_DATA_INVALID_BAID)
1555 		iwl_mld_update_last_rx_timestamp(mld, baid);
1556 
1557 	if (link_sta && ieee80211_is_data(hdr->frame_control)) {
1558 		u8 sub_frame_idx = mpdu_desc->amsdu_info &
1559 			IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
1560 
1561 		/* 0 means not an A-MSDU, and 1 means a new A-MSDU */
1562 		if (!sub_frame_idx || sub_frame_idx == 1)
1563 			iwl_mld_count_mpdu_rx(link_sta, queue, 1);
1564 
1565 		if (!is_multicast_ether_addr(hdr->addr1))
1566 			iwl_mld_low_latency_update_counters(mld, hdr, sta,
1567 							    queue);
1568 	}
1569 
1570 	return sta;
1571 }
1572 
1573 #define KEY_IDX_LEN 2
1574 
iwl_mld_rx_mgmt_prot(struct ieee80211_sta * sta,struct ieee80211_hdr * hdr,struct ieee80211_rx_status * rx_status,u32 mpdu_status,u32 mpdu_len)1575 static int iwl_mld_rx_mgmt_prot(struct ieee80211_sta *sta,
1576 				struct ieee80211_hdr *hdr,
1577 				struct ieee80211_rx_status *rx_status,
1578 				u32 mpdu_status,
1579 				u32 mpdu_len)
1580 {
1581 	struct wireless_dev *wdev;
1582 	struct iwl_mld_sta *mld_sta;
1583 	struct iwl_mld_vif *mld_vif;
1584 	u8 keyidx;
1585 	struct ieee80211_key_conf *key;
1586 	const u8 *frame = (void *)hdr;
1587 
1588 	if ((mpdu_status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
1589 	     IWL_RX_MPDU_STATUS_SEC_NONE)
1590 		return 0;
1591 
1592 	/* For non-beacon, we don't really care. But beacons may
1593 	 * be filtered out, and we thus need the firmware's replay
1594 	 * detection, otherwise beacons the firmware previously
1595 	 * filtered could be replayed, or something like that, and
1596 	 * it can filter a lot - though usually only if nothing has
1597 	 * changed.
1598 	 */
1599 	if (!ieee80211_is_beacon(hdr->frame_control))
1600 		return 0;
1601 
1602 	if (!sta)
1603 		return -1;
1604 
1605 	mld_sta = iwl_mld_sta_from_mac80211(sta);
1606 	mld_vif = iwl_mld_vif_from_mac80211(mld_sta->vif);
1607 
1608 	/* key mismatch - will also report !MIC_OK but we shouldn't count it */
1609 	if (!(mpdu_status & IWL_RX_MPDU_STATUS_KEY_VALID))
1610 		goto report;
1611 
1612 	/* good cases */
1613 	if (likely(mpdu_status & IWL_RX_MPDU_STATUS_MIC_OK &&
1614 		   !(mpdu_status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
1615 		rx_status->flag |= RX_FLAG_DECRYPTED;
1616 		return 0;
1617 	}
1618 
1619 	/* both keys will have the same cipher and MIC length, use
1620 	 * whichever one is available
1621 	 */
1622 	key = rcu_dereference(mld_vif->bigtks[0]);
1623 	if (!key) {
1624 		key = rcu_dereference(mld_vif->bigtks[1]);
1625 		if (!key)
1626 			goto report;
1627 	}
1628 
1629 	if (mpdu_len < key->icv_len + IEEE80211_GMAC_PN_LEN + KEY_IDX_LEN)
1630 		goto report;
1631 
1632 	/* get the real key ID */
1633 	keyidx = frame[mpdu_len - key->icv_len - IEEE80211_GMAC_PN_LEN - KEY_IDX_LEN];
1634 	/* and if that's the other key, look it up */
1635 	if (keyidx != key->keyidx) {
1636 		/* shouldn't happen since firmware checked, but be safe
1637 		 * in case the MIC length is wrong too, for example
1638 		 */
1639 		if (keyidx != 6 && keyidx != 7)
1640 			return -1;
1641 
1642 		key = rcu_dereference(mld_vif->bigtks[keyidx - 6]);
1643 		if (!key)
1644 			goto report;
