1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2005-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2016-2017 Intel Deutschland GmbH
6  */
7 #include <linux/types.h>
8 #include <linux/slab.h>
9 #include <linux/export.h>
10 #include <linux/etherdevice.h>
11 #include <linux/pci.h>
12 #include <linux/firmware.h>
13 
14 #include "iwl-drv.h"
15 #include "iwl-modparams.h"
16 #include "iwl-nvm-parse.h"
17 #include "iwl-prph.h"
18 #include "iwl-io.h"
19 #include "iwl-csr.h"
20 #include "fw/acpi.h"
21 #include "fw/api/nvm-reg.h"
22 #include "fw/api/commands.h"
23 #include "fw/api/cmdhdr.h"
24 #include "fw/img.h"
25 #include "mei/iwl-mei.h"
26 
27 /* NVM offsets (in words) definitions */
28 enum nvm_offsets {
29 	/* NVM HW-Section offset (in words) definitions */
30 	SUBSYSTEM_ID = 0x0A,
31 	HW_ADDR = 0x15,
32 
33 	/* NVM SW-Section offset (in words) definitions */
34 	NVM_SW_SECTION = 0x1C0,
35 	NVM_VERSION = 0,
36 	RADIO_CFG = 1,
37 	SKU = 2,
38 	N_HW_ADDRS = 3,
39 	NVM_CHANNELS = 0x1E0 - NVM_SW_SECTION,
40 
41 	/* NVM REGULATORY -Section offset (in words) definitions */
42 	NVM_CHANNELS_SDP = 0,
43 };
44 
45 enum ext_nvm_offsets {
46 	/* NVM HW-Section offset (in words) definitions */
47 
48 	MAC_ADDRESS_OVERRIDE_EXT_NVM = 1,
49 
50 	/* NVM SW-Section offset (in words) definitions */
51 	NVM_VERSION_EXT_NVM = 0,
52 	N_HW_ADDRS_FAMILY_8000 = 3,
53 
54 	/* NVM PHY_SKU-Section offset (in words) definitions */
55 	RADIO_CFG_FAMILY_EXT_NVM = 0,
56 	SKU_FAMILY_8000 = 2,
57 
58 	/* NVM REGULATORY -Section offset (in words) definitions */
59 	NVM_CHANNELS_EXTENDED = 0,
60 	NVM_LAR_OFFSET_OLD = 0x4C7,
61 	NVM_LAR_OFFSET = 0x507,
62 	NVM_LAR_ENABLED = 0x7,
63 };
64 
65 /* SKU Capabilities (actual values from NVM definition) */
66 enum nvm_sku_bits {
67 	NVM_SKU_CAP_BAND_24GHZ		= BIT(0),
68 	NVM_SKU_CAP_BAND_52GHZ		= BIT(1),
69 	NVM_SKU_CAP_11N_ENABLE		= BIT(2),
70 	NVM_SKU_CAP_11AC_ENABLE		= BIT(3),
71 	NVM_SKU_CAP_MIMO_DISABLE	= BIT(5),
72 };
73 
74 /*
75  * These are the channel numbers in the order that they are stored in the NVM
76  */
77 static const u16 iwl_nvm_channels[] = {
78 	/* 2.4 GHz */
79 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
80 	/* 5 GHz */
81 	36, 40, 44, 48, 52, 56, 60, 64,
82 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
83 	149, 153, 157, 161, 165
84 };
85 
86 static const u16 iwl_ext_nvm_channels[] = {
87 	/* 2.4 GHz */
88 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
89 	/* 5 GHz */
90 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
91 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
92 	149, 153, 157, 161, 165, 169, 173, 177, 181
93 };
94 
95 static const u16 iwl_uhb_nvm_channels[] = {
96 	/* 2.4 GHz */
97 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
98 	/* 5 GHz */
99 	36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92,
100 	96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144,
101 	149, 153, 157, 161, 165, 169, 173, 177, 181,
102 	/* 6-7 GHz */
103 	1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69,
104 	73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129,
105 	133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 177, 181, 185,
106 	189, 193, 197, 201, 205, 209, 213, 217, 221, 225, 229, 233
107 };
108 
109 #define IWL_NVM_NUM_CHANNELS		ARRAY_SIZE(iwl_nvm_channels)
110 #define IWL_NVM_NUM_CHANNELS_EXT	ARRAY_SIZE(iwl_ext_nvm_channels)
111 #define IWL_NVM_NUM_CHANNELS_UHB	ARRAY_SIZE(iwl_uhb_nvm_channels)
112 #define NUM_2GHZ_CHANNELS		14
113 #define NUM_5GHZ_CHANNELS		37
114 #define FIRST_2GHZ_HT_MINUS		5
115 #define LAST_2GHZ_HT_PLUS		9
116 #define N_HW_ADDR_MASK			0xF
117 
118 /* rate data (static) */
119 static struct ieee80211_rate iwl_cfg80211_rates[] = {
120 	{ .bitrate = 1 * 10, .hw_value = 0, .hw_value_short = 0, },
121 	{ .bitrate = 2 * 10, .hw_value = 1, .hw_value_short = 1,
122 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
123 	{ .bitrate = 5.5 * 10, .hw_value = 2, .hw_value_short = 2,
124 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
125 	{ .bitrate = 11 * 10, .hw_value = 3, .hw_value_short = 3,
126 	  .flags = IEEE80211_RATE_SHORT_PREAMBLE, },
127 	{ .bitrate = 6 * 10, .hw_value = 4, .hw_value_short = 4, },
128 	{ .bitrate = 9 * 10, .hw_value = 5, .hw_value_short = 5, },
129 	{ .bitrate = 12 * 10, .hw_value = 6, .hw_value_short = 6, },
130 	{ .bitrate = 18 * 10, .hw_value = 7, .hw_value_short = 7, },
131 	{ .bitrate = 24 * 10, .hw_value = 8, .hw_value_short = 8, },
132 	{ .bitrate = 36 * 10, .hw_value = 9, .hw_value_short = 9, },
133 	{ .bitrate = 48 * 10, .hw_value = 10, .hw_value_short = 10, },
134 	{ .bitrate = 54 * 10, .hw_value = 11, .hw_value_short = 11, },
135 };
136 #define RATES_24_OFFS	0
137 #define N_RATES_24	ARRAY_SIZE(iwl_cfg80211_rates)
138 #define RATES_52_OFFS	4
139 #define N_RATES_52	(N_RATES_24 - RATES_52_OFFS)
140 
141 /**
142  * enum iwl_nvm_channel_flags - channel flags in NVM
143  * @NVM_CHANNEL_VALID: channel is usable for this SKU/geo
144  * @NVM_CHANNEL_IBSS: usable as an IBSS channel and deprecated
145  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
146  * @NVM_CHANNEL_ACTIVE: active scanning allowed and allows IBSS
147  *	when %IWL_NVM_SBANDS_FLAGS_LAR enabled.
148  * @NVM_CHANNEL_RADAR: radar detection required
149  * @NVM_CHANNEL_INDOOR_ONLY: only indoor use is allowed
150  * @NVM_CHANNEL_GO_CONCURRENT: GO operation is allowed when connected to BSS
151  *	on same channel on 2.4 or same UNII band on 5.2
152  * @NVM_CHANNEL_UNIFORM: uniform spreading required
153  * @NVM_CHANNEL_20MHZ: 20 MHz channel okay
154  * @NVM_CHANNEL_40MHZ: 40 MHz channel okay
155  * @NVM_CHANNEL_80MHZ: 80 MHz channel okay
156  * @NVM_CHANNEL_160MHZ: 160 MHz channel okay
157  * @NVM_CHANNEL_DC_HIGH: DC HIGH required/allowed (?)
158  * @NVM_CHANNEL_VLP: client support connection to UHB VLP AP
159  * @NVM_CHANNEL_AFC: client support connection to UHB AFC AP
160  */
161 enum iwl_nvm_channel_flags {
162 	NVM_CHANNEL_VALID		= BIT(0),
163 	NVM_CHANNEL_IBSS		= BIT(1),
164 	NVM_CHANNEL_ACTIVE		= BIT(3),
165 	NVM_CHANNEL_RADAR		= BIT(4),
166 	NVM_CHANNEL_INDOOR_ONLY		= BIT(5),
167 	NVM_CHANNEL_GO_CONCURRENT	= BIT(6),
168 	NVM_CHANNEL_UNIFORM		= BIT(7),
169 	NVM_CHANNEL_20MHZ		= BIT(8),
170 	NVM_CHANNEL_40MHZ		= BIT(9),
171 	NVM_CHANNEL_80MHZ		= BIT(10),
172 	NVM_CHANNEL_160MHZ		= BIT(11),
173 	NVM_CHANNEL_DC_HIGH		= BIT(12),
174 	NVM_CHANNEL_VLP			= BIT(13),
175 	NVM_CHANNEL_AFC			= BIT(14),
176 };
177 
178 /**
179  * enum iwl_reg_capa_flags_v1 - global flags applied for the whole regulatory
180  * domain.
181  * @REG_CAPA_V1_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
182  *	2.4Ghz band is allowed.
183  * @REG_CAPA_V1_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
184  *	5Ghz band is allowed.
185  * @REG_CAPA_V1_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
186  *	for this regulatory domain (valid only in 5Ghz).
187  * @REG_CAPA_V1_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
188  *	for this regulatory domain (valid only in 5Ghz).
189  * @REG_CAPA_V1_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
190  * @REG_CAPA_V1_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
191  * @REG_CAPA_V1_40MHZ_FORBIDDEN: 11n channel with a width of 40Mhz is forbidden
192  *	for this regulatory domain (valid only in 5Ghz).
193  * @REG_CAPA_V1_DC_HIGH_ENABLED: DC HIGH allowed.
194  * @REG_CAPA_V1_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
195  */
196 enum iwl_reg_capa_flags_v1 {
197 	REG_CAPA_V1_BF_CCD_LOW_BAND	= BIT(0),
198 	REG_CAPA_V1_BF_CCD_HIGH_BAND	= BIT(1),
199 	REG_CAPA_V1_160MHZ_ALLOWED	= BIT(2),
200 	REG_CAPA_V1_80MHZ_ALLOWED	= BIT(3),
201 	REG_CAPA_V1_MCS_8_ALLOWED	= BIT(4),
202 	REG_CAPA_V1_MCS_9_ALLOWED	= BIT(5),
203 	REG_CAPA_V1_40MHZ_FORBIDDEN	= BIT(7),
204 	REG_CAPA_V1_DC_HIGH_ENABLED	= BIT(9),
205 	REG_CAPA_V1_11AX_DISABLED	= BIT(10),
206 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_1 */
207 
208 /**
209  * enum iwl_reg_capa_flags_v2 - global flags applied for the whole regulatory
210  * domain (version 2).
211  * @REG_CAPA_V2_STRADDLE_DISABLED: Straddle channels (144, 142, 138) are
212  *	disabled.
213  * @REG_CAPA_V2_BF_CCD_LOW_BAND: Beam-forming or Cyclic Delay Diversity in the
214  *	2.4Ghz band is allowed.
215  * @REG_CAPA_V2_BF_CCD_HIGH_BAND: Beam-forming or Cyclic Delay Diversity in the
216  *	5Ghz band is allowed.
217  * @REG_CAPA_V2_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
218  *	for this regulatory domain (valid only in 5Ghz).
219  * @REG_CAPA_V2_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
220  *	for this regulatory domain (valid only in 5Ghz).
221  * @REG_CAPA_V2_MCS_8_ALLOWED: 11ac with MCS 8 is allowed.
222  * @REG_CAPA_V2_MCS_9_ALLOWED: 11ac with MCS 9 is allowed.
223  * @REG_CAPA_V2_WEATHER_DISABLED: Weather radar channels (120, 124, 128, 118,
224  *	126, 122) are disabled.
225  * @REG_CAPA_V2_40MHZ_ALLOWED: 11n channel with a width of 40Mhz is allowed
226  *	for this regulatory domain (uvalid only in 5Ghz).
227  * @REG_CAPA_V2_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
228  */
229 enum iwl_reg_capa_flags_v2 {
230 	REG_CAPA_V2_STRADDLE_DISABLED	= BIT(0),
231 	REG_CAPA_V2_BF_CCD_LOW_BAND	= BIT(1),
232 	REG_CAPA_V2_BF_CCD_HIGH_BAND	= BIT(2),
233 	REG_CAPA_V2_160MHZ_ALLOWED	= BIT(3),
234 	REG_CAPA_V2_80MHZ_ALLOWED	= BIT(4),
235 	REG_CAPA_V2_MCS_8_ALLOWED	= BIT(5),
236 	REG_CAPA_V2_MCS_9_ALLOWED	= BIT(6),
237 	REG_CAPA_V2_WEATHER_DISABLED	= BIT(7),
238 	REG_CAPA_V2_40MHZ_ALLOWED	= BIT(8),
239 	REG_CAPA_V2_11AX_DISABLED	= BIT(10),
240 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_2 */
241 
242 /**
243  * enum iwl_reg_capa_flags_v4 - global flags applied for the whole regulatory
244  * domain.
245  * @REG_CAPA_V4_160MHZ_ALLOWED: 11ac channel with a width of 160Mhz is allowed
246  *	for this regulatory domain (valid only in 5Ghz).
247  * @REG_CAPA_V4_80MHZ_ALLOWED: 11ac channel with a width of 80Mhz is allowed
248  *	for this regulatory domain (valid only in 5Ghz).
249  * @REG_CAPA_V4_MCS_12_ALLOWED: 11ac with MCS 12 is allowed.
250  * @REG_CAPA_V4_MCS_13_ALLOWED: 11ac with MCS 13 is allowed.
