1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 #include "ice.h"
5 #include "ice_base.h"
6 #include "ice_flow.h"
7 #include "ice_lib.h"
8 #include "ice_fltr.h"
9 #include "ice_dcb_lib.h"
10 #include "ice_type.h"
11 #include "ice_vsi_vlan_ops.h"
12
13 /**
14 * ice_vsi_type_str - maps VSI type enum to string equivalents
15 * @vsi_type: VSI type enum
16 */
ice_vsi_type_str(enum ice_vsi_type vsi_type)17 const char *ice_vsi_type_str(enum ice_vsi_type vsi_type)
18 {
19 switch (vsi_type) {
20 case ICE_VSI_PF:
21 return "ICE_VSI_PF";
22 case ICE_VSI_VF:
23 return "ICE_VSI_VF";
24 case ICE_VSI_SF:
25 return "ICE_VSI_SF";
26 case ICE_VSI_CTRL:
27 return "ICE_VSI_CTRL";
28 case ICE_VSI_CHNL:
29 return "ICE_VSI_CHNL";
30 case ICE_VSI_LB:
31 return "ICE_VSI_LB";
32 default:
33 return "unknown";
34 }
35 }
36
37 /**
38 * ice_vsi_ctrl_all_rx_rings - Start or stop a VSI's Rx rings
39 * @vsi: the VSI being configured
40 * @ena: start or stop the Rx rings
41 *
42 * First enable/disable all of the Rx rings, flush any remaining writes, and
43 * then verify that they have all been enabled/disabled successfully. This will
44 * let all of the register writes complete when enabling/disabling the Rx rings
45 * before waiting for the change in hardware to complete.
46 */
ice_vsi_ctrl_all_rx_rings(struct ice_vsi * vsi,bool ena)47 static int ice_vsi_ctrl_all_rx_rings(struct ice_vsi *vsi, bool ena)
48 {
49 int ret = 0;
50 u16 i;
51
52 ice_for_each_rxq(vsi, i)
53 ice_vsi_ctrl_one_rx_ring(vsi, ena, i, false);
54
55 ice_flush(&vsi->back->hw);
56
57 ice_for_each_rxq(vsi, i) {
58 ret = ice_vsi_wait_one_rx_ring(vsi, ena, i);
59 if (ret)
60 break;
61 }
62
63 return ret;
64 }
65
66 /**
67 * ice_vsi_alloc_arrays - Allocate queue and vector pointer arrays for the VSI
68 * @vsi: VSI pointer
69 *
70 * On error: returns error code (negative)
71 * On success: returns 0
72 */
ice_vsi_alloc_arrays(struct ice_vsi * vsi)73 static int ice_vsi_alloc_arrays(struct ice_vsi *vsi)
74 {
75 struct ice_pf *pf = vsi->back;
76 struct device *dev;
77
78 dev = ice_pf_to_dev(pf);
79 if (vsi->type == ICE_VSI_CHNL)
80 return 0;
81
82 /* allocate memory for both Tx and Rx ring pointers */
83 vsi->tx_rings = devm_kcalloc(dev, vsi->alloc_txq,
84 sizeof(*vsi->tx_rings), GFP_KERNEL);
85 if (!vsi->tx_rings)
86 return -ENOMEM;
87
88 vsi->rx_rings = devm_kcalloc(dev, vsi->alloc_rxq,
89 sizeof(*vsi->rx_rings), GFP_KERNEL);
90 if (!vsi->rx_rings)
91 goto err_rings;
92
93 /* txq_map needs to have enough space to track both Tx (stack) rings
94 * and XDP rings; at this point vsi->num_xdp_txq might not be set,
95 * so use num_possible_cpus() as we want to always provide XDP ring
96 * per CPU, regardless of queue count settings from user that might
97 * have come from ethtool's set_channels() callback;
98 */
99 vsi->txq_map = devm_kcalloc(dev, (vsi->alloc_txq + num_possible_cpus()),
100 sizeof(*vsi->txq_map), GFP_KERNEL);
101
102 if (!vsi->txq_map)
103 goto err_txq_map;
104
105 vsi->rxq_map = devm_kcalloc(dev, vsi->alloc_rxq,
106 sizeof(*vsi->rxq_map), GFP_KERNEL);
107 if (!vsi->rxq_map)
108 goto err_rxq_map;
109
110 /* There is no need to allocate q_vectors for a loopback VSI. */
111 if (vsi->type == ICE_VSI_LB)
112 return 0;
113
114 /* allocate memory for q_vector pointers */
115 vsi->q_vectors = devm_kcalloc(dev, vsi->num_q_vectors,
116 sizeof(*vsi->q_vectors), GFP_KERNEL);
117 if (!vsi->q_vectors)
118 goto err_vectors;
119
120 return 0;
121
122 err_vectors:
123 devm_kfree(dev, vsi->rxq_map);
124 err_rxq_map:
125 devm_kfree(dev, vsi->txq_map);
126 err_txq_map:
127 devm_kfree(dev, vsi->rx_rings);
128 err_rings:
129 devm_kfree(dev, vsi->tx_rings);
130 return -ENOMEM;
131 }
132
133 /**
134 * ice_vsi_set_num_desc - Set number of descriptors for queues on this VSI
135 * @vsi: the VSI being configured
136 */
ice_vsi_set_num_desc(struct ice_vsi * vsi)137 static void ice_vsi_set_num_desc(struct ice_vsi *vsi)
138 {
139 switch (vsi->type) {
140 case ICE_VSI_PF:
141 case ICE_VSI_SF:
142 case ICE_VSI_CTRL:
143 case ICE_VSI_LB:
144 /* a user could change the values of num_[tr]x_desc using
145 * ethtool -G so we should keep those values instead of
146 * overwriting them with the defaults.
147 */
148 if (!vsi->num_rx_desc)
149 vsi->num_rx_desc = ICE_DFLT_NUM_RX_DESC;
150 if (!vsi->num_tx_desc)
151 vsi->num_tx_desc = ICE_DFLT_NUM_TX_DESC;
152 break;
153 default:
154 dev_dbg(ice_pf_to_dev(vsi->back), "Not setting number of Tx/Rx descriptors for VSI type %d\n",
155 vsi->type);
156 break;
157 }
158 }
159
ice_get_rxq_count(struct ice_pf * pf)160 static u16 ice_get_rxq_count(struct ice_pf *pf)
161 {
162 return min(ice_get_avail_rxq_count(pf), num_online_cpus());
163 }
164
ice_get_txq_count(struct ice_pf * pf)165 static u16 ice_get_txq_count(struct ice_pf *pf)
166 {
167 return min(ice_get_avail_txq_count(pf), num_online_cpus());
168 }
169
170 /**
171 * ice_vsi_set_num_qs - Set number of queues, descriptors and vectors for a VSI
172 * @vsi: the VSI being configured
173 *
174 * Return 0 on success and a negative value on error
175 */
ice_vsi_set_num_qs(struct ice_vsi * vsi)176 static void ice_vsi_set_num_qs(struct ice_vsi *vsi)
177 {
178 enum ice_vsi_type vsi_type = vsi->type;
179 struct ice_pf *pf = vsi->back;
180 struct ice_vf *vf = vsi->vf;
181
182 if (WARN_ON(vsi_type == ICE_VSI_VF && !vf))
183 return;
184
185 switch (vsi_type) {
186 case ICE_VSI_PF:
187 if (vsi->req_txq) {
188 vsi->alloc_txq = vsi->req_txq;
189 vsi->num_txq = vsi->req_txq;
190 } else {
191 vsi->alloc_txq = ice_get_txq_count(pf);
192 }
193
194 pf->num_lan_tx = vsi->alloc_txq;
195
196 /* only 1 Rx queue unless RSS is enabled */
197 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
198 vsi->alloc_rxq = 1;
199 } else {
200 if (vsi->req_rxq) {
201 vsi->alloc_rxq = vsi->req_rxq;
202 vsi->num_rxq = vsi->req_rxq;
203 } else {
204 vsi->alloc_rxq = ice_get_rxq_count(pf);
205 }
206 }
207
208 pf->num_lan_rx = vsi->alloc_rxq;
209
210 vsi->num_q_vectors = max(vsi->alloc_rxq, vsi->alloc_txq);
211 break;
212 case ICE_VSI_SF:
213 vsi->alloc_txq = 1;
214 vsi->alloc_rxq = 1;
215 vsi->num_q_vectors = 1;
216 vsi->irq_dyn_alloc = true;
217 break;
218 case ICE_VSI_VF:
219 if (vf->num_req_qs)
220 vf->num_vf_qs = vf->num_req_qs;
221 vsi->alloc_txq = vf->num_vf_qs;
222 vsi->alloc_rxq = vf->num_vf_qs;
223 /* pf->vfs.num_msix_per includes (VF miscellaneous vector +
224 * data queue interrupts). Since vsi->num_q_vectors is number
225 * of queues vectors, subtract 1 (ICE_NONQ_VECS_VF) from the
226 * original vector count
227 */
228 vsi->num_q_vectors = vf->num_msix - ICE_NONQ_VECS_VF;
229 break;
230 case ICE_VSI_CTRL:
231 vsi->alloc_txq = 1;
232 vsi->alloc_rxq = 1;
233 vsi->num_q_vectors = 1;
234 break;
235 case ICE_VSI_CHNL:
236 vsi->alloc_txq = 0;
237 vsi->alloc_rxq = 0;
238 break;
239 case ICE_VSI_LB:
240 vsi->alloc_txq = 1;
241 vsi->alloc_rxq = 1;
242 break;
243 default:
244 dev_warn(ice_pf_to_dev(pf), "Unknown VSI type %d\n", vsi_type);
245 break;
246 }
247
248 ice_vsi_set_num_desc(vsi);
249 }
250
251 /**
252 * ice_get_free_slot - get the next non-NULL location index in array
253 * @array: array to search
254 * @size: size of the array
255 * @curr: last known occupied index to be used as a search hint
256 *
257 * void * is being used to keep the functionality generic. This lets us use this
258 * function on any array of pointers.
259 */
ice_get_free_slot(void * array,int size,int curr)260 static int ice_get_free_slot(void *array, int size, int curr)
261 {
262 int **tmp_array = (int **)array;
263 int next;
264
265 if (curr < (size - 1) && !tmp_array[curr + 1]) {
266 next = curr + 1;
267 } else {
268 int i = 0;
269
270 while ((i < size) && (tmp_array[i]))
271 i++;
272 if (i == size)
273 next = ICE_NO_VSI;
274 else
275 next = i;
276 }
277 return next;
278 }
279
280 /**
281 * ice_vsi_delete_from_hw - delete a VSI from the switch
282 * @vsi: pointer to VSI being removed
283 */
ice_vsi_delete_from_hw(struct ice_vsi * vsi)284 static void ice_vsi_delete_from_hw(struct ice_vsi *vsi)
285 {
286 struct ice_pf *pf = vsi->back;
287 struct ice_vsi_ctx *ctxt;
288 int status;
289
290 ice_fltr_remove_all(vsi);
291 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
292 if (!ctxt)
293 return;
294
295 if (vsi->type == ICE_VSI_VF)
296 ctxt->vf_num = vsi->vf->vf_id;
297 ctxt->vsi_num = vsi->vsi_num;
298
299 memcpy(&ctxt->info, &vsi->info, sizeof(ctxt->info));
300
301 status = ice_free_vsi(&pf->hw, vsi->idx, ctxt, false, NULL);
302 if (status)
303 dev_err(ice_pf_to_dev(pf), "Failed to delete VSI %i in FW - error: %d\n",
304 vsi->vsi_num, status);
305
306 kfree(ctxt);
307 }
308
309 /**
310 * ice_vsi_free_arrays - De-allocate queue and vector pointer arrays for the VSI
311 * @vsi: pointer to VSI being cleared
312 */
ice_vsi_free_arrays(struct ice_vsi * vsi)313 static void ice_vsi_free_arrays(struct ice_vsi *vsi)
314 {
315 struct ice_pf *pf = vsi->back;
316 struct device *dev;
317
318 dev = ice_pf_to_dev(pf);
319
320 /* free the ring and vector containers */
321 devm_kfree(dev, vsi->q_vectors);
322 vsi->q_vectors = NULL;
323 devm_kfree(dev, vsi->tx_rings);
324 vsi->tx_rings = NULL;
325 devm_kfree(dev, vsi->rx_rings);
326 vsi->rx_rings = NULL;
327 devm_kfree(dev, vsi->txq_map);
328 vsi->txq_map = NULL;
329 devm_kfree(dev, vsi->rxq_map);
330 vsi->rxq_map = NULL;
331 }
332
333 /**
334 * ice_vsi_free_stats - Free the ring statistics structures
335 * @vsi: VSI pointer
336 */
ice_vsi_free_stats(struct ice_vsi * vsi)337 static void ice_vsi_free_stats(struct ice_vsi *vsi)
338 {
339 struct ice_vsi_stats *vsi_stat;
340 struct ice_pf *pf = vsi->back;
341 int i;
342
343 if (vsi->type == ICE_VSI_CHNL)
344 return;
345 if (!pf->vsi_stats)
346 return;
347
348 vsi_stat = pf->vsi_stats[vsi->idx];
349 if (!vsi_stat)
350 return;
351
352 ice_for_each_alloc_txq(vsi, i) {
353 if (vsi_stat->tx_ring_stats[i]) {
354 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
355 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
356 }
357 }
358
359 ice_for_each_alloc_rxq(vsi, i) {
360 if (vsi_stat->rx_ring_stats[i]) {
361 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
362 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
363 }
364 }
365
366 kfree(vsi_stat->tx_ring_stats);
367 kfree(vsi_stat->rx_ring_stats);
368 kfree(vsi_stat);
369 pf->vsi_stats[vsi->idx] = NULL;
370 }
371
372 /**
373 * ice_vsi_alloc_ring_stats - Allocates Tx and Rx ring stats for the VSI
374 * @vsi: VSI which is having stats allocated
375 */
ice_vsi_alloc_ring_stats(struct ice_vsi * vsi)376 static int ice_vsi_alloc_ring_stats(struct ice_vsi *vsi)
377 {
378 struct ice_ring_stats **tx_ring_stats;
379 struct ice_ring_stats **rx_ring_stats;
380 struct ice_vsi_stats *vsi_stats;
381 struct ice_pf *pf = vsi->back;
382 u16 i;
383
384 vsi_stats = pf->vsi_stats[vsi->idx];
385 tx_ring_stats = vsi_stats->tx_ring_stats;
386 rx_ring_stats = vsi_stats->rx_ring_stats;
387
388 /* Allocate Tx ring stats */
389 ice_for_each_alloc_txq(vsi, i) {
390 struct ice_ring_stats *ring_stats;
391 struct ice_tx_ring *ring;
392
393 ring = vsi->tx_rings[i];
394 ring_stats = tx_ring_stats[i];
395
396 if (!ring_stats) {
397 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
398 if (!ring_stats)
399 goto err_out;
400
401 WRITE_ONCE(tx_ring_stats[i], ring_stats);
402 }
403
404 ring->ring_stats = ring_stats;
405 }
406
407 /* Allocate Rx ring stats */
408 ice_for_each_alloc_rxq(vsi, i) {
409 struct ice_ring_stats *ring_stats;
410 struct ice_rx_ring *ring;
411
412 ring = vsi->rx_rings[i];
413 ring_stats = rx_ring_stats[i];
414
415 if (!ring_stats) {
416 ring_stats = kzalloc(sizeof(*ring_stats), GFP_KERNEL);
417 if (!ring_stats)
418 goto err_out;
419
420 WRITE_ONCE(rx_ring_stats[i], ring_stats);
421 }
422
423 ring->ring_stats = ring_stats;
424 }
425
426 return 0;
427
428 err_out:
429 ice_vsi_free_stats(vsi);
430 return -ENOMEM;
431 }
432
433 /**
434 * ice_vsi_free - clean up and deallocate the provided VSI
435 * @vsi: pointer to VSI being cleared
436 *
437 * This deallocates the VSI's queue resources, removes it from the PF's
438 * VSI array if necessary, and deallocates the VSI
439 */
ice_vsi_free(struct ice_vsi * vsi)440 void ice_vsi_free(struct ice_vsi *vsi)
441 {
442 struct ice_pf *pf = NULL;
443 struct device *dev;
444
445 if (!vsi || !vsi->back)
446 return;
447
448 pf = vsi->back;
449 dev = ice_pf_to_dev(pf);
450
451 if (!pf->vsi[vsi->idx] || pf->vsi[vsi->idx] != vsi) {
452 dev_dbg(dev, "vsi does not exist at pf->vsi[%d]\n", vsi->idx);
453 return;
454 }
455
456 mutex_lock(&pf->sw_mutex);
457 /* updates the PF for this cleared VSI */
458
459 pf->vsi[vsi->idx] = NULL;
460 pf->next_vsi = vsi->idx;
461
462 ice_vsi_free_stats(vsi);
463 ice_vsi_free_arrays(vsi);
464 mutex_destroy(&vsi->xdp_state_lock);
465 mutex_unlock(&pf->sw_mutex);
466 devm_kfree(dev, vsi);
467 }
468
ice_vsi_delete(struct ice_vsi * vsi)469 void ice_vsi_delete(struct ice_vsi *vsi)
470 {
471 ice_vsi_delete_from_hw(vsi);
472 ice_vsi_free(vsi);
473 }
474
475 /**
476 * ice_msix_clean_ctrl_vsi - MSIX mode interrupt handler for ctrl VSI
477 * @irq: interrupt number
478 * @data: pointer to a q_vector
479 */
ice_msix_clean_ctrl_vsi(int __always_unused irq,void * data)480 static irqreturn_t ice_msix_clean_ctrl_vsi(int __always_unused irq, void *data)
481 {
482 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
483
484 if (!q_vector->tx.tx_ring)
485 return IRQ_HANDLED;
486
487 #define FDIR_RX_DESC_CLEAN_BUDGET 64
488 ice_clean_rx_irq(q_vector->rx.rx_ring, FDIR_RX_DESC_CLEAN_BUDGET);
489 ice_clean_ctrl_tx_irq(q_vector->tx.tx_ring);
490
491 return IRQ_HANDLED;
492 }
493
494 /**
495 * ice_msix_clean_rings - MSIX mode Interrupt Handler
496 * @irq: interrupt number
497 * @data: pointer to a q_vector
498 */
ice_msix_clean_rings(int __always_unused irq,void * data)499 static irqreturn_t ice_msix_clean_rings(int __always_unused irq, void *data)
500 {
501 struct ice_q_vector *q_vector = (struct ice_q_vector *)data;
502
503 if (!q_vector->tx.tx_ring && !q_vector->rx.rx_ring)
504 return IRQ_HANDLED;
505
506 q_vector->total_events++;
507
508 napi_schedule(&q_vector->napi);
509
510 return IRQ_HANDLED;
511 }
512
513 /**
514 * ice_vsi_alloc_stat_arrays - Allocate statistics arrays
515 * @vsi: VSI pointer
516 */
ice_vsi_alloc_stat_arrays(struct ice_vsi * vsi)517 static int ice_vsi_alloc_stat_arrays(struct ice_vsi *vsi)
518 {
519 struct ice_vsi_stats *vsi_stat;
520 struct ice_pf *pf = vsi->back;
521
522 if (vsi->type == ICE_VSI_CHNL)
523 return 0;
524 if (!pf->vsi_stats)
525 return -ENOENT;
526
527 if (pf->vsi_stats[vsi->idx])
528 /* realloc will happen in rebuild path */
529 return 0;
530
531 vsi_stat = kzalloc(sizeof(*vsi_stat), GFP_KERNEL);
532 if (!vsi_stat)
533 return -ENOMEM;
534
535 vsi_stat->tx_ring_stats =
536 kcalloc(vsi->alloc_txq, sizeof(*vsi_stat->tx_ring_stats),
537 GFP_KERNEL);
538 if (!vsi_stat->tx_ring_stats)
539 goto err_alloc_tx;
540
541 vsi_stat->rx_ring_stats =
542 kcalloc(vsi->alloc_rxq, sizeof(*vsi_stat->rx_ring_stats),
543 GFP_KERNEL);
544 if (!vsi_stat->rx_ring_stats)
545 goto err_alloc_rx;
546
547 pf->vsi_stats[vsi->idx] = vsi_stat;
548
549 return 0;
550
551 err_alloc_rx:
552 kfree(vsi_stat->rx_ring_stats);
553 err_alloc_tx:
554 kfree(vsi_stat->tx_ring_stats);
555 kfree(vsi_stat);
556 pf->vsi_stats[vsi->idx] = NULL;
557 return -ENOMEM;
558 }
559
560 /**
561 * ice_vsi_alloc_def - set default values for already allocated VSI
562 * @vsi: ptr to VSI
563 * @ch: ptr to channel
564 */
565 static int
ice_vsi_alloc_def(struct ice_vsi * vsi,struct ice_channel * ch)566 ice_vsi_alloc_def(struct ice_vsi *vsi, struct ice_channel *ch)
567 {
568 if (vsi->type != ICE_VSI_CHNL) {
569 ice_vsi_set_num_qs(vsi);
570 if (ice_vsi_alloc_arrays(vsi))
571 return -ENOMEM;
572 }
573
574 vsi->irq_dyn_alloc = pci_msix_can_alloc_dyn(vsi->back->pdev);
575
576 switch (vsi->type) {
577 case ICE_VSI_PF:
578 case ICE_VSI_SF:
579 /* Setup default MSIX irq handler for VSI */
580 vsi->irq_handler = ice_msix_clean_rings;
581 break;
582 case ICE_VSI_CTRL:
583 /* Setup ctrl VSI MSIX irq handler */
584 vsi->irq_handler = ice_msix_clean_ctrl_vsi;
585 break;
586 case ICE_VSI_CHNL:
587 if (!ch)
588 return -EINVAL;
589
590 vsi->num_rxq = ch->num_rxq;
591 vsi->num_txq = ch->num_txq;
592 vsi->next_base_q = ch->base_q;
593 break;
594 case ICE_VSI_VF:
595 case ICE_VSI_LB:
596 break;
597 default:
598 ice_vsi_free_arrays(vsi);
599 return -EINVAL;
600 }
601
602 return 0;
603 }
604
605 /**
606 * ice_vsi_alloc - Allocates the next available struct VSI in the PF
607 * @pf: board private structure
608 *
609 * Reserves a VSI index from the PF and allocates an empty VSI structure
610 * without a type. The VSI structure must later be initialized by calling
611 * ice_vsi_cfg().