1645 	}
1646 
1647 	/* Report status to mac80211 */
1648 	if (!(mpdu_status & IWL_RX_MPDU_STATUS_MIC_OK))
1649 		ieee80211_key_mic_failure(key);
1650 	else if (mpdu_status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
1651 		ieee80211_key_replay(key);
1652 report:
1653 	wdev = ieee80211_vif_to_wdev(mld_sta->vif);
1654 	if (wdev->netdev)
1655 		cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr,
1656 					     mpdu_len);
1657 
1658 	return -1;
1659 }
1660 
iwl_mld_rx_crypto(struct iwl_mld * mld,struct ieee80211_sta * sta,struct ieee80211_hdr * hdr,struct ieee80211_rx_status * rx_status,struct iwl_rx_mpdu_desc * desc,int queue,u32 pkt_flags,u8 * crypto_len)1661 static int iwl_mld_rx_crypto(struct iwl_mld *mld,
1662 			     struct ieee80211_sta *sta,
1663 			     struct ieee80211_hdr *hdr,
1664 			     struct ieee80211_rx_status *rx_status,
1665 			     struct iwl_rx_mpdu_desc *desc, int queue,
1666 			     u32 pkt_flags, u8 *crypto_len)
1667 {
1668 	u32 status = le32_to_cpu(desc->status);
1669 
1670 	if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
1671 		     !ieee80211_has_protected(hdr->frame_control)))
1672 		return iwl_mld_rx_mgmt_prot(sta, hdr, rx_status, status,
1673 					    le16_to_cpu(desc->mpdu_len));
1674 
1675 	if (!ieee80211_has_protected(hdr->frame_control) ||
1676 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
1677 	    IWL_RX_MPDU_STATUS_SEC_NONE)
1678 		return 0;
1679 
1680 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
1681 	case IWL_RX_MPDU_STATUS_SEC_CCM:
1682 	case IWL_RX_MPDU_STATUS_SEC_GCM:
1683 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
1684 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) {
1685 			IWL_DEBUG_DROP(mld,
1686 				       "Dropping packet, bad MIC (CCM/GCM)\n");
1687 			return -1;
1688 		}
1689 
1690 		rx_status->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
1691 		*crypto_len = IEEE80211_CCMP_HDR_LEN;
1692 		return 0;
1693 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
1694 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
1695 			return -1;
1696 
1697 		if (!(status & RX_MPDU_RES_STATUS_MIC_OK))
1698 			rx_status->flag |= RX_FLAG_MMIC_ERROR;
1699 
1700 		if (pkt_flags & FH_RSCSR_RADA_EN) {
1701 			rx_status->flag |= RX_FLAG_ICV_STRIPPED;
1702 			rx_status->flag |= RX_FLAG_MMIC_STRIPPED;
1703 		}
1704 
1705 		*crypto_len = IEEE80211_TKIP_IV_LEN;
1706 		rx_status->flag |= RX_FLAG_DECRYPTED;
1707 		return 0;
1708 	default:
1709 		break;
1710 	}
1711 
1712 	return 0;
1713 }
1714 
iwl_mld_rx_update_ampdu_ref(struct iwl_mld * mld,struct iwl_mld_rx_phy_data * phy_data,struct ieee80211_rx_status * rx_status)1715 static void iwl_mld_rx_update_ampdu_ref(struct iwl_mld *mld,
1716 					struct iwl_mld_rx_phy_data *phy_data,
1717 					struct ieee80211_rx_status *rx_status)
1718 {
1719 	bool toggle_bit =
1720 		phy_data->phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1721 
1722 	rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1723 	/* Toggle is switched whenever new aggregation starts. Make
1724 	 * sure ampdu_reference is never 0 so we can later use it to
1725 	 * see if the frame was really part of an A-MPDU or not.