251  * @REG_CAPA_V4_11BE_DISABLED: 11be is forbidden for this regulatory domain.
252  * @REG_CAPA_V4_11AX_DISABLED: 11ax is forbidden for this regulatory domain.
253  * @REG_CAPA_V4_320MHZ_ALLOWED: 11be channel with a width of 320Mhz is allowed
254  *	for this regulatory domain (valid only in 5GHz).
255  */
256 enum iwl_reg_capa_flags_v4 {
257 	REG_CAPA_V4_160MHZ_ALLOWED		= BIT(3),
258 	REG_CAPA_V4_80MHZ_ALLOWED		= BIT(4),
259 	REG_CAPA_V4_MCS_12_ALLOWED		= BIT(5),
260 	REG_CAPA_V4_MCS_13_ALLOWED		= BIT(6),
261 	REG_CAPA_V4_11BE_DISABLED		= BIT(8),
262 	REG_CAPA_V4_11AX_DISABLED		= BIT(13),
263 	REG_CAPA_V4_320MHZ_ALLOWED		= BIT(16),
264 }; /* GEO_CHANNEL_CAPABILITIES_API_S_VER_4 */
265 
266 /*
267 * API v2 for reg_capa_flags is relevant from version 6 and onwards of the
268 * MCC update command response.
269 */
270 #define REG_CAPA_V2_RESP_VER	6
271 
272 /* API v4 for reg_capa_flags is relevant from version 8 and onwards of the
273  * MCC update command response.
274  */
275 #define REG_CAPA_V4_RESP_VER	8
276 
277 /**
278  * struct iwl_reg_capa - struct for global regulatory capabilities, Used for
279  * handling the different APIs of reg_capa_flags.
280  *
281  * @allow_40mhz: 11n channel with a width of 40Mhz is allowed
282  *	for this regulatory domain.
283  * @allow_80mhz: 11ac channel with a width of 80Mhz is allowed
284  *	for this regulatory domain (valid only in 5 and 6 Ghz).
285  * @allow_160mhz: 11ac channel with a width of 160Mhz is allowed
286  *	for this regulatory domain (valid only in 5 and 6 Ghz).
287  * @allow_320mhz: 11be channel with a width of 320Mhz is allowed
288  *	for this regulatory domain (valid only in 6 Ghz).
289  * @disable_11ax: 11ax is forbidden for this regulatory domain.
290  * @disable_11be: 11be is forbidden for this regulatory domain.
291  */
292 struct iwl_reg_capa {
293 	bool allow_40mhz;
294 	bool allow_80mhz;
295 	bool allow_160mhz;
296 	bool allow_320mhz;
297 	bool disable_11ax;
298 	bool disable_11be;
299 };
300 
iwl_nvm_print_channel_flags(struct device * dev,u32 level,int chan,u32 flags)301 static inline void iwl_nvm_print_channel_flags(struct device *dev, u32 level,
302 					       int chan, u32 flags)
303 {
304 #define CHECK_AND_PRINT_I(x)	\
305 	((flags & NVM_CHANNEL_##x) ? " " #x : "")
306 
307 	if (!(flags & NVM_CHANNEL_VALID)) {
308 		IWL_DEBUG_DEV(dev, level, "Ch. %d: 0x%x: No traffic\n",
309 			      chan, flags);
310 		return;
311 	}
312 
313 	/* Note: already can print up to 101 characters, 110 is the limit! */
314 	IWL_DEBUG_DEV(dev, level,
315 		      "Ch. %d: 0x%x:%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n",
316 		      chan, flags,
317 		      CHECK_AND_PRINT_I(VALID),
318 		      CHECK_AND_PRINT_I(IBSS),
319 		      CHECK_AND_PRINT_I(ACTIVE),
320 		      CHECK_AND_PRINT_I(RADAR),
321 		      CHECK_AND_PRINT_I(INDOOR_ONLY),
322 		      CHECK_AND_PRINT_I(GO_CONCURRENT),
323 		      CHECK_AND_PRINT_I(UNIFORM),
324 		      CHECK_AND_PRINT_I(20MHZ),
325 		      CHECK_AND_PRINT_I(40MHZ),
326 		      CHECK_AND_PRINT_I(80MHZ),
327 		      CHECK_AND_PRINT_I(160MHZ),
328 		      CHECK_AND_PRINT_I(DC_HIGH),
329 		      CHECK_AND_PRINT_I(VLP),
330 		      CHECK_AND_PRINT_I(AFC));
331 #undef CHECK_AND_PRINT_I
332 }
333 
iwl_get_channel_flags(u8 ch_num,int ch_idx,enum nl80211_band band,u32 nvm_flags,const struct iwl_cfg * cfg)334 static u32 iwl_get_channel_flags(u8 ch_num, int ch_idx, enum nl80211_band band,
335 				 u32 nvm_flags, const struct iwl_cfg *cfg)
336 {
337 	u32 flags = IEEE80211_CHAN_NO_HT40;
338 
339 	if (band == NL80211_BAND_2GHZ && (nvm_flags & NVM_CHANNEL_40MHZ)) {
340 		if (ch_num <= LAST_2GHZ_HT_PLUS)
341 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
342 		if (ch_num >= FIRST_2GHZ_HT_MINUS)
343 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
344 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
345 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
346 			flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
347 		else
348 			flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
349 	}
350 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
351 		flags |= IEEE80211_CHAN_NO_80MHZ;
352 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
353 		flags |= IEEE80211_CHAN_NO_160MHZ;
354 
355 	if (!(nvm_flags & NVM_CHANNEL_IBSS))
356 		flags |= IEEE80211_CHAN_NO_IR;
357 
358 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
359 		flags |= IEEE80211_CHAN_NO_IR;
360 
361 	if (nvm_flags & NVM_CHANNEL_RADAR)
362 		flags |= IEEE80211_CHAN_RADAR;
363 
364 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
365 		flags |= IEEE80211_CHAN_INDOOR_ONLY;
366 
367 	/* Set the GO concurrent flag only in case that NO_IR is set.
368 	 * Otherwise it is meaningless
369 	 */
370 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT) &&
371 	    (flags & IEEE80211_CHAN_NO_IR))
372 		flags |= IEEE80211_CHAN_IR_CONCURRENT;
373 
374 	/* Set the AP type for the UHB case. */
375 	if (nvm_flags & NVM_CHANNEL_VLP)
376 		flags |= IEEE80211_CHAN_ALLOW_6GHZ_VLP_AP;
377 	else
378 		flags |= IEEE80211_CHAN_NO_6GHZ_VLP_CLIENT;
379 	if (!(nvm_flags & NVM_CHANNEL_AFC))
380 		flags |= IEEE80211_CHAN_NO_6GHZ_AFC_CLIENT;
381 
382 	return flags;
383 }
384 
iwl_nl80211_band_from_channel_idx(int ch_idx)385 static enum nl80211_band iwl_nl80211_band_from_channel_idx(int ch_idx)
386 {
387 	if (ch_idx >= NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS) {
388 		return NL80211_BAND_6GHZ;
389 	}
390 
391 	if (ch_idx >= NUM_2GHZ_CHANNELS)
392 		return NL80211_BAND_5GHZ;
393 	return NL80211_BAND_2GHZ;
394 }
395 
iwl_init_channel_map(struct iwl_trans * trans,const struct iwl_fw * fw,struct iwl_nvm_data * data,const void * const nvm_ch_flags,u32 sbands_flags,bool v4)396 static int iwl_init_channel_map(struct iwl_trans *trans,
397 				const struct iwl_fw *fw,
398 				struct iwl_nvm_data *data,
399 				const void * const nvm_ch_flags,
400 				u32 sbands_flags, bool v4)
401 {
402 	const struct iwl_cfg *cfg = trans->cfg;
403 	struct device *dev = trans->dev;
404 	int ch_idx;
405 	int n_channels = 0;
406 	struct ieee80211_channel *channel;
407 	u32 ch_flags;
408 	int num_of_ch;
409 	const u16 *nvm_chan;
410 
411 	if (cfg->uhb_supported) {
412 		num_of_ch = IWL_NVM_NUM_CHANNELS_UHB;
413 		nvm_chan = iwl_uhb_nvm_channels;
414 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
415 		num_of_ch = IWL_NVM_NUM_CHANNELS_EXT;
416 		nvm_chan = iwl_ext_nvm_channels;
417 	} else {
418 		num_of_ch = IWL_NVM_NUM_CHANNELS;
419 		nvm_chan = iwl_nvm_channels;
420 	}
421 
422 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
423 		enum nl80211_band band =
424 			iwl_nl80211_band_from_channel_idx(ch_idx);
425 
426 		if (v4)
427 			ch_flags =
428 				__le32_to_cpup((const __le32 *)nvm_ch_flags + ch_idx);
429 		else
430 			ch_flags =
431 				__le16_to_cpup((const __le16 *)nvm_ch_flags + ch_idx);
432 
433 		if (band == NL80211_BAND_5GHZ &&
434 		    !data->sku_cap_band_52ghz_enable)
435 			continue;
436 
437 		/* workaround to disable wide channels in 5GHz */
438 		if ((sbands_flags & IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ) &&
439 		    band == NL80211_BAND_5GHZ) {
440 			ch_flags &= ~(NVM_CHANNEL_40MHZ |
441 				     NVM_CHANNEL_80MHZ |
442 				     NVM_CHANNEL_160MHZ);
443 		}
444 
445 		if (ch_flags & NVM_CHANNEL_160MHZ)
446 			data->vht160_supported = true;
447 
448 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR) &&
449 		    !(ch_flags & NVM_CHANNEL_VALID)) {
450 			/*
451 			 * Channels might become valid later if lar is
452 			 * supported, hence we still want to add them to
453 			 * the list of supported channels to cfg80211.