612 *
613 * returns a pointer to a VSI on success, NULL on failure.
614 */
ice_vsi_alloc(struct ice_pf * pf)615 struct ice_vsi *ice_vsi_alloc(struct ice_pf *pf)
616 {
617 struct device *dev = ice_pf_to_dev(pf);
618 struct ice_vsi *vsi = NULL;
619
620 /* Need to protect the allocation of the VSIs at the PF level */
621 mutex_lock(&pf->sw_mutex);
622
623 /* If we have already allocated our maximum number of VSIs,
624 * pf->next_vsi will be ICE_NO_VSI. If not, pf->next_vsi index
625 * is available to be populated
626 */
627 if (pf->next_vsi == ICE_NO_VSI) {
628 dev_dbg(dev, "out of VSI slots!\n");
629 goto unlock_pf;
630 }
631
632 vsi = devm_kzalloc(dev, sizeof(*vsi), GFP_KERNEL);
633 if (!vsi)
634 goto unlock_pf;
635
636 vsi->back = pf;
637 set_bit(ICE_VSI_DOWN, vsi->state);
638
639 /* fill slot and make note of the index */
640 vsi->idx = pf->next_vsi;
641 pf->vsi[pf->next_vsi] = vsi;
642
643 /* prepare pf->next_vsi for next use */
644 pf->next_vsi = ice_get_free_slot(pf->vsi, pf->num_alloc_vsi,
645 pf->next_vsi);
646
647 mutex_init(&vsi->xdp_state_lock);
648
649 unlock_pf:
650 mutex_unlock(&pf->sw_mutex);
651 return vsi;
652 }
653
654 /**
655 * ice_alloc_fd_res - Allocate FD resource for a VSI
656 * @vsi: pointer to the ice_vsi
657 *
658 * This allocates the FD resources
659 *
660 * Returns 0 on success, -EPERM on no-op or -EIO on failure
661 */
ice_alloc_fd_res(struct ice_vsi * vsi)662 static int ice_alloc_fd_res(struct ice_vsi *vsi)
663 {
664 struct ice_pf *pf = vsi->back;
665 u32 g_val, b_val;
666
667 /* Flow Director filters are only allocated/assigned to the PF VSI or
668 * CHNL VSI which passes the traffic. The CTRL VSI is only used to
669 * add/delete filters so resources are not allocated to it
670 */
671 if (!test_bit(ICE_FLAG_FD_ENA, pf->flags))
672 return -EPERM;
673
674 if (!(vsi->type == ICE_VSI_PF || vsi->type == ICE_VSI_VF ||
675 vsi->type == ICE_VSI_CHNL))
676 return -EPERM;
677
678 /* FD filters from guaranteed pool per VSI */
679 g_val = pf->hw.func_caps.fd_fltr_guar;
680 if (!g_val)
681 return -EPERM;
682
683 /* FD filters from best effort pool */
684 b_val = pf->hw.func_caps.fd_fltr_best_effort;
685 if (!b_val)
686 return -EPERM;
687
688 /* PF main VSI gets only 64 FD resources from guaranteed pool
689 * when ADQ is configured.
690 */
691 #define ICE_PF_VSI_GFLTR 64
692
693 /* determine FD filter resources per VSI from shared(best effort) and
694 * dedicated pool
695 */
696 if (vsi->type == ICE_VSI_PF) {
697 vsi->num_gfltr = g_val;
698 /* if MQPRIO is configured, main VSI doesn't get all FD
699 * resources from guaranteed pool. PF VSI gets 64 FD resources
700 */
701 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
702 if (g_val < ICE_PF_VSI_GFLTR)
703 return -EPERM;
704 /* allow bare minimum entries for PF VSI */
705 vsi->num_gfltr = ICE_PF_VSI_GFLTR;
706 }
707
708 /* each VSI gets same "best_effort" quota */
709 vsi->num_bfltr = b_val;
710 } else if (vsi->type == ICE_VSI_VF) {
711 vsi->num_gfltr = 0;
712
713 /* each VSI gets same "best_effort" quota */
714 vsi->num_bfltr = b_val;
715 } else {
716 struct ice_vsi *main_vsi;
717 int numtc;
718
719 main_vsi = ice_get_main_vsi(pf);
720 if (!main_vsi)
721 return -EPERM;
722
723 if (!main_vsi->all_numtc)
724 return -EINVAL;
725
726 /* figure out ADQ numtc */
727 numtc = main_vsi->all_numtc - ICE_CHNL_START_TC;
728
729 /* only one TC but still asking resources for channels,
730 * invalid config
731 */
732 if (numtc < ICE_CHNL_START_TC)
733 return -EPERM;
734
735 g_val -= ICE_PF_VSI_GFLTR;
736 /* channel VSIs gets equal share from guaranteed pool */
737 vsi->num_gfltr = g_val / numtc;
738
739 /* each VSI gets same "best_effort" quota */
740 vsi->num_bfltr = b_val;
741 }
742
743 return 0;
744 }
745
746 /**
747 * ice_vsi_get_qs - Assign queues from PF to VSI
748 * @vsi: the VSI to assign queues to
749 *
750 * Returns 0 on success and a negative value on error
751 */
ice_vsi_get_qs(struct ice_vsi * vsi)752 static int ice_vsi_get_qs(struct ice_vsi *vsi)
753 {
754 struct ice_pf *pf = vsi->back;
755 struct ice_qs_cfg tx_qs_cfg = {
756 .qs_mutex = &pf->avail_q_mutex,
757 .pf_map = pf->avail_txqs,
758 .pf_map_size = pf->max_pf_txqs,
759 .q_count = vsi->alloc_txq,
760 .scatter_count = ICE_MAX_SCATTER_TXQS,
761 .vsi_map = vsi->txq_map,
762 .vsi_map_offset = 0,
763 .mapping_mode = ICE_VSI_MAP_CONTIG
764 };
765 struct ice_qs_cfg rx_qs_cfg = {
766 .qs_mutex = &pf->avail_q_mutex,
767 .pf_map = pf->avail_rxqs,
768 .pf_map_size = pf->max_pf_rxqs,
769 .q_count = vsi->alloc_rxq,
770 .scatter_count = ICE_MAX_SCATTER_RXQS,
771 .vsi_map = vsi->rxq_map,
772 .vsi_map_offset = 0,
773 .mapping_mode = ICE_VSI_MAP_CONTIG
774 };
775 int ret;
776
777 if (vsi->type == ICE_VSI_CHNL)
778 return 0;
779
780 ret = __ice_vsi_get_qs(&tx_qs_cfg);
781 if (ret)
782 return ret;
783 vsi->tx_mapping_mode = tx_qs_cfg.mapping_mode;
784
785 ret = __ice_vsi_get_qs(&rx_qs_cfg);
786 if (ret)
787 return ret;
788 vsi->rx_mapping_mode = rx_qs_cfg.mapping_mode;
789
790 return 0;
791 }
792
793 /**
794 * ice_vsi_put_qs - Release queues from VSI to PF
795 * @vsi: the VSI that is going to release queues
796 */
ice_vsi_put_qs(struct ice_vsi * vsi)797 static void ice_vsi_put_qs(struct ice_vsi *vsi)
798 {
799 struct ice_pf *pf = vsi->back;
800 int i;
801
802 mutex_lock(&pf->avail_q_mutex);
803
804 ice_for_each_alloc_txq(vsi, i) {
805 clear_bit(vsi->txq_map[i], pf->avail_txqs);
806 vsi->txq_map[i] = ICE_INVAL_Q_INDEX;
807 }
808
809 ice_for_each_alloc_rxq(vsi, i) {
810 clear_bit(vsi->rxq_map[i], pf->avail_rxqs);
811 vsi->rxq_map[i] = ICE_INVAL_Q_INDEX;
812 }
813
814 mutex_unlock(&pf->avail_q_mutex);
815 }
816
817 /**
818 * ice_is_safe_mode
819 * @pf: pointer to the PF struct
820 *
821 * returns true if driver is in safe mode, false otherwise
822 */
ice_is_safe_mode(struct ice_pf * pf)823 bool ice_is_safe_mode(struct ice_pf *pf)
824 {
825 return !test_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
826 }
827
828 /**
829 * ice_is_rdma_ena
830 * @pf: pointer to the PF struct
831 *
832 * returns true if RDMA is currently supported, false otherwise
833 */
ice_is_rdma_ena(struct ice_pf * pf)834 bool ice_is_rdma_ena(struct ice_pf *pf)
835 {
836 union devlink_param_value value;
837 int err;
838
839 err = devl_param_driverinit_value_get(priv_to_devlink(pf),
840 DEVLINK_PARAM_GENERIC_ID_ENABLE_RDMA,
841 &value);
842 return err ? test_bit(ICE_FLAG_RDMA_ENA, pf->flags) : value.vbool;
843 }
844
845 /**
846 * ice_vsi_clean_rss_flow_fld - Delete RSS configuration
847 * @vsi: the VSI being cleaned up
848 *
849 * This function deletes RSS input set for all flows that were configured
850 * for this VSI
851 */
ice_vsi_clean_rss_flow_fld(struct ice_vsi * vsi)852 static void ice_vsi_clean_rss_flow_fld(struct ice_vsi *vsi)
853 {
854 struct ice_pf *pf = vsi->back;
855 int status;
856
857 if (ice_is_safe_mode(pf))
858 return;
859
860 status = ice_rem_vsi_rss_cfg(&pf->hw, vsi->idx);
861 if (status)
862 dev_dbg(ice_pf_to_dev(pf), "ice_rem_vsi_rss_cfg failed for vsi = %d, error = %d\n",
863 vsi->vsi_num, status);
864 }
865
866 /**
867 * ice_rss_clean - Delete RSS related VSI structures and configuration
868 * @vsi: the VSI being removed
869 */
ice_rss_clean(struct ice_vsi * vsi)870 static void ice_rss_clean(struct ice_vsi *vsi)
871 {
872 struct ice_pf *pf = vsi->back;
873 struct device *dev;
874
875 dev = ice_pf_to_dev(pf);
876
877 devm_kfree(dev, vsi->rss_hkey_user);
878 devm_kfree(dev, vsi->rss_lut_user);
879
880 ice_vsi_clean_rss_flow_fld(vsi);
881 /* remove RSS replay list */
882 if (!ice_is_safe_mode(pf))
883 ice_rem_vsi_rss_list(&pf->hw, vsi->idx);
884 }
885
886 /**
887 * ice_vsi_set_rss_params - Setup RSS capabilities per VSI type
888 * @vsi: the VSI being configured
889 */
ice_vsi_set_rss_params(struct ice_vsi * vsi)890 static void ice_vsi_set_rss_params(struct ice_vsi *vsi)
891 {
892 struct ice_hw_common_caps *cap;
893 struct ice_pf *pf = vsi->back;
894 u16 max_rss_size;
895
896 if (!test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
897 vsi->rss_size = 1;
898 return;
899 }
900
901 cap = &pf->hw.func_caps.common_cap;
902 max_rss_size = BIT(cap->rss_table_entry_width);
903 switch (vsi->type) {
904 case ICE_VSI_CHNL:
905 case ICE_VSI_PF:
906 /* PF VSI will inherit RSS instance of PF */
907 vsi->rss_table_size = (u16)cap->rss_table_size;
908 if (vsi->type == ICE_VSI_CHNL)
909 vsi->rss_size = min_t(u16, vsi->num_rxq, max_rss_size);
910 else
911 vsi->rss_size = min_t(u16, num_online_cpus(),
912 max_rss_size);
913 vsi->rss_lut_type = ICE_LUT_PF;
914 break;
915 case ICE_VSI_SF:
916 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
917 vsi->rss_size = min_t(u16, num_online_cpus(), max_rss_size);
918 vsi->rss_lut_type = ICE_LUT_VSI;
919 break;
920 case ICE_VSI_VF:
921 /* VF VSI will get a small RSS table.
922 * For VSI_LUT, LUT size should be set to 64 bytes.
923 */
924 vsi->rss_table_size = ICE_LUT_VSI_SIZE;
925 vsi->rss_size = ICE_MAX_RSS_QS_PER_VF;
926 vsi->rss_lut_type = ICE_LUT_VSI;
927 break;
928 case ICE_VSI_LB:
929 break;
930 default:
931 dev_dbg(ice_pf_to_dev(pf), "Unsupported VSI type %s\n",
932 ice_vsi_type_str(vsi->type));
933 break;
934 }
935 }
936
937 /**
938 * ice_set_dflt_vsi_ctx - Set default VSI context before adding a VSI
939 * @hw: HW structure used to determine the VLAN mode of the device
940 * @ctxt: the VSI context being set
941 *
942 * This initializes a default VSI context for all sections except the Queues.
943 */
ice_set_dflt_vsi_ctx(struct ice_hw * hw,struct ice_vsi_ctx * ctxt)944 static void ice_set_dflt_vsi_ctx(struct ice_hw *hw, struct ice_vsi_ctx *ctxt)
945 {
946 u32 table = 0;
947
948 memset(&ctxt->info, 0, sizeof(ctxt->info));
949 /* VSI's should be allocated from shared pool */
950 ctxt->alloc_from_pool = true;
951 /* Src pruning enabled by default */
952 ctxt->info.sw_flags = ICE_AQ_VSI_SW_FLAG_SRC_PRUNE;
953 /* Traffic from VSI can be sent to LAN */
954 ctxt->info.sw_flags2 = ICE_AQ_VSI_SW_FLAG_LAN_ENA;
955 /* allow all untagged/tagged packets by default on Tx */
956 ctxt->info.inner_vlan_flags = FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_TX_MODE_M,
957 ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL);
958 /* SVM - by default bits 3 and 4 in inner_vlan_flags are 0's which
959 * results in legacy behavior (show VLAN, DEI, and UP) in descriptor.
960 *
961 * DVM - leave inner VLAN in packet by default
962 */
963 if (ice_is_dvm_ena(hw)) {
964 ctxt->info.inner_vlan_flags |=
965 FIELD_PREP(ICE_AQ_VSI_INNER_VLAN_EMODE_M,
966 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING);
967 ctxt->info.outer_vlan_flags =
968 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_TX_MODE_M,
969 ICE_AQ_VSI_OUTER_VLAN_TX_MODE_ALL);
970 ctxt->info.outer_vlan_flags |=
971 FIELD_PREP(ICE_AQ_VSI_OUTER_TAG_TYPE_M,
972 ICE_AQ_VSI_OUTER_TAG_VLAN_8100);
973 ctxt->info.outer_vlan_flags |=
974 FIELD_PREP(ICE_AQ_VSI_OUTER_VLAN_EMODE_M,
975 ICE_AQ_VSI_OUTER_VLAN_EMODE_NOTHING);
976 }
977 /* Have 1:1 UP mapping for both ingress/egress tables */
978 table |= ICE_UP_TABLE_TRANSLATE(0, 0);
979 table |= ICE_UP_TABLE_TRANSLATE(1, 1);
980 table |= ICE_UP_TABLE_TRANSLATE(2, 2);
981 table |= ICE_UP_TABLE_TRANSLATE(3, 3);
982 table |= ICE_UP_TABLE_TRANSLATE(4, 4);
983 table |= ICE_UP_TABLE_TRANSLATE(5, 5);
984 table |= ICE_UP_TABLE_TRANSLATE(6, 6);
985 table |= ICE_UP_TABLE_TRANSLATE(7, 7);
986 ctxt->info.ingress_table = cpu_to_le32(table);
987 ctxt->info.egress_table = cpu_to_le32(table);
988 /* Have 1:1 UP mapping for outer to inner UP table */
989 ctxt->info.outer_up_table = cpu_to_le32(table);
990 /* No Outer tag support outer_tag_flags remains to zero */
991 }
992
993 /**
994 * ice_vsi_setup_q_map - Setup a VSI queue map
995 * @vsi: the VSI being configured
996 * @ctxt: VSI context structure
997 */
ice_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)998 static int ice_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
999 {
1000 u16 offset = 0, qmap = 0, tx_count = 0, rx_count = 0, pow = 0;
1001 u16 num_txq_per_tc, num_rxq_per_tc;
1002 u16 qcount_tx = vsi->alloc_txq;
1003 u16 qcount_rx = vsi->alloc_rxq;
1004 u8 netdev_tc = 0;
1005 int i;
1006
1007 if (!vsi->tc_cfg.numtc) {
1008 /* at least TC0 should be enabled by default */
1009 vsi->tc_cfg.numtc = 1;
1010 vsi->tc_cfg.ena_tc = 1;
1011 }
1012
1013 num_rxq_per_tc = min_t(u16, qcount_rx / vsi->tc_cfg.numtc, ICE_MAX_RXQS_PER_TC);
1014 if (!num_rxq_per_tc)
1015 num_rxq_per_tc = 1;
1016 num_txq_per_tc = qcount_tx / vsi->tc_cfg.numtc;
1017 if (!num_txq_per_tc)
1018 num_txq_per_tc = 1;
1019
1020 /* find the (rounded up) power-of-2 of qcount */
1021 pow = (u16)order_base_2(num_rxq_per_tc);
1022
1023 /* TC mapping is a function of the number of Rx queues assigned to the
1024 * VSI for each traffic class and the offset of these queues.
1025 * The first 10 bits are for queue offset for TC0, next 4 bits for no:of
1026 * queues allocated to TC0. No:of queues is a power-of-2.
1027 *
1028 * If TC is not enabled, the queue offset is set to 0, and allocate one
1029 * queue, this way, traffic for the given TC will be sent to the default
1030 * queue.
1031 *
1032 * Setup number and offset of Rx queues for all TCs for the VSI
1033 */
1034 ice_for_each_traffic_class(i) {
1035 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
1036 /* TC is not enabled */
1037 vsi->tc_cfg.tc_info[i].qoffset = 0;
1038 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
1039 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
1040 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
1041 ctxt->info.tc_mapping[i] = 0;
1042 continue;
1043 }
1044
1045 /* TC is enabled */
1046 vsi->tc_cfg.tc_info[i].qoffset = offset;
1047 vsi->tc_cfg.tc_info[i].qcount_rx = num_rxq_per_tc;
1048 vsi->tc_cfg.tc_info[i].qcount_tx = num_txq_per_tc;
1049 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
1050
1051 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1052 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1053 offset += num_rxq_per_tc;
1054 tx_count += num_txq_per_tc;
1055 ctxt->info.tc_mapping[i] = cpu_to_le16(qmap);
1056 }
1057
1058 /* if offset is non-zero, means it is calculated correctly based on
1059 * enabled TCs for a given VSI otherwise qcount_rx will always
1060 * be correct and non-zero because it is based off - VSI's
1061 * allocated Rx queues which is at least 1 (hence qcount_tx will be
1062 * at least 1)
1063 */
1064 if (offset)
1065 rx_count = offset;
1066 else
1067 rx_count = num_rxq_per_tc;
1068
1069 if (rx_count > vsi->alloc_rxq) {
1070 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
1071 rx_count, vsi->alloc_rxq);
1072 return -EINVAL;
1073 }
1074
1075 if (tx_count > vsi->alloc_txq) {
1076 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
1077 tx_count, vsi->alloc_txq);
1078 return -EINVAL;
1079 }
1080
1081 vsi->num_txq = tx_count;
1082 vsi->num_rxq = rx_count;
1083
1084 if (vsi->type == ICE_VSI_VF && vsi->num_txq != vsi->num_rxq) {
1085 dev_dbg(ice_pf_to_dev(vsi->back), "VF VSI should have same number of Tx and Rx queues. Hence making them equal\n");
1086 /* since there is a chance that num_rxq could have been changed
1087 * in the above for loop, make num_txq equal to num_rxq.
