1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019 - 2022 Beijing WangXun Technology Co., Ltd. */
3 
4 #include <linux/etherdevice.h>
5 #include <net/ip6_checksum.h>
6 #include <net/page_pool/helpers.h>
7 #include <net/inet_ecn.h>
8 #include <linux/iopoll.h>
9 #include <linux/sctp.h>
10 #include <linux/pci.h>
11 #include <net/tcp.h>
12 #include <net/ip.h>
13 
14 #include "wx_type.h"
15 #include "wx_lib.h"
16 #include "wx_ptp.h"
17 #include "wx_hw.h"
18 
19 /* Lookup table mapping the HW PTYPE to the bit field for decoding */
20 static struct wx_dec_ptype wx_ptype_lookup[256] = {
21 	/* L2: mac */
22 	[0x11] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
23 	[0x12] = WX_PTT(L2, NONE, NONE, NONE, TS,   PAY2),
24 	[0x13] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
25 	[0x14] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
26 	[0x15] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
27 	[0x16] = WX_PTT(L2, NONE, NONE, NONE, NONE, PAY2),
28 	[0x17] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
29 
30 	/* L2: ethertype filter */
31 	[0x18 ... 0x1F] = WX_PTT(L2, NONE, NONE, NONE, NONE, NONE),
32 
33 	/* L3: ip non-tunnel */
34 	[0x21] = WX_PTT(IP, FGV4, NONE, NONE, NONE, PAY3),
35 	[0x22] = WX_PTT(IP, IPV4, NONE, NONE, NONE, PAY3),
36 	[0x23] = WX_PTT(IP, IPV4, NONE, NONE, UDP,  PAY4),
37 	[0x24] = WX_PTT(IP, IPV4, NONE, NONE, TCP,  PAY4),
38 	[0x25] = WX_PTT(IP, IPV4, NONE, NONE, SCTP, PAY4),
39 	[0x29] = WX_PTT(IP, FGV6, NONE, NONE, NONE, PAY3),
40 	[0x2A] = WX_PTT(IP, IPV6, NONE, NONE, NONE, PAY3),
41 	[0x2B] = WX_PTT(IP, IPV6, NONE, NONE, UDP,  PAY3),
42 	[0x2C] = WX_PTT(IP, IPV6, NONE, NONE, TCP,  PAY4),
43 	[0x2D] = WX_PTT(IP, IPV6, NONE, NONE, SCTP, PAY4),
44 
45 	/* L2: fcoe */
46 	[0x30 ... 0x34] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
47 	[0x38 ... 0x3C] = WX_PTT(FCOE, NONE, NONE, NONE, NONE, PAY3),
48 
49 	/* IPv4 --> IPv4/IPv6 */
50 	[0x81] = WX_PTT(IP, IPV4, IPIP, FGV4, NONE, PAY3),
51 	[0x82] = WX_PTT(IP, IPV4, IPIP, IPV4, NONE, PAY3),
52 	[0x83] = WX_PTT(IP, IPV4, IPIP, IPV4, UDP,  PAY4),
53 	[0x84] = WX_PTT(IP, IPV4, IPIP, IPV4, TCP,  PAY4),
54 	[0x85] = WX_PTT(IP, IPV4, IPIP, IPV4, SCTP, PAY4),
55 	[0x89] = WX_PTT(IP, IPV4, IPIP, FGV6, NONE, PAY3),
56 	[0x8A] = WX_PTT(IP, IPV4, IPIP, IPV6, NONE, PAY3),
57 	[0x8B] = WX_PTT(IP, IPV4, IPIP, IPV6, UDP,  PAY4),
58 	[0x8C] = WX_PTT(IP, IPV4, IPIP, IPV6, TCP,  PAY4),
59 	[0x8D] = WX_PTT(IP, IPV4, IPIP, IPV6, SCTP, PAY4),
60 
61 	/* IPv4 --> GRE/NAT --> NONE/IPv4/IPv6 */
62 	[0x90] = WX_PTT(IP, IPV4, IG, NONE, NONE, PAY3),
63 	[0x91] = WX_PTT(IP, IPV4, IG, FGV4, NONE, PAY3),
64 	[0x92] = WX_PTT(IP, IPV4, IG, IPV4, NONE, PAY3),
65 	[0x93] = WX_PTT(IP, IPV4, IG, IPV4, UDP,  PAY4),
66 	[0x94] = WX_PTT(IP, IPV4, IG, IPV4, TCP,  PAY4),
67 	[0x95] = WX_PTT(IP, IPV4, IG, IPV4, SCTP, PAY4),
68 	[0x99] = WX_PTT(IP, IPV4, IG, FGV6, NONE, PAY3),
69 	[0x9A] = WX_PTT(IP, IPV4, IG, IPV6, NONE, PAY3),
70 	[0x9B] = WX_PTT(IP, IPV4, IG, IPV6, UDP,  PAY4),
71 	[0x9C] = WX_PTT(IP, IPV4, IG, IPV6, TCP,  PAY4),
72 	[0x9D] = WX_PTT(IP, IPV4, IG, IPV6, SCTP, PAY4),
73 
74 	/* IPv4 --> GRE/NAT --> MAC --> NONE/IPv4/IPv6 */
75 	[0xA0] = WX_PTT(IP, IPV4, IGM, NONE, NONE, PAY3),
76 	[0xA1] = WX_PTT(IP, IPV4, IGM, FGV4, NONE, PAY3),
77 	[0xA2] = WX_PTT(IP, IPV4, IGM, IPV4, NONE, PAY3),
78 	[0xA3] = WX_PTT(IP, IPV4, IGM, IPV4, UDP,  PAY4),
79 	[0xA4] = WX_PTT(IP, IPV4, IGM, IPV4, TCP,  PAY4),
80 	[0xA5] = WX_PTT(IP, IPV4, IGM, IPV4, SCTP, PAY4),
81 	[0xA9] = WX_PTT(IP, IPV4, IGM, FGV6, NONE, PAY3),
82 	[0xAA] = WX_PTT(IP, IPV4, IGM, IPV6, NONE, PAY3),
83 	[0xAB] = WX_PTT(IP, IPV4, IGM, IPV6, UDP,  PAY4),
84 	[0xAC] = WX_PTT(IP, IPV4, IGM, IPV6, TCP,  PAY4),
85 	[0xAD] = WX_PTT(IP, IPV4, IGM, IPV6, SCTP, PAY4),
86 
87 	/* IPv4 --> GRE/NAT --> MAC+VLAN --> NONE/IPv4/IPv6 */
88 	[0xB0] = WX_PTT(IP, IPV4, IGMV, NONE, NONE, PAY3),
89 	[0xB1] = WX_PTT(IP, IPV4, IGMV, FGV4, NONE, PAY3),
90 	[0xB2] = WX_PTT(IP, IPV4, IGMV, IPV4, NONE, PAY3),
91 	[0xB3] = WX_PTT(IP, IPV4, IGMV, IPV4, UDP,  PAY4),
92 	[0xB4] = WX_PTT(IP, IPV4, IGMV, IPV4, TCP,  PAY4),
93 	[0xB5] = WX_PTT(IP, IPV4, IGMV, IPV4, SCTP, PAY4),
94 	[0xB9] = WX_PTT(IP, IPV4, IGMV, FGV6, NONE, PAY3),
95 	[0xBA] = WX_PTT(IP, IPV4, IGMV, IPV6, NONE, PAY3),
96 	[0xBB] = WX_PTT(IP, IPV4, IGMV, IPV6, UDP,  PAY4),
97 	[0xBC] = WX_PTT(IP, IPV4, IGMV, IPV6, TCP,  PAY4),
98 	[0xBD] = WX_PTT(IP, IPV4, IGMV, IPV6, SCTP, PAY4),
99 
100 	/* IPv6 --> IPv4/IPv6 */
101 	[0xC1] = WX_PTT(IP, IPV6, IPIP, FGV4, NONE, PAY3),
102 	[0xC2] = WX_PTT(IP, IPV6, IPIP, IPV4, NONE, PAY3),
103 	[0xC3] = WX_PTT(IP, IPV6, IPIP, IPV4, UDP,  PAY4),
104 	[0xC4] = WX_PTT(IP, IPV6, IPIP, IPV4, TCP,  PAY4),
105 	[0xC5] = WX_PTT(IP, IPV6, IPIP, IPV4, SCTP, PAY4),
106 	[0xC9] = WX_PTT(IP, IPV6, IPIP, FGV6, NONE, PAY3),
107 	[0xCA] = WX_PTT(IP, IPV6, IPIP, IPV6, NONE, PAY3),
108 	[0xCB] = WX_PTT(IP, IPV6, IPIP, IPV6, UDP,  PAY4),
109 	[0xCC] = WX_PTT(IP, IPV6, IPIP, IPV6, TCP,  PAY4),
110 	[0xCD] = WX_PTT(IP, IPV6, IPIP, IPV6, SCTP, PAY4),
111 
112 	/* IPv6 --> GRE/NAT -> NONE/IPv4/IPv6 */
113 	[0xD0] = WX_PTT(IP, IPV6, IG, NONE, NONE, PAY3),
114 	[0xD1] = WX_PTT(IP, IPV6, IG, FGV4, NONE, PAY3),
115 	[0xD2] = WX_PTT(IP, IPV6, IG, IPV4, NONE, PAY3),
116 	[0xD3] = WX_PTT(IP, IPV6, IG, IPV4, UDP,  PAY4),
117 	[0xD4] = WX_PTT(IP, IPV6, IG, IPV4, TCP,  PAY4),
118 	[0xD5] = WX_PTT(IP, IPV6, IG, IPV4, SCTP, PAY4),
119 	[0xD9] = WX_PTT(IP, IPV6, IG, FGV6, NONE, PAY3),
120 	[0xDA] = WX_PTT(IP, IPV6, IG, IPV6, NONE, PAY3),
121 	[0xDB] = WX_PTT(IP, IPV6, IG, IPV6, UDP,  PAY4),
122 	[0xDC] = WX_PTT(IP, IPV6, IG, IPV6, TCP,  PAY4),
123 	[0xDD] = WX_PTT(IP, IPV6, IG, IPV6, SCTP, PAY4),
124 
125 	/* IPv6 --> GRE/NAT -> MAC -> NONE/IPv4/IPv6 */
126 	[0xE0] = WX_PTT(IP, IPV6, IGM, NONE, NONE, PAY3),
127 	[0xE1] = WX_PTT(IP, IPV6, IGM, FGV4, NONE, PAY3),
128 	[0xE2] = WX_PTT(IP, IPV6, IGM, IPV4, NONE, PAY3),
129 	[0xE3] = WX_PTT(IP, IPV6, IGM, IPV4, UDP,  PAY4),
130 	[0xE4] = WX_PTT(IP, IPV6, IGM, IPV4, TCP,  PAY4),
131 	[0xE5] = WX_PTT(IP, IPV6, IGM, IPV4, SCTP, PAY4),
132 	[0xE9] = WX_PTT(IP, IPV6, IGM, FGV6, NONE, PAY3),
133 	[0xEA] = WX_PTT(IP, IPV6, IGM, IPV6, NONE, PAY3),
134 	[0xEB] = WX_PTT(IP, IPV6, IGM, IPV6, UDP,  PAY4),
135 	[0xEC] = WX_PTT(IP, IPV6, IGM, IPV6, TCP,  PAY4),
136 	[0xED] = WX_PTT(IP, IPV6, IGM, IPV6, SCTP, PAY4),
137 
138 	/* IPv6 --> GRE/NAT -> MAC--> NONE/IPv */
139 	[0xF0] = WX_PTT(IP, IPV6, IGMV, NONE, NONE, PAY3),
140 	[0xF1] = WX_PTT(IP, IPV6, IGMV, FGV4, NONE, PAY3),
141 	[0xF2] = WX_PTT(IP, IPV6, IGMV, IPV4, NONE, PAY3),
142 	[0xF3] = WX_PTT(IP, IPV6, IGMV, IPV4, UDP,  PAY4),
143 	[0xF4] = WX_PTT(IP, IPV6, IGMV, IPV4, TCP,  PAY4),
144 	[0xF5] = WX_PTT(IP, IPV6, IGMV, IPV4, SCTP, PAY4),
145 	[0xF9] = WX_PTT(IP, IPV6, IGMV, FGV6, NONE, PAY3),
146 	[0xFA] = WX_PTT(IP, IPV6, IGMV, IPV6, NONE, PAY3),
147 	[0xFB] = WX_PTT(IP, IPV6, IGMV, IPV6, UDP,  PAY4),
148 	[0xFC] = WX_PTT(IP, IPV6, IGMV, IPV6, TCP,  PAY4),
149 	[0xFD] = WX_PTT(IP, IPV6, IGMV, IPV6, SCTP, PAY4),
150 };
151 
wx_decode_ptype(const u8 ptype)152 struct wx_dec_ptype wx_decode_ptype(const u8 ptype)
153 {
154 	return wx_ptype_lookup[ptype];
155 }
156 EXPORT_SYMBOL(wx_decode_ptype);
157 
158 /* wx_test_staterr - tests bits in Rx descriptor status and error fields */
wx_test_staterr(union wx_rx_desc * rx_desc,const u32 stat_err_bits)159 static __le32 wx_test_staterr(union wx_rx_desc *rx_desc,
160 			      const u32 stat_err_bits)
161 {
162 	return rx_desc->wb.upper.status_error & cpu_to_le32(stat_err_bits);
163 }
164 
wx_dma_sync_frag(struct wx_ring * rx_ring,struct wx_rx_buffer * rx_buffer)165 static void wx_dma_sync_frag(struct wx_ring *rx_ring,
166 			     struct wx_rx_buffer *rx_buffer)
167 {
168 	struct sk_buff *skb = rx_buffer->skb;
169 	skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
170 
171 	dma_sync_single_range_for_cpu(rx_ring->dev,
172 				      WX_CB(skb)->dma,
173 				      skb_frag_off(frag),
174 				      skb_frag_size(frag),
175 				      DMA_FROM_DEVICE);
176 
177 	/* If the page was released, just unmap it. */
178 	if (unlikely(WX_CB(skb)->page_released))
179 		page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
180 }
181 
wx_get_rx_buffer(struct wx_ring * rx_ring,union wx_rx_desc * rx_desc,struct sk_buff ** skb,int * rx_buffer_pgcnt)182 static struct wx_rx_buffer *wx_get_rx_buffer(struct wx_ring *rx_ring,
183 					     union wx_rx_desc *rx_desc,
184 					     struct sk_buff **skb,
185 					     int *rx_buffer_pgcnt)
186 {
187 	struct wx_rx_buffer *rx_buffer;
188 	unsigned int size;
189 
190 	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
191 	size = le16_to_cpu(rx_desc->wb.upper.length);
192 
193 #if (PAGE_SIZE < 8192)
194 	*rx_buffer_pgcnt = page_count(rx_buffer->page);
195 #else
196 	*rx_buffer_pgcnt = 0;
197 #endif
198 
199 	prefetchw(rx_buffer->page);
200 	*skb = rx_buffer->skb;
201 
202 	/* Delay unmapping of the first packet. It carries the header
203 	 * information, HW may still access the header after the writeback.