454 			 */
455 			iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
456 						    nvm_chan[ch_idx], ch_flags);
457 			continue;
458 		}
459 
460 		channel = &data->channels[n_channels];
461 		n_channels++;
462 
463 		channel->hw_value = nvm_chan[ch_idx];
464 		channel->band = band;
465 		channel->center_freq =
466 			ieee80211_channel_to_frequency(
467 				channel->hw_value, channel->band);
468 
469 		/* Initialize regulatory-based run-time data */
470 
471 		/*
472 		 * Default value - highest tx power value.  max_power
473 		 * is not used in mvm, and is used for backwards compatibility
474 		 */
475 		channel->max_power = IWL_DEFAULT_MAX_TX_POWER;
476 
477 		/* don't put limitations in case we're using LAR */
478 		if (!(sbands_flags & IWL_NVM_SBANDS_FLAGS_LAR))
479 			channel->flags = iwl_get_channel_flags(nvm_chan[ch_idx],
480 							       ch_idx, band,
481 							       ch_flags, cfg);
482 		else
483 			channel->flags = 0;
484 
485 		if (fw_has_capa(&fw->ucode_capa,
486 				IWL_UCODE_TLV_CAPA_MONITOR_PASSIVE_CHANS))
487 			channel->flags |= IEEE80211_CHAN_CAN_MONITOR;
488 
489 		iwl_nvm_print_channel_flags(dev, IWL_DL_EEPROM,
490 					    channel->hw_value, ch_flags);
491 		IWL_DEBUG_EEPROM(dev, "Ch. %d: %ddBm\n",
492 				 channel->hw_value, channel->max_power);
493 	}
494 
495 	return n_channels;
496 }
497 
iwl_init_vht_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_sta_vht_cap * vht_cap,u8 tx_chains,u8 rx_chains)498 static void iwl_init_vht_hw_capab(struct iwl_trans *trans,
499 				  struct iwl_nvm_data *data,
500 				  struct ieee80211_sta_vht_cap *vht_cap,
501 				  u8 tx_chains, u8 rx_chains)
502 {
503 	const struct iwl_cfg *cfg = trans->cfg;
504 	int num_rx_ants = num_of_ant(rx_chains);
505 	int num_tx_ants = num_of_ant(tx_chains);
506 
507 	vht_cap->vht_supported = true;
508 
509 	vht_cap->cap = IEEE80211_VHT_CAP_SHORT_GI_80 |
510 		       IEEE80211_VHT_CAP_RXSTBC_1 |
511 		       IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE |
512 		       3 << IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT |
513 		       IEEE80211_VHT_MAX_AMPDU_1024K <<
514 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_SHIFT;
515 
516 	if (!trans->cfg->ht_params->stbc)
517 		vht_cap->cap &= ~IEEE80211_VHT_CAP_RXSTBC_MASK;
518 
519 	if (data->vht160_supported)
520 		vht_cap->cap |= IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_160MHZ |
521 				IEEE80211_VHT_CAP_SHORT_GI_160;
522 
523 	if (cfg->vht_mu_mimo_supported)
524 		vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE;
525 
526 	if (cfg->ht_params->ldpc)
527 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
528 
529 	if (data->sku_cap_mimo_disabled) {
530 		num_rx_ants = 1;
531 		num_tx_ants = 1;
532 	}
533 
534 	if (trans->cfg->ht_params->stbc && num_tx_ants > 1)
535 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
536 	else
537 		vht_cap->cap |= IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN;
538 
539 	switch (iwlwifi_mod_params.amsdu_size) {
540 	case IWL_AMSDU_DEF:
541 		if (trans->trans_cfg->mq_rx_supported)
542 			vht_cap->cap |=
543 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
544 		else
545 			vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
546 		break;
547 	case IWL_AMSDU_2K:
548 		if (trans->trans_cfg->mq_rx_supported)
549 			vht_cap->cap |=
550 				IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
551 		else
552 			WARN(1, "RB size of 2K is not supported by this device\n");
553 		break;
554 	case IWL_AMSDU_4K:
555 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_3895;
556 		break;
557 	case IWL_AMSDU_8K:
558 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_7991;
559 		break;
560 	case IWL_AMSDU_12K:
561 		vht_cap->cap |= IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454;
562 		break;
563 	default:
564 		break;
565 	}
566 
567 	vht_cap->vht_mcs.rx_mcs_map =
568 		cpu_to_le16(IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
569 			    IEEE80211_VHT_MCS_SUPPORT_0_9 << 2 |
570 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
571 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
572 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
573 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
574 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
575 			    IEEE80211_VHT_MCS_NOT_SUPPORTED << 14);
576 
577 	if (num_rx_ants == 1 || cfg->rx_with_siso_diversity) {
578 		vht_cap->cap |= IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN;
579 		/* this works because NOT_SUPPORTED == 3 */
580 		vht_cap->vht_mcs.rx_mcs_map |=
581 			cpu_to_le16(IEEE80211_VHT_MCS_NOT_SUPPORTED << 2);
582 	}
583 
584 	vht_cap->vht_mcs.tx_mcs_map = vht_cap->vht_mcs.rx_mcs_map;
585 
586 	vht_cap->vht_mcs.tx_highest |=
587 		cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE);
588 }
589 
590 static const u8 iwl_vendor_caps[] = {
591 	0xdd,			/* vendor element */
592 	0x06,			/* length */
593 	0x00, 0x17, 0x35,	/* Intel OUI */
594 	0x08,			/* type (Intel Capabilities) */
595 	/* followed by 16 bits of capabilities */
596 #define IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE	BIT(0)
597 	IWL_VENDOR_CAP_IMPROVED_BF_FDBK_HE,
598 	0x00
599 };
600 
601 static const struct ieee80211_sband_iftype_data iwl_he_eht_capa[] = {
602 	{
603 		.types_mask = BIT(NL80211_IFTYPE_STATION) |
604 			      BIT(NL80211_IFTYPE_P2P_CLIENT),
605 		.he_cap = {
606 			.has_he = true,
607 			.he_cap_elem = {
608 				.mac_cap_info[0] =
609 					IEEE80211_HE_MAC_CAP0_HTC_HE,
610 				.mac_cap_info[1] =
611 					IEEE80211_HE_MAC_CAP1_TF_MAC_PAD_DUR_16US |
612 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
613 				.mac_cap_info[2] =
614 					IEEE80211_HE_MAC_CAP2_32BIT_BA_BITMAP,
615 				.mac_cap_info[3] =
616 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL |
617 					IEEE80211_HE_MAC_CAP3_RX_CTRL_FRAME_TO_MULTIBSS,
618 				.mac_cap_info[4] =
619 					IEEE80211_HE_MAC_CAP4_AMSDU_IN_AMPDU |
620 					IEEE80211_HE_MAC_CAP4_MULTI_TID_AGG_TX_QOS_B39,
621 				.mac_cap_info[5] =
622 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B40 |
623 					IEEE80211_HE_MAC_CAP5_MULTI_TID_AGG_TX_QOS_B41 |
624 					IEEE80211_HE_MAC_CAP5_UL_2x996_TONE_RU |
625 					IEEE80211_HE_MAC_CAP5_HE_DYNAMIC_SM_PS |
626 					IEEE80211_HE_MAC_CAP5_HT_VHT_TRIG_FRAME_RX,
627 				.phy_cap_info[1] =
628 					IEEE80211_HE_PHY_CAP1_PREAMBLE_PUNC_RX_MASK |
629 					IEEE80211_HE_PHY_CAP1_DEVICE_CLASS_A |
630 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
631 				.phy_cap_info[2] =
632 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US |
633 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ,
634 				.phy_cap_info[3] =
635 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
636 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
637 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
638 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
639 				.phy_cap_info[4] =
640 					IEEE80211_HE_PHY_CAP4_SU_BEAMFORMEE |
641 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_ABOVE_80MHZ_8 |
642 					IEEE80211_HE_PHY_CAP4_BEAMFORMEE_MAX_STS_UNDER_80MHZ_8,
643 				.phy_cap_info[6] =
644 					IEEE80211_HE_PHY_CAP6_TRIG_SU_BEAMFORMING_FB |
645 					IEEE80211_HE_PHY_CAP6_TRIG_MU_BEAMFORMING_PARTIAL_BW_FB |
646 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
647 				.phy_cap_info[7] =
648 					IEEE80211_HE_PHY_CAP7_POWER_BOOST_FACTOR_SUPP |
649 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
650 				.phy_cap_info[8] =
651 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
652 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_40MHZ_HE_PPDU_IN_2G |
653 					IEEE80211_HE_PHY_CAP8_20MHZ_IN_160MHZ_HE_PPDU |
654 					IEEE80211_HE_PHY_CAP8_80MHZ_IN_160MHZ_HE_PPDU |
655 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
656 				.phy_cap_info[9] =
657 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_COMP_SIGB |
658 					IEEE80211_HE_PHY_CAP9_RX_FULL_BW_SU_USING_MU_WITH_NON_COMP_SIGB |
659 					(IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED <<
660 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS),
661 				.phy_cap_info[10] =
662 					IEEE80211_HE_PHY_CAP10_HE_MU_M1RU_MAX_LTF,
663 			},
664 			/*
665 			 * Set default Tx/Rx HE MCS NSS Support field.
666 			 * Indicate support for up to 2 spatial streams and all
667 			 * MCS, without any special cases
668 			 */
669 			.he_mcs_nss_supp = {
670 				.rx_mcs_80 = cpu_to_le16(0xfffa),
671 				.tx_mcs_80 = cpu_to_le16(0xfffa),
672 				.rx_mcs_160 = cpu_to_le16(0xfffa),
673 				.tx_mcs_160 = cpu_to_le16(0xfffa),
674 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
675 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
676 			},
677 			/*
678 			 * Set default PPE thresholds, with PPET16 set to 0,
679 			 * PPET8 set to 7
680 			 */
681 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
682 		},
683 		.eht_cap = {
684 			.has_eht = true,
685 			.eht_cap_elem = {
686 				.mac_cap_info[0] =
687 					IEEE80211_EHT_MAC_CAP0_EPCS_PRIO_ACCESS |
688 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
689 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
690 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2 |
691 					IEEE80211_EHT_MAC_CAP0_SCS_TRAFFIC_DESC,
692 				.mac_cap_info[1] =
693 					IEEE80211_EHT_MAC_CAP1_UNSOL_EPCS_PRIO_ACCESS,
694 				.phy_cap_info[0] =
695 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
696 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI |
697 					IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
698 					IEEE80211_EHT_PHY_CAP0_SU_BEAMFORMEE |
699 					IEEE80211_EHT_PHY_CAP0_BEAMFORMEE_SS_80MHZ_MASK,
700 				.phy_cap_info[1] =
701 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_80MHZ_MASK  |
702 					IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_160MHZ_MASK,
703 				.phy_cap_info[3] =
704 					IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
705 					IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
706 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
707 					IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
708 					IEEE80211_EHT_PHY_CAP3_TRIG_SU_BF_FDBK |
709 					IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
710 					IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK,
711 
712 				.phy_cap_info[4] =
713 					IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
714 					IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP |
715 					IEEE80211_EHT_PHY_CAP4_EHT_MU_PPDU_4_EHT_LTF_08_GI,
716 				.phy_cap_info[5] =
717 					FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
718 							 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US) |
719 					IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK |
720 					IEEE80211_EHT_PHY_CAP5_TX_LESS_242_TONE_RU_SUPP |
721 					IEEE80211_EHT_PHY_CAP5_RX_LESS_242_TONE_RU_SUPP,
722 				.phy_cap_info[6] =
723 					IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
724 					IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP,
725 				.phy_cap_info[8] =
726 					IEEE80211_EHT_PHY_CAP8_RX_1024QAM_WIDER_BW_DL_OFDMA |
727 					IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA,
728 			},
729 
730 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
731 			 * Rx - note we don't set the only_20mhz, but due to this
732 			 * being a union, it gets set correctly anyway.
733 			 */
734 			.eht_mcs_nss_supp = {
735 				.bw._80 = {
736 					.rx_tx_mcs9_max_nss = 0x22,
737 					.rx_tx_mcs11_max_nss = 0x22,
738 					.rx_tx_mcs13_max_nss = 0x22,
739 				},
740 				.bw._160 = {
741 					.rx_tx_mcs9_max_nss = 0x22,
742 					.rx_tx_mcs11_max_nss = 0x22,
743 					.rx_tx_mcs13_max_nss = 0x22,
744 				},
745 				.bw._320 = {
746 					.rx_tx_mcs9_max_nss = 0x22,
747 					.rx_tx_mcs11_max_nss = 0x22,
748 					.rx_tx_mcs13_max_nss = 0x22,
749 				},
750 			},
751 
752 			/*
753 			 * PPE thresholds for NSS = 2, and RU index bitmap set
754 			 * to 0xc.
755 			 * Note: just for stating what we want, not present in
756 			 * the transmitted data due to not including
757 			 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
758 			 */
759 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
760 		},
761 	},
762 	{
763 		.types_mask = BIT(NL80211_IFTYPE_AP) |
764 			      BIT(NL80211_IFTYPE_P2P_GO),
765 		.he_cap = {
766 			.has_he = true,
767 			.he_cap_elem = {
768 				.mac_cap_info[0] =
769 					IEEE80211_HE_MAC_CAP0_HTC_HE,
770 				.mac_cap_info[1] =
771 					IEEE80211_HE_MAC_CAP1_MULTI_TID_AGG_RX_QOS_8,
772 				.mac_cap_info[3] =
773 					IEEE80211_HE_MAC_CAP3_OMI_CONTROL,
774 				.phy_cap_info[1] =
775 					IEEE80211_HE_PHY_CAP1_LDPC_CODING_IN_PAYLOAD,
776 				.phy_cap_info[2] =
777 					IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ |
778 					IEEE80211_HE_PHY_CAP2_NDP_4x_LTF_AND_3_2US,
779 				.phy_cap_info[3] =
780 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_TX_BPSK |
781 					IEEE80211_HE_PHY_CAP3_DCM_MAX_TX_NSS_1 |
782 					IEEE80211_HE_PHY_CAP3_DCM_MAX_CONST_RX_BPSK |
783 					IEEE80211_HE_PHY_CAP3_DCM_MAX_RX_NSS_1,
784 				.phy_cap_info[6] =
785 					IEEE80211_HE_PHY_CAP6_PPE_THRESHOLD_PRESENT,
786 				.phy_cap_info[7] =
787 					IEEE80211_HE_PHY_CAP7_HE_SU_MU_PPDU_4XLTF_AND_08_US_GI,
788 				.phy_cap_info[8] =
789 					IEEE80211_HE_PHY_CAP8_HE_ER_SU_PPDU_4XLTF_AND_08_US_GI |
790 					IEEE80211_HE_PHY_CAP8_DCM_MAX_RU_242,
791 				.phy_cap_info[9] =
792 					IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_RESERVED
793 					<< IEEE80211_HE_PHY_CAP9_NOMINAL_PKT_PADDING_POS,
794 			},
795 			/*
796 			 * Set default Tx/Rx HE MCS NSS Support field.
797 			 * Indicate support for up to 2 spatial streams and all
798 			 * MCS, without any special cases
799 			 */
800 			.he_mcs_nss_supp = {
801 				.rx_mcs_80 = cpu_to_le16(0xfffa),
802 				.tx_mcs_80 = cpu_to_le16(0xfffa),
803 				.rx_mcs_160 = cpu_to_le16(0xfffa),
804 				.tx_mcs_160 = cpu_to_le16(0xfffa),
805 				.rx_mcs_80p80 = cpu_to_le16(0xffff),
806 				.tx_mcs_80p80 = cpu_to_le16(0xffff),
807 			},
808 			/*
809 			 * Set default PPE thresholds, with PPET16 set to 0,
810 			 * PPET8 set to 7
811 			 */
812 			.ppe_thres = {0x61, 0x1c, 0xc7, 0x71},
813 		},
814 		.eht_cap = {
815 			.has_eht = true,
816 			.eht_cap_elem = {
817 				.mac_cap_info[0] =
818 					IEEE80211_EHT_MAC_CAP0_OM_CONTROL |
819 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
820 					IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2,
821 				.phy_cap_info[0] =
822 					IEEE80211_EHT_PHY_CAP0_242_TONE_RU_GT20MHZ |
823 					IEEE80211_EHT_PHY_CAP0_NDP_4_EHT_LFT_32_GI,
824 				.phy_cap_info[5] =
825 					FIELD_PREP_CONST(IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_MASK,
826 							 IEEE80211_EHT_PHY_CAP5_COMMON_NOMINAL_PKT_PAD_16US),
827 			},
828 
829 			/* For all MCS and bandwidth, set 2 NSS for both Tx and
830 			 * Rx - note we don't set the only_20mhz, but due to this
831 			 * being a union, it gets set correctly anyway.
832 			 */
833 			.eht_mcs_nss_supp = {
834 				.bw._80 = {
835 					.rx_tx_mcs9_max_nss = 0x22,
836 					.rx_tx_mcs11_max_nss = 0x22,
837 					.rx_tx_mcs13_max_nss = 0x22,
838 				},
839 				.bw._160 = {
840 					.rx_tx_mcs9_max_nss = 0x22,
841 					.rx_tx_mcs11_max_nss = 0x22,
842 					.rx_tx_mcs13_max_nss = 0x22,
843 				},
844 				.bw._320 = {
845 					.rx_tx_mcs9_max_nss = 0x22,
846 					.rx_tx_mcs11_max_nss = 0x22,
847 					.rx_tx_mcs13_max_nss = 0x22,
848 				},
849 			},
850 
851 			/*
852 			 * PPE thresholds for NSS = 2, and RU index bitmap set
853 			 * to 0xc.