1088 */
1089 vsi->num_txq = vsi->num_rxq;
1090 }
1091
1092 /* Rx queue mapping */
1093 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1094 /* q_mapping buffer holds the info for the first queue allocated for
1095 * this VSI in the PF space and also the number of queues associated
1096 * with this VSI.
1097 */
1098 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
1099 ctxt->info.q_mapping[1] = cpu_to_le16(vsi->num_rxq);
1100
1101 return 0;
1102 }
1103
1104 /**
1105 * ice_set_fd_vsi_ctx - Set FD VSI context before adding a VSI
1106 * @ctxt: the VSI context being set
1107 * @vsi: the VSI being configured
1108 */
ice_set_fd_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1109 static void ice_set_fd_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1110 {
1111 u8 dflt_q_group, dflt_q_prio;
1112 u16 dflt_q, report_q, val;
1113
1114 if (vsi->type != ICE_VSI_PF && vsi->type != ICE_VSI_CTRL &&
1115 vsi->type != ICE_VSI_VF && vsi->type != ICE_VSI_CHNL)
1116 return;
1117
1118 val = ICE_AQ_VSI_PROP_FLOW_DIR_VALID;
1119 ctxt->info.valid_sections |= cpu_to_le16(val);
1120 dflt_q = 0;
1121 dflt_q_group = 0;
1122 report_q = 0;
1123 dflt_q_prio = 0;
1124
1125 /* enable flow director filtering/programming */
1126 val = ICE_AQ_VSI_FD_ENABLE | ICE_AQ_VSI_FD_PROG_ENABLE;
1127 ctxt->info.fd_options = cpu_to_le16(val);
1128 /* max of allocated flow director filters */
1129 ctxt->info.max_fd_fltr_dedicated =
1130 cpu_to_le16(vsi->num_gfltr);
1131 /* max of shared flow director filters any VSI may program */
1132 ctxt->info.max_fd_fltr_shared =
1133 cpu_to_le16(vsi->num_bfltr);
1134 /* default queue index within the VSI of the default FD */
1135 val = FIELD_PREP(ICE_AQ_VSI_FD_DEF_Q_M, dflt_q);
1136 /* target queue or queue group to the FD filter */
1137 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_GRP_M, dflt_q_group);
1138 ctxt->info.fd_def_q = cpu_to_le16(val);
1139 /* queue index on which FD filter completion is reported */
1140 val = FIELD_PREP(ICE_AQ_VSI_FD_REPORT_Q_M, report_q);
1141 /* priority of the default qindex action */
1142 val |= FIELD_PREP(ICE_AQ_VSI_FD_DEF_PRIORITY_M, dflt_q_prio);
1143 ctxt->info.fd_report_opt = cpu_to_le16(val);
1144 }
1145
1146 /**
1147 * ice_set_rss_vsi_ctx - Set RSS VSI context before adding a VSI
1148 * @ctxt: the VSI context being set
1149 * @vsi: the VSI being configured
1150 */
ice_set_rss_vsi_ctx(struct ice_vsi_ctx * ctxt,struct ice_vsi * vsi)1151 static void ice_set_rss_vsi_ctx(struct ice_vsi_ctx *ctxt, struct ice_vsi *vsi)
1152 {
1153 u8 lut_type, hash_type;
1154 struct device *dev;
1155 struct ice_pf *pf;
1156
1157 pf = vsi->back;
1158 dev = ice_pf_to_dev(pf);
1159
1160 switch (vsi->type) {
1161 case ICE_VSI_CHNL:
1162 case ICE_VSI_PF:
1163 /* PF VSI will inherit RSS instance of PF */
1164 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_PF;
1165 break;
1166 case ICE_VSI_VF:
1167 case ICE_VSI_SF:
1168 /* VF VSI will gets a small RSS table which is a VSI LUT type */
1169 lut_type = ICE_AQ_VSI_Q_OPT_RSS_LUT_VSI;
1170 break;
1171 default:
1172 dev_dbg(dev, "Unsupported VSI type %s\n",
1173 ice_vsi_type_str(vsi->type));
1174 return;
1175 }
1176
1177 hash_type = ICE_AQ_VSI_Q_OPT_RSS_HASH_TPLZ;
1178 vsi->rss_hfunc = hash_type;
1179
1180 ctxt->info.q_opt_rss =
1181 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_LUT_M, lut_type) |
1182 FIELD_PREP(ICE_AQ_VSI_Q_OPT_RSS_HASH_M, hash_type);
1183 }
1184
1185 static void
ice_chnl_vsi_setup_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt)1186 ice_chnl_vsi_setup_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt)
1187 {
1188 u16 qcount, qmap;
1189 u8 offset = 0;
1190 int pow;
1191
1192 qcount = vsi->num_rxq;
1193
1194 pow = order_base_2(qcount);
1195 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, offset);
1196 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
1197
1198 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
1199 ctxt->info.mapping_flags |= cpu_to_le16(ICE_AQ_VSI_Q_MAP_CONTIG);
1200 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->next_base_q);
1201 ctxt->info.q_mapping[1] = cpu_to_le16(qcount);
1202 }
1203
1204 /**
1205 * ice_vsi_is_vlan_pruning_ena - check if VLAN pruning is enabled or not
1206 * @vsi: VSI to check whether or not VLAN pruning is enabled.
1207 *
1208 * returns true if Rx VLAN pruning is enabled and false otherwise.
1209 */
ice_vsi_is_vlan_pruning_ena(struct ice_vsi * vsi)1210 static bool ice_vsi_is_vlan_pruning_ena(struct ice_vsi *vsi)
1211 {
1212 return vsi->info.sw_flags2 & ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1213 }
1214
1215 /**
1216 * ice_vsi_init - Create and initialize a VSI
1217 * @vsi: the VSI being configured
1218 * @vsi_flags: VSI configuration flags
1219 *
1220 * Set ICE_FLAG_VSI_INIT to initialize a new VSI context, clear it to
1221 * reconfigure an existing context.
1222 *
1223 * This initializes a VSI context depending on the VSI type to be added and
1224 * passes it down to the add_vsi aq command to create a new VSI.
1225 */
ice_vsi_init(struct ice_vsi * vsi,u32 vsi_flags)1226 static int ice_vsi_init(struct ice_vsi *vsi, u32 vsi_flags)
1227 {
1228 struct ice_pf *pf = vsi->back;
1229 struct ice_hw *hw = &pf->hw;
1230 struct ice_vsi_ctx *ctxt;
1231 struct device *dev;
1232 int ret = 0;
1233
1234 dev = ice_pf_to_dev(pf);
1235 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
1236 if (!ctxt)
1237 return -ENOMEM;
1238
1239 switch (vsi->type) {
1240 case ICE_VSI_CTRL:
1241 case ICE_VSI_LB:
1242 case ICE_VSI_PF:
1243 ctxt->flags = ICE_AQ_VSI_TYPE_PF;
1244 break;
1245 case ICE_VSI_SF:
1246 case ICE_VSI_CHNL:
1247 ctxt->flags = ICE_AQ_VSI_TYPE_VMDQ2;
1248 break;
1249 case ICE_VSI_VF:
1250 ctxt->flags = ICE_AQ_VSI_TYPE_VF;
1251 /* VF number here is the absolute VF number (0-255) */
1252 ctxt->vf_num = vsi->vf->vf_id + hw->func_caps.vf_base_id;
1253 break;
1254 default:
1255 ret = -ENODEV;
1256 goto out;
1257 }
1258
1259 /* Handle VLAN pruning for channel VSI if main VSI has VLAN
1260 * prune enabled
1261 */
1262 if (vsi->type == ICE_VSI_CHNL) {
1263 struct ice_vsi *main_vsi;
1264
1265 main_vsi = ice_get_main_vsi(pf);
1266 if (main_vsi && ice_vsi_is_vlan_pruning_ena(main_vsi))
1267 ctxt->info.sw_flags2 |=
1268 ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1269 else
1270 ctxt->info.sw_flags2 &=
1271 ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
1272 }
1273
1274 ice_set_dflt_vsi_ctx(hw, ctxt);
1275 if (test_bit(ICE_FLAG_FD_ENA, pf->flags))
1276 ice_set_fd_vsi_ctx(ctxt, vsi);
1277 /* if the switch is in VEB mode, allow VSI loopback */
1278 if (vsi->vsw->bridge_mode == BRIDGE_MODE_VEB)
1279 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
1280
1281 /* Set LUT type and HASH type if RSS is enabled */
1282 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags) &&
1283 vsi->type != ICE_VSI_CTRL) {
1284 ice_set_rss_vsi_ctx(ctxt, vsi);
1285 /* if updating VSI context, make sure to set valid_section:
1286 * to indicate which section of VSI context being updated
1287 */
1288 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1289 ctxt->info.valid_sections |=
1290 cpu_to_le16(ICE_AQ_VSI_PROP_Q_OPT_VALID);
1291 }
1292
1293 ctxt->info.sw_id = vsi->port_info->sw_id;
1294 if (vsi->type == ICE_VSI_CHNL) {
1295 ice_chnl_vsi_setup_q_map(vsi, ctxt);
1296 } else {
1297 ret = ice_vsi_setup_q_map(vsi, ctxt);
1298 if (ret)
1299 goto out;
1300
1301 if (!(vsi_flags & ICE_VSI_FLAG_INIT))
1302 /* means VSI being updated */
1303 /* must to indicate which section of VSI context are
1304 * being modified
1305 */
1306 ctxt->info.valid_sections |=
1307 cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
1308 }
1309
1310 /* Allow control frames out of main VSI */
1311 if (vsi->type == ICE_VSI_PF) {
1312 ctxt->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ALLOW_DEST_OVRD;
1313 ctxt->info.valid_sections |=
1314 cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
1315 }
1316
1317 if (vsi_flags & ICE_VSI_FLAG_INIT) {
1318 ret = ice_add_vsi(hw, vsi->idx, ctxt, NULL);
1319 if (ret) {
1320 dev_err(dev, "Add VSI failed, err %d\n", ret);
1321 ret = -EIO;
1322 goto out;
1323 }
1324 } else {
1325 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
1326 if (ret) {
1327 dev_err(dev, "Update VSI failed, err %d\n", ret);
1328 ret = -EIO;
1329 goto out;
1330 }
1331 }
1332
1333 /* keep context for update VSI operations */
1334 vsi->info = ctxt->info;
1335
1336 /* record VSI number returned */
1337 vsi->vsi_num = ctxt->vsi_num;
1338
1339 out:
1340 kfree(ctxt);
1341 return ret;
1342 }
1343
1344 /**
1345 * ice_vsi_clear_rings - Deallocates the Tx and Rx rings for VSI
1346 * @vsi: the VSI having rings deallocated
1347 */
ice_vsi_clear_rings(struct ice_vsi * vsi)1348 static void ice_vsi_clear_rings(struct ice_vsi *vsi)
1349 {
1350 int i;
1351
1352 /* Avoid stale references by clearing map from vector to ring */
1353 if (vsi->q_vectors) {
1354 ice_for_each_q_vector(vsi, i) {
1355 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1356
1357 if (q_vector) {
1358 q_vector->tx.tx_ring = NULL;
1359 q_vector->rx.rx_ring = NULL;
1360 }
1361 }
1362 }
1363
1364 if (vsi->tx_rings) {
1365 ice_for_each_alloc_txq(vsi, i) {
1366 if (vsi->tx_rings[i]) {
1367 kfree_rcu(vsi->tx_rings[i], rcu);
1368 WRITE_ONCE(vsi->tx_rings[i], NULL);
1369 }
1370 }
1371 }
1372 if (vsi->rx_rings) {
1373 ice_for_each_alloc_rxq(vsi, i) {
1374 if (vsi->rx_rings[i]) {
1375 kfree_rcu(vsi->rx_rings[i], rcu);
1376 WRITE_ONCE(vsi->rx_rings[i], NULL);
1377 }
1378 }
1379 }
1380 }
1381
1382 /**
1383 * ice_vsi_alloc_rings - Allocates Tx and Rx rings for the VSI
1384 * @vsi: VSI which is having rings allocated
1385 */
ice_vsi_alloc_rings(struct ice_vsi * vsi)1386 static int ice_vsi_alloc_rings(struct ice_vsi *vsi)
1387 {
1388 bool dvm_ena = ice_is_dvm_ena(&vsi->back->hw);
1389 struct ice_pf *pf = vsi->back;
1390 struct device *dev;
1391 u16 i;
1392
1393 dev = ice_pf_to_dev(pf);
1394 /* Allocate Tx rings */
1395 ice_for_each_alloc_txq(vsi, i) {
1396 struct ice_tx_ring *ring;
1397
1398 /* allocate with kzalloc(), free with kfree_rcu() */
1399 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1400
1401 if (!ring)
1402 goto err_out;
1403
1404 ring->q_index = i;
1405 ring->reg_idx = vsi->txq_map[i];
1406 ring->vsi = vsi;
1407 ring->tx_tstamps = &pf->ptp.port.tx;
1408 ring->dev = dev;
1409 ring->count = vsi->num_tx_desc;
1410 ring->txq_teid = ICE_INVAL_TEID;
1411 if (dvm_ena)
1412 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG2;
1413 else
1414 ring->flags |= ICE_TX_FLAGS_RING_VLAN_L2TAG1;
1415 WRITE_ONCE(vsi->tx_rings[i], ring);
1416 }
1417
1418 /* Allocate Rx rings */
1419 ice_for_each_alloc_rxq(vsi, i) {
1420 struct ice_rx_ring *ring;
1421
1422 /* allocate with kzalloc(), free with kfree_rcu() */
1423 ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1424 if (!ring)
1425 goto err_out;
1426
1427 ring->q_index = i;
1428 ring->reg_idx = vsi->rxq_map[i];
1429 ring->vsi = vsi;
1430 ring->netdev = vsi->netdev;
1431 ring->dev = dev;
1432 ring->count = vsi->num_rx_desc;
1433 ring->cached_phctime = pf->ptp.cached_phc_time;
1434
1435 if (ice_is_feature_supported(pf, ICE_F_GCS))
1436 ring->flags |= ICE_RX_FLAGS_RING_GCS;
1437
1438 WRITE_ONCE(vsi->rx_rings[i], ring);
1439 }
1440
1441 return 0;
1442
1443 err_out:
1444 ice_vsi_clear_rings(vsi);
1445 return -ENOMEM;
1446 }
1447
1448 /**
1449 * ice_vsi_manage_rss_lut - disable/enable RSS
1450 * @vsi: the VSI being changed
1451 * @ena: boolean value indicating if this is an enable or disable request
1452 *
1453 * In the event of disable request for RSS, this function will zero out RSS
1454 * LUT, while in the event of enable request for RSS, it will reconfigure RSS
1455 * LUT.
1456 */
ice_vsi_manage_rss_lut(struct ice_vsi * vsi,bool ena)1457 void ice_vsi_manage_rss_lut(struct ice_vsi *vsi, bool ena)
1458 {
1459 u8 *lut;
1460
1461 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1462 if (!lut)
1463 return;
1464
1465 if (ena) {
1466 if (vsi->rss_lut_user)
1467 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1468 else
1469 ice_fill_rss_lut(lut, vsi->rss_table_size,
1470 vsi->rss_size);
1471 }
1472
1473 ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1474 kfree(lut);
1475 }
1476
1477 /**
1478 * ice_vsi_cfg_crc_strip - Configure CRC stripping for a VSI
1479 * @vsi: VSI to be configured
1480 * @disable: set to true to have FCS / CRC in the frame data
1481 */
ice_vsi_cfg_crc_strip(struct ice_vsi * vsi,bool disable)1482 void ice_vsi_cfg_crc_strip(struct ice_vsi *vsi, bool disable)
1483 {
1484 int i;
1485
1486 ice_for_each_rxq(vsi, i)
1487 if (disable)
1488 vsi->rx_rings[i]->flags |= ICE_RX_FLAGS_CRC_STRIP_DIS;
1489 else
1490 vsi->rx_rings[i]->flags &= ~ICE_RX_FLAGS_CRC_STRIP_DIS;
1491 }
1492
1493 /**
1494 * ice_vsi_cfg_rss_lut_key - Configure RSS params for a VSI
1495 * @vsi: VSI to be configured
1496 */
ice_vsi_cfg_rss_lut_key(struct ice_vsi * vsi)1497 int ice_vsi_cfg_rss_lut_key(struct ice_vsi *vsi)
1498 {
1499 struct ice_pf *pf = vsi->back;
1500 struct device *dev;
1501 u8 *lut, *key;
1502 int err;
1503
1504 dev = ice_pf_to_dev(pf);
1505 if (vsi->type == ICE_VSI_PF && vsi->ch_rss_size &&
1506 (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))) {
1507 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->ch_rss_size);
1508 } else {
1509 vsi->rss_size = min_t(u16, vsi->rss_size, vsi->num_rxq);
1510
1511 /* If orig_rss_size is valid and it is less than determined
1512 * main VSI's rss_size, update main VSI's rss_size to be
1513 * orig_rss_size so that when tc-qdisc is deleted, main VSI
1514 * RSS table gets programmed to be correct (whatever it was
1515 * to begin with (prior to setup-tc for ADQ config)
1516 */
1517 if (vsi->orig_rss_size && vsi->rss_size < vsi->orig_rss_size &&
1518 vsi->orig_rss_size <= vsi->num_rxq) {
1519 vsi->rss_size = vsi->orig_rss_size;
1520 /* now orig_rss_size is used, reset it to zero */
1521 vsi->orig_rss_size = 0;
1522 }
1523 }
1524
1525 lut = kzalloc(vsi->rss_table_size, GFP_KERNEL);
1526 if (!lut)
1527 return -ENOMEM;
1528
1529 if (vsi->rss_lut_user)
1530 memcpy(lut, vsi->rss_lut_user, vsi->rss_table_size);
1531 else
1532 ice_fill_rss_lut(lut, vsi->rss_table_size, vsi->rss_size);
1533
1534 err = ice_set_rss_lut(vsi, lut, vsi->rss_table_size);
1535 if (err) {
1536 dev_err(dev, "set_rss_lut failed, error %d\n", err);
1537 goto ice_vsi_cfg_rss_exit;
1538 }
1539
1540 key = kzalloc(ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE, GFP_KERNEL);
1541 if (!key) {
1542 err = -ENOMEM;
1543 goto ice_vsi_cfg_rss_exit;
1544 }
1545
1546 if (vsi->rss_hkey_user)
1547 memcpy(key, vsi->rss_hkey_user, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1548 else
1549 netdev_rss_key_fill((void *)key, ICE_GET_SET_RSS_KEY_EXTEND_KEY_SIZE);
1550
1551 err = ice_set_rss_key(vsi, key);
1552 if (err)
1553 dev_err(dev, "set_rss_key failed, error %d\n", err);
1554
1555 kfree(key);
1556 ice_vsi_cfg_rss_exit:
1557 kfree(lut);
1558 return err;
1559 }
1560
1561 /**
1562 * ice_vsi_set_vf_rss_flow_fld - Sets VF VSI RSS input set for different flows
1563 * @vsi: VSI to be configured
1564 *
1565 * This function will only be called during the VF VSI setup. Upon successful
1566 * completion of package download, this function will configure default RSS
1567 * input sets for VF VSI.