1726 	 */
1727 	if (toggle_bit != mld->monitor.ampdu_toggle) {
1728 		mld->monitor.ampdu_ref++;
1729 		if (mld->monitor.ampdu_ref == 0)
1730 			mld->monitor.ampdu_ref++;
1731 		mld->monitor.ampdu_toggle = toggle_bit;
1732 		phy_data->first_subframe = true;
1733 	}
1734 	rx_status->ampdu_reference = mld->monitor.ampdu_ref;
1735 }
1736 
1737 static void
iwl_mld_fill_rx_status_band_freq(struct iwl_mld_rx_phy_data * phy_data,struct iwl_rx_mpdu_desc * mpdu_desc,struct ieee80211_rx_status * rx_status)1738 iwl_mld_fill_rx_status_band_freq(struct iwl_mld_rx_phy_data *phy_data,
1739 				 struct iwl_rx_mpdu_desc *mpdu_desc,
1740 				 struct ieee80211_rx_status *rx_status)
1741 {
1742 	enum nl80211_band band;
1743 
1744 	band = BAND_IN_RX_STATUS(mpdu_desc->mac_phy_idx);
1745 	rx_status->band = iwl_mld_phy_band_to_nl80211(band);
1746 	rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
1747 							 rx_status->band);
1748 }
1749 
iwl_mld_rx_mpdu(struct iwl_mld * mld,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)1750 void iwl_mld_rx_mpdu(struct iwl_mld *mld, struct napi_struct *napi,
1751 		     struct iwl_rx_cmd_buffer *rxb, int queue)
1752 {
1753 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
1754 	struct iwl_mld_rx_phy_data phy_data = {};
1755 	struct iwl_rx_mpdu_desc *mpdu_desc = (void *)pkt->data;
1756 	struct ieee80211_sta *sta;
1757 	struct ieee80211_hdr *hdr;
1758 	struct sk_buff *skb;
1759 	size_t mpdu_desc_size = sizeof(*mpdu_desc);
1760 	bool drop = false;
1761 	u8 crypto_len = 0;
1762 	u32 pkt_len = iwl_rx_packet_payload_len(pkt);
1763 	u32 mpdu_len;
1764 	enum iwl_mld_reorder_result reorder_res;
1765 	struct ieee80211_rx_status *rx_status;
1766 
1767 	if (unlikely(mld->fw_status.in_hw_restart))
1768 		return;
1769 
1770 	if (IWL_FW_CHECK(mld, pkt_len < mpdu_desc_size,
1771 			 "Bad REPLY_RX_MPDU_CMD size (%d)\n", pkt_len))
1772 		return;
1773 
1774 	mpdu_len = le16_to_cpu(mpdu_desc->mpdu_len);
1775 
1776 	if (IWL_FW_CHECK(mld, mpdu_len + mpdu_desc_size > pkt_len,
1777 			 "FW lied about packet len (%d)\n", pkt_len))
1778 		return;
1779 
1780 	/* Don't use dev_alloc_skb(), we'll have enough headroom once
1781 	 * ieee80211_hdr pulled.
1782 	 */
1783 	skb = alloc_skb(128, GFP_ATOMIC);
1784 	if (!skb) {
1785 		IWL_ERR(mld, "alloc_skb failed\n");
1786 		return;
1787 	}
1788 
1789 	hdr = (void *)(pkt->data + mpdu_desc_size);
1790 
1791 	iwl_mld_fill_phy_data(mpdu_desc, &phy_data);
1792 
1793 	if (mpdu_desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1794 		/* If the device inserted padding it means that (it thought)
1795 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
1796 		 * this case, reserve two bytes at the start of the SKB to
1797 		 * align the payload properly in case we end up copying it.