854 			 * Note: just for stating what we want, not present in
855 			 * the transmitted data due to not including
856 			 * IEEE80211_EHT_PHY_CAP5_PPE_THRESHOLD_PRESENT.
857 			 */
858 			.eht_ppe_thres = {0xc1, 0x0e, 0xe0 }
859 		},
860 	},
861 };
862 
iwl_init_he_6ghz_capa(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains)863 static void iwl_init_he_6ghz_capa(struct iwl_trans *trans,
864 				  struct iwl_nvm_data *data,
865 				  struct ieee80211_supported_band *sband,
866 				  u8 tx_chains, u8 rx_chains)
867 {
868 	struct ieee80211_sta_ht_cap ht_cap;
869 	struct ieee80211_sta_vht_cap vht_cap = {};
870 	struct ieee80211_sband_iftype_data *iftype_data;
871 	u16 he_6ghz_capa = 0;
872 	u32 exp;
873 	int i;
874 
875 	if (sband->band != NL80211_BAND_6GHZ)
876 		return;
877 
878 	/* grab HT/VHT capabilities and calculate HE 6 GHz capabilities */
879 	iwl_init_ht_hw_capab(trans, data, &ht_cap, NL80211_BAND_5GHZ,
880 			     tx_chains, rx_chains);
881 	WARN_ON(!ht_cap.ht_supported);
882 	iwl_init_vht_hw_capab(trans, data, &vht_cap, tx_chains, rx_chains);
883 	WARN_ON(!vht_cap.vht_supported);
884 
885 	he_6ghz_capa |=
886 		u16_encode_bits(ht_cap.ampdu_density,
887 				IEEE80211_HE_6GHZ_CAP_MIN_MPDU_START);
888 	exp = u32_get_bits(vht_cap.cap,
889 			   IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK);
890 	he_6ghz_capa |=
891 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_AMPDU_LEN_EXP);
892 	exp = u32_get_bits(vht_cap.cap, IEEE80211_VHT_CAP_MAX_MPDU_MASK);
893 	he_6ghz_capa |=
894 		u16_encode_bits(exp, IEEE80211_HE_6GHZ_CAP_MAX_MPDU_LEN);
895 	/* we don't support extended_ht_cap_info anywhere, so no RD_RESPONDER */
896 	if (vht_cap.cap & IEEE80211_VHT_CAP_TX_ANTENNA_PATTERN)
897 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_TX_ANTPAT_CONS;
898 	if (vht_cap.cap & IEEE80211_VHT_CAP_RX_ANTENNA_PATTERN)
899 		he_6ghz_capa |= IEEE80211_HE_6GHZ_CAP_RX_ANTPAT_CONS;
900 
901 	IWL_DEBUG_EEPROM(trans->dev, "he_6ghz_capa=0x%x\n", he_6ghz_capa);
902 
903 	/* we know it's writable - we set it before ourselves */
904 	iftype_data = (void *)(uintptr_t)sband->iftype_data;
905 	for (i = 0; i < sband->n_iftype_data; i++)
906 		iftype_data[i].he_6ghz_capa.capa = cpu_to_le16(he_6ghz_capa);
907 }
908 
909 static void
iwl_nvm_fixup_sband_iftd(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,struct ieee80211_sband_iftype_data * iftype_data,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)910 iwl_nvm_fixup_sband_iftd(struct iwl_trans *trans,
911 			 struct iwl_nvm_data *data,
912 			 struct ieee80211_supported_band *sband,
913 			 struct ieee80211_sband_iftype_data *iftype_data,
914 			 u8 tx_chains, u8 rx_chains,
915 			 const struct iwl_fw *fw)
916 {
917 	bool is_ap = iftype_data->types_mask & (BIT(NL80211_IFTYPE_AP) |
918 						BIT(NL80211_IFTYPE_P2P_GO));
919 	bool slow_pcie = (!trans->trans_cfg->integrated &&
920 			  trans->pcie_link_speed < PCI_EXP_LNKSTA_CLS_8_0GB);
921 
922 	if (!data->sku_cap_11be_enable || iwlwifi_mod_params.disable_11be)
923 		iftype_data->eht_cap.has_eht = false;
924 
925 	/* Advertise an A-MPDU exponent extension based on
926 	 * operating band
927 	 */
928 	if (sband->band == NL80211_BAND_6GHZ && iftype_data->eht_cap.has_eht)
929 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
930 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_2;
931 	else if (sband->band != NL80211_BAND_2GHZ)
932 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
933 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_1;
934 	else
935 		iftype_data->he_cap.he_cap_elem.mac_cap_info[3] |=
936 			IEEE80211_HE_MAC_CAP3_MAX_AMPDU_LEN_EXP_EXT_3;
937 
938 	switch (sband->band) {
939 	case NL80211_BAND_2GHZ:
940 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
941 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_IN_2G;
942 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] |=
943 			u8_encode_bits(IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_11454,
944 				       IEEE80211_EHT_MAC_CAP0_MAX_MPDU_LEN_MASK);
945 		break;
946 	case NL80211_BAND_6GHZ:
947 		if (!trans->reduced_cap_sku) {
948 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[0] |=
949 				IEEE80211_EHT_PHY_CAP0_320MHZ_IN_6GHZ;
950 			iftype_data->eht_cap.eht_cap_elem.phy_cap_info[1] |=
951 				IEEE80211_EHT_PHY_CAP1_BEAMFORMEE_SS_320MHZ_MASK;
952 		}
953 		fallthrough;
954 	case NL80211_BAND_5GHZ:
955 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] |=
956 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_40MHZ_80MHZ_IN_5G |
957 			IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
958 		break;
959 	default:
960 		WARN_ON(1);
961 		break;
962 	}
963 
964 	if ((tx_chains & rx_chains) == ANT_AB) {
965 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
966 			IEEE80211_HE_PHY_CAP2_STBC_TX_UNDER_80MHZ;
967 		iftype_data->he_cap.he_cap_elem.phy_cap_info[5] |=
968 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_UNDER_80MHZ_2 |
969 			IEEE80211_HE_PHY_CAP5_BEAMFORMEE_NUM_SND_DIM_ABOVE_80MHZ_2;
970 		if (!is_ap) {
971 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
972 				IEEE80211_HE_PHY_CAP7_MAX_NC_2;
973 
974 			if (iftype_data->eht_cap.has_eht) {
975 				/*
976 				 * Set the number of sounding dimensions for each
977 				 * bandwidth to 1 to indicate the maximal supported
978 				 * value of TXVECTOR parameter NUM_STS of 2
979 				 */
980 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] |= 0x49;
981 
982 				/*
983 				 * Set the MAX NC to 1 to indicate sounding feedback of
984 				 * 2 supported by the beamfomee.
985 				 */
986 				iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] |= 0x10;
987 			}
988 		}
989 
990 		if (slow_pcie) {
991 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
992 				&iftype_data->eht_cap.eht_mcs_nss_supp;
993 
994 			mcs_nss->bw._320.rx_tx_mcs11_max_nss = 0;
995 			mcs_nss->bw._320.rx_tx_mcs13_max_nss = 0;
996 		}
997 	} else {
998 		struct ieee80211_he_mcs_nss_supp *he_mcs_nss_supp =
999 			&iftype_data->he_cap.he_mcs_nss_supp;
1000 
1001 		if (iftype_data->eht_cap.has_eht) {
1002 			struct ieee80211_eht_mcs_nss_supp *mcs_nss =
1003 				&iftype_data->eht_cap.eht_mcs_nss_supp;
1004 
1005 			memset(mcs_nss, 0x11, sizeof(*mcs_nss));
1006 		}
1007 
1008 		if (!is_ap) {
1009 			/* If not 2x2, we need to indicate 1x1 in the
1010 			 * Midamble RX Max NSTS - but not for AP mode
1011 			 */
1012 			iftype_data->he_cap.he_cap_elem.phy_cap_info[1] &=
1013 				~IEEE80211_HE_PHY_CAP1_MIDAMBLE_RX_TX_MAX_NSTS;
1014 			iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1015 				~IEEE80211_HE_PHY_CAP2_MIDAMBLE_RX_TX_MAX_NSTS;
1016 			iftype_data->he_cap.he_cap_elem.phy_cap_info[7] |=
1017 				IEEE80211_HE_PHY_CAP7_MAX_NC_1;
1018 		}
1019 
1020 		he_mcs_nss_supp->rx_mcs_80 |=
1021 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1022 		he_mcs_nss_supp->tx_mcs_80 |=
1023 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1024 		he_mcs_nss_supp->rx_mcs_160 |=
1025 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1026 		he_mcs_nss_supp->tx_mcs_160 |=
1027 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1028 		he_mcs_nss_supp->rx_mcs_80p80 |=
1029 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1030 		he_mcs_nss_supp->tx_mcs_80p80 |=
1031 			cpu_to_le16(IEEE80211_HE_MCS_NOT_SUPPORTED << 2);
1032 	}
1033 
1034 	if (trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210 && !is_ap)
1035 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] |=
1036 			IEEE80211_HE_PHY_CAP2_UL_MU_FULL_MU_MIMO;
1037 
1038 	switch (CSR_HW_RFID_TYPE(trans->hw_rf_id)) {
1039 	case IWL_CFG_RF_TYPE_GF:
1040 	case IWL_CFG_RF_TYPE_FM:
1041 	case IWL_CFG_RF_TYPE_WH:
1042 		iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1043 			IEEE80211_HE_PHY_CAP9_TX_1024_QAM_LESS_THAN_242_TONE_RU;
1044 		if (!is_ap)
1045 			iftype_data->he_cap.he_cap_elem.phy_cap_info[9] |=
1046 				IEEE80211_HE_PHY_CAP9_RX_1024_QAM_LESS_THAN_242_TONE_RU;
1047 		break;
1048 	}
1049 
1050 	if (CSR_HW_REV_TYPE(trans->hw_rev) == IWL_CFG_MAC_TYPE_GL &&
1051 	    iftype_data->eht_cap.has_eht) {
1052 		iftype_data->eht_cap.eht_cap_elem.mac_cap_info[0] &=
1053 			~(IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE1 |
1054 			  IEEE80211_EHT_MAC_CAP0_TRIG_TXOP_SHARING_MODE2);
1055 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[3] &=
1056 			~(IEEE80211_EHT_PHY_CAP0_PARTIAL_BW_UL_MU_MIMO |
1057 			  IEEE80211_EHT_PHY_CAP3_NG_16_SU_FEEDBACK |
1058 			  IEEE80211_EHT_PHY_CAP3_NG_16_MU_FEEDBACK |
1059 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_4_2_SU_FDBK |
1060 			  IEEE80211_EHT_PHY_CAP3_CODEBOOK_7_5_MU_FDBK |
1061 			  IEEE80211_EHT_PHY_CAP3_TRIG_MU_BF_PART_BW_FDBK |
1062 			  IEEE80211_EHT_PHY_CAP3_TRIG_CQI_FDBK);
1063 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[4] &=
1064 			~(IEEE80211_EHT_PHY_CAP4_PART_BW_DL_MU_MIMO |
1065 			  IEEE80211_EHT_PHY_CAP4_POWER_BOOST_FACT_SUPP);
1066 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] &=
1067 			~IEEE80211_EHT_PHY_CAP5_NON_TRIG_CQI_FEEDBACK;
1068 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[6] &=
1069 			~(IEEE80211_EHT_PHY_CAP6_MCS15_SUPP_MASK |
1070 			  IEEE80211_EHT_PHY_CAP6_EHT_DUP_6GHZ_SUPP);
1071 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[5] |=
1072 			IEEE80211_EHT_PHY_CAP5_SUPP_EXTRA_EHT_LTF;
1073 	}
1074 
1075 	if (fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_BROADCAST_TWT))
1076 		iftype_data->he_cap.he_cap_elem.mac_cap_info[2] |=
1077 			IEEE80211_HE_MAC_CAP2_BCAST_TWT;
1078 
1079 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_22000 &&
1080 	    !is_ap) {
1081 		iftype_data->vendor_elems.data = iwl_vendor_caps;
1082 		iftype_data->vendor_elems.len = ARRAY_SIZE(iwl_vendor_caps);
1083 	}
1084 
1085 	if (!trans->cfg->ht_params->stbc) {
1086 		iftype_data->he_cap.he_cap_elem.phy_cap_info[2] &=
1087 			~IEEE80211_HE_PHY_CAP2_STBC_RX_UNDER_80MHZ;
1088 		iftype_data->he_cap.he_cap_elem.phy_cap_info[7] &=
1089 			~IEEE80211_HE_PHY_CAP7_STBC_RX_ABOVE_80MHZ;
1090 	}
1091 
1092 	if (trans->step_urm) {
1093 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs11_max_nss = 0;
1094 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._320.rx_tx_mcs13_max_nss = 0;
1095 	}
1096 
1097 	if (trans->no_160)
1098 		iftype_data->he_cap.he_cap_elem.phy_cap_info[0] &=
1099 			~IEEE80211_HE_PHY_CAP0_CHANNEL_WIDTH_SET_160MHZ_IN_5G;
1100 
1101 	if (trans->reduced_cap_sku) {
1102 		memset(&iftype_data->eht_cap.eht_mcs_nss_supp.bw._320, 0,
1103 		       sizeof(iftype_data->eht_cap.eht_mcs_nss_supp.bw._320));