1568 */
ice_vsi_set_vf_rss_flow_fld(struct ice_vsi * vsi)1569 static void ice_vsi_set_vf_rss_flow_fld(struct ice_vsi *vsi)
1570 {
1571 struct ice_pf *pf = vsi->back;
1572 struct device *dev;
1573 int status;
1574
1575 dev = ice_pf_to_dev(pf);
1576 if (ice_is_safe_mode(pf)) {
1577 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1578 vsi->vsi_num);
1579 return;
1580 }
1581
1582 status = ice_add_avf_rss_cfg(&pf->hw, vsi, ICE_DEFAULT_RSS_HENA);
1583 if (status)
1584 dev_dbg(dev, "ice_add_avf_rss_cfg failed for vsi = %d, error = %d\n",
1585 vsi->vsi_num, status);
1586 }
1587
1588 static const struct ice_rss_hash_cfg default_rss_cfgs[] = {
1589 /* configure RSS for IPv4 with input set IP src/dst */
1590 {ICE_FLOW_SEG_HDR_IPV4, ICE_FLOW_HASH_IPV4, ICE_RSS_ANY_HEADERS, false},
1591 /* configure RSS for IPv6 with input set IPv6 src/dst */
1592 {ICE_FLOW_SEG_HDR_IPV6, ICE_FLOW_HASH_IPV6, ICE_RSS_ANY_HEADERS, false},
1593 /* configure RSS for tcp4 with input set IP src/dst, TCP src/dst */
1594 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV4,
1595 ICE_HASH_TCP_IPV4, ICE_RSS_ANY_HEADERS, false},
1596 /* configure RSS for udp4 with input set IP src/dst, UDP src/dst */
1597 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV4,
1598 ICE_HASH_UDP_IPV4, ICE_RSS_ANY_HEADERS, false},
1599 /* configure RSS for sctp4 with input set IP src/dst - only support
1600 * RSS on SCTPv4 on outer headers (non-tunneled)
1601 */
1602 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV4,
1603 ICE_HASH_SCTP_IPV4, ICE_RSS_OUTER_HEADERS, false},
1604 /* configure RSS for gtpc4 with input set IPv4 src/dst */
1605 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV4,
1606 ICE_FLOW_HASH_IPV4, ICE_RSS_OUTER_HEADERS, false},
1607 /* configure RSS for gtpc4t with input set IPv4 src/dst */
1608 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV4,
1609 ICE_FLOW_HASH_GTP_C_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1610 /* configure RSS for gtpu4 with input set IPv4 src/dst */
1611 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV4,
1612 ICE_FLOW_HASH_GTP_U_IPV4_TEID, ICE_RSS_OUTER_HEADERS, false},
1613 /* configure RSS for gtpu4e with input set IPv4 src/dst */
1614 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV4,
1615 ICE_FLOW_HASH_GTP_U_IPV4_EH, ICE_RSS_OUTER_HEADERS, false},
1616 /* configure RSS for gtpu4u with input set IPv4 src/dst */
1617 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV4,
1618 ICE_FLOW_HASH_GTP_U_IPV4_UP, ICE_RSS_OUTER_HEADERS, false},
1619 /* configure RSS for gtpu4d with input set IPv4 src/dst */
1620 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV4,
1621 ICE_FLOW_HASH_GTP_U_IPV4_DWN, ICE_RSS_OUTER_HEADERS, false},
1622
1623 /* configure RSS for tcp6 with input set IPv6 src/dst, TCP src/dst */
1624 {ICE_FLOW_SEG_HDR_TCP | ICE_FLOW_SEG_HDR_IPV6,
1625 ICE_HASH_TCP_IPV6, ICE_RSS_ANY_HEADERS, false},
1626 /* configure RSS for udp6 with input set IPv6 src/dst, UDP src/dst */
1627 {ICE_FLOW_SEG_HDR_UDP | ICE_FLOW_SEG_HDR_IPV6,
1628 ICE_HASH_UDP_IPV6, ICE_RSS_ANY_HEADERS, false},
1629 /* configure RSS for sctp6 with input set IPv6 src/dst - only support
1630 * RSS on SCTPv6 on outer headers (non-tunneled)
1631 */
1632 {ICE_FLOW_SEG_HDR_SCTP | ICE_FLOW_SEG_HDR_IPV6,
1633 ICE_HASH_SCTP_IPV6, ICE_RSS_OUTER_HEADERS, false},
1634 /* configure RSS for IPSEC ESP SPI with input set MAC_IPV4_SPI */
1635 {ICE_FLOW_SEG_HDR_ESP,
1636 ICE_FLOW_HASH_ESP_SPI, ICE_RSS_OUTER_HEADERS, false},
1637 /* configure RSS for gtpc6 with input set IPv6 src/dst */
1638 {ICE_FLOW_SEG_HDR_GTPC | ICE_FLOW_SEG_HDR_IPV6,
1639 ICE_FLOW_HASH_IPV6, ICE_RSS_OUTER_HEADERS, false},
1640 /* configure RSS for gtpc6t with input set IPv6 src/dst */
1641 {ICE_FLOW_SEG_HDR_GTPC_TEID | ICE_FLOW_SEG_HDR_IPV6,
1642 ICE_FLOW_HASH_GTP_C_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1643 /* configure RSS for gtpu6 with input set IPv6 src/dst */
1644 {ICE_FLOW_SEG_HDR_GTPU_IP | ICE_FLOW_SEG_HDR_IPV6,
1645 ICE_FLOW_HASH_GTP_U_IPV6_TEID, ICE_RSS_OUTER_HEADERS, false},
1646 /* configure RSS for gtpu6e with input set IPv6 src/dst */
1647 {ICE_FLOW_SEG_HDR_GTPU_EH | ICE_FLOW_SEG_HDR_IPV6,
1648 ICE_FLOW_HASH_GTP_U_IPV6_EH, ICE_RSS_OUTER_HEADERS, false},
1649 /* configure RSS for gtpu6u with input set IPv6 src/dst */
1650 { ICE_FLOW_SEG_HDR_GTPU_UP | ICE_FLOW_SEG_HDR_IPV6,
1651 ICE_FLOW_HASH_GTP_U_IPV6_UP, ICE_RSS_OUTER_HEADERS, false},
1652 /* configure RSS for gtpu6d with input set IPv6 src/dst */
1653 {ICE_FLOW_SEG_HDR_GTPU_DWN | ICE_FLOW_SEG_HDR_IPV6,
1654 ICE_FLOW_HASH_GTP_U_IPV6_DWN, ICE_RSS_OUTER_HEADERS, false},
1655 };
1656
1657 /**
1658 * ice_vsi_set_rss_flow_fld - Sets RSS input set for different flows
1659 * @vsi: VSI to be configured
1660 *
1661 * This function will only be called after successful download package call
1662 * during initialization of PF. Since the downloaded package will erase the
1663 * RSS section, this function will configure RSS input sets for different
1664 * flow types. The last profile added has the highest priority, therefore 2
1665 * tuple profiles (i.e. IPv4 src/dst) are added before 4 tuple profiles
1666 * (i.e. IPv4 src/dst TCP src/dst port).
1667 */
ice_vsi_set_rss_flow_fld(struct ice_vsi * vsi)1668 static void ice_vsi_set_rss_flow_fld(struct ice_vsi *vsi)
1669 {
1670 u16 vsi_num = vsi->vsi_num;
1671 struct ice_pf *pf = vsi->back;
1672 struct ice_hw *hw = &pf->hw;
1673 struct device *dev;
1674 int status;
1675 u32 i;
1676
1677 dev = ice_pf_to_dev(pf);
1678 if (ice_is_safe_mode(pf)) {
1679 dev_dbg(dev, "Advanced RSS disabled. Package download failed, vsi num = %d\n",
1680 vsi_num);
1681 return;
1682 }
1683 for (i = 0; i < ARRAY_SIZE(default_rss_cfgs); i++) {
1684 const struct ice_rss_hash_cfg *cfg = &default_rss_cfgs[i];
1685
1686 status = ice_add_rss_cfg(hw, vsi, cfg);
1687 if (status)
1688 dev_dbg(dev, "ice_add_rss_cfg failed, addl_hdrs = %x, hash_flds = %llx, hdr_type = %d, symm = %d\n",
1689 cfg->addl_hdrs, cfg->hash_flds,
1690 cfg->hdr_type, cfg->symm);
1691 }
1692 }
1693
1694 /**
1695 * ice_pf_state_is_nominal - checks the PF for nominal state
1696 * @pf: pointer to PF to check
1697 *
1698 * Check the PF's state for a collection of bits that would indicate
1699 * the PF is in a state that would inhibit normal operation for
1700 * driver functionality.
1701 *
1702 * Returns true if PF is in a nominal state, false otherwise
1703 */
ice_pf_state_is_nominal(struct ice_pf * pf)1704 bool ice_pf_state_is_nominal(struct ice_pf *pf)
1705 {
1706 DECLARE_BITMAP(check_bits, ICE_STATE_NBITS) = { 0 };
1707
1708 if (!pf)
1709 return false;
1710
1711 bitmap_set(check_bits, 0, ICE_STATE_NOMINAL_CHECK_BITS);
1712 if (bitmap_intersects(pf->state, check_bits, ICE_STATE_NBITS))
1713 return false;
1714
1715 return true;
1716 }
1717
1718 #define ICE_FW_MODE_REC_M BIT(1)
ice_is_recovery_mode(struct ice_hw * hw)1719 bool ice_is_recovery_mode(struct ice_hw *hw)
1720 {
1721 return rd32(hw, GL_MNG_FWSM) & ICE_FW_MODE_REC_M;
1722 }
1723
1724 /**
1725 * ice_update_eth_stats - Update VSI-specific ethernet statistics counters
1726 * @vsi: the VSI to be updated
1727 */
ice_update_eth_stats(struct ice_vsi * vsi)1728 void ice_update_eth_stats(struct ice_vsi *vsi)
1729 {
1730 struct ice_eth_stats *prev_es, *cur_es;
1731 struct ice_hw *hw = &vsi->back->hw;
1732 struct ice_pf *pf = vsi->back;
1733 u16 vsi_num = vsi->vsi_num; /* HW absolute index of a VSI */
1734
1735 prev_es = &vsi->eth_stats_prev;
1736 cur_es = &vsi->eth_stats;
1737
1738 if (ice_is_reset_in_progress(pf->state))
1739 vsi->stat_offsets_loaded = false;
1740
1741 ice_stat_update40(hw, GLV_GORCL(vsi_num), vsi->stat_offsets_loaded,
1742 &prev_es->rx_bytes, &cur_es->rx_bytes);
1743
1744 ice_stat_update40(hw, GLV_UPRCL(vsi_num), vsi->stat_offsets_loaded,
1745 &prev_es->rx_unicast, &cur_es->rx_unicast);
1746
1747 ice_stat_update40(hw, GLV_MPRCL(vsi_num), vsi->stat_offsets_loaded,
1748 &prev_es->rx_multicast, &cur_es->rx_multicast);
1749
1750 ice_stat_update40(hw, GLV_BPRCL(vsi_num), vsi->stat_offsets_loaded,
1751 &prev_es->rx_broadcast, &cur_es->rx_broadcast);
1752
1753 ice_stat_update32(hw, GLV_RDPC(vsi_num), vsi->stat_offsets_loaded,
1754 &prev_es->rx_discards, &cur_es->rx_discards);
1755
1756 ice_stat_update40(hw, GLV_GOTCL(vsi_num), vsi->stat_offsets_loaded,
1757 &prev_es->tx_bytes, &cur_es->tx_bytes);
1758
1759 ice_stat_update40(hw, GLV_UPTCL(vsi_num), vsi->stat_offsets_loaded,
1760 &prev_es->tx_unicast, &cur_es->tx_unicast);
1761
1762 ice_stat_update40(hw, GLV_MPTCL(vsi_num), vsi->stat_offsets_loaded,
1763 &prev_es->tx_multicast, &cur_es->tx_multicast);
1764
1765 ice_stat_update40(hw, GLV_BPTCL(vsi_num), vsi->stat_offsets_loaded,
1766 &prev_es->tx_broadcast, &cur_es->tx_broadcast);
1767
1768 ice_stat_update32(hw, GLV_TEPC(vsi_num), vsi->stat_offsets_loaded,
1769 &prev_es->tx_errors, &cur_es->tx_errors);
1770
1771 vsi->stat_offsets_loaded = true;
1772 }
1773
1774 /**
1775 * ice_write_qrxflxp_cntxt - write/configure QRXFLXP_CNTXT register
1776 * @hw: HW pointer
1777 * @pf_q: index of the Rx queue in the PF's queue space
1778 * @rxdid: flexible descriptor RXDID
1779 * @prio: priority for the RXDID for this queue
1780 * @ena_ts: true to enable timestamp and false to disable timestamp
1781 */
ice_write_qrxflxp_cntxt(struct ice_hw * hw,u16 pf_q,u32 rxdid,u32 prio,bool ena_ts)1782 void ice_write_qrxflxp_cntxt(struct ice_hw *hw, u16 pf_q, u32 rxdid, u32 prio,
1783 bool ena_ts)
1784 {
1785 int regval = rd32(hw, QRXFLXP_CNTXT(pf_q));
1786
1787 /* clear any previous values */
1788 regval &= ~(QRXFLXP_CNTXT_RXDID_IDX_M |
1789 QRXFLXP_CNTXT_RXDID_PRIO_M |
1790 QRXFLXP_CNTXT_TS_M);
1791
1792 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_IDX_M, rxdid);
1793 regval |= FIELD_PREP(QRXFLXP_CNTXT_RXDID_PRIO_M, prio);
1794
1795 if (ena_ts)
1796 /* Enable TimeSync on this queue */
1797 regval |= QRXFLXP_CNTXT_TS_M;
1798
1799 wr32(hw, QRXFLXP_CNTXT(pf_q), regval);
1800 }
1801
1802 /**
1803 * ice_intrl_usec_to_reg - convert interrupt rate limit to register value
1804 * @intrl: interrupt rate limit in usecs
1805 * @gran: interrupt rate limit granularity in usecs
1806 *
1807 * This function converts a decimal interrupt rate limit in usecs to the format
1808 * expected by firmware.
1809 */
ice_intrl_usec_to_reg(u8 intrl,u8 gran)1810 static u32 ice_intrl_usec_to_reg(u8 intrl, u8 gran)
1811 {
1812 u32 val = intrl / gran;
1813
1814 if (val)
1815 return val | GLINT_RATE_INTRL_ENA_M;
1816 return 0;
1817 }
1818
1819 /**
1820 * ice_write_intrl - write throttle rate limit to interrupt specific register
1821 * @q_vector: pointer to interrupt specific structure
1822 * @intrl: throttle rate limit in microseconds to write
1823 */
ice_write_intrl(struct ice_q_vector * q_vector,u8 intrl)1824 void ice_write_intrl(struct ice_q_vector *q_vector, u8 intrl)
1825 {
1826 struct ice_hw *hw = &q_vector->vsi->back->hw;
1827
1828 wr32(hw, GLINT_RATE(q_vector->reg_idx),
1829 ice_intrl_usec_to_reg(intrl, ICE_INTRL_GRAN_ABOVE_25));
1830 }
1831
ice_pull_qvec_from_rc(struct ice_ring_container * rc)1832 static struct ice_q_vector *ice_pull_qvec_from_rc(struct ice_ring_container *rc)
1833 {
1834 switch (rc->type) {
1835 case ICE_RX_CONTAINER:
1836 if (rc->rx_ring)
1837 return rc->rx_ring->q_vector;
1838 break;
1839 case ICE_TX_CONTAINER:
1840 if (rc->tx_ring)
1841 return rc->tx_ring->q_vector;
1842 break;
1843 default:
1844 break;
1845 }
1846
1847 return NULL;
1848 }
1849
1850 /**
1851 * __ice_write_itr - write throttle rate to register
1852 * @q_vector: pointer to interrupt data structure
1853 * @rc: pointer to ring container
1854 * @itr: throttle rate in microseconds to write
1855 */
__ice_write_itr(struct ice_q_vector * q_vector,struct ice_ring_container * rc,u16 itr)1856 static void __ice_write_itr(struct ice_q_vector *q_vector,
1857 struct ice_ring_container *rc, u16 itr)
1858 {
1859 struct ice_hw *hw = &q_vector->vsi->back->hw;
1860
1861 wr32(hw, GLINT_ITR(rc->itr_idx, q_vector->reg_idx),
1862 ITR_REG_ALIGN(itr) >> ICE_ITR_GRAN_S);
1863 }
1864
1865 /**
1866 * ice_write_itr - write throttle rate to queue specific register
1867 * @rc: pointer to ring container
1868 * @itr: throttle rate in microseconds to write
1869 */
ice_write_itr(struct ice_ring_container * rc,u16 itr)1870 void ice_write_itr(struct ice_ring_container *rc, u16 itr)
1871 {
1872 struct ice_q_vector *q_vector;
1873
1874 q_vector = ice_pull_qvec_from_rc(rc);
1875 if (!q_vector)
1876 return;
1877
1878 __ice_write_itr(q_vector, rc, itr);
1879 }
1880
1881 /**
1882 * ice_set_q_vector_intrl - set up interrupt rate limiting
1883 * @q_vector: the vector to be configured
1884 *
1885 * Interrupt rate limiting is local to the vector, not per-queue so we must
1886 * detect if either ring container has dynamic moderation enabled to decide
1887 * what to set the interrupt rate limit to via INTRL settings. In the case that
1888 * dynamic moderation is disabled on both, write the value with the cached
1889 * setting to make sure INTRL register matches the user visible value.
1890 */
ice_set_q_vector_intrl(struct ice_q_vector * q_vector)1891 void ice_set_q_vector_intrl(struct ice_q_vector *q_vector)
1892 {
1893 if (ITR_IS_DYNAMIC(&q_vector->tx) || ITR_IS_DYNAMIC(&q_vector->rx)) {
1894 /* in the case of dynamic enabled, cap each vector to no more
1895 * than (4 us) 250,000 ints/sec, which allows low latency
1896 * but still less than 500,000 interrupts per second, which
1897 * reduces CPU a bit in the case of the lowest latency
1898 * setting. The 4 here is a value in microseconds.
1899 */
1900 ice_write_intrl(q_vector, 4);
1901 } else {
1902 ice_write_intrl(q_vector, q_vector->intrl);
1903 }
1904 }
1905
1906 /**
1907 * ice_vsi_cfg_msix - MSIX mode Interrupt Config in the HW
1908 * @vsi: the VSI being configured
1909 *
1910 * This configures MSIX mode interrupts for the PF VSI, and should not be used
1911 * for the VF VSI.
1912 */
ice_vsi_cfg_msix(struct ice_vsi * vsi)1913 void ice_vsi_cfg_msix(struct ice_vsi *vsi)
1914 {
1915 struct ice_pf *pf = vsi->back;
1916 struct ice_hw *hw = &pf->hw;
1917 u16 txq = 0, rxq = 0;
1918 int i, q;
1919
1920 ice_for_each_q_vector(vsi, i) {
1921 struct ice_q_vector *q_vector = vsi->q_vectors[i];
1922 u16 reg_idx = q_vector->reg_idx;
1923
1924 ice_cfg_itr(hw, q_vector);
1925
1926 /* Both Transmit Queue Interrupt Cause Control register
1927 * and Receive Queue Interrupt Cause control register
1928 * expects MSIX_INDX field to be the vector index
1929 * within the function space and not the absolute
1930 * vector index across PF or across device.
1931 * For SR-IOV VF VSIs queue vector index always starts
1932 * with 1 since first vector index(0) is used for OICR
1933 * in VF space. Since VMDq and other PF VSIs are within
1934 * the PF function space, use the vector index that is
1935 * tracked for this PF.