204 	 * Only unmap it when EOP is reached
205 	 */
206 	if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)) {
207 		if (!*skb)
208 			goto skip_sync;
209 	} else {
210 		if (*skb)
211 			wx_dma_sync_frag(rx_ring, rx_buffer);
212 	}
213 
214 	/* we are reusing so sync this buffer for CPU use */
215 	dma_sync_single_range_for_cpu(rx_ring->dev,
216 				      rx_buffer->dma,
217 				      rx_buffer->page_offset,
218 				      size,
219 				      DMA_FROM_DEVICE);
220 skip_sync:
221 	return rx_buffer;
222 }
223 
wx_put_rx_buffer(struct wx_ring * rx_ring,struct wx_rx_buffer * rx_buffer,struct sk_buff * skb,int rx_buffer_pgcnt)224 static void wx_put_rx_buffer(struct wx_ring *rx_ring,
225 			     struct wx_rx_buffer *rx_buffer,
226 			     struct sk_buff *skb,
227 			     int rx_buffer_pgcnt)
228 {
229 	if (!IS_ERR(skb) && WX_CB(skb)->dma == rx_buffer->dma)
230 		/* the page has been released from the ring */
231 		WX_CB(skb)->page_released = true;
232 
233 	/* clear contents of rx_buffer */
234 	rx_buffer->page = NULL;
235 	rx_buffer->skb = NULL;
236 }
237 
wx_build_skb(struct wx_ring * rx_ring,struct wx_rx_buffer * rx_buffer,union wx_rx_desc * rx_desc)238 static struct sk_buff *wx_build_skb(struct wx_ring *rx_ring,
239 				    struct wx_rx_buffer *rx_buffer,
240 				    union wx_rx_desc *rx_desc)
241 {
242 	unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
243 #if (PAGE_SIZE < 8192)
244 	unsigned int truesize = WX_RX_BUFSZ;
245 #else
246 	unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
247 #endif
248 	struct sk_buff *skb = rx_buffer->skb;
249 
250 	if (!skb) {
251 		void *page_addr = page_address(rx_buffer->page) +
252 				  rx_buffer->page_offset;
253 
254 		/* prefetch first cache line of first page */
255 		net_prefetch(page_addr);
256 
257 		/* allocate a skb to store the frags */
258 		skb = napi_alloc_skb(&rx_ring->q_vector->napi, WX_RXBUFFER_256);
259 		if (unlikely(!skb))
260 			return NULL;
261 
262 		/* we will be copying header into skb->data in
263 		 * pskb_may_pull so it is in our interest to prefetch
264 		 * it now to avoid a possible cache miss
265 		 */
266 		prefetchw(skb->data);
267 
268 		if (size <= WX_RXBUFFER_256) {
269 			memcpy(__skb_put(skb, size), page_addr,
270 			       ALIGN(size, sizeof(long)));
271 			page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, true);
272 			return skb;
273 		}
274 
275 		skb_mark_for_recycle(skb);
276 
277 		if (!wx_test_staterr(rx_desc, WX_RXD_STAT_EOP))
278 			WX_CB(skb)->dma = rx_buffer->dma;
279 
280 		skb_add_rx_frag(skb, 0, rx_buffer->page,
281 				rx_buffer->page_offset,
282 				size, truesize);
283 		goto out;
284 
285 	} else {
286 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
287 				rx_buffer->page_offset, size, truesize);
288 	}
289 
290 out:
291 #if (PAGE_SIZE < 8192)
292 	/* flip page offset to other buffer */
293 	rx_buffer->page_offset ^= truesize;
294 #else
295 	/* move offset up to the next cache line */
296 	rx_buffer->page_offset += truesize;
297 #endif
298 
299 	return skb;
300 }
301 
wx_alloc_mapped_page(struct wx_ring * rx_ring,struct wx_rx_buffer * bi)302 static bool wx_alloc_mapped_page(struct wx_ring *rx_ring,
303 				 struct wx_rx_buffer *bi)
304 {
305 	struct page *page = bi->page;
306 	dma_addr_t dma;
307 
308 	/* since we are recycling buffers we should seldom need to alloc */
309 	if (likely(page))
310 		return true;
311 
312 	page = page_pool_dev_alloc_pages(rx_ring->page_pool);
313 	if (unlikely(!page))
314 		return false;
315 	dma = page_pool_get_dma_addr(page);
316 
317 	bi->page_dma = dma;
318 	bi->page = page;
319 	bi->page_offset = 0;
320 
321 	return true;
322 }
323 
324 /**
325  * wx_alloc_rx_buffers - Replace used receive buffers
326  * @rx_ring: ring to place buffers on
327  * @cleaned_count: number of buffers to replace
328  **/
wx_alloc_rx_buffers(struct wx_ring * rx_ring,u16 cleaned_count)329 void wx_alloc_rx_buffers(struct wx_ring *rx_ring, u16 cleaned_count)
330 {
331 	u16 i = rx_ring->next_to_use;
332 	union wx_rx_desc *rx_desc;
333 	struct wx_rx_buffer *bi;
334 
335 	/* nothing to do */
336 	if (!cleaned_count)
337 		return;
338 
339 	rx_desc = WX_RX_DESC(rx_ring, i);
340 	bi = &rx_ring->rx_buffer_info[i];
341 	i -= rx_ring->count;
342 
343 	do {
344 		if (!wx_alloc_mapped_page(rx_ring, bi))
345 			break;
346 
347 		/* sync the buffer for use by the device */
348 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
349 						 bi->page_offset,
350 						 WX_RX_BUFSZ,
351 						 DMA_FROM_DEVICE);
352 
353 		rx_desc->read.pkt_addr =
354 			cpu_to_le64(bi->page_dma + bi->page_offset);
355 
356 		rx_desc++;
357 		bi++;
358 		i++;
359 		if (unlikely(!i)) {
360 			rx_desc = WX_RX_DESC(rx_ring, 0);
361 			bi = rx_ring->rx_buffer_info;
362 			i -= rx_ring->count;
363 		}
364 
365 		/* clear the status bits for the next_to_use descriptor */
366 		rx_desc->wb.upper.status_error = 0;
367 
368 		cleaned_count--;
369 	} while (cleaned_count);
370 
371 	i += rx_ring->count;
372 
373 	if (rx_ring->next_to_use != i) {
374 		rx_ring->next_to_use = i;
375 		/* update next to alloc since we have filled the ring */
376 		rx_ring->next_to_alloc = i;
377 
378 		/* Force memory writes to complete before letting h/w
379 		 * know there are new descriptors to fetch.  (Only
380 		 * applicable for weak-ordered memory model archs,
381 		 * such as IA-64).
382 		 */
383 		wmb();
384 		writel(i, rx_ring->tail);
385 	}
386 }
387 
wx_desc_unused(struct wx_ring * ring)388 u16 wx_desc_unused(struct wx_ring *ring)
389 {
390 	u16 ntc = ring->next_to_clean;
391 	u16 ntu = ring->next_to_use;
392 
393 	return ((ntc > ntu) ? 0 : ring->count) + ntc - ntu - 1;
394 }
395 
396 /**
397  * wx_is_non_eop - process handling of non-EOP buffers
398  * @rx_ring: Rx ring being processed
399  * @rx_desc: Rx descriptor for current buffer
400  * @skb: Current socket buffer containing buffer in progress
401  *
402  * This function updates next to clean. If the buffer is an EOP buffer
403  * this function exits returning false, otherwise it will place the
404  * sk_buff in the next buffer to be chained and return true indicating
405  * that this is in fact a non-EOP buffer.
406  **/
wx_is_non_eop(struct wx_ring * rx_ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)407 static bool wx_is_non_eop(struct wx_ring *rx_ring,
408 			  union wx_rx_desc *rx_desc,
409 			  struct sk_buff *skb)
410 {
411 	u32 ntc = rx_ring->next_to_clean + 1;
412 
413 	/* fetch, update, and store next to clean */
414 	ntc = (ntc < rx_ring->count) ? ntc : 0;
415 	rx_ring->next_to_clean = ntc;
416 
417 	prefetch(WX_RX_DESC(rx_ring, ntc));
418 
419 	/* if we are the last buffer then there is nothing else to do */
420 	if (likely(wx_test_staterr(rx_desc, WX_RXD_STAT_EOP)))
421 		return false;
422 
423 	rx_ring->rx_buffer_info[ntc].skb = skb;
424 	rx_ring->rx_stats.non_eop_descs++;
425 
426 	return true;
427 }
428 
wx_pull_tail(struct sk_buff * skb)429 static void wx_pull_tail(struct sk_buff *skb)
430 {
431 	skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
432 	unsigned int pull_len;
433 	unsigned char *va;
434 
435 	/* it is valid to use page_address instead of kmap since we are
436 	 * working with pages allocated out of the lomem pool per
437 	 * alloc_page(GFP_ATOMIC)
438 	 */
439 	va = skb_frag_address(frag);
440 
441 	/* we need the header to contain the greater of either ETH_HLEN or
442 	 * 60 bytes if the skb->len is less than 60 for skb_pad.
443 	 */
444 	pull_len = eth_get_headlen(skb->dev, va, WX_RXBUFFER_256);
445 
446 	/* align pull length to size of long to optimize memcpy performance */
447 	skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
448 
449 	/* update all of the pointers */
450 	skb_frag_size_sub(frag, pull_len);
451 	skb_frag_off_add(frag, pull_len);
452 	skb->data_len -= pull_len;
453 	skb->tail += pull_len;
454 }
455 
456 /**
457  * wx_cleanup_headers - Correct corrupted or empty headers
458  * @rx_ring: rx descriptor ring packet is being transacted on
459  * @rx_desc: pointer to the EOP Rx descriptor
460  * @skb: pointer to current skb being fixed
461  *
462  * Check for corrupted packet headers caused by senders on the local L2
463  * embedded NIC switch not setting up their Tx Descriptors right.  These
464  * should be very rare.
465  *
466  * Also address the case where we are pulling data in on pages only
467  * and as such no data is present in the skb header.
468  *
469  * In addition if skb is not at least 60 bytes we need to pad it so that
470  * it is large enough to qualify as a valid Ethernet frame.
471  *
472  * Returns true if an error was encountered and skb was freed.
473  **/
wx_cleanup_headers(struct wx_ring * rx_ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)474 static bool wx_cleanup_headers(struct wx_ring *rx_ring,
475 			       union wx_rx_desc *rx_desc,
476 			       struct sk_buff *skb)
477 {
478 	struct net_device *netdev = rx_ring->netdev;
479 
480 	/* verify that the packet does not have any known errors */
481 	if (!netdev ||
482 	    unlikely(wx_test_staterr(rx_desc, WX_RXD_ERR_RXE) &&
483 		     !(netdev->features & NETIF_F_RXALL))) {
484 		dev_kfree_skb_any(skb);
485 		return true;
486 	}
487 
488 	/* place header in linear portion of buffer */
489 	if (!skb_headlen(skb))
490 		wx_pull_tail(skb);
491 
492 	/* if eth_skb_pad returns an error the skb was freed */
493 	if (eth_skb_pad(skb))
494 		return true;
495 
496 	return false;
497 }
498 
wx_rx_hash(struct wx_ring * ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)499 static void wx_rx_hash(struct wx_ring *ring,
500 		       union wx_rx_desc *rx_desc,
501 		       struct sk_buff *skb)
502 {
503 	u16 rss_type;
504 
505 	if (!(ring->netdev->features & NETIF_F_RXHASH))
506 		return;
507 
508 	rss_type = le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
509 			       WX_RXD_RSSTYPE_MASK;
510 
511 	if (!rss_type)
512 		return;
513 
514 	skb_set_hash(skb, le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
515 		     (WX_RSS_L4_TYPES_MASK & (1ul << rss_type)) ?
516 		     PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3);
517 }
518 
519 /**
520  * wx_rx_checksum - indicate in skb if hw indicated a good cksum
521  * @ring: structure containing ring specific data
522  * @rx_desc: current Rx descriptor being processed
523  * @skb: skb currently being received and modified
524  **/
wx_rx_checksum(struct wx_ring * ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)525 static void wx_rx_checksum(struct wx_ring *ring,
526 			   union wx_rx_desc *rx_desc,
527 			   struct sk_buff *skb)
528 {
529 	struct wx_dec_ptype dptype = wx_decode_ptype(WX_RXD_PKTTYPE(rx_desc));
530 
531 	skb_checksum_none_assert(skb);
532 	/* Rx csum disabled */
533 	if (!(ring->netdev->features & NETIF_F_RXCSUM))
534 		return;
535 
536 	/* if IPv4 header checksum error */
537 	if ((wx_test_staterr(rx_desc, WX_RXD_STAT_IPCS) &&
538 	     wx_test_staterr(rx_desc, WX_RXD_ERR_IPE)) ||
539 	    (wx_test_staterr(rx_desc, WX_RXD_STAT_OUTERIPCS) &&
540 	     wx_test_staterr(rx_desc, WX_RXD_ERR_OUTERIPER))) {
541 		ring->rx_stats.csum_err++;
542 		return;
543 	}
544 
545 	/* L4 checksum offload flag must set for the below code to work */
546 	if (!wx_test_staterr(rx_desc, WX_RXD_STAT_L4CS))
547 		return;
548 
549 	/* Hardware can't guarantee csum if IPv6 Dest Header found */
550 	if (dptype.prot != WX_DEC_PTYPE_PROT_SCTP &&
551 	    wx_test_staterr(rx_desc, WX_RXD_STAT_IPV6EX))
552 		return;
553 
554 	/* if L4 checksum error */
555 	if (wx_test_staterr(rx_desc, WX_RXD_ERR_TCPE)) {
556 		ring->rx_stats.csum_err++;
557 		return;
558 	}
559 
560 	/* It must be a TCP or UDP or SCTP packet with a valid checksum */
561 	skb->ip_summed = CHECKSUM_UNNECESSARY;
562 
563 	/* If there is an outer header present that might contain a checksum
564 	 * we need to bump the checksum level by 1 to reflect the fact that
565 	 * we are indicating we validated the inner checksum.
566 	 */
567 	if (dptype.etype >= WX_DEC_PTYPE_ETYPE_IG)
568 		__skb_incr_checksum_unnecessary(skb);
569 	ring->rx_stats.csum_good_cnt++;
570 }
571 
wx_rx_vlan(struct wx_ring * ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)572 static void wx_rx_vlan(struct wx_ring *ring, union wx_rx_desc *rx_desc,
573 		       struct sk_buff *skb)
574 {
575 	u16 ethertype;
576 	u8 idx = 0;
577 
578 	if ((ring->netdev->features &
579 	     (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_STAG_RX)) &&
580 	    wx_test_staterr(rx_desc, WX_RXD_STAT_VP)) {
581 		idx = (le16_to_cpu(rx_desc->wb.lower.lo_dword.hs_rss.pkt_info) &
582 		       0x1c0) >> 6;
583 		ethertype = ring->q_vector->wx->tpid[idx];
584 		__vlan_hwaccel_put_tag(skb, htons(ethertype),
585 				       le16_to_cpu(rx_desc->wb.upper.vlan));
586 	}
587 }
588 
589 /**
590  * wx_process_skb_fields - Populate skb header fields from Rx descriptor
591  * @rx_ring: rx descriptor ring packet is being transacted on
592  * @rx_desc: pointer to the EOP Rx descriptor
593  * @skb: pointer to current skb being populated
594  *
595  * This function checks the ring, descriptor, and packet information in
596  * order to populate the hash, checksum, protocol, and
597  * other fields within the skb.
598  **/
wx_process_skb_fields(struct wx_ring * rx_ring,union wx_rx_desc * rx_desc,struct sk_buff * skb)599 static void wx_process_skb_fields(struct wx_ring *rx_ring,
600 				  union wx_rx_desc *rx_desc,
601 				  struct sk_buff *skb)
602 {
603 	struct wx *wx = netdev_priv(rx_ring->netdev);
604 
605 	wx_rx_hash(rx_ring, rx_desc, skb);
606 	wx_rx_checksum(rx_ring, rx_desc, skb);
607 
608 	if (unlikely(test_bit(WX_FLAG_RX_HWTSTAMP_ENABLED, wx->flags)) &&
609 	    unlikely(wx_test_staterr(rx_desc, WX_RXD_STAT_TS))) {
610 		wx_ptp_rx_hwtstamp(rx_ring->q_vector->wx, skb);
611 		rx_ring->last_rx_timestamp = jiffies;
612 	}
613 
614 	wx_rx_vlan(rx_ring, rx_desc, skb);
615 	skb_record_rx_queue(skb, rx_ring->queue_index);
616 	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
617 }
618 
619 /**
620  * wx_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
621  * @q_vector: structure containing interrupt and ring information
622  * @rx_ring: rx descriptor ring to transact packets on
623  * @budget: Total limit on number of packets to process
624  *
625  * This function provides a "bounce buffer" approach to Rx interrupt
626  * processing.  The advantage to this is that on systems that have
627  * expensive overhead for IOMMU access this provides a means of avoiding
628  * it by maintaining the mapping of the page to the system.