1798 		 */
1799 		skb_reserve(skb, 2);
1800 	}
1801 
1802 	rx_status = IEEE80211_SKB_RXCB(skb);
1803 
1804 	/* this is needed early */
1805 	iwl_mld_fill_rx_status_band_freq(&phy_data, mpdu_desc, rx_status);
1806 
1807 	rcu_read_lock();
1808 
1809 	sta = iwl_mld_rx_with_sta(mld, hdr, skb, mpdu_desc, pkt, queue, &drop);
1810 	if (drop)
1811 		goto drop;
1812 
1813 	/* update aggregation data for monitor sake on default queue */
1814 	if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU))
1815 		iwl_mld_rx_update_ampdu_ref(mld, &phy_data, rx_status);
1816 
1817 	iwl_mld_rx_fill_status(mld, skb, &phy_data, mpdu_desc, hdr, queue);
1818 
1819 	if (iwl_mld_rx_crypto(mld, sta, hdr, rx_status, mpdu_desc, queue,
1820 			      le32_to_cpu(pkt->len_n_flags), &crypto_len))
1821 		goto drop;
1822 
1823 	if (iwl_mld_build_rx_skb(mld, skb, hdr, mpdu_len, crypto_len, rxb))
1824 		goto drop;
1825 
1826 	/* time sync frame is saved and will be released later when the
1827 	 * notification with the timestamps arrives.
1828 	 */
1829 	if (iwl_mld_time_sync_frame(mld, skb, hdr->addr2))
1830 		goto out;
1831 
1832 	reorder_res = iwl_mld_reorder(mld, napi, queue, sta, skb, mpdu_desc);
1833 	switch (reorder_res) {
1834 	case IWL_MLD_PASS_SKB:
1835 		break;
1836 	case IWL_MLD_DROP_SKB:
1837 		goto drop;
1838 	case IWL_MLD_BUFFERED_SKB:
1839 		goto out;
1840 	default:
1841 		WARN_ON(1);
1842 		goto drop;
1843 	}
1844 
1845 	iwl_mld_pass_packet_to_mac80211(mld, napi, skb, queue, sta);
1846 
1847 	goto out;
1848 
1849 drop:
1850 	kfree_skb(skb);
1851 out:
1852 	rcu_read_unlock();
1853 }
1854 
1855 #define SYNC_RX_QUEUE_TIMEOUT (HZ)
iwl_mld_sync_rx_queues(struct iwl_mld * mld,enum iwl_mld_internal_rxq_notif_type type,const void * notif_payload,u32 notif_payload_size)1856 void iwl_mld_sync_rx_queues(struct iwl_mld *mld,
1857 			    enum iwl_mld_internal_rxq_notif_type type,
1858 			    const void *notif_payload, u32 notif_payload_size)
1859 {
1860 	u8 num_rx_queues = mld->trans->num_rx_queues;
1861 	struct {
1862 		struct iwl_rxq_sync_cmd sync_cmd;
1863 		struct iwl_mld_internal_rxq_notif notif;
1864 	} __packed cmd = {
1865 		.sync_cmd.rxq_mask = cpu_to_le32(BIT(num_rx_queues) - 1),
1866 		.sync_cmd.count =
1867 			cpu_to_le32(sizeof(struct iwl_mld_internal_rxq_notif) +
1868 				    notif_payload_size),
1869 		.notif.type = type,
1870 		.notif.cookie = mld->rxq_sync.cookie,
1871 	};
1872 	struct iwl_host_cmd hcmd = {
1873 		.id = WIDE_ID(DATA_PATH_GROUP, TRIGGER_RX_QUEUES_NOTIF_CMD),
1874 		.data[0] = &cmd,
1875 		.len[0] = sizeof(cmd),
1876 		.data[1] = notif_payload,
1877 		.len[1] = notif_payload_size,
1878 	};
1879 	int ret;
1880 
1881 	/* size must be a multiple of DWORD */
1882 	if (WARN_ON(cmd.sync_cmd.count & cpu_to_le32(3)))
1883 		return;
1884 
1885 	mld->rxq_sync.state = (1 << num_rx_queues) - 1;
1886 
1887 	ret = iwl_mld_send_cmd(mld, &hcmd);
1888 	if (ret) {
1889 		IWL_ERR(mld, "Failed to trigger RX queues sync (%d)\n", ret);
1890 		goto out;
1891 	}
1892 
1893 	ret = wait_event_timeout(mld->rxq_sync.waitq,
1894 				 READ_ONCE(mld->rxq_sync.state) == 0,
1895 				 SYNC_RX_QUEUE_TIMEOUT);
1896 	WARN_ONCE(!ret, "RXQ sync failed: state=0x%lx, cookie=%d\n",
1897 		  mld->rxq_sync.state, mld->rxq_sync.cookie);
1898 
1899 out:
1900 	mld->rxq_sync.state = 0;
1901 	mld->rxq_sync.cookie++;
1902 }
1903 