1936 */
1937 for (q = 0; q < q_vector->num_ring_tx; q++) {
1938 ice_cfg_txq_interrupt(vsi, txq, reg_idx,
1939 q_vector->tx.itr_idx);
1940 txq++;
1941 }
1942
1943 for (q = 0; q < q_vector->num_ring_rx; q++) {
1944 ice_cfg_rxq_interrupt(vsi, rxq, reg_idx,
1945 q_vector->rx.itr_idx);
1946 rxq++;
1947 }
1948 }
1949 }
1950
1951 /**
1952 * ice_vsi_start_all_rx_rings - start/enable all of a VSI's Rx rings
1953 * @vsi: the VSI whose rings are to be enabled
1954 *
1955 * Returns 0 on success and a negative value on error
1956 */
ice_vsi_start_all_rx_rings(struct ice_vsi * vsi)1957 int ice_vsi_start_all_rx_rings(struct ice_vsi *vsi)
1958 {
1959 return ice_vsi_ctrl_all_rx_rings(vsi, true);
1960 }
1961
1962 /**
1963 * ice_vsi_stop_all_rx_rings - stop/disable all of a VSI's Rx rings
1964 * @vsi: the VSI whose rings are to be disabled
1965 *
1966 * Returns 0 on success and a negative value on error
1967 */
ice_vsi_stop_all_rx_rings(struct ice_vsi * vsi)1968 int ice_vsi_stop_all_rx_rings(struct ice_vsi *vsi)
1969 {
1970 return ice_vsi_ctrl_all_rx_rings(vsi, false);
1971 }
1972
1973 /**
1974 * ice_vsi_stop_tx_rings - Disable Tx rings
1975 * @vsi: the VSI being configured
1976 * @rst_src: reset source
1977 * @rel_vmvf_num: Relative ID of VF/VM
1978 * @rings: Tx ring array to be stopped
1979 * @count: number of Tx ring array elements
1980 */
1981 static int
ice_vsi_stop_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num,struct ice_tx_ring ** rings,u16 count)1982 ice_vsi_stop_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1983 u16 rel_vmvf_num, struct ice_tx_ring **rings, u16 count)
1984 {
1985 u16 q_idx;
1986
1987 if (vsi->num_txq > ICE_LAN_TXQ_MAX_QDIS)
1988 return -EINVAL;
1989
1990 for (q_idx = 0; q_idx < count; q_idx++) {
1991 struct ice_txq_meta txq_meta = { };
1992 int status;
1993
1994 if (!rings || !rings[q_idx])
1995 return -EINVAL;
1996
1997 ice_fill_txq_meta(vsi, rings[q_idx], &txq_meta);
1998 status = ice_vsi_stop_tx_ring(vsi, rst_src, rel_vmvf_num,
1999 rings[q_idx], &txq_meta);
2000
2001 if (status)
2002 return status;
2003 }
2004
2005 return 0;
2006 }
2007
2008 /**
2009 * ice_vsi_stop_lan_tx_rings - Disable LAN Tx rings
2010 * @vsi: the VSI being configured
2011 * @rst_src: reset source
2012 * @rel_vmvf_num: Relative ID of VF/VM
2013 */
2014 int
ice_vsi_stop_lan_tx_rings(struct ice_vsi * vsi,enum ice_disq_rst_src rst_src,u16 rel_vmvf_num)2015 ice_vsi_stop_lan_tx_rings(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
2016 u16 rel_vmvf_num)
2017 {
2018 return ice_vsi_stop_tx_rings(vsi, rst_src, rel_vmvf_num, vsi->tx_rings, vsi->num_txq);
2019 }
2020
2021 /**
2022 * ice_vsi_stop_xdp_tx_rings - Disable XDP Tx rings
2023 * @vsi: the VSI being configured
2024 */
ice_vsi_stop_xdp_tx_rings(struct ice_vsi * vsi)2025 int ice_vsi_stop_xdp_tx_rings(struct ice_vsi *vsi)
2026 {
2027 return ice_vsi_stop_tx_rings(vsi, ICE_NO_RESET, 0, vsi->xdp_rings, vsi->num_xdp_txq);
2028 }
2029
2030 /**
2031 * ice_vsi_is_rx_queue_active
2032 * @vsi: the VSI being configured
2033 *
2034 * Return true if at least one queue is active.
2035 */
ice_vsi_is_rx_queue_active(struct ice_vsi * vsi)2036 bool ice_vsi_is_rx_queue_active(struct ice_vsi *vsi)
2037 {
2038 struct ice_pf *pf = vsi->back;
2039 struct ice_hw *hw = &pf->hw;
2040 int i;
2041
2042 ice_for_each_rxq(vsi, i) {
2043 u32 rx_reg;
2044 int pf_q;
2045
2046 pf_q = vsi->rxq_map[i];
2047 rx_reg = rd32(hw, QRX_CTRL(pf_q));
2048 if (rx_reg & QRX_CTRL_QENA_STAT_M)
2049 return true;
2050 }
2051
2052 return false;
2053 }
2054
ice_vsi_set_tc_cfg(struct ice_vsi * vsi)2055 static void ice_vsi_set_tc_cfg(struct ice_vsi *vsi)
2056 {
2057 if (!test_bit(ICE_FLAG_DCB_ENA, vsi->back->flags)) {
2058 vsi->tc_cfg.ena_tc = ICE_DFLT_TRAFFIC_CLASS;
2059 vsi->tc_cfg.numtc = 1;
2060 return;
2061 }
2062
2063 /* set VSI TC information based on DCB config */
2064 ice_vsi_set_dcb_tc_cfg(vsi);
2065 }
2066
2067 /**
2068 * ice_cfg_sw_lldp - Config switch rules for LLDP packet handling
2069 * @vsi: the VSI being configured
2070 * @tx: bool to determine Tx or Rx rule
2071 * @create: bool to determine create or remove Rule
2072 */
ice_cfg_sw_lldp(struct ice_vsi * vsi,bool tx,bool create)2073 void ice_cfg_sw_lldp(struct ice_vsi *vsi, bool tx, bool create)
2074 {
2075 int (*eth_fltr)(struct ice_vsi *v, u16 type, u16 flag,
2076 enum ice_sw_fwd_act_type act);
2077 struct ice_pf *pf = vsi->back;
2078 struct device *dev;
2079 int status;
2080
2081 dev = ice_pf_to_dev(pf);
2082 eth_fltr = create ? ice_fltr_add_eth : ice_fltr_remove_eth;
2083
2084 if (tx) {
2085 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_TX,
2086 ICE_DROP_PACKET);
2087 } else {
2088 if (ice_fw_supports_lldp_fltr_ctrl(&pf->hw)) {
2089 status = ice_lldp_fltr_add_remove(&pf->hw, vsi->vsi_num,
2090 create);
2091 } else {
2092 status = eth_fltr(vsi, ETH_P_LLDP, ICE_FLTR_RX,
2093 ICE_FWD_TO_VSI);
2094 }
2095 }
2096
2097 if (status)
2098 dev_dbg(dev, "Fail %s %s LLDP rule on VSI %i error: %d\n",
2099 create ? "adding" : "removing", tx ? "TX" : "RX",
2100 vsi->vsi_num, status);
2101 }
2102
2103 /**
2104 * ice_set_agg_vsi - sets up scheduler aggregator node and move VSI into it
2105 * @vsi: pointer to the VSI
2106 *
2107 * This function will allocate new scheduler aggregator now if needed and will
2108 * move specified VSI into it.
2109 */
ice_set_agg_vsi(struct ice_vsi * vsi)2110 static void ice_set_agg_vsi(struct ice_vsi *vsi)
2111 {
2112 struct device *dev = ice_pf_to_dev(vsi->back);
2113 struct ice_agg_node *agg_node_iter = NULL;
2114 u32 agg_id = ICE_INVALID_AGG_NODE_ID;
2115 struct ice_agg_node *agg_node = NULL;
2116 int node_offset, max_agg_nodes = 0;
2117 struct ice_port_info *port_info;
2118 struct ice_pf *pf = vsi->back;
2119 u32 agg_node_id_start = 0;
2120 int status;
2121
2122 /* create (as needed) scheduler aggregator node and move VSI into
2123 * corresponding aggregator node
2124 * - PF aggregator node to contains VSIs of type _PF and _CTRL
2125 * - VF aggregator nodes will contain VF VSI
2126 */
2127 port_info = pf->hw.port_info;
2128 if (!port_info)
2129 return;
2130
2131 switch (vsi->type) {
2132 case ICE_VSI_CTRL:
2133 case ICE_VSI_CHNL:
2134 case ICE_VSI_LB:
2135 case ICE_VSI_PF:
2136 case ICE_VSI_SF:
2137 max_agg_nodes = ICE_MAX_PF_AGG_NODES;
2138 agg_node_id_start = ICE_PF_AGG_NODE_ID_START;
2139 agg_node_iter = &pf->pf_agg_node[0];
2140 break;
2141 case ICE_VSI_VF:
2142 /* user can create 'n' VFs on a given PF, but since max children
2143 * per aggregator node can be only 64. Following code handles
2144 * aggregator(s) for VF VSIs, either selects a agg_node which
2145 * was already created provided num_vsis < 64, otherwise
2146 * select next available node, which will be created
2147 */
2148 max_agg_nodes = ICE_MAX_VF_AGG_NODES;
2149 agg_node_id_start = ICE_VF_AGG_NODE_ID_START;
2150 agg_node_iter = &pf->vf_agg_node[0];
2151 break;
2152 default:
2153 /* other VSI type, handle later if needed */
2154 dev_dbg(dev, "unexpected VSI type %s\n",
2155 ice_vsi_type_str(vsi->type));
2156 return;
2157 }
2158
2159 /* find the appropriate aggregator node */
2160 for (node_offset = 0; node_offset < max_agg_nodes; node_offset++) {
2161 /* see if we can find space in previously created
2162 * node if num_vsis < 64, otherwise skip
2163 */
2164 if (agg_node_iter->num_vsis &&
2165 agg_node_iter->num_vsis == ICE_MAX_VSIS_IN_AGG_NODE) {
2166 agg_node_iter++;
2167 continue;
2168 }
2169
2170 if (agg_node_iter->valid &&
2171 agg_node_iter->agg_id != ICE_INVALID_AGG_NODE_ID) {
2172 agg_id = agg_node_iter->agg_id;
2173 agg_node = agg_node_iter;
2174 break;
2175 }
2176
2177 /* find unclaimed agg_id */
2178 if (agg_node_iter->agg_id == ICE_INVALID_AGG_NODE_ID) {
2179 agg_id = node_offset + agg_node_id_start;
2180 agg_node = agg_node_iter;
2181 break;
2182 }
2183 /* move to next agg_node */
2184 agg_node_iter++;
2185 }
2186
2187 if (!agg_node)
2188 return;
2189
2190 /* if selected aggregator node was not created, create it */
2191 if (!agg_node->valid) {
2192 status = ice_cfg_agg(port_info, agg_id, ICE_AGG_TYPE_AGG,
2193 (u8)vsi->tc_cfg.ena_tc);
2194 if (status) {
2195 dev_err(dev, "unable to create aggregator node with agg_id %u\n",
2196 agg_id);
2197 return;
2198 }
2199 /* aggregator node is created, store the needed info */
2200 agg_node->valid = true;
2201 agg_node->agg_id = agg_id;
2202 }
2203
2204 /* move VSI to corresponding aggregator node */
2205 status = ice_move_vsi_to_agg(port_info, agg_id, vsi->idx,
2206 (u8)vsi->tc_cfg.ena_tc);
2207 if (status) {
2208 dev_err(dev, "unable to move VSI idx %u into aggregator %u node",
2209 vsi->idx, agg_id);
2210 return;
2211 }
2212
2213 /* keep active children count for aggregator node */
2214 agg_node->num_vsis++;
2215
2216 /* cache the 'agg_id' in VSI, so that after reset - VSI will be moved
2217 * to aggregator node
2218 */
2219 vsi->agg_node = agg_node;
2220 dev_dbg(dev, "successfully moved VSI idx %u tc_bitmap 0x%x) into aggregator node %d which has num_vsis %u\n",
2221 vsi->idx, vsi->tc_cfg.ena_tc, vsi->agg_node->agg_id,
2222 vsi->agg_node->num_vsis);
2223 }
2224
ice_vsi_cfg_tc_lan(struct ice_pf * pf,struct ice_vsi * vsi)2225 static int ice_vsi_cfg_tc_lan(struct ice_pf *pf, struct ice_vsi *vsi)
2226 {
2227 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2228 struct device *dev = ice_pf_to_dev(pf);
2229 int ret, i;
2230
2231 /* configure VSI nodes based on number of queues and TC's */
2232 ice_for_each_traffic_class(i) {
2233 if (!(vsi->tc_cfg.ena_tc & BIT(i)))
2234 continue;
2235
2236 if (vsi->type == ICE_VSI_CHNL) {
2237 if (!vsi->alloc_txq && vsi->num_txq)
2238 max_txqs[i] = vsi->num_txq;
2239 else
2240 max_txqs[i] = pf->num_lan_tx;
2241 } else {
2242 max_txqs[i] = vsi->alloc_txq;
2243 }
2244
2245 if (vsi->type == ICE_VSI_PF)
2246 max_txqs[i] += vsi->num_xdp_txq;
2247 }
2248
2249 dev_dbg(dev, "vsi->tc_cfg.ena_tc = %d\n", vsi->tc_cfg.ena_tc);
2250 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2251 max_txqs);
2252 if (ret) {
2253 dev_err(dev, "VSI %d failed lan queue config, error %d\n",
2254 vsi->vsi_num, ret);
2255 return ret;
2256 }
2257
2258 return 0;
2259 }
2260
2261 /**
2262 * ice_vsi_cfg_def - configure default VSI based on the type
2263 * @vsi: pointer to VSI
2264 */
ice_vsi_cfg_def(struct ice_vsi * vsi)2265 static int ice_vsi_cfg_def(struct ice_vsi *vsi)
2266 {
2267 struct device *dev = ice_pf_to_dev(vsi->back);
2268 struct ice_pf *pf = vsi->back;
2269 int ret;
2270
2271 vsi->vsw = pf->first_sw;
2272
2273 ret = ice_vsi_alloc_def(vsi, vsi->ch);
2274 if (ret)
2275 return ret;
2276
2277 /* allocate memory for Tx/Rx ring stat pointers */
2278 ret = ice_vsi_alloc_stat_arrays(vsi);
2279 if (ret)
2280 goto unroll_vsi_alloc;
2281
2282 ice_alloc_fd_res(vsi);
2283
2284 ret = ice_vsi_get_qs(vsi);
2285 if (ret) {
2286 dev_err(dev, "Failed to allocate queues. vsi->idx = %d\n",
2287 vsi->idx);
2288 goto unroll_vsi_alloc_stat;
2289 }
2290
2291 /* set RSS capabilities */
2292 ice_vsi_set_rss_params(vsi);
2293
2294 /* set TC configuration */
2295 ice_vsi_set_tc_cfg(vsi);
2296
2297 /* create the VSI */
2298 ret = ice_vsi_init(vsi, vsi->flags);
2299 if (ret)
2300 goto unroll_get_qs;
2301
2302 ice_vsi_init_vlan_ops(vsi);
2303
2304 switch (vsi->type) {
2305 case ICE_VSI_CTRL:
2306 case ICE_VSI_SF:
2307 case ICE_VSI_PF:
2308 ret = ice_vsi_alloc_q_vectors(vsi);
2309 if (ret)
2310 goto unroll_vsi_init;
2311
2312 ret = ice_vsi_alloc_rings(vsi);
2313 if (ret)
2314 goto unroll_vector_base;
2315
2316 ret = ice_vsi_alloc_ring_stats(vsi);
2317 if (ret)
2318 goto unroll_vector_base;
2319
2320 if (ice_is_xdp_ena_vsi(vsi)) {
2321 ret = ice_vsi_determine_xdp_res(vsi);
2322 if (ret)
2323 goto unroll_vector_base;
2324 ret = ice_prepare_xdp_rings(vsi, vsi->xdp_prog,
2325 ICE_XDP_CFG_PART);
2326 if (ret)
2327 goto unroll_vector_base;
2328 }
2329
2330 ice_vsi_map_rings_to_vectors(vsi);
2331
2332 vsi->stat_offsets_loaded = false;
2333
2334 /* ICE_VSI_CTRL does not need RSS so skip RSS processing */
2335 if (vsi->type != ICE_VSI_CTRL)
2336 /* Do not exit if configuring RSS had an issue, at
2337 * least receive traffic on first queue. Hence no
2338 * need to capture return value
2339 */
2340 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2341 ice_vsi_cfg_rss_lut_key(vsi);
2342 ice_vsi_set_rss_flow_fld(vsi);
2343 }
2344 ice_init_arfs(vsi);
2345 break;
2346 case ICE_VSI_CHNL:
2347 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2348 ice_vsi_cfg_rss_lut_key(vsi);
2349 ice_vsi_set_rss_flow_fld(vsi);
2350 }
2351 break;
2352 case ICE_VSI_VF:
2353 /* VF driver will take care of creating netdev for this type and
2354 * map queues to vectors through Virtchnl, PF driver only
2355 * creates a VSI and corresponding structures for bookkeeping
2356 * purpose
2357 */
2358 ret = ice_vsi_alloc_q_vectors(vsi);
2359 if (ret)
2360 goto unroll_vsi_init;
2361
2362 ret = ice_vsi_alloc_rings(vsi);
2363 if (ret)
2364 goto unroll_alloc_q_vector;
2365
2366 ret = ice_vsi_alloc_ring_stats(vsi);
2367 if (ret)
2368 goto unroll_vector_base;
2369
2370 vsi->stat_offsets_loaded = false;
2371
2372 /* Do not exit if configuring RSS had an issue, at least
2373 * receive traffic on first queue. Hence no need to capture
2374 * return value
2375 */
2376 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags)) {
2377 ice_vsi_cfg_rss_lut_key(vsi);
2378 ice_vsi_set_vf_rss_flow_fld(vsi);
2379 }
2380 break;
2381 case ICE_VSI_LB:
2382 ret = ice_vsi_alloc_rings(vsi);
2383 if (ret)
2384 goto unroll_vsi_init;
2385
2386 ret = ice_vsi_alloc_ring_stats(vsi);
2387 if (ret)
2388 goto unroll_vector_base;
2389
2390 break;
2391 default:
2392 /* clean up the resources and exit */
2393 ret = -EINVAL;
2394 goto unroll_vsi_init;
2395 }
2396
2397 return 0;
2398
2399 unroll_vector_base:
2400 /* reclaim SW interrupts back to the common pool */
2401 unroll_alloc_q_vector:
2402 ice_vsi_free_q_vectors(vsi);
2403 unroll_vsi_init:
2404 ice_vsi_delete_from_hw(vsi);
2405 unroll_get_qs:
2406 ice_vsi_put_qs(vsi);
2407 unroll_vsi_alloc_stat:
2408 ice_vsi_free_stats(vsi);
2409 unroll_vsi_alloc:
2410 ice_vsi_free_arrays(vsi);
2411 return ret;
2412 }
2413
2414 /**
2415 * ice_vsi_cfg - configure a previously allocated VSI
2416 * @vsi: pointer to VSI
2417 */
ice_vsi_cfg(struct ice_vsi * vsi)2418 int ice_vsi_cfg(struct ice_vsi *vsi)
2419 {
2420 struct ice_pf *pf = vsi->back;
2421 int ret;
2422
2423 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
2424 return -EINVAL;
2425
2426 ret = ice_vsi_cfg_def(vsi);
2427 if (ret)
2428 return ret;
2429
2430 ret = ice_vsi_cfg_tc_lan(vsi->back, vsi);
2431 if (ret)
2432 ice_vsi_decfg(vsi);
2433
2434 if (vsi->type == ICE_VSI_CTRL) {
2435 if (vsi->vf) {
2436 WARN_ON(vsi->vf->ctrl_vsi_idx != ICE_NO_VSI);
2437 vsi->vf->ctrl_vsi_idx = vsi->idx;
2438 } else {
2439 WARN_ON(pf->ctrl_vsi_idx != ICE_NO_VSI);
2440 pf->ctrl_vsi_idx = vsi->idx;
2441 }
2442 }
2443
2444 return ret;
2445 }
2446
2447 /**
2448 * ice_vsi_decfg - remove all VSI configuration
2449 * @vsi: pointer to VSI
2450 */
ice_vsi_decfg(struct ice_vsi * vsi)2451 void ice_vsi_decfg(struct ice_vsi *vsi)
2452 {
2453 struct ice_pf *pf = vsi->back;
2454 int err;
2455
2456 ice_rm_vsi_lan_cfg(vsi->port_info, vsi->idx);
2457 err = ice_rm_vsi_rdma_cfg(vsi->port_info, vsi->idx);
2458 if (err)
2459 dev_err(ice_pf_to_dev(pf), "Failed to remove RDMA scheduler config for VSI %u, err %d\n",
2460 vsi->vsi_num, err);
2461
2462 if (vsi->xdp_rings)
2463 /* return value check can be skipped here, it always returns
2464 * 0 if reset is in progress
2465 */
2466 ice_destroy_xdp_rings(vsi, ICE_XDP_CFG_PART);
2467
2468 ice_vsi_clear_rings(vsi);
2469 ice_vsi_free_q_vectors(vsi);
2470 ice_vsi_put_qs(vsi);
2471 ice_vsi_free_arrays(vsi);
2472
2473 /* SR-IOV determines needed MSIX resources all at once instead of per
2474 * VSI since when VFs are spawned we know how many VFs there are and how
2475 * many interrupts each VF needs. SR-IOV MSIX resources are also
2476 * cleared in the same manner.