629  *
630  * Returns amount of work completed.
631  **/
wx_clean_rx_irq(struct wx_q_vector * q_vector,struct wx_ring * rx_ring,int budget)632 static int wx_clean_rx_irq(struct wx_q_vector *q_vector,
633 			   struct wx_ring *rx_ring,
634 			   int budget)
635 {
636 	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
637 	u16 cleaned_count = wx_desc_unused(rx_ring);
638 
639 	do {
640 		struct wx_rx_buffer *rx_buffer;
641 		union wx_rx_desc *rx_desc;
642 		struct sk_buff *skb;
643 		int rx_buffer_pgcnt;
644 
645 		/* return some buffers to hardware, one at a time is too slow */
646 		if (cleaned_count >= WX_RX_BUFFER_WRITE) {
647 			wx_alloc_rx_buffers(rx_ring, cleaned_count);
648 			cleaned_count = 0;
649 		}
650 
651 		rx_desc = WX_RX_DESC(rx_ring, rx_ring->next_to_clean);
652 		if (!wx_test_staterr(rx_desc, WX_RXD_STAT_DD))
653 			break;
654 
655 		/* This memory barrier is needed to keep us from reading
656 		 * any other fields out of the rx_desc until we know the
657 		 * descriptor has been written back
658 		 */
659 		dma_rmb();
660 
661 		rx_buffer = wx_get_rx_buffer(rx_ring, rx_desc, &skb, &rx_buffer_pgcnt);
662 
663 		/* retrieve a buffer from the ring */
664 		skb = wx_build_skb(rx_ring, rx_buffer, rx_desc);
665 
666 		/* exit if we failed to retrieve a buffer */
667 		if (!skb) {
668 			rx_ring->rx_stats.alloc_rx_buff_failed++;
669 			break;
670 		}
671 
672 		wx_put_rx_buffer(rx_ring, rx_buffer, skb, rx_buffer_pgcnt);
673 		cleaned_count++;
674 
675 		/* place incomplete frames back on ring for completion */
676 		if (wx_is_non_eop(rx_ring, rx_desc, skb))
677 			continue;
678 
679 		/* verify the packet layout is correct */
680 		if (wx_cleanup_headers(rx_ring, rx_desc, skb))
681 			continue;
682 
683 		/* probably a little skewed due to removing CRC */
684 		total_rx_bytes += skb->len;
685 
686 		/* populate checksum, timestamp, VLAN, and protocol */
687 		wx_process_skb_fields(rx_ring, rx_desc, skb);
688 		napi_gro_receive(&q_vector->napi, skb);
689 
690 		/* update budget accounting */
691 		total_rx_packets++;
692 	} while (likely(total_rx_packets < budget));
693 
694 	u64_stats_update_begin(&rx_ring->syncp);
695 	rx_ring->stats.packets += total_rx_packets;
696 	rx_ring->stats.bytes += total_rx_bytes;
697 	u64_stats_update_end(&rx_ring->syncp);
698 	q_vector->rx.total_packets += total_rx_packets;
699 	q_vector->rx.total_bytes += total_rx_bytes;
700 
701 	return total_rx_packets;
702 }
703 
wx_txring_txq(const struct wx_ring * ring)704 static struct netdev_queue *wx_txring_txq(const struct wx_ring *ring)
705 {
706 	return netdev_get_tx_queue(ring->netdev, ring->queue_index);
707 }
708 
709 /**
710  * wx_clean_tx_irq - Reclaim resources after transmit completes
711  * @q_vector: structure containing interrupt and ring information
712  * @tx_ring: tx ring to clean
713  * @napi_budget: Used to determine if we are in netpoll
714  **/
wx_clean_tx_irq(struct wx_q_vector * q_vector,struct wx_ring * tx_ring,int napi_budget)715 static bool wx_clean_tx_irq(struct wx_q_vector *q_vector,
716 			    struct wx_ring *tx_ring, int napi_budget)
717 {
718 	unsigned int budget = q_vector->wx->tx_work_limit;
719 	unsigned int total_bytes = 0, total_packets = 0;
720 	struct wx *wx = netdev_priv(tx_ring->netdev);
721 	unsigned int i = tx_ring->next_to_clean;
722 	struct wx_tx_buffer *tx_buffer;
723 	union wx_tx_desc *tx_desc;
724 
725 	if (!netif_carrier_ok(tx_ring->netdev))
726 		return true;
727 
728 	tx_buffer = &tx_ring->tx_buffer_info[i];
729 	tx_desc = WX_TX_DESC(tx_ring, i);
730 	i -= tx_ring->count;
731 
732 	do {
733 		union wx_tx_desc *eop_desc = tx_buffer->next_to_watch;
734 
735 		/* if next_to_watch is not set then there is no work pending */
736 		if (!eop_desc)
737 			break;
738 
739 		/* prevent any other reads prior to eop_desc */
740 		smp_rmb();
741 
742 		/* if DD is not set pending work has not been completed */
743 		if (!(eop_desc->wb.status & cpu_to_le32(WX_TXD_STAT_DD)))
744 			break;
745 
746 		/* clear next_to_watch to prevent false hangs */
747 		tx_buffer->next_to_watch = NULL;
748 
749 		/* update the statistics for this packet */
750 		total_bytes += tx_buffer->bytecount;
751 		total_packets += tx_buffer->gso_segs;
752 
753 		/* schedule check for Tx timestamp */
754 		if (unlikely(test_bit(WX_STATE_PTP_TX_IN_PROGRESS, wx->state)) &&
755 		    skb_shinfo(tx_buffer->skb)->tx_flags & SKBTX_IN_PROGRESS)
756 			ptp_schedule_worker(wx->ptp_clock, 0);
757 
758 		/* free the skb */
759 		napi_consume_skb(tx_buffer->skb, napi_budget);
760 
761 		/* unmap skb header data */
762 		dma_unmap_single(tx_ring->dev,
763 				 dma_unmap_addr(tx_buffer, dma),
764 				 dma_unmap_len(tx_buffer, len),
765 				 DMA_TO_DEVICE);
766 
767 		/* clear tx_buffer data */
768 		dma_unmap_len_set(tx_buffer, len, 0);
769 
770 		/* unmap remaining buffers */
771 		while (tx_desc != eop_desc) {
772 			tx_buffer++;
773 			tx_desc++;
774 			i++;
775 			if (unlikely(!i)) {
776 				i -= tx_ring->count;
777 				tx_buffer = tx_ring->tx_buffer_info;
778 				tx_desc = WX_TX_DESC(tx_ring, 0);
779 			}
780 
781 			/* unmap any remaining paged data */
782 			if (dma_unmap_len(tx_buffer, len)) {
783 				dma_unmap_page(tx_ring->dev,
784 					       dma_unmap_addr(tx_buffer, dma),
785 					       dma_unmap_len(tx_buffer, len),
786 					       DMA_TO_DEVICE);
787 				dma_unmap_len_set(tx_buffer, len, 0);
788 			}
789 		}
790 
791 		/* move us one more past the eop_desc for start of next pkt */
792 		tx_buffer++;
793 		tx_desc++;
794 		i++;
795 		if (unlikely(!i)) {
796 			i -= tx_ring->count;
797 			tx_buffer = tx_ring->tx_buffer_info;
798 			tx_desc = WX_TX_DESC(tx_ring, 0);
799 		}
800 
801 		/* issue prefetch for next Tx descriptor */
802 		prefetch(tx_desc);
803 
804 		/* update budget accounting */
805 		budget--;
806 	} while (likely(budget));
807 
808 	i += tx_ring->count;
809 	tx_ring->next_to_clean = i;
810 	u64_stats_update_begin(&tx_ring->syncp);
811 	tx_ring->stats.bytes += total_bytes;
812 	tx_ring->stats.packets += total_packets;
813 	u64_stats_update_end(&tx_ring->syncp);
814 	q_vector->tx.total_bytes += total_bytes;
815 	q_vector->tx.total_packets += total_packets;
816 
817 	netdev_tx_completed_queue(wx_txring_txq(tx_ring),
818 				  total_packets, total_bytes);
819 
820 #define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
821 	if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
822 		     (wx_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD))) {
823 		/* Make sure that anybody stopping the queue after this
824 		 * sees the new next_to_clean.
825 		 */
826 		smp_mb();
827 
828 		if (__netif_subqueue_stopped(tx_ring->netdev,
829 					     tx_ring->queue_index) &&
830 		    netif_running(tx_ring->netdev)) {
831 			netif_wake_subqueue(tx_ring->netdev,
832 					    tx_ring->queue_index);
833 			++tx_ring->tx_stats.restart_queue;
834 		}
835 	}
836 
837 	return !!budget;
838 }
839 
840 /**
841  * wx_poll - NAPI polling RX/TX cleanup routine
842  * @napi: napi struct with our devices info in it
843  * @budget: amount of work driver is allowed to do this pass, in packets
844  *
845  * This function will clean all queues associated with a q_vector.
846  **/
wx_poll(struct napi_struct * napi,int budget)847 static int wx_poll(struct napi_struct *napi, int budget)
848 {
849 	struct wx_q_vector *q_vector = container_of(napi, struct wx_q_vector, napi);
850 	int per_ring_budget, work_done = 0;
851 	struct wx *wx = q_vector->wx;
852 	bool clean_complete = true;
853 	struct wx_ring *ring;
854 
855 	wx_for_each_ring(ring, q_vector->tx) {
856 		if (!wx_clean_tx_irq(q_vector, ring, budget))
857 			clean_complete = false;
858 	}
859 
860 	/* Exit if we are called by netpoll */
861 	if (budget <= 0)
862 		return budget;
863 
864 	/* attempt to distribute budget to each queue fairly, but don't allow
865 	 * the budget to go below 1 because we'll exit polling
866 	 */
867 	if (q_vector->rx.count > 1)
868 		per_ring_budget = max(budget / q_vector->rx.count, 1);
869 	else
870 		per_ring_budget = budget;
871 
872 	wx_for_each_ring(ring, q_vector->rx) {
873 		int cleaned = wx_clean_rx_irq(q_vector, ring, per_ring_budget);
874 
875 		work_done += cleaned;
876 		if (cleaned >= per_ring_budget)
877 			clean_complete = false;
878 	}
879 
880 	/* If all work not completed, return budget and keep polling */
881 	if (!clean_complete)
882 		return budget;
883 
884 	/* all work done, exit the polling mode */
885 	if (likely(napi_complete_done(napi, work_done))) {
886 		if (netif_running(wx->netdev))
887 			wx_intr_enable(wx, WX_INTR_Q(q_vector->v_idx));
888 	}
889 
890 	return min(work_done, budget - 1);
891 }
892 
wx_maybe_stop_tx(struct wx_ring * tx_ring,u16 size)893 static int wx_maybe_stop_tx(struct wx_ring *tx_ring, u16 size)
894 {
895 	if (likely(wx_desc_unused(tx_ring) >= size))
896 		return 0;
897 
898 	netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
899 
900 	/* For the next check */
901 	smp_mb();
902 
903 	/* We need to check again in a case another CPU has just
904 	 * made room available.
905 	 */
906 	if (likely(wx_desc_unused(tx_ring) < size))
907 		return -EBUSY;
908 
909 	/* A reprieve! - use start_queue because it doesn't call schedule */
910 	netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
911 	++tx_ring->tx_stats.restart_queue;
912 
913 	return 0;
914 }
915 
wx_tx_cmd_type(u32 tx_flags)916 static u32 wx_tx_cmd_type(u32 tx_flags)
917 {
918 	/* set type for advanced descriptor with frame checksum insertion */
919 	u32 cmd_type = WX_TXD_DTYP_DATA | WX_TXD_IFCS;
920 
921 	/* set HW vlan bit if vlan is present */
922 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_HW_VLAN, WX_TXD_VLE);
923 	/* set segmentation enable bits for TSO/FSO */
924 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSO, WX_TXD_TSE);
925 	/* set timestamp bit if present */
926 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_TSTAMP, WX_TXD_MAC_TSTAMP);
927 	cmd_type |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_LINKSEC, WX_TXD_LINKSEC);
928 
929 	return cmd_type;
930 }
931 
wx_tx_olinfo_status(union wx_tx_desc * tx_desc,u32 tx_flags,unsigned int paylen)932 static void wx_tx_olinfo_status(union wx_tx_desc *tx_desc,
933 				u32 tx_flags, unsigned int paylen)
934 {
935 	u32 olinfo_status = paylen << WX_TXD_PAYLEN_SHIFT;
936 
937 	/* enable L4 checksum for TSO and TX checksum offload */
938 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CSUM, WX_TXD_L4CS);
939 	/* enable IPv4 checksum for TSO */
940 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPV4, WX_TXD_IIPCS);
941 	/* enable outer IPv4 checksum for TSO */
942 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_OUTER_IPV4,
943 				     WX_TXD_EIPCS);
944 	/* Check Context must be set if Tx switch is enabled, which it
945 	 * always is for case where virtual functions are running
946 	 */
947 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_CC, WX_TXD_CC);
948 	olinfo_status |= WX_SET_FLAG(tx_flags, WX_TX_FLAGS_IPSEC,
949 				     WX_TXD_IPSEC);
950 	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
951 }
952 
wx_tx_map(struct wx_ring * tx_ring,struct wx_tx_buffer * first,const u8 hdr_len)953 static int wx_tx_map(struct wx_ring *tx_ring,
954 		     struct wx_tx_buffer *first,
955 		     const u8 hdr_len)
956 {
957 	struct sk_buff *skb = first->skb;
958 	struct wx_tx_buffer *tx_buffer;
959 	u32 tx_flags = first->tx_flags;
960 	u16 i = tx_ring->next_to_use;
961 	unsigned int data_len, size;
962 	union wx_tx_desc *tx_desc;
963 	skb_frag_t *frag;
964 	dma_addr_t dma;
965 	u32 cmd_type;
966 
967 	cmd_type = wx_tx_cmd_type(tx_flags);
968 	tx_desc = WX_TX_DESC(tx_ring, i);
969 	wx_tx_olinfo_status(tx_desc, tx_flags, skb->len - hdr_len);
970 
971 	size = skb_headlen(skb);
972 	data_len = skb->data_len;
973 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
974 
975 	tx_buffer = first;
976 
977 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
978 		if (dma_mapping_error(tx_ring->dev, dma))
979 			goto dma_error;
980 
981 		/* record length, and DMA address */
982 		dma_unmap_len_set(tx_buffer, len, size);
983 		dma_unmap_addr_set(tx_buffer, dma, dma);
984 
985 		tx_desc->read.buffer_addr = cpu_to_le64(dma);
986 
987 		while (unlikely(size > WX_MAX_DATA_PER_TXD)) {
988 			tx_desc->read.cmd_type_len =
989 				cpu_to_le32(cmd_type ^ WX_MAX_DATA_PER_TXD);
990 
991 			i++;
992 			tx_desc++;
993 			if (i == tx_ring->count) {
994 				tx_desc = WX_TX_DESC(tx_ring, 0);
995 				i = 0;
996 			}
997 			tx_desc->read.olinfo_status = 0;
998 
999 			dma += WX_MAX_DATA_PER_TXD;
1000 			size -= WX_MAX_DATA_PER_TXD;
1001 
1002 			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1003 		}
1004 
1005 		if (likely(!data_len))
1006 			break;
1007 
1008 		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1009 
1010 		i++;
1011 		tx_desc++;
1012 		if (i == tx_ring->count) {
1013 			tx_desc = WX_TX_DESC(tx_ring, 0);
1014 			i = 0;
1015 		}
1016 		tx_desc->read.olinfo_status = 0;
1017 
1018 		size = skb_frag_size(frag);
1019 
1020 		data_len -= size;
1021 
1022 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1023 				       DMA_TO_DEVICE);
1024 
1025 		tx_buffer = &tx_ring->tx_buffer_info[i];
1026 	}
1027 
1028 	/* write last descriptor with RS and EOP bits */
1029 	cmd_type |= size | WX_TXD_EOP | WX_TXD_RS;
1030 	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1031 
1032 	netdev_tx_sent_queue(wx_txring_txq(tx_ring), first->bytecount);
1033 
1034 	/* set the timestamp */
1035 	first->time_stamp = jiffies;
1036 	skb_tx_timestamp(skb);
1037 
1038 	/* Force memory writes to complete before letting h/w know there
1039 	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1040 	 * memory model archs, such as IA-64).