iwl_mld_handle_rx_queues_sync_notif(struct iwl_mld * mld,struct napi_struct * napi,struct iwl_rx_packet * pkt,int queue)1904 void iwl_mld_handle_rx_queues_sync_notif(struct iwl_mld *mld,
1905 					 struct napi_struct *napi,
1906 					 struct iwl_rx_packet *pkt, int queue)
1907 {
1908 	struct iwl_rxq_sync_notification *notif;
1909 	struct iwl_mld_internal_rxq_notif *internal_notif;
1910 	u32 len = iwl_rx_packet_payload_len(pkt);
1911 	size_t combined_notif_len = sizeof(*notif) + sizeof(*internal_notif);
1912 
1913 	notif = (void *)pkt->data;
1914 	internal_notif = (void *)notif->payload;
1915 
1916 	if (IWL_FW_CHECK(mld, len < combined_notif_len,
1917 			 "invalid notification size %u (%zu)\n",
1918 			 len, combined_notif_len))
1919 		return;
1920 
1921 	len -= combined_notif_len;
1922 
1923 	if (IWL_FW_CHECK(mld, mld->rxq_sync.cookie != internal_notif->cookie,
1924 			 "received expired RX queue sync message (cookie=%d expected=%d q[%d])\n",
1925 			 internal_notif->cookie, mld->rxq_sync.cookie, queue))
1926 		return;
1927 
1928 	switch (internal_notif->type) {
1929 	case IWL_MLD_RXQ_EMPTY:
1930 		IWL_FW_CHECK(mld, len,
1931 			     "invalid empty notification size %d\n", len);
1932 		break;
1933 	case IWL_MLD_RXQ_NOTIF_DEL_BA:
1934 		if (IWL_FW_CHECK(mld, len != sizeof(struct iwl_mld_delba_data),
1935 				 "invalid delba notification size %u (%zu)\n",
1936 				 len, sizeof(struct iwl_mld_delba_data)))
1937 			break;
1938 		iwl_mld_del_ba(mld, queue, (void *)internal_notif->payload);
1939 		break;
1940 	default:
1941 		WARN_ON_ONCE(1);
1942 	}
1943 
1944 	IWL_FW_CHECK(mld, !test_and_clear_bit(queue, &mld->rxq_sync.state),
1945 		     "RXQ sync: queue %d responded a second time!\n", queue);
1946 
1947 	if (READ_ONCE(mld->rxq_sync.state) == 0)
1948 		wake_up(&mld->rxq_sync.waitq);
1949 }
1950 
iwl_mld_rx_monitor_no_data(struct iwl_mld * mld,struct napi_struct * napi,struct iwl_rx_packet * pkt,int queue)1951 void iwl_mld_rx_monitor_no_data(struct iwl_mld *mld, struct napi_struct *napi,
1952 				struct iwl_rx_packet *pkt, int queue)
1953 {
1954 	struct iwl_rx_no_data_ver_3 *desc;
1955 	struct iwl_mld_rx_phy_data phy_data;
1956 	struct ieee80211_rx_status *rx_status;
1957 	struct sk_buff *skb;
1958 	u32 format, rssi;
1959 
1960 	if (unlikely(mld->fw_status.in_hw_restart))
1961 		return;
1962 
1963 	if (IWL_FW_CHECK(mld, iwl_rx_packet_payload_len(pkt) < sizeof(*desc),
1964 			 "Bad RX_NO_DATA_NOTIF size (%d)\n",
1965 			 iwl_rx_packet_payload_len(pkt)))
1966 		return;
1967 
1968 	desc = (void *)pkt->data;
1969 
1970 	rssi = le32_to_cpu(desc->rssi);
1971 	phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
1972 	phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
1973 	phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
1974 	phy_data.data0 = desc->phy_info[0];
1975 	phy_data.data1 = desc->phy_info[1];
1976 	phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
1977 	phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
1978 	phy_data.rate_n_flags = le32_to_cpu(desc->rate);
1979 	phy_data.with_data = false;
1980 
1981 	BUILD_BUG_ON(sizeof(phy_data.rx_vec) != sizeof(desc->rx_vec));
1982 	memcpy(phy_data.rx_vec, desc->rx_vec, sizeof(phy_data.rx_vec));
1983 
1984 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
1985 
1986 	/* Don't use dev_alloc_skb(), we'll have enough headroom once
1987 	 * ieee80211_hdr pulled.