2477 */
2478
2479 if (vsi->type == ICE_VSI_VF &&
2480 vsi->agg_node && vsi->agg_node->valid)
2481 vsi->agg_node->num_vsis--;
2482 }
2483
2484 /**
2485 * ice_vsi_setup - Set up a VSI by a given type
2486 * @pf: board private structure
2487 * @params: parameters to use when creating the VSI
2488 *
2489 * This allocates the sw VSI structure and its queue resources.
2490 *
2491 * Returns pointer to the successfully allocated and configured VSI sw struct on
2492 * success, NULL on failure.
2493 */
2494 struct ice_vsi *
ice_vsi_setup(struct ice_pf * pf,struct ice_vsi_cfg_params * params)2495 ice_vsi_setup(struct ice_pf *pf, struct ice_vsi_cfg_params *params)
2496 {
2497 struct device *dev = ice_pf_to_dev(pf);
2498 struct ice_vsi *vsi;
2499 int ret;
2500
2501 /* ice_vsi_setup can only initialize a new VSI, and we must have
2502 * a port_info structure for it.
2503 */
2504 if (WARN_ON(!(params->flags & ICE_VSI_FLAG_INIT)) ||
2505 WARN_ON(!params->port_info))
2506 return NULL;
2507
2508 vsi = ice_vsi_alloc(pf);
2509 if (!vsi) {
2510 dev_err(dev, "could not allocate VSI\n");
2511 return NULL;
2512 }
2513
2514 vsi->params = *params;
2515 ret = ice_vsi_cfg(vsi);
2516 if (ret)
2517 goto err_vsi_cfg;
2518
2519 /* Add switch rule to drop all Tx Flow Control Frames, of look up
2520 * type ETHERTYPE from VSIs, and restrict malicious VF from sending
2521 * out PAUSE or PFC frames. If enabled, FW can still send FC frames.
2522 * The rule is added once for PF VSI in order to create appropriate
2523 * recipe, since VSI/VSI list is ignored with drop action...
2524 * Also add rules to handle LLDP Tx packets. Tx LLDP packets need to
2525 * be dropped so that VFs cannot send LLDP packets to reconfig DCB
2526 * settings in the HW.
2527 */
2528 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF) {
2529 ice_fltr_add_eth(vsi, ETH_P_PAUSE, ICE_FLTR_TX,
2530 ICE_DROP_PACKET);
2531 ice_cfg_sw_lldp(vsi, true, true);
2532 }
2533
2534 if (!vsi->agg_node)
2535 ice_set_agg_vsi(vsi);
2536
2537 return vsi;
2538
2539 err_vsi_cfg:
2540 ice_vsi_free(vsi);
2541
2542 return NULL;
2543 }
2544
2545 /**
2546 * ice_vsi_release_msix - Clear the queue to Interrupt mapping in HW
2547 * @vsi: the VSI being cleaned up
2548 */
ice_vsi_release_msix(struct ice_vsi * vsi)2549 static void ice_vsi_release_msix(struct ice_vsi *vsi)
2550 {
2551 struct ice_pf *pf = vsi->back;
2552 struct ice_hw *hw = &pf->hw;
2553 u32 txq = 0;
2554 u32 rxq = 0;
2555 int i, q;
2556
2557 ice_for_each_q_vector(vsi, i) {
2558 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2559
2560 ice_write_intrl(q_vector, 0);
2561 for (q = 0; q < q_vector->num_ring_tx; q++) {
2562 ice_write_itr(&q_vector->tx, 0);
2563 wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), 0);
2564 if (vsi->xdp_rings) {
2565 u32 xdp_txq = txq + vsi->num_xdp_txq;
2566
2567 wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]), 0);
2568 }
2569 txq++;
2570 }
2571
2572 for (q = 0; q < q_vector->num_ring_rx; q++) {
2573 ice_write_itr(&q_vector->rx, 0);
2574 wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), 0);
2575 rxq++;
2576 }
2577 }
2578
2579 ice_flush(hw);
2580 }
2581
2582 /**
2583 * ice_vsi_free_irq - Free the IRQ association with the OS
2584 * @vsi: the VSI being configured
2585 */
ice_vsi_free_irq(struct ice_vsi * vsi)2586 void ice_vsi_free_irq(struct ice_vsi *vsi)
2587 {
2588 struct ice_pf *pf = vsi->back;
2589 int i;
2590
2591 if (!vsi->q_vectors || !vsi->irqs_ready)
2592 return;
2593
2594 ice_vsi_release_msix(vsi);
2595 if (vsi->type == ICE_VSI_VF)
2596 return;
2597
2598 vsi->irqs_ready = false;
2599
2600 ice_for_each_q_vector(vsi, i) {
2601 int irq_num;
2602
2603 irq_num = vsi->q_vectors[i]->irq.virq;
2604
2605 /* free only the irqs that were actually requested */
2606 if (!vsi->q_vectors[i] ||
2607 !(vsi->q_vectors[i]->num_ring_tx ||
2608 vsi->q_vectors[i]->num_ring_rx))
2609 continue;
2610
2611 synchronize_irq(irq_num);
2612 devm_free_irq(ice_pf_to_dev(pf), irq_num, vsi->q_vectors[i]);
2613 }
2614 }
2615
2616 /**
2617 * ice_vsi_free_tx_rings - Free Tx resources for VSI queues
2618 * @vsi: the VSI having resources freed
2619 */
ice_vsi_free_tx_rings(struct ice_vsi * vsi)2620 void ice_vsi_free_tx_rings(struct ice_vsi *vsi)
2621 {
2622 int i;
2623
2624 if (!vsi->tx_rings)
2625 return;
2626
2627 ice_for_each_txq(vsi, i)
2628 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
2629 ice_free_tx_ring(vsi->tx_rings[i]);
2630 }
2631
2632 /**
2633 * ice_vsi_free_rx_rings - Free Rx resources for VSI queues
2634 * @vsi: the VSI having resources freed
2635 */
ice_vsi_free_rx_rings(struct ice_vsi * vsi)2636 void ice_vsi_free_rx_rings(struct ice_vsi *vsi)
2637 {
2638 int i;
2639
2640 if (!vsi->rx_rings)
2641 return;
2642
2643 ice_for_each_rxq(vsi, i)
2644 if (vsi->rx_rings[i] && vsi->rx_rings[i]->desc)
2645 ice_free_rx_ring(vsi->rx_rings[i]);
2646 }
2647
2648 /**
2649 * ice_vsi_close - Shut down a VSI
2650 * @vsi: the VSI being shut down
2651 */
ice_vsi_close(struct ice_vsi * vsi)2652 void ice_vsi_close(struct ice_vsi *vsi)
2653 {
2654 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state))
2655 ice_down(vsi);
2656
2657 ice_vsi_clear_napi_queues(vsi);
2658 ice_vsi_free_irq(vsi);
2659 ice_vsi_free_tx_rings(vsi);
2660 ice_vsi_free_rx_rings(vsi);
2661 }
2662
2663 /**
2664 * ice_ena_vsi - resume a VSI
2665 * @vsi: the VSI being resume
2666 * @locked: is the rtnl_lock already held
2667 */
ice_ena_vsi(struct ice_vsi * vsi,bool locked)2668 int ice_ena_vsi(struct ice_vsi *vsi, bool locked)
2669 {
2670 int err = 0;
2671
2672 if (!test_bit(ICE_VSI_NEEDS_RESTART, vsi->state))
2673 return 0;
2674
2675 clear_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2676
2677 if (vsi->netdev && (vsi->type == ICE_VSI_PF ||
2678 vsi->type == ICE_VSI_SF)) {
2679 if (netif_running(vsi->netdev)) {
2680 if (!locked)
2681 rtnl_lock();
2682
2683 err = ice_open_internal(vsi->netdev);
2684
2685 if (!locked)
2686 rtnl_unlock();
2687 }
2688 } else if (vsi->type == ICE_VSI_CTRL) {
2689 err = ice_vsi_open_ctrl(vsi);
2690 }
2691
2692 return err;
2693 }
2694
2695 /**
2696 * ice_dis_vsi - pause a VSI
2697 * @vsi: the VSI being paused
2698 * @locked: is the rtnl_lock already held
2699 */
ice_dis_vsi(struct ice_vsi * vsi,bool locked)2700 void ice_dis_vsi(struct ice_vsi *vsi, bool locked)
2701 {
2702 bool already_down = test_bit(ICE_VSI_DOWN, vsi->state);
2703
2704 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
2705
2706 if (vsi->netdev && (vsi->type == ICE_VSI_PF ||
2707 vsi->type == ICE_VSI_SF)) {
2708 if (netif_running(vsi->netdev)) {
2709 if (!locked)
2710 rtnl_lock();
2711 already_down = test_bit(ICE_VSI_DOWN, vsi->state);
2712 if (!already_down)
2713 ice_vsi_close(vsi);
2714
2715 if (!locked)
2716 rtnl_unlock();
2717 } else if (!already_down) {
2718 ice_vsi_close(vsi);
2719 }
2720 } else if (vsi->type == ICE_VSI_CTRL && !already_down) {
2721 ice_vsi_close(vsi);
2722 }
2723 }
2724
2725 /**
2726 * ice_vsi_set_napi_queues - associate netdev queues with napi
2727 * @vsi: VSI pointer
2728 *
2729 * Associate queue[s] with napi for all vectors.
2730 * The caller must hold rtnl_lock.
2731 */
ice_vsi_set_napi_queues(struct ice_vsi * vsi)2732 void ice_vsi_set_napi_queues(struct ice_vsi *vsi)
2733 {
2734 struct net_device *netdev = vsi->netdev;
2735 int q_idx, v_idx;
2736
2737 if (!netdev)
2738 return;
2739
2740 ice_for_each_rxq(vsi, q_idx)
2741 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX,
2742 &vsi->rx_rings[q_idx]->q_vector->napi);
2743
2744 ice_for_each_txq(vsi, q_idx)
2745 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX,
2746 &vsi->tx_rings[q_idx]->q_vector->napi);
2747 /* Also set the interrupt number for the NAPI */
2748 ice_for_each_q_vector(vsi, v_idx) {
2749 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2750
2751 netif_napi_set_irq(&q_vector->napi, q_vector->irq.virq);
2752 }
2753 }
2754
2755 /**
2756 * ice_vsi_clear_napi_queues - dissociate netdev queues from napi
2757 * @vsi: VSI pointer
2758 *
2759 * Clear the association between all VSI queues queue[s] and napi.
2760 * The caller must hold rtnl_lock.
2761 */
ice_vsi_clear_napi_queues(struct ice_vsi * vsi)2762 void ice_vsi_clear_napi_queues(struct ice_vsi *vsi)
2763 {
2764 struct net_device *netdev = vsi->netdev;
2765 int q_idx, v_idx;
2766
2767 if (!netdev)
2768 return;
2769
2770 /* Clear the NAPI's interrupt number */
2771 ice_for_each_q_vector(vsi, v_idx) {
2772 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2773
2774 netif_napi_set_irq(&q_vector->napi, -1);
2775 }
2776
2777 ice_for_each_txq(vsi, q_idx)
2778 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_TX, NULL);
2779
2780 ice_for_each_rxq(vsi, q_idx)
2781 netif_queue_set_napi(netdev, q_idx, NETDEV_QUEUE_TYPE_RX, NULL);
2782 }
2783
2784 /**
2785 * ice_napi_add - register NAPI handler for the VSI
2786 * @vsi: VSI for which NAPI handler is to be registered
2787 *
2788 * This function is only called in the driver's load path. Registering the NAPI
2789 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
2790 * reset/rebuild, etc.)
2791 */
ice_napi_add(struct ice_vsi * vsi)2792 void ice_napi_add(struct ice_vsi *vsi)
2793 {
2794 int v_idx;
2795
2796 if (!vsi->netdev)
2797 return;
2798
2799 ice_for_each_q_vector(vsi, v_idx)
2800 netif_napi_add_config(vsi->netdev,
2801 &vsi->q_vectors[v_idx]->napi,
2802 ice_napi_poll,
2803 v_idx);
2804 }
2805
2806 /**
2807 * ice_vsi_release - Delete a VSI and free its resources
2808 * @vsi: the VSI being removed
2809 *
2810 * Returns 0 on success or < 0 on error
2811 */
ice_vsi_release(struct ice_vsi * vsi)2812 int ice_vsi_release(struct ice_vsi *vsi)
2813 {
2814 struct ice_pf *pf;
2815
2816 if (!vsi->back)
2817 return -ENODEV;
2818 pf = vsi->back;
2819
2820 if (test_bit(ICE_FLAG_RSS_ENA, pf->flags))
2821 ice_rss_clean(vsi);
2822
2823 ice_vsi_close(vsi);
2824
2825 /* The Rx rule will only exist to remove if the LLDP FW
2826 * engine is currently stopped
2827 */
2828 if (!ice_is_safe_mode(pf) && vsi->type == ICE_VSI_PF &&
2829 !test_bit(ICE_FLAG_FW_LLDP_AGENT, pf->flags))
2830 ice_cfg_sw_lldp(vsi, false, false);
2831
2832 ice_vsi_decfg(vsi);
2833
2834 /* retain SW VSI data structure since it is needed to unregister and
2835 * free VSI netdev when PF is not in reset recovery pending state,\
2836 * for ex: during rmmod.
2837 */
2838 if (!ice_is_reset_in_progress(pf->state))
2839 ice_vsi_delete(vsi);
2840
2841 return 0;
2842 }
2843
2844 /**
2845 * ice_vsi_rebuild_get_coalesce - get coalesce from all q_vectors
2846 * @vsi: VSI connected with q_vectors
2847 * @coalesce: array of struct with stored coalesce
2848 *
2849 * Returns array size.
2850 */
2851 static int
ice_vsi_rebuild_get_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce)2852 ice_vsi_rebuild_get_coalesce(struct ice_vsi *vsi,
2853 struct ice_coalesce_stored *coalesce)
2854 {
2855 int i;
2856
2857 ice_for_each_q_vector(vsi, i) {
2858 struct ice_q_vector *q_vector = vsi->q_vectors[i];
2859
2860 coalesce[i].itr_tx = q_vector->tx.itr_settings;
2861 coalesce[i].itr_rx = q_vector->rx.itr_settings;
2862 coalesce[i].intrl = q_vector->intrl;
2863
2864 if (i < vsi->num_txq)
2865 coalesce[i].tx_valid = true;
2866 if (i < vsi->num_rxq)
2867 coalesce[i].rx_valid = true;
2868 }
2869
2870 return vsi->num_q_vectors;
2871 }
2872
2873 /**
2874 * ice_vsi_rebuild_set_coalesce - set coalesce from earlier saved arrays
2875 * @vsi: VSI connected with q_vectors
2876 * @coalesce: pointer to array of struct with stored coalesce
2877 * @size: size of coalesce array
2878 *
2879 * Before this function, ice_vsi_rebuild_get_coalesce should be called to save
2880 * ITR params in arrays. If size is 0 or coalesce wasn't stored set coalesce
2881 * to default value.
2882 */
2883 static void
ice_vsi_rebuild_set_coalesce(struct ice_vsi * vsi,struct ice_coalesce_stored * coalesce,int size)2884 ice_vsi_rebuild_set_coalesce(struct ice_vsi *vsi,
2885 struct ice_coalesce_stored *coalesce, int size)
2886 {
2887 struct ice_ring_container *rc;
2888 int i;
2889
2890 if ((size && !coalesce) || !vsi)
2891 return;
2892
2893 /* There are a couple of cases that have to be handled here:
2894 * 1. The case where the number of queue vectors stays the same, but
2895 * the number of Tx or Rx rings changes (the first for loop)
2896 * 2. The case where the number of queue vectors increased (the
2897 * second for loop)
2898 */
2899 for (i = 0; i < size && i < vsi->num_q_vectors; i++) {
2900 /* There are 2 cases to handle here and they are the same for
2901 * both Tx and Rx:
2902 * if the entry was valid previously (coalesce[i].[tr]x_valid
2903 * and the loop variable is less than the number of rings
2904 * allocated, then write the previous values
2905 *
2906 * if the entry was not valid previously, but the number of
2907 * rings is less than are allocated (this means the number of
2908 * rings increased from previously), then write out the
2909 * values in the first element
2910 *
2911 * Also, always write the ITR, even if in ITR_IS_DYNAMIC
2912 * as there is no harm because the dynamic algorithm
2913 * will just overwrite.
2914 */
2915 if (i < vsi->alloc_rxq && coalesce[i].rx_valid) {
2916 rc = &vsi->q_vectors[i]->rx;
2917 rc->itr_settings = coalesce[i].itr_rx;
2918 ice_write_itr(rc, rc->itr_setting);
2919 } else if (i < vsi->alloc_rxq) {
2920 rc = &vsi->q_vectors[i]->rx;
2921 rc->itr_settings = coalesce[0].itr_rx;
2922 ice_write_itr(rc, rc->itr_setting);
2923 }
2924
2925 if (i < vsi->alloc_txq && coalesce[i].tx_valid) {
2926 rc = &vsi->q_vectors[i]->tx;
2927 rc->itr_settings = coalesce[i].itr_tx;
2928 ice_write_itr(rc, rc->itr_setting);
2929 } else if (i < vsi->alloc_txq) {
2930 rc = &vsi->q_vectors[i]->tx;
2931 rc->itr_settings = coalesce[0].itr_tx;
2932 ice_write_itr(rc, rc->itr_setting);
2933 }
2934
2935 vsi->q_vectors[i]->intrl = coalesce[i].intrl;
2936 ice_set_q_vector_intrl(vsi->q_vectors[i]);
2937 }
2938
2939 /* the number of queue vectors increased so write whatever is in
2940 * the first element
2941 */
2942 for (; i < vsi->num_q_vectors; i++) {
2943 /* transmit */
2944 rc = &vsi->q_vectors[i]->tx;
2945 rc->itr_settings = coalesce[0].itr_tx;
2946 ice_write_itr(rc, rc->itr_setting);
2947
2948 /* receive */
2949 rc = &vsi->q_vectors[i]->rx;
2950 rc->itr_settings = coalesce[0].itr_rx;
2951 ice_write_itr(rc, rc->itr_setting);
2952
2953 vsi->q_vectors[i]->intrl = coalesce[0].intrl;
2954 ice_set_q_vector_intrl(vsi->q_vectors[i]);
2955 }
2956 }
2957
2958 /**
2959 * ice_vsi_realloc_stat_arrays - Frees unused stat structures or alloc new ones
2960 * @vsi: VSI pointer
2961 */
2962 static int
ice_vsi_realloc_stat_arrays(struct ice_vsi * vsi)2963 ice_vsi_realloc_stat_arrays(struct ice_vsi *vsi)
2964 {
2965 u16 req_txq = vsi->req_txq ? vsi->req_txq : vsi->alloc_txq;
2966 u16 req_rxq = vsi->req_rxq ? vsi->req_rxq : vsi->alloc_rxq;
2967 struct ice_ring_stats **tx_ring_stats;
2968 struct ice_ring_stats **rx_ring_stats;
2969 struct ice_vsi_stats *vsi_stat;
2970 struct ice_pf *pf = vsi->back;
2971 u16 prev_txq = vsi->alloc_txq;
2972 u16 prev_rxq = vsi->alloc_rxq;
2973 int i;
2974
2975 vsi_stat = pf->vsi_stats[vsi->idx];
2976
2977 if (req_txq < prev_txq) {
2978 for (i = req_txq; i < prev_txq; i++) {
2979 if (vsi_stat->tx_ring_stats[i]) {
2980 kfree_rcu(vsi_stat->tx_ring_stats[i], rcu);
2981 WRITE_ONCE(vsi_stat->tx_ring_stats[i], NULL);
2982 }
2983 }
2984 }
2985
2986 tx_ring_stats = vsi_stat->tx_ring_stats;
2987 vsi_stat->tx_ring_stats =
2988 krealloc_array(vsi_stat->tx_ring_stats, req_txq,
2989 sizeof(*vsi_stat->tx_ring_stats),
2990 GFP_KERNEL | __GFP_ZERO);
2991 if (!vsi_stat->tx_ring_stats) {
2992 vsi_stat->tx_ring_stats = tx_ring_stats;
2993 return -ENOMEM;
2994 }
2995
2996 if (req_rxq < prev_rxq) {
2997 for (i = req_rxq; i < prev_rxq; i++) {
2998 if (vsi_stat->rx_ring_stats[i]) {
2999 kfree_rcu(vsi_stat->rx_ring_stats[i], rcu);
3000 WRITE_ONCE(vsi_stat->rx_ring_stats[i], NULL);
3001 }
3002 }
3003 }
3004
3005 rx_ring_stats = vsi_stat->rx_ring_stats;
3006 vsi_stat->rx_ring_stats =
3007 krealloc_array(vsi_stat->rx_ring_stats, req_rxq,
3008 sizeof(*vsi_stat->rx_ring_stats),
3009 GFP_KERNEL | __GFP_ZERO);
3010 if (!vsi_stat->rx_ring_stats) {
3011 vsi_stat->rx_ring_stats = rx_ring_stats;
3012 return -ENOMEM;
3013 }
3014
3015 return 0;
3016 }
3017
3018 /**
3019 * ice_vsi_rebuild - Rebuild VSI after reset
3020 * @vsi: VSI to be rebuild
3021 * @vsi_flags: flags used for VSI rebuild flow
3022 *
3023 * Set vsi_flags to ICE_VSI_FLAG_INIT to initialize a new VSI, or
3024 * ICE_VSI_FLAG_NO_INIT to rebuild an existing VSI in hardware.