1041 	 *
1042 	 * We also need this memory barrier to make certain all of the
1043 	 * status bits have been updated before next_to_watch is written.
1044 	 */
1045 	wmb();
1046 
1047 	/* set next_to_watch value indicating a packet is present */
1048 	first->next_to_watch = tx_desc;
1049 
1050 	i++;
1051 	if (i == tx_ring->count)
1052 		i = 0;
1053 
1054 	tx_ring->next_to_use = i;
1055 
1056 	wx_maybe_stop_tx(tx_ring, DESC_NEEDED);
1057 
1058 	if (netif_xmit_stopped(wx_txring_txq(tx_ring)) || !netdev_xmit_more())
1059 		writel(i, tx_ring->tail);
1060 
1061 	return 0;
1062 dma_error:
1063 	dev_err(tx_ring->dev, "TX DMA map failed\n");
1064 
1065 	/* clear dma mappings for failed tx_buffer_info map */
1066 	for (;;) {
1067 		tx_buffer = &tx_ring->tx_buffer_info[i];
1068 		if (dma_unmap_len(tx_buffer, len))
1069 			dma_unmap_page(tx_ring->dev,
1070 				       dma_unmap_addr(tx_buffer, dma),
1071 				       dma_unmap_len(tx_buffer, len),
1072 				       DMA_TO_DEVICE);
1073 		dma_unmap_len_set(tx_buffer, len, 0);
1074 		if (tx_buffer == first)
1075 			break;
1076 		if (i == 0)
1077 			i += tx_ring->count;
1078 		i--;
1079 	}
1080 
1081 	dev_kfree_skb_any(first->skb);
1082 	first->skb = NULL;
1083 
1084 	tx_ring->next_to_use = i;
1085 
1086 	return -ENOMEM;
1087 }
1088 
wx_tx_ctxtdesc(struct wx_ring * tx_ring,u32 vlan_macip_lens,u32 fcoe_sof_eof,u32 type_tucmd,u32 mss_l4len_idx)1089 static void wx_tx_ctxtdesc(struct wx_ring *tx_ring, u32 vlan_macip_lens,
1090 			   u32 fcoe_sof_eof, u32 type_tucmd, u32 mss_l4len_idx)
1091 {
1092 	struct wx_tx_context_desc *context_desc;
1093 	u16 i = tx_ring->next_to_use;
1094 
1095 	context_desc = WX_TX_CTXTDESC(tx_ring, i);
1096 	i++;
1097 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1098 
1099 	/* set bits to identify this as an advanced context descriptor */
1100 	type_tucmd |= WX_TXD_DTYP_CTXT;
1101 	context_desc->vlan_macip_lens   = cpu_to_le32(vlan_macip_lens);
1102 	context_desc->seqnum_seed       = cpu_to_le32(fcoe_sof_eof);
1103 	context_desc->type_tucmd_mlhl   = cpu_to_le32(type_tucmd);
1104 	context_desc->mss_l4len_idx     = cpu_to_le32(mss_l4len_idx);
1105 }
1106 
1107 union network_header {
1108 	struct iphdr *ipv4;
1109 	struct ipv6hdr *ipv6;
1110 	void *raw;
1111 };
1112 
wx_encode_tx_desc_ptype(const struct wx_tx_buffer * first)1113 static u8 wx_encode_tx_desc_ptype(const struct wx_tx_buffer *first)
1114 {
1115 	u8 tun_prot = 0, l4_prot = 0, ptype = 0;
1116 	struct sk_buff *skb = first->skb;
1117 	unsigned char *exthdr, *l4_hdr;
1118 	__be16 frag_off;
1119 
1120 	if (skb->encapsulation) {
1121 		union network_header hdr;
1122 
1123 		switch (first->protocol) {
1124 		case htons(ETH_P_IP):
1125 			tun_prot = ip_hdr(skb)->protocol;
1126 			ptype = WX_PTYPE_TUN_IPV4;
1127 			break;
1128 		case htons(ETH_P_IPV6):
1129 			l4_hdr = skb_transport_header(skb);
1130 			exthdr = skb_network_header(skb) + sizeof(struct ipv6hdr);
1131 			tun_prot = ipv6_hdr(skb)->nexthdr;
1132 			if (l4_hdr != exthdr)
1133 				ipv6_skip_exthdr(skb, exthdr - skb->data, &tun_prot, &frag_off);
1134 			ptype = WX_PTYPE_TUN_IPV6;
1135 			break;
1136 		default:
1137 			return ptype;
1138 		}
1139 
1140 		if (tun_prot == IPPROTO_IPIP || tun_prot == IPPROTO_IPV6) {
1141 			hdr.raw = (void *)inner_ip_hdr(skb);
1142 			ptype |= WX_PTYPE_PKT_IPIP;
1143 		} else if (tun_prot == IPPROTO_UDP) {
1144 			hdr.raw = (void *)inner_ip_hdr(skb);
1145 			if (skb->inner_protocol_type != ENCAP_TYPE_ETHER ||
1146 			    skb->inner_protocol != htons(ETH_P_TEB)) {
1147 				ptype |= WX_PTYPE_PKT_IG;
1148 			} else {
1149 				if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1150 				     == htons(ETH_P_8021Q))
1151 					ptype |= WX_PTYPE_PKT_IGMV;
1152 				else
1153 					ptype |= WX_PTYPE_PKT_IGM;
1154 			}
1155 
1156 		} else if (tun_prot == IPPROTO_GRE) {
1157 			hdr.raw = (void *)inner_ip_hdr(skb);
1158 			if (skb->inner_protocol ==  htons(ETH_P_IP) ||
1159 			    skb->inner_protocol ==  htons(ETH_P_IPV6)) {
1160 				ptype |= WX_PTYPE_PKT_IG;
1161 			} else {
1162 				if (((struct ethhdr *)skb_inner_mac_header(skb))->h_proto
1163 				    == htons(ETH_P_8021Q))
1164 					ptype |= WX_PTYPE_PKT_IGMV;
1165 				else
1166 					ptype |= WX_PTYPE_PKT_IGM;
1167 			}
1168 		} else {
1169 			return ptype;
1170 		}
1171 
1172 		switch (hdr.ipv4->version) {
1173 		case IPVERSION:
1174 			l4_prot = hdr.ipv4->protocol;
1175 			break;
1176 		case 6:
1177 			l4_hdr = skb_inner_transport_header(skb);
1178 			exthdr = skb_inner_network_header(skb) + sizeof(struct ipv6hdr);
1179 			l4_prot = inner_ipv6_hdr(skb)->nexthdr;
1180 			if (l4_hdr != exthdr)
1181 				ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_prot, &frag_off);
1182 			ptype |= WX_PTYPE_PKT_IPV6;
1183 			break;
1184 		default:
1185 			return ptype;
1186 		}
1187 	} else {
1188 		switch (first->protocol) {
1189 		case htons(ETH_P_IP):
1190 			l4_prot = ip_hdr(skb)->protocol;
1191 			ptype = WX_PTYPE_PKT_IP;
1192 			break;
1193 		case htons(ETH_P_IPV6):
1194 			l4_hdr = skb_transport_header(skb);
1195 			exthdr = skb_network_header(skb) + sizeof(struct ipv6hdr);
1196 			l4_prot = ipv6_hdr(skb)->nexthdr;
1197 			if (l4_hdr != exthdr)
1198 				ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_prot, &frag_off);
1199 			ptype = WX_PTYPE_PKT_IP | WX_PTYPE_PKT_IPV6;
1200 			break;
1201 		default:
1202 			return WX_PTYPE_PKT_MAC | WX_PTYPE_TYP_MAC;
1203 		}
1204 	}
1205 	switch (l4_prot) {
1206 	case IPPROTO_TCP:
1207 		ptype |= WX_PTYPE_TYP_TCP;
1208 		break;
1209 	case IPPROTO_UDP:
1210 		ptype |= WX_PTYPE_TYP_UDP;
1211 		break;
1212 	case IPPROTO_SCTP:
1213 		ptype |= WX_PTYPE_TYP_SCTP;
1214 		break;
1215 	default:
1216 		ptype |= WX_PTYPE_TYP_IP;
1217 		break;
1218 	}
1219 
1220 	return ptype;
1221 }
1222 
wx_tso(struct wx_ring * tx_ring,struct wx_tx_buffer * first,u8 * hdr_len,u8 ptype)1223 static int wx_tso(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1224 		  u8 *hdr_len, u8 ptype)
1225 {
1226 	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1227 	struct net_device *netdev = tx_ring->netdev;
1228 	u32 l4len, tunhdr_eiplen_tunlen = 0;
1229 	struct sk_buff *skb = first->skb;
1230 	bool enc = skb->encapsulation;
1231 	struct ipv6hdr *ipv6h;
1232 	struct tcphdr *tcph;
1233 	struct iphdr *iph;
1234 	u8 tun_prot = 0;
1235 	int err;
1236 
1237 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1238 		return 0;
1239 
1240 	if (!skb_is_gso(skb))
1241 		return 0;
1242 
1243 	err = skb_cow_head(skb, 0);
1244 	if (err < 0)
1245 		return err;
1246 
1247 	/* indicates the inner headers in the skbuff are valid. */
1248 	iph = enc ? inner_ip_hdr(skb) : ip_hdr(skb);
1249 	if (iph->version == 4) {
1250 		tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1251 		iph->tot_len = 0;
1252 		iph->check = 0;
1253 		tcph->check = ~csum_tcpudp_magic(iph->saddr,
1254 						 iph->daddr, 0,
1255 						 IPPROTO_TCP, 0);
1256 		first->tx_flags |= WX_TX_FLAGS_TSO |
1257 				   WX_TX_FLAGS_CSUM |
1258 				   WX_TX_FLAGS_IPV4 |
1259 				   WX_TX_FLAGS_CC;
1260 	} else if (iph->version == 6 && skb_is_gso_v6(skb)) {
1261 		ipv6h = enc ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1262 		tcph = enc ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1263 		ipv6h->payload_len = 0;
1264 		tcph->check = ~csum_ipv6_magic(&ipv6h->saddr,
1265 					       &ipv6h->daddr, 0,
1266 					       IPPROTO_TCP, 0);
1267 		first->tx_flags |= WX_TX_FLAGS_TSO |
1268 				   WX_TX_FLAGS_CSUM |
1269 				   WX_TX_FLAGS_CC;
1270 	}
1271 
1272 	/* compute header lengths */
1273 	l4len = enc ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1274 	*hdr_len = enc ? skb_inner_transport_offset(skb) :
1275 			 skb_transport_offset(skb);
1276 	*hdr_len += l4len;
1277 
1278 	/* update gso size and bytecount with header size */
1279 	first->gso_segs = skb_shinfo(skb)->gso_segs;
1280 	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1281 
1282 	/* mss_l4len_id: use 0 as index for TSO */
1283 	mss_l4len_idx = l4len << WX_TXD_L4LEN_SHIFT;
1284 	mss_l4len_idx |= skb_shinfo(skb)->gso_size << WX_TXD_MSS_SHIFT;
1285 
1286 	/* vlan_macip_lens: HEADLEN, MACLEN, VLAN tag */
1287 	if (enc) {
1288 		unsigned char *exthdr, *l4_hdr;
1289 		__be16 frag_off;
1290 
1291 		switch (first->protocol) {
1292 		case htons(ETH_P_IP):
1293 			tun_prot = ip_hdr(skb)->protocol;
1294 			first->tx_flags |= WX_TX_FLAGS_OUTER_IPV4;
1295 			break;
1296 		case htons(ETH_P_IPV6):
1297 			l4_hdr = skb_transport_header(skb);
1298 			exthdr = skb_network_header(skb) + sizeof(struct ipv6hdr);
1299 			tun_prot = ipv6_hdr(skb)->nexthdr;
1300 			if (l4_hdr != exthdr)
1301 				ipv6_skip_exthdr(skb, exthdr - skb->data, &tun_prot, &frag_off);
1302 			break;
1303 		default:
1304 			break;
1305 		}
1306 		switch (tun_prot) {
1307 		case IPPROTO_UDP:
1308 			tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1309 			tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1310 						 WX_TXD_OUTER_IPLEN_SHIFT) |
1311 						(((skb_inner_mac_header(skb) -
1312 						skb_transport_header(skb)) >> 1) <<
1313 						WX_TXD_TUNNEL_LEN_SHIFT);
1314 			break;
1315 		case IPPROTO_GRE:
1316 			tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1317 			tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1318 						 WX_TXD_OUTER_IPLEN_SHIFT) |
1319 						(((skb_inner_mac_header(skb) -
1320 						skb_transport_header(skb)) >> 1) <<
1321 						WX_TXD_TUNNEL_LEN_SHIFT);
1322 			break;
1323 		case IPPROTO_IPIP:
1324 		case IPPROTO_IPV6:
1325 			tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1326 						(char *)ip_hdr(skb)) >> 2) <<
1327 						WX_TXD_OUTER_IPLEN_SHIFT;
1328 			break;
1329 		default:
1330 			break;
1331 		}
1332 		vlan_macip_lens = skb_inner_network_header_len(skb) >> 1;
1333 	} else {
1334 		vlan_macip_lens = skb_network_header_len(skb) >> 1;
1335 	}
1336 
1337 	vlan_macip_lens |= skb_network_offset(skb) << WX_TXD_MACLEN_SHIFT;
1338 	vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1339 
1340 	type_tucmd = ptype << 24;
1341 	if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1342 	    netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1343 		type_tucmd |= WX_SET_FLAG(first->tx_flags,
1344 					  WX_TX_FLAGS_HW_VLAN,
1345 					  0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1346 	wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1347 		       type_tucmd, mss_l4len_idx);
1348 
1349 	return 1;
1350 }
1351 
wx_tx_csum(struct wx_ring * tx_ring,struct wx_tx_buffer * first,u8 ptype)1352 static void wx_tx_csum(struct wx_ring *tx_ring, struct wx_tx_buffer *first,
1353 		       u8 ptype)
1354 {
1355 	u32 tunhdr_eiplen_tunlen = 0, vlan_macip_lens = 0;
1356 	struct net_device *netdev = tx_ring->netdev;
1357 	u32 mss_l4len_idx = 0, type_tucmd;
1358 	struct sk_buff *skb = first->skb;
1359 	u8 tun_prot = 0;
1360 
1361 	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1362 csum_failed:
1363 		if (!(first->tx_flags & WX_TX_FLAGS_HW_VLAN) &&
1364 		    !(first->tx_flags & WX_TX_FLAGS_CC))
1365 			return;
1366 		vlan_macip_lens = skb_network_offset(skb) <<
1367 				  WX_TXD_MACLEN_SHIFT;
1368 	} else {
1369 		unsigned char *exthdr, *l4_hdr;
1370 		__be16 frag_off;
1371 		u8 l4_prot = 0;
1372 		union {
1373 			struct iphdr *ipv4;
1374 			struct ipv6hdr *ipv6;
1375 			u8 *raw;
1376 		} network_hdr;
1377 		union {
1378 			struct tcphdr *tcphdr;
1379 			u8 *raw;
1380 		} transport_hdr;
1381 
1382 		if (skb->encapsulation) {
1383 			network_hdr.raw = skb_inner_network_header(skb);
1384 			transport_hdr.raw = skb_inner_transport_header(skb);
1385 			vlan_macip_lens = skb_network_offset(skb) <<
1386 					  WX_TXD_MACLEN_SHIFT;
1387 			switch (first->protocol) {
1388 			case htons(ETH_P_IP):
1389 				tun_prot = ip_hdr(skb)->protocol;
1390 				break;
1391 			case htons(ETH_P_IPV6):
1392 				l4_hdr = skb_transport_header(skb);
1393 				exthdr = skb_network_header(skb) + sizeof(struct ipv6hdr);
1394 				tun_prot = ipv6_hdr(skb)->nexthdr;
1395 				if (l4_hdr != exthdr)
1396 					ipv6_skip_exthdr(skb, exthdr - skb->data,
1397 							 &tun_prot, &frag_off);
1398 				break;
1399 			default:
1400 				return;
1401 			}
1402 			switch (tun_prot) {
1403 			case IPPROTO_UDP:
1404 				tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_UDP;
1405 				tunhdr_eiplen_tunlen |=
1406 					((skb_network_header_len(skb) >> 2) <<
1407 					WX_TXD_OUTER_IPLEN_SHIFT) |
1408 					(((skb_inner_mac_header(skb) -
1409 					skb_transport_header(skb)) >> 1) <<
1410 					WX_TXD_TUNNEL_LEN_SHIFT);
1411 				break;
1412 			case IPPROTO_GRE:
1413 				tunhdr_eiplen_tunlen = WX_TXD_TUNNEL_GRE;
1414 				tunhdr_eiplen_tunlen |= ((skb_network_header_len(skb) >> 2) <<
1415 							 WX_TXD_OUTER_IPLEN_SHIFT) |
1416 							 (((skb_inner_mac_header(skb) -
1417 							    skb_transport_header(skb)) >> 1) <<
1418 							  WX_TXD_TUNNEL_LEN_SHIFT);
1419 				break;
1420 			case IPPROTO_IPIP:
1421 			case IPPROTO_IPV6:
1422 				tunhdr_eiplen_tunlen = (((char *)inner_ip_hdr(skb) -
1423 							(char *)ip_hdr(skb)) >> 2) <<
1424 							WX_TXD_OUTER_IPLEN_SHIFT;
1425 				break;
1426 			default:
1427 				break;
1428 			}
1429 
1430 		} else {
1431 			network_hdr.raw = skb_network_header(skb);
1432 			transport_hdr.raw = skb_transport_header(skb);
1433 			vlan_macip_lens = skb_network_offset(skb) <<
1434 					  WX_TXD_MACLEN_SHIFT;
1435 		}
1436 
1437 		switch (network_hdr.ipv4->version) {
1438 		case IPVERSION:
1439 			vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1440 			l4_prot = network_hdr.ipv4->protocol;
1441 			break;
1442 		case 6:
1443 			vlan_macip_lens |= (transport_hdr.raw - network_hdr.raw) >> 1;
1444 			exthdr = network_hdr.raw + sizeof(struct ipv6hdr);
1445 			l4_prot = network_hdr.ipv6->nexthdr;
1446 			if (transport_hdr.raw != exthdr)
1447 				ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_prot, &frag_off);
1448 			break;
1449 		default:
1450 			break;
1451 		}
1452 
1453 		switch (l4_prot) {
1454 		case IPPROTO_TCP:
1455 		mss_l4len_idx = (transport_hdr.tcphdr->doff * 4) <<
1456 				WX_TXD_L4LEN_SHIFT;
1457 			break;
1458 		case IPPROTO_SCTP:
1459 			mss_l4len_idx = sizeof(struct sctphdr) <<
1460 					WX_TXD_L4LEN_SHIFT;
1461 			break;
1462 		case IPPROTO_UDP:
1463 			mss_l4len_idx = sizeof(struct udphdr) <<
1464 					WX_TXD_L4LEN_SHIFT;
1465 			break;
1466 		default:
1467 			skb_checksum_help(skb);
1468 			goto csum_failed;
1469 		}
1470 
1471 		/* update TX checksum flag */
1472 		first->tx_flags |= WX_TX_FLAGS_CSUM;
1473 	}
1474 	first->tx_flags |= WX_TX_FLAGS_CC;
1475 	/* vlan_macip_lens: MACLEN, VLAN tag */
1476 	vlan_macip_lens |= first->tx_flags & WX_TX_FLAGS_VLAN_MASK;
1477 
1478 	type_tucmd = ptype << 24;
1479 	if (skb->vlan_proto == htons(ETH_P_8021AD) &&
1480 	    netdev->features & NETIF_F_HW_VLAN_STAG_TX)
1481 		type_tucmd |= WX_SET_FLAG(first->tx_flags,
1482 					  WX_TX_FLAGS_HW_VLAN,
1483 					  0x1 << WX_TXD_TAG_TPID_SEL_SHIFT);
1484 	wx_tx_ctxtdesc(tx_ring, vlan_macip_lens, tunhdr_eiplen_tunlen,
1485 		       type_tucmd, mss_l4len_idx);
1486 }
1487 
wx_xmit_frame_ring(struct sk_buff * skb,struct wx_ring * tx_ring)1488 static netdev_tx_t wx_xmit_frame_ring(struct sk_buff *skb,
1489 				      struct wx_ring *tx_ring)
1490 {
1491 	struct wx *wx = netdev_priv(tx_ring->netdev);
1492 	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1493 	struct wx_tx_buffer *first;
1494 	u8 hdr_len = 0, ptype;
1495 	unsigned short f;
1496 	u32 tx_flags = 0;
1497 	int tso;
1498 
1499 	/* need: 1 descriptor per page * PAGE_SIZE/WX_MAX_DATA_PER_TXD,
1500 	 *       + 1 desc for skb_headlen/WX_MAX_DATA_PER_TXD,
1501 	 *       + 2 desc gap to keep tail from touching head,
1502 	 *       + 1 desc for context descriptor,
1503 	 * otherwise try next time
1504 	 */
1505 	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1506 		count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->
1507 						     frags[f]));
1508 
1509 	if (wx_maybe_stop_tx(tx_ring, count + 3)) {
1510 		tx_ring->tx_stats.tx_busy++;
1511 		return NETDEV_TX_BUSY;
1512 	}
1513 
1514 	/* record the location of the first descriptor for this packet */
1515 	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1516 	first->skb = skb;
1517 	first->bytecount = skb->len;
1518 	first->gso_segs = 1;
1519 
1520 	/* if we have a HW VLAN tag being added default to the HW one */
1521 	if (skb_vlan_tag_present(skb)) {
1522 		tx_flags |= skb_vlan_tag_get(skb) << WX_TX_FLAGS_VLAN_SHIFT;
1523 		tx_flags |= WX_TX_FLAGS_HW_VLAN;
1524 	}
1525 
1526 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1527 	    wx->ptp_clock) {
1528 		if (wx->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1529 		    !test_and_set_bit_lock(WX_STATE_PTP_TX_IN_PROGRESS,
1530 					   wx->state)) {
1531 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1532 			tx_flags |= WX_TX_FLAGS_TSTAMP;
1533 			wx->ptp_tx_skb = skb_get(skb);
1534 			wx->ptp_tx_start = jiffies;
1535 		} else {
1536 			wx->tx_hwtstamp_skipped++;
1537 		}
1538 	}
1539 
1540 	/* record initial flags and protocol */
1541 	first->tx_flags = tx_flags;
1542 	first->protocol = vlan_get_protocol(skb);
1543 
1544 	ptype = wx_encode_tx_desc_ptype(first);
1545 
1546 	tso = wx_tso(tx_ring, first, &hdr_len, ptype);
1547 	if (tso < 0)
1548 		goto out_drop;
1549 	else if (!tso)
1550 		wx_tx_csum(tx_ring, first, ptype);
1551 
1552 	if (test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags) && tx_ring->atr_sample_rate)
1553 		wx->atr(tx_ring, first, ptype);
1554 
1555 	if (wx_tx_map(tx_ring, first, hdr_len))
1556 		goto cleanup_tx_tstamp;
1557 
1558 	return NETDEV_TX_OK;
1559 out_drop:
1560 	dev_kfree_skb_any(first->skb);
1561 	first->skb = NULL;
1562 cleanup_tx_tstamp:
1563 	if (unlikely(tx_flags & WX_TX_FLAGS_TSTAMP)) {
1564 		dev_kfree_skb_any(wx->ptp_tx_skb);
1565 		wx->ptp_tx_skb = NULL;
1566 		wx->tx_hwtstamp_errors++;
1567 		clear_bit_unlock(WX_STATE_PTP_TX_IN_PROGRESS, wx->state);
1568 	}
1569 
1570 	return NETDEV_TX_OK;
1571 }
1572 
wx_xmit_frame(struct sk_buff * skb,struct net_device * netdev)1573 netdev_tx_t wx_xmit_frame(struct sk_buff *skb,
1574 			  struct net_device *netdev)
1575 {
1576 	unsigned int r_idx = skb->queue_mapping;
1577 	struct wx *wx = netdev_priv(netdev);
1578 	struct wx_ring *tx_ring;
1579 
1580 	if (!netif_carrier_ok(netdev)) {
1581 		dev_kfree_skb_any(skb);
1582 		return NETDEV_TX_OK;
1583 	}
1584 
1585 	/* The minimum packet size for olinfo paylen is 17 so pad the skb
1586 	 * in order to meet this minimum size requirement.
1587 	 */
1588 	if (skb_put_padto(skb, 17))
1589 		return NETDEV_TX_OK;
1590 
1591 	if (r_idx >= wx->num_tx_queues)
1592 		r_idx = r_idx % wx->num_tx_queues;
1593 	tx_ring = wx->tx_ring[r_idx];
1594 
1595 	return wx_xmit_frame_ring(skb, tx_ring);
1596 }
1597 EXPORT_SYMBOL(wx_xmit_frame);
1598 
wx_napi_enable_all(struct wx * wx)1599 void wx_napi_enable_all(struct wx *wx)
1600 {
1601 	struct wx_q_vector *q_vector;
1602 	int q_idx;
1603 
1604 	for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1605 		q_vector = wx->q_vector[q_idx];
1606 		napi_enable(&q_vector->napi);
1607 	}
1608 }
1609 EXPORT_SYMBOL(wx_napi_enable_all);
1610 
wx_napi_disable_all(struct wx * wx)1611 void wx_napi_disable_all(struct wx *wx)
1612 {
1613 	struct wx_q_vector *q_vector;
1614 	int q_idx;
1615 
1616 	for (q_idx = 0; q_idx < wx->num_q_vectors; q_idx++) {
1617 		q_vector = wx->q_vector[q_idx];
1618 		napi_disable(&q_vector->napi);
1619 	}
1620 }
1621 EXPORT_SYMBOL(wx_napi_disable_all);
1622 
1623 /**
1624  * wx_set_rss_queues: Allocate queues for RSS
1625  * @wx: board private structure to initialize
1626  *
1627  * This is our "base" multiqueue mode.  RSS (Receive Side Scaling) will try
1628  * to allocate one Rx queue per CPU, and if available, one Tx queue per CPU.
1629  *
1630  **/
wx_set_rss_queues(struct wx * wx)1631 static void wx_set_rss_queues(struct wx *wx)
1632 {
1633 	struct wx_ring_feature *f;
1634 
1635 	/* set mask for 16 queue limit of RSS */
1636 	f = &wx->ring_feature[RING_F_RSS];
1637 	f->indices = f->limit;
1638 
1639 	if (!(test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)))
1640 		goto out;
1641 
1642 	clear_bit(WX_FLAG_FDIR_HASH, wx->flags);
1643 
1644 	/* Use Flow Director in addition to RSS to ensure the best
1645 	 * distribution of flows across cores, even when an FDIR flow
1646 	 * isn't matched.
1647 	 */
1648 	if (f->indices > 1) {
1649 		f = &wx->ring_feature[RING_F_FDIR];
1650 
1651 		f->indices = f->limit;
1652 
1653 		if (!(test_bit(WX_FLAG_FDIR_PERFECT, wx->flags)))
1654 			set_bit(WX_FLAG_FDIR_HASH, wx->flags);
1655 	}
1656 
1657 out:
1658 	wx->num_rx_queues = f->indices;
1659 	wx->num_tx_queues = f->indices;
1660 }
1661 
wx_set_num_queues(struct wx * wx)1662 static void wx_set_num_queues(struct wx *wx)
1663 {
1664 	/* Start with base case */
1665 	wx->num_rx_queues = 1;
1666 	wx->num_tx_queues = 1;
1667 	wx->queues_per_pool = 1;
1668 
1669 	wx_set_rss_queues(wx);
1670 }
1671 
1672 /**
1673  * wx_acquire_msix_vectors - acquire MSI-X vectors
1674  * @wx: board private structure
1675  *
1676  * Attempts to acquire a suitable range of MSI-X vector interrupts. Will
1677  * return a negative error code if unable to acquire MSI-X vectors for any
1678  * reason.
1679  */
wx_acquire_msix_vectors(struct wx * wx)1680 static int wx_acquire_msix_vectors(struct wx *wx)
1681 {
1682 	struct irq_affinity affd = { .pre_vectors = 1 };
1683 	int nvecs, i;
1684 
1685 	/* We start by asking for one vector per queue pair */
1686 	nvecs = max(wx->num_rx_queues, wx->num_tx_queues);
1687 	nvecs = min_t(int, nvecs, num_online_cpus());
1688 	nvecs = min_t(int, nvecs, wx->mac.max_msix_vectors);
1689 
1690 	wx->msix_q_entries = kcalloc(nvecs, sizeof(struct msix_entry),
1691 				     GFP_KERNEL);
1692 	if (!wx->msix_q_entries)
1693 		return -ENOMEM;
1694 
1695 	/* One for non-queue interrupts */
1696 	nvecs += 1;
1697 
1698 	wx->msix_entry = kcalloc(1, sizeof(struct msix_entry),
1699 				 GFP_KERNEL);
1700 	if (!wx->msix_entry) {
1701 		kfree(wx->msix_q_entries);
1702 		wx->msix_q_entries = NULL;
1703 		return -ENOMEM;
1704 	}
1705 
1706 	nvecs = pci_alloc_irq_vectors_affinity(wx->pdev, nvecs,
1707 					       nvecs,
1708 					       PCI_IRQ_MSIX | PCI_IRQ_AFFINITY,
1709 					       &affd);
1710 	if (nvecs < 0) {
1711 		wx_err(wx, "Failed to allocate MSI-X interrupts. Err: %d\n", nvecs);
1712 		kfree(wx->msix_q_entries);
1713 		wx->msix_q_entries = NULL;
1714 		kfree(wx->msix_entry);
1715 		wx->msix_entry = NULL;
1716 		return nvecs;
1717 	}
1718 
1719 	wx->msix_entry->entry = 0;
1720 	wx->msix_entry->vector = pci_irq_vector(wx->pdev, 0);
1721 	nvecs -= 1;
1722 	for (i = 0; i < nvecs; i++) {
1723 		wx->msix_q_entries[i].entry = i;
1724 		wx->msix_q_entries[i].vector = pci_irq_vector(wx->pdev, i + 1);
1725 	}
1726 
1727 	wx->num_q_vectors = nvecs;
1728 
1729 	return 0;
1730 }
1731 
1732 /**
1733  * wx_set_interrupt_capability - set MSI-X or MSI if supported
1734  * @wx: board private structure to initialize
1735  *
1736  * Attempt to configure the interrupts using the best available
1737  * capabilities of the hardware and the kernel.
1738  **/
wx_set_interrupt_capability(struct wx * wx)1739 static int wx_set_interrupt_capability(struct wx *wx)
1740 {
1741 	struct pci_dev *pdev = wx->pdev;
1742 	int nvecs, ret;
1743 
1744 	/* We will try to get MSI-X interrupts first */
1745 	ret = wx_acquire_msix_vectors(wx);
1746 	if (ret == 0 || (ret == -ENOMEM))
1747 		return ret;
1748 
1749 	/* Disable RSS */
1750 	dev_warn(&wx->pdev->dev, "Disabling RSS support\n");
1751 	wx->ring_feature[RING_F_RSS].limit = 1;
1752 
1753 	wx_set_num_queues(wx);
1754 
1755 	/* minmum one for queue, one for misc*/
1756 	nvecs = 1;
1757 	nvecs = pci_alloc_irq_vectors(pdev, nvecs,
1758 				      nvecs, PCI_IRQ_MSI | PCI_IRQ_INTX);
1759 	if (nvecs == 1) {
1760 		if (pdev->msi_enabled)
1761 			wx_err(wx, "Fallback to MSI.\n");
1762 		else
1763 			wx_err(wx, "Fallback to INTx.\n");
1764 	} else {
1765 		wx_err(wx, "Failed to allocate MSI/INTx interrupts. Error: %d\n", nvecs);
1766 		return nvecs;
1767 	}
1768 
1769 	pdev->irq = pci_irq_vector(pdev, 0);
1770 	wx->num_q_vectors = 1;
1771 
1772 	return 0;
1773 }
1774 
1775 /**
1776  * wx_cache_ring_rss - Descriptor ring to register mapping for RSS
1777  * @wx: board private structure to initialize
1778  *
1779  * Cache the descriptor ring offsets for RSS, ATR, FCoE, and SR-IOV.