1104 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._80.rx_tx_mcs13_max_nss = 0;
1105 		iftype_data->eht_cap.eht_mcs_nss_supp.bw._160.rx_tx_mcs13_max_nss = 0;
1106 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[8] &=
1107 			~IEEE80211_EHT_PHY_CAP8_RX_4096QAM_WIDER_BW_DL_OFDMA;
1108 		iftype_data->eht_cap.eht_cap_elem.phy_cap_info[2] &=
1109 			~IEEE80211_EHT_PHY_CAP2_SOUNDING_DIM_320MHZ_MASK;
1110 	}
1111 }
1112 
iwl_init_he_hw_capab(struct iwl_trans * trans,struct iwl_nvm_data * data,struct ieee80211_supported_band * sband,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)1113 static void iwl_init_he_hw_capab(struct iwl_trans *trans,
1114 				 struct iwl_nvm_data *data,
1115 				 struct ieee80211_supported_band *sband,
1116 				 u8 tx_chains, u8 rx_chains,
1117 				 const struct iwl_fw *fw)
1118 {
1119 	struct ieee80211_sband_iftype_data *iftype_data;
1120 	int i;
1121 
1122 	BUILD_BUG_ON(sizeof(data->iftd.low) != sizeof(iwl_he_eht_capa));
1123 	BUILD_BUG_ON(sizeof(data->iftd.high) != sizeof(iwl_he_eht_capa));
1124 	BUILD_BUG_ON(sizeof(data->iftd.uhb) != sizeof(iwl_he_eht_capa));
1125 
1126 	switch (sband->band) {
1127 	case NL80211_BAND_2GHZ:
1128 		iftype_data = data->iftd.low;
1129 		break;
1130 	case NL80211_BAND_5GHZ:
1131 		iftype_data = data->iftd.high;
1132 		break;
1133 	case NL80211_BAND_6GHZ:
1134 		iftype_data = data->iftd.uhb;
1135 		break;
1136 	default:
1137 		WARN_ON(1);
1138 		return;
1139 	}
1140 
1141 	memcpy(iftype_data, iwl_he_eht_capa, sizeof(iwl_he_eht_capa));
1142 
1143 	_ieee80211_set_sband_iftype_data(sband, iftype_data,
1144 					 ARRAY_SIZE(iwl_he_eht_capa));
1145 
1146 	for (i = 0; i < sband->n_iftype_data; i++)
1147 		iwl_nvm_fixup_sband_iftd(trans, data, sband, &iftype_data[i],
1148 					 tx_chains, rx_chains, fw);
1149 
1150 	iwl_init_he_6ghz_capa(trans, data, sband, tx_chains, rx_chains);
1151 }
1152 
iwl_reinit_cab(struct iwl_trans * trans,struct iwl_nvm_data * data,u8 tx_chains,u8 rx_chains,const struct iwl_fw * fw)1153 void iwl_reinit_cab(struct iwl_trans *trans, struct iwl_nvm_data *data,
1154 		    u8 tx_chains, u8 rx_chains, const struct iwl_fw *fw)
1155 {
1156 	struct ieee80211_supported_band *sband;
1157 
1158 	sband = &data->bands[NL80211_BAND_2GHZ];
1159 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1160 			     tx_chains, rx_chains);
1161 
1162 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1163 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1164 				     fw);
1165 
1166 	sband = &data->bands[NL80211_BAND_5GHZ];
1167 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1168 			     tx_chains, rx_chains);
1169 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1170 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1171 				      tx_chains, rx_chains);
1172 
1173 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1174 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1175 				     fw);
1176 
1177 	sband = &data->bands[NL80211_BAND_6GHZ];
1178 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1179 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1180 				     fw);
1181 }
1182 IWL_EXPORT_SYMBOL(iwl_reinit_cab);
1183 
iwl_init_sbands(struct iwl_trans * trans,struct iwl_nvm_data * data,const void * nvm_ch_flags,u8 tx_chains,u8 rx_chains,u32 sbands_flags,bool v4,const struct iwl_fw * fw)1184 static void iwl_init_sbands(struct iwl_trans *trans,
1185 			    struct iwl_nvm_data *data,
1186 			    const void *nvm_ch_flags, u8 tx_chains,
1187 			    u8 rx_chains, u32 sbands_flags, bool v4,
1188 			    const struct iwl_fw *fw)
1189 {
1190 	struct device *dev = trans->dev;
1191 	int n_channels;
1192 	int n_used = 0;
1193 	struct ieee80211_supported_band *sband;
1194 
1195 	n_channels = iwl_init_channel_map(trans, fw, data, nvm_ch_flags,
1196 					  sbands_flags, v4);
1197 	sband = &data->bands[NL80211_BAND_2GHZ];
1198 	sband->band = NL80211_BAND_2GHZ;
1199 	sband->bitrates = &iwl_cfg80211_rates[RATES_24_OFFS];
1200 	sband->n_bitrates = N_RATES_24;
1201 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1202 					  NL80211_BAND_2GHZ);
1203 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_2GHZ,
1204 			     tx_chains, rx_chains);
1205 
1206 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1207 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1208 				     fw);
1209 
1210 	sband = &data->bands[NL80211_BAND_5GHZ];
1211 	sband->band = NL80211_BAND_5GHZ;
1212 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1213 	sband->n_bitrates = N_RATES_52;
1214 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1215 					  NL80211_BAND_5GHZ);
1216 	iwl_init_ht_hw_capab(trans, data, &sband->ht_cap, NL80211_BAND_5GHZ,
1217 			     tx_chains, rx_chains);
1218 	if (data->sku_cap_11ac_enable && !iwlwifi_mod_params.disable_11ac)
1219 		iwl_init_vht_hw_capab(trans, data, &sband->vht_cap,
1220 				      tx_chains, rx_chains);
1221 
1222 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1223 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1224 				     fw);
1225 
1226 	/* 6GHz band. */
1227 	sband = &data->bands[NL80211_BAND_6GHZ];
1228 	sband->band = NL80211_BAND_6GHZ;
1229 	/* use the same rates as 5GHz band */
1230 	sband->bitrates = &iwl_cfg80211_rates[RATES_52_OFFS];
1231 	sband->n_bitrates = N_RATES_52;
1232 	n_used += iwl_init_sband_channels(data, sband, n_channels,
1233 					  NL80211_BAND_6GHZ);
1234 
1235 	if (data->sku_cap_11ax_enable && !iwlwifi_mod_params.disable_11ax)
1236 		iwl_init_he_hw_capab(trans, data, sband, tx_chains, rx_chains,
1237 				     fw);
1238 	else
1239 		sband->n_channels = 0;
1240 	if (n_channels != n_used)
1241 		IWL_ERR_DEV(dev, "NVM: used only %d of %d channels\n",
1242 			    n_used, n_channels);
1243 }
1244 
iwl_get_sku(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)1245 static int iwl_get_sku(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1246 		       const __le16 *phy_sku)
1247 {
1248 	if (cfg->nvm_type != IWL_NVM_EXT)
1249 		return le16_to_cpup(nvm_sw + SKU);
1250 
1251 	return le32_to_cpup((const __le32 *)(phy_sku + SKU_FAMILY_8000));
1252 }
1253 
iwl_get_nvm_version(const struct iwl_cfg * cfg,const __le16 * nvm_sw)1254 static int iwl_get_nvm_version(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1255 {
1256 	if (cfg->nvm_type != IWL_NVM_EXT)
1257 		return le16_to_cpup(nvm_sw + NVM_VERSION);
1258 	else
1259 		return le32_to_cpup((const __le32 *)(nvm_sw +
1260 						     NVM_VERSION_EXT_NVM));
1261 }
1262 
iwl_get_radio_cfg(const struct iwl_cfg * cfg,const __le16 * nvm_sw,const __le16 * phy_sku)1263 static int iwl_get_radio_cfg(const struct iwl_cfg *cfg, const __le16 *nvm_sw,
1264 			     const __le16 *phy_sku)
1265 {
1266 	if (cfg->nvm_type != IWL_NVM_EXT)
1267 		return le16_to_cpup(nvm_sw + RADIO_CFG);
1268 
1269 	return le32_to_cpup((const __le32 *)(phy_sku + RADIO_CFG_FAMILY_EXT_NVM));
1270 
1271 }
1272 
iwl_get_n_hw_addrs(const struct iwl_cfg * cfg,const __le16 * nvm_sw)1273 static int iwl_get_n_hw_addrs(const struct iwl_cfg *cfg, const __le16 *nvm_sw)
1274 {
1275 	int n_hw_addr;
1276 
1277 	if (cfg->nvm_type != IWL_NVM_EXT)
1278 		return le16_to_cpup(nvm_sw + N_HW_ADDRS);
1279 
1280 	n_hw_addr = le32_to_cpup((const __le32 *)(nvm_sw + N_HW_ADDRS_FAMILY_8000));
1281 
1282 	return n_hw_addr & N_HW_ADDR_MASK;
1283 }
1284 
iwl_set_radio_cfg(const struct iwl_cfg * cfg,struct iwl_nvm_data * data,u32 radio_cfg)1285 static void iwl_set_radio_cfg(const struct iwl_cfg *cfg,
1286 			      struct iwl_nvm_data *data,
1287 			      u32 radio_cfg)
1288 {
1289 	if (cfg->nvm_type != IWL_NVM_EXT) {
1290 		data->radio_cfg_type = NVM_RF_CFG_TYPE_MSK(radio_cfg);
1291 		data->radio_cfg_step = NVM_RF_CFG_STEP_MSK(radio_cfg);
1292 		data->radio_cfg_dash = NVM_RF_CFG_DASH_MSK(radio_cfg);
1293 		data->radio_cfg_pnum = NVM_RF_CFG_PNUM_MSK(radio_cfg);
1294 		return;
1295 	}
1296 
1297 	/* set the radio configuration for family 8000 */
1298 	data->radio_cfg_type = EXT_NVM_RF_CFG_TYPE_MSK(radio_cfg);
1299 	data->radio_cfg_step = EXT_NVM_RF_CFG_STEP_MSK(radio_cfg);
1300 	data->radio_cfg_dash = EXT_NVM_RF_CFG_DASH_MSK(radio_cfg);
1301 	data->radio_cfg_pnum = EXT_NVM_RF_CFG_FLAVOR_MSK(radio_cfg);
1302 	data->valid_tx_ant = EXT_NVM_RF_CFG_TX_ANT_MSK(radio_cfg);
1303 	data->valid_rx_ant = EXT_NVM_RF_CFG_RX_ANT_MSK(radio_cfg);
1304 }
1305 
iwl_flip_hw_address(__le32 mac_addr0,__le32 mac_addr1,u8 * dest)1306 static void iwl_flip_hw_address(__le32 mac_addr0, __le32 mac_addr1, u8 *dest)
1307 {
1308 	const u8 *hw_addr;
1309 
1310 	hw_addr = (const u8 *)&mac_addr0;
1311 	dest[0] = hw_addr[3];
1312 	dest[1] = hw_addr[2];
1313 	dest[2] = hw_addr[1];
1314 	dest[3] = hw_addr[0];
1315 
1316 	hw_addr = (const u8 *)&mac_addr1;
1317 	dest[4] = hw_addr[1];
1318 	dest[5] = hw_addr[0];
1319 }
1320 
iwl_set_hw_address_from_csr(struct iwl_trans * trans,struct iwl_nvm_data * data)1321 static void iwl_set_hw_address_from_csr(struct iwl_trans *trans,
1322 					struct iwl_nvm_data *data)
1323 {
1324 	__le32 mac_addr0 = cpu_to_le32(iwl_read32(trans,
1325 						  CSR_MAC_ADDR0_STRAP(trans)));
1326 	__le32 mac_addr1 = cpu_to_le32(iwl_read32(trans,
1327 						  CSR_MAC_ADDR1_STRAP(trans)));
1328 
1329 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1330 	/*
1331 	 * If the OEM fused a valid address, use it instead of the one in the
1332 	 * OTP
1333 	 */
1334 	if (is_valid_ether_addr(data->hw_addr))
1335 		return;
1336 
1337 	mac_addr0 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR0_OTP(trans)));
1338 	mac_addr1 = cpu_to_le32(iwl_read32(trans, CSR_MAC_ADDR1_OTP(trans)));
1339 
1340 	iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1341 }
1342 
iwl_set_hw_address_family_8000(struct iwl_trans * trans,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __le16 * mac_override,const __be16 * nvm_hw)1343 static void iwl_set_hw_address_family_8000(struct iwl_trans *trans,
1344 					   const struct iwl_cfg *cfg,
1345 					   struct iwl_nvm_data *data,
1346 					   const __le16 *mac_override,
1347 					   const __be16 *nvm_hw)
1348 {
1349 	const u8 *hw_addr;
1350 
1351 	if (mac_override) {
1352 		static const u8 reserved_mac[] = {
1353 			0x02, 0xcc, 0xaa, 0xff, 0xee, 0x00
1354 		};
1355 
1356 		hw_addr = (const u8 *)(mac_override +
1357 				 MAC_ADDRESS_OVERRIDE_EXT_NVM);
1358 
1359 		/*
1360 		 * Store the MAC address from MAO section.
1361 		 * No byte swapping is required in MAO section
1362 		 */
1363 		memcpy(data->hw_addr, hw_addr, ETH_ALEN);
1364 
1365 		/*
1366 		 * Force the use of the OTP MAC address in case of reserved MAC
1367 		 * address in the NVM, or if address is given but invalid.