3025 *
3026 * Returns 0 on success and negative value on failure
3027 */
ice_vsi_rebuild(struct ice_vsi * vsi,u32 vsi_flags)3028 int ice_vsi_rebuild(struct ice_vsi *vsi, u32 vsi_flags)
3029 {
3030 struct ice_coalesce_stored *coalesce;
3031 int prev_num_q_vectors;
3032 struct ice_pf *pf;
3033 int ret;
3034
3035 if (!vsi)
3036 return -EINVAL;
3037
3038 vsi->flags = vsi_flags;
3039 pf = vsi->back;
3040 if (WARN_ON(vsi->type == ICE_VSI_VF && !vsi->vf))
3041 return -EINVAL;
3042
3043 mutex_lock(&vsi->xdp_state_lock);
3044
3045 ret = ice_vsi_realloc_stat_arrays(vsi);
3046 if (ret)
3047 goto unlock;
3048
3049 ice_vsi_decfg(vsi);
3050 ret = ice_vsi_cfg_def(vsi);
3051 if (ret)
3052 goto unlock;
3053
3054 coalesce = kcalloc(vsi->num_q_vectors,
3055 sizeof(struct ice_coalesce_stored), GFP_KERNEL);
3056 if (!coalesce) {
3057 ret = -ENOMEM;
3058 goto decfg;
3059 }
3060
3061 prev_num_q_vectors = ice_vsi_rebuild_get_coalesce(vsi, coalesce);
3062
3063 ret = ice_vsi_cfg_tc_lan(pf, vsi);
3064 if (ret) {
3065 if (vsi_flags & ICE_VSI_FLAG_INIT) {
3066 ret = -EIO;
3067 goto free_coalesce;
3068 }
3069
3070 ret = ice_schedule_reset(pf, ICE_RESET_PFR);
3071 goto free_coalesce;
3072 }
3073
3074 ice_vsi_rebuild_set_coalesce(vsi, coalesce, prev_num_q_vectors);
3075 clear_bit(ICE_VSI_REBUILD_PENDING, vsi->state);
3076
3077 free_coalesce:
3078 kfree(coalesce);
3079 decfg:
3080 if (ret)
3081 ice_vsi_decfg(vsi);
3082 unlock:
3083 mutex_unlock(&vsi->xdp_state_lock);
3084 return ret;
3085 }
3086
3087 /**
3088 * ice_is_reset_in_progress - check for a reset in progress
3089 * @state: PF state field
3090 */
ice_is_reset_in_progress(unsigned long * state)3091 bool ice_is_reset_in_progress(unsigned long *state)
3092 {
3093 return test_bit(ICE_RESET_OICR_RECV, state) ||
3094 test_bit(ICE_PFR_REQ, state) ||
3095 test_bit(ICE_CORER_REQ, state) ||
3096 test_bit(ICE_GLOBR_REQ, state);
3097 }
3098
3099 /**
3100 * ice_wait_for_reset - Wait for driver to finish reset and rebuild
3101 * @pf: pointer to the PF structure
3102 * @timeout: length of time to wait, in jiffies
3103 *
3104 * Wait (sleep) for a short time until the driver finishes cleaning up from
3105 * a device reset. The caller must be able to sleep. Use this to delay
3106 * operations that could fail while the driver is cleaning up after a device
3107 * reset.
3108 *
3109 * Returns 0 on success, -EBUSY if the reset is not finished within the
3110 * timeout, and -ERESTARTSYS if the thread was interrupted.
3111 */
ice_wait_for_reset(struct ice_pf * pf,unsigned long timeout)3112 int ice_wait_for_reset(struct ice_pf *pf, unsigned long timeout)
3113 {
3114 long ret;
3115
3116 ret = wait_event_interruptible_timeout(pf->reset_wait_queue,
3117 !ice_is_reset_in_progress(pf->state),
3118 timeout);
3119 if (ret < 0)
3120 return ret;
3121 else if (!ret)
3122 return -EBUSY;
3123 else
3124 return 0;
3125 }
3126
3127 /**
3128 * ice_vsi_update_q_map - update our copy of the VSI info with new queue map
3129 * @vsi: VSI being configured
3130 * @ctx: the context buffer returned from AQ VSI update command
3131 */
ice_vsi_update_q_map(struct ice_vsi * vsi,struct ice_vsi_ctx * ctx)3132 static void ice_vsi_update_q_map(struct ice_vsi *vsi, struct ice_vsi_ctx *ctx)
3133 {
3134 vsi->info.mapping_flags = ctx->info.mapping_flags;
3135 memcpy(&vsi->info.q_mapping, &ctx->info.q_mapping,
3136 sizeof(vsi->info.q_mapping));
3137 memcpy(&vsi->info.tc_mapping, ctx->info.tc_mapping,
3138 sizeof(vsi->info.tc_mapping));
3139 }
3140
3141 /**
3142 * ice_vsi_cfg_netdev_tc - Setup the netdev TC configuration
3143 * @vsi: the VSI being configured
3144 * @ena_tc: TC map to be enabled
3145 */
ice_vsi_cfg_netdev_tc(struct ice_vsi * vsi,u8 ena_tc)3146 void ice_vsi_cfg_netdev_tc(struct ice_vsi *vsi, u8 ena_tc)
3147 {
3148 struct net_device *netdev = vsi->netdev;
3149 struct ice_pf *pf = vsi->back;
3150 int numtc = vsi->tc_cfg.numtc;
3151 struct ice_dcbx_cfg *dcbcfg;
3152 u8 netdev_tc;
3153 int i;
3154
3155 if (!netdev)
3156 return;
3157
3158 /* CHNL VSI doesn't have it's own netdev, hence, no netdev_tc */
3159 if (vsi->type == ICE_VSI_CHNL)
3160 return;
3161
3162 if (!ena_tc) {
3163 netdev_reset_tc(netdev);
3164 return;
3165 }
3166
3167 if (vsi->type == ICE_VSI_PF && ice_is_adq_active(pf))
3168 numtc = vsi->all_numtc;
3169
3170 if (netdev_set_num_tc(netdev, numtc))
3171 return;
3172
3173 dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
3174
3175 ice_for_each_traffic_class(i)
3176 if (vsi->tc_cfg.ena_tc & BIT(i))
3177 netdev_set_tc_queue(netdev,
3178 vsi->tc_cfg.tc_info[i].netdev_tc,
3179 vsi->tc_cfg.tc_info[i].qcount_tx,
3180 vsi->tc_cfg.tc_info[i].qoffset);
3181 /* setup TC queue map for CHNL TCs */
3182 ice_for_each_chnl_tc(i) {
3183 if (!(vsi->all_enatc & BIT(i)))
3184 break;
3185 if (!vsi->mqprio_qopt.qopt.count[i])
3186 break;
3187 netdev_set_tc_queue(netdev, i,
3188 vsi->mqprio_qopt.qopt.count[i],
3189 vsi->mqprio_qopt.qopt.offset[i]);
3190 }
3191
3192 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3193 return;
3194
3195 for (i = 0; i < ICE_MAX_USER_PRIORITY; i++) {
3196 u8 ets_tc = dcbcfg->etscfg.prio_table[i];
3197
3198 /* Get the mapped netdev TC# for the UP */
3199 netdev_tc = vsi->tc_cfg.tc_info[ets_tc].netdev_tc;
3200 netdev_set_prio_tc_map(netdev, i, netdev_tc);
3201 }
3202 }
3203
3204 /**
3205 * ice_vsi_setup_q_map_mqprio - Prepares mqprio based tc_config
3206 * @vsi: the VSI being configured,
3207 * @ctxt: VSI context structure
3208 * @ena_tc: number of traffic classes to enable
3209 *
3210 * Prepares VSI tc_config to have queue configurations based on MQPRIO options.
3211 */
3212 static int
ice_vsi_setup_q_map_mqprio(struct ice_vsi * vsi,struct ice_vsi_ctx * ctxt,u8 ena_tc)3213 ice_vsi_setup_q_map_mqprio(struct ice_vsi *vsi, struct ice_vsi_ctx *ctxt,
3214 u8 ena_tc)
3215 {
3216 u16 pow, offset = 0, qcount_tx = 0, qcount_rx = 0, qmap;
3217 u16 tc0_offset = vsi->mqprio_qopt.qopt.offset[0];
3218 int tc0_qcount = vsi->mqprio_qopt.qopt.count[0];
3219 u16 new_txq, new_rxq;
3220 u8 netdev_tc = 0;
3221 int i;
3222
3223 vsi->tc_cfg.ena_tc = ena_tc ? ena_tc : 1;
3224
3225 pow = order_base_2(tc0_qcount);
3226 qmap = FIELD_PREP(ICE_AQ_VSI_TC_Q_OFFSET_M, tc0_offset);
3227 qmap |= FIELD_PREP(ICE_AQ_VSI_TC_Q_NUM_M, pow);
3228
3229 ice_for_each_traffic_class(i) {
3230 if (!(vsi->tc_cfg.ena_tc & BIT(i))) {
3231 /* TC is not enabled */
3232 vsi->tc_cfg.tc_info[i].qoffset = 0;
3233 vsi->tc_cfg.tc_info[i].qcount_rx = 1;
3234 vsi->tc_cfg.tc_info[i].qcount_tx = 1;
3235 vsi->tc_cfg.tc_info[i].netdev_tc = 0;
3236 ctxt->info.tc_mapping[i] = 0;
3237 continue;
3238 }
3239
3240 offset = vsi->mqprio_qopt.qopt.offset[i];
3241 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3242 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3243 vsi->tc_cfg.tc_info[i].qoffset = offset;
3244 vsi->tc_cfg.tc_info[i].qcount_rx = qcount_rx;
3245 vsi->tc_cfg.tc_info[i].qcount_tx = qcount_tx;
3246 vsi->tc_cfg.tc_info[i].netdev_tc = netdev_tc++;
3247 }
3248
3249 if (vsi->all_numtc && vsi->all_numtc != vsi->tc_cfg.numtc) {
3250 ice_for_each_chnl_tc(i) {
3251 if (!(vsi->all_enatc & BIT(i)))
3252 continue;
3253 offset = vsi->mqprio_qopt.qopt.offset[i];
3254 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
3255 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
3256 }
3257 }
3258
3259 new_txq = offset + qcount_tx;
3260 if (new_txq > vsi->alloc_txq) {
3261 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Tx queues (%u), than were allocated (%u)!\n",
3262 new_txq, vsi->alloc_txq);
3263 return -EINVAL;
3264 }
3265
3266 new_rxq = offset + qcount_rx;
3267 if (new_rxq > vsi->alloc_rxq) {
3268 dev_err(ice_pf_to_dev(vsi->back), "Trying to use more Rx queues (%u), than were allocated (%u)!\n",
3269 new_rxq, vsi->alloc_rxq);
3270 return -EINVAL;
3271 }
3272
3273 /* Set actual Tx/Rx queue pairs */
3274 vsi->num_txq = new_txq;
3275 vsi->num_rxq = new_rxq;
3276
3277 /* Setup queue TC[0].qmap for given VSI context */
3278 ctxt->info.tc_mapping[0] = cpu_to_le16(qmap);
3279 ctxt->info.q_mapping[0] = cpu_to_le16(vsi->rxq_map[0]);
3280 ctxt->info.q_mapping[1] = cpu_to_le16(tc0_qcount);
3281
3282 /* Find queue count available for channel VSIs and starting offset
3283 * for channel VSIs
3284 */
3285 if (tc0_qcount && tc0_qcount < vsi->num_rxq) {
3286 vsi->cnt_q_avail = vsi->num_rxq - tc0_qcount;
3287 vsi->next_base_q = tc0_qcount;
3288 }
3289 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_txq = %d\n", vsi->num_txq);
3290 dev_dbg(ice_pf_to_dev(vsi->back), "vsi->num_rxq = %d\n", vsi->num_rxq);
3291 dev_dbg(ice_pf_to_dev(vsi->back), "all_numtc %u, all_enatc: 0x%04x, tc_cfg.numtc %u\n",
3292 vsi->all_numtc, vsi->all_enatc, vsi->tc_cfg.numtc);
3293
3294 return 0;
3295 }
3296
3297 /**
3298 * ice_vsi_cfg_tc - Configure VSI Tx Sched for given TC map
3299 * @vsi: VSI to be configured
3300 * @ena_tc: TC bitmap
3301 *
3302 * VSI queues expected to be quiesced before calling this function
3303 */
ice_vsi_cfg_tc(struct ice_vsi * vsi,u8 ena_tc)3304 int ice_vsi_cfg_tc(struct ice_vsi *vsi, u8 ena_tc)
3305 {
3306 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
3307 struct ice_pf *pf = vsi->back;
3308 struct ice_tc_cfg old_tc_cfg;
3309 struct ice_vsi_ctx *ctx;
3310 struct device *dev;
3311 int i, ret = 0;
3312 u8 num_tc = 0;
3313
3314 dev = ice_pf_to_dev(pf);
3315 if (vsi->tc_cfg.ena_tc == ena_tc &&
3316 vsi->mqprio_qopt.mode != TC_MQPRIO_MODE_CHANNEL)
3317 return 0;
3318
3319 ice_for_each_traffic_class(i) {
3320 /* build bitmap of enabled TCs */
3321 if (ena_tc & BIT(i))
3322 num_tc++;
3323 /* populate max_txqs per TC */
3324 max_txqs[i] = vsi->alloc_txq;
3325 /* Update max_txqs if it is CHNL VSI, because alloc_t[r]xq are
3326 * zero for CHNL VSI, hence use num_txq instead as max_txqs
3327 */
3328 if (vsi->type == ICE_VSI_CHNL &&
3329 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3330 max_txqs[i] = vsi->num_txq;
3331 }
3332
3333 memcpy(&old_tc_cfg, &vsi->tc_cfg, sizeof(old_tc_cfg));
3334 vsi->tc_cfg.ena_tc = ena_tc;
3335 vsi->tc_cfg.numtc = num_tc;
3336
3337 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
3338 if (!ctx)
3339 return -ENOMEM;
3340
3341 ctx->vf_num = 0;
3342 ctx->info = vsi->info;
3343
3344 if (vsi->type == ICE_VSI_PF &&
3345 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3346 ret = ice_vsi_setup_q_map_mqprio(vsi, ctx, ena_tc);
3347 else
3348 ret = ice_vsi_setup_q_map(vsi, ctx);
3349
3350 if (ret) {
3351 memcpy(&vsi->tc_cfg, &old_tc_cfg, sizeof(vsi->tc_cfg));
3352 goto out;
3353 }
3354
3355 /* must to indicate which section of VSI context are being modified */
3356 ctx->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_RXQ_MAP_VALID);
3357 ret = ice_update_vsi(&pf->hw, vsi->idx, ctx, NULL);
3358 if (ret) {
3359 dev_info(dev, "Failed VSI Update\n");
3360 goto out;
3361 }
3362
3363 if (vsi->type == ICE_VSI_PF &&
3364 test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
3365 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, 1, max_txqs);
3366 else
3367 ret = ice_cfg_vsi_lan(vsi->port_info, vsi->idx,
3368 vsi->tc_cfg.ena_tc, max_txqs);
3369
3370 if (ret) {
3371 dev_err(dev, "VSI %d failed TC config, error %d\n",
3372 vsi->vsi_num, ret);
3373 goto out;
3374 }
3375 ice_vsi_update_q_map(vsi, ctx);
3376 vsi->info.valid_sections = 0;
3377
3378 ice_vsi_cfg_netdev_tc(vsi, ena_tc);
3379 out:
3380 kfree(ctx);
3381 return ret;
3382 }
3383
3384 /**
3385 * ice_update_ring_stats - Update ring statistics
3386 * @stats: stats to be updated
3387 * @pkts: number of processed packets
3388 * @bytes: number of processed bytes
3389 *
3390 * This function assumes that caller has acquired a u64_stats_sync lock.
3391 */
ice_update_ring_stats(struct ice_q_stats * stats,u64 pkts,u64 bytes)3392 static void ice_update_ring_stats(struct ice_q_stats *stats, u64 pkts, u64 bytes)
3393 {
3394 stats->bytes += bytes;
3395 stats->pkts += pkts;
3396 }
3397
3398 /**
3399 * ice_update_tx_ring_stats - Update Tx ring specific counters
3400 * @tx_ring: ring to update
3401 * @pkts: number of processed packets
3402 * @bytes: number of processed bytes
3403 */
ice_update_tx_ring_stats(struct ice_tx_ring * tx_ring,u64 pkts,u64 bytes)3404 void ice_update_tx_ring_stats(struct ice_tx_ring *tx_ring, u64 pkts, u64 bytes)
3405 {
3406 u64_stats_update_begin(&tx_ring->ring_stats->syncp);
3407 ice_update_ring_stats(&tx_ring->ring_stats->stats, pkts, bytes);
3408 u64_stats_update_end(&tx_ring->ring_stats->syncp);
3409 }
3410
3411 /**
3412 * ice_update_rx_ring_stats - Update Rx ring specific counters
3413 * @rx_ring: ring to update
3414 * @pkts: number of processed packets
3415 * @bytes: number of processed bytes
3416 */
ice_update_rx_ring_stats(struct ice_rx_ring * rx_ring,u64 pkts,u64 bytes)3417 void ice_update_rx_ring_stats(struct ice_rx_ring *rx_ring, u64 pkts, u64 bytes)
3418 {
3419 u64_stats_update_begin(&rx_ring->ring_stats->syncp);
3420 ice_update_ring_stats(&rx_ring->ring_stats->stats, pkts, bytes);
3421 u64_stats_update_end(&rx_ring->ring_stats->syncp);
3422 }
3423
3424 /**
3425 * ice_is_dflt_vsi_in_use - check if the default forwarding VSI is being used
3426 * @pi: port info of the switch with default VSI
3427 *
3428 * Return true if the there is a single VSI in default forwarding VSI list
3429 */
ice_is_dflt_vsi_in_use(struct ice_port_info * pi)3430 bool ice_is_dflt_vsi_in_use(struct ice_port_info *pi)
3431 {
3432 bool exists = false;
3433
3434 ice_check_if_dflt_vsi(pi, 0, &exists);
3435 return exists;
3436 }
3437
3438 /**
3439 * ice_is_vsi_dflt_vsi - check if the VSI passed in is the default VSI
3440 * @vsi: VSI to compare against default forwarding VSI
3441 *
3442 * If this VSI passed in is the default forwarding VSI then return true, else
3443 * return false
3444 */
ice_is_vsi_dflt_vsi(struct ice_vsi * vsi)3445 bool ice_is_vsi_dflt_vsi(struct ice_vsi *vsi)
3446 {
3447 return ice_check_if_dflt_vsi(vsi->port_info, vsi->idx, NULL);
3448 }
3449
3450 /**
3451 * ice_set_dflt_vsi - set the default forwarding VSI
3452 * @vsi: VSI getting set as the default forwarding VSI on the switch
3453 *
3454 * If the VSI passed in is already the default VSI and it's enabled just return
3455 * success.
3456 *
3457 * Otherwise try to set the VSI passed in as the switch's default VSI and
3458 * return the result.