1780  *
1781  **/
wx_cache_ring_rss(struct wx * wx)1782 static void wx_cache_ring_rss(struct wx *wx)
1783 {
1784 	u16 i;
1785 
1786 	for (i = 0; i < wx->num_rx_queues; i++)
1787 		wx->rx_ring[i]->reg_idx = i;
1788 
1789 	for (i = 0; i < wx->num_tx_queues; i++)
1790 		wx->tx_ring[i]->reg_idx = i;
1791 }
1792 
wx_add_ring(struct wx_ring * ring,struct wx_ring_container * head)1793 static void wx_add_ring(struct wx_ring *ring, struct wx_ring_container *head)
1794 {
1795 	ring->next = head->ring;
1796 	head->ring = ring;
1797 	head->count++;
1798 }
1799 
1800 /**
1801  * wx_alloc_q_vector - Allocate memory for a single interrupt vector
1802  * @wx: board private structure to initialize
1803  * @v_count: q_vectors allocated on wx, used for ring interleaving
1804  * @v_idx: index of vector in wx struct
1805  * @txr_count: total number of Tx rings to allocate
1806  * @txr_idx: index of first Tx ring to allocate
1807  * @rxr_count: total number of Rx rings to allocate
1808  * @rxr_idx: index of first Rx ring to allocate
1809  *
1810  * We allocate one q_vector.  If allocation fails we return -ENOMEM.
1811  **/
wx_alloc_q_vector(struct wx * wx,unsigned int v_count,unsigned int v_idx,unsigned int txr_count,unsigned int txr_idx,unsigned int rxr_count,unsigned int rxr_idx)1812 static int wx_alloc_q_vector(struct wx *wx,
1813 			     unsigned int v_count, unsigned int v_idx,
1814 			     unsigned int txr_count, unsigned int txr_idx,
1815 			     unsigned int rxr_count, unsigned int rxr_idx)
1816 {
1817 	struct wx_q_vector *q_vector;
1818 	int ring_count, default_itr;
1819 	struct wx_ring *ring;
1820 
1821 	/* note this will allocate space for the ring structure as well! */
1822 	ring_count = txr_count + rxr_count;
1823 
1824 	q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
1825 			   GFP_KERNEL);
1826 	if (!q_vector)
1827 		return -ENOMEM;
1828 
1829 	/* initialize NAPI */
1830 	netif_napi_add(wx->netdev, &q_vector->napi,
1831 		       wx_poll);
1832 
1833 	/* tie q_vector and wx together */
1834 	wx->q_vector[v_idx] = q_vector;
1835 	q_vector->wx = wx;
1836 	q_vector->v_idx = v_idx;
1837 	if (cpu_online(v_idx))
1838 		q_vector->numa_node = cpu_to_node(v_idx);
1839 
1840 	/* initialize pointer to rings */
1841 	ring = q_vector->ring;
1842 
1843 	switch (wx->mac.type) {
1844 	case wx_mac_sp:
1845 	case wx_mac_aml:
1846 		default_itr = WX_12K_ITR;
1847 		break;
1848 	default:
1849 		default_itr = WX_7K_ITR;
1850 		break;
1851 	}
1852 
1853 	/* initialize ITR */
1854 	if (txr_count && !rxr_count)
1855 		/* tx only vector */
1856 		q_vector->itr = wx->tx_itr_setting ?
1857 				default_itr : wx->tx_itr_setting;
1858 	else
1859 		/* rx or rx/tx vector */
1860 		q_vector->itr = wx->rx_itr_setting ?
1861 				default_itr : wx->rx_itr_setting;
1862 
1863 	while (txr_count) {
1864 		/* assign generic ring traits */
1865 		ring->dev = &wx->pdev->dev;
1866 		ring->netdev = wx->netdev;
1867 
1868 		/* configure backlink on ring */
1869 		ring->q_vector = q_vector;
1870 
1871 		/* update q_vector Tx values */
1872 		wx_add_ring(ring, &q_vector->tx);
1873 
1874 		/* apply Tx specific ring traits */
1875 		ring->count = wx->tx_ring_count;
1876 
1877 		ring->queue_index = txr_idx;
1878 
1879 		/* assign ring to wx */
1880 		wx->tx_ring[txr_idx] = ring;
1881 
1882 		/* update count and index */
1883 		txr_count--;
1884 		txr_idx += v_count;
1885 
1886 		/* push pointer to next ring */
1887 		ring++;
1888 	}
1889 
1890 	while (rxr_count) {
1891 		/* assign generic ring traits */
1892 		ring->dev = &wx->pdev->dev;
1893 		ring->netdev = wx->netdev;
1894 
1895 		/* configure backlink on ring */
1896 		ring->q_vector = q_vector;
1897 
1898 		/* update q_vector Rx values */
1899 		wx_add_ring(ring, &q_vector->rx);
1900 
1901 		/* apply Rx specific ring traits */
1902 		ring->count = wx->rx_ring_count;
1903 		ring->queue_index = rxr_idx;
1904 
1905 		/* assign ring to wx */
1906 		wx->rx_ring[rxr_idx] = ring;
1907 
1908 		/* update count and index */
1909 		rxr_count--;
1910 		rxr_idx += v_count;
1911 
1912 		/* push pointer to next ring */
1913 		ring++;
1914 	}
1915 
1916 	return 0;
1917 }
1918 
1919 /**
1920  * wx_free_q_vector - Free memory allocated for specific interrupt vector
1921  * @wx: board private structure to initialize
1922  * @v_idx: Index of vector to be freed
1923  *
1924  * This function frees the memory allocated to the q_vector.  In addition if
1925  * NAPI is enabled it will delete any references to the NAPI struct prior
1926  * to freeing the q_vector.
1927  **/
wx_free_q_vector(struct wx * wx,int v_idx)1928 static void wx_free_q_vector(struct wx *wx, int v_idx)
1929 {
1930 	struct wx_q_vector *q_vector = wx->q_vector[v_idx];
1931 	struct wx_ring *ring;
1932 
1933 	wx_for_each_ring(ring, q_vector->tx)
1934 		wx->tx_ring[ring->queue_index] = NULL;
1935 
1936 	wx_for_each_ring(ring, q_vector->rx)
1937 		wx->rx_ring[ring->queue_index] = NULL;
1938 
1939 	wx->q_vector[v_idx] = NULL;
1940 	netif_napi_del(&q_vector->napi);
1941 	kfree_rcu(q_vector, rcu);
1942 }
1943 
1944 /**
1945  * wx_alloc_q_vectors - Allocate memory for interrupt vectors
1946  * @wx: board private structure to initialize
1947  *
1948  * We allocate one q_vector per queue interrupt.  If allocation fails we
1949  * return -ENOMEM.
1950  **/
wx_alloc_q_vectors(struct wx * wx)1951 static int wx_alloc_q_vectors(struct wx *wx)
1952 {
1953 	unsigned int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1954 	unsigned int rxr_remaining = wx->num_rx_queues;
1955 	unsigned int txr_remaining = wx->num_tx_queues;
1956 	unsigned int q_vectors = wx->num_q_vectors;
1957 	int rqpv, tqpv;
1958 	int err;
1959 
1960 	for (; v_idx < q_vectors; v_idx++) {
1961 		rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1962 		tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1963 		err = wx_alloc_q_vector(wx, q_vectors, v_idx,
1964 					tqpv, txr_idx,
1965 					rqpv, rxr_idx);
1966 
1967 		if (err)
1968 			goto err_out;
1969 
1970 		/* update counts and index */
1971 		rxr_remaining -= rqpv;
1972 		txr_remaining -= tqpv;
1973 		rxr_idx++;
1974 		txr_idx++;
1975 	}
1976 
1977 	return 0;
1978 
1979 err_out:
1980 	wx->num_tx_queues = 0;
1981 	wx->num_rx_queues = 0;
1982 	wx->num_q_vectors = 0;
1983 
1984 	while (v_idx--)
1985 		wx_free_q_vector(wx, v_idx);
1986 
1987 	return -ENOMEM;
1988 }
1989 
1990 /**
1991  * wx_free_q_vectors - Free memory allocated for interrupt vectors
1992  * @wx: board private structure to initialize
1993  *
1994  * This function frees the memory allocated to the q_vectors.  In addition if
1995  * NAPI is enabled it will delete any references to the NAPI struct prior
1996  * to freeing the q_vector.
1997  **/
wx_free_q_vectors(struct wx * wx)1998 static void wx_free_q_vectors(struct wx *wx)
1999 {
2000 	int v_idx = wx->num_q_vectors;
2001 
2002 	wx->num_tx_queues = 0;
2003 	wx->num_rx_queues = 0;
2004 	wx->num_q_vectors = 0;
2005 
2006 	while (v_idx--)
2007 		wx_free_q_vector(wx, v_idx);
2008 }
2009 
wx_reset_interrupt_capability(struct wx * wx)2010 void wx_reset_interrupt_capability(struct wx *wx)
2011 {
2012 	struct pci_dev *pdev = wx->pdev;
2013 
2014 	if (!pdev->msi_enabled && !pdev->msix_enabled)
2015 		return;
2016 
2017 	if (pdev->msix_enabled) {
2018 		kfree(wx->msix_q_entries);
2019 		wx->msix_q_entries = NULL;
2020 		kfree(wx->msix_entry);
2021 		wx->msix_entry = NULL;
2022 	}
2023 	pci_free_irq_vectors(wx->pdev);
2024 }
2025 EXPORT_SYMBOL(wx_reset_interrupt_capability);
2026 
2027 /**
2028  * wx_clear_interrupt_scheme - Clear the current interrupt scheme settings
2029  * @wx: board private structure to clear interrupt scheme on
2030  *
2031  * We go through and clear interrupt specific resources and reset the structure
2032  * to pre-load conditions
2033  **/
wx_clear_interrupt_scheme(struct wx * wx)2034 void wx_clear_interrupt_scheme(struct wx *wx)
2035 {
2036 	wx_free_q_vectors(wx);
2037 	wx_reset_interrupt_capability(wx);
2038 }
2039 EXPORT_SYMBOL(wx_clear_interrupt_scheme);
2040 
wx_init_interrupt_scheme(struct wx * wx)2041 int wx_init_interrupt_scheme(struct wx *wx)
2042 {
2043 	int ret;
2044 
2045 	/* Number of supported queues */
2046 	wx_set_num_queues(wx);
2047 
2048 	/* Set interrupt mode */
2049 	ret = wx_set_interrupt_capability(wx);
2050 	if (ret) {
2051 		wx_err(wx, "Allocate irq vectors for failed.\n");
2052 		return ret;
2053 	}
2054 
2055 	/* Allocate memory for queues */
2056 	ret = wx_alloc_q_vectors(wx);
2057 	if (ret) {
2058 		wx_err(wx, "Unable to allocate memory for queue vectors.\n");
2059 		wx_reset_interrupt_capability(wx);
2060 		return ret;
2061 	}
2062 
2063 	wx_cache_ring_rss(wx);
2064 
2065 	return 0;
2066 }
2067 EXPORT_SYMBOL(wx_init_interrupt_scheme);
2068 
wx_msix_clean_rings(int __always_unused irq,void * data)2069 irqreturn_t wx_msix_clean_rings(int __always_unused irq, void *data)
2070 {
2071 	struct wx_q_vector *q_vector = data;
2072 
2073 	/* EIAM disabled interrupts (on this vector) for us */
2074 	if (q_vector->rx.ring || q_vector->tx.ring)
2075 		napi_schedule_irqoff(&q_vector->napi);
2076 
2077 	return IRQ_HANDLED;
2078 }
2079 EXPORT_SYMBOL(wx_msix_clean_rings);
2080 
wx_free_irq(struct wx * wx)2081 void wx_free_irq(struct wx *wx)
2082 {
2083 	struct pci_dev *pdev = wx->pdev;
2084 	int vector;
2085 
2086 	if (!(pdev->msix_enabled)) {
2087 		if (!wx->misc_irq_domain)
2088 			free_irq(pdev->irq, wx);
2089 		return;
2090 	}
2091 
2092 	for (vector = 0; vector < wx->num_q_vectors; vector++) {
2093 		struct wx_q_vector *q_vector = wx->q_vector[vector];
2094 		struct msix_entry *entry = &wx->msix_q_entries[vector];
2095 
2096 		/* free only the irqs that were actually requested */
2097 		if (!q_vector->rx.ring && !q_vector->tx.ring)
2098 			continue;
2099 
2100 		free_irq(entry->vector, q_vector);
2101 	}
2102 
2103 	if (!wx->misc_irq_domain)
2104 		free_irq(wx->msix_entry->vector, wx);
2105 }
2106 EXPORT_SYMBOL(wx_free_irq);
2107 
2108 /**
2109  * wx_setup_isb_resources - allocate interrupt status resources
2110  * @wx: board private structure
2111  *
2112  * Return 0 on success, negative on failure
2113  **/
wx_setup_isb_resources(struct wx * wx)2114 int wx_setup_isb_resources(struct wx *wx)
2115 {
2116 	struct pci_dev *pdev = wx->pdev;
2117 
2118 	if (wx->isb_mem)
2119 		return 0;
2120 
2121 	wx->isb_mem = dma_alloc_coherent(&pdev->dev,
2122 					 sizeof(u32) * 4,
2123 					 &wx->isb_dma,
2124 					 GFP_KERNEL);
2125 	if (!wx->isb_mem) {
2126 		wx_err(wx, "Alloc isb_mem failed\n");
2127 		return -ENOMEM;
2128 	}
2129 
2130 	return 0;
2131 }
2132 EXPORT_SYMBOL(wx_setup_isb_resources);
2133 
2134 /**
2135  * wx_free_isb_resources - allocate all queues Rx resources
2136  * @wx: board private structure
2137  *
2138  * Return 0 on success, negative on failure
2139  **/
wx_free_isb_resources(struct wx * wx)2140 void wx_free_isb_resources(struct wx *wx)
2141 {
2142 	struct pci_dev *pdev = wx->pdev;
2143 
2144 	dma_free_coherent(&pdev->dev, sizeof(u32) * 4,
2145 			  wx->isb_mem, wx->isb_dma);
2146 	wx->isb_mem = NULL;
2147 }
2148 EXPORT_SYMBOL(wx_free_isb_resources);
2149 
wx_misc_isb(struct wx * wx,enum wx_isb_idx idx)2150 u32 wx_misc_isb(struct wx *wx, enum wx_isb_idx idx)
2151 {
2152 	u32 cur_tag = 0;
2153 
2154 	cur_tag = wx->isb_mem[WX_ISB_HEADER];
2155 	wx->isb_tag[idx] = cur_tag;
2156 
2157 	return (__force u32)cpu_to_le32(wx->isb_mem[idx]);
2158 }
2159 EXPORT_SYMBOL(wx_misc_isb);
2160 
2161 /**
2162  * wx_set_ivar - set the IVAR registers, mapping interrupt causes to vectors
2163  * @wx: pointer to wx struct
2164  * @direction: 0 for Rx, 1 for Tx, -1 for other causes
2165  * @queue: queue to map the corresponding interrupt to
2166  * @msix_vector: the vector to map to the corresponding queue
2167  *
2168  **/
wx_set_ivar(struct wx * wx,s8 direction,u16 queue,u16 msix_vector)2169 static void wx_set_ivar(struct wx *wx, s8 direction,
2170 			u16 queue, u16 msix_vector)
2171 {
2172 	u32 ivar, index;
2173 
2174 	if (direction == -1) {
2175 		/* other causes */
2176 		msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2177 		index = 0;
2178 		ivar = rd32(wx, WX_PX_MISC_IVAR);
2179 		ivar &= ~(0xFF << index);
2180 		ivar |= (msix_vector << index);
2181 		wr32(wx, WX_PX_MISC_IVAR, ivar);
2182 	} else {
2183 		/* tx or rx causes */
2184 		msix_vector += 1; /* offset for queue vectors */
2185 		msix_vector |= WX_PX_IVAR_ALLOC_VAL;
2186 		index = ((16 * (queue & 1)) + (8 * direction));
2187 		ivar = rd32(wx, WX_PX_IVAR(queue >> 1));
2188 		ivar &= ~(0xFF << index);
2189 		ivar |= (msix_vector << index);
2190 		wr32(wx, WX_PX_IVAR(queue >> 1), ivar);
2191 	}
2192 }
2193 
2194 /**
2195  * wx_write_eitr - write EITR register in hardware specific way
2196  * @q_vector: structure containing interrupt and ring information
2197  *
2198  * This function is made to be called by ethtool and by the driver
2199  * when it needs to update EITR registers at runtime.  Hardware
2200  * specific quirks/differences are taken care of here.