1368 		 */
1369 		if (is_valid_ether_addr(data->hw_addr) &&
1370 		    memcmp(reserved_mac, hw_addr, ETH_ALEN) != 0)
1371 			return;
1372 
1373 		IWL_ERR(trans,
1374 			"mac address from nvm override section is not valid\n");
1375 	}
1376 
1377 	if (nvm_hw) {
1378 		/* read the mac address from WFMP registers */
1379 		__le32 mac_addr0 = cpu_to_le32(iwl_trans_read_prph(trans,
1380 						WFMP_MAC_ADDR_0));
1381 		__le32 mac_addr1 = cpu_to_le32(iwl_trans_read_prph(trans,
1382 						WFMP_MAC_ADDR_1));
1383 
1384 		iwl_flip_hw_address(mac_addr0, mac_addr1, data->hw_addr);
1385 
1386 		return;
1387 	}
1388 
1389 	IWL_ERR(trans, "mac address is not found\n");
1390 }
1391 
iwl_set_hw_address(struct iwl_trans * trans,const struct iwl_cfg * cfg,struct iwl_nvm_data * data,const __be16 * nvm_hw,const __le16 * mac_override)1392 static int iwl_set_hw_address(struct iwl_trans *trans,
1393 			      const struct iwl_cfg *cfg,
1394 			      struct iwl_nvm_data *data, const __be16 *nvm_hw,
1395 			      const __le16 *mac_override)
1396 {
1397 	if (cfg->mac_addr_from_csr) {
1398 		iwl_set_hw_address_from_csr(trans, data);
1399 	} else if (cfg->nvm_type != IWL_NVM_EXT) {
1400 		const u8 *hw_addr = (const u8 *)(nvm_hw + HW_ADDR);
1401 
1402 		/* The byte order is little endian 16 bit, meaning 214365 */
1403 		data->hw_addr[0] = hw_addr[1];
1404 		data->hw_addr[1] = hw_addr[0];
1405 		data->hw_addr[2] = hw_addr[3];
1406 		data->hw_addr[3] = hw_addr[2];
1407 		data->hw_addr[4] = hw_addr[5];
1408 		data->hw_addr[5] = hw_addr[4];
1409 	} else {
1410 		iwl_set_hw_address_family_8000(trans, cfg, data,
1411 					       mac_override, nvm_hw);
1412 	}
1413 
1414 	if (!is_valid_ether_addr(data->hw_addr)) {
1415 		IWL_ERR(trans, "no valid mac address was found\n");
1416 		return -EINVAL;
1417 	}
1418 
1419 	if (!trans->csme_own)
1420 		IWL_INFO(trans, "base HW address: %pM, OTP minor version: 0x%x\n",
1421 			 data->hw_addr, iwl_read_prph(trans, REG_OTP_MINOR));
1422 
1423 	return 0;
1424 }
1425 
1426 static bool
iwl_nvm_no_wide_in_5ghz(struct iwl_trans * trans,const struct iwl_cfg * cfg,const __be16 * nvm_hw)1427 iwl_nvm_no_wide_in_5ghz(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1428 			const __be16 *nvm_hw)
1429 {
1430 	/*
1431 	 * Workaround a bug in Indonesia SKUs where the regulatory in
1432 	 * some 7000-family OTPs erroneously allow wide channels in
1433 	 * 5GHz.  To check for Indonesia, we take the SKU value from
1434 	 * bits 1-4 in the subsystem ID and check if it is either 5 or
1435 	 * 9.  In those cases, we need to force-disable wide channels
1436 	 * in 5GHz otherwise the FW will throw a sysassert when we try
1437 	 * to use them.
1438 	 */
1439 	if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_7000) {
1440 		/*
1441 		 * Unlike the other sections in the NVM, the hw
1442 		 * section uses big-endian.
1443 		 */
1444 		u16 subsystem_id = be16_to_cpup(nvm_hw + SUBSYSTEM_ID);
1445 		u8 sku = (subsystem_id & 0x1e) >> 1;
1446 
1447 		if (sku == 5 || sku == 9) {
1448 			IWL_DEBUG_EEPROM(trans->dev,
1449 					 "disabling wide channels in 5GHz (0x%0x %d)\n",
1450 					 subsystem_id, sku);
1451 			return true;
1452 		}
1453 	}
1454 
1455 	return false;
1456 }
1457 
1458 struct iwl_nvm_data *
iwl_parse_mei_nvm_data(struct iwl_trans * trans,const struct iwl_cfg * cfg,const struct iwl_mei_nvm * mei_nvm,const struct iwl_fw * fw,u8 tx_ant,u8 rx_ant)1459 iwl_parse_mei_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1460 		       const struct iwl_mei_nvm *mei_nvm,
1461 		       const struct iwl_fw *fw, u8 tx_ant, u8 rx_ant)
1462 {
1463 	struct iwl_nvm_data *data;
1464 	u32 sbands_flags = 0;
1465 	u8 rx_chains = fw->valid_rx_ant;
1466 	u8 tx_chains = fw->valid_rx_ant;
1467 
1468 	if (cfg->uhb_supported)
1469 		data = kzalloc(struct_size(data, channels,
1470 					   IWL_NVM_NUM_CHANNELS_UHB),
1471 					   GFP_KERNEL);
1472 	else
1473 		data = kzalloc(struct_size(data, channels,
1474 					   IWL_NVM_NUM_CHANNELS_EXT),
1475 					   GFP_KERNEL);
1476 	if (!data)
1477 		return NULL;
1478 
1479 	BUILD_BUG_ON(ARRAY_SIZE(mei_nvm->channels) !=
1480 		     IWL_NVM_NUM_CHANNELS_UHB);
1481 	data->nvm_version = mei_nvm->nvm_version;
1482 
1483 	iwl_set_radio_cfg(cfg, data, mei_nvm->radio_cfg);
1484 	if (data->valid_tx_ant)
1485 		tx_chains &= data->valid_tx_ant;
1486 	if (data->valid_rx_ant)
1487 		rx_chains &= data->valid_rx_ant;
1488 	if (tx_ant)
1489 		tx_chains &= tx_ant;
1490 	if (rx_ant)
1491 		rx_chains &= rx_ant;
1492 
1493 	data->sku_cap_mimo_disabled = false;
1494 	data->sku_cap_band_24ghz_enable = true;
1495 	data->sku_cap_band_52ghz_enable = true;
1496 	data->sku_cap_11n_enable =
1497 		!(iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL);
1498 	data->sku_cap_11ac_enable = true;
1499 	data->sku_cap_11ax_enable =
1500 		mei_nvm->caps & MEI_NVM_CAPS_11AX_SUPPORT;
1501 
1502 	data->lar_enabled = mei_nvm->caps & MEI_NVM_CAPS_LARI_SUPPORT;
1503 
1504 	data->n_hw_addrs = mei_nvm->n_hw_addrs;
1505 	/* If no valid mac address was found - bail out */
1506 	if (iwl_set_hw_address(trans, cfg, data, NULL, NULL)) {
1507 		kfree(data);
1508 		return NULL;
1509 	}
1510 
1511 	if (data->lar_enabled &&
1512 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1513 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1514 
1515 	iwl_init_sbands(trans, data, mei_nvm->channels, tx_chains, rx_chains,
1516 			sbands_flags, true, fw);
1517 
1518 	return data;
1519 }
1520 IWL_EXPORT_SYMBOL(iwl_parse_mei_nvm_data);
1521 
1522 struct iwl_nvm_data *
iwl_parse_nvm_data(struct iwl_trans * trans,const struct iwl_cfg * cfg,const struct iwl_fw * fw,const __be16 * nvm_hw,const __le16 * nvm_sw,const __le16 * nvm_calib,const __le16 * regulatory,const __le16 * mac_override,const __le16 * phy_sku,u8 tx_chains,u8 rx_chains)1523 iwl_parse_nvm_data(struct iwl_trans *trans, const struct iwl_cfg *cfg,
1524 		   const struct iwl_fw *fw,
1525 		   const __be16 *nvm_hw, const __le16 *nvm_sw,
1526 		   const __le16 *nvm_calib, const __le16 *regulatory,
1527 		   const __le16 *mac_override, const __le16 *phy_sku,
1528 		   u8 tx_chains, u8 rx_chains)
1529 {
1530 	struct iwl_nvm_data *data;
1531 	bool lar_enabled;
1532 	u32 sku, radio_cfg;
1533 	u32 sbands_flags = 0;
1534 	u16 lar_config;
1535 	const __le16 *ch_section;
1536 
1537 	if (cfg->uhb_supported)
1538 		data = kzalloc(struct_size(data, channels,
1539 					   IWL_NVM_NUM_CHANNELS_UHB),
1540 					   GFP_KERNEL);
1541 	else if (cfg->nvm_type != IWL_NVM_EXT)
1542 		data = kzalloc(struct_size(data, channels,
1543 					   IWL_NVM_NUM_CHANNELS),
1544 					   GFP_KERNEL);
1545 	else
1546 		data = kzalloc(struct_size(data, channels,
1547 					   IWL_NVM_NUM_CHANNELS_EXT),
1548 					   GFP_KERNEL);
1549 	if (!data)
1550 		return NULL;
1551 
1552 	data->nvm_version = iwl_get_nvm_version(cfg, nvm_sw);
1553 
1554 	radio_cfg = iwl_get_radio_cfg(cfg, nvm_sw, phy_sku);
1555 	iwl_set_radio_cfg(cfg, data, radio_cfg);
1556 	if (data->valid_tx_ant)
1557 		tx_chains &= data->valid_tx_ant;
1558 	if (data->valid_rx_ant)
1559 		rx_chains &= data->valid_rx_ant;
1560 
1561 	sku = iwl_get_sku(cfg, nvm_sw, phy_sku);
1562 	data->sku_cap_band_24ghz_enable = sku & NVM_SKU_CAP_BAND_24GHZ;
1563 	data->sku_cap_band_52ghz_enable = sku & NVM_SKU_CAP_BAND_52GHZ;
1564 	data->sku_cap_11n_enable = sku & NVM_SKU_CAP_11N_ENABLE;
1565 	if (iwlwifi_mod_params.disable_11n & IWL_DISABLE_HT_ALL)
1566 		data->sku_cap_11n_enable = false;
1567 	data->sku_cap_11ac_enable = data->sku_cap_11n_enable &&
1568 				    (sku & NVM_SKU_CAP_11AC_ENABLE);
1569 	data->sku_cap_mimo_disabled = sku & NVM_SKU_CAP_MIMO_DISABLE;
1570 
1571 	data->n_hw_addrs = iwl_get_n_hw_addrs(cfg, nvm_sw);
1572 
1573 	if (cfg->nvm_type != IWL_NVM_EXT) {
1574 		/* Checking for required sections */
1575 		if (!nvm_calib) {
1576 			IWL_ERR(trans,
1577 				"Can't parse empty Calib NVM sections\n");
1578 			kfree(data);
1579 			return NULL;
1580 		}
1581 
1582 		ch_section = cfg->nvm_type == IWL_NVM_SDP ?
1583 			     &regulatory[NVM_CHANNELS_SDP] :
1584 			     &nvm_sw[NVM_CHANNELS];
1585 
1586 		lar_enabled = true;
1587 	} else {
1588 		u16 lar_offset = data->nvm_version < 0xE39 ?
1589 				 NVM_LAR_OFFSET_OLD :
1590 				 NVM_LAR_OFFSET;
1591 
1592 		lar_config = le16_to_cpup(regulatory + lar_offset);
1593 		data->lar_enabled = !!(lar_config &
1594 				       NVM_LAR_ENABLED);
1595 		lar_enabled = data->lar_enabled;
1596 		ch_section = &regulatory[NVM_CHANNELS_EXTENDED];
1597 	}
1598 
1599 	/* If no valid mac address was found - bail out */
1600 	if (iwl_set_hw_address(trans, cfg, data, nvm_hw, mac_override)) {
1601 		kfree(data);
1602 		return NULL;
1603 	}
1604 
1605 	if (lar_enabled &&
1606 	    fw_has_capa(&fw->ucode_capa, IWL_UCODE_TLV_CAPA_LAR_SUPPORT))
1607 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
1608 
1609 	if (iwl_nvm_no_wide_in_5ghz(trans, cfg, nvm_hw))
1610 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_NO_WIDE_IN_5GHZ;
1611 
1612 	iwl_init_sbands(trans, data, ch_section, tx_chains, rx_chains,
1613 			sbands_flags, false, fw);
1614 	data->calib_version = 255;
1615 
1616 	return data;
1617 }
1618 IWL_EXPORT_SYMBOL(iwl_parse_nvm_data);
1619 
iwl_nvm_get_regdom_bw_flags(const u16 * nvm_chan,int ch_idx,u16 nvm_flags,struct iwl_reg_capa reg_capa,const struct iwl_cfg * cfg)1620 static u32 iwl_nvm_get_regdom_bw_flags(const u16 *nvm_chan,
1621 				       int ch_idx, u16 nvm_flags,
1622 				       struct iwl_reg_capa reg_capa,
1623 				       const struct iwl_cfg *cfg)
1624 {
1625 	u32 flags = NL80211_RRF_NO_HT40;
1626 
1627 	if (ch_idx < NUM_2GHZ_CHANNELS &&
1628 	    (nvm_flags & NVM_CHANNEL_40MHZ)) {
1629 		if (nvm_chan[ch_idx] <= LAST_2GHZ_HT_PLUS)
1630 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1631 		if (nvm_chan[ch_idx] >= FIRST_2GHZ_HT_MINUS)
1632 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1633 	} else if (ch_idx < NUM_2GHZ_CHANNELS + NUM_5GHZ_CHANNELS &&
1634 		   nvm_flags & NVM_CHANNEL_40MHZ) {
1635 		if ((ch_idx - NUM_2GHZ_CHANNELS) % 2 == 0)
1636 			flags &= ~NL80211_RRF_NO_HT40PLUS;
1637 		else
1638 			flags &= ~NL80211_RRF_NO_HT40MINUS;
1639 	} else if (nvm_flags & NVM_CHANNEL_40MHZ) {
1640 		flags &= ~NL80211_RRF_NO_HT40PLUS;
1641 		flags &= ~NL80211_RRF_NO_HT40MINUS;
1642 	}
1643 
1644 	if (!(nvm_flags & NVM_CHANNEL_80MHZ))
1645 		flags |= NL80211_RRF_NO_80MHZ;
1646 	if (!(nvm_flags & NVM_CHANNEL_160MHZ))
1647 		flags |= NL80211_RRF_NO_160MHZ;
1648 
1649 	if (!(nvm_flags & NVM_CHANNEL_ACTIVE))
1650 		flags |= NL80211_RRF_NO_IR;
1651 
1652 	if (nvm_flags & NVM_CHANNEL_RADAR)
1653 		flags |= NL80211_RRF_DFS;
1654 
1655 	if (nvm_flags & NVM_CHANNEL_INDOOR_ONLY)
1656 		flags |= NL80211_RRF_NO_OUTDOOR;
1657 
1658 	/* Set the GO concurrent flag only in case that NO_IR is set.