3459 */
ice_set_dflt_vsi(struct ice_vsi * vsi)3460 int ice_set_dflt_vsi(struct ice_vsi *vsi)
3461 {
3462 struct device *dev;
3463 int status;
3464
3465 if (!vsi)
3466 return -EINVAL;
3467
3468 dev = ice_pf_to_dev(vsi->back);
3469
3470 if (ice_lag_is_switchdev_running(vsi->back)) {
3471 dev_dbg(dev, "VSI %d passed is a part of LAG containing interfaces in switchdev mode, nothing to do\n",
3472 vsi->vsi_num);
3473 return 0;
3474 }
3475
3476 /* the VSI passed in is already the default VSI */
3477 if (ice_is_vsi_dflt_vsi(vsi)) {
3478 dev_dbg(dev, "VSI %d passed in is already the default forwarding VSI, nothing to do\n",
3479 vsi->vsi_num);
3480 return 0;
3481 }
3482
3483 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, true, ICE_FLTR_RX);
3484 if (status) {
3485 dev_err(dev, "Failed to set VSI %d as the default forwarding VSI, error %d\n",
3486 vsi->vsi_num, status);
3487 return status;
3488 }
3489
3490 return 0;
3491 }
3492
3493 /**
3494 * ice_clear_dflt_vsi - clear the default forwarding VSI
3495 * @vsi: VSI to remove from filter list
3496 *
3497 * If the switch has no default VSI or it's not enabled then return error.
3498 *
3499 * Otherwise try to clear the default VSI and return the result.
3500 */
ice_clear_dflt_vsi(struct ice_vsi * vsi)3501 int ice_clear_dflt_vsi(struct ice_vsi *vsi)
3502 {
3503 struct device *dev;
3504 int status;
3505
3506 if (!vsi)
3507 return -EINVAL;
3508
3509 dev = ice_pf_to_dev(vsi->back);
3510
3511 /* there is no default VSI configured */
3512 if (!ice_is_dflt_vsi_in_use(vsi->port_info))
3513 return -ENODEV;
3514
3515 status = ice_cfg_dflt_vsi(vsi->port_info, vsi->idx, false,
3516 ICE_FLTR_RX);
3517 if (status) {
3518 dev_err(dev, "Failed to clear the default forwarding VSI %d, error %d\n",
3519 vsi->vsi_num, status);
3520 return -EIO;
3521 }
3522
3523 return 0;
3524 }
3525
3526 /**
3527 * ice_get_link_speed_mbps - get link speed in Mbps
3528 * @vsi: the VSI whose link speed is being queried
3529 *
3530 * Return current VSI link speed and 0 if the speed is unknown.
3531 */
ice_get_link_speed_mbps(struct ice_vsi * vsi)3532 int ice_get_link_speed_mbps(struct ice_vsi *vsi)
3533 {
3534 unsigned int link_speed;
3535
3536 link_speed = vsi->port_info->phy.link_info.link_speed;
3537
3538 return (int)ice_get_link_speed(fls(link_speed) - 1);
3539 }
3540
3541 /**
3542 * ice_get_link_speed_kbps - get link speed in Kbps
3543 * @vsi: the VSI whose link speed is being queried
3544 *
3545 * Return current VSI link speed and 0 if the speed is unknown.
3546 */
ice_get_link_speed_kbps(struct ice_vsi * vsi)3547 int ice_get_link_speed_kbps(struct ice_vsi *vsi)
3548 {
3549 int speed_mbps;
3550
3551 speed_mbps = ice_get_link_speed_mbps(vsi);
3552
3553 return speed_mbps * 1000;
3554 }
3555
3556 /**
3557 * ice_set_min_bw_limit - setup minimum BW limit for Tx based on min_tx_rate
3558 * @vsi: VSI to be configured
3559 * @min_tx_rate: min Tx rate in Kbps to be configured as BW limit
3560 *
3561 * If the min_tx_rate is specified as 0 that means to clear the minimum BW limit
3562 * profile, otherwise a non-zero value will force a minimum BW limit for the VSI
3563 * on TC 0.
3564 */
ice_set_min_bw_limit(struct ice_vsi * vsi,u64 min_tx_rate)3565 int ice_set_min_bw_limit(struct ice_vsi *vsi, u64 min_tx_rate)
3566 {
3567 struct ice_pf *pf = vsi->back;
3568 struct device *dev;
3569 int status;
3570 int speed;
3571
3572 dev = ice_pf_to_dev(pf);
3573 if (!vsi->port_info) {
3574 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3575 vsi->idx, vsi->type);
3576 return -EINVAL;
3577 }
3578
3579 speed = ice_get_link_speed_kbps(vsi);
3580 if (min_tx_rate > (u64)speed) {
3581 dev_err(dev, "invalid min Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3582 min_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3583 speed);
3584 return -EINVAL;
3585 }
3586
3587 /* Configure min BW for VSI limit */
3588 if (min_tx_rate) {
3589 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3590 ICE_MIN_BW, min_tx_rate);
3591 if (status) {
3592 dev_err(dev, "failed to set min Tx rate(%llu Kbps) for %s %d\n",
3593 min_tx_rate, ice_vsi_type_str(vsi->type),
3594 vsi->idx);
3595 return status;
3596 }
3597
3598 dev_dbg(dev, "set min Tx rate(%llu Kbps) for %s\n",
3599 min_tx_rate, ice_vsi_type_str(vsi->type));
3600 } else {
3601 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3602 vsi->idx, 0,
3603 ICE_MIN_BW);
3604 if (status) {
3605 dev_err(dev, "failed to clear min Tx rate configuration for %s %d\n",
3606 ice_vsi_type_str(vsi->type), vsi->idx);
3607 return status;
3608 }
3609
3610 dev_dbg(dev, "cleared min Tx rate configuration for %s %d\n",
3611 ice_vsi_type_str(vsi->type), vsi->idx);
3612 }
3613
3614 return 0;
3615 }
3616
3617 /**
3618 * ice_set_max_bw_limit - setup maximum BW limit for Tx based on max_tx_rate
3619 * @vsi: VSI to be configured
3620 * @max_tx_rate: max Tx rate in Kbps to be configured as BW limit
3621 *
3622 * If the max_tx_rate is specified as 0 that means to clear the maximum BW limit
3623 * profile, otherwise a non-zero value will force a maximum BW limit for the VSI
3624 * on TC 0.
3625 */
ice_set_max_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate)3626 int ice_set_max_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate)
3627 {
3628 struct ice_pf *pf = vsi->back;
3629 struct device *dev;
3630 int status;
3631 int speed;
3632
3633 dev = ice_pf_to_dev(pf);
3634 if (!vsi->port_info) {
3635 dev_dbg(dev, "VSI %d, type %u specified doesn't have valid port_info\n",
3636 vsi->idx, vsi->type);
3637 return -EINVAL;
3638 }
3639
3640 speed = ice_get_link_speed_kbps(vsi);
3641 if (max_tx_rate > (u64)speed) {
3642 dev_err(dev, "invalid max Tx rate %llu Kbps specified for %s %d is greater than current link speed %u Kbps\n",
3643 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx,
3644 speed);
3645 return -EINVAL;
3646 }
3647
3648 /* Configure max BW for VSI limit */
3649 if (max_tx_rate) {
3650 status = ice_cfg_vsi_bw_lmt_per_tc(vsi->port_info, vsi->idx, 0,
3651 ICE_MAX_BW, max_tx_rate);
3652 if (status) {
3653 dev_err(dev, "failed setting max Tx rate(%llu Kbps) for %s %d\n",
3654 max_tx_rate, ice_vsi_type_str(vsi->type),
3655 vsi->idx);
3656 return status;
3657 }
3658
3659 dev_dbg(dev, "set max Tx rate(%llu Kbps) for %s %d\n",
3660 max_tx_rate, ice_vsi_type_str(vsi->type), vsi->idx);
3661 } else {
3662 status = ice_cfg_vsi_bw_dflt_lmt_per_tc(vsi->port_info,
3663 vsi->idx, 0,
3664 ICE_MAX_BW);
3665 if (status) {
3666 dev_err(dev, "failed clearing max Tx rate configuration for %s %d\n",
3667 ice_vsi_type_str(vsi->type), vsi->idx);
3668 return status;
3669 }
3670
3671 dev_dbg(dev, "cleared max Tx rate configuration for %s %d\n",
3672 ice_vsi_type_str(vsi->type), vsi->idx);
3673 }
3674
3675 return 0;
3676 }
3677
3678 /**
3679 * ice_set_link - turn on/off physical link
3680 * @vsi: VSI to modify physical link on
3681 * @ena: turn on/off physical link
3682 */
ice_set_link(struct ice_vsi * vsi,bool ena)3683 int ice_set_link(struct ice_vsi *vsi, bool ena)
3684 {
3685 struct device *dev = ice_pf_to_dev(vsi->back);
3686 struct ice_port_info *pi = vsi->port_info;
3687 struct ice_hw *hw = pi->hw;
3688 int status;
3689
3690 if (vsi->type != ICE_VSI_PF)
3691 return -EINVAL;
3692
3693 status = ice_aq_set_link_restart_an(pi, ena, NULL);
3694
3695 /* if link is owned by manageability, FW will return ICE_AQ_RC_EMODE.
3696 * this is not a fatal error, so print a warning message and return
3697 * a success code. Return an error if FW returns an error code other
3698 * than ICE_AQ_RC_EMODE
3699 */
3700 if (status == -EIO) {
3701 if (hw->adminq.sq_last_status == ICE_AQ_RC_EMODE)
3702 dev_dbg(dev, "can't set link to %s, err %d aq_err %s. not fatal, continuing\n",
3703 (ena ? "ON" : "OFF"), status,
3704 ice_aq_str(hw->adminq.sq_last_status));
3705 } else if (status) {
3706 dev_err(dev, "can't set link to %s, err %d aq_err %s\n",
3707 (ena ? "ON" : "OFF"), status,
3708 ice_aq_str(hw->adminq.sq_last_status));
3709 return status;
3710 }
3711
3712 return 0;
3713 }
3714
3715 /**
3716 * ice_vsi_add_vlan_zero - add VLAN 0 filter(s) for this VSI
3717 * @vsi: VSI used to add VLAN filters
3718 *
3719 * In Single VLAN Mode (SVM), single VLAN filters via ICE_SW_LKUP_VLAN are based
3720 * on the inner VLAN ID, so the VLAN TPID (i.e. 0x8100 or 0x888a8) doesn't
3721 * matter. In Double VLAN Mode (DVM), outer/single VLAN filters via
3722 * ICE_SW_LKUP_VLAN are based on the outer/single VLAN ID + VLAN TPID.
3723 *
3724 * For both modes add a VLAN 0 + no VLAN TPID filter to handle untagged traffic
3725 * when VLAN pruning is enabled. Also, this handles VLAN 0 priority tagged
3726 * traffic in SVM, since the VLAN TPID isn't part of filtering.
3727 *
3728 * If DVM is enabled then an explicit VLAN 0 + VLAN TPID filter needs to be
3729 * added to allow VLAN 0 priority tagged traffic in DVM, since the VLAN TPID is
3730 * part of filtering.
3731 */
ice_vsi_add_vlan_zero(struct ice_vsi * vsi)3732 int ice_vsi_add_vlan_zero(struct ice_vsi *vsi)
3733 {
3734 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3735 struct ice_vlan vlan;
3736 int err;
3737
3738 vlan = ICE_VLAN(0, 0, 0);
3739 err = vlan_ops->add_vlan(vsi, &vlan);
3740 if (err && err != -EEXIST)
3741 return err;
3742
3743 /* in SVM both VLAN 0 filters are identical */
3744 if (!ice_is_dvm_ena(&vsi->back->hw))
3745 return 0;
3746
3747 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3748 err = vlan_ops->add_vlan(vsi, &vlan);
3749 if (err && err != -EEXIST)
3750 return err;
3751
3752 return 0;
3753 }
3754
3755 /**
3756 * ice_vsi_del_vlan_zero - delete VLAN 0 filter(s) for this VSI
3757 * @vsi: VSI used to add VLAN filters
3758 *
3759 * Delete the VLAN 0 filters in the same manner that they were added in
3760 * ice_vsi_add_vlan_zero.
3761 */
ice_vsi_del_vlan_zero(struct ice_vsi * vsi)3762 int ice_vsi_del_vlan_zero(struct ice_vsi *vsi)
3763 {
3764 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3765 struct ice_vlan vlan;
3766 int err;
3767
3768 vlan = ICE_VLAN(0, 0, 0);
3769 err = vlan_ops->del_vlan(vsi, &vlan);
3770 if (err && err != -EEXIST)
3771 return err;
3772
3773 /* in SVM both VLAN 0 filters are identical */
3774 if (!ice_is_dvm_ena(&vsi->back->hw))
3775 return 0;
3776
3777 vlan = ICE_VLAN(ETH_P_8021Q, 0, 0);
3778 err = vlan_ops->del_vlan(vsi, &vlan);
3779 if (err && err != -EEXIST)
3780 return err;
3781
3782 /* when deleting the last VLAN filter, make sure to disable the VLAN
3783 * promisc mode so the filter isn't left by accident
3784 */
3785 return ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3786 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3787 }
3788
3789 /**
3790 * ice_vsi_num_zero_vlans - get number of VLAN 0 filters based on VLAN mode
3791 * @vsi: VSI used to get the VLAN mode
3792 *
3793 * If DVM is enabled then 2 VLAN 0 filters are added, else if SVM is enabled
3794 * then 1 VLAN 0 filter is added. See ice_vsi_add_vlan_zero for more details.
3795 */
ice_vsi_num_zero_vlans(struct ice_vsi * vsi)3796 static u16 ice_vsi_num_zero_vlans(struct ice_vsi *vsi)
3797 {
3798 #define ICE_DVM_NUM_ZERO_VLAN_FLTRS 2
3799 #define ICE_SVM_NUM_ZERO_VLAN_FLTRS 1
3800 /* no VLAN 0 filter is created when a port VLAN is active */
3801 if (vsi->type == ICE_VSI_VF) {
3802 if (WARN_ON(!vsi->vf))
3803 return 0;
3804
3805 if (ice_vf_is_port_vlan_ena(vsi->vf))
3806 return 0;
3807 }
3808
3809 if (ice_is_dvm_ena(&vsi->back->hw))
3810 return ICE_DVM_NUM_ZERO_VLAN_FLTRS;
3811 else
3812 return ICE_SVM_NUM_ZERO_VLAN_FLTRS;
3813 }
3814
3815 /**
3816 * ice_vsi_has_non_zero_vlans - check if VSI has any non-zero VLANs
3817 * @vsi: VSI used to determine if any non-zero VLANs have been added
3818 */
ice_vsi_has_non_zero_vlans(struct ice_vsi * vsi)3819 bool ice_vsi_has_non_zero_vlans(struct ice_vsi *vsi)
3820 {
3821 return (vsi->num_vlan > ice_vsi_num_zero_vlans(vsi));
3822 }
3823
3824 /**
3825 * ice_vsi_num_non_zero_vlans - get the number of non-zero VLANs for this VSI
3826 * @vsi: VSI used to get the number of non-zero VLANs added
3827 */
ice_vsi_num_non_zero_vlans(struct ice_vsi * vsi)3828 u16 ice_vsi_num_non_zero_vlans(struct ice_vsi *vsi)
3829 {
3830 return (vsi->num_vlan - ice_vsi_num_zero_vlans(vsi));
3831 }
3832
3833 /**
3834 * ice_is_feature_supported
3835 * @pf: pointer to the struct ice_pf instance
3836 * @f: feature enum to be checked
3837 *
3838 * returns true if feature is supported, false otherwise
3839 */
ice_is_feature_supported(struct ice_pf * pf,enum ice_feature f)3840 bool ice_is_feature_supported(struct ice_pf *pf, enum ice_feature f)
3841 {
3842 if (f < 0 || f >= ICE_F_MAX)
3843 return false;
3844
3845 return test_bit(f, pf->features);
3846 }
3847
3848 /**
3849 * ice_set_feature_support
3850 * @pf: pointer to the struct ice_pf instance
3851 * @f: feature enum to set
3852 */
ice_set_feature_support(struct ice_pf * pf,enum ice_feature f)3853 void ice_set_feature_support(struct ice_pf *pf, enum ice_feature f)
3854 {
3855 if (f < 0 || f >= ICE_F_MAX)
3856 return;
3857
3858 set_bit(f, pf->features);
3859 }
3860
3861 /**
3862 * ice_clear_feature_support
3863 * @pf: pointer to the struct ice_pf instance
3864 * @f: feature enum to clear
3865 */
ice_clear_feature_support(struct ice_pf * pf,enum ice_feature f)3866 void ice_clear_feature_support(struct ice_pf *pf, enum ice_feature f)
3867 {
3868 if (f < 0 || f >= ICE_F_MAX)
3869 return;
3870
3871 clear_bit(f, pf->features);
3872 }
3873
3874 /**
3875 * ice_init_feature_support
3876 * @pf: pointer to the struct ice_pf instance
3877 *
3878 * called during init to setup supported feature
3879 */
ice_init_feature_support(struct ice_pf * pf)3880 void ice_init_feature_support(struct ice_pf *pf)
3881 {
3882 switch (pf->hw.device_id) {
3883 case ICE_DEV_ID_E810C_BACKPLANE:
3884 case ICE_DEV_ID_E810C_QSFP:
3885 case ICE_DEV_ID_E810C_SFP:
3886 case ICE_DEV_ID_E810_XXV_BACKPLANE:
3887 case ICE_DEV_ID_E810_XXV_QSFP:
3888 case ICE_DEV_ID_E810_XXV_SFP:
3889 ice_set_feature_support(pf, ICE_F_DSCP);
3890 if (ice_is_phy_rclk_in_netlist(&pf->hw))
3891 ice_set_feature_support(pf, ICE_F_PHY_RCLK);
3892 /* If we don't own the timer - don't enable other caps */
3893 if (!ice_pf_src_tmr_owned(pf))
3894 break;
3895 if (ice_is_cgu_in_netlist(&pf->hw))
3896 ice_set_feature_support(pf, ICE_F_CGU);
3897 if (ice_is_clock_mux_in_netlist(&pf->hw))
3898 ice_set_feature_support(pf, ICE_F_SMA_CTRL);
3899 if (ice_gnss_is_module_present(&pf->hw))
3900 ice_set_feature_support(pf, ICE_F_GNSS);
3901 break;
3902 default:
3903 break;
3904 }
3905
3906 if (pf->hw.mac_type == ICE_MAC_E830) {
3907 ice_set_feature_support(pf, ICE_F_MBX_LIMIT);
3908 ice_set_feature_support(pf, ICE_F_GCS);
3909 }
3910 }
3911
3912 /**
3913 * ice_vsi_update_security - update security block in VSI
3914 * @vsi: pointer to VSI structure
3915 * @fill: function pointer to fill ctx
3916 */
3917 int
ice_vsi_update_security(struct ice_vsi * vsi,void (* fill)(struct ice_vsi_ctx *))3918 ice_vsi_update_security(struct ice_vsi *vsi, void (*fill)(struct ice_vsi_ctx *))
3919 {
3920 struct ice_vsi_ctx ctx = { 0 };
3921
3922 ctx.info = vsi->info;
3923 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SECURITY_VALID);
3924 fill(&ctx);
3925
3926 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3927 return -ENODEV;
3928
3929 vsi->info = ctx.info;
3930 return 0;
3931 }
3932
3933 /**
3934 * ice_vsi_ctx_set_antispoof - set antispoof function in VSI ctx
3935 * @ctx: pointer to VSI ctx structure
3936 */
ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx * ctx)3937 void ice_vsi_ctx_set_antispoof(struct ice_vsi_ctx *ctx)
3938 {
3939 ctx->info.sec_flags |= ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF |
3940 (ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3941 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3942 }
3943
3944 /**
3945 * ice_vsi_ctx_clear_antispoof - clear antispoof function in VSI ctx
3946 * @ctx: pointer to VSI ctx structure
3947 */
ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx * ctx)3948 void ice_vsi_ctx_clear_antispoof(struct ice_vsi_ctx *ctx)
3949 {
3950 ctx->info.sec_flags &= ~ICE_AQ_VSI_SEC_FLAG_ENA_MAC_ANTI_SPOOF &
3951 ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
3952 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
3953 }
3954
3955 /**
3956 * ice_vsi_update_local_lb - update sw block in VSI with local loopback bit
3957 * @vsi: pointer to VSI structure
3958 * @set: set or unset the bit
3959 */
3960 int
ice_vsi_update_local_lb(struct ice_vsi * vsi,bool set)3961 ice_vsi_update_local_lb(struct ice_vsi *vsi, bool set)
3962 {
3963 struct ice_vsi_ctx ctx = {
3964 .info = vsi->info,
3965 };
3966
3967 ctx.info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
3968 if (set)
3969 ctx.info.sw_flags |= ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
3970 else
3971 ctx.info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_LOCAL_LB;
3972
3973 if (ice_update_vsi(&vsi->back->hw, vsi->idx, &ctx, NULL))
3974 return -ENODEV;
3975
3976 vsi->info = ctx.info;
3977 return 0;
3978 }
3979