2201  */
wx_write_eitr(struct wx_q_vector * q_vector)2202 void wx_write_eitr(struct wx_q_vector *q_vector)
2203 {
2204 	struct wx *wx = q_vector->wx;
2205 	int v_idx = q_vector->v_idx;
2206 	u32 itr_reg;
2207 
2208 	switch (wx->mac.type) {
2209 	case wx_mac_sp:
2210 		itr_reg = q_vector->itr & WX_SP_MAX_EITR;
2211 		break;
2212 	case wx_mac_aml:
2213 		itr_reg = (q_vector->itr >> 3) & WX_AML_MAX_EITR;
2214 		break;
2215 	default:
2216 		itr_reg = q_vector->itr & WX_EM_MAX_EITR;
2217 		break;
2218 	}
2219 
2220 	itr_reg |= WX_PX_ITR_CNT_WDIS;
2221 
2222 	wr32(wx, WX_PX_ITR(v_idx + 1), itr_reg);
2223 }
2224 
2225 /**
2226  * wx_configure_vectors - Configure vectors for hardware
2227  * @wx: board private structure
2228  *
2229  * wx_configure_vectors sets up the hardware to properly generate MSI-X/MSI/INTx
2230  * interrupts.
2231  **/
wx_configure_vectors(struct wx * wx)2232 void wx_configure_vectors(struct wx *wx)
2233 {
2234 	struct pci_dev *pdev = wx->pdev;
2235 	u32 eitrsel = 0;
2236 	u16 v_idx;
2237 
2238 	if (pdev->msix_enabled) {
2239 		/* Populate MSIX to EITR Select */
2240 		wr32(wx, WX_PX_ITRSEL, eitrsel);
2241 		/* use EIAM to auto-mask when MSI-X interrupt is asserted
2242 		 * this saves a register write for every interrupt
2243 		 */
2244 		wr32(wx, WX_PX_GPIE, WX_PX_GPIE_MODEL);
2245 	} else {
2246 		/* legacy interrupts, use EIAM to auto-mask when reading EICR,
2247 		 * specifically only auto mask tx and rx interrupts.
2248 		 */
2249 		wr32(wx, WX_PX_GPIE, 0);
2250 	}
2251 
2252 	/* Populate the IVAR table and set the ITR values to the
2253 	 * corresponding register.
2254 	 */
2255 	for (v_idx = 0; v_idx < wx->num_q_vectors; v_idx++) {
2256 		struct wx_q_vector *q_vector = wx->q_vector[v_idx];
2257 		struct wx_ring *ring;
2258 
2259 		wx_for_each_ring(ring, q_vector->rx)
2260 			wx_set_ivar(wx, 0, ring->reg_idx, v_idx);
2261 
2262 		wx_for_each_ring(ring, q_vector->tx)
2263 			wx_set_ivar(wx, 1, ring->reg_idx, v_idx);
2264 
2265 		wx_write_eitr(q_vector);
2266 	}
2267 
2268 	wx_set_ivar(wx, -1, 0, 0);
2269 	if (pdev->msix_enabled)
2270 		wr32(wx, WX_PX_ITR(0), 1950);
2271 }
2272 EXPORT_SYMBOL(wx_configure_vectors);
2273 
2274 /**
2275  * wx_clean_rx_ring - Free Rx Buffers per Queue
2276  * @rx_ring: ring to free buffers from
2277  **/
wx_clean_rx_ring(struct wx_ring * rx_ring)2278 static void wx_clean_rx_ring(struct wx_ring *rx_ring)
2279 {
2280 	struct wx_rx_buffer *rx_buffer;
2281 	u16 i = rx_ring->next_to_clean;
2282 
2283 	rx_buffer = &rx_ring->rx_buffer_info[i];
2284 
2285 	/* Free all the Rx ring sk_buffs */
2286 	while (i != rx_ring->next_to_alloc) {
2287 		if (rx_buffer->skb) {
2288 			struct sk_buff *skb = rx_buffer->skb;
2289 
2290 			if (WX_CB(skb)->page_released)
2291 				page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2292 
2293 			dev_kfree_skb(skb);
2294 		}
2295 
2296 		/* Invalidate cache lines that may have been written to by
2297 		 * device so that we avoid corrupting memory.
2298 		 */
2299 		dma_sync_single_range_for_cpu(rx_ring->dev,
2300 					      rx_buffer->dma,
2301 					      rx_buffer->page_offset,
2302 					      WX_RX_BUFSZ,
2303 					      DMA_FROM_DEVICE);
2304 
2305 		/* free resources associated with mapping */
2306 		page_pool_put_full_page(rx_ring->page_pool, rx_buffer->page, false);
2307 
2308 		i++;
2309 		rx_buffer++;
2310 		if (i == rx_ring->count) {
2311 			i = 0;
2312 			rx_buffer = rx_ring->rx_buffer_info;
2313 		}
2314 	}
2315 
2316 	rx_ring->next_to_alloc = 0;
2317 	rx_ring->next_to_clean = 0;
2318 	rx_ring->next_to_use = 0;
2319 }
2320 
2321 /**
2322  * wx_clean_all_rx_rings - Free Rx Buffers for all queues
2323  * @wx: board private structure
2324  **/
wx_clean_all_rx_rings(struct wx * wx)2325 void wx_clean_all_rx_rings(struct wx *wx)
2326 {
2327 	int i;
2328 
2329 	for (i = 0; i < wx->num_rx_queues; i++)
2330 		wx_clean_rx_ring(wx->rx_ring[i]);
2331 }
2332 EXPORT_SYMBOL(wx_clean_all_rx_rings);
2333 
2334 /**
2335  * wx_free_rx_resources - Free Rx Resources
2336  * @rx_ring: ring to clean the resources from
2337  *
2338  * Free all receive software resources
2339  **/
wx_free_rx_resources(struct wx_ring * rx_ring)2340 static void wx_free_rx_resources(struct wx_ring *rx_ring)
2341 {
2342 	wx_clean_rx_ring(rx_ring);
2343 	kvfree(rx_ring->rx_buffer_info);
2344 	rx_ring->rx_buffer_info = NULL;
2345 
2346 	/* if not set, then don't free */
2347 	if (!rx_ring->desc)
2348 		return;
2349 
2350 	dma_free_coherent(rx_ring->dev, rx_ring->size,
2351 			  rx_ring->desc, rx_ring->dma);
2352 
2353 	rx_ring->desc = NULL;
2354 
2355 	if (rx_ring->page_pool) {
2356 		page_pool_destroy(rx_ring->page_pool);
2357 		rx_ring->page_pool = NULL;
2358 	}
2359 }
2360 
2361 /**
2362  * wx_free_all_rx_resources - Free Rx Resources for All Queues
2363  * @wx: pointer to hardware structure
2364  *
2365  * Free all receive software resources
2366  **/
wx_free_all_rx_resources(struct wx * wx)2367 static void wx_free_all_rx_resources(struct wx *wx)
2368 {
2369 	int i;
2370 
2371 	for (i = 0; i < wx->num_rx_queues; i++)
2372 		wx_free_rx_resources(wx->rx_ring[i]);
2373 }
2374 
2375 /**
2376  * wx_clean_tx_ring - Free Tx Buffers
2377  * @tx_ring: ring to be cleaned
2378  **/
wx_clean_tx_ring(struct wx_ring * tx_ring)2379 static void wx_clean_tx_ring(struct wx_ring *tx_ring)
2380 {
2381 	struct wx_tx_buffer *tx_buffer;
2382 	u16 i = tx_ring->next_to_clean;
2383 
2384 	tx_buffer = &tx_ring->tx_buffer_info[i];
2385 
2386 	while (i != tx_ring->next_to_use) {
2387 		union wx_tx_desc *eop_desc, *tx_desc;
2388 
2389 		/* Free all the Tx ring sk_buffs */
2390 		dev_kfree_skb_any(tx_buffer->skb);
2391 
2392 		/* unmap skb header data */
2393 		dma_unmap_single(tx_ring->dev,
2394 				 dma_unmap_addr(tx_buffer, dma),
2395 				 dma_unmap_len(tx_buffer, len),
2396 				 DMA_TO_DEVICE);
2397 
2398 		/* check for eop_desc to determine the end of the packet */
2399 		eop_desc = tx_buffer->next_to_watch;
2400 		tx_desc = WX_TX_DESC(tx_ring, i);
2401 
2402 		/* unmap remaining buffers */
2403 		while (tx_desc != eop_desc) {
2404 			tx_buffer++;
2405 			tx_desc++;
2406 			i++;
2407 			if (unlikely(i == tx_ring->count)) {
2408 				i = 0;
2409 				tx_buffer = tx_ring->tx_buffer_info;
2410 				tx_desc = WX_TX_DESC(tx_ring, 0);
2411 			}
2412 
2413 			/* unmap any remaining paged data */
2414 			if (dma_unmap_len(tx_buffer, len))
2415 				dma_unmap_page(tx_ring->dev,
2416 					       dma_unmap_addr(tx_buffer, dma),
2417 					       dma_unmap_len(tx_buffer, len),
2418 					       DMA_TO_DEVICE);
2419 		}
2420 
2421 		/* move us one more past the eop_desc for start of next pkt */
2422 		tx_buffer++;
2423 		i++;
2424 		if (unlikely(i == tx_ring->count)) {
2425 			i = 0;
2426 			tx_buffer = tx_ring->tx_buffer_info;
2427 		}
2428 	}
2429 
2430 	netdev_tx_reset_queue(wx_txring_txq(tx_ring));
2431 
2432 	/* reset next_to_use and next_to_clean */
2433 	tx_ring->next_to_use = 0;
2434 	tx_ring->next_to_clean = 0;
2435 }
2436 
2437 /**
2438  * wx_clean_all_tx_rings - Free Tx Buffers for all queues
2439  * @wx: board private structure
2440  **/
wx_clean_all_tx_rings(struct wx * wx)2441 void wx_clean_all_tx_rings(struct wx *wx)
2442 {
2443 	int i;
2444 
2445 	for (i = 0; i < wx->num_tx_queues; i++)
2446 		wx_clean_tx_ring(wx->tx_ring[i]);
2447 }
2448 EXPORT_SYMBOL(wx_clean_all_tx_rings);
2449 
2450 /**
2451  * wx_free_tx_resources - Free Tx Resources per Queue
2452  * @tx_ring: Tx descriptor ring for a specific queue
2453  *
2454  * Free all transmit software resources
2455  **/
wx_free_tx_resources(struct wx_ring * tx_ring)2456 static void wx_free_tx_resources(struct wx_ring *tx_ring)
2457 {
2458 	wx_clean_tx_ring(tx_ring);
2459 	kvfree(tx_ring->tx_buffer_info);
2460 	tx_ring->tx_buffer_info = NULL;
2461 
2462 	/* if not set, then don't free */
2463 	if (!tx_ring->desc)
2464 		return;
2465 
2466 	dma_free_coherent(tx_ring->dev, tx_ring->size,
2467 			  tx_ring->desc, tx_ring->dma);
2468 	tx_ring->desc = NULL;
2469 }
2470 
2471 /**
2472  * wx_free_all_tx_resources - Free Tx Resources for All Queues
2473  * @wx: pointer to hardware structure
2474  *
2475  * Free all transmit software resources
2476  **/
wx_free_all_tx_resources(struct wx * wx)2477 static void wx_free_all_tx_resources(struct wx *wx)
2478 {
2479 	int i;
2480 
2481 	for (i = 0; i < wx->num_tx_queues; i++)
2482 		wx_free_tx_resources(wx->tx_ring[i]);
2483 }
2484 
wx_free_resources(struct wx * wx)2485 void wx_free_resources(struct wx *wx)
2486 {
2487 	wx_free_all_rx_resources(wx);
2488 	wx_free_all_tx_resources(wx);
2489 }
2490 EXPORT_SYMBOL(wx_free_resources);
2491 
wx_alloc_page_pool(struct wx_ring * rx_ring)2492 static int wx_alloc_page_pool(struct wx_ring *rx_ring)
2493 {
2494 	int ret = 0;
2495 
2496 	struct page_pool_params pp_params = {
2497 		.flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV,
2498 		.order = 0,
2499 		.pool_size = rx_ring->size,
2500 		.nid = dev_to_node(rx_ring->dev),
2501 		.dev = rx_ring->dev,
2502 		.dma_dir = DMA_FROM_DEVICE,
2503 		.offset = 0,
2504 		.max_len = PAGE_SIZE,
2505 	};
2506 
2507 	rx_ring->page_pool = page_pool_create(&pp_params);
2508 	if (IS_ERR(rx_ring->page_pool)) {
2509 		ret = PTR_ERR(rx_ring->page_pool);
2510 		rx_ring->page_pool = NULL;
2511 	}
2512 
2513 	return ret;
2514 }
2515 
2516 /**
2517  * wx_setup_rx_resources - allocate Rx resources (Descriptors)
2518  * @rx_ring: rx descriptor ring (for a specific queue) to setup
2519  *
2520  * Returns 0 on success, negative on failure
2521  **/
wx_setup_rx_resources(struct wx_ring * rx_ring)2522 static int wx_setup_rx_resources(struct wx_ring *rx_ring)
2523 {
2524 	struct device *dev = rx_ring->dev;
2525 	int orig_node = dev_to_node(dev);
2526 	int numa_node = NUMA_NO_NODE;
2527 	int size, ret;
2528 
2529 	size = sizeof(struct wx_rx_buffer) * rx_ring->count;
2530 
2531 	if (rx_ring->q_vector)
2532 		numa_node = rx_ring->q_vector->numa_node;
2533 
2534 	rx_ring->rx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2535 	if (!rx_ring->rx_buffer_info)
2536 		rx_ring->rx_buffer_info = kvmalloc(size, GFP_KERNEL);
2537 	if (!rx_ring->rx_buffer_info)
2538 		goto err;
2539 
2540 	/* Round up to nearest 4K */
2541 	rx_ring->size = rx_ring->count * sizeof(union wx_rx_desc);
2542 	rx_ring->size = ALIGN(rx_ring->size, 4096);
2543 
2544 	set_dev_node(dev, numa_node);
2545 	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2546 					   &rx_ring->dma, GFP_KERNEL);
2547 	if (!rx_ring->desc) {
2548 		set_dev_node(dev, orig_node);
2549 		rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
2550 						   &rx_ring->dma, GFP_KERNEL);
2551 	}
2552 
2553 	if (!rx_ring->desc)
2554 		goto err;
2555 
2556 	rx_ring->next_to_clean = 0;
2557 	rx_ring->next_to_use = 0;
2558 
2559 	ret = wx_alloc_page_pool(rx_ring);
2560 	if (ret < 0) {
2561 		dev_err(rx_ring->dev, "Page pool creation failed: %d\n", ret);
2562 		goto err_desc;
2563 	}
2564 
2565 	return 0;
2566 
2567 err_desc:
2568 	dma_free_coherent(dev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2569 err:
2570 	kvfree(rx_ring->rx_buffer_info);
2571 	rx_ring->rx_buffer_info = NULL;
2572 	dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
2573 	return -ENOMEM;
2574 }
2575 
2576 /**
2577  * wx_setup_all_rx_resources - allocate all queues Rx resources
2578  * @wx: pointer to hardware structure
2579  *
2580  * If this function returns with an error, then it's possible one or
2581  * more of the rings is populated (while the rest are not).  It is the
2582  * callers duty to clean those orphaned rings.