1659 	 * Otherwise it is meaningless
1660 	 */
1661 	if ((nvm_flags & NVM_CHANNEL_GO_CONCURRENT)) {
1662 		if (flags & NL80211_RRF_NO_IR)
1663 			flags |= NL80211_RRF_GO_CONCURRENT;
1664 		if (flags & NL80211_RRF_DFS) {
1665 			flags |= NL80211_RRF_DFS_CONCURRENT;
1666 			/* Our device doesn't set active bit for DFS channels
1667 			 * however, once marked as DFS no-ir is not needed.
1668 			 */
1669 			flags &= ~NL80211_RRF_NO_IR;
1670 		}
1671 	}
1672 
1673 	/* Set the AP type for the UHB case. */
1674 	if (nvm_flags & NVM_CHANNEL_VLP)
1675 		flags |= NL80211_RRF_ALLOW_6GHZ_VLP_AP;
1676 	else
1677 		flags |= NL80211_RRF_NO_6GHZ_VLP_CLIENT;
1678 
1679 	if (!(nvm_flags & NVM_CHANNEL_AFC))
1680 		flags |= NL80211_RRF_NO_6GHZ_AFC_CLIENT;
1681 
1682 	/*
1683 	 * reg_capa is per regulatory domain so apply it for every channel
1684 	 */
1685 	if (ch_idx >= NUM_2GHZ_CHANNELS) {
1686 		if (!reg_capa.allow_40mhz)
1687 			flags |= NL80211_RRF_NO_HT40;
1688 
1689 		if (!reg_capa.allow_80mhz)
1690 			flags |= NL80211_RRF_NO_80MHZ;
1691 
1692 		if (!reg_capa.allow_160mhz)
1693 			flags |= NL80211_RRF_NO_160MHZ;
1694 
1695 		if (!reg_capa.allow_320mhz)
1696 			flags |= NL80211_RRF_NO_320MHZ;
1697 	}
1698 
1699 	if (reg_capa.disable_11ax)
1700 		flags |= NL80211_RRF_NO_HE;
1701 
1702 	if (reg_capa.disable_11be)
1703 		flags |= NL80211_RRF_NO_EHT;
1704 
1705 	return flags;
1706 }
1707 
iwl_get_reg_capa(u32 flags,u8 resp_ver)1708 static struct iwl_reg_capa iwl_get_reg_capa(u32 flags, u8 resp_ver)
1709 {
1710 	struct iwl_reg_capa reg_capa = {};
1711 
1712 	if (resp_ver >= REG_CAPA_V4_RESP_VER) {
1713 		reg_capa.allow_40mhz = true;
1714 		reg_capa.allow_80mhz = flags & REG_CAPA_V4_80MHZ_ALLOWED;
1715 		reg_capa.allow_160mhz = flags & REG_CAPA_V4_160MHZ_ALLOWED;
1716 		reg_capa.allow_320mhz = flags & REG_CAPA_V4_320MHZ_ALLOWED;
1717 		reg_capa.disable_11ax = flags & REG_CAPA_V4_11AX_DISABLED;
1718 		reg_capa.disable_11be = flags & REG_CAPA_V4_11BE_DISABLED;
1719 	} else if (resp_ver >= REG_CAPA_V2_RESP_VER) {
1720 		reg_capa.allow_40mhz = flags & REG_CAPA_V2_40MHZ_ALLOWED;
1721 		reg_capa.allow_80mhz = flags & REG_CAPA_V2_80MHZ_ALLOWED;
1722 		reg_capa.allow_160mhz = flags & REG_CAPA_V2_160MHZ_ALLOWED;
1723 		reg_capa.disable_11ax = flags & REG_CAPA_V2_11AX_DISABLED;
1724 	} else {
1725 		reg_capa.allow_40mhz = !(flags & REG_CAPA_V1_40MHZ_FORBIDDEN);
1726 		reg_capa.allow_80mhz = flags & REG_CAPA_V1_80MHZ_ALLOWED;
1727 		reg_capa.allow_160mhz = flags & REG_CAPA_V1_160MHZ_ALLOWED;
1728 		reg_capa.disable_11ax = flags & REG_CAPA_V1_11AX_DISABLED;
1729 	}
1730 	return reg_capa;
1731 }
1732 
1733 struct ieee80211_regdomain *
iwl_parse_nvm_mcc_info(struct device * dev,const struct iwl_cfg * cfg,int num_of_ch,__le32 * channels,u16 fw_mcc,u16 geo_info,u32 cap,u8 resp_ver)1734 iwl_parse_nvm_mcc_info(struct device *dev, const struct iwl_cfg *cfg,
1735 		       int num_of_ch, __le32 *channels, u16 fw_mcc,
1736 		       u16 geo_info, u32 cap, u8 resp_ver)
1737 {
1738 	int ch_idx;
1739 	u16 ch_flags;
1740 	u32 reg_rule_flags, prev_reg_rule_flags = 0;
1741 	const u16 *nvm_chan;
1742 	struct ieee80211_regdomain *regd, *copy_rd;
1743 	struct ieee80211_reg_rule *rule;
1744 	int center_freq, prev_center_freq = 0;
1745 	int valid_rules = 0;
1746 	bool new_rule;
1747 	int max_num_ch;
1748 	struct iwl_reg_capa reg_capa;
1749 
1750 	if (cfg->uhb_supported) {
1751 		max_num_ch = IWL_NVM_NUM_CHANNELS_UHB;
1752 		nvm_chan = iwl_uhb_nvm_channels;
1753 	} else if (cfg->nvm_type == IWL_NVM_EXT) {
1754 		max_num_ch = IWL_NVM_NUM_CHANNELS_EXT;
1755 		nvm_chan = iwl_ext_nvm_channels;
1756 	} else {
1757 		max_num_ch = IWL_NVM_NUM_CHANNELS;
1758 		nvm_chan = iwl_nvm_channels;
1759 	}
1760 
1761 	if (num_of_ch > max_num_ch) {
1762 		IWL_DEBUG_DEV(dev, IWL_DL_LAR,
1763 			      "Num of channels (%d) is greater than expected. Truncating to %d\n",
1764 			      num_of_ch, max_num_ch);
1765 		num_of_ch = max_num_ch;
1766 	}
1767 
1768 	if (WARN_ON_ONCE(num_of_ch > NL80211_MAX_SUPP_REG_RULES))
1769 		return ERR_PTR(-EINVAL);
1770 
1771 	IWL_DEBUG_DEV(dev, IWL_DL_LAR, "building regdom for %d channels\n",
1772 		      num_of_ch);
1773 
1774 	/* build a regdomain rule for every valid channel */
1775 	regd = kzalloc(struct_size(regd, reg_rules, num_of_ch), GFP_KERNEL);
1776 	if (!regd)
1777 		return ERR_PTR(-ENOMEM);
1778 
1779 	/* set alpha2 from FW. */
1780 	regd->alpha2[0] = fw_mcc >> 8;
1781 	regd->alpha2[1] = fw_mcc & 0xff;
1782 
1783 	/* parse regulatory capability flags */
1784 	reg_capa = iwl_get_reg_capa(cap, resp_ver);
1785 
1786 	for (ch_idx = 0; ch_idx < num_of_ch; ch_idx++) {
1787 		enum nl80211_band band =
1788 			iwl_nl80211_band_from_channel_idx(ch_idx);
1789 
1790 		ch_flags = (u16)__le32_to_cpup(channels + ch_idx);
1791 		center_freq = ieee80211_channel_to_frequency(nvm_chan[ch_idx],
1792 							     band);
1793 		new_rule = false;
1794 
1795 		if (!(ch_flags & NVM_CHANNEL_VALID)) {
1796 			iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1797 						    nvm_chan[ch_idx], ch_flags);
1798 			continue;
1799 		}
1800 
1801 		reg_rule_flags = iwl_nvm_get_regdom_bw_flags(nvm_chan, ch_idx,
1802 							     ch_flags, reg_capa,
1803 							     cfg);
1804 
1805 		/* we can't continue the same rule */
1806 		if (ch_idx == 0 || prev_reg_rule_flags != reg_rule_flags ||
1807 		    center_freq - prev_center_freq > 20) {
1808 			valid_rules++;
1809 			new_rule = true;
1810 		}
1811 
1812 		rule = &regd->reg_rules[valid_rules - 1];
1813 
1814 		if (new_rule)
1815 			rule->freq_range.start_freq_khz =
1816 						MHZ_TO_KHZ(center_freq - 10);
1817 
1818 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(center_freq + 10);
1819 
1820 		/* this doesn't matter - not used by FW */
1821 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1822 		rule->power_rule.max_eirp =
1823 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1824 
1825 		rule->flags = reg_rule_flags;
1826 
1827 		/* rely on auto-calculation to merge BW of contiguous chans */
1828 		rule->flags |= NL80211_RRF_AUTO_BW;
1829 		rule->freq_range.max_bandwidth_khz = 0;
1830 
1831 		prev_center_freq = center_freq;
1832 		prev_reg_rule_flags = reg_rule_flags;
1833 
1834 		iwl_nvm_print_channel_flags(dev, IWL_DL_LAR,
1835 					    nvm_chan[ch_idx], ch_flags);
1836 
1837 		if (!(geo_info & GEO_WMM_ETSI_5GHZ_INFO) ||
1838 		    band == NL80211_BAND_2GHZ)
1839 			continue;
1840 
1841 		reg_query_regdb_wmm(regd->alpha2, center_freq, rule);
1842 	}
1843 
1844 	/*
1845 	 * Certain firmware versions might report no valid channels
1846 	 * if booted in RF-kill, i.e. not all calibrations etc. are
1847 	 * running. We'll get out of this situation later when the
1848 	 * rfkill is removed and we update the regdomain again, but
1849 	 * since cfg80211 doesn't accept an empty regdomain, add a
1850 	 * dummy (unusable) rule here in this case so we can init.
1851 	 */
1852 	if (!valid_rules) {
1853 		valid_rules = 1;
1854 		rule = &regd->reg_rules[valid_rules - 1];
1855 		rule->freq_range.start_freq_khz = MHZ_TO_KHZ(2412);
1856 		rule->freq_range.end_freq_khz = MHZ_TO_KHZ(2413);
1857 		rule->freq_range.max_bandwidth_khz = MHZ_TO_KHZ(1);
1858 		rule->power_rule.max_antenna_gain = DBI_TO_MBI(6);
1859 		rule->power_rule.max_eirp =
1860 			DBM_TO_MBM(IWL_DEFAULT_MAX_TX_POWER);
1861 	}
1862 
1863 	regd->n_reg_rules = valid_rules;
1864 
1865 	/*
1866 	 * Narrow down regdom for unused regulatory rules to prevent hole
1867 	 * between reg rules to wmm rules.