1988 	 */
1989 	skb = alloc_skb(128, GFP_ATOMIC);
1990 	if (!skb) {
1991 		IWL_ERR(mld, "alloc_skb failed\n");
1992 		return;
1993 	}
1994 
1995 	rx_status = IEEE80211_SKB_RXCB(skb);
1996 
1997 	/* 0-length PSDU */
1998 	rx_status->flag |= RX_FLAG_NO_PSDU;
1999 
2000 	/* mark as failed PLCP on any errors to skip checks in mac80211 */
2001 	if (le32_get_bits(desc->info, RX_NO_DATA_INFO_ERR_MSK) !=
2002 	    RX_NO_DATA_INFO_ERR_NONE)
2003 		rx_status->flag |= RX_FLAG_FAILED_PLCP_CRC;
2004 
2005 	switch (le32_get_bits(desc->info, RX_NO_DATA_INFO_TYPE_MSK)) {
2006 	case RX_NO_DATA_INFO_TYPE_NDP:
2007 		rx_status->zero_length_psdu_type =
2008 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2009 		break;
2010 	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2011 	case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2012 		rx_status->zero_length_psdu_type =
2013 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2014 		break;
2015 	default:
2016 		rx_status->zero_length_psdu_type =
2017 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2018 		break;
2019 	}
2020 
2021 	rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2022 		NL80211_BAND_2GHZ;
2023 
2024 	rx_status->freq = ieee80211_channel_to_frequency(phy_data.channel,
2025 							 rx_status->band);
2026 
2027 	iwl_mld_rx_fill_status(mld, skb, &phy_data, NULL, NULL, queue);
2028 
2029 	/* No more radiotap info should be added after this point.
2030 	 * Mark it as mac header for upper layers to know where
2031 	 * the radiotap header ends.
2032 	 */
2033 	skb_set_mac_header(skb, skb->len);
2034 
2035 	/* Override the nss from the rx_vec since the rate_n_flags has
2036 	 * only 1 bit for the nss which gives a max of 2 ss but there
2037 	 * may be up to 8 spatial streams.
2038 	 */
2039 	switch (format) {
2040 	case RATE_MCS_VHT_MSK:
2041 		rx_status->nss =
2042 			le32_get_bits(desc->rx_vec[0],
2043 				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2044 		break;
2045 	case RATE_MCS_HE_MSK:
2046 		rx_status->nss =
2047 			le32_get_bits(desc->rx_vec[0],
2048 				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2049 		break;
2050 	case RATE_MCS_EHT_MSK:
2051 		rx_status->nss =
2052 			le32_get_bits(desc->rx_vec[2],
2053 				      RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2054 	}
2055 
2056 	/* pass the packet to mac80211 */
2057 	rcu_read_lock();
2058 	ieee80211_rx_napi(mld->hw, NULL, skb, napi);
2059 	rcu_read_unlock();
2060 }
2061