2583  *
2584  * Return 0 on success, negative on failure
2585  **/
wx_setup_all_rx_resources(struct wx * wx)2586 static int wx_setup_all_rx_resources(struct wx *wx)
2587 {
2588 	int i, err = 0;
2589 
2590 	for (i = 0; i < wx->num_rx_queues; i++) {
2591 		err = wx_setup_rx_resources(wx->rx_ring[i]);
2592 		if (!err)
2593 			continue;
2594 
2595 		wx_err(wx, "Allocation for Rx Queue %u failed\n", i);
2596 		goto err_setup_rx;
2597 	}
2598 
2599 	return 0;
2600 err_setup_rx:
2601 	/* rewind the index freeing the rings as we go */
2602 	while (i--)
2603 		wx_free_rx_resources(wx->rx_ring[i]);
2604 	return err;
2605 }
2606 
2607 /**
2608  * wx_setup_tx_resources - allocate Tx resources (Descriptors)
2609  * @tx_ring: tx descriptor ring (for a specific queue) to setup
2610  *
2611  * Return 0 on success, negative on failure
2612  **/
wx_setup_tx_resources(struct wx_ring * tx_ring)2613 static int wx_setup_tx_resources(struct wx_ring *tx_ring)
2614 {
2615 	struct device *dev = tx_ring->dev;
2616 	int orig_node = dev_to_node(dev);
2617 	int numa_node = NUMA_NO_NODE;
2618 	int size;
2619 
2620 	size = sizeof(struct wx_tx_buffer) * tx_ring->count;
2621 
2622 	if (tx_ring->q_vector)
2623 		numa_node = tx_ring->q_vector->numa_node;
2624 
2625 	tx_ring->tx_buffer_info = kvmalloc_node(size, GFP_KERNEL, numa_node);
2626 	if (!tx_ring->tx_buffer_info)
2627 		tx_ring->tx_buffer_info = kvmalloc(size, GFP_KERNEL);
2628 	if (!tx_ring->tx_buffer_info)
2629 		goto err;
2630 
2631 	/* round up to nearest 4K */
2632 	tx_ring->size = tx_ring->count * sizeof(union wx_tx_desc);
2633 	tx_ring->size = ALIGN(tx_ring->size, 4096);
2634 
2635 	set_dev_node(dev, numa_node);
2636 	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2637 					   &tx_ring->dma, GFP_KERNEL);
2638 	if (!tx_ring->desc) {
2639 		set_dev_node(dev, orig_node);
2640 		tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2641 						   &tx_ring->dma, GFP_KERNEL);
2642 	}
2643 
2644 	if (!tx_ring->desc)
2645 		goto err;
2646 
2647 	tx_ring->next_to_use = 0;
2648 	tx_ring->next_to_clean = 0;
2649 
2650 	return 0;
2651 
2652 err:
2653 	kvfree(tx_ring->tx_buffer_info);
2654 	tx_ring->tx_buffer_info = NULL;
2655 	dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
2656 	return -ENOMEM;
2657 }
2658 
2659 /**
2660  * wx_setup_all_tx_resources - allocate all queues Tx resources
2661  * @wx: pointer to private structure
2662  *
2663  * If this function returns with an error, then it's possible one or
2664  * more of the rings is populated (while the rest are not).  It is the
2665  * callers duty to clean those orphaned rings.
2666  *
2667  * Return 0 on success, negative on failure
2668  **/
wx_setup_all_tx_resources(struct wx * wx)2669 static int wx_setup_all_tx_resources(struct wx *wx)
2670 {
2671 	int i, err = 0;
2672 
2673 	for (i = 0; i < wx->num_tx_queues; i++) {
2674 		err = wx_setup_tx_resources(wx->tx_ring[i]);
2675 		if (!err)
2676 			continue;
2677 
2678 		wx_err(wx, "Allocation for Tx Queue %u failed\n", i);
2679 		goto err_setup_tx;
2680 	}
2681 
2682 	return 0;
2683 err_setup_tx:
2684 	/* rewind the index freeing the rings as we go */
2685 	while (i--)
2686 		wx_free_tx_resources(wx->tx_ring[i]);
2687 	return err;
2688 }
2689 
wx_setup_resources(struct wx * wx)2690 int wx_setup_resources(struct wx *wx)
2691 {
2692 	int err;
2693 
2694 	/* allocate transmit descriptors */
2695 	err = wx_setup_all_tx_resources(wx);
2696 	if (err)
2697 		return err;
2698 
2699 	/* allocate receive descriptors */
2700 	err = wx_setup_all_rx_resources(wx);
2701 	if (err)
2702 		goto err_free_tx;
2703 
2704 	err = wx_setup_isb_resources(wx);
2705 	if (err)
2706 		goto err_free_rx;
2707 
2708 	return 0;
2709 
2710 err_free_rx:
2711 	wx_free_all_rx_resources(wx);
2712 err_free_tx:
2713 	wx_free_all_tx_resources(wx);
2714 
2715 	return err;
2716 }
2717 EXPORT_SYMBOL(wx_setup_resources);
2718 
2719 /**
2720  * wx_get_stats64 - Get System Network Statistics
2721  * @netdev: network interface device structure
2722  * @stats: storage space for 64bit statistics
2723  */
wx_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)2724 void wx_get_stats64(struct net_device *netdev,
2725 		    struct rtnl_link_stats64 *stats)
2726 {
2727 	struct wx *wx = netdev_priv(netdev);
2728 	struct wx_hw_stats *hwstats;
2729 	int i;
2730 
2731 	wx_update_stats(wx);
2732 
2733 	rcu_read_lock();
2734 	for (i = 0; i < wx->num_rx_queues; i++) {
2735 		struct wx_ring *ring = READ_ONCE(wx->rx_ring[i]);
2736 		u64 bytes, packets;
2737 		unsigned int start;
2738 
2739 		if (ring) {
2740 			do {
2741 				start = u64_stats_fetch_begin(&ring->syncp);
2742 				packets = ring->stats.packets;
2743 				bytes   = ring->stats.bytes;
2744 			} while (u64_stats_fetch_retry(&ring->syncp, start));
2745 			stats->rx_packets += packets;
2746 			stats->rx_bytes   += bytes;
2747 		}
2748 	}
2749 
2750 	for (i = 0; i < wx->num_tx_queues; i++) {
2751 		struct wx_ring *ring = READ_ONCE(wx->tx_ring[i]);
2752 		u64 bytes, packets;
2753 		unsigned int start;
2754 
2755 		if (ring) {
2756 			do {
2757 				start = u64_stats_fetch_begin(&ring->syncp);
2758 				packets = ring->stats.packets;
2759 				bytes   = ring->stats.bytes;
2760 			} while (u64_stats_fetch_retry(&ring->syncp,
2761 							   start));
2762 			stats->tx_packets += packets;
2763 			stats->tx_bytes   += bytes;
2764 		}
2765 	}
2766 
2767 	rcu_read_unlock();
2768 
2769 	hwstats = &wx->stats;
2770 	stats->rx_errors = hwstats->crcerrs + hwstats->rlec;
2771 	stats->multicast = hwstats->qmprc;
2772 	stats->rx_length_errors = hwstats->rlec;
2773 	stats->rx_crc_errors = hwstats->crcerrs;
2774 }
2775 EXPORT_SYMBOL(wx_get_stats64);
2776 
wx_set_features(struct net_device * netdev,netdev_features_t features)2777 int wx_set_features(struct net_device *netdev, netdev_features_t features)
2778 {
2779 	netdev_features_t changed = netdev->features ^ features;
2780 	struct wx *wx = netdev_priv(netdev);
2781 	bool need_reset = false;
2782 
2783 	if (features & NETIF_F_RXHASH) {
2784 		wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN,
2785 		      WX_RDB_RA_CTL_RSS_EN);
2786 		wx->rss_enabled = true;
2787 	} else {
2788 		wr32m(wx, WX_RDB_RA_CTL, WX_RDB_RA_CTL_RSS_EN, 0);
2789 		wx->rss_enabled = false;
2790 	}
2791 
2792 	netdev->features = features;
2793 
2794 	if (changed & NETIF_F_HW_VLAN_CTAG_RX && wx->do_reset)
2795 		wx->do_reset(netdev);
2796 	else if (changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER))
2797 		wx_set_rx_mode(netdev);
2798 
2799 	if (!(test_bit(WX_FLAG_FDIR_CAPABLE, wx->flags)))
2800 		return 0;
2801 
2802 	/* Check if Flow Director n-tuple support was enabled or disabled.  If
2803 	 * the state changed, we need to reset.
2804 	 */
2805 	switch (features & NETIF_F_NTUPLE) {
2806 	case NETIF_F_NTUPLE:
2807 		/* turn off ATR, enable perfect filters and reset */
2808 		if (!(test_and_set_bit(WX_FLAG_FDIR_PERFECT, wx->flags)))
2809 			need_reset = true;
2810 
2811 		clear_bit(WX_FLAG_FDIR_HASH, wx->flags);
2812 		break;
2813 	default:
2814 		/* turn off perfect filters, enable ATR and reset */
2815 		if (test_and_clear_bit(WX_FLAG_FDIR_PERFECT, wx->flags))
2816 			need_reset = true;
2817 
2818 		/* We cannot enable ATR if RSS is disabled */
2819 		if (wx->ring_feature[RING_F_RSS].limit <= 1)
2820 			break;
2821 
2822 		set_bit(WX_FLAG_FDIR_HASH, wx->flags);
2823 		break;
2824 	}
2825 
2826 	if (need_reset && wx->do_reset)
2827 		wx->do_reset(netdev);
2828 
2829 	return 0;
2830 }
2831 EXPORT_SYMBOL(wx_set_features);
2832 
2833 #define NETIF_VLAN_STRIPPING_FEATURES	(NETIF_F_HW_VLAN_CTAG_RX | \
2834 					 NETIF_F_HW_VLAN_STAG_RX)
2835 
2836 #define NETIF_VLAN_INSERTION_FEATURES	(NETIF_F_HW_VLAN_CTAG_TX | \
2837 					 NETIF_F_HW_VLAN_STAG_TX)
2838 
2839 #define NETIF_VLAN_FILTERING_FEATURES	(NETIF_F_HW_VLAN_CTAG_FILTER | \
2840 					 NETIF_F_HW_VLAN_STAG_FILTER)
2841 
wx_fix_features(struct net_device * netdev,netdev_features_t features)2842 netdev_features_t wx_fix_features(struct net_device *netdev,
2843 				  netdev_features_t features)
2844 {
2845 	netdev_features_t changed = netdev->features ^ features;
2846 	struct wx *wx = netdev_priv(netdev);
2847 
2848 	if (changed & NETIF_VLAN_STRIPPING_FEATURES) {
2849 		if ((features & NETIF_VLAN_STRIPPING_FEATURES) != NETIF_VLAN_STRIPPING_FEATURES &&
2850 		    (features & NETIF_VLAN_STRIPPING_FEATURES) != 0) {
2851 			features &= ~NETIF_VLAN_STRIPPING_FEATURES;
2852 			features |= netdev->features & NETIF_VLAN_STRIPPING_FEATURES;
2853 			wx_err(wx, "802.1Q and 802.1ad VLAN stripping must be either both on or both off.");
2854 		}
2855 	}
2856 
2857 	if (changed & NETIF_VLAN_INSERTION_FEATURES) {
2858 		if ((features & NETIF_VLAN_INSERTION_FEATURES) != NETIF_VLAN_INSERTION_FEATURES &&
2859 		    (features & NETIF_VLAN_INSERTION_FEATURES) != 0) {
2860 			features &= ~NETIF_VLAN_INSERTION_FEATURES;
2861 			features |= netdev->features & NETIF_VLAN_INSERTION_FEATURES;
2862 			wx_err(wx, "802.1Q and 802.1ad VLAN insertion must be either both on or both off.");
2863 		}
2864 	}
2865 
2866 	if (changed & NETIF_VLAN_FILTERING_FEATURES) {
2867 		if ((features & NETIF_VLAN_FILTERING_FEATURES) != NETIF_VLAN_FILTERING_FEATURES &&
2868 		    (features & NETIF_VLAN_FILTERING_FEATURES) != 0) {
2869 			features &= ~NETIF_VLAN_FILTERING_FEATURES;
2870 			features |= netdev->features & NETIF_VLAN_FILTERING_FEATURES;
2871 			wx_err(wx, "802.1Q and 802.1ad VLAN filtering must be either both on or both off.");
2872 		}
2873 	}
2874 
2875 	return features;
2876 }
2877 EXPORT_SYMBOL(wx_fix_features);
2878 
wx_set_ring(struct wx * wx,u32 new_tx_count,u32 new_rx_count,struct wx_ring * temp_ring)2879 void wx_set_ring(struct wx *wx, u32 new_tx_count,
2880 		 u32 new_rx_count, struct wx_ring *temp_ring)
2881 {
2882 	int i, err = 0;
2883 
2884 	/* Setup new Tx resources and free the old Tx resources in that order.
2885 	 * We can then assign the new resources to the rings via a memcpy.
2886 	 * The advantage to this approach is that we are guaranteed to still
2887 	 * have resources even in the case of an allocation failure.
2888 	 */
2889 	if (new_tx_count != wx->tx_ring_count) {
2890 		for (i = 0; i < wx->num_tx_queues; i++) {
2891 			memcpy(&temp_ring[i], wx->tx_ring[i],
2892 			       sizeof(struct wx_ring));
2893 
2894 			temp_ring[i].count = new_tx_count;
2895 			err = wx_setup_tx_resources(&temp_ring[i]);
2896 			if (err) {
2897 				wx_err(wx, "setup new tx resources failed, keep using the old config\n");
2898 				while (i) {
2899 					i--;
2900 					wx_free_tx_resources(&temp_ring[i]);
2901 				}
2902 				return;
2903 			}
2904 		}
2905 
2906 		for (i = 0; i < wx->num_tx_queues; i++) {
2907 			wx_free_tx_resources(wx->tx_ring[i]);
2908 
2909 			memcpy(wx->tx_ring[i], &temp_ring[i],
2910 			       sizeof(struct wx_ring));
2911 		}
2912 
2913 		wx->tx_ring_count = new_tx_count;
2914 	}
2915 
2916 	/* Repeat the process for the Rx rings if needed */
2917 	if (new_rx_count != wx->rx_ring_count) {
2918 		for (i = 0; i < wx->num_rx_queues; i++) {
2919 			memcpy(&temp_ring[i], wx->rx_ring[i],
2920 			       sizeof(struct wx_ring));
2921 
2922 			temp_ring[i].count = new_rx_count;
2923 			err = wx_setup_rx_resources(&temp_ring[i]);
2924 			if (err) {
2925 				wx_err(wx, "setup new rx resources failed, keep using the old config\n");
2926 				while (i) {
2927 					i--;
2928 					wx_free_rx_resources(&temp_ring[i]);
2929 				}
2930 				return;
2931 			}
2932 		}
2933 
2934 		for (i = 0; i < wx->num_rx_queues; i++) {
2935 			wx_free_rx_resources(wx->rx_ring[i]);
2936 			memcpy(wx->rx_ring[i], &temp_ring[i],
2937 			       sizeof(struct wx_ring));
2938 		}
2939 
2940 		wx->rx_ring_count = new_rx_count;
2941 	}
2942 }
2943 EXPORT_SYMBOL(wx_set_ring);
2944 
2945 MODULE_DESCRIPTION("Common library for Wangxun(R) Ethernet drivers.");
2946 MODULE_LICENSE("GPL");
2947