1868 	 */
1869 	copy_rd = kmemdup(regd, struct_size(regd, reg_rules, valid_rules),
1870 			  GFP_KERNEL);
1871 	if (!copy_rd)
1872 		copy_rd = ERR_PTR(-ENOMEM);
1873 
1874 	kfree(regd);
1875 	return copy_rd;
1876 }
1877 IWL_EXPORT_SYMBOL(iwl_parse_nvm_mcc_info);
1878 
1879 #define IWL_MAX_NVM_SECTION_SIZE	0x1b58
1880 #define IWL_MAX_EXT_NVM_SECTION_SIZE	0x1ffc
1881 #define MAX_NVM_FILE_LEN	16384
1882 
iwl_nvm_fixups(u32 hw_id,unsigned int section,u8 * data,unsigned int len)1883 void iwl_nvm_fixups(u32 hw_id, unsigned int section, u8 *data,
1884 		    unsigned int len)
1885 {
1886 #define IWL_4165_DEVICE_ID	0x5501
1887 #define NVM_SKU_CAP_MIMO_DISABLE BIT(5)
1888 
1889 	if (section == NVM_SECTION_TYPE_PHY_SKU &&
1890 	    hw_id == IWL_4165_DEVICE_ID && data && len >= 5 &&
1891 	    (data[4] & NVM_SKU_CAP_MIMO_DISABLE))
1892 		/* OTP 0x52 bug work around: it's a 1x1 device */
1893 		data[3] = ANT_B | (ANT_B << 4);
1894 }
1895 IWL_EXPORT_SYMBOL(iwl_nvm_fixups);
1896 
1897 /*
1898  * Reads external NVM from a file into mvm->nvm_sections
1899  *
1900  * HOW TO CREATE THE NVM FILE FORMAT:
1901  * ------------------------------
1902  * 1. create hex file, format:
1903  *      3800 -> header
1904  *      0000 -> header
1905  *      5a40 -> data
1906  *
1907  *   rev - 6 bit (word1)
1908  *   len - 10 bit (word1)
1909  *   id - 4 bit (word2)
1910  *   rsv - 12 bit (word2)
1911  *
1912  * 2. flip 8bits with 8 bits per line to get the right NVM file format
1913  *
1914  * 3. create binary file from the hex file
1915  *
1916  * 4. save as "iNVM_xxx.bin" under /lib/firmware
1917  */
iwl_read_external_nvm(struct iwl_trans * trans,const char * nvm_file_name,struct iwl_nvm_section * nvm_sections)1918 int iwl_read_external_nvm(struct iwl_trans *trans,
1919 			  const char *nvm_file_name,
1920 			  struct iwl_nvm_section *nvm_sections)
1921 {
1922 	int ret, section_size;
1923 	u16 section_id;
1924 	const struct firmware *fw_entry;
1925 	const struct {
1926 		__le16 word1;
1927 		__le16 word2;
1928 		u8 data[];
1929 	} *file_sec;
1930 	const u8 *eof;
1931 	u8 *temp;
1932 	int max_section_size;
1933 	const __le32 *dword_buff;
1934 
1935 #define NVM_WORD1_LEN(x) (8 * (x & 0x03FF))
1936 #define NVM_WORD2_ID(x) (x >> 12)
1937 #define EXT_NVM_WORD2_LEN(x) (2 * (((x) & 0xFF) << 8 | (x) >> 8))
1938 #define EXT_NVM_WORD1_ID(x) ((x) >> 4)
1939 #define NVM_HEADER_0	(0x2A504C54)
1940 #define NVM_HEADER_1	(0x4E564D2A)
1941 #define NVM_HEADER_SIZE	(4 * sizeof(u32))
1942 
1943 	IWL_DEBUG_EEPROM(trans->dev, "Read from external NVM\n");
1944 
1945 	/* Maximal size depends on NVM version */
1946 	if (trans->cfg->nvm_type != IWL_NVM_EXT)
1947 		max_section_size = IWL_MAX_NVM_SECTION_SIZE;
1948 	else
1949 		max_section_size = IWL_MAX_EXT_NVM_SECTION_SIZE;
1950 
1951 	/*
1952 	 * Obtain NVM image via request_firmware. Since we already used
1953 	 * request_firmware_nowait() for the firmware binary load and only
1954 	 * get here after that we assume the NVM request can be satisfied
1955 	 * synchronously.
1956 	 */
1957 	ret = request_firmware(&fw_entry, nvm_file_name, trans->dev);
1958 	if (ret) {
1959 		IWL_ERR(trans, "ERROR: %s isn't available %d\n",
1960 			nvm_file_name, ret);
1961 		return ret;
1962 	}
1963 
1964 	IWL_INFO(trans, "Loaded NVM file %s (%zu bytes)\n",
1965 		 nvm_file_name, fw_entry->size);
1966 
1967 	if (fw_entry->size > MAX_NVM_FILE_LEN) {
1968 		IWL_ERR(trans, "NVM file too large\n");
1969 		ret = -EINVAL;
1970 		goto out;
1971 	}
1972 
1973 	eof = fw_entry->data + fw_entry->size;
1974 	dword_buff = (const __le32 *)fw_entry->data;
1975 
1976 	/* some NVM file will contain a header.
1977 	 * The header is identified by 2 dwords header as follow:
1978 	 * dword[0] = 0x2A504C54
1979 	 * dword[1] = 0x4E564D2A
1980 	 *
1981 	 * This header must be skipped when providing the NVM data to the FW.
1982 	 */
1983 	if (fw_entry->size > NVM_HEADER_SIZE &&
1984 	    dword_buff[0] == cpu_to_le32(NVM_HEADER_0) &&
1985 	    dword_buff[1] == cpu_to_le32(NVM_HEADER_1)) {
1986 		file_sec = (const void *)(fw_entry->data + NVM_HEADER_SIZE);
1987 		IWL_INFO(trans, "NVM Version %08X\n", le32_to_cpu(dword_buff[2]));
1988 		IWL_INFO(trans, "NVM Manufacturing date %08X\n",
1989 			 le32_to_cpu(dword_buff[3]));
1990 
1991 		/* nvm file validation, dword_buff[2] holds the file version */
1992 		if (trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_8000 &&
1993 		    trans->hw_rev_step == SILICON_C_STEP &&
1994 		    le32_to_cpu(dword_buff[2]) < 0xE4A) {
1995 			ret = -EFAULT;
1996 			goto out;
1997 		}
1998 	} else {
1999 		file_sec = (const void *)fw_entry->data;
2000 	}
2001 
2002 	while (true) {
2003 		if (file_sec->data > eof) {
2004 			IWL_ERR(trans,
2005 				"ERROR - NVM file too short for section header\n");
2006 			ret = -EINVAL;
2007 			break;
2008 		}
2009 
2010 		/* check for EOF marker */
2011 		if (!file_sec->word1 && !file_sec->word2) {
2012 			ret = 0;
2013 			break;
2014 		}
2015 
2016 		if (trans->cfg->nvm_type != IWL_NVM_EXT) {
2017 			section_size =
2018 				2 * NVM_WORD1_LEN(le16_to_cpu(file_sec->word1));
2019 			section_id = NVM_WORD2_ID(le16_to_cpu(file_sec->word2));
2020 		} else {
2021 			section_size = 2 * EXT_NVM_WORD2_LEN(
2022 						le16_to_cpu(file_sec->word2));
2023 			section_id = EXT_NVM_WORD1_ID(
2024 						le16_to_cpu(file_sec->word1));
2025 		}
2026 
2027 		if (section_size > max_section_size) {
2028 			IWL_ERR(trans, "ERROR - section too large (%d)\n",
2029 				section_size);
2030 			ret = -EINVAL;
2031 			break;
2032 		}
2033 
2034 		if (!section_size) {
2035 			IWL_ERR(trans, "ERROR - section empty\n");
2036 			ret = -EINVAL;
2037 			break;
2038 		}
2039 
2040 		if (file_sec->data + section_size > eof) {
2041 			IWL_ERR(trans,
2042 				"ERROR - NVM file too short for section (%d bytes)\n",
2043 				section_size);
2044 			ret = -EINVAL;
2045 			break;
2046 		}
2047 
2048 		if (WARN(section_id >= NVM_MAX_NUM_SECTIONS,
2049 			 "Invalid NVM section ID %d\n", section_id)) {
2050 			ret = -EINVAL;
2051 			break;
2052 		}
2053 
2054 		temp = kmemdup(file_sec->data, section_size, GFP_KERNEL);
2055 		if (!temp) {
2056 			ret = -ENOMEM;
2057 			break;
2058 		}
2059 
2060 		iwl_nvm_fixups(trans->hw_id, section_id, temp, section_size);
2061 
2062 		kfree(nvm_sections[section_id].data);
2063 		nvm_sections[section_id].data = temp;
2064 		nvm_sections[section_id].length = section_size;
2065 
2066 		/* advance to the next section */
2067 		file_sec = (const void *)(file_sec->data + section_size);
2068 	}
2069 out:
2070 	release_firmware(fw_entry);
2071 	return ret;
2072 }
2073 IWL_EXPORT_SYMBOL(iwl_read_external_nvm);
2074 
iwl_get_nvm(struct iwl_trans * trans,const struct iwl_fw * fw,u8 set_tx_ant,u8 set_rx_ant)2075 struct iwl_nvm_data *iwl_get_nvm(struct iwl_trans *trans,
2076 				 const struct iwl_fw *fw,
2077 				 u8 set_tx_ant, u8 set_rx_ant)
2078 {
2079 	struct iwl_nvm_get_info cmd = {};
2080 	struct iwl_nvm_data *nvm;
2081 	struct iwl_host_cmd hcmd = {
2082 		.flags = CMD_WANT_SKB | CMD_SEND_IN_RFKILL,
2083 		.data = { &cmd, },
2084 		.len = { sizeof(cmd) },
2085 		.id = WIDE_ID(REGULATORY_AND_NVM_GROUP, NVM_GET_INFO)
2086 	};
2087 	int  ret;
2088 	bool empty_otp;
2089 	u32 mac_flags;
2090 	u32 sbands_flags = 0;
2091 	u8 tx_ant;
2092 	u8 rx_ant;
2093 
2094 	/*
2095 	 * All the values in iwl_nvm_get_info_rsp v4 are the same as
2096 	 * in v3, except for the channel profile part of the
2097 	 * regulatory.  So we can just access the new struct, with the
2098 	 * exception of the latter.
2099 	 */
2100 	struct iwl_nvm_get_info_rsp *rsp;
2101 	struct iwl_nvm_get_info_rsp_v3 *rsp_v3;
2102 	bool v4 = fw_has_api(&fw->ucode_capa,
2103 			     IWL_UCODE_TLV_API_REGULATORY_NVM_INFO);
2104 	size_t rsp_size = v4 ? sizeof(*rsp) : sizeof(*rsp_v3);
2105 	void *channel_profile;
2106 
2107 	ret = iwl_trans_send_cmd(trans, &hcmd);
2108 	if (ret)
2109 		return ERR_PTR(ret);
2110 
2111 	if (WARN(iwl_rx_packet_payload_len(hcmd.resp_pkt) != rsp_size,
2112 		 "Invalid payload len in NVM response from FW %d",
2113 		 iwl_rx_packet_payload_len(hcmd.resp_pkt))) {
2114 		ret = -EINVAL;
2115 		goto out;
2116 	}
2117 
2118 	rsp = (void *)hcmd.resp_pkt->data;
2119 	empty_otp = !!(le32_to_cpu(rsp->general.flags) &
2120 		       NVM_GENERAL_FLAGS_EMPTY_OTP);
2121 	if (empty_otp)
2122 		IWL_INFO(trans, "OTP is empty\n");
2123 
2124 	nvm = kzalloc(struct_size(nvm, channels, IWL_NUM_CHANNELS), GFP_KERNEL);
2125 	if (!nvm) {
2126 		ret = -ENOMEM;
2127 		goto out;
2128 	}
2129 
2130 	iwl_set_hw_address_from_csr(trans, nvm);
2131 	/* TODO: if platform NVM has MAC address - override it here */
2132 
2133 	if (!is_valid_ether_addr(nvm->hw_addr)) {
2134 		IWL_ERR(trans, "no valid mac address was found\n");
2135 		ret = -EINVAL;
2136 		goto err_free;
2137 	}
2138 
2139 	IWL_INFO(trans, "base HW address: %pM\n", nvm->hw_addr);
2140 
2141 	/* Initialize general data */
2142 	nvm->nvm_version = le16_to_cpu(rsp->general.nvm_version);
2143 	nvm->n_hw_addrs = rsp->general.n_hw_addrs;
2144 	if (nvm->n_hw_addrs == 0)
2145 		IWL_WARN(trans,
2146 			 "Firmware declares no reserved mac addresses. OTP is empty: %d\n",
2147 			 empty_otp);
2148 
2149 	/* Initialize MAC sku data */
2150 	mac_flags = le32_to_cpu(rsp->mac_sku.mac_sku_flags);
2151 	nvm->sku_cap_11ac_enable =
2152 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AC_ENABLED);
2153 	nvm->sku_cap_11n_enable =
2154 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11N_ENABLED);
2155 	nvm->sku_cap_11ax_enable =
2156 		!!(mac_flags & NVM_MAC_SKU_FLAGS_802_11AX_ENABLED);
2157 	nvm->sku_cap_band_24ghz_enable =
2158 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_2_4_ENABLED);
2159 	nvm->sku_cap_band_52ghz_enable =
2160 		!!(mac_flags & NVM_MAC_SKU_FLAGS_BAND_5_2_ENABLED);
2161 	nvm->sku_cap_mimo_disabled =
2162 		!!(mac_flags & NVM_MAC_SKU_FLAGS_MIMO_DISABLED);
2163 	if (CSR_HW_RFID_TYPE(trans->hw_rf_id) >= IWL_CFG_RF_TYPE_FM)
2164 		nvm->sku_cap_11be_enable = true;
2165 
2166 	/* Initialize PHY sku data */
2167 	nvm->valid_tx_ant = (u8)le32_to_cpu(rsp->phy_sku.tx_chains);
2168 	nvm->valid_rx_ant = (u8)le32_to_cpu(rsp->phy_sku.rx_chains);
2169 
2170 	if (le32_to_cpu(rsp->regulatory.lar_enabled) &&
2171 	    fw_has_capa(&fw->ucode_capa,
2172 			IWL_UCODE_TLV_CAPA_LAR_SUPPORT)) {
2173 		nvm->lar_enabled = true;
2174 		sbands_flags |= IWL_NVM_SBANDS_FLAGS_LAR;
2175 	}
2176 
2177 	rsp_v3 = (void *)rsp;
2178 	channel_profile = v4 ? (void *)rsp->regulatory.channel_profile :
2179 			  (void *)rsp_v3->regulatory.channel_profile;
2180 
2181 	tx_ant = nvm->valid_tx_ant & fw->valid_tx_ant;
2182 	rx_ant = nvm->valid_rx_ant & fw->valid_rx_ant;
2183 
2184 	if (set_tx_ant)
2185 		tx_ant &= set_tx_ant;
2186 	if (set_rx_ant)
2187 		rx_ant &= set_rx_ant;
2188 
2189 	iwl_init_sbands(trans, nvm, channel_profile, tx_ant, rx_ant,
2190 			sbands_flags, v4, fw);
2191 
2192 	iwl_free_resp(&hcmd);
2193 	return nvm;
2194 
2195 err_free:
2196 	kfree(nvm);
2197 out:
2198 	iwl_free_resp(&hcmd);
2199 	return ERR_PTR(ret);
2200 }
2201 IWL_EXPORT_SYMBOL(iwl_get_nvm);